These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

NASA Planetary Surface Exploration  

NASA Technical Reports Server (NTRS)

Managed for NASA by the California Institute of Technology, the Jet Propulsion Laboratory is the lead U.S. center for robotic exploration of the solar system. JPL spacecraft have visited all known planets except Pluto (a Pluto mission is currently under study). In addition to its work for NASA, JPL conducts tasks for a variety of other federal agencies. In addition, JPL manages the worldwide Deep Space Network, which communicates with spacecraft and conducts scientific investigations from its complexes in California's Mojave Desert near Goldstone; near Madrid, Spain; and near Canberra, Australia. JPL employs about 6000 people.

Hayati, Samad

1999-01-01

2

NASA Planetary Visualization Tool  

NASA Astrophysics Data System (ADS)

NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one of these color coded markers are clicked, it downloads the full image and displays it in the full context of its location on Earth. MODIS images are publication quality material at resolutions up to 250-meters-per-pixel. NASA World Wind provides a full catalog of countries, capitals, counties, cities, towns, and even historical references. The names appear dynamically, increasing in number as the user zooms in. World Wind is capable of browsing through and displaying GLOBE data based on any date one wishes planetary data for. That means one can download today's (or any previous day's) temperature across the world, or rainfall, barometric pressure, cloud cover, or even the GLOBE students' global distribution of collected data. This program is free and available for further development via the NASA Open Source Agreement guidelines.

Hogan, P.; Kim, R.

2004-12-01

3

TASTER: Trojan ASteroid Tour, Exploration and Rendezvous, a NASA Planetary Science Summer School Mission Design Exercise  

NASA Astrophysics Data System (ADS)

A detailed investigation of the Trojan asteroids occupying Jupiter's L4 and L5 Lagrangian points has been identified as a priority for future missions by the 2011 Planetary Science Decadal Survey. Observing these asteroids and getting clear measurements of their physical characteristics and composition may yield answers to fundamental questions relating to the early Solar System. In particular, Trojan asteroids are believed to harbor primordial material dating from the time of its formation. The source region for Trojans is still unknown; the Nice model predicts that some bodies may have originated in the primordial Kuiper belt and were subsequently scattered inward during the migration of Neptune and Uranus and settled in their current location. In alternative models, less radial scattering of small bodies would imply Trojans formed from material at a similar orbital distance to Jupiter. Determination of Trojan composition and structure will help identify their birth location, provide information about the impact history and subsequent evolution. Earth-based observations of size and surface characteristics are sparse; spectral measurements are unable to resolve composition (and show a puzzling lack of volatile signatures), indicating that close-range observation is needed. We present a mission design for a Trojan Tour and Rendezvous mission that is consistent with NASA's New Frontiers candidate recommended by the Decadal Survey, and which is the final result of the 2011 NASA-JPL Planetary Science Summer School Mission Design Exercise. Our proposed mission includes a tour phase that features a 500 km altitude fly-by of 1999 XS143. The spacecraft will then orbit and make detailed observations of 1919FD Agamemnon, a 167 km diameter asteroid located in the leading Lagrangian point (L4), from orbital altitudes of 1000 - 100 km over a 12 month nominal science data capture period. The mission's planned primary observations aim to (1) detect and identify volatile species and rock-forming elements on or just below the surface, (2) map the surface geology, and (3) determine size, shape, and rotational state. Our payload will provide unprecedented high-resolution, global dataset for the target bodies, yielding crucial information about the early history and evolution of the Solar System.

Diaz-silva, R.; Sayanagi, K. M.; Gil, S.; Diniega, S.; Balcerski, J.; Benneke, B.; Carande, B.; Fraeman, A. A.; Hudson, J. S.; Guzewich, S. D.; Livi, R.; Nahm, A.; Potter, S.; Route, M.; Urban, K. D.; Vasisht, S.; Williams, B.; Budney, C. J.; Lowes, L. L.

2011-12-01

4

Virtual reality and planetary exploration  

NASA Technical Reports Server (NTRS)

Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

Mcgreevy, Michael W.

1992-01-01

5

NASA's Planetary Photojournal  

NSDL National Science Digital Library

This site, hosted by the Jet Propulsion Laboratory (JPL), contains NASA's best solar system images. Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, and other objects all have entries sorted by the spacecraft that took the photo. The site is searchable by date, feature name, ID number, or spacecraft. Each image contains a small description and credits.

6

NASA Planetary Science Summer School: Longitudinal Study  

NASA Astrophysics Data System (ADS)

NASA’s Planetary Science Summer School is a program designed to prepare the next generation of scientists and engineers to participate in future missions of solar system exploration. The opportunity is advertised to science and engineering post-doctoral and graduate students with a strong interest in careers in planetary exploration. Preference is given to U.S. citizens. The “school” consists of a one-week intensive team exercise learning the process of developing a robotic mission concept into reality through concurrent engineering, working with JPL’s Advanced Project Design Team (Team X). This program benefits the students by providing them with skills, knowledge and the experience of collaborating with a concept mission design. A longitudinal study was conducted to assess the impact of the program on the past participants of the program. Data collected included their current contact information, if they are currently part of the planetary exploration community, if participation in the program contributed to any career choices, if the program benefited their career paths, etc. Approximately 37% of 250 past participants responded to the online survey. Of these, 83% indicated that they are actively involved in planetary exploration or aerospace in general; 78% said they had been able to apply what they learned in the program to their current job or professional career; 100% said they would recommend this program to a colleague.

Giron, Jennie M.; Sohus, A.

2006-12-01

7

NASA Regional Planetary Image Facility  

NASA Technical Reports Server (NTRS)

The Regional Planetary Image Facility (RPIF) provided access to data from NASA planetary missions and expert assistance about the data sets and how to order subsets of the collections. This ensures that the benefit/cost of acquiring the data is maximized by widespread dissemination and use of the observations and resultant collections. The RPIF provided education and outreach functions that ranged from providing data and information to teachers, involving small groups of highly motivated students in its activities, to public lectures and tours. These activities maximized dissemination of results and data to the educational and public communities.

Arvidson, Raymond E.

2001-01-01

8

Teaching, Learning, and Planetary Exploration  

NASA Technical Reports Server (NTRS)

This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

Brown, Robert A.

2002-01-01

9

A vision for planetary exploration  

NASA Technical Reports Server (NTRS)

A vision for planetary exploration is proposed which combines historical perspective and current NASA studies with the realities of changing political climates, economic environments, and technological directions. The concepts of Strategic Implementation Architectures (SIA), Open System Infrastructure Standards (OSIS), and Minimum Service Level Infrastructure (MSLI) are presented in order to propose a structure for the SEI which allows the realization of incremental mission objectives, establishes an investment strategy that efficiently uses public resources, and encourages partnerships with the government. The SIA is a hypothetical master plan which will allow the implementation of the complete spectrum of envisioned system capabilities for planetary exploration. OSIS consists of standards for interconnection, interoperability, and administration. MSLI can be defined as the minimum level of services provided by the system that are not justified by profit or parochial motives.

Connolly, John F.; Callaway, Robert K.; Diogu, Mark K.; Grush, Gene R.; Lancaster, E. M.; Morgan, William C.; Petri, David A.; Roberts, Barney B.; Pieniazek, Lester A.; Polette, Thomas M.

1992-01-01

10

Physics in NASA Exploration  

NASA Technical Reports Server (NTRS)

The primary focus of the workshop was NASA's new concentration on sending crewed missions to the Moon by 2020, and then on to Mars and beyond. Several speakers, including JPL s Fred O Callaghan and NASA's Mark Lee, broached the problem that there is now a serious reduction of capability to perform experiments in the ISS, or to fly significant mass in microgravity by other means. By 2010, the shuttle fleet will be discontinued and Russian craft will provide the only access to the ISS. O Callaghan stated that the Fundamental Physics budget is being reduced by 70%. LTMPF and LCAP are slated for termination. However, ground-based experiments are continuing to be funded at present, and it will be possible to compete for $80-90 million in new money from the Human Research Initiative (HRI). The new program thrust is for exploration, not fundamental physics. Fundamental, we were told by Lee, does not ring well in Washington these days. Investigators were advised to consider how their work can benefit missions to the Moon and Mars. Work such as that regarding atomic clocks is looked upon with favor, for example, because it is considered important to navigation and planetary GPS. Mark Lee stressed that physicists must convey to NASA senior management that they are able and willing to contribute to the new exploration research programs. The new mentality must be we deliver products, not do research. This program needs to be able to say that it is doing at least 50% exploration-related research. JPL s Ulf Israelsson discussed the implications to OBPR, which will deliver methods and technology to assure human health and performance in extraterrestrial settings. The enterprise will provide advanced life-support systems and technology that are reliable, capable, simpler, less massive, smaller, and energy-efficient, and it may offer other necessary expertise in areas such as low-gravity behavior. Like Dr. Lee, he stated that the focus must be on products, not research. While there is not yet a formal direction, he said, LTMPF and PARCS ISS flight projects are slated to terminate in October 2004. All flight investigations are being returned to ground programs and phased out by the end of FY07. Physics ground programs are intact for now, but to survive we must shift about 50% of research to supporting exploration. Basic research programs in other disciplines are being cancelled. Product lines will support human health, safety and life-support, including countermeasures against radiation and other hazards, as well as advances in time-keeping, navigation and communications technologies. Israelsson said that the new Fundamental Physics for Exploration Roadmap points to how fundamental physics research can and does support exploration. JPL will use the roadmap to argue for support for fundamental physics research under several codes. Nicholas Bigelow of the University of Rochester encouraged attendees not to become discouraged, but rather to embrace the opportunities presented by NASA's new direction.

O'Callaghan, Fred

2004-01-01

11

To: Jim Green, Jonathan Rall, Janet Luhmann & Planetary Science Subcommittee From: NASA Venus Exploration Analysis Group (VEXAG), Lori S. Glaze (Chair)  

E-print Network

To: Jim Green, Jonathan Rall, Janet Luhmann & Planetary Science Subcommittee From: NASA Venus of the Planetary Science Subcommittee, VEXAG solicited feedback from the Venus science community in response to the proposed restructuring of the Planetary Science Division R&A Program. Questions and Comments were solicited

Rathbun, Julie A.

12

Planetary Exploration Rebooted! New Ways of Exploring the Moon, Mars and Beyond  

NASA Technical Reports Server (NTRS)

In this talk, I will summarize how the NASA Ames Intelligent Robotics Group has been developing and field testing planetary robots for human exploration, creating automated planetary mapping systems, and engaging the public as citizen scientists.

Fong, Terrence W.

2010-01-01

13

Visualizing NASA's Planetary Data with Google Earth  

Microsoft Academic Search

There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. As a 3D geospatial browser, the Google Earth client is one way to visualize planetary data. KML imagery super-overlays enable us to create a non-Earth planetary globe within Google Earth, and conversion of planetary meta-data allows display of

R. A. Beyer; M. D. Hancher; M. Broxton; M. Weiss-Malik; N. Gorelick; E. Kolb

2008-01-01

14

Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: Overview of the Technology Maturation Efforts Funded by NASA's Game Changing Development Program  

NASA Technical Reports Server (NTRS)

The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of interest. The entry environment is not always guaranteed with a direct entry, and improving the entry system's robustness to a variety of environmental conditions could aid in reaching more varied landing sites."

Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

2012-01-01

15

Parallel Architectures for Planetary Exploration Requirements (PAPER)  

NASA Technical Reports Server (NTRS)

The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified.

Cezzar, Ruknet; Sen, Ranjan K.

1989-01-01

16

NASA: Solar System Exploration  

NSDL National Science Digital Library

This NASA website offers a wide variety of space science-related activities, multimedia, and facts for people of all ages. The website presents the latest news and upcoming space science events. Students and educators can explore space missions by name, decade, target, and nation. In the Science and Technology link, visitors can find the latest science and technology features, NASA science highlights, as well as information about astrobiology and power and propulsion. Kids will enjoy the Alien Safari interactive module and interesting facts about the planets. Teachers can easily locate activities about the science behind the latest NASA headlines through the Fast Lesson Finder. Everyone can view the images and videos of the planets, spacecraft, technology, and additional subjects.

2006-01-10

17

NASA's Mars Exploration Program  

NSDL National Science Digital Library

This site provides information and resources on the NASA Mars Exploration Program, a science-driven program that seeks to understand whether Mars was, is, or can be a habitable world, as suggested by the presence or absence of liquid water. Site materials include overviews of current and past Mars missions and spacecraft, facts and a virtual tour of the planet using the NASA Mars Atlas, and a brief discussion of the perception of Mars in popular culture. For students, there are interactive features, games, and activities. For educators, there are professional development materials, classroom resources (activities and lessons), and information on four major education programs connected with Mars exploration. Other materials include news articles, multimedia presentations, recent images, and updates from current missions.

18

The NASA planetary biology internship experience  

NASA Technical Reports Server (NTRS)

By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.

Hinkle, G.; Margulis, L.

1991-01-01

19

Planetary Science Subcommittee of the NASA Advisory Council Science Committee  

E-print Network

1 REPORT of the Planetary Science Subcommittee of the NASA Advisory Council Science Committee Orlando, Florida 7 October 2007 Introduction The Planetary Science Subcommittee (PSS) of the NASA Advisory, Director of the Planetary Science Division (PSD) of NASA's Science Mission Directorate (SMD), briefed

Rathbun, Julie A.

20

Planetary Science Subcommittee of the NASA Advisory Council Science Committee  

E-print Network

1 REPORT of the Planetary Science Subcommittee of the NASA Advisory Council Science Committee Washington, DC 2-3 October 2008 Introduction The Planetary Science Subcommittee (PSS) of the NASA Advisory day began with a briefing by James Green, Director of the Planetary Science Division (PSD) of NASA

Rathbun, Julie A.

21

Exploring Planetary Moons  

NSDL National Science Digital Library

This is a collection of mathematics problems relating to the moons of the solar system. Learners will use simple proportional relationships and work with fractions to study the relative sizes of the larger moons in our solar system, and explore how temperatures change from place to place using the Celsius and Kelvin scales.

22

Enabling Exploration: NASA's Technology Needs  

NASA Technical Reports Server (NTRS)

Deputy Director of Science, Carol W. Carroll has been invited by University of Oregon's Materials Science Institute to give a presentation. Carol's Speech explains NASA's Technologies that are needed where NASA was, what NASA's current capabilities are. Carol will highlight many of NASA's high profile projects and she will explain what NASA needs for its future by focusing on the next steps in space exploration. Carol's audience will be University of Oregon's future scientists and engineer's and their professor's along with various other faculty members.

Carroll, Carol W.

2012-01-01

23

76 FR 64387 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Status of Impacts on the Planetary Science Division --Status of Joint NASA-European Space Agency Mars Program --Europa Jupiter System Mission Descope Options --Status of European Space Agency JUpitor ICy moon Explorer Potential Mission --Status...

2011-10-18

24

Planetary Science Subcommittee of the NASA Advisory Council Science Committee  

E-print Network

REPORT of the Planetary Science Subcommittee of the NASA Advisory Council Science Committee Washington, D.C. 7-8 June 2007 Introduction The Planetary Science Subcommittee (PSS) of the NASA Advisory the Planetary Science Division's Government Performance Reporting Act (GPRA) progress. Phil Crane first

Rathbun, Julie A.

25

Teaching, learning, and planetary exploration  

NASA Technical Reports Server (NTRS)

The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers both at the technical and policy level to assure the efficiency and ultimate utility of these efforts to derive educational benefits from the space science and exploration program as a whole.

Brown, Robert A.

1992-01-01

26

Robots and Humans in Planetary Exploration: Working Together?  

NASA Technical Reports Server (NTRS)

Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

2002-01-01

27

Planetary Protection Technologies: Technical Challenges for Mars Exploration  

NASA Technical Reports Server (NTRS)

The search for life in the solar system, using either in situ analysis or sample return, brings with it special technical challenges in the area of planetary protection. Planetary protection (PP) requires planetary explorers to preserve biological and organic conditions for future exploration and to protect the Earth from potential extraterrestrial contamination that could occur as a result of sample return to the Earth-Moon system. In view of the exploration plans before us, the NASA Solar System Exploration Program Roadmap published in May 2003 identified planetary protection as one of 13 technologies for "high priority technology investments." Recent discoveries at Mars and Jupiter, coupled with new policies, have made this planning for planetary protection technology particularly challenging and relevant.New missions to Mars have been formulated, which present significantly greater forward contamination potential. New policies, including the introduction by COSPAR of a Category IVc for planetary protection, have been adopted by COSPAR in response. Some missions may not be feasible without the introduction of new planetary protection technologies. Other missions may be technically possible but planetary protection requirements may be so costly to implement with current technology that they are not affordable. A strategic investment strategy will be needed to focus on technology investments designed to enable future missions and reduce the costs of future missions. This presentation will describe some of the potential technological pathways that may be most protective.

Buxbaum, Karen L.

2005-01-01

28

NASA/CP--2006214202 NASA Space Exploration Logistics Workshop  

E-print Network

NASA/CP--2006­214202 NASA Space Exploration Logistics Workshop Proceedings January 17-18, 2006 Washington, DC April 2006 #12;NASA STI Program ... in Profile Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program

de Weck, Olivier L.

29

Overview of Innovative Aircraft Power and Propulsion Systems and Their Applications for Planetary Exploration  

NASA Technical Reports Server (NTRS)

Planetary exploration may be enhanced by the use of aircraft for mobility. This paper reviews the development of aircraft for planetary exploration missions at NASA and reviews the power and propulsion options for planetary aircraft. Several advanced concepts for aircraft exploration, including the use of in situ resources, the possibility of a flexible all-solid-state aircraft, the use of entomopters on Mars, and the possibility of aerostat exploration of Titan, are presented.

Colozza, Anthony; Landis, Geoffrey; Lyons, Valerie

2003-01-01

30

Planetary explorer liquid propulsion study  

NASA Technical Reports Server (NTRS)

An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

1971-01-01

31

Manned flight and planetary scientific exploration.  

NASA Astrophysics Data System (ADS)

Human explorers had a fundamental role in the success of the APOLLO moon programme, they were at the same time the indispensable pilots, scientific operators and on the last missions lead scientists. Since, man did not either return to the moon or land on Mars but manned operation centres on the earth are now conducting extensive telescience on both celestial bodies. Manned flights to moon, Mars and asteroids are however still on the agenda and even if the main drive of these projects is outside science, it is to the planetary scientists to both prepare the data bases necessary for these flights and to ensure that the scientific advantage of conducting research in real time and in situ is exploited to the maximum. The current manned flight programme in Europe concentrates on the use of the International Space Station, the scientific activities can be roughly divided between the pressurized payloads and the external payloads. Technology developments occur also in parallel and prepare new exploration techniques. The current planning leads to exploitation up to 2020 but the space agencies study further extensions, the date of 2028 having already been considered. The relation of these programmes to future manned planetary exploration will be described both from the science and development point of view. The complementary role of astronauts and ground operation centres will be described on the basis of the current experience of operation centres managing the International Space Station. Finally, the NASA ORION project of exploration in the solar system will be described with emphasis on its current European participations. The science opportunities presented by independent ventures as Inspiration Mars or Mars One will be presented.

Muller, Christian; Moreau, Didier

2014-05-01

32

NASA evolution of exploration architectures  

NASA Technical Reports Server (NTRS)

A series of charts and diagrams is used to provide a detailed overview of the evolution of NASA space exploration architectures. The pre-Apollo programs including the Werner von Braun feasibility study are discussed and the evolution of the Apollo program itself is treated in detail. The post-Apollo era is reviewed and attention is given to the resurgence of strategic planning exemplified by both ad hoc and formal efforts at planning. Results of NASA's study of the main elements of the Space Exploration Initiative which examined technical scenarios, science opportunities, required technologies, international considerations, institutional strengths and needs, and resource estimates are presented. The 90-day study concludes that, among other things, major investments in challenging technologies are required, the scientific opportunities provided by the program are considerable, current launch capabilities are inadequate, and Space Station Freedom is essential.

Roberts, Barney B.

1991-01-01

33

Human-Robot Planetary Exploration Teams  

NASA Technical Reports Server (NTRS)

The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus areas of our research are safety and crew time efficiency. For safety, our work involves enabling humans to reliably communicate with a robot while moving in the same workspace, and enabling robots to monitor and advise humans of potential problems. Voice, gesture, remote computer control, and enhanced robot intelligence are methods we are studying. For crew time efficiency, we are investigating the effects of assigning different roles to humans and robots in collaborative exploration scenarios.

Tyree, Kimberly

2004-01-01

34

Robots and Humans: Synergy in Planetary Exploration  

NASA Technical Reports Server (NTRS)

How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

Landis, Geoffrey A.

2003-01-01

35

Terrain identification methods for planetary exploration rovers  

E-print Network

Autonomous mobility in rough terrain is becoming increasingly important for planetary exploration rovers. Increased knowledge of local terrain properties is critical to ensure a rover's safety, especially when driving on ...

Brooks, Christopher Allen, 1978-

2004-01-01

36

76 FR 69768 - NASA Advisory Council; Science Committee Planetary Protection Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...11-114] NASA Advisory Council; Science Committee Planetary Protection...Subcommittee reports to the Science Committee of the NAC. The...CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...Returning Planetary Samples to Earth. --Agency Planetary...

2011-11-09

37

75 FR 57520 - NASA Advisory Council; Planetary Science Subcommittee; Supporting Research and Technology Working...  

Federal Register 2010, 2011, 2012, 2013, 2014

...NASA Advisory Council; Planetary Science Subcommittee; Supporting Research...Technology Working Group of the Planetary Science Subcommittee of the NASA Advisory...CONTACT: Dr. Michael New, Planetary Science Division, National...

2010-09-21

38

NASA: Exploration in 3D  

NSDL National Science Digital Library

NASA's Exploration in 3D website is well executed and is accompanied by music with that classic, creepy, outer space feel. For visitors who prefer silence while looking at images of deep, dark space, there is a mute button near the bottom right side of the homepage. With this website, NASA is allowing the public to see their next major project, which involves creating a transportation system to take astronauts to the moon and then on to Mars. To enable the interested public to watch the progress of their plans for space, NASA will be taking photos of the project and putting them on this website, so they can be downloaded and printed. Once said images are printed, that's where the 3-D pocket viewfinders come in. For visitors interested in getting a viewfinder, click on the link at the bottom of the page that says "Click here to request your own EXN3D Pocket Viewfinder". To view the latest images with your viewfinder that are ready to download and print, visitors can click on "Downloads". Interested parties should check back in the future to see newly added images of the progress of the transportation system.

39

NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders  

NASA Astrophysics Data System (ADS)

Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week’s end, students present their Concept Study to a “proposal review board” of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. The majority of students come from top US universities with planetary science or engineering programs, such as Brown University, MIT, Georgia Tech, University of Colorado, Caltech, Stanford, University of Arizona, UCLA, and University of Michigan. Almost a third of Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL’s Team X Project Design Center.

Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

2010-12-01

40

NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders  

NASA Astrophysics Data System (ADS)

Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.

Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

2011-12-01

41

76 FR 69292 - NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...SPACE ADMINISTRATION [Notice 11-113] NASA Advisory Council Science Committee Planetary...Aeronautics and Space Administration (NASA) announces that the meeting of the Planetary Science Subcommittee of the NASA Advisory Council originally...

2011-11-08

42

76 FR 58303 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.  

Federal Register 2010, 2011, 2012, 2013, 2014

...11-081)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting. AGENCY: National Aeronautics...Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council...

2011-09-20

43

Scientific Assessment of NASA's Solar System Exploration Roadmap  

NASA Technical Reports Server (NTRS)

At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.

1996-01-01

44

NASA's Planetary Astronomy and Planetary Atmospheres Programs - A Snapshot  

Microsoft Academic Search

I am considering establishing two standing Review Committees with staggered two-year appointments for the Planetary Astronomy (PAST) and Planetary Atmospheres (PATM) Programs. These committees are being formed to solicit membership and Chair the annual review processes in these two program areas. Initially the PAST Review Committee will consist of 4 to 5 members, an overall chairperson and 3 to 4

J. J. Hillman

2001-01-01

45

Design of Hybrid Mobile Communication Networks for Planetary Exploration  

NASA Technical Reports Server (NTRS)

The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.

Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom

2004-01-01

46

New approaches to planetary exploration - Spacecraft and information systems design  

NASA Technical Reports Server (NTRS)

Approaches are recommended for use by the NASA Solar System Exploration Committee (SSEC) in lowering the costs of planetary missions. The inclusion of off-the-shelf hardware, i.e., configurations currently in use for earth orbits and constructed on a nearly assembly-line basis, is suggested. Alterations would be necessary for the thermal control, power supply, telecommunications equipment, and attitude sensing in order to be serviceable as a planetary observer spacecraft. New technology can be developed only when cost reduction for the entire mission would be realized. The employment of lower-cost boost motors, or even integrated boost motors, for the transfer out of earth orbit is indicated, as is the development of instruments that do not redundantly gather the same data as previous planetary missions. Missions under consideration include a Mars geoscience climatology Orbiter, a lunar geoscience Orbiter, a near-earth asteroid rendezvous, a Mars aeronomy Orbiter, and a Venus atmospheric probe.

Diaz, A. V.; Neugebauer, M.; Stuart, J.; Miller, R. B.

1983-01-01

47

NASA Earth and Space Science Explorers Poster  

NSDL National Science Digital Library

This poster features several of the NASA Earth and Space Science Explorers, plus suggestions for using the series in the classroom. The series of online articles features NASA explorers, young and old, with many backgrounds and interests. Most articles are written for three different reading levels: grades K-4, grades 5-8, and grades 9-12 and up.

Iges

2007-01-01

48

Robust and Opportunistic Planning for Planetary Exploration  

NASA Technical Reports Server (NTRS)

This slide presentation discusses the use of robust planning for rover vehicles to enable planetary exploration. The objective of this work is to use onboard planning, scheduling and execution techniques to enable a rover to take autonomous action to take advantage of new opportunities, and to respond to unexpected problems, and to improve the overall utilization of rover resources.

Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline; Fisher, Forest; Castano, Rebecca; Anderson, Robert; Judd, Michele

2005-01-01

49

The Science Behind Nasa's Lunar Atmosphere And Dust Environment Explorer. R. C. Elphic1 , G. T. Delory2  

E-print Network

The Science Behind Nasa's Lunar Atmosphere And Dust Environment Explorer. R. C. Elphic1 , G. T, and what is its ultimate fate? The LADEE Mission: NASA's Lunar Atmosphere and Dust Environment Explorer. Salute3 , 1 Planetary Sys- tems Branch, NASA Ames Research Center, MS 245-3, Moffett Field, CA, 94035

California at Berkeley, University of

50

Planetary Society: Explore for Kids  

NSDL National Science Digital Library

Educational activities related to space exploration suitable for elementary to middle-school students, including an opportunity to remotely drive (via home computer) a robotic Mars rover made of LEGOs. Instructions provided for observing and photographing meteor showers, constructing model rockets and comets, demonstrating the distances between planets, and creating a simulated volcanic eruption.

51

76 FR 10626 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY...Administration announces a meeting of the Planetary Science Subcommittee of the NASA Advisory...Discussion and Formulation of the Planetary Science Division's Response to...

2011-02-25

52

78 FR 64024 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY...announces a meeting of the Planetary Science Subcommittee of the NASA Advisory...includes the following topics: --Planetary Science Division Update...

2013-10-25

53

76 FR 31641 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY...announces a meeting of the Planetary Science Subcommittee of the NASA Advisory...following topics: --Review of the Planetary Science Division Response to the...

2011-06-01

54

76 FR 7235 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY...announces a meeting of the Planetary Science Subcommittee of the NASA Advisory...Budget Request and Impact to Planetary Science Division --Discussion...

2011-02-09

55

75 FR 80851 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY...announces a meeting of the Planetary Science Subcommittee of the NASA Advisory...following topics: --Update on the Planetary Science Division. --Update from...

2010-12-23

56

From: The NASA Regional Planetary Image Facility Network (corresponding author: Justin Hagerty, jhagerty@usgs.gov)  

E-print Network

Science Division R&A programs Introduction: At the meeting of the NASA Planetary Science Subcommittee on November 5, 2013 the planetary science community was informed that the NASA Planetary Science Division (PSD, and using planetary science data sets. Questions to be addressed: · How will supporting facilities

Rathbun, Julie A.

57

NASA's planetary protection program as an astrobiology teaching module  

NASA Astrophysics Data System (ADS)

We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

Kolb, Vera M.

2005-09-01

58

Future NASA solar system exploration activities: A framework for international cooperation  

NASA Technical Reports Server (NTRS)

The goals and approaches for planetary exploration as defined for the NASA Solar System Exploration Program are discussed. The evolution of the program since the formation of the Solar System Exploration Committee (SSEC) in 1980 is reviewed and the primary missions comprising the program are described.

French, Bevan M.; Ramlose, Terri; Briggs, Geoffrey A.

1992-01-01

59

Explore Mars from the NASA Website  

ERIC Educational Resources Information Center

Here we show how to explore Mars based on data obtainable from the NASA website. The analysis and calculations of some physics questions provide interesting and useful examples of inquiry-based learning.

Zhaoyao, Meng

2005-01-01

60

IUS application to NASA planetary missions  

NASA Technical Reports Server (NTRS)

The considerations involved in the selection of a new upper stage to launch three planetary missions following the decision to cancel the use of Centaur are discussed, and the methods by which the selected IUS will fly these missions are described. It is shown that the IUS is capable of accomplishing all three misssions (Magellan, Galileo, and Ulysses) with some compromises in mission transit time. Relatively minor modifications to the IUS, airborne support equipment, and software are required. The first of the three missions is to be accomplished two and a half years from go-ahead by the use of existing IUS flight hardware.

Hanford, Denton; Saucier, Sidney

1987-01-01

61

NASA ARES Project: Exploring Meteorite Mysteries  

NSDL National Science Digital Library

This resource is a set of 19 lessons on meteorites and their effects upon impact with Earth, developed by NASA's Astromaterials Research center. Appropriate for grades 6-12, each lesson is aligned to national science and math standards. The collection is divided into units based on key questions students may ask about meteorites: "What are they?", "Where do they come from?", and "What happens when they hit the Earth?" Lessons range in complexity from very simple introductory material to more advanced meteorite detection and planetary evolution. Educators who complete a cost-free certification process with NASA may have use of a Meteorite Sample Disk and accompanying slide show for classroom use. NASA's Astromaterials Research Office (ARES), is responsible for conducting fundamental research on meteorites, cosmic dust, solar wind, lunar rocks, and orbital debris.

2010-03-10

62

77 FR 71641 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...ADMINISTRATION [Notice (12-104)] NASA Advisory Council; Science Committee...Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This...

2012-12-03

63

77 FR 20851 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...ADMINISTRATION [Notice (12-026)] NASA Advisory Council; Science Committee...Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This...

2012-04-06

64

Budgeting for Exploration: the History and Political Economy of Planetary Science  

NASA Astrophysics Data System (ADS)

The availability of financial resources continues to be one of the greatest limiting factors to NASA’s planetary science agenda. Historians and members of the space science community have offered many explanations for the scientific, political, and economic actions that combine to form NASA’s planetary science efforts, and this essay will use budgetary and historical analysis to examine how each of these factors have impacted the funding of U.S. exploration of the solar system. This approach will present new insights into how the shifting fortunes of the nation’s economy or the changing priorities of political leadership have affected government investment in science broadly, and space science specifically. This paper required the construction of a historical NASA budget data set displaying layered fiscal information that could be compared equivalently over time. This data set was constructed with information collected from documents located in NASA’s archives, the Library of Congress, and at the Office of Management and Budget at the White House. The essay will examine the effects of the national gross domestic product, Federal debt levels, the budgets of other Federal agencies engaged in science and engineering research, and party affiliation of leadership in Congress and the White House on the NASA budget. It will also compare historic funding levels of NASA’s astrophysics, heliophysics, and Earth science efforts to planetary science funding. By examining the history of NASA’s planetary science efforts through the lens of the budget, this essay will provide a clearer view of how effectively the planetary science community has been able to align its goals with national science priorities.

Callahan, Jason

2013-10-01

65

NASA's Missions for Exoplanet Exploration  

NASA Astrophysics Data System (ADS)

Exoplanets are detected and characterized using a range of observational techniques - including direct imaging, astrometry, transits, microlensing, and radial velocities. Each technique illuminates a different aspect of exoplanet properties and statistics. This diversity of approach has contributed to the rapid growth of the field into a major research area in only two decades. In parallel with exoplanet observations, major efforts are now underway to interpret the physical and atmospheric properties of exoplanets for which spectroscopy is now possible. In addition, comparative planetology probes questions of interest to both exoplanets and solar system studies. In this talk I describe NASA's activities in exoplanet research, and discuss plans for near-future missions that have reflected-light spectroscopy as a key goal. The WFIRST-AFTA concept currently under active study includes a major microlensing survey, and now includes a visible light coronagraph for exoplanet spectroscopy and debris disk imaging. Two NASA-selected community-led teams are studying probe-scale (< 1B) mission concepts for imaging and spectroscopy. These concepts complement existing NASA missions that do exoplanet science (such as transit spectroscopy and debris disk imaging with HST and Spitzer) or are under development (survey of nearby transiting exoplanets with TESS, and followup of the most important targets with transit spectroscopy on JWST), and build on the work of ground-based instruments such as LBTI and observing with HIRES on Keck. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2014. California Institute of Technology. Government sponsorship acknowledged.

Unwin, Stephen

2014-05-01

66

Intelligent robots for planetary exploration and construction  

NASA Technical Reports Server (NTRS)

Robots capable of practical applications in planetary exploration and construction will require realtime sensory-interactive goal-directed control systems. A reference model architecture based on the NIST Real-time Control System (RCS) for real-time intelligent control systems is suggested. RCS partitions the control problem into four basic elements: behavior generation (or task decomposition), world modeling, sensory processing, and value judgment. It clusters these elements into computational nodes that have responsibility for specific subsystems, and arranges these nodes in hierarchical layers such that each layer has characteristic functionality and timing. Planetary exploration robots should have mobility systems that can safely maneuver over rough surfaces at high speeds. Walking machines and wheeled vehicles with dynamic suspensions are candidates. The technology of sensing and sensory processing has progressed to the point where real-time autonomous path planning and obstacle avoidance behavior is feasible. Map-based navigation systems will support long-range mobility goals and plans. Planetary construction robots must have high strength-to-weight ratios for lifting and positioning tools and materials in six degrees-of-freedom over large working volumes. A new generation of cable-suspended Stewart platform devices and inflatable structures are suggested for lifting and positioning materials and structures, as well as for excavation, grading, and manipulating a variety of tools and construction machinery.

Albus, James S.

1992-01-01

67

Intelligent robots for planetary exploration and construction  

NASA Astrophysics Data System (ADS)

Robots capable of practical applications in planetary exploration and construction will require realtime sensory-interactive goal-directed control systems. A reference model architecture based on the NIST Real-time Control System (RCS) for real-time intelligent control systems is suggested. RCS partitions the control problem into four basic elements: behavior generation (or task decomposition), world modeling, sensory processing, and value judgment. It clusters these elements into computational nodes that have responsibility for specific subsystems, and arranges these nodes in hierarchical layers such that each layer has characteristic functionality and timing. Planetary exploration robots should have mobility systems that can safely maneuver over rough surfaces at high speeds. Walking machines and wheeled vehicles with dynamic suspensions are candidates. The technology of sensing and sensory processing has progressed to the point where real-time autonomous path planning and obstacle avoidance behavior is feasible. Map-based navigation systems will support long-range mobility goals and plans. Planetary construction robots must have high strength-to-weight ratios for lifting and positioning tools and materials in six degrees-of-freedom over large working volumes. A new generation of cable-suspended Stewart platform devices and inflatable structures are suggested for lifting and positioning materials and structures, as well as for excavation, grading, and manipulating a variety of tools and construction machinery.

Albus, James S.

1992-02-01

68

Planetary Protection Issues in the Human Exploration of Mars  

NASA Technical Reports Server (NTRS)

This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

2005-01-01

69

Planetary protection and humans on Mars: NASA/ESA workshop results  

NASA Astrophysics Data System (ADS)

Planetary protection requirements for future human missions to Mars will strongly influence mission and spacecraft designs, particularly those related to the operation of advanced life support systems (ALS), extravehicular activity (EVA), laboratory and in situ sampling operations, and associated environmental monitoring and control systems. In order to initiate communication, understanding and working relations among the ALS, EVA, and planetary protection communities in NASA and ESA, a workshop was held (May 2005; ESA/ESTEC; Nordwijk, The Netherlands) to focus on mission-specific planetary protection issues associated with future human missions to Mars. The "Mars Planetary Protection and Human Systems Research and Technology Joint NASA/ESA Workshop" considered the range of knowledge and information necessary to establish planetary protection requirements with respect to ALS and EVA systems, including the identification of potential contaminants, contamination pathways, and potential off-nominal events typical of such systems and of space exploration. The top-level workshop goal was to determine how compliance with planetary protection requirements should be implemented before, during, and after human Mars missions, and what standards of contamination control should apply to human explorers. Workshop discussions considered operations and technology concerns, science operations, backward contamination prevention requirements, and the protection of both the human habitat on Mars and the Earth upon crew return. A list of future research and development needs were also identified for ALS, EVA and Mars robotic missions, including specific precursor mission information necessary to understand and prepare for human support systems and science operations on long duration Mars missions. This paper summarizes the findings and recommendations of the workshop including an overall approach to contamination control, waste and consumable management, and off-nominal events, as well as the research and development necessary to cope with planetary protection requirements during future human missions to Mars.

Race, Margaret S.; Kminek, Gerhard; Rummel, John D.; Participants of the NASA/ESA planetary protection Workshop

2008-09-01

70

ASSESSMENT OF THE NASA PLANETARY SCIENCE DIVISION'S MISSION-ENABLING ACTIVITIES  

E-print Network

i ASSESSMENT OF THE NASA PLANETARY SCIENCE DIVISION'S MISSION-ENABLING ACTIVITIES By Planetary Sciences Subcommittee of the NASA Advisory Council Science Committee 29 August 2011 #12; ii Planetary Science Subcommittee (PSS) Ronald Greeley, Chair Arizona State University Jim Bell Arizona State

Rathbun, Julie A.

71

NASA Laboratory Analysis for Manned Exploration Missions  

NASA Technical Reports Server (NTRS)

The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

Krihak, Michael K.; Shaw, Tianna E.

2014-01-01

72

NASA’s Planetary Data System—An Accumulating Archive developed by Scientists for Scientists  

NASA Astrophysics Data System (ADS)

NASA’s Planetary Data System (PDS) was formed in 1986 to ensure that digital data from our planetary missions are efficiently and effectively archived, and to provide the planetary science community access to that data. The archive now includes almost 60 years of data from NASA’s missions. The PDS is a distributed system with individual nodes with expertise tailored to meet the needs of specific discipline areas (from planetary geology to space physics). The PDS has multiple roles. First we work with NASA Flight Programs and missions from the initial Announcement of Opportunity through the end of mission to organize the data, including documentation to ensure that the data sets obtained will be useful for both current and future generations. This process includes peer-review by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented (and searchable). Another role of the PDS is to make the data in our accumulating archives easily searchable so that members of the science community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. A third role of the PDS (and a sister organization, the NSSDC) is to ensure long term preservation. As new capabilities in Information Technology (IT) become available (and as existing technologies become obsolete), it is necessary for the PDS to adapt to the current IT environment. A major new effort by the PDS, known as PDS4, was released in September, 2013. The first two NASA missions to archive under this new PDS4 system are LADEE and MAVEN.

Morgan, Thomas H.; McLaughlin, S. A.; Grayzeck, E. J.; Knopf, W. P.; Vilas, F.; Crichton, D. J.

2013-10-01

73

The History of Planetary Exploration Using Mass Spectrometers  

NASA Technical Reports Server (NTRS)

At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

Mahaffy, Paul R.

2012-01-01

74

Planetary exploration through year 2000: A core Program, part 1  

NASA Technical Reports Server (NTRS)

The Core Program, goals for planetary exploration, continuity and expansion, core program missions, mission implementation, anticipated accomplishments, resource requirements, and near term budget decisions are discussed.

1983-01-01

75

ANTS: Applying A New Paradigm for Lunar and Planetary Exploration  

NASA Technical Reports Server (NTRS)

ANTS (Autonomous Nano- Technology Swarm), a mission architecture consisting of a large (1000 member) swarm of picoclass (1 kg) totally autonomous spacecraft with both adaptable and evolvable heuristic systems, is being developed as a NASA advanced mission concept, and is here examined as a paradigm for lunar surface exploration. As the capacity and complexity of hardware and software, demands for bandwidth, and the sophistication of goals for lunar and planetary exploration have increased, greater cost constraints have led to fewer resources and thus, the need to operate spacecraft with less frequent human contact. At present, autonomous operation of spacecraft systems allows great capability of spacecraft to 'safe' themselves and survive when conditions threaten spacecraft safety. To further develop spacecraft capability, NASA is at the forefront of development of new mission architectures which involve the use of Intelligent Software Agents (ISAs), performing experiments in space and on the ground to advance deliberative and collaborative autonomous control techniques. Selected missions in current planning stages require small groups of spacecraft weighing tens, instead of hundreds, of kilograms to cooperate at a tactical level to select and schedule measurements to be made by appropriate instruments onboard. Such missions will be characterizing rapidly unfolding real-time events on a routine basis. The next level of development, which we are considering here, is in the use of autonomous systems at the strategic level, to explore the remote terranes, potentially involving large surveys or detailed reconnaissance.

Clark, P. E.; Curtis, S. A.; Rilee, M. L.

2002-01-01

76

The Space Launch System: NASA's Exploration Rocket  

NASA Technical Reports Server (NTRS)

Powerful, versatile, and capable vehicle for entirely new missions to deep space. Vital to NASA's exploration strategy and the Nation's space agenda. Safe, affordable, and sustainable. Engaging the U.S. aerospace workforce and infrastructure. Competitive opportunities for innovations that affordably upgrade performance. Successfully meeting milestones in preparation for Preliminary Design Review in 2013. On course for first flight in 2017.

Blackerby, Christopher; Cate, Hugh C., III

2013-01-01

77

A Three-Line Stereo Camera Concept for Planetary Exploration  

NASA Technical Reports Server (NTRS)

This paper presents a low-weight stereo camera concept for planetary exploration. The camera uses three CCD lines within the image plane of one single objective. Some of the main features of the camera include: focal length-90 mm, FOV-18.5 deg, IFOV-78 (mu)rad, convergence angles-(+/-)10 deg, radiometric dynamics-14 bit, weight-2 kg, and power consumption-12.5 Watts. From an orbit altitude of 250 km the ground pixel size is 20m x 20m and the swath width is 82 km. The CCD line data is buffered in the camera internal mass memory of 1 Gbit. After performing radiometric correction and application-dependent preprocessing the data is compressed and ready for downlink. Due to the aggressive application of advanced technologies in the area of microelectronics and innovative optics, the low mass and power budgets of 2 kg and 12.5 Watts is achieved, while still maintaining high performance. The design of the proposed light-weight camera is also general purpose enough to be applicable to other planetary missions such as the exploration of Mars, Mercury, and the Moon. Moreover, it is an example of excellent international collaboration on advanced technology concepts developed at DLR, Germany, and NASA's Jet Propulsion Laboratory, USA.

Sandau, Rainer; Hilbert, Stefan; Venus, Holger; Walter, Ingo; Fang, Wai-Chi; Alkalai, Leon

1997-01-01

78

MEMS-Based Micro Instruments for In-Situ Planetary Exploration  

NASA Technical Reports Server (NTRS)

NASA's planetary exploration strategy is primarily targeted to the detection of extant or extinct signs of life. Thus, the agency is moving towards more in-situ landed missions as evidenced by the recent, successful demonstration of twin Mars Exploration Rovers. Also, future robotic exploration platforms are expected to evolve towards sophisticated analytical laboratories composed of multi-instrument suites. MEMS technology is very attractive for in-situ planetary exploration because of the promise of a diverse and capable set of advanced, low mass and low-power devices and instruments. At JPL, we are exploiting this diversity of MEMS for the development of a new class of miniaturized instruments for planetary exploration. In particular, two examples of this approach are the development of an Electron Luminescence X-ray Spectrometer (ELXS), and a Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer.

George, Thomas; Urgiles, Eduardo R; Toda, Risaku; Wilcox, Jaroslava Z.; Douglas, Susanne; Lee, C-S.; Son, Kyung-Ah; Miller, D.; Myung, N.; Madsen, L.; Leskowitz, G.; El-Gammal, R.; Weitekamp, D.

2005-01-01

79

Antarctic Exploration Parallels for Future Human Planetary Exploration: A Workshop Report  

NASA Technical Reports Server (NTRS)

Four Antarctic explorers were invited to a workshop at Johnson Space Center (JSC) to provide expert assessments of NASA's current understanding of future human exploration missions beyond low Earth orbit. These explorers had been on relatively sophisticated, extensive Antarctic expeditions with sparse or nonexistent support infrastructure in the period following World War II through the end of the International Geophysical Year. Their experience was similar to that predicted for early Mars or other planetary exploration missions. For example: one Antarctic a expedition lasted two years with only one planned resupply mission and contingency plans for no resupply missions should sea ice prevent a ship from reaching them; several traverses across Antarctica measured more than 1000 total miles, required several months to complete, and were made without maps (because they did not exist) and with only a few aerial photos of the route; and the crews of six to 15 were often international in composition. At JSC, the explorers were given tours of development, training, and scientific facilities, as well as documentation at operational scenarios for future planetary exploration. This report records their observations about these facilities and plans in answers to a series of questions provided to them before the workshop.

Hoffman, Stephen J. (Editor)

2002-01-01

80

Space Networking Demonstrated for Distributed Human-Robotic Planetary Exploration  

NASA Technical Reports Server (NTRS)

Communications and networking experts from the NASA Glenn Research Center designed and implemented an innovative communications infrastructure for a simulated human-robotic planetary mission. The mission, which was executed in the Arizona desert during the first 2 weeks of September 2002, involved a diverse team of researchers from several NASA centers and academic institutions.

Bizon, Thomas P.; Seibert, Marc A.

2003-01-01

81

NASA's Space Lidar Measurements of Earth and Planetary Surfaces  

NASA Technical Reports Server (NTRS)

A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

Abshire, James B.

2010-01-01

82

NASA Regional Planetary Image Facility image retrieval and processing system  

NASA Technical Reports Server (NTRS)

The general design and analysis functions of the NASA Regional Planetary Image Facility (RPIF) image workstation prototype are described. The main functions of the MicroVAX II based workstation will be database searching, digital image retrieval, and image processing and display. The uses of the Transportable Applications Executive (TAE) in the system are described. File access and image processing programs use TAE tutor screens to receive parameters from the user and TAE subroutines are used to pass parameters to applications programs. Interface menus are also provided by TAE.

Slavney, Susan

1986-01-01

83

Scientific field training for human planetary exploration  

NASA Astrophysics Data System (ADS)

Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts' scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows: LDP#1: Provide multiple experiences: varied field science activities will hone astronauts' abilities to adapt to novel scientific opportunities LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery LDP#3: Provide a relevant experience - the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning LDP#4: Provide a social learning experience - the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts' abilities to think and perform like a field scientist. The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.

Lim, D. S. S.; Warman, G. L.; Gernhardt, M. L.; McKay, C. P.; Fong, T.; Marinova, M. M.; Davila, A. F.; Andersen, D.; Brady, A. L.; Cardman, Z.; Cowie, B.; Delaney, M. D.; Fairén, A. G.; Forrest, A. L.; Heaton, J.; Laval, B. E.; Arnold, R.; Nuytten, P.; Osinski, G.; Reay, M.; Reid, D.; Schulze-Makuch, D.; Shepard, R.; Slater, G. F.; Williams, D.

2010-05-01

84

Planetary exploration - Earth's new horizon /Twelfth von Karman Lecture/  

NASA Technical Reports Server (NTRS)

Planetary exploration is examined in terms of the interaction of technological growth with scientific progress and the intangibles associated with exploring the unknown. The field is limited to unmanned exploration of the planets and their satellites. A descriptive model of the endeavor, its activities and achievements in the past decade, a characterization of the current state of the art, and a look at some of the planetary mission opportunities for the next decade are presented. A case is made for the value to civilization of ongoing planetary exploration. The pioneering U.S. planetary explorers, Mars, Venus, and Jupiter, are discussed in the second part of the work. Launch velocity, navigation, the remote system, the earth base, and management technology are considered in the third part. Authorized near-term U.S. planetary projects and opportunities of the next decade are described in the last section.

Schurmeier, H. M.

1975-01-01

85

NASA/SP2009566-ADD Human Exploration of Mars  

E-print Network

NASA/SP­2009­566-ADD Human Exploration of Mars Design Reference Architecture 5.0 Addendum Mars Architecture Steering Group NASA Headquarters Bret G. Drake, editor NASA Johnson Space Center, Houston, Texas July 2009 #12;THE NASA STI PROGRAM OFFICE . . . IN PROFILE Since its founding, NASA has been dedicated

Waliser, Duane E.

86

Developing Advanced Human Support Technologies for Planetary Exploration Missions  

NASA Technical Reports Server (NTRS)

The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

2004-01-01

87

Magnetotelluric Sensor Development for Planetary Subsurface Exploration  

NASA Astrophysics Data System (ADS)

Electromagnetic (EM) Sounding is a powerful geophysical investigation technique capable of constraining planetary subsurface structure, including core size, mantle and crustal temperature profiles, and the distribution of electrical conductivity at depth. Natural sources of EM activity, including solar wind turbulence and plasma waves, can induce electric and magnetic fields in the Moon and other small bodies. These induced fields respond according to the electrical conductivity as a function of skin depth of the body in question. In a branch of EM Sounding known as Magnetotellurics (MT), measurements of the horizontal electric and magnetic fields at the planetary surface are inverted to produce constraints on the interior. MT is particularly worthwhile in that geophysically meaningful results can be obtained from a single station, thus avoiding network mission architectures. While surface magnetic field measurements were taken on the Moon during the Apollo era, to date no measurements of the surface horizontal electric field have been attempted. However electric field measurements on the lunar surface should be feasible given their long successful history on spacecraft missions in similar environments. Building upon the heritage of electric field sensor technology at the UC Berkeley Space Sciences Laboratory, we describe a development plan for this instrument from component level to a fully functional instrument assembly for use in EM sounding, highlighting operational requirements, science capabilities, required testing, anticipated results and challenges to overcome. Upon development, this lander electric field sensor will enable future MT surveys on the Moon, and will provide a new exploration method for other small airless bodies from a single station.

Fuqua, H.; Delory, G. T.; De Pater, I.; Grimm, R. E.

2012-12-01

88

75 FR 4589 - NASA Advisory Council Exploration Committee Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice...NASA Advisory Council Exploration Committee Meeting AGENCY...National Aeronautics and Space Administration. ACTION...National Aeronautics and Space Administration announces...NASA Advisory Council Exploration Committee....

2010-01-28

89

Planetary Surface Exploration Using Raman Spectroscopy on Rovers and Landers  

NASA Astrophysics Data System (ADS)

Planetary surface exploration using laser induced breakdown spectroscopy (LIBS) to probe the composition of rocks has recently become a reality with the operation of the mast-mounted ChemCam instrument onboard the Curiosity rover. Following this success, Raman spectroscopy has steadily gained support as a means for using laser spectroscopy to identify not just composition but mineral phases, without the need for sample preparation. The RLS Raman Spectrometer is included on the payload for the ExoMars mission, and a Raman spectrometer has been included in an example strawman payload for NASA’s Mars 2020 mission. Raman spectroscopy has been identified by the community as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. We present a next-generation instrument that builds on the widely used green-Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns time resolution. We will present results on planetary analog minerals to demonstrate the instrument performance including fluorescence rejection.

Blacksberg, Jordana; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.

2013-10-01

90

NASA's Planetary Geology and Geophysics Undergraduate Research Program (PGGURP): The Value of Undergraduate Geoscience Internships  

Microsoft Academic Search

NASA's Planetary Geology and Geophysics Program began funding PGGURP in 1978, in an effort to help planetary scientists deal with what was then seen as a flood of Viking Orbiter data. Each subsequent year, PGGURP has paired 8 - 15 undergraduates with NASA-funded Principal Investigators (PIs) around the country for approximately 8 weeks during the summer. Unlike other internship programs,

T. K. Gregg

2008-01-01

91

FINAL: April 14, 2010 NASA Advisory Council Ad-Hoc Task Force on Planetary Defense  

E-print Network

FINAL: April 14, 2010 NASA Advisory Council Ad-Hoc Task Force on Planetary Defense Thursday. Schweickart/T. Jones 11:40 Ad-Hoc Task Force on Planetary Defense Terms of Reference - Charter, schedule Council Ad-Hoc Task Force on Planetary Defense Thursday/Friday, April 15-16, 2010 Boston Marriot Cambridge

Waliser, Duane E.

92

The Future of NASA's Deep Space Network and Applications to Planetary Probe Missions  

NASA Technical Reports Server (NTRS)

NASA's Deep Space Network (DSN) has been an invaluable tool in the world's exploration of space. It has served the space-faring community for more than 45 years. The DSN has provided a primary communication pathway for planetary probes, either through direct- to-Earth links or through intermediate radio relays. In addition, its radiometric systems are critical to probe navigation and delivery to target. Finally, the radio link can also be used for direct scientific measurement of the target body ('radio science'). This paper will examine the special challenges in supporting planetary probe missions, the future evolution of the DSN and related spacecraft technology, the advantages and disadvantages of radio relay spacecraft, and the use of the DSN radio links for navigation and scientific measurements.

Deutsch, Leslie J.; Preston, Robert A.; Vrotsos, Peter

2010-01-01

93

Instrument Design and In Orbit Performance of Planetary L1dars at NASA GSFC  

NASA Technical Reports Server (NTRS)

Space lidars provides a unique and powerful tool in earth environment monitoring and planetary exploration. Lidars operate at a much shorter wavelength than radars and can have a much narrower beam and much smaller transmitter and receiver. Lidars carry their own light sources and can continue measurement day and night, and over polar regions, where the passive instruments cannot observe. NASA Goddard Space Flight Center (GSFC) has developed several space lidars, three of them on planetary missions. These were the Mars Orbiter Laser Altimeter (MOLA) on the Mars Observer and Mars Global Surveyor missions, the Mercury Laser Altimeter (MLA) on the MErcury Surface Space ENvironment, GEochemistry and Ranging (MESSENGER) mission and the Lunar Orbital Laser Altimeter (LOLA) on the Lunar Reconnaissance (LRO) mission. These lidars all use similar technologies but with major improvement from one instrument In the next in size, power, measurement capability and operating environment.

Sun, Xiaoli; Cavanaugh, John F.; Smith, James C.; Abshire, James B.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

2012-01-01

94

Introducing NASA's Solar System Exploration Research Virtual Institute  

NASA Astrophysics Data System (ADS)

The Solar System Exploration Research Virtual Institute (SSERVI) is focused on the Moon, near Earth asteroids, and the moons of Mars. Comprised of competitively selected teams across the U.S., a growing number of international partnerships around the world, and a small central office located at NASA Ames Research Center, the institute advances collaborative research to bridge science and exploration goals. As a virtual institute, SSERVI brings unique skills and collaborative technologies for enhancing collaborative research between geographically disparate teams. SSERVI is jointly funded through the NASA Science Mission Directorate and the NASA Human Exploration and Operations Mission Directorate. Current U.S. teams include: Dr. Jennifer L. Heldmann, NASA Ames Research Center, Moffett Field, CA; Dr. William Farrell, NASA Goddard Space Flight Center, Greenbelt, MD; Prof. Carlé Pieters, Brown University, Providence, RI; Prof. Daniel Britt, University of Central Florida, Orlando, FL; Prof. Timothy Glotch, Stony Brook University, Stony Brook, NY; Dr. Mihaly Horanyi, University of Colorado, Boulder, CO; Dr. Ben Bussey, Johns Hopkins Univ. Applied Physics Laboratory, Laurel, MD; Dr. David A. Kring, Lunar and Planetary Institute, Houston, TX; and Dr. William Bottke, Southwest Research Institute, Boulder, CO. Interested in becoming part of SSERVI? SSERVI Cooperative Agreement Notice (CAN) awards are staggered every 2.5-3yrs, with award periods of five-years per team. SSERVI encourages those who wish to join the institute in the future to engage current teams and international partners regarding potential collaboration, and to participate in focus groups or current team activities now. Joining hand in hand with international partners is a winning strategy for raising the tide of Solar System science around the world. Non-U.S. science organizations can propose to become either Associate or Affiliate members on a no-exchange-of-funds basis. Current international partners include: Canada, Germany, Israel, Netherlands, Saudi Arabia, South Korea, and the United Kingdom. Discussions are ongoing to bring several more partners into the fold. These partnerships have impacted lunar science in a number of ways, resulting in such efforts and groups as the Pan-European Lunar Science Consortium and the Canadian Sudbury Field School. For more information visit sservi.nasa.gov

Pendleton, Yvonne

95

Antenna Technologies for Future NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions.

Miranda, Felix A.

2006-01-01

96

Ancillary Data Services of NASA's Planetary Data System  

NASA Technical Reports Server (NTRS)

JPL's Navigation and Ancillary Information Facility (NAIF) has primary responsibility for design and implementation of the SPICE ancillary information system, supporting a wide range of space science mission design, observation planning and data analysis functions/activities. NAIF also serves as the geometry and ancillary data node of the Planetary Data System (PDS). As part of the PDS, NAIF archives SPICE and other ancillary data produced by flight projects. NAIF then distributes these data, and associated data access software and high-level tools, to researchers funded by NASA's Office of Space Science. Support for a broader user community is also offered to the extent resources permit. This paper describes the SPICE system and customer support offered by NAIF.

Acton, C.

1994-01-01

97

The progress of exploring extra-solar planetary systems  

Microsoft Academic Search

With the advance of the space exploring, the study of the extra-solar planetary systems becomes an interesting topic since such system may exist the life or even the modern civilization. In this paper we give a brief introduction on the discovery of extra-solar planetary systems, and discuss the feasibility of detection techniques and methods developed in recent years. In particular,

Yu-Juan Liu; Gang Zhao

2005-01-01

98

A Review of Antenna Technologies for Future NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

NASA's plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions.

Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acosta, J.

2007-01-01

99

A Review of Antenna Technologies for Future NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

NASA s plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions

Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acostia, Roberto J.

2006-01-01

100

NASA ARES Project: Exploring the Moon  

NSDL National Science Digital Library

This is a set of 17 inquiry-based lessons on Earth's moon: its properties, formation, and geological history. Designed for use in middle school, the lessons are organized into three units: 1) Pre-Apollo, 2) Learning from Apollo, and 3) The future of lunar exploration. Activities were developed to provide concrete experiences and models. For example, one lesson explores lunar surface formation by using crumbled toast and Oreo cookie crumbs. Another uses marbles, ball bearings, and golf balls to model impact cratering. Educators who complete a cost-free certification process with NASA may have use of a Lunar Sample Disk and accompanying slide show for classroom use. EDITOR'S NOTE: Since this resource was created, scientists have discovered compelling evidence of the presence of water at the Moon's polar regions. See Related Materials for more on this topic.

2010-03-10

101

The role of small missions in planetary and lunar exploration  

NASA Technical Reports Server (NTRS)

The Space Studies Board of the National Research Council charged its Committee on Planetary and Lunar Exploration (COMPLEX) to (1) examine the degree to which small missions, such as those fitting within the constraints of the Discovery program, can achieve priority objectives in the lunar and planetary sciences; (2) determine those characteristics, such as level of risk, flight rate, target mix, university involvement, technology development, management structure and procedures, and so on, that could allow a successful program; (3) assess issues, such as instrument selection, mission operations, data analysis, and data archiving, to ensure the greatest scientific return from a particular mission, given a rapid deployment schedule and a tightly constrained budget; and (4) review past programmatic attempts to establish small planetary science mission lines, including the Planetary Observers and Planetary Explorers, and consider the impact management practices have had on such programs. A series of small missions presents the planetary science community with the opportunity to expand the scope of its activities and to develop the potential and inventiveness of its members in ways not possible within the confines of large, traditional programs. COMPLEX also realized that a program of small planetary missions was, in and of itself, incapable of meeting all of the prime objectives contained in its report 'An Integrated Strategy for the Planetary Sciences: 1995-2010.' Recommendations are provided for the small planetary missions to fulfill their promise.

1995-01-01

102

National Aeronautics and Space Administration! www.nasa.gov/exploration!  

E-print Network

1! National Aeronautics and Space Administration! www.nasa.gov/exploration! National Aeronautics and Space Administration! Exploration Precursor Robotic Program (xPRP) and Exploration Scout (xScout): Two · President's Budget challenges NASA to embark on a new human space exploration program that invests near

Waliser, Duane E.

103

Venus Exploration opportunities within NASA's Solar System Exploration roadmap  

NASA Technical Reports Server (NTRS)

Science goals to understand the origin, history and environment of Venus have been driving international space exploration missions for over 40 years. Past missions include the Magellan and Pioneer-Venus missions by the US; the Venera program by the USSR; and the Vega missions through international cooperation. Furthermore, the US National Research Council (NRC), in the 2003 Solar System Exploration (SSE) Decadal Survey, identified Venus as a high priority target, thus demonstrating a continuing interest in Earth's sister planet. In response to the NRC recommendation, the 2005 NASA SSE Roadmap included a number of potential Venus missions arching through all mission classes from small Discovery, to medium New Frontiers and to large Flagship class missions. While missions in all of these classes could be designed as orbiters with remote sensing capabilities, the desire for scientific advancements beyond our current knowledge - including what we expect to learn from the ongoing ESA Venus Express mission - point to in-situ exploration of Venus.

Balint, Tibor; Thompson, Thomas; Cutts, James; Robinson, James

2006-01-01

104

Multimodal Platform Control for Robotic Planetary Exploration Missions  

NASA Technical Reports Server (NTRS)

Planetary exploration missions pose unique problems for astronauts seeking to coordinate and control exploration vehicles. These include working in an environment filled with abrasive dust (e.g., regolith compositions), a desire to have effective hands-free communication, and a desire to have effective analog control of robotic platforms or end effectors. Requirements to operate in pressurized suits are particularly problematic due to the increased bulk and stiffness of gloves. As a result, researchers are considering alternative methods to perform fine movement control, for example capitalizing on higher-order voice actuation commands to perform control tasks. This paper presents current research at NASA s Neuro Engineering Laboratory that explores one method-direct bioelectric interpretation-for handling some of these problems. In this type of control system, electromyographic (EMG) signals are used both to facilitate understanding of acoustic speech in pressure-regulated suits 2nd to provide smooth analog control of a robotic platform, all without requiring fine-gained hand movement. This is accomplished through the use of non-invasive silver silver-chloride electrodes located on the forearm, throat, and lower chin, positioned so as to receive electrical activity originating from the muscles during contraction. For direct analog platform control, a small Personal Exploration Rover (PER) built by Carnegie Mellon University Robotics is controlled using forearm contraction duration and magnitudes, measured using several EMG channels. Signal processing is used to translate these signals into directional platform rotation rates and translational velocities. higher order commands were generated by differential contraction patterns called "clench codes."

Jorgensen, Charles; Betts, Bradley J.

2006-01-01

105

What is the Centre for Planetary Science and Exploration? The University of Western Ontario's Centre for Planetary Science  

E-print Network

What is the Centre for Planetary Science and Exploration? The University of Western Ontario's Centre for Planetary Science and Exploration (CPSX) was formed to address numerous questions planetary science and exploration by creating a research-intensive learning environment and developing

Denham, Graham

106

NASA Space Exploration Logistics Workshop Proceedings  

NASA Technical Reports Server (NTRS)

As NASA has embarked on a new Vision for Space Exploration, there is new energy and focus around the area of manned space exploration. These activities encompass the design of new vehicles such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV) and the identification of commercial opportunities for space transportation services, as well as continued operations of the Space Shuttle and the International Space Station. Reaching the Moon and eventually Mars with a mix of both robotic and human explorers for short term missions is a formidable challenge in itself. How to achieve this in a safe, efficient and long-term sustainable way is yet another question. The challenge is not only one of vehicle design, launch, and operations but also one of space logistics. Oftentimes, logistical issues are not given enough consideration upfront, in relation to the large share of operating budgets they consume. In this context, a group of 54 experts in space logistics met for a two-day workshop to discuss the following key questions: 1. What is the current state-of the art in space logistics, in terms of architectures, concepts, technologies as well as enabling processes? 2. What are the main challenges for space logistics for future human exploration of the Moon and Mars, at the intersection of engineering and space operations? 3. What lessons can be drawn from past successes and failures in human space flight logistics? 4. What lessons and connections do we see from terrestrial analogies as well as activities in other areas, such as U.S. military logistics? 5. What key advances are required to enable long-term success in the context of a future interplanetary supply chain? These proceedings summarize the outcomes of the workshop, reference particular presentations, panels and breakout sessions, and record specific observations that should help guide future efforts.

deWeek, Oliver; Evans, William A.; Parrish, Joe; James, Sarah

2006-01-01

107

An Overview of Wind-Driven Rovers for Planetary Exploration  

NASA Technical Reports Server (NTRS)

The use of in-situ propulsion is considered enabling technology for long duration planetary surface missions. Most studies have focused on stored energy from chemicals extracted from the soil or the use of soil chemicals to produce photovoltaic arrays. An older form of in-situ propulsion is the use of wind power. Recent studies have shown potential for wind driven craft for exploration of Mars, Titan and Venus. The power of the wind, used for centuries to power wind mills and sailing ships, is now being applied to modern land craft. Efforts are now underway to use the wind to push exploration vehicles on other planets and moons in extended survey missions. Tumbleweed rovers are emerging as a new type of wind-driven science platform concept. Recent investigations by the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory (JPL) indicate that these light-weight, mostly spherical or quasi-spherical devices have potential for long distance surface exploration missions. As a power boat has unique capabilities, but relies on stored energy (fuel) to move the vessel, the Tumbleweed, like the sailing ships of the early explorers on earth, uses an unlimited resource the wind to move around the surface of Mars. This has the potential to reduce the major mass drivers of robotic rovers as well as the power generation and storage systems. Jacques Blamont of JPL and the University of Paris conceived the first documented Mars wind-blown ball in 1977, shortly after the Viking landers discovered that Mars has a thin CO2 atmosphere with relatively strong winds. In 1995, Jack Jones, et al, of JPL conceived of a large wind-blown inflated ball for Mars that could also be driven and steered by means of a motorized mass hanging beneath the rolling axis of the ball. A team at NASA Langley Research Center started a biomimetic Tumbleweed design study in 1998. Wind tunnel and CFD analysis were applied to a variety of concepts to optimize the aerodynamic characteristics of the Tumbleweed Rovers. Bare structures, structures carrying sails and a tumbleweed plant (of the Salsola genus) were tested in Langley's wind tunnels. Thomas Estier of the Swiss Federal Institute of Technology developed a memory metal collapsible structure, the Windball. Numerous other researchers have also suggested spherical rovers.

Hajos, Gregory A.; Jones, Jack A.; Behar, Alberto; Dodd, Micheal

2005-01-01

108

NASA Johnson Space Center Leading Human Space Exploration  

E-print Network

NASA Johnson Space Center Leading Human Space Exploration NASA Advisory Council Commercial Space live Goal 3 Create innovative new space technologies for our exploration, science, and economic future & Mission Vision ­ Declaration of our future: JSC leads a global enterprise in human space exploration

Waliser, Duane E.

109

NASA Exploration Design Challenge - Duration: 2:15.  

NASA Video Gallery

From the International Space Station, astronaut Sunita Williams welcomes participants to the NASA Exploration Design Challenge and explains the uncertainties about the effects of space radiation on...

110

Onboard object recognition for planetary exploration  

Microsoft Academic Search

Machine learning techniques have shown considerable promise for automating common visual inspection tasks such as the detection\\u000a of human faces in cluttered scenes. Here, we examine whether similar techniques can be used (or adapted) for the problem of\\u000a automatically locating geologic landforms in planetary images gathered by spacecraft. Beyond enabling more efficient and comprehensive\\u000a ground analysis of down-linked data, we

Michael C. Burl; Philipp G. Wetzler

2011-01-01

111

NASA remote sensing plans for Mars exploration  

NASA Astrophysics Data System (ADS)

NASA's early period of Mars remote sensing was highlighted by the Mariner (4, 6, 7) flybys and the Mariner 9 and Viking (1, 2) orbiters. In the mid 1990s, NASA returned to Mars with orbiters designed to take advantage of technological breakthroughs in imaging and spectroscopy. Mars Global Surveyor's Mars Orbiter Camera took 1.4 m/pixel resolution images while the Mars Orbiter Laser Altimeter's measurements produced highly accurate 3D relief maps. Mars Odyssey's Thermal Emission Imaging System provided data on surface infrared properties and Odyssey's neutron spectrometer measured up to 50% H2O in the shallow subsurface. The Mars Reconnaissance Orbiter was launched in August 2006. MRO is equipped with six remote sensing instruments: (1) High Resolution Imaging Science Experiment will achieve sub-meter stereo image resolution; (2) Compact Reconnaissance Imaging Spectrometer for Mars will perform 18 m/pixel, 544 channel, infrared and thermal surface analyses; (3) the Context Camera will take regional context images with 6 m/pixel resolution; (4) Mars Color Imager will produce daily global images of the atmosphere and surface; (5) Mars Climate Sounder will study the temperature, dust, ice and water vapor content of the atmosphere as a function of altitude; and, (6) the Shallow Subsurface Radar will explore regional subsurface stratigraphy down to a kilometer. Future trends in Mars remote sensing will be considerably aided by telecommunications bandwidth improvements. The trend toward higher resolution and wider wavelength spectrometer investigations (with increased channels) will continue. Subsurface sounding to determine stratigraphy will improve and should take on a more prominent role.

Fogel, Robert A.; Meyer, Michael A.; McCuistion, J. Douglas; Saunders, Stephen

2005-10-01

112

The Science Goals of NASA's Exploration Initiative  

NASA Technical Reports Server (NTRS)

The recently released policy directive, "A Renewed Spirit of Discovery: The President's Vision for U. S. Space Exploration," seeks to advance the U. S. scientific, security and economic interest through a program of space exploration which will robotically explore the solar system and extend human presence to the Moon, Mars and beyond. NASA's implementation of this vision will be guided by compelling questions of scientific and societal importance, including the origin of our Solar System and the search for life beyond Earth. The Exploration Roadmap identifies four key targets: the Moon, Mars, the outer Solar System, and extra-solar planets. First, a lunar investigation will set up exploration test beds, search for resources, and study the geological record of the early Solar System. Human missions to the Moon will serve as precursors for human missions to Mars and other destinations, but will also be driven by their support for furthering science. The second key target is the search for past and present water and life on Mars. Following on from discoveries by Spirit and Opportunity, by the end of the decade there will have been an additional rover, a lander and two orbiters studying Mars. These will set the stage for a sample return mission in 2013, increasingly complex robotic investigations, and an eventual human landing. The third key target is the study of underground oceans, biological chemistry, and their potential for life in the outer Solar System. Beginning with the arrival of Cassini at Saturn in July 2004 and a landing on Titan in 2006, the next decade will see an extended investigation of the Jupiter icy moons by a mission making use of Project Prometheus, a program to develop space nuclear power and nuclear-electric propulsion. Finally, the search for Earth-like planets and life includes a series of telescopic missions designed to find and characterize extra-solar planets and search them for evidence of life. These missions include HST and Spitzer, operating now; Kepler, SIM, JWST, and TPF, currently under development; and the vision missions, Life Finder and Planet Imager, which will possibly be constructed in space by astronauts.

Gardner, Jonathan P.; Grunsfeld, John

2004-01-01

113

Autonomous Sample Acquisition for Planetary and Small Body Explorations  

NASA Technical Reports Server (NTRS)

Robotic drilling and autonomous sample acquisition are considered as the key technology requirements in future planetary or small body exploration missions. Core sampling or subsurface drilling operation is envisioned to be off rovers or landers. These supporting platforms are inherently flexible, light, and can withstand only limited amount of reaction forces and torques. This, together with unknown properties of sampled materials, makes the sampling operation a tedious task and quite challenging. This paper highlights the recent advancements in the sample acquisition control system design and development for the in situ scientific exploration of planetary and small interplanetary missions.

Ghavimi, Ali R.; Serricchio, Frederick; Dolgin, Ben; Hadaegh, Fred Y.

2000-01-01

114

75 FR 19661 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

The National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC. The meeting will be held for the purpose of soliciting from the scientific community and other persons scientific and technical information relevant to program...

2010-04-15

115

Solid state lasers for planetary exploration  

NASA Technical Reports Server (NTRS)

Design and performance data for two laser transmitters for spaceborne laser ranging are presented. The first laser uses a master oscillator/power amplifier configuration consisting of a diode pumped Nd:YAG slab ring and a multipass diode pumped slab amplifier which can operate at 40 Hz for more than ten to the ninth shots. The other laser is a diode pumped Nd:YAG slab standing wave oscillator which operates at 10 Hz for more than 0.6 x 10 exp 9 shots. The lasers were specifically developed for reliability, for use in space exploitation of the Earth and nearby planets. Applications include planetary altimetry of Mars (MOLA) and Earth (GLRS), as well as space geodesy, navigation, and tracking.

Greene, Ben; Taubman, Matthew; Watts, Jeffrey; Gaither, Gary

1991-01-01

116

Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense  

NASA Technical Reports Server (NTRS)

Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

2013-01-01

117

Overview of the Planetary Data System  

Microsoft Academic Search

The NASA Planetary Data System (PDS) is an active archive that provides high quality, usable planetary science data products to the science community. This system evolved in response to scientists' requests for improved availability of planetary data from NASA missions, with increased scientific involvement and oversight. It is sponsored by the NASA Solar System Exploration Division, and includes seven university\\/research

Susan K. McMahon

1996-01-01

118

Ethical Considerations for Planetary Protection in Space Exploration: A Workshop  

PubMed Central

Abstract With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8–10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond “science protection” per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address “harmful contamination” beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations. Key Words: Planetary protection—Extraterrestrial life—Life in extreme environments—Environment—Habitability. Astrobiology 12, 1017–1023. PMID:23095097

Rummel, J.D.; Horneck, G.

2012-01-01

119

An KML Interface for Dynamics Simulation of Robotic Planetary Exploration  

E-print Network

An KML Interface for Dynamics Simulation of Robotic Planetary Exploration Thomas M. Howard a Keyhole Markup Language (KML) interface for simulation of complex robotic vehicle missions with the Lu events in a KML file and replaces manual simulation script construction. Several ex- periments

120

Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center  

NASA Technical Reports Server (NTRS)

We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.

Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark

2005-01-01

121

The NASA Education Enterprise: Inspiring the Next Generation of Explorers  

NASA Technical Reports Server (NTRS)

On April 12, 2002, NASA Administrator Sean O Keefe opened a new window to the future of space exploration with these words in his Pioneering the Future address. Thus began the conceptual framework for structuring the new Education Enterprise. The Agency s mission is to understand and protect our home planet; to explore the universe in search for life; and to inspire the next generation of explorers as only NASA can. In adopting this mission, education became a core element and is now a vital part of every major NASA research and development mission. NASA s call to inspire the next generation of explorers is now resounding throughout the NASA community and schools of all levels all around the country. The goal is to capture student interest, nurture their natural curiosities, and intrigue their minds with new and exciting scientific research; as well as to provide educators with the creative tools they need to improve America s scientific literacy. The future of NASA begins with America s youngest scholars. According to Administrator O Keefe s address, if NASA does not motivate the youngest generation now, there is little prospect this generation will choose to pursue scientific disciplines later. Since embracing Administrator O Keefe s educational mandate over a year ago, NASA has been fully devoted to broadening its roadmap to motivation. The efforts have generated a whole new showcase of thoughtprovoking and fun learning opportunities, through printed material, Web sites and Webcasts, robotics, rocketry, aerospace design contests, and various other resources as only NASA can.

2003-01-01

122

Towards a sustainable modular robot system for planetary exploration  

NASA Astrophysics Data System (ADS)

This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

Hossain, S. G. M.

123

NASA ADMINISTRATOR'S SYMPOSIUM Risk and Exploration  

E-print Network

SCOTT HUBBARD 1 The Vision for Exploration SEAN O'KEEFE 3 Race to the Moon JAMES LOVELL 11 Bold SYLVIA EARLE 101 Ocean Futures JEAN-MICHEL COUSTEAU 107 Exploration and the MICHAEL L. GERNHARDT 111 Risk to the Moon GRAHAM YOST 187 Discussion 197 SESSION FOUR--WHY WE EXPLORE Why We Explore JOHN GRUNSFELD 209

Rhoads, James

124

Ethical considerations for planetary protection in space exploration: a workshop.  

PubMed

With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8-10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond "science protection" per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address "harmful contamination" beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations. PMID:23095097

Rummel, J D; Race, M S; Horneck, G

2012-11-01

125

Planetary protection issues in advance of human exploration of Mars  

NASA Technical Reports Server (NTRS)

The major planetary quarantine issues associated with human exploration of Mars, which is viewed as being more likely to harbor indigenous life than is the moon, are discussed. Special attention is given to the environmental impact of human missions to Mars due to contamination and mechanical disturbances of the local environment, the contamination issues associated with the return of humans, and the planetary quarantine strategy for a human base. It is emphasized that, in addition to the question of indigenous life, there may be some concern of returning to earth the earth microorganisms that have spent some time in the Martian environment. It is suggested that, due to the fact that a robot system can be subjected to more stringent controls and protective treatments than a mission involving humans, a robotic sample return mission can help to eliminate many planetary-quarantine concerns about returning samples.

Mckay, Christopher P.; Davis, Wanda L.

1989-01-01

126

NASA Exploration and Innovation Lead to New Discoveries Five heavyweight  

E-print Network

NASA Exploration and Innovation Lead to New Discoveries Five heavyweight lifting-body designs. This timeline presents a few dozen of the more than 1,600 NASA-derived technologies profiled in Spinoff. 1958 1960 1961 1962 19641963 1965 1966 1967 1968 19691959 Lifting Bodies 1962-1975 Gemini 1962

Waliser, Duane E.

127

Everybody Dreams: Preparing a New Generation. NASA Explorer Schools Project  

ERIC Educational Resources Information Center

NASA Explorer Schools provides unique opportunities for students and teachers by offering access to technology and resources that are seemingly beyond reach. Combining new technologies with NASA content, lesson plans, and real-world experiments enables teachers to enhance inquiry-based learning and augment student engagement. This publication…

National Aeronautics and Space Administration, 2005

2005-01-01

128

NASA Explorer Schools: School Recognition Opportunities - Duration: 1:47.  

NASA Video Gallery

NASA Explorer Schools not only provides access to high-quality STEM classroom resources and professional development but also recognizes teachers, schools and students who become highly engaged wit...

129

ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION  

SciTech Connect

The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

R. C. O'Brien; S. D. Howe; J. E. Werner

2010-09-01

130

Exploring Photosynthesis with NASA Remote Sensing Data  

NSDL National Science Digital Library

Students will use NASA Satellite data to analyze and understand ways of studying photosynthesis from space. They will assume the role of a park ranger at Shenandoah National Park and determine when the plants and trees at their top efficiency by analyzing when the plants are absorbing a majority of the light hitting them (within the photosynthetic range.)

131

Planetary protection issues in advance of human exploration of Mars.  

PubMed

Current planetary quarantine considerations focus on robotic missions and attempt a policy of no biological contamination. The presence of humans on Mars, however, will inevitably result in biological contamination and physical alteration of the local environment. The focus of planetary quarantine must therefore shift toward defining and minimizing the inevitable contamination associated with humans. This will involve first determining those areas that will be affected by the presence of a human base, then verifying that these environments do not harbor indigenous life nor provide sites for Earth bacteria to grow. Precursor missions can provide salient information that can make more efficient the planning and design of human exploration missions. In particular, a robotic sample return mission can help to eliminate the concern about returning samples with humans or the return of humans themselves from a planetary quarantine perspective. Without a robotic return the cost of quarantine that would have to be added to a human mission may well exceed the cost of a robotic return mission. Even if the preponderance of scientific evidence argues against the presence of indigenous life, it must be considered as part of any serious planetary quarantine analysis for missions to Mars. If there is life on Mars, the question of human exploration assumes an ethical dimension. PMID:11537372

McKay, C P; Davis, W L

1989-01-01

132

A Review of the Approach of NASA Projects to Planetary Protection Compliance  

NASA Technical Reports Server (NTRS)

NASA planetary protection, formerly planetary quarantine, is a set of regulations for extraterrestrial space missions which addresses applicable COSPAR resolutions, and ultimately derives from a 1967 United Nations treaty (the "Moon treaty"). The purpose of the NASA regulations is set forth in a basic policy, NPD 8020.7E (Ref. 1). The purposes are: to protect extraterrestrial objects from terrestrial biological contamination that may interfere with the search for extant life or its remnants or its precursors; and to protect the Earth from the possible hazards of an extraterrestrial sample return.

Barengoltz, Jack B.

2005-01-01

133

NASA Explorer Schools Teachers Selected for 2011 School Recognition Award - Duration: 6:02.  

NASA Video Gallery

NASA Explorer Schools project announces this year's schools selected for recognition. These schools showed exemplary classroom practices and innovative use of NASA. Explorer Schools resources to en...

134

Traverse Planning Experiments for Future Planetary Surface Exploration  

NASA Technical Reports Server (NTRS)

The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).

Hoffman, Stephen J.; Voels, Stephen A.; Mueller, Robert P.; Lee, Pascal C.

2012-01-01

135

Micro Scanning Laser Range Sensor for Planetary Exploration  

NASA Technical Reports Server (NTRS)

This paper proposes a new type of scanning laser range sensor for planetary exploration. The proposed sensor has advantages of small size, light weight, and low power consumption with the help of micro electrical mechanical systems technology. We are in the process of developing a miniature two dimensional optical sensor which is driven by a piezoelectric actuator. In this paper, we present the mechanisms and system concept of a micro scanning laser range sensor.

Nakatani, Ichiro; Saito, Hirobumi; Kubota, Takashi; Mizuno, Takahide; Katoh, Hiroshi; Nakamura, Satoru; Kasamura, Kenji; Goto, Hiroshi

1995-01-01

136

IAA Space Exploration Conference Planetary Robotic and Human Spaceflight Exploration  

E-print Network

utilization of the International Space Station (ISS) through at least 2020, there is an international need. Introduction and Background While we expect productive utilization of the International Space Station (ISS by the International Space Exploration Coordination Group (ISECG). An initial evaluation of different mission options

de Weck, Olivier L.

137

NASA Planetary Scientist Profile Emily Wilson - Duration: 2:48.  

NASA Video Gallery

NASA scientist Emily Wilson discusses her work developing miniaturized instruments that measure greenhouse gases in the atmosphere. Her latest instrument, the mini-LHR, works in tandem with AERONET...

138

International cooperation in planetary exploration: Past success and future prospects  

Microsoft Academic Search

A review is given of the ways in which the National Aeronautics and Space Administration (NASA) has participated in international efforts to explore the solar system. Past examples of successful international cooperative programs are described. Prospects for future cooperative efforts are discussed with emphasis placed on current events, issues, and trends which are likely to affect possibilities for cooperation over

Jeffrey D. Rosendhal

1987-01-01

139

First results in terrain mapping for a roving planetary explorer  

NASA Technical Reports Server (NTRS)

To perform planetary exploration without human supervision, a complete autonomous rover must be able to model its environment while exploring its surroundings. Researchers present a new algorithm to construct a geometric terrain representation from a single range image. The form of the representation is an elevation map that includes uncertainty, unknown areas, and local features. By virtue of working in spherical-polar space, the algorithm is independent of the desired map resolution and the orientation of the sensor, unlike other algorithms that work in Cartesian space. They also describe new methods to evaluate regions of the constructed elevation maps to support legged locomotion over rough terrain.

Krotkov, E.; Caillas, C.; Hebert, M.; Kweon, I. S.; Kanade, Takeo

1989-01-01

140

National Aeronautics and Space Administration NASA's Exploration  

E-print Network

Station partnerships 5 #12;Global Exploration Roadmap 6 #12;7 #12;International Space Station that effect severity generally increases with mission duration. 11 #12;International Space Station Infrastructure 6. Significant International and Commercial participation, leveraging current International Space

Waliser, Duane E.

141

NASA launches dual Dynamics Explorer spacecraft  

NASA Astrophysics Data System (ADS)

A Delta launch vehicle was used to insert Dynamics Explorer A into a highly elliptical polar orbit, ranging from 675 to 24,945 km, and Dynamics Explorer B satellite into a low polar orbit, ranging from 306 to 1,300 km. The two spacecraft are designed to provide specific knowledge about the interaction of energy, electric currents, electric fields, and plasmas between the magnetosphere, the ionosphere, and the atmosphere.

1981-08-01

142

PAUL WITHERS NRC/NASA/ALLISON -PAGE Winds in Planetary Atmospheres  

E-print Network

PAUL WITHERS ­ NRC/NASA/ALLISON - PAGE Winds in Planetary Atmospheres Introduction: The basic circulation of an atmosphere is defined by its pressure, temperature, and wind fields [Holton, 1992]. Pressure and temperature have a direct effect on the passage of electromagnetic radiation through an atmosphere, and so can

Withers, Paul

143

Silicon carbide X-ray detectors for planetary exploration  

NASA Astrophysics Data System (ADS)

Planetary exploration places high demands on instrumentation and presents some of the harshest operating environments and constraints known, including extreme thermal conditions, high-radiation tolerance and the need for low mass and power. We present data on a novel X-ray detector, the Semi-Transparent SiC Schottky Diode (STSSD), which shows promising energy resolution (1.3 keV Full-Width Half-Maximum at 5.9 keV) at room temperature and good radiation tolerance to proton irradiation (with a dose of ˜1013 cm-2, energy ˜50 MeV) with some degradation in resolution to 2.5 keV. Future development of SiC detectors will lead, in principle, to X-ray imaging spectroscopic arrays capable of meeting the stringent demands of future planetary exploration missions. We outline the detector requirements necessary for use in the environment likely to be encountered in a mission to the Jovian system, which has the harshest radiation environment of all the planetary magnetospheres.

Lees, J. E.; Bassford, D. J.; Bunce, E. J.; Sims, M. R.; Horsfall, A. B.

2009-06-01

144

Planetary protection and humans missions to Mars: summary results from two workshops sponsored by NASA and NASA/ESA  

NASA Astrophysics Data System (ADS)

Planetary Protection PP requirements will strongly influence mission and spacecraft designs for future human missions to Mars particularly those related to the operation of advanced life support systems ALS extravehicular activities EVA laboratory and in situ sampling operations and systems for environmental monitoring and control EMC In order to initiate communication understanding and working relations between the ALS EVA EMC and PP communities in both NASA and ESA two separate workshops were held to focus on mission-specific PP issues during future human missions to Mars The NASA Life Support and Habitation and Planetary Protection Workshop was held in Houston TX Center for Advanced Space Studies April 2005 and The Mars PP and Human Systems Research and Technology Joint NASA ESA Workshop was held at ESA ESTEC Noordwijk Netherlands May 2005 This poster presentation summarizes the findings of both workshops and their associated recommendations which are summarized as follows The NASA workshop developed a tentative conceptual approach consistent with current PP requirements to provide preliminary guidance in the assessment of EVA ALS EMC and other aspects of human missions The workshop report identified the need for development of a comprehensive classification and zoning system for Mars to minimize contamination and guide operations particularly in relation to COSPAR Special Region and protection of science and environmental conditions Critical research and technology

Race, M. S.; Kminek, G.; Rummel, J. D.; Nasa; Nasa/Esa Workshop Participants

145

NASA's future directions in space exploration  

NASA Technical Reports Server (NTRS)

The Presidential policy statement of July 4, 1982 has outlined basic U.S. goals for activities in space which include strengthening security, maintaining space leadership, obtaining economic and scientific benefits, expanding private sector investment and involvement in space-related activities, promoting international cooperative activities, and cooperating with other nations in maintaining freedom of space for activities enhancing the security and welfare of mankind. NASA's priorities include: operational status for a four-Orbiter Shuttle fleet, demonstration of the Shuttle's ability to recover and repair the Solar Maximum Mission Satellite, the first launch of Spacelab, and the 1986 launch of the Space Telescope. Future projects include the Venus Radar Mapper, the Advanced Communications Technology Satellite, and the establishment of large permanent space facilities. It is stated that the United States must take the necessary steps now to achieve an understanding of the potential benefits of continued manned operations in space.

Odonnell, W. J.

1983-01-01

146

International cooperation in planetary exploration: Past success and future prospects  

NASA Astrophysics Data System (ADS)

A review is given of the ways in which the National Aeronautics and Space Administration (NASA) has participated in international efforts to explore the solar system. Past examples of successful international cooperative programs are described. Prospects for future cooperative efforts are discussed with emphasis placed on current events, issues, and trends which are likely to affect possibilities for cooperation over the next 5 to 10 years. Key factors which will play a major role in shaping future prospects for cooperation include the move towards balancing the budget in the United States and the impact of the Challenger accident on the NASA program.

Rosendhal, Jeffrey D.

147

Evaluation of multi-vehicle architectures for the exploration of planetary bodies in the Solar System  

E-print Network

Planetary exploration missions are becoming increasingly complex and expensive due to ever more ambitious scientific and technical goals. On the other hand, budgets in planetary science have suffered from dramatic cuts ...

Alibay, Farah

2014-01-01

148

A Small Fission Power System for NASA Planetary Science Missions  

NASA Astrophysics Data System (ADS)

In March 2010, the Decadal Survey Giant Planets Panel (GPP) requested a short-turnaround study to evaluate the feasibility of a small Fission Power System (FPS) for future unspecified National Aeronautics and Space Administration (NASA) science missions. FPS technology was considered a potential option for power levels that might not be achievable with radioisotope power systems. A study plan was generated and a joint NASA and Department of Energy (DOE) study team was formed. The team developed a set of notional requirements that included 1-kW electrical output, 15-year design life, and 2020 launch availability. After completing a short round of concept screening studies, the team selected a single concept for concentrated study and analysis. The selected concept is a solid block uranium-molybdenum reactor core with heat pipe cooling and distributed thermoelectric power converters directly coupled to aluminum radiator fins. This paper presents the preliminary configuration, mass summary, and proposed development program.

Mason, L.; Casani, J.; Elliott, J.; Fleurial, J.-P.; Macpherson, D.; Nesmith, B.; Houts, M.; Bechtel, R.; Werner, J.; Kapernick, R.; Poston, D.; Qualls, L.; Lipinski, R.; Radel, R.; Bailey, S.; Weitzberg, A.

149

Solar discrepancies : Mars exploration and the curious problem of inter-planetary time  

E-print Network

NASA’s Mars Exploration Rovers mission, remotely operated space vehicles to produce scientific knowledge of Martian soil and atmosphere.NASA scientists and engineers located at a terrestrial worksite in southern California and safe from Mars’ poisonous atmosphere.

Mirmalek, Zara Lenora

2008-01-01

150

Surface penetrators for planetary exploration: Science rationale and development program  

NASA Technical Reports Server (NTRS)

Work on penetrators for planetary exploration is summarized. In particular, potential missions, including those to Mars, Mercury, the Galilean satellites, comets, and asteroids are described. A baseline penetrator design for the Mars mission is included, as well as potential instruments and their status in development. Penetration tests in soft soil and basalt to study material eroded from the penetrator; changes in the structure, composition, and physical properties of the impacted soil; seismic coupling; and penetrator deflection caused by impacting rocks, are described. Results of subsystem studies and tests are given for design of entry decelerators, high-g components, thermal control, data acquisition, and umbilical cable deployment.

Murphy, J. P.; Reynolds, R. T.; Blanchard, M. B.; Clanton, U. S.

1981-01-01

151

Possible applications of time domain reflectometry in planetary exploration missions  

NASA Technical Reports Server (NTRS)

The use of a time domain reflectometer (TDR) for planetary exploration is considered. Determination of the apparent dielectric constant and hence, the volumetric water content of frozen and unfrozen soils using the TDR is described. Earth-based tests were performed on a New York state sandy soil and a Wyoming Bentonite. Use of both a cylindrical coaxial transmission line and a parallel transmission line as probes was evaluated. The water content of the soils was varied and the apparent dielectric constant measured in both frozen and unfrozen states. Advantages and disadvantages of the technique are discussed.

Heckendorn, S.

1982-01-01

152

NASA Radiation Protection Research for Exploration Missions  

NASA Technical Reports Server (NTRS)

The HZETRN code was used in recent trade studies for renewed lunar exploration and currently used in engineering development of the next generation of space vehicles, habitats, and EVA equipment. A new version of the HZETRN code capable of simulating high charge and energy (HZE) ions, light-ions and neutrons with either laboratory or space boundary conditions with enhanced neutron and light-ion propagation is under development. Atomic and nuclear model requirements to support that development will be discussed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. We discuss limitations of code validation due to the currently available data and recommend priorities for new data sets.

Wilson, John W.; Cucinotta, Francis A.; Tripathi, Ram K.; Heinbockel, John H.; Tweed, John; Mertens, Christopher J.; Walker, Steve A.; Blattnig, Steven R.; Zeitlin, Cary J.

2006-01-01

153

NASA's Planetary Geology and Geophysics Undergraduate Research Program (PGGURP): The Value of Undergraduate Geoscience Internships  

NASA Astrophysics Data System (ADS)

NASA's Planetary Geology and Geophysics Program began funding PGGURP in 1978, in an effort to help planetary scientists deal with what was then seen as a flood of Viking Orbiter data. Each subsequent year, PGGURP has paired 8 - 15 undergraduates with NASA-funded Principal Investigators (PIs) around the country for approximately 8 weeks during the summer. Unlike other internship programs, the students are not housed together, but are paired, one-on-one, with a PI at his or her home institution. PGGURP interns have worked at sites ranging from the Jet Propulsion Laboratory to the University of Alaska, Fairbanks. Through NASA's Planetary Geology and Geophysics Program, the interns' travel and lodging costs are covered, as are a cost-of-living stipend. Approximately 30% of the undergraduate PGGURP participants continue on to graduate school in the planetary sciences. We consider this to be an enormous success, because the participants are among the best and brightest undergraduates in the country with a wide range of declared majors (e.g., physics, chemistry, biology, as well as geology). Furthermore, those students that do continue tend to excel, and point to the internship as a turning point in their scientific careers. The NASA PIs who serve as mentors agree that this is a valuable experience for them, too, and many of them have been hosting interns annually for well over a decade. The PI obtains enthusiastic and intelligent undergraduate, free of charge, for a summer, while having the opportunity to work closely with today's students who are the future of planetary science. The Lunar and Planetary Institute (LPI) in Houston, TX, also sponsors a summer undergraduate internship. Approximately 12 students are selected to live together in apartments located near the Lunar and Planetary Institute and the Johnson Space Center. Similar to PGGURP, the LPI interns are carefully selected to work one-on-one for ~10 weeks during the summer with one of the LPI staff scientists. Many LPI Summer Intern graduates have forged geoscience or planetary science careers after this rewarding experience.

Gregg, T. K.

2008-12-01

154

Knowledge Sharing at NASA: Extending Social Constructivism to Space Exploration  

ERIC Educational Resources Information Center

Social constructivism provides the framework for exploring communities of practice and storytelling at the National Aeronautics and Space Administration (NASA) in this applied theory paper. A brief overview of traditional learning and development efforts as well as the current knowledge sharing initiative is offered. In addition, a conceptual plan…

Chindgren, Tina M.

2008-01-01

155

Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky  

NASA Technical Reports Server (NTRS)

We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new capability enables up to 13X increased photometric sensitivity and 160X increased observing speed relative to a Sun- Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRL-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the science performance of much larger long development time systems; thus, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions. SEP is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

Greenhouse, Matthew A.; Benson, Scott W.; Falck, Robert D.; Fixsen, Dale J.; Gardner, Joseph P.; Garvin, James B.; Kruk, Jeffrey W.; Oleson, Stephen R.; Thronson, Harley A.

2012-01-01

156

Advanced planetary studies  

NASA Technical Reports Server (NTRS)

Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

1982-01-01

157

NASA Human Spaceflight Architecture Team: Lunar Surface Exploration Strategies  

NASA Technical Reports Server (NTRS)

NASA s agency wide Human Spaceflight Architecture Team (HAT) has been developing Design Reference Missions (DRMs) to support the ongoing effort to characterize NASA s future human exploration strategy. The DRM design effort includes specific articulations of transportation and surface elements, technologies and operations required to enable future human exploration of various destinations including the moon, Near Earth Asteroids (NEAs) and Mars as well as interim cis-lunar targets. In prior architecture studies, transportation concerns have dominated the analysis. As a result, an effort was made to study the human utilization strategy at each specific destination and the resultant impacts on the overall architecture design. In particular, this paper considers various lunar surface strategies as representative scenarios that could occur in a human lunar return, and demonstrates their alignment with the internationally developed Global Exploration Roadmap (GER).

Mueller, Rob P.

2012-01-01

158

Advanced Fuel Cell System Thermal Management for NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

Burke, Kenneth A.

2009-01-01

159

NASA's new Mars Exploration Program: the trajectory of knowledge  

NASA Technical Reports Server (NTRS)

NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils.".

Garvin, J. B.; Figueroa, O.; Naderi, F. M.

2001-01-01

160

NASA's New Mars Exploration Program: The Trajectory of Knowledge  

NASA Astrophysics Data System (ADS)

NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."

Garvin, James B.; Figueroa, Orlando; Naderi, Firouz M.

2001-12-01

161

NASA's Space Launch System: An Enabling Capability for International Exploration  

NASA Technical Reports Server (NTRS)

As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

2014-01-01

162

High-Performance Micro-Rover for Planetary Surface Exploration  

NASA Astrophysics Data System (ADS)

Planetary robotic missions rely on rovers to produce surface mobility for multiple sites sampling and exploration. For example, the Mars Exploration Rovers (MER) have been extremely successful in the exploring a wide area of the Martian surface in the past four years. Each of the MER has the size of a golf car and weights ~170 kg. They both result in a massive launch of nearly 1100 kg. Small rovers (5-30 kg) can help to provide moderate surface traverse and greatly reduce cost of the mission, e.g. the Sojourner rover of the Mars Pathfinder mission. There is a growing interest in the micro-rover design and how to maximize performance of a miniaturized system. For example, the rover traversability and locomotion capability will be compromised if the objective is to reduce the size of the vehicle. Undoubtedly, this affects the rover performance in terms of mobility and usefulness to the mission. We propose to overcome this problem by investigating a new generation of rover chassis design to maximize its terrian capability. This paper presents a chassis concept suited for a micro-rover system and negotiating with different planetary terrains such as the Moon and Mars. The proposed tracked-wheel is motivated by bringing together advantages of wheels and tracks, in the same time keeping the design simple and easy to implement. The chassis is built based on four tracked-wheels and offers 10 DOF for the vehicle. Analysis based on Bekker theories suggests this design can generate larger tractive effort (drawbar pull) compared to the wheeled design for the same rover dimensions. As a result, a more effective and efficent chassis can be achieved and leave a large design margin for the science payload.

Gao, Y.; Chen, X.

2009-04-01

163

Traverse Planning Experiments for Future Planetary Surface Exploration  

NASA Technical Reports Server (NTRS)

This paper describes the results of a recent (July-August 2010 and July 2011) planetary surface traverse planning experiment. The purpose of this experiment was to gather data relevant to robotically repositioning surface assets used for planetary surface exploration. This is a scenario currently being considered for future human exploration missions to the Moon and Mars. The specific scenario selected was a robotic traverse on the lunar surface from an outpost at Shackleton Crater to the Malapert Massif. As these are exploration scenarios, the route will not have been previously traversed and the only pre-traverse data sets available will be remote (orbital) observations. Devon Island was selected as an analog location where a traverse route of significant length could be planned and then traveled. During the first half of 2010, a team of engineers and scientists who had never been to Devon Island used remote sensing data comparable to that which is likely to be available for the Malapert region (eg., 2-meter/pixel imagery, 10-meter interval topographic maps and associated digital elevation models, etc.) to plan a 17-kilometer (km) traverse. Surface-level imagery data was then gathered on-site that was provided to the planning team. This team then assessed whether the route was actually traversable or not. Lessons learned during the 2010 experiment were then used in a second experiment in 2011 for which a much longer traverse (85 km) was planned and additional surface-level imagery different from that gathered in 2010 was obtained for a comparative analysis. This paper will describe the route planning techniques used, the data sets available to the route planners and the lessons learned from the two traverses planned and carried out on Devon Island.

Hoffman, S. J.; Voels, S. A.; Mueller, R. P.; Lee, P. C.

2011-01-01

164

Software Architecture of Sensor Data Distribution In Planetary Exploration  

NASA Technical Reports Server (NTRS)

Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed.

Lee, Charles; Alena, Richard; Stone, Thom; Ossenfort, John; Walker, Ed; Notario, Hugo

2006-01-01

165

Bioinspired engineering of exploration systems for NASA and DoD.  

PubMed

A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers. PMID:12650645

Thakoor, Sarita; Chahl, Javaan; Srinivasan, M V; Young, L; Werblin, Frank; Hine, Butler; Zornetzer, Steven

2002-01-01

166

Grading NASA's Solar System Exploration Program: A Midterm Report  

NASA Technical Reports Server (NTRS)

The Committee on Assessing the Solar System Exploration Program has reviewed NASA's progress to date in implementing the recommendations made in the National Research Council's (NRC's) solar system exploration decadal survey covering the period 2003-2013, New Frontiers in the Solar System, and in its Mars Architecture report, Assessment of NASA s Mars Architecture 2007-2016. The committee assessed NASA's progress with respect to each individual recommendation in these two reports, assigning an academic-style grade, explaining the rationale for the grade and trend, and offering recommendations for improvement. The committee generally sought to develop recommendations in cases where it determined that the grade, the trend, or both were worrisome and that the achievement of a decadal survey recommendation would require some kind of corrective action on NASA's part. This usually meant that the committee sought to offer a recommendation when the grade was a "C" or lower. However, the committee did offer recommendations in connection with some higher grades when it believed that minor corrective action was possible and desirable. More importantly, the committee did not offer recommendations for some of the activities given lower grades, particularly in the enabling technologies area (Chapter 6), because the committee determined that only the restoration of funding and the development of a strategic technology development program would solve these problems.

2008-01-01

167

Multi-Wavelength Dielectrometer (MWD) Sensor For Planetary Subsurface Exploration  

NASA Technical Reports Server (NTRS)

NASA's mission to Moon, Mars, and Beyond envisions landing of a light weight measurement platform on the planetary surface. The Multi-Wavelength Dielectrometer (MWD) on-board consists of essential electronics and metallic plates acting as electrodes attached to the body of such platform. An electric signal applied to one of the electrodes acting as a cathode sets up electric field pattern (in the soil medium) between the cathode and other electrodes acting as anodes. The electrodes are swept through multiple wavelengths (1Hz-1MHz) and the electric current drawn by the electrodes is measured at each frequency. The measured current whose amplitude and phase depend upon electrode spacing, dielectric constant of the subsurface soil, and the frequency is then used to estimate electrical properties of the soil. In this paper the MWD sensor that will measure the dielectric properties of Moon/Mars s soil is presented. A procedure to process the MWD measured data for extracting the soil properties is also described. Assuming the subsurface soil structure as multilayer strata having varying electric properties, an electric equivalent circuit of the multiple electrodes configuration placed on a multi-layer soil sample is obtained. The current drawn by the equivalent circuit from the low frequency signal generator is then calculated. By minimizing the difference between the model s estimated current and measured MWD data the electric properties of soil samples are extracted. Experimental and simulated results will be presented to validate the proposed procedure for extracting soil properties.

Deshpande, Manohar; VanSteenberg, Michael; Hilliard, Lawrence

2006-01-01

168

NASA's RPS Design Reference Mission Set for Solar System Exploration  

NASA Technical Reports Server (NTRS)

NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could support NASA's RPS technology development planning, and provide an understanding of fuel need trades over the next three decades.

Balint, Tibor S.

2007-01-01

169

TRANSITION IN THE HUMAN EXPLORATION OF SPACE AT NASA  

E-print Network

;1962 ­ MERCURY-ATLAS ­ JOHN GLENN #12;1965 - GEMINI #12;1969 ­ APOLLO 11 #12;1973 ­ SKYLAB #12;1981 ­ STS-1 #12TRANSITION IN THE HUMAN EXPLORATION OF SPACE AT NASA Robert Cabana Director, Kennedy Space Center #12;1903 ­ WRIGHT FLYER #12;1927 ­ THE SPIRIT OF ST. LOUIS #12;1961 ­ MERCURY ­ ALAN SHEPHERD #12

170

NASA'S RPS Design Reference Mission Set for Solar System Exploration  

NASA Astrophysics Data System (ADS)

NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could support NASA's RPS technology development planning, and provide an understanding of fuel need trades over the next three decades.

Balint, Tibor S.

2007-01-01

171

Applying Space to Earth What is the Centre for Planetary Science and Exploration?  

E-print Network

Applying Space to Earth What is the Centre for Planetary Science and Exploration? · Formed, the Faculty of Engineering and the departments of Physics and Astronomy, Earth Sciences, Biology, Chemistry and space · Aims to lead Canadian planetary science and exploration efforts by creating a research

Denham, Graham

172

The Generalized Location Routing Problem with Profits for planetary surface exploration and terrestrial applications  

E-print Network

As the scale of space exploration gets larger, planning of planetary surface exploration becomes more complex and campaign-level optimization becomes necessary. This is a challenging profit maximization problem whose ...

Ahn, Jaemyung

2008-01-01

173

Your Planetary Protection Officer  

NSDL National Science Digital Library

This is a brief article about John Rummel, NASA's Planetary Protection Officer. It explains the purpose of planetary protection (to prevent contamination of Earth by alien life forms and of space by Earth's life forms), gives some historical background about NASA's planetary protection policies, and gives examples of recent protocols for sterilization of spacecraft. There are links to the Planetary Protection Office website, the 1967 Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Bodies, and updated policy guidelines.

Koerner, Brendan I.; Slate

174

Reports and recommendations from COSPAR Planetary Exploration Committee (PEX) & International Lunar Exploration Working Group (ILEWG)  

NASA Astrophysics Data System (ADS)

In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We present the GLUC/ICEUM11 declaration (with emphasis on Science and exploration; Technologies and resources, Infrastructures and human aspects; Moon, Space, Society and Young Explorers) (http://sci.esa.int/iceum11). We give a report on ongoing relevant ILEWG community activities. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap.

Ehrenfreund, Pascale; Foing, Bernard

2014-05-01

175

NASA thesaurus: Astronomy vocabulary  

NASA Technical Reports Server (NTRS)

A terminology of descriptors used by the NASA Scientific and Technical information effort to index documents in the area of astronomy is presented. The terms are listed in hierarchical format derived from the 1988 edition of the NASA Thesaurus Volume 1 -- Hierarchical Listing. Over 1600 terms are included. In addition to astronomy, space sciences covered include astrophysics, cosmology, lunar flight and exploration, meteors and meteorites, celestial mechanics, planetary flight and exploration, and planetary science.

1988-01-01

176

Simulation Based Acquisition for NASA's Office of Exploration Systems  

NASA Technical Reports Server (NTRS)

In January 2004, President George W. Bush unveiled his vision for NASA to advance U.S. scientific, security, and economic interests through a robust space exploration program. This vision includes the goal to extend human presence across the solar system, starting with a human return to the Moon no later than 2020, in preparation for human exploration of Mars and other destinations. In response to this vision, NASA has created the Office of Exploration Systems (OExS) to develop the innovative technologies, knowledge, and infrastructures to explore and support decisions about human exploration destinations, including the development of a new Crew Exploration Vehicle (CEV). Within the OExS organization, NASA is implementing Simulation Based Acquisition (SBA), a robust Modeling & Simulation (M&S) environment integrated across all acquisition phases and programs/teams, to make the realization of the President s vision more certain. Executed properly, SBA will foster better informed, timelier, and more defensible decisions throughout the acquisition life cycle. By doing so, SBA will improve the quality of NASA systems and speed their development, at less cost and risk than would otherwise be the case. SBA is a comprehensive, Enterprise-wide endeavor that necessitates an evolved culture, a revised spiral acquisition process, and an infrastructure of advanced Information Technology (IT) capabilities. SBA encompasses all project phases (from requirements analysis and concept formulation through design, manufacture, training, and operations), professional disciplines, and activities that can benefit from employing SBA capabilities. SBA capabilities include: developing and assessing system concepts and designs; planning manufacturing, assembly, transport, and launch; training crews, maintainers, launch personnel, and controllers; planning and monitoring missions; responding to emergencies by evaluating effects and exploring solutions; and communicating across the OExS enterprise, within the Government, and with the general public. The SBA process features empowered collaborative teams (including industry partners) to integrate requirements, acquisition, training, operations, and sustainment. The SBA process also utilizes an increased reliance on and investment in M&S to reduce design risk. SBA originated as a joint Industry and Department of Defense (DoD) initiative to define and integrate an acquisition process that employs robust, collaborative use of M&S technology across acquisition phases and programs. The SBA process was successfully implemented in the Air Force s Joint Strike Fighter (JSF) Program.

Hale, Joe

2004-01-01

177

The Global Exploration Roadmap and its significance for NASA  

NASA Astrophysics Data System (ADS)

The Global Exploration Roadmap reflects the collaborative effort of twelve space agencies to define a long-term human space exploration strategy which provides substantial benefits for improving the quality of life on Earth and is implementable and sustainable. Such a strategy is a necessary precondition to the government investments required to enable the challenging and rewarding missions that extend human presence into the solar system. The article introduces the international strategy and elaborates on NASA's leadership role in shaping that strategy. The publication of the roadmap, a reflection of the space landscape and multilateral agency-level dialog over the last four years, allows NASA to demonstrate its commitment to leading a long-term space exploration endeavor that delivers benefits, maintains strategic human spaceflight capabilities and expands human presence in space, with human missions to the surface of Mars as a driving goal. The road mapping process has clearly demonstrated the complementary interests of the participants and the potential benefits that can be gained through cooperation among nations to achieve a common goal. The present US human spaceflight policy is examined and it is shown that the establishment of a sustainable global space exploration strategy is fully consistent with that policy.

Laurini, K. C.; Gerstenmaier, W. H.

2014-08-01

178

Transition in the Human Exploration of Space at NASA  

NASA Technical Reports Server (NTRS)

NASA is taking the next step in human exploration, beyond low Earth orbit. We have been going to low Earth orbit for the past 50 years and are using this experience to work with commercial companies to perform this function. This will free NASA resources to develop the systems necessary to travel to a Near Earth Asteroid, the Moon, Lagrange Points, and eventually Mars. At KSC, we are positioning ourselves to become a multi-user launch complex and everything we are working on is bringing us closer to achieving this goal. A vibrant multi-use spaceport is to the 21st Century what the airport was to the 20th Century - an invaluable transportation hub that supports government needs while promoting economic development and commercial markets beyond Earth's atmosphere. This past year saw the end of Shuttle, but the announcements of NASA's crew module, Orion, and heavy-lift rocket, the SLS, as well as the establishment of the Commercial Crew Program. We have a busy, but very bright future ahead of us and KSC is looking forward to playing an integral part in the next era of human space exploration. The future is SLS, 21st Century Ground Systems Program, and the Commercial Crew Program; and the future is here.

Koch, Carla A.; Cabana, Robert

2011-01-01

179

Enabling the space exploration initiative: NASA's exploration technology program in space power  

NASA Technical Reports Server (NTRS)

Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.

Bennett, Gary L.; Cull, Ronald C.

1991-01-01

180

Electrochemical Energy Storage and Power Sources for NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

An overview of NASA s electrochemical energy storage programs for NASA Exploration missions is being presented at the 10th Electrochemical Power Sources R&D Symposium, which is being held in Williamsburg, VA on August 20-23, 2007. This public domain venue, which is sponsored by the U.S. Navy and held every two years, serves as a forum for the dissemination of research and development results related to electrochemical energy storage technology programs that are currently being supported and managed within governmental agencies. Technology areas of primary interest include batteries, fuel cells, and both overview and focused presentations on such are given by both governmental and contractual researchers. The forum also provides an opportunity to assess technology areas of mutual interest with respect to establishing collaborative and/or complementary programmatic interactions.

Baldwin, Richard S.

2007-01-01

181

Products from NASA's In-Space Propulsion Program Applicable to Low-Cost Planetary Missions  

NASA Technical Reports Server (NTRS)

NASAs In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. The technology areas include electric propulsion technologies, spacecraft bus technologies, entry vehicle technologies, and design tools for systems analysis and mission trajectories. The electric propulsion technologies include critical components of both gridded and non-gridded ion propulsion systems. The spacecraft bus technologies under development include an ultra-lightweight tank (ULTT) and advanced xenon feed system (AXFS). The entry vehicle technologies include the development of a multi-mission entry vehicle, mission design tools and aerocapture. The design tools under development include system analysis tools and mission trajectory design tools.

Anderson, David; Pencil, Eric J.; Glabb, Louis J.; Falck, Robert D.; Dankanich, John

2013-01-01

182

Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration  

NASA Technical Reports Server (NTRS)

The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.

Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)

2001-01-01

183

A New Direction for NASA's Solar System Exploration Research Virtual Institute: Combining Science and Exploration  

NASA Astrophysics Data System (ADS)

The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the research efforts of the new nine domestic teams that constitute the U.S. complement of the Institute and how we will engage the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

Bailey, B.; Daou, D.; Schmidt, G.; Pendleton, Y.

2014-04-01

184

Products from NASA's In-Space Propulsion Technology Program Applicable to Low-Cost Planetary Missions  

NASA Technical Reports Server (NTRS)

Since September 2001 NASA s In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Also under development are several technologies for low cost sample return missions. These include a low cost Hall effect thruster (HIVHAC) which will be completed in 2011, light weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA s future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.

Anderson, David J.; Pencil, Eric; Vento, Daniel; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle M.

2011-01-01

185

Overview of NASA's Thermal Control System Development for Exploration Project  

NASA Technical Reports Server (NTRS)

NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

Stephan, Ryan A.

2010-01-01

186

NASA: Engineering Space Exploration - Launching to the Moon, Mars, and Beyond  

NASA Technical Reports Server (NTRS)

This presentation reviews NASA's program of space exploration, including information about NASA's mission, the human urge to explore, the timeline for the development of the exploration, and what NASA plans to explore and prove during the return to the moon. Also include are views of the planned vehicles, and a review of progress to date in the design and construction of the vehicles. Some of the benefits of space exploration are also reviewed.

Malone, Roy

2009-01-01

187

Mars Technology Program Planetary Protection Technology Development  

NASA Technical Reports Server (NTRS)

The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

Lin, Ying

2006-01-01

188

Thermal Protection Materials Technology for NASA's Exploration Systems Mission Directorate  

NASA Technical Reports Server (NTRS)

To fulfill the President s Vision for Space Exploration - successful human and robotic missions between the Earth and other solar system bodies in order to explore their atmospheres and surfaces - NASA must reduce trip time, cost, and vehicle weight so that payload and scientific experiment capabilities are maximized. As a collaboration among NASA Centers, this project will generate products that will enable greater fidelity in mission/vehicle design trade studies, support risk reduction for material selections, assist in optimization of vehicle weights, and provide the material and process templates for development of human-rated qualification and certification Thermal Protection System (TPS) plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on technologies that reduce vehicle weight by minimizing the need for propellant. These missions use the destination planet s atmosphere to slow the spacecraft. Such mission profiles induce heating environments on the spacecraft that demand thermal protection heatshields. This program offers NASA essential advanced thermal management technologies needed to develop new lightweight nonmetallic TPS materials for critical thermal protection heatshields for future spacecraft. Discussion of this new program (a December 2004 new start) will include both initial progress made and a presentation of the work to be preformed over the four-year life of the program. Additionally, the relevant missions and environments expected for Exploration Systems vehicles will be presented, along with discussion of the candidate materials to be considered and of the types of testing to be performed (material property tests, space environmental effects tests, and Earth and Mars gases arc jet tests).

Valentine, Peter G.; Lawerence, Timtohy W.; Gubert, Michael K.; Flynn, Kevin C.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

2005-01-01

189

Volatile Analysis by Pyrolysis of Regolith for Planetary Resource Exploration  

NASA Technical Reports Server (NTRS)

The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 C and determining the composition of volatiles released as a function of temperature.

Glavin, Daniel P.; Malespin, Charles; ten Kate, Inge L.; Getty, Stephanie A.; Holmes, Vincent E.; Mumm, Erik; Franz, Heather B.; Noreiga, Marvin; Dobson, Nick; Southard, Adrian E.; Feng, Steven H.; Kotecki, Carl A.; Dworkin, Jason P.; Swindle, Timothy D.; Bleacher, Jacob E.; Rice, James W.; Mahaffy, Paul R.

2012-01-01

190

Using Perilog to Explore "Decision Making at NASA"  

NASA Technical Reports Server (NTRS)

Perilog, a context intensive text mining system, is used as a discovery tool to explore topics and concerns in "Decision Making at NASA," chapter 6 of the Columbia Accident Investigation Board (CAIB) Report, Volume I. Two examples illustrate how Perilog can be used to discover highly significant safety-related information in the text without prior knowledge of the contents of the document. A third example illustrates how "if-then" statements found by Perilog can be used in logical analysis of decision making. In addition, in order to serve as a guide for future work, the technical details of preparing a PDF document for input to Perilog are included in an appendix.

McGreevy, Michael W.

2005-01-01

191

NASA Technology Area 07: Human Exploration Destination Systems Roadmap  

NASA Technical Reports Server (NTRS)

This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments.

Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

2011-01-01

192

A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed  

NASA Technical Reports Server (NTRS)

The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design concepts, mission scenarios, and highlights recent tests and analyses of Tumbleweed prototypes.

Antol, Jeffrey

2005-01-01

193

A New NASA Web Site Designed to Assist Planetary Scientists in Setting Up and Doing Education and Outreach Activities.  

NASA Astrophysics Data System (ADS)

With the increased emphasis on space scientists' involvement in education and public outreach efforts, many planetary scientists find themselves in a quandry about what to do and how to get started. Even those who have spent many years in such efforts may find themselves wanting to establish more national or global partnerships with E/PO professional organizations, either in formal education or in more public venues. As a part of the 6-year-old NASA Office of Space Science E/PO Support Network, the Solar System Exploration E/PO Forum has recently opened a web site to help make the task less time-consuming and more straightforward. This poster paper will describe the initial contents of the "For Scientists" part of the web site and solicits comments and suggestions to make it more complete and more helpful. It is intended that all useful web links and other resources be readily available through the web site so that it is less difficult to find where to get assistance or whom to ask for help. The site is also intended to assist scientists more experienced in E/PO efforts of their own to expand those efforts to wider audiences. Regional Broker/Facilitators exist in seven regions across the United States. Three other E/PO Forums (Sun-Earth Connection, Astronomical Search for Origins and Planetary Systems, and Structure and Evolution of the Universe) also exist. Contact information for the SSE Forum and the other elements of the Support Network is readily available at the web site, as is information on financial assistance available through NASA for E/PO activities and products. Hot links to other scientist E/PO assistance sites are also included.

Davis, P. W.

2002-09-01

194

Planetary Boundaries: Exploring the Safe Operating Space for Humanity  

Microsoft Academic Search

Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of

J. Rockström; W. Steffen; K. Noone; F. S. Chapin; E. Lambin; T. M. Lenton; M. Scheffer; C. Folke; H. Schellnhuber; B. Nykvist; C. A. De Wit; T. Hughes; S. van der Leeuw; H. Rodhe; S. Sörlin; P. K. Snyder; R. Costanza; U. Svedin; M. Falkenmark; L. Karlberg; R. W. Corell; V. J. Fabry; J. Hansen; Åsa Persson; F. Stuart; Hans Joachim; Brian Walker; Paul Crutzen; Jonathan Foley

2009-01-01

195

Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions  

NASA Technical Reports Server (NTRS)

The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. In addition, recently released NASA Space Technology Roadmaps and Priorities, by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reductions in spacecraft structural mass more efficient, lighter thermal protection systems more efficient lighter propulsion systems and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location(s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of interest. The entry environment is not always guaranteed with a direct entry, and improving the entry systems robustness to a variety of environmental conditions could aid in reaching more varied landing sites. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: 1) Mass to Surface, 2) Surface Access, 3) Precision Landing, 4) Surface Hazard Detection and Avoidance, 5) Safety and Mission Assurance, and 6) Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems is manufactured using techniques that require filling of each (3/8 cell) by hand and within a limited amount of time once the ablative compound is mixed, all of the cells have to be filled and the entire heat-shield has to be cured. The tile systems such as PICA pose a different challenge as the mechanical strength characteristic and the manufacturing limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS> A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials.

Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

2012-01-01

196

Orbital observatories for planetary science and exoplanets exploration  

NASA Astrophysics Data System (ADS)

The Space Research Institute of Russian Academy of Science (IKI RAS) currently develops two middle class space telescopes projects aimed to observe Solar system planets by a long term spectroscopy polarimetry monitoring and aimed to extra solar planets (exoplanets) engineering and scientific goals. “Planetary monitoring” telescope has a 0.6 meter primary mirror diameter and it is planned on board of Russian Segment of ISS. It is scheduled to be launched in 2018. It includes 5 science instruments: IR: 1000..4000 nm high-resolution spectrometer R>10000; Visible Field camera with filters wheel; UV-VIS Fourier spectrometer; UV-VIS spectropolarimeter; Stellar coronagraph linked with spectrometer. The “Planetary monitoring” telescope scientific goals devoted to explore not jet well studied questions on Mars (methane, ozone, dust and clouds, isotope ratio of HDO/H2O), on Venus (UV absorber, night glow, atmosphere dynamics), icy and gaseous Solar system planets, Jovian moons, Lunar exosphere, comets, meteorites. This telescope aims also for engineering development of exoplanet study by stellar coronagraphy linked with a low resolution spectrometry. The “Plnetary monitoring” telescope will have its larger version with up to 1.5 .. 2 meter primary mirror diameter. That mission called “Zvezdnyi (engl. stellar) patrol” and is tentatively scheduled for the launch in 2022 to L2 point on a Navigator automate platform. “Zvezdnyi patrol” has the main goal to atmospheric characterization of cold exoplanets with spectral near IR instruments. Another goal is to measure more precisely the Solar system planets atmosphere components. High-contrast imaging is currently the only available technique for the study of the thermodynamical and compositional properties of exoplanets in long-period orbits, comparable to the range from Venus to Jupiter. This project is a coronagraphic space telescope dedicated to the spectropolarimetric analysis of gaseous and icy giant planets as well as super-Earths at visible and near IR wavelengths. So far, studies for high-contrast imaging instruments have mainly focused on technical feasibility because of the challenging planet/star flux ratio of 10e-8-10e-10 required at short separations (200 mas or so) to image cold exoplanets. However, the main interest of “Zvezdnyi patrol” instruments, namely the analysis of planet atmospheric/surface properties, has remained largely unexplored.

Tavrov, Alexander; Bisikalo, Dmitry; Ksanfomality, Leonid; Korablev, Oleg; Ananyeva, Vladislava; Kiselev, Alexander

197

Definition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear Electric Propulsion and Power Systems  

E-print Network

Nuclear Electric Propulsion and Power Systems By Bryan K. Smith Submitted to the System Design, expansion and screening of Nuclear Electric Propulsion and Power concepts capable of achieving planetaryDefinition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear

198

NASA/SP2009-566-ADD2 Human Exploration of Mars  

E-print Network

NASA/SP­2009-566-ADD2 Human Exploration of Mars Design Reference Architecture 5.0 Addendum #2 Bret G. Drake and Kevin D. Watts, editors NASA Johnson Space Center, Houston, Texas March 2014 #12;NASA STI Program ... in Profile Since its founding, NASA has been dedicated to the advancement

Waliser, Duane E.

199

Space exploration challenges : characterization and enhancement of space suit mobility and planetary protection policy analysis  

E-print Network

This thesis addresses two challenges associated with advanced space and planetary exploration: characterizing and improving the mobility of current and future gas pressurized space suits; and developing effective domestic ...

Holschuh, Bradley Thomas

2010-01-01

200

Development of a mechanical counter pressure Bio-Suit System for planetary exploration  

E-print Network

Extra-vehicular activity (EVA) is critical for human spaceflight and particularly for human planetary exploration. The MIT Man Vehicle Laboratory is developing a Bio-Suit EVA System, based on mechanical counterpressure ...

Sim, Zhe Liang

2006-01-01

201

Vision-based terrain classification and classifier fusion for planetary exploration rovers  

E-print Network

Autonomous rover operation plays a key role in planetary exploration missions. Rover systems require more and more autonomous capabilities to improve efficiency and robustness. Rover mobility is one of the critical components ...

Halatci, Ibrahim

2006-01-01

202

Rough-terrain mobile robot planning and control with application to planetary exploration  

E-print Network

Future planetary exploration missions will require mobile robots to perform difficult tasks in highly challenging terrain, with limited human supervision. Current motion planning and control algorithms are not well suited ...

Iagnemma, Karl David

2001-01-01

203

The Explorer's Guide to the Universe. A Reading List for Planetary and Space Science.  

ERIC Educational Resources Information Center

This reading list for planetary and space science presents general references and bibliographies intended to supply background to the non-scientist, as well as more specific sources for recent discoveries. Included are NASA publications and those which have been commercially produced. References are sectioned into these topics: (1) general reviews…

Zucker, Sandy, Comp.; And Others

204

Solar discrepancies: Mars exploration and the curious problem of inter-planetary time  

NASA Astrophysics Data System (ADS)

The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support technology and of the technologies supporting Mars time, Mirmalek explores some of the effects that follow from failing to recognize time as a socio-cultural construction that emerges, fundamentally, in and through a physical relationship between the environment and the human body. In this investigation of Mars time as a phenomenon comprised of several contradictory logics, Mirmalek takes into account several aspects of the social, technical, and cultural processes constituting the relationship between time and work at NASA and specifically on the MER mission.

Mirmalek, Zara Lenora

205

Lunar Exploration Island, NASA’s Return to the Moon in Second Life  

NASA Astrophysics Data System (ADS)

Second Life is a metaverse—a massively multi-user virtual world (MMVR) community. With over 9 million users worldwide, there are 40,000-50,000 users on line at any one time. Second Life hosts over 200 educational and institutional simulation locations termed “islands” or sims that are developed by users providing support for education and business endeavors. On-line tools are provided to construct structures and landforms simulating a real world in a virtual three-dimensional environment. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move in Second Life by walking, flying, or teleporting and interact with other users via text or voice chat. This poster details the design and creation of the Second Life exhibit hall for NASA’s Lunar Precursor Robotics Program and the LRO/LCROSS missions. The hall has been placed on the Lunar Exploration Island (LEI) in Second Life. Avatars enter via teleportation to an orientation room with information about the project, a simulator map, and other information. A central hall of flight houses exhibits pertaining to the LRO/ LCROSS missions and includes full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the missions, both spacecraft instrument suites, and EPO directed to support the missions. The sim includes several sites for meetings, a conference amphitheater with a stage and screen for video links such as live broadcasts of conferences and speakers. A link is provided to NASATV for live viewing LRO/LCROSS launch and impact activities and other NASA events. Recently visitors have viewed the Hubble servicing mission and several shuttle launches as well as the LRO/LCROSS launch. Lunar Exploration Island in Second Life

Ireton, F. M.; Bleacher, L.; Day, B.; Hsu, B. C.; Mitchell, B. K.

2009-12-01

206

A New Concept in Planetary Exploration: ISRU With Power Bursts  

NASA Astrophysics Data System (ADS)

The concept of generating power bursts upon demand in space exploration is presented. As acknowledged by two NASA Novel Technology Report (NTR) awards, the concept is new and innovative. As a general background, it must be recalled that power has always been a major limiting factor in exploration, especially in the exploration of far off sites like Mars (contrasted with LEO or GEO). Without the high power ability, no amount of energy (that can only be expended at a low rate, i.e., low power) can accomplish such simple operations as: crushing a rock, hopping over an obstacle, drilling deep, and eventually ascent from the planet to an orbiting craft above, or even the return journey to Earth. The concept presented here is an advance over the much studied In-Situ Resource Utilization (ISRU); we use ISRU for the extraction of the needed fuel and oxidizer from the local resources, store these gases, and expend them rapidly when needed. In the martian scenario, these gases will be carbon monoxide (fuel) and oxygen (oxidizer) extracted from the atmospheric carbon dioxide; subsequently, higher chemistry is possible after the discovery, and utilization of water which enables the production of an entire spectrum of hydrocarbons and carbohydrates. If nitrogen can also be added at a still later date, many more chemicals in the ammonia based family are possible. At SERC (University of Arizona) we have pioneered all of these chemical productions. In another award-winning innovation, an ultra-light weight material, popularly known as muscle wires, is used in a biology-inspired robot called BiRoD. The expenditure of energy in these materials produces power that results in mechanical motion. The short term power generation is thousands of times the average power that was used to harness the local resource in the first place. At the time of this abstract, BiRoD has been designed, assembled, and shown to work in a primitive way, in its component form; new media have carried the high-profile story all over the nation. At the time of the Congress, we expect to no only have many more pieces of quantitative, engineering data from BiRoD but we still also attempt to bring that robot to the session for an actual demonstration.

Streibech, Douglas; Urdaneta, Mario; Chapman, Patricia; Furfaro, Roberto; Ramohalli, Kumar

2000-01-01

207

Integrated Medium for Planetary Exploration (IMPEx): an infrastructure to bridge space missions data and computational models in planetary science  

NASA Astrophysics Data System (ADS)

The FP7-SPACE project Integrated Medium for Planetary Exploration (IMPEx) has started in June 2011. The aim of the project is the Creation of an integrated interactive IT framework where data from space missions will be interconnected to numerical models, providing a possibility to 1) simulate planetary phenomena and interpret spacecraft data; 2) test and improve models versus experimental data; 3) fill gaps in measurements by appropriate modelling runs; 4) solve technological tasks of mission operation and preparation. Data analysis and visualization within IMPEx will be based on the advanced computational models of the planetary environments. Specifically, the 'modeling sector' of IMPEx is formed of four well established numerical codes and their related computational infrastructures: 1) 3D hybrid modeling platform HYB for the study of planetary plasma environments, hosted at FMI; 2) an alternative 3D hybrid modeling platform, hosted at LATMOS; 3) MHD modelling platform GUMICS for 3D terrestrial magnetosphere, hosted at FMI; and 4) the global 3D Paraboloid Magnetospheric Model for simulation of magnetospheres of different Solar System objects, hosted at SINP. Modelling results will be linked to the corresponding experimental data from space and planetary missions via several online tools: 1/ AMDA (Automated Multi-Dataset Analysis) which provides cross-linked visualization and operation of experimental and numerical modelling data, 2/ 3DView which will propose 3D visualization of spacecraft trajectories in simulated and observed environments, and 3/ "CLWeb" software which enables computation of various micro-scale physical products (spectra, distribution functions, etc.). In practice, IMPEx is going to provide an external user with an access to an extended set of space and planetary missions' data and powerful, world leading computing models, equipped with advanced visualization tools. Via its infrastructure, IMPEx will enable to merge spacecraft data bases and scientific modelling tools, providing their joint interconnected operation for the better understanding of related space and planetary physics phenomena.

Khodachenko, M. L.; Kallio, E. J.; Génot, V. N.; Al-Ubaidi, T.; Topf, F.; Schmidt, W.; Alexeev, I. I.; Modolo, R.; André, N.; Gangloff, M.; Belenkaya, E. S.

2012-04-01

208

NASA's Mars Exploration Program: Characterize the Geology of Mars  

NSDL National Science Digital Library

A study of the geology of Mars should reveal answers to such questions as how Mars developed into the planet we see today and what accounts for the differences and similarities between Earth and Mars. Visitors to this site can learn about ancient magnetism recently discovered by the Mars Global Surveyor that suggests the planet was once more dynamic and Earth-like with a magnetic field shielding the surface from cosmic radiation. They can read about the importance of studying the age and composition of Martian rocks, particularly those rocks and minerals which might have been formed in the presence of water. This is part of NASA's presentation of four science goals for its Mars Exploration Program, a science-driven effort to discover whether Mars was, is, or can be, a habitable world.

209

NASA Space Launch System: A Cornerstone Capability for Exploration  

NASA Technical Reports Server (NTRS)

Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space Exploration Coordination Group, which represents 14 of the world's space agencies. In addition, this paper will detail this new rocket's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS Program is currently building a global infrastructure asset that will provide robust space launch capability to deliver sustainable solutions for exploration.

Creech, Stephen D.; Robinson, Kimberly F.

2014-01-01

210

Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration  

NASA Technical Reports Server (NTRS)

NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid lubricant coatings, thus necessitating the use of liquid lubricants for long life.

Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin

2012-01-01

211

Planetary Protection: A Major Challenge in the Exploration of Life in the Solar System  

NASA Astrophysics Data System (ADS)

The picture of Mars that is now emerging from the Mars Global Surveyor and Odyssey results stands in marked contrast from that portrayed shortly after the Viking missions of the mid-1970s. The abundance of water ice seen both in the polar caps themselves, and in lower latitudes outside of the polar regions is particularly intriguing, and adds to the heightened consideration Mars as a planet that might support life--either Mars life or life brought from Earth. Elsewhere in the Solar System the situation also intrigues those looking for habitable niches. The tides of Europa are thought to keep its icy shell melted, thus providing ample liquid water in an ocean that may be on the order of 100 km deep. Other icy bodies may also be as interesting, whether they orbit Jupiter or are found around Saturn or the other outer planets. The intriguing nature of these bodies, and their potential niches for life, highlight the problems involved with possible biological contamination that may be carried by future missions, and its possible effects. A particular challenge are missions carrying perennial heat sources of high capacity and longevity (e.g., Radioisotope Thermoelectric Generators) which could, by non-nominal landings or other mission operations, be introduced to close contact with water ice--potentially forming Earthlike environments that could accommodate the growth of contaminant organisms. Maintaining the cleanliness of solar system bodies from biological growth is of critical importance to the future success of NASA's science and exploration missions, as is protecting the Earth from the importation of life from elsewhere, if it exists. Recently, the ICSU Committee on Space Research (COSPAR) has published an international consensus planetary protection policy that provides a standard to address the prevention of biological contamination in sensitive areas on Mars, and in the Jovian moons.. Furthermore, as our array of missions grow, new data will drive future planetary protection concerns. A framework for assessing required contamination control measures must be developed.

Rummel, J. D.

2003-12-01

212

Exploring Planetary System Evolution Through High-Contrast Imaging  

NASA Astrophysics Data System (ADS)

Direct imaging of circumstellar disks provides unique information about planetary system construction and evolution. Several hundred nearby main-sequence stars are known to host debris disks, which are produced by mutual collisions of orbiting planetesimals during a phase thought to coincide with terrestrial planet formation. Therefore, detection of the dust in such systems through scattered near-infrared starlight offers a view of the circumstellar environment during the epoch of planet assembly. We have used ground-based coronagraphic angular differential imaging (ADI) with Keck NIRC2 and Gemini Planet Imager (GPI) to investigate disk structures that may act as signposts of planets. ADI and its associated image processing algorithms (e.g., LOCI) are powerful tools for suppressing the stellar PSF and quasistatic speckles that can contaminate disk signal. However, ADI PSF-subtraction also attenuates disk surface brightness in a spatially- and parameter-dependent manner, thereby biasing photometry and compromising inferences regarding the physical processes responsible for the dust distribution. To account for this disk "self-subtraction," we developed a novel technique to forward model the disk structure and compute a self-subtraction map for a given ADI-processed image. Applying this method to NIRC2 near-IR imaging of the HD 32297 debris disk, we combined the high signal-to-noise ratio (S/N) of ADI data with unbiased photometry to measure midplane curvature in the edge-on disk and a break in the disk's radial brightness profile. Such a break may indicate the location of a planetesimal ring that is a source of the light-scattering micron-sized grains. For the HD 61005 debris disk, we examined similar data together with GPI 1.6-micron polarization data and detected the dust ring's swept-back morphology, brightness asymmetry, stellocentric offset, and inner clearing. To study the physical mechanism behind these features, we explored how eccentricity and mutual inclination affect disk morphology by constructing self-subtracted scattered-light models (using our forward-modeling technique) and comparing them with complementary NIRC2 (several-arcsecond scales) and GPI (high S/N close to the star) observations.

Esposito, Thomas; Fitzgerald, Michael P.; Kalas, Paul; Graham, James R.; Millar-Blanchaer, Max; Gpies Team

2015-01-01

213

EXPLORING THE HABITABLE ZONE FOR KEPLER PLANETARY CANDIDATES  

SciTech Connect

This Letter outlines a simple approach to evaluate habitability of terrestrial planets by assuming different types of planetary atmospheres and using corresponding model calculations. Our approach can be applied for current and future candidates provided by the Kepler mission and other searches. The resulting uncertainties and changes in the number of planetary candidates in the HZ for the Kepler 2011 February data release are discussed. To first order, the HZ depends on the effective stellar flux distribution in wavelength and time, the planet albedo, and greenhouse gas effects. We provide a simple set of parameters which can be used for evaluating future planet candidates from transit searches.

Kaltenegger, L. [MPIA, Koenigstuhl 17, 69117 Heidelberg (Germany); Sasselov, D., E-mail: lkaltene@cfa.harvard.edu [Harvard Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

2011-08-01

214

An Assessment of Dust Effects on Planetary Surface Systems to Support Exploration Requirements  

NASA Technical Reports Server (NTRS)

Apollo astronauts learned first hand how problems with dust impact lunar surface missions. After three days, lunar dust contamination on EVA suit bearings led to such great difficulty in movement that another EVA would not have been possible. Dust clinging to EVA suits was transported into the Lunar Module. During the return trip to Earth, when micro gravity was reestablished, the dust became airborne and floated through the cabin. Crews inhaled the dust and it irritated their eyes. Some mechanical systems aboard the spacecraft were damaged due to dust contamination. Study results obtained by Robotic Martian missions indicate that Martian surface soil is oxidative and reactive. Exposures to the reactive Martian dust will pose an even greater concern to the crew health and the integrity of the mechanical systems. As NASA embarks on planetary surface missions to support its Exploration Vision, the effects of these extraterrestrial dusts must be well understood and systems must be designed to operate reliably and protect the crew in the dusty environments of the Moon and Mars. The AIM Dust Assessment Team was tasked to identify systems that will be affected by the respective dust, how they will be affected, associated risks of dust exposure, requirements that will need to be developed, identified knowledge gaps, and recommended scientific measurements to obtain information needed to develop requirements, and design and manufacture the surface systems that will support crew habitation in the lunar and Martian outposts.

Wagner, Sandy

2004-01-01

215

Exploring NASA and ESA Atmospheric Data Using GIOVANNI, the Online Visualization and Analysis Tool  

NASA Technical Reports Server (NTRS)

Giovanni, the NASA Goddard online visualization and analysis tool (http://giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis.

Leptoukh, Gregory

2007-01-01

216

An Update on the NASA Planetary Science Division Research and Analysis Program  

NASA Astrophysics Data System (ADS)

Introduction: NASA's Planetary Science Division (PSD) solicits its Research and Analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD will be changing the structure of the program elements under which the majority of planetary science R&A is done. Major changes include the creation of five core research program elements aligned with PSD's strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submissionROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2014 submission changes: All PSD programs will use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.Additional Information: Additional details will be provided on the Cassini Data Analysis Program, the Exoplanets Research program and Discovery Data Analysis Program, for which Dr. Richey is the Lead Program Officer.

Richey, Christina; Bernstein, Max; Rall, Jonathan

2015-01-01

217

FORUM | PLANETARY SCIENCE & ASTROBIOLOGY Jupiter exploration: high risk and high rewards  

E-print Network

FORUM | PLANETARY SCIENCE & ASTROBIOLOGY Jupiter exploration: high risk and high rewards Edwin S.ac.uk) Jupiter exploration is big science, and only the United States can afford self-contained missions into Jupiter to prevent it from contaminating Europa's ocean, cost $1.6 bn. Despite the failure of its High

Kite, Edwin

218

The Exploration of Neptune and Triton Submitted to the NRC 2009 Planetary Science Decadal Survey by  

E-print Network

The Exploration of Neptune and Triton Submitted to the NRC 2009 Planetary Science Decadal Survey by of Arizona #12;The Exploration of Neptune and Triton 2 1. EXECUTIVE SUMMARY Neptune has the strongest winds's subsequent dynamical evolution. Neptune's large moon Triton is likely a captured Kuiper Belt Object (KBO

Barr, Amy C.

219

EXPLORE/OC: A Search for Planetary Transits in the Field of NGC 2660  

E-print Network

We present preliminary photometric results of a monitoring study of the open cluster NGC 2660 as part of the EXPLORE/OC project to find planetary transits in Galactic open clusters. Analyzing a total of 21000 stars (3000 stars with photometry to 1% or better) yielded three light curves with low-amplitude signals like those typically expected for transiting hot Jupiters. Although their eclipses are most likely caused by non-planetary companions, our methods and photometric precision illustrate the potential to detect planetary transits around stars in nearby open clusters.

Kaspar von Braun; Brian Lee; Gabriela Mallen-Ornelas; Howard Yee; Sara Seager; Mike Gladders

2003-12-08

220

Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration  

NASA Technical Reports Server (NTRS)

Introduction: Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Dynamical Assessment: The current near-term NASA human spaceflight capability is in the process of being defined while the Multi-Purpose Crew Vehicle (MPCV) and Space Launch System (SLS) are still in development. Hence, those NEAs in more accessible heliocentric orbits relative to a minimal interplanetary exploration capability will be considered for the first missions. If total mission durations for the first voyages to NEAs are to be kept to less than one year, with minimal velocity changes, then NEA rendezvous missions ideally will take place within 0.1 AU of Earth (approx about 5 million km or 37 lunar distances). Human Exploration Considerations: These missions would be the first human expeditions to inter-planetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting detailed scientific investigations of these primitive objects. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at these destinations. In addition, the resulting scientific investigations would refine designs for future extraterrestrial In Situ Resource Utilization (ISRU), and assist in the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted mission to a NEA using NASA's proposed human exploration systems a compelling endeavor

Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; Drake, B. G.; Friedensen, V. P.

2012-01-01

221

78 FR 42805 - NASA Advisory Council; Human Exploration Operations Committee; Research Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice...Advisory Council; Human Exploration Operations Committee...National Aeronautics and Space Administration. ACTION...National Aeronautics and Space Administration (NASA...Subcommittee of the Human Exploration and Operations...

2013-07-17

222

Overview of NASA's Thermal Control System Development for Exploration Project  

NASA Technical Reports Server (NTRS)

The now-cancelled Constellation Program included the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, were planned to be manned space vehicles while the third element was much more diverse and included several sub-elements. Among other things, these sub-elements were Rovers and a Lunar Habitat. The planned missions involving these systems and vehicles included several risks and design challenges. Due to the unique thermal operating environment, many of these risks and challenges were associated with the vehicles thermal control system. NASA s Exploration Technology Development Program (ETDP) consisted of various technology development projects. The project chartered with mitigating the aforementioned thermal risks and design challenges was the Thermal Control System Development for Exploration Project. These risks and design challenges were being addressed through a rigorous technology development process that was planned to culminate with an integrated thermal control system test. Although the technologies being developed were originally aimed towards mitigating specific Constellation risks, the technology development process is being continued within a new program. This continued effort is justified by the fact that many of the technologies are generically applicable to future spacecraft thermal control systems. The current paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing a material compatibility assessment for a promising thermal control system working fluid. The to-date progress and lessons-learned from these development efforts will be discussed throughout the paper.

Stephan, Ryan A.

2011-01-01

223

Exploring NASA Earth Science Satellite Data in the K-12 Classroom Using MY NASA DATA  

Microsoft Academic Search

Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs (MY NASA DATA) is an Internet-based project aimed to bring real NASA Earth system satellite data into the K-12 science classroom. MY NASA DATA consists of a Web site that collects lesson plans, science project ideas, and specially developed documentation to help the target audience

C. S. Phelps; L. H. Chambers; D. D. Diones; S. W. Moore; P. C. Oots

2007-01-01

224

NASA EG-2000-03-002-GSFC Exploring the Aurora and the Ionosphere 1 Educational Product  

E-print Network

NASA EG-2000-03-002-GSFC Exploring the Aurora and the Ionosphere 1 Educational Product Educators#DQG#Aurora and the Ionosphere An Educator Guide with Activities in Space Science #12;NASA EG-2000-03-002-GSFC Exploring the Aurora and the Ionosphere 2 Solar Storms and You! is available in electronic for

225

Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team  

NASA Technical Reports Server (NTRS)

Personnel representing several NASA field centers have formulated a "Reference Mission" addressing human exploration of Mars. This report summarizes their work and describes a plan for the first human missions to Mars, using approaches that are technically feasible, have reasonable risks, and have relatively low costs. The architecture for the Mars Reference Mission builds on previous work of the Synthesis Group (1991) and Zubrin's (1991) concepts for the use of propellants derived from the Martian Atmosphere. In defining the Reference Mission, choices have been made. In this report, the rationale for each choice is documented; however, unanticipated technology advances or political decisions might change the choices in the future.

Hoffman, Stephen J. (Editor); Kaplan, David I. (Editor)

1997-01-01

226

NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)  

NASA Technical Reports Server (NTRS)

Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions. These measurements have become particularly important since recent observations by the Lunar Crater Observation and Sensing Satellite (LCROSS) mission point to significant amounts of water and other volatiles sequestered within polar lunar cold traps. Moreover Chandrayaan/M3, EPOXI and Cassini/VIMS have identified molecular water and hydroxyl on lunar surface regolith grains. Variability in concentration suggests these species are likely to be present in the exosphere, and thus constitute a source for the cold traps. NASA s Lunar Atmosphere and Dust Environment Explorer (LADEE) is currently under development to address these goals. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. LADEE s results are relevant to surface boundary exospheres and dust processes throughout the solar system, will address questions regarding the origin and evolution of lunar volatiles, and will have implications for future exploration activities. LADEE will be the first mission based on the Ames Common Bus design. LADEE employs a high heritage instrument payload: a Neutral Mass Spectrometer (NMS), an Ultraviolet/Visible Spectrometer (UVS), and the Lunar Dust Experiment (LDEX). It will also carry a space terminal as part of the Lunar Laser Communication Demonstration (LLCD), which is a technology demonstration. LLCD will also supply a ground terminal. LLCD is funded by the Space Operations Mission Directorate (SOMD), managed by GSFC, and built by MIT Lincoln Lab. NMS was directed to the Goddard Space Flight Center (GSFC) and UVS to Ames Research Center (ARC). LDEX was selected through the Stand Alone Missions of Opportunity Notice (SALMON) Acquisition Process, and is provided by the University of Colorado at Boulder. The LADEE NMS covers a m/z range of 2-150 and draws its design from mass spectrometers developed at GSFC for the MSL/SAM, Cassini Orbiter, CONTOUR, and MAVEN missions. The UVS instrument is a next-generation, high-reliability version of the LCROSS UV-Vis spectrometer, spanning 250-800 nm wavelength, with high (<1 nm) spectral resolution. UVS will also perform dust occultation measurements via a solar viewer optic. LDEX senses dust impacts in situ, at LADEE orbital altitudes of 50 km and below, with a particle size range of between 100 nm and 5 micron. Dust particle impacts on a large hemispherical target create electron and ion pairs. The latter are focused and accelerated in an electric field and detected at a microchannel plate. LADEE is an important part of NASA s portfolio of near-term lunar missions; launch is planned for May, 2013. The lunar atmosphere is the most accessible example of a surface boundary exosphere, and may reveal the sources and cycling of volatiles. Dynamic dust activity must be accounted for in the design and operation of lunar surface operations.

Elphic, Richard; Delory, Gregory; Colaprete, Anthony; Horanyi, Mihaly; Mahaffy, Paul; Hine, Butler; McClard, Steven; Grayzeck, Edwin; Boroson, Don

2011-01-01

227

Immune system changes during simulated planetary exploration on Devon Island, high arctic  

PubMed Central

Background Dysregulation of the immune system has been shown to occur during spaceflight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions have yet to be established. Also, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive immune assessment on field team members participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate the effect of mission-associated stressors on the human immune system. To perform the study, the development of techniques for processing immune samples in remote field locations was required. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, whole-blood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles, plasma cortisol and EBV viral antibody levels. Study timepoints were 30 days prior to mission start, mid-mission and 60 days after mission completion. Results The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed on Devon Island, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in astronauts following spaceflight. Conclusion The immune system changes described during the HMP field deployment validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology. The sample processing protocol developed for this study may have applications for immune studies in remote terrestrial field locations. Elements of this protocol could possibly be adapted for future in-flight immunology studies conducted during space missions. PMID:17521440

Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence

2007-01-01

228

75 FR 15743 - NASA Advisory Council; Exploration Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Advisory Council; Exploration Committee; Meeting...Aeronautics and Space Administration...Aeronautics and Space Administration announces...a meeting of the Exploration Committee of the...Exploration, Exploration Systems Mission...Aeronautics and Space Administration...

2010-03-30

229

75 FR 40852 - NASA Advisory Council; Exploration Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Advisory Council; Exploration Committee; Meeting...Aeronautics and Space Administration...Aeronautics and Space Administration announces...a meeting of the Exploration Committee of the...Exploration, Exploration Systems Mission...Aeronautics and Space Administration...

2010-07-14

230

Strategic Research to Enable NASA's Exploration Missions Conference  

NASA Technical Reports Server (NTRS)

Abstracts are presented from a conference sponsored by the NASA Office of Biological and Physical Research and hosted by NASA Glenn Research Center and the National Center for Microgravity Research on Fluids and Combustion, held in Cleveland, Ohio, June 22-23, 2004. Topics pertained to the behavior of processes and materials in microgravity as well as physiological-biological studies and microgravity effects.

Nahra, Henry (Compiler)

2004-01-01

231

NASA Advanced Explorations Systems: Concepts for Logistics to Living  

NASA Technical Reports Server (NTRS)

The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project strives to enable a largely mission-independent cradle-to-grave-to-cradle approach to minimize logistics contributions to total mission architecture mass. The goals are to engineer logistics materials, common crew consumables, and container configurations to meet the following five basic goals: 1. Minimize intrinsic logistics mass and improve ground logistics flexibility. 2. Allow logistics components to be directly repurposed for on-orbit non-logistics functions (e.g., crew cabin outfitting) thereby indirectly reducing mass/volume. 3. Compact and process logistics that have not been directly repurposed to generate useful on-orbit components and/or compounds (e.g., radiation shielding, propellant, other usable chemical constituents). 4. Enable long-term stable storage and disposal of logistics end products that cannot be reused or repurposed (e.g., compaction for volume reduction, odor control, and maintenance of crew cabin hygienic conditions). 5. Allow vehicles in different mission phases to share logistics resources. This paper addresses the work being done to meet the second goal, the direct repurposing of logistics components to meet other on-orbit needs, through a strategy termed Logistics to Living (L2L). L2L has several areas but can be defined as repurposing or converting logistical items (bags, containers, foam, components, etc.) into useful crew items or life support augmentation on-orbit after they have provided their primary logistics function. The intent is that by repurposing items, dedicated crew items do not have to be launched and overall launch mass is decreased. For non-LEO missions, the vehicle interior volume will be relatively fixed so L2L will enable this volume to be used more effectively through reuse and rearrangement of logistical components. Past work in the area of L2L has already conceptually developed several potential technologies [Howe, Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

2012-01-01

232

Adhesion of Silicone Elastomer Seals for NASA's Crew Exploration Vehicle  

NASA Technical Reports Server (NTRS)

Silicone rubber seals are being considered for a number of interfaces on NASA's Crew Exploration Vehicle (CEV). Some of these joints include the docking system, hatches, and heat shield-to-back shell interface. A large diameter molded silicone seal is being developed for the Low Impact Docking System (LIDS) that forms an effective seal between the CEV and International Space Station (ISS) and other future Constellation Program spacecraft. Seals between the heat shield and back shell prevent high temperature reentry gases from leaking into the interface. Silicone rubber seals being considered for these locations have inherent adhesive tendencies that would result in excessive forces required to separate the joints if left unchecked. This paper summarizes adhesion assessments for both as-received and adhesion-mitigated seals for the docking system and the heat shield interface location. Three silicone elastomers were examined: Parker Hannifin S0899-50 and S0383-70 compounds, and Esterline ELA-SA-401 compound. For the docking system application various levels of exposure to atomic oxygen (AO) were evaluated. Moderate AO treatments did not lower the adhesive properties of S0899-50 sufficiently. However, AO pretreatments of approximately 10(exp 20) atoms/sq cm did lower the adhesion of S0383-70 and ELA-SA-401 to acceptable levels. For the heat shield-to-back shell interface application, a fabric covering was also considered. Molding Nomex fabric into the heat shield pressure seal appreciably reduced seal adhesion for the heat shield-to-back shell interface application.

deGroh, Henry C., III; Miller, Sharon K. R.; Smith, Ian M.; Daniels, Christopher C.; Steinetz, Bruce M

2008-01-01

233

Integrated Software Systems for Crew Management During Extravehicular Activity in Planetary Terrain Exploration  

NASA Technical Reports Server (NTRS)

Initial planetary explorations with the Apollo program had a veritable ground support army monitoring the safety and health of the 12 astronauts who performed lunar surface extravehicular activities (EVAs). Given the distances involved, this will not be possible on Mars. A spacesuit for Mars must be smart enough to replace that army. The next generation suits can do so using 2 software systems serving as virtual companions, LEGACI (Life support, Exploration Guidance Algorithm and Consumable Interrogator) and VIOLET (Voice Initiated Operator for Life support and Exploration Tracking). The system presented in this study integrates data inputs from a suite of sensors into the MIII suit s communications, avionics and informatics hardware for distribution to remote managers and data analysis. If successful, the system has application not only for Mars but for nearer term missions to the Moon, and the next generation suits used on ISS as well. Field tests are conducted to assess capabilities for next generation spacesuits at Johnson Space Center (JSC) as well as the Mars and Lunar analog (Devon Island, Canada). LEGACI integrates data inputs from a suite of noninvasive biosensors in the suit and the astronaut (heart rate, suit inlet/outlet lcg temperature and flowrate, suit outlet gas and dewpoint temperature, pCO2, suit O2 pressure, state vector (accelerometry) and others). In the Integrated Walkback Suit Tests held at NASA-JSC and the HMP tests at Devon Island, communication and informatics capabilities were tested (including routing by satellite from the suit at Devon Island to JSC in Houston via secure servers at VCU in Richmond, VA). Results. The input from all the sensors enable LEGACI to compute multiple independent assessments of metabolic rate, from which a "best" met rate is chosen based on statistical methods. This rate can compute detailed information about the suit, crew and EVA performance using test-derived algorithms. VIOLET gives LEGACI voice activation capability, allowing the crew to query the suit, and receive feedback and alerts that will lead to corrective action. LEGACI and VIOLET can also automatically control the astronaut's cooling and consumable use rate without crew input if desired. These findings suggest that non-invasive physiological and environmental sensors supported with data analysis can allow for more effective management of mission task performance during EVA. Integrated remote and local view of data metrics allow crewmember to receive real time feedback in synch with mission control in preventing performance shortcomings for EVA in exploration missions.

Kuznetz, Lawrence; Nguen, Dan; Jones, Jeffrey; Lee, Pascal; Merrell, Ronald; Rafiq, Azhar

2008-01-01

234

A Path to Planetary Protection Requirements for Human Exploration: A Literary Analysis and Systems Engineering Approach  

NASA Astrophysics Data System (ADS)

As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literary analysis of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current ‘state of knowledge’. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection. Keywords: planetary protection, human spaceflight requirements, human space exploration, human space operations, systems engineering, literature analysis

Johnson, James; Conley, Catharine; Siegel, Bette

235

PDS and NASA Tournament Laboratory Progress in Engaging Developers to Provide New Access to the Nation’s Planetary Data  

NASA Astrophysics Data System (ADS)

The Planetary Data System (PDS), working through the NASA Tournament Lab (NTL) and TopCoder® , used challenge-based competition to generate an optimized data base and API for comet data at the PDS Small Bodies Node (SBN). Additional, follow-on contests challenged the competitors to create new, transparent, agile tools for public access to NASA’s planetary data, where “public” includes not just researchers, but also students and educators. Since the initial start-up last year, the installation at SBN now provides ready access to the comet data holdings of the SBN, and has introduced new users and new developers to PDS data. We report on recent developments arising from that first success. Specifically, the experience gained in that process is being applied to establishing a second installation at the PDS Planetary Rings Node (Rings), to serve as the basis for a new series of challenges - this time to develop similar access tools at Rings to make the growing archive of CASSINI images available through the API; and to develop a crowd-sourcing project with eventual application across the PDS holdings.

Raugh, Anne C.; LaMora, A.; Erickson, K.; Gordon, M.; Grayzeck, E. J.; Morgan, T. H.; Showalter, M.; Knopf, W.

2013-10-01

236

Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense  

NASA Astrophysics Data System (ADS)

Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at a NEA with total mission duration limits of 180 days or less. Hence, these missions would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while simultaneously conducting detailed investigations of these primitive objects with instruments and equipment that exceed the mass and power capabilities delivered by robotic spacecraft. All of these activities will be vital for refinement of resource characterization/identification and development of extraction/utilization technologies to be used on airless bodies under low- or micro-gravity conditions. In addition, gaining enhanced understanding of a NEA's geotechnical properties and its gross internal structure will assist the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific, resource utilization, and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted sample return mission to a NEA using NASA's proposed human exploration systems a compelling endeavor.

Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

2012-12-01

237

Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense  

NASA Technical Reports Server (NTRS)

Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at a NEA with total mission duration limits of 180 days or less. Hence, these missions would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while simultaneously conducting detailed investigations of these primitive objects with instruments and equipment that exceed the mass and power capabilities delivered by robotic spacecraft. All of these activities will be vital for refinement of resource characterization/identification and development of extraction/utilization technologies to be used on airless bodies under low- or micro-gravity conditions. In addition, gaining enhanced understanding of a NEA s geotechnical properties and its gross internal structure will assist the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific, resource utilization, and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted sample return mission to a NEA using NASA s proposed human exploration systems a compelling endeavor.

Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

2012-01-01

238

Explore at NASA Goddard Promo - Duration: 0:54.  

NASA Video Gallery

NASA's Goddard Space Flight Center in Greenbelt, Md., will again open its gates to welcome the regional community for a day of fun-filled activities, hands-on demonstrations, entertainment, and foo...

239

The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration  

NASA Technical Reports Server (NTRS)

With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten key areas. Various case studies are discussed to illustrate the approach.

Snook, K. J.; Mendell, W. W.

2004-01-01

240

76 FR 18800 - NASA Advisory Council; Exploration Committee; Meeting.  

Federal Register 2010, 2011, 2012, 2013, 2014

...Advisory Council; Exploration Committee; Meeting...Aeronautics and Space Administration...Aeronautics and Space Administration...meeting of the Exploration Committee of the...Recapturing a Future for Space Exploration: Life and...

2011-04-05

241

75 FR 52375 - NASA Advisory Council; Exploration Committee  

Federal Register 2010, 2011, 2012, 2013, 2014

...Advisory Council; Exploration Committee AGENCY...Aeronautics and Space Administration...Aeronautics and Space Administration announces...a meeting of the Exploration Committee of the...Jane Parham, Exploration Systems Mission...Aeronautics and Space Administration...

2010-08-25

242

75 FR 80081 - NASA Advisory Council; Exploration Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Advisory Council; Exploration Committee; Meeting...Aeronautics and Space Administration...Aeronautics and Space Administration announces...a meeting of the Exploration Committee of the...Bette Siegel, Exploration Systems Mission...Aeronautics and Space Administration...

2010-12-21

243

NASA unit sets ambitious course  

NASA Astrophysics Data System (ADS)

After two decades of spectacular successes, planetary exploration has fallen upon hard times. It has been five years since a new spacecraft was launched toward the planets, and NASA has under current development only one planetary mission—Galileo, which will orbit Jupiter and probe its atmosphere in 1988. The intellectual challenge of understanding the planets and their common origin and evolution has not, of course, declined, and a great deal of exciting work is being accomplished using data (and samples) from past missions. But planetologists fear the demise of their discipline within a few years if momentum cannot be restored to NASA's program of planetary exploration.

Morrison, David

244

Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, Resource Utilization, and Planetary Defense  

NASA Technical Reports Server (NTRS)

U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. Space Exploration Policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

Abell, Paul A.

2011-01-01

245

Planetary exploration - Earth's new horizon /12th von Karman Lecture/. [ground based and spaceborne  

NASA Technical Reports Server (NTRS)

The article gives an account of the history of unmanned exploration of the planets of the solar system, including both earthbound exploration and exploration with spacecraft. Examples of images of the Martian surface are presented along with images obtained in Jupiter and Mercury flybys. Data are presented on the growth of US launch vehicle performance capability, navigation performance, and planetary data rate capability. Basic information regarding the nature of the scientific experiments aboard the Pioneer and Viking spacecraft is given. A case is put forward for the ongoing exploration of the planets as a worthwhile endeavor for man.

Schurmeier, H. M.

1975-01-01

246

VEVI: A Virtual Reality Tool For Robotic Planetary Explorations  

NASA Technical Reports Server (NTRS)

The Virtual Environment Vehicle Interface (VEVI), developed by the NASA Ames Research Center's Intelligent Mechanisms Group, is a modular operator interface for direct teleoperation and supervisory control of robotic vehicles. Virtual environments enable the efficient display and visualization of complex data. This characteristic allows operators to perceive and control complex systems in a natural fashion, utilizing the highly-evolved human sensory system. VEVI utilizes real-time, interactive, 3D graphics and position / orientation sensors to produce a range of interface modalities from the flat panel (windowed or stereoscopic) screen displays to head mounted/head-tracking stereo displays. The interface provides generic video control capability and has been used to control wheeled, legged, air bearing, and underwater vehicles in a variety of different environments. VEVI was designed and implemented to be modular, distributed and easily operated through long-distance communication links, using a communication paradigm called SYNERGY.

Piguet, Laurent; Fong, Terry; Hine, Butler; Hontalas, Phil; Nygren, Erik

1994-01-01

247

Implementation the NASA Planetary Data System PDS4 Providing Access to LADEE Data  

NASA Astrophysics Data System (ADS)

The NASA Planetary Data System (PDS) is responsible for archiving all planetary data acquired by robotic missions, and observational campaigns with ground/space-based observatories. PDS has moved to version 4 of its archive system. PDS4 uses XML to enhance search and retrieval capabilities. Although the efforts are system wide, the Atmospheres Node has acted as the lead node and is presenting a preliminary users interface for retrieval of LADEE data. LADEE provides the first opportunity to test out the end-to-end process of archiving data from an active mission into the new PDS4 architecture. The limited number of instruments, with simple data structures, is an ideal test of PDS4. XML uses schema (analogous to blueprints) to control the structure of the corresponding XML labels. In the case of PDS4, these schemas allow management of the labels and their content by forcing validation dictated by the underlying Information Model (IM). The use of a central IM is a vast improvement over PDS3 because of the uniformity it provides across all nodes. PDS4 has implemented a product-centric approach for archiving data and supplemental documentation. Another major change involves the Central Registry, where all products are registered and accessible to search engines. Under PDS4, documents, data, and other ancillary data are all products that are registered in the system. Together with the XML implementation, the Registry allows the search routines to be more complex and inclusive than they have been in the past. For LADEE, the PDS nodes and LADEE instrument teams worked together to identify data products that LADEE would produce. Documentation describing instruments and data products were produced by the teams and peer reviewed by PDS. XML label templates were developed by the PDS and provided to the instrument teams to integrate into their pipelines. Data from the primary mission (100 days) have been certified and harvested into the registry and are accessible through the user interface. The LADEE implementation represents the first step toward modernization of the archive and should make the archive more usable for data providers and end-users alike. The poster provides a link to a PDS4 online tutorial.

Beebe, Reta F.; Huber , Lyle; Neakrase, Lynn; Reese, Shannon; Crichton, Daniel; Hardman, Sean; Delory, Gregory; Neese, Carol

2014-11-01

248

Determinative Mineralogy: An Essential Component of Planetary Exploration  

NASA Astrophysics Data System (ADS)

Mineralogy is a fundamental characteristic of extraterrestrial bodies because different mineral assemblages can be used to characterize present and past conditions of the atmosphere, the surface, the crust, and the deep interior of a planet. Many tools are used in space exploration, and the exploration of extraterrestrial mineralogy is no exception. The tools that are needed include remote observations, in-situ analysis with landed instruments, and analysis of returned samples in laboratories on Earth. In a balanced exploration program, all three sources of data are necessary. Likewise, no one method will provide the information needed to understand the makeup and history of extraterrestrial bodies. This paper is intended as a starting point for the development of truly integrated mineralogic instrumentation efforts that will combine the diverse capabilities of many analytical methods.

Bish, D. T.; Vaniman, D. T.; Blake, D. F.; Green, J. R.; Johnston, C. T.; Kelly-Serrato, B. A.; Ming, D. W.; Papike, J. J.; Yen, A. S.; Zolensky, M. E.

2002-08-01

249

EXPLORING NASA AND ESA ATMOSPHERIC DATA USING GIOVANNI, THE ONLINE VISUALIZATION AND ANALYSIS TOOL  

Microsoft Academic Search

Giovanni, the NASA Goddard online visualization and analysis tool (h ttp:\\/\\/giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis. 1. GIOVANNI Giov anni (1),

Gregory Leptoukh; Steve Cox; John Farley; Arun Gopalan; Jianping Mao; Stephen Berrick

2007-01-01

250

Science Operations During Planetary Surface Exploration: Desert-RATS Tests 2009-2011  

NASA Technical Reports Server (NTRS)

NASA s Research and Technology Studies (RATS) team evaluates technology, human-robotic systems and extravehicular equipment for use in future human space exploration missions. Tests are conducted in simulated space environments, or analog tests, using prototype instruments, vehicles, and systems. NASA engineers, scientists and technicians from across the country gather annually with representatives from industry and academia to perform the tests. Test scenarios include future missions to near-Earth asteroids (NEA), the moon and Mars.. Mission simulations help determine system requirements for exploring distant locations while developing the technical skills required of the next generation of explorers.

Cohen, Barbara

2012-01-01

251

A KML interface for dynamics simulation of robotic planetary exploration  

Microsoft Academic Search

Efficient exploration of the Moon, Mars, and other celestial bodies will require careful coordination between as- sets in human-robot teams. Such complexity requires mission planning tools to accurately simulate resource consumption, communications, and maneuverability\\/traversability for mul- tiple vehicles throughout proposed expeditions. This paper presents a Keyhole Markup Language (KML) interface for simulation of complex robotic vehicle missions with the Lu-

Thomas M. Howard; Jonathan Cameron; Steven Myint; Hari Nayar; Abhi Jain

2011-01-01

252

Planetary science questions for the manned exploration of Mars  

NASA Technical Reports Server (NTRS)

A major goal of a manned Mars mission is to explore the planet and to investigate scientific questions for which the intensive study of Mars is essential. The systematic exploration of planets was outlined by the National Academy of Science. The nearest analogy to the manned Mars mission is the Apollo program and manned missions to the Moon, but the analogy is limited. The case is argued here that Mars may have to be explored far more systematically than was the pre-Apollo Moon to provide the detailed information necessary if plans are made to use any of the resources available on Mars. Viking missions provided a wealth of information, yet there are great gaps in the fundamental knowledge of essential facts such as the properties of the Martian surface materials and their interaction with the atmosphere. Building on a strong data base of precursor missions, human exploration will allow great leaps in understanding the Martian environment and geologic history and its evolutionary role in the solar system.

Blanchard, Douglas P.

1986-01-01

253

Laboratory Tests of a Handheld X-Ray Fluorescence Spectrometer: A Tool for Planetary Exploration  

NASA Astrophysics Data System (ADS)

Maximizing the science return from a mission to another planetary surface involves the integration of science objectives with deployable technologies that enable the collection of data and samples. For long duration manned missions, it is likely that more samples will be collected than can be returned to Earth due to mass limits. A niche exists for technologies that help prioritize samples for return, provide data for future sample handling and curation, and characterization for samples that are not returned to Earth. To fill this niche, hardware and protocols for field instruments are currently being developed and evaluated at NASA Johnson Space Center and Arizona State University. Our goal is to develop an easily used, environmentally isolated facility as part of the astronaut surface habitat for preliminary sample characterization and down-selection. NASA has constructed a prototype, GeoLab, as a testbed for evaluating the scientific applicability and operational considerations of various analytical instruments. One instrument under evaluation is a small, portable x-ray fluorescence (XRF) spectrometer that can be also be used by astronaut explorers as part of their field gear while on scientific sorties, or on robotic field assistants. We report on preliminary usability tests for commercially available handheld XRF instruments. These instruments collect data by contacting the surface of a rock or sediment sample with an 8 mm-wide sensor window. Within 60 seconds, the devices can provide relatively precise data on the abundance of major and trace elements heavier than Na. Lab-based handheld XRF analyses of terrestrial and lunar samples, compared with those made with full-scale laboratory XRF systems, show good correlation, but we continue to investigate potential sources of error and the need for careful calibration with standards of known composition. Specifically, we use a suite of five terrestrial and five lunar basalts, all well characterized by conventional XRF technology, to evaluate the handheld technology. All of these samples are fine-grained and homogeneous, and were selected to eliminate effects introduced to the data by inconsistencies in the sample matrix, or added complexities like increased vesicularity or phenocryst content. Our calibration curves are built from smooth, sawed surfaces. We have examined all major elements, minus Na (which falls below the instrument sensitivity). Initial tests show that reproducible and reliable calibration curves are produced for Ca, Fe, Al, Ti, and Si, but the curves produced for Mg, Mn, K and P include greater uncertainties. We are currently investigating how the instrument signal variably drops off as a function of surface roughness and distance to the instrument window. Through studies such as these in the simulated GeoLab setting, we can better understand the instrument's capabilities in a field environment, both on Earth and for potential future missions to other planetary surfaces.

Young, K. E.; Evans, C. A.; Hodges, K.

2011-12-01

254

NASA Shows Progress of President's Space Exploration Vision - Duration: 2:47.  

NASA Video Gallery

On the third anniversary of President Obama's visit to NASA's Kennedy Space Center in Florida, where he set his space exploration vision for the future, news media representatives were given an opp...

255

NASA Now: MMSEV: The Future of Robotic Exploration - Duration: 6:11.  

NASA Video Gallery

Meet Fernando Zumbado, a NASA robotic systems engineer who works with the Multi-Mission Space Exploration Vehicle, or MMSEV. Zumbado explains how the robotic MMSEV vehicle is designed to adapt to i...

256

NASA Space Engineering Research Center for utilization of local planetary resources  

NASA Technical Reports Server (NTRS)

In 1987, responding to widespread concern about America's competitiveness and future in the development of space technology and the academic preparation of our next generation of space professionals, NASA initiated a program to establish Space Engineering Research Centers (SERC's) at universities with strong doctoral programs in engineering. The goal was to create a national infrastructure for space exploration and development, and sites for the Centers would be selected on the basis of originality of proposed research, the potential for near-term utilization of technologies developed, and the impact these technologies could have on the U.S. space program. The Centers would also be charged with a major academic mission: the recruitment of topnotch students and their training as space professionals. This document describes the goals, accomplishments, and benefits of the research activities of the University of Arizona/NASA SERC. This SERC has become recognized as the premier center in the area known as In-Situ Resource Utilization or Indigenous Space Materials Utilization.

1992-01-01

257

The MASSE Project: Applications of Biotechnology for Planetary Exploration  

NASA Technical Reports Server (NTRS)

Automated life-detection experiments for solar system exploration have been previously. proposed and used onboard the. Viking, Mars lander,s, although. with ambiguous results. The recent advances in biotechnology such as biosensors, protein microarrays, and microfluidics alongside increased. knowledge in biomarker science have led to vastly improved sophistication and sensitivity for a new approach in life detection. The MASSE project has taken the challenge of integrating all of this knowledge into a new generation of interplanetary flight instrumentation for the main purpose.ot combining several mutually. confirming tests for life, organic/microbial contamination, prebiotic and abiotic chemicals into a small low powered instrument. Although the primary goal is interplanetary exploration, several terrestrial applications have become apparent specifically in point-of-care medical technology, bio-warfare, environmental sensing and microbial monitoring of manned space-flight vehicles.

Lynch, Kennda; Steele, Andrew; Hedgecock, Jud; Wainwright, Norm; McKay, David S.; Maule, Jake; Schweitzer, Mary

2003-01-01

258

MarsVac: Pneumatic Sampling System for Planetary Exploration  

NASA Astrophysics Data System (ADS)

We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.

Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.

2008-12-01

259

The NASA 2003 Mars Exploration Rover Panoramic Camera (Pancam) Investigation  

NASA Astrophysics Data System (ADS)

The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360o of azimuth and from zenith to nadir, providing a complete view of the scene around the rover. Pancam utilizes two 1024x2048 Mitel frame transfer CCD detector arrays, each having a 1024x1024 active imaging area and 32 optional additional reference pixels per row for offset monitoring. Each array is combined with optics and a small filter wheel to become one "eye" of a multispectral, stereoscopic imaging system. The optics for both cameras consist of identical 3-element symmetrical lenses with an effective focal length of 42 mm and a focal ratio of f/20, yielding an IFOV of 0.28 mrad/pixel or a rectangular FOV of 16o\\x9D 16o per eye. The two eyes are separated by 30 cm horizontally and have a 1o toe-in to provide adequate parallax for stereo imaging. The cameras are boresighted with adjacent wide-field stereo Navigation Cameras, as well as with the Mini-TES instrument. The Pancam optical design is optimized for best focus at 3 meters range, and allows Pancam to maintain acceptable focus from infinity to within 1.5 meters of the rover, with a graceful degradation (defocus) at closer ranges. Each eye also contains a small 8-position filter wheel to allow multispectral sky imaging, direct Sun imaging, and surface mineralogic studies in the 400-1100 nm wavelength region. Pancam has been designed and calibrated to operate within specifications from -55oC to +5oC. An onboard calibration target and fiducial marks provide the ability to validate the radiometric and geometric calibration on Mars. Pancam relies heavily on use of the JPL ICER wavelet compression algorithm to maximize data return within stringent mission downlink limits. The scientific goals of the Pancam investigation are to: (a) obtain monoscopic and stereoscopic image mosaics to assess the morphology, topography, and geologic context of each MER landing site; (b) obtain multispectral visible to short-wave near-IR images of selected regions to determine surface color and mineralogic properties; (c) obtain multispectral images over a range of viewing geometries to constrain surface photometric and physical properties; and (d) obtain images of the Martian sky, including direct images of the Sun, to determine dust and aerosol opacity and physical properties. In addition, Pancam also serves a variety of operational functions on the MER mission, including (e) serving as the primary Sun-finding camera for rover navigation; (f) resolving objects on the scale of the rover wheels to distances of ~100 m to help guide navigation decisions; (g) providing stereo coverage adequate for the generation of digital terrain models to help guide and refine rover traverse decisions; (h) providing high resolution images and other context information to guide the selection of the most interesting in situ sampling targets; and (i) supporting acquisition and release of exciting E/PO products.

Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Morris, R. V.; Athena Team

2002-12-01

260

Robosphere: Self Sustaining Robotic Ecologies as Precursors to Human Planetary Exploration  

NASA Technical Reports Server (NTRS)

The present sequential mission oriented approach to robotic planetary exploration, could be changed to an infrastructure building approach where a robotic presence is permanent, self sustaining and growing with each mission. We call this self-sustaining robotic ecology approach robosphere and discuss the technological issues that need to be addressed before this concept can be realized. One of the major advantages of this approach is that a robosphere would include much of the infrastructure required by human explorers and would thus lower the preparation and risk threshold inherent in the transition from robotic to human exploration. In this context we discuss some implications for space architecture.

Colombano, Silvano P.

2003-01-01

261

Determining Desirable Cursor Control Device Characteristics for NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

A test battery was developed for cursor control device evaluation: four tasks were taken from ISO 9241-9, and three from previous studies conducted at NASA. The tasks focused on basic movements such as pointing, clicking, and dragging. Four cursor control devices were evaluated with and without Extravehicular Activity (EVA) gloves to identify desirable cursor control device characteristics for NASA missions: 1) the Kensington Expert Mouse, 2) the Hulapoint mouse, 3) the Logitech Marble Mouse, and 4) the Honeywell trackball. Results showed that: 1) the test battery is an efficient tool for differentiating among input devices, 2) gloved operations were about 1 second slower and had at least 15% more errors; 3) devices used with gloves have to be larger, and should allow good hand positioning to counteract the lack of tactile feedback, 4) none of the devices, as designed, were ideal for operation with EVA gloves.

Sandor, Aniko; Holden, Kritina L.

2007-01-01

262

Back to the future: the role of the ISS and future space stations in planetary exploration.  

NASA Astrophysics Data System (ADS)

Space stations as stepping stones to planets appear already in the1954 Disney-von Braun anticipation TV show but the first study with a specific planetary scientific objective was the ANTEUS project of 1978. This station was an evolution of SPACELAB hardware and was designed to analyse Mars samples with better equipment than the laboratory of the VIKING landers. It would have played the role of the reception facility present in the current studies of Mars sample return, after analysis, the "safe" samples would have been returned to earth by the space shuttle. This study was followed by the flights of SPACELAB and MIR. Finally after 35 years of development, the International Space Station reaches its final configuration in 2010. Recent developments of the international agreement between the space agencies indicate a life extending to 2025, it is already part of the exploration programme as its crews prepare the long cruise flights and missions to the exploration targets. It is now time to envisage also the use of this stable 350 tons spacecraft for planetary and space sciences. Planetary telescopes are an obvious application; the present SOLAR payload on COLUMBUS is an opportunity to use the target pointing capabilities from the ISS. The current exposure facilities are also preparing future planetary protection procedures. Other applications have already been previously considered as experimental collision and impact studies in both space vacuum and microgravity. Future space stations at the Lagrange points could simultaneously combine unique observation platforms with an actual intermediate stepping stone to Mars.

Muller, Christian; Moreau, Didier

2010-05-01

263

AS12-AS101-3 Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky  

NASA Technical Reports Server (NTRS)

We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. Over the above wavelength range, observatory performance is limited by zodiacal light. This new capability enables up to 10X increased photometric sensitivity and 160X increased observing speed relative to a Sun-Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRl-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the Science performance of much larger long development time systems; thuS, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions and is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

Greenhouse, Matthew; Benson, S.; Falck, R.; Fixsen, D.; Gardner, J.; Garvin, J.; Kruk, J.; Oleson, S.; Thronson, H.

2011-01-01

264

Lunar and Planetary Science XXXV: Mars Polar Science and Exploration  

NASA Technical Reports Server (NTRS)

The session, "Mars Polar Science and Exploration" included the following reports: Evidence for Possible Exposed Water Ice Deposits in Martian Low Latitude Chasms and Chaos; Stability and Exchange of Subsurface Ice on Mars; Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions; Seasonal Cycle of Carbon Dioxide and Atmospheric Circulation in Mars Southern Hemisphere as Observed by Neutron Spectroscopy; Imaging Polarimetry of Mars with Hubble Space Telescope in 2003 Opposition; GCM Simulations of Tropical Ice Accumulations: Implications for Cold-based Glaciers; Numerical Modeling of Glaciers in Martian Paleoclimates; Valley Glaciers on Mars: Calculation of Flow Rate and Thickness; Internal Structure of the Southern Polar Cap of Mars and Formation Implications; Sublimation at the Base of a Seasonal CO2 Slab on Mars; Impact Crater Abundance of the Martian South Polar Layered Deposits from THEMIS Visible Imaging; Recent Changes in South-Polar-Polygonal Terrain During One Martian Year: Implications for Subsurface Ice-Wedges; and An Historical Search for Unfrozen Water at the Phoenix Landing Site.

2004-01-01

265

Exploration Roadmap Working Group (ERWG) Data Collection, NASA's Inputs  

NASA Technical Reports Server (NTRS)

This slide presentation reviews four areas for further space exploration: (1) Human Exploration of Mars Design Reference Architecture (DRA) 5.0, (2) Robotic Precursors targeting Near Earth Objects (NEO) for Human Exploration, (3) Notional Human Exploration of Near Earth Objects and (4) Low Earth Orbit (LEO) Refueling to Augment Human Exploration. The first presentation reviews the goals and objectives of the Mars DRA, presents a possible mission profile, innovation requirements for the mission and key risks and challenges for human exploration of Mars. The second presentation reviews the objective and goals of the robotic precursors to the NEO and the mission profile of such robotic exploration. The third presentation reviews the mission scenario of human exploration of NEO, the objectives and goals, the mission operational drivers, the key technology needs and a mission profile. The fourth and last presentation reviews the examples of possible refueling in low earth orbit prior to lunar orbit insertion, to allow for larger delivered payloads for a lunar mission.

Drake, Bret; Landis, Rob; Thomas, Andrew; Mauzy, Susan; Graham, Lee; Culbert, Chris; Troutman, Pat

2010-01-01

266

Enhanced Multi-Modal Access to Planetary Exploration  

NASA Technical Reports Server (NTRS)

Tomorrow's Interplanetary Network (IPN) will evolve from JPL's Deep-Space Network (DSN) and provide key capabilities to future investigators, such as simplified acquisition of higher-quality science at remote sites and enriched access to these sites. These capabilities could also be used to foster public interest, e.g., by making it possible for students to explore these environments personally, eventually perhaps interacting with a virtual world whose models could be populated by data obtained continuously from the IPN. Our paper looks at JPL's approach to making this evolution happen, starting from improved communications. Evolving space protocols (e.g., today's CCSDS proximity and file-transfer protocols) will provide the underpinning of such communications in the next decades, just as today's rich web was enabled by progress in Internet Protocols starting from the early 1970's (ARPAnet research). A key architectural thrust of this effort is to deploy persistent infrastructure incrementally, using a layered service model, where later higher-layer capabilities (such as adaptive science planning) are enabled by earlier lower-layer services (such as automated routing of object-based messages). In practice, there is also a mind shift needed from an engineering culture raised on point-to-point single-function communications (command uplink, telemetry downlink), to one in which assets are only indirectly accessed, via well-defined interfaces. We are aiming to foster a 'community of access' both among space assets and the humans who control them. This enables appropriate (perhaps eventually optimized) sharing of services and resources to the greater benefit of all participants. We envision such usage to be as automated in the future as using a cell phone is today - with all the steps in creating the real-time link being automated.

Lamarra, Norm; Doyle, Richard; Wyatt, Jay

2003-01-01

267

Recent developments on WALI for planetary exploration of PAH organics and micro-organisms  

NASA Astrophysics Data System (ADS)

The Wide Angle Laser Imager (WALI) is being developed within the EU-FP7 PRoViScout project as a general purpose organic and life detection system for planetary exploration at UCL-MSSL. We show results of WALI being tested from an aerial platform for the detection of algae (cyanobacteria) in parallel to laboratory spectro-fluorimetric measurements of PAH organics both in pure form and doped onto Mars analog granules and with different varieties of cyanobacteria "extremophiles".

Muller, J.-P.; Griffiths, A. D.; Dartnell, L. R.; Ward, J.

2011-10-01

268

Integrated Medium for Planetary Exploration (IMPEx): a new EU FP7-SPACE project  

NASA Astrophysics Data System (ADS)

The FP7-SPACE project Integrated Medium for Planetary Exploration (IMPEx) has started in June 2011. It will create an interactive framework for exploitation of space missions' data. Data analysis and visualization will be based on the advanced computational models of the planetary environments. Specifically, the 'modeling sector' of IMPEx is formed of four well established numerical codes and their related computational infrastructures: 1) 3D hybrid modeling platform HYB for the study of planetary plasma environments, hosted at FMI; 2) an alternative 3D hybrid modeling platform, hosted at LATMOS; 3) MHD modelling platform GUMICS for 3D terrestrial magnetosphere, hosted at FMI; and 4) the global 3D Paraboloid Magnetospheric Model for simulation of magnetospheres of different Solar System objects, hosted at SINP. Modelling results will be linked to the corresponding experimental data from space and planetary missions via several online tools: 1/ AMDA (Automated Multi-Dataset Analysis, http://cdpp-amda.cesr.fr/) which provides cross-linked visualization and operation of experimental and numerical modelling data, 2/ 3DView which will propose 3D visualization of spacecraft trajectories in simulated and observed environments, and 3/ "CLWeb" software which enables computation of various micro-scale physical products (spectra, distribution functions, etc.). In practice, IMPEx is going to provide an external user with an access to an extended set of space and planetary missions' data and powerful, world leading computing models, equipped with advanced visualization tools. Via its infrastructure, IMPEx will bring the data and models outside of the mission teams and specialized modelling groups making them accessible and useful for a broad planetary science community.

Khodachenko, M. L.; Genot, V. N.; Kallio, E. J.; Alexeev, I. I.; Modolo, R.; Al-Ubaidi, T.; André, N.; Gangloff, M.; Schmidt, W.; Belenkaya, E. S.; Topf, F.; Stoeckler, R.

2011-12-01

269

Battery and Fuel Cell Development for NASA's Exploration Missions  

NASA Technical Reports Server (NTRS)

NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

Manzo, Michelle A.; Reid, Concha M.

2009-01-01

270

NASA Explorer Institutes: Exploring the Possibilities for Collaboration with the Informal Education Community. Report of the NASA Explorer Institutes--Focus Groups and Pilot Workshops, September 2004-March 2005; Planning and Evaluation Meeting, March 14-17, 2005  

ERIC Educational Resources Information Center

This report contains summary information and conclusions from the pilot workshops, focus groups, and the NEI (NASA Explorer Institutes) Planning and Evaluation Conference which united representatives of the workshops, focus groups, and NASA education. The culmination of these NEI pilot initiatives resulted in the identification of strategies that…

Gallaway, Debbie; Freeman, Jason; Walker, Gretchen; Davis, Hilarie

2005-01-01

271

NASA UTILIZATION OF THE INTERNATIONAL SPACE STATION AND THE VISION FOR SPACE EXPLORATION  

NASA Technical Reports Server (NTRS)

Under U.S. President Bush s Vision for Space Exploration (January 14, 2004), NASA has refocused its utilization plans for the International Space Station (ISS). This use will now focus on: (1) the development of countermeasures that will protect crews from the hazards of the space environment, (2) testing and validating technologies that will meet information and systems needs for future exploration missions.

Robinson, Julie A.; Thomas, Donald A.

2006-01-01

272

NASA: Innovate, Explore, Discover, Inspire - Duration: 6:41.  

NASA Video Gallery

The President's Fiscal Year 2014 budget ensures the United States will remain the world's leader in space exploration and scientific discovery for years to come, while making critical advances in a...

273

Exploration of Terminal Procedures Enabled by NASA Wake VAS Technologies  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) tasked The MITRE Corporation's Center for Advanced Aviation System Development (CAASD) to investigate potential air traffic control (ATC) procedures that could benefit from technology used or developed in NASA's Wake Vortex Advisory System (WakeVAS). The task also required developing an estimate of the potential benefits of the candidate procedures. The main thrust of the investigation was to evaluate opportunities for improved capacity and efficiency in airport arrival and departure operations. Other procedures that would provide safety enhancements were also considered. The purpose of this investigation was to provide input to the WakeVAS program office regarding the most promising areas of development for the program. A two-fold perspective was desired: First, identification of benefits from possible procedures enabled by both incremental components and the mature state of WakeVAS technology; second identification of procedures that could be expected to evolve from the current Federal Aviation Administration (FAA) procedures. The evolution of procedures should provide meaningful increments of benefit and a low risk implementation of the WakeVAS technologies.

Lunsford, Clark R.; Smith, Arthur P., III; Cooper, Wayne W., Jr.; Mundra, Anand D.; Gross, Amy E.; Audenaerd, Laurence F.; Killian, Bruce E.

2004-01-01

274

Planetary Exploration with a Raman Spectrometer: A Study of Carbonaceous Material Using Portable Instrumentation (532 and 785 nm)  

NASA Astrophysics Data System (ADS)

Deposits of carbonaceous material (CM) in rock could indicate former habitats of living organisms. Here we present a Raman spectroscopy (532 and 785 nm) study of CM in Archaean chert and discuss implications for planetary exploration missions.

Harris, L. V.; Hutchinson, I. B.; Ingley, R.; Marshall, C. P.; Olcott Marshall, A.; Edwards, H. G. M.

2014-06-01

275

NASA Video Catalog  

NASA Technical Reports Server (NTRS)

This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2006-01-01

276

The use of harmonic drives on NASA's Mars Exploration Rover  

NASA Technical Reports Server (NTRS)

The Mars Exploration Rover (MER) mission will send two 185 kg rovers to Mars in 2003 to continue the scientific community's search for evidence of past water on Mars. These twin robotic vehicles will carry harmonic drives and their performance will be characterized at various temperatures, speeds and loads.

Krishnan, S.; Voorhees, C.

2001-01-01

277

Benefit assessment of NASA space technology goals  

NASA Technical Reports Server (NTRS)

The socio-economic benefits to be derived from system applications of space technology goals developed by NASA were assessed. Specific studies include: electronic mail; personal telephone communications; weather and climate monitoring, prediction, and control; crop production forecasting and water availability; planetary engineering of the planet Venus; and planetary exploration.

1976-01-01

278

Impact of the Columbia Supercomputer on NASA Space and Exploration Mission  

NASA Technical Reports Server (NTRS)

NASA's 10,240-processor Columbia supercomputer gained worldwide recognition in 2004 for increasing the space agency's computing capability ten-fold, and enabling U.S. scientists and engineers to perform significant, breakthrough simulations. Columbia has amply demonstrated its capability to accelerate NASA's key missions, including space operations, exploration systems, science, and aeronautics. Columbia is part of an integrated high-end computing (HEC) environment comprised of massive storage and archive systems, high-speed networking, high-fidelity modeling and simulation tools, application performance optimization, and advanced data analysis and visualization. In this paper, we illustrate the impact Columbia is having on NASA's numerous space and exploration applications, such as the development of the Crew Exploration and Launch Vehicles (CEV/CLV), effects of long-duration human presence in space, and damage assessment and repair recommendations for remaining shuttle flights. We conclude by discussing HEC challenges that must be overcome to solve space-related science problems in the future.

Biswas, Rupak; Kwak, Dochan; Kiris, Cetin; Lawrence, Scott

2006-01-01

279

NASA's Planned Fuel Cell Development Activities for 2009 and Beyond in Support of the Exploration Vision  

NASA Technical Reports Server (NTRS)

NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.

Hoberecht, Mark A.

2010-01-01

280

Scientific exploration of low-gravity planetary bodies using the Highland Terrain Hopper  

NASA Astrophysics Data System (ADS)

Field geoscientists need to collect three-dimensional data in order characterise the lithologic succession and structure of terrains, recontruct their evolution, and eventually reveal the history of a portion of the planet. This is achieved by walking up and down mountains and valleys, interpreting geological and geophysical traverses, and reading measures made at station located at key sites on mountain peaks or rocky promontories. These activities have been denied to conventional planetary exploration rovers because engineering constraints for landing are strong, especially in terms of allowed terrain roughness and slopes. The Highland Terrain Hopper, a new, light and robust locomotion system, addresses the challenge of accessing most areas on low-gravity planetary body for performing scientific observations and measurements, alone or as part of a hopper commando. Examples of geological applications on Mars and the Moon are given.

Mège, D.; Grygorczuk, J.; Gurgurewicz, J.; Wi?niewski, ?.; Rickman, H.; Banaszkiewicz, M.; Kuci?ski, T.; Skocki, K.

2013-09-01

281

Opportunities within NASA's Exploration Systems Mission Directorate for Engineering Students and Faculty  

NASA Technical Reports Server (NTRS)

In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.

Garner, Lesley

2008-01-01

282

Development of In Situ Instruments for Planetary Exploration - Unique Challenges in Design, Development, and Execution  

NASA Technical Reports Server (NTRS)

A viewgraph presentation describing in situ instruments for NASA missions is shown. The topics include: 1) In Situ Instrumentation; 2) Planetary Extremes; 3) Mars Surface Environment; 4) Lunar Precursor Mission Environment; 5) Europa Surface Analogue; 6) Other Parameters; 7) Space In Situ Instrumentation still in its Infancy; 8) Needed Capabilities For In Situ Science; 9) Framework For Putting The Pieces Together; 10) The Wild World of Astrobiology; 11) Timeline; 12) Example: MOD; 13) In Situ Sample Analysis Laboratories are more complex; 14) technologies In Situ Sample Analysis Requires Integration of Many Emerging Advanced Concepts; 15) Supporting technologies for In Situ Laboratories; 16) Micro-laboratory example; 17) In Situ Instrument Classes; and 18) Key for Analytical Instrument:Sample Preparation.

Krabach, Timothy; Beauchamp, Patricia

2006-01-01

283

Propulsion Controls and Diagnostics Research in Support of NASA Aeronautics and Exploration Mission Programs  

NASA Technical Reports Server (NTRS)

The Controls and Dynamics Branch (CDB) at National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research and Exploration Systems Missions. This paper provides a brief overview of the various CDB tasks in support of the NASA programs. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.

Garg, Sanjay

2011-01-01

284

Microwave Remote Sensing of Planetary Atmospheres: From Staelin and Barrett to the Nasa Juno Mission  

Microsoft Academic Search

Early seminal contributions by Staelin helped initiate the field of microwave remote sensing as a key tool for the study of planetary atmospheres. Recent studies of the microwave emission from the neutral atmosphere of Venus have been used to identify the abundance and spatial distribution of microwave absorbing constituents such as sulfuric acid vapor and sulfur dioxide. A new mission

Paul G. Steffes; Bryan M. Karpowicz

2008-01-01

285

Determining Desirable Cursor Control Device Characteristics for NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

The Crew Exploration Vehicle (CEV) that will travel to the moon and Mars, and all future Exploration vehicles and habitats will be highly computerized, necessitating an accurate method of interaction with the computers. The design of a cursor control device will have to take into consideration g-forces, vibration, gloved operations, and the specific types of tasks to be performed. The study described here is being undertaken to begin identifying characteristics of cursor control devices that will work well for the unique Exploration mission environments. The objective of the study is not to identify a particular device, but to begin identifying design characteristics that are usable and desirable for space missions. Most cursor control devices have strengths and weaknesses; they are more appropriate for some tasks and less suitable for others. The purpose of this study is to collect some initial usability data on a large number of commercially available and proprietary cursor control devices. A software test battery was developed for this purpose. Once data has been collected using these low-level, basic point/click/drag tasks, higher fidelity, scenario-driven evaluations will be conducted with a reduced set of devices. The standard tasks used for testing cursor control devices are based on a model of human movement known as Fitts law. Fitts law predicts that the time to acquire a target is logarithmically related to the distance over the target size. To gather data for analysis with this law, fundamental, low-level tasks are used such as dragging or pointing at various targets of different sizes from various distances. The first four core tasks for the study were based on the ISO 9241-9:(2000) document from the International Organization for Standardization that contains the requirements for non-keyboard input devices. These include two pointing tasks, one dragging and one tracking task. The fifth task from ISO 9241-9, the circular tracking task was not used because it is a movement that is not applicable to most of the applications used on aviation displays. Additionally, we opted to add a multi-size and multi-distance pointing task, and two ecologically more valid tasks which included text selection, and interaction with drop down menus, sliders, and checkboxes. The Visual Basic test battery tracks the task and trial numbers, measures the pointing, tracking or dragging time, as well as the number and types of errors. The testing session includes a practice set for each input device, then the randomized 7 tasks, and finally a questionnaire about the device. This is repeated for all the devices tested within a session. The experiment is a within-subjects design, with participants returning for multiple sessions to test additional devices. The input devices will be compared based on objective performance data from the tasks, as well as subjective feedback and ratings on the questionnaire.

Sandor, Aniko; Holden, Kritina

2007-01-01

286

Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration  

NASA Technical Reports Server (NTRS)

Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

2004-01-01

287

Conceptualization and Realization Aspects of a Mini-Laser Raman Spectroscope (MLRS) for Planetary Surface Explorations  

NASA Astrophysics Data System (ADS)

Planetary surface exploration is one of the vital aspects to be carried out for a better knowledge of a planet's interior or surface that paves the way in understanding the planet's evolution. Such a space application depends heavily on landers and rovers to carry highly specialized instruments to the surface of planetary bodies. Amidst the variety of instruments that were flown/to be flown in space missions, the instruments based on Raman spectroscopy are the best-suited tools for analyzing minerals on planetary surfaces with an additional advantage of detecting water, ice and hydrous minerals. Owing to the constraints space such as size, weight and power, instrument's adoptability to miniaturization too plays an important role in realization. Currently we are in an effort to realize a rover-based miniature Laser Raman Spectroscope (MLRS) to perform in-situ mineralogical studies. Here, in-situ corresponds to a distance in order of 200-300 mm, instead of meters of distance. This paper sheds the light on the realized areas like selection of laser source, schemes of illumination and collection optics geometry and theoretical aspects such as Raman scattering computations, signal-to-noise ratio estimations etc. First-cut experimental trails are performed to understand the suitability and efficacy of the instrument with the opted instrument geometries that would support the miniaturization

Rubeena, N. V.; Raja, V. L. N. Sridhar; Laxmiprasad, A. S.

2011-10-01

288

Calibration of a vision-based system for displacement measurement in planetary exploration space missions  

NASA Astrophysics Data System (ADS)

In planetary exploration space missions, motion measurement of a vehicle on the surface of a planet is a very important task. In this work a visual-odometry solution is analyzed. Particularly, a vision-based displacement instrument is described and calibrated using a simulated rocky scene. The most significant uncertainty sources are found out by experimental tests. Particular attention is dedicated to the uncertainty contributions of the feature detector and of lighting conditions. Two different motion directions are considered and the evaluated uncertainty are compared.

Pertile, M.; Magnabosco, M.; Debei, S.

2010-07-01

289

Space Applications of the FLUKA Monte-Carlo Code: Lunar and Planetary Exploration  

NASA Technical Reports Server (NTRS)

NASA has recognized the need for making additional heavy-ion collision measurements at the U.S. Brookhaven National Laboratory in order to support further improvement of several particle physics transport-code models for space exploration applications. FLUKA has been identified as one of these codes and we will review the nature and status of this investigation as it relates to high-energy heavy-ion physics.

Anderson, V.; Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Elkhayari, N.; Empl, A.; Fasso, A.; Ferrari, A.; Gadoli, E.; Gazelli, M. V.; LeBourgeois, M.; Lee, K. T.; Mayes, B.; Muraro, S.; Ottolenghi, A.; Pelliccioni, M.; Pinsky, L. S.; Rancati, T.; Ranft, J.; Roesler, S.; Sala, P. R.; Scannocchio, D.; Smirnov, G.

2004-01-01

290

Ultrasonic/Sonic Driller/Corer (USDC) as a sampler for future planetary exploration missions  

NASA Technical Reports Server (NTRS)

Future NASA exploration missions to Mars, Europa, Titan, comets and asteroids are seeking to perform sampling, in-situ analysis and possibly return of material to Earth for further tests. One of the major limitations of sampling in low gravity environments is the conventional sampling in low gravity environments is the conventional drills need for high axial force. An ultrasonic/sonic driller/corer (USDC) mechanism was developed to address these and other limitations of existing drilling techniques.

Bar-Cohen, Y.; Sherrit, S.; Dolgin, B. P.; Bridges, N.; Bao, X.; Chang, Z.; Saunders, R. S.; Pal, D.; Krohl, J.; Peterson, T.

2000-01-01

291

NASA's LADEE Mission: Opportunities for Citizen Science and Student Participatory Exploration  

Microsoft Academic Search

NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) is scheduled to launch in early 2013. Its goals include: 1. Determine the global density, composition, and time variability of the fragile lunar atmosphere before it is perturbed by further human activity. 2. Determine the size, charge, and spatial distribution of electrostatically transported dust grains. 3. Test laser communication capabilities. 4. Demonstrate

B. H. Day

2010-01-01

292

NASA utilization of the International Space Station and the Vision for Space Exploration  

NASA Astrophysics Data System (ADS)

In response to the US President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for International Space Station (ISS) to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long-duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of ISS. We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015 2020), research on and operation of the ISS is fundamental to the success of NASA's Exploration Vision.

Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

2007-06-01

293

"Festival of Flight Special": Opening Space for Next Generation Explorers. NASA CONNECT[TM]. [Videotape].  

ERIC Educational Resources Information Center

The National Aeronautics and Space Administration's (NASA) Space Launch Initiative (SLI) Program will ultimately move from the explorations of the Mercury, Gemini, Apollo, and Space Shuttle missions to a new period of pioneering in which people and businesses are more routinely traveling, working, and living in space. (Author/NB)

National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

294

Advances in Laser/Lidar Technologies for NASA's Science and Exploration Mission's Applications  

NASA Technical Reports Server (NTRS)

NASA's Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

Singh, Upendra N.; Kavaya, Michael J.

2005-01-01

295

Enabling Laser and Lidar Technologies for NASA's Science and Exploration Mission's Applications  

NASA Technical Reports Server (NTRS)

NASA s Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

Singh, Upendra N.; Kavaya, Michael J.

2005-01-01

296

NASA's Role in Addressing Misconceptions: Scale of Our Solar System and Other Planetary Systems  

NASA Astrophysics Data System (ADS)

Our Solar System is no longer unique. As of early September 2013, there were over 940 known planets orbiting other stars. Planetary systems are fairly common, and astronomers are now finding Earth-sized planets in the “Goldilocks Zone,” implying that there may be many habitable planets. The Next Generation Science Standards includes the Disciplinary Core Idea: Earth's Place in the Universe and Crosscutting Concepts: Patterns; Scale, Portion, and Quantity; and Systems and System Models. While we are learning more about the nature of our Solar System and its planets by studying other planetary systems, our discoveries are heavily biased by the techniques used to detect these systems: primarily radial velocity, transits, and direct observations.

Lebofsky, L. A.; McCarthy, D. W.; Higgins, M. L.; Lebofsky, N. R.

2014-07-01

297

Moving Towards a Common Ground and Flight Data Systems Architecture for NASA's Exploration Missions  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration has embarked on an ambitious effort to return man to the moon and then on to Mars. The Exploration Vision requires development of major new space and ground assets and poses challenges well beyond those faced by many of NASA's recent programs. New crewed vehicles must be developed. Compatible supply vehicles, surface mobility modules and robotic exploration capabilities will supplement the manned exploration vehicle. New launch systems will be developed as well as a new ground communications and control infrastructure. The development must take place in a cost-constrained environment and must advance along an aggressive schedule. Common solutions and system interoperability and will be critical to the successful development of the Exploration data systems for this wide variety of flight and ground elements. To this end, NASA has assembled a team of engineers from across the agency to identify the key challenges for Exploration data systems and to establish the most beneficial strategic approach to be followed. Key challenges and the planned NASA approach for flight and ground systems will be discussed in the paper. The described approaches will capitalize on new technologies, and will result in cross-program interoperability between spacecraft and ground systems, from multiple suppliers and agencies.

Rader. Steve; Kearney, Mike; McVittie, Thom; Smith, Dan

2006-01-01

298

Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration  

NASA Technical Reports Server (NTRS)

We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

2014-01-01

299

Nuclear electric propulsion for planetary science missions: NASA technology program planning  

NASA Technical Reports Server (NTRS)

This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

Doherty, Michael P.

1993-01-01

300

Explore! To the Moon and Beyond  

NSDL National Science Digital Library

These activities and resources are related to NASA's Lunar Reconnaissance Orbiter (LRO) and were developed for use by libraries. The module is part of Lunar and Planetary Institute's Explore! program.

Institute, Lunar A.

2010-01-01

301

NASA Space Engineering Research Center for utilization of local planetary resources  

NASA Technical Reports Server (NTRS)

In 1987, responding to widespread concerns about both the health of American space technology development and the academic preparation of 21st-century space professionals, NASA announced a nationwide competition to establish a number of Space Engineering Research Centers. These centers were to be founded on the campuses of nine Universities with strong Doctoral programs in Engineering. Over 115 proposals were received by NASA in November 1987. The University of Arizona's proposal was selected in May as one of the winners, with a budget of approximately $7 million guaranteed by NASA for a minimum funding period of five years. The role of the University of Arizona SERC is to develop the technologies necessary to produce a wide variety of useful products using the materials and sources of energy that occur naturally in near-Earth space. An additional purpose is to lower the cost and extend the scope of large-scale activities. A brief description of the Center's activities for the 1989-1990 period is presented.

1990-01-01

302

75 FR 33838 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...National Aeronautics and Space Administration. ACTION...National Aeronautics and Space Administration announces...CONTACT: Ms. Jane Parham, Exploration Systems Mission Directorate, National Aeronautics and Space Administration...

2010-06-15

303

75 FR 43565 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...National Aeronautics and Space Administration. ACTION...National Aeronautics and Space Administration announces...CONTACT: Ms. Jane Parham, Exploration Systems Mission Directorate, National Aeronautics and Space Administration...

2010-07-26

304

75 FR 15742 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...National Aeronautics and Space Administration. ACTION...National Aeronautics and Space Administration announces...CONTACT: Ms. Jane Parham, Exploration Systems Mission Directorate, National Aeronautics and Space Administration...

2010-03-30

305

A Subjective Assessment of Alternative Mission Architecture Operations Concepts for the Human Exploration of Mars at NASA Using a Three-Dimensional Multi-Criteria Decision Making Model  

NASA Technical Reports Server (NTRS)

The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.

Tavana, Madjid

2003-01-01

306

Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session. Volume 2  

NASA Technical Reports Server (NTRS)

Reports are presented from volume 2 of the conference titled Strategic Research to Enable NASA's Exploration Missions, poster session. Topics included spacecraft fire suppression and fire extinguishing agents,materials flammability, various topics on the effects of microgravity including crystal growth, fluid mechanics, electric particulate suspension, melting and solidification, bubble formation, the sloshing of liquid fuels, biological studies, separation of carbon dioxide and carbon monoxide for Mars ISRU.

Nahra, Henry (Compiler)

2004-01-01

307

NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA): Capabilities for Planetary and Exoplanetary Science  

NASA Astrophysics Data System (ADS)

The Stratospheric Observatory for Infrared Astronomy (SOFIA) enables high angular and spectral resolution observations with its seven first-generation instruments: 3 cameras, 3 spectrometers, and a high-speed photometer. These capabilities make SOFIA a powerful facility for advancing understanding of planetary and exoplanetary atmospheres, star and planet formation processes, and chemistry of the protosolar nebula and protoplanetary disks. SOFIA's Early Science program, using the FORCAST mid-IR camera (PI Terry Herter, Cornell), the GREAT far-IR spectrometer (PI Rolf Guesten, MPIfR), and the HIPO occultation photometer (PI Ted Dunham, Lowell Observatory), is now complete. Some Early Science results were published in special issues of Ap.J.Letters (v.749) and Astronomy & Astrophysics (v.542). Regarding solar system targets, SOFIA obtained mid-IR images of Jupiter and of Comet 103P/Hartley 2 (the latter observations were part of Earth-based support for the EPOXI mission). On 23 June 2011, SOFIA intercepted the center of Pluto's shadow that crossed the Pacific at nearly 30 km/sec. The occultation light curve was observed from SOFIA simultaneously by the HIPO photometer and the Fast Diagnostic Camera (FDC; PI Juergen Wolf, DSI). HIPO is specifically intended for planetary science, including stellar occultations by solar system bodies and extrasolar planet transits. HIPO can be co-mounted with the near-IR camera FLITECAM (PI Ian McLean, UCLA) to provide simultaneous photometric coverage in two bands (0.3-1 and 1-5 microns); this was first demonstrated in October 2011. At longer wavelengths SOFIA will make unique contributions to the characterization of astrochemical processes and molecular contents of planets, exoplanets, and protoplanetary disks with a mid-IR spectrometer, a far-IR imaging spectrometer, and a far-IR camera with grism that are soon to be commissioned.

Backman, Dana E.; Reach, W. T.; Dunham, E. W.; Wolf, J.; Rho, J.; SOFIA Science Team

2012-10-01

308

ExoFly: a flapping wing aerobot for planetary survey and exploration  

NASA Astrophysics Data System (ADS)

ExoFly is a light-weight (20 to 200 g.) flappingwing robotic fly, capable of exploration and scientific observations of the surface and lower atmosphere of planets. It is only in the last years that flapping wing insect flight is fully understood, and the step to robotic flapping-wing concept is very recent [1,2,3]. The concept of ExoFly is based on the DelFly, which has successfully been developed in the last years by the Technical University Delft, Wageningen University and TNO. Flapping winged flight is well suited to the low density and highly viscous Martian atmosphere, but may also be used in a denser atmosphere such as Titan. In any planetary mission, ExoFly would be a highly innovative mission element, technically part of the mission infrastructure, but enabling scientific breakthrough observations with the imaging system and micro-payload.

Zegers, T. E.; Mulder, J. A.; Remes, B.; Berkouwer, W.; Peeters, B.; Lentink, D.; Passchier, C.

2008-09-01

309

International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.  

PubMed

Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation. PMID:16592781

Aller, L H; Keyes, C D

1980-03-01

310

International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae  

PubMed Central

Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation. PMID:16592781

Aller, L. H.; Keyes, C. D.

1980-01-01

311

International ultraviolet explorer spectral atlas of planetary nebulae, central stars, and related objects  

NASA Technical Reports Server (NTRS)

The International Ultraviolet Explorer (IUE) archives contain a wealth of information on high quality ultraviolet spectra of approximately 180 planetary nebulae, their central stars, and related objects. Selected are representative low-dispersion IUE spectra in the range 1200 to 3200 A for 177 objects arranged by Right Ascension (RA) for this atlas. For most entries, the combined short wavelength (SWP) (1200to 1900) and long wavelength (LWR) (or LWP, 1900 to 3200 A) regions are shown on 30 cm by 10 cm Calcomp plots on a uniform scale to facilitate intercomparison of the spectra. Each calibrated spectrum is also shown on an expanded vertical scale to bring out some of the weaker features.

Feibelman, Walter A.; Oliversen, Nancy A.; Nicholsbohlin, Joy; Garhart, Matthew P.

1988-01-01

312

Human exploration of space: A review of NASA's 90-day study and alternatives  

NASA Technical Reports Server (NTRS)

The National Research Council (NRC) examines the NASA Report of the 90-Day Study on Human Exploration of the Moon and Mars, and alternative concepts. Included in this paper, prepared for the National Space Council, are the answers to a challenging set of questions posed by the Vice President. Concerns addressed include: the appropriate pace, the scope of human exploration, the level of long-term support required, the technology development available and needed, the feasibility of long-duration human spaceflight in a low-gravity environment, scientific objectives, and other considerations such as costs and risks.

Stever, H. Guyford; Cannon, Robert H., Jr.; Gavin, Joseph G.; Kerrebrock, Jack L.; Lanzerotti, Louis J.; Levinthal, Elliott C.; Mar, James W.; Mcelroy, John H.; Mcruer, Duane T.; Merrell, William J., Jr.

1990-01-01

313

Validation of the measuring condition for a planetary subsurface explorer robot that uses peristaltic crawling  

NASA Astrophysics Data System (ADS)

Subsurface exploration is required to obtain resources such as oil and minerals, and to construct buildings and houses. It would also be necessary in any future expansion of human activity on the Moon or other planets. We have developed a small unmanned planetary subsurface explorer suitable for nascent stages of exploration. The subsurface excavator consists of both propulsion and excavation units, and its movements are based on those of an actual earthworm. The prototype excavator showed good performance in excavation experiments, and it could excavate at the same depth as in its own weight in the case of an excavator that is 1/6th of its own weight using counterweights. It was difficult to obtain and evaluate an underground environment and the right condition for an excavator in the excavation process. Therefore, we improved a propulsion unit equipped with sensors to detect the pushing force in a radial direction and then performed excavation experiments using the improved excavator from a launcher. We discuss data obtained from sensors, the excavation depth and motor torque. Our excavator showed good performance.

Omori, H.; Murakami, T.; Nagai, H.; Nakamura, T.; Kubota, T.

314

NASA Video Catalog. Supplement 12  

NASA Technical Reports Server (NTRS)

This report lists 1878 video productions from the NASA STI Database. This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged by STAR categories. A complete Table of Contents describes the scope of each category. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2002-01-01

315

NASA Video Catalog. Supplement 15  

NASA Technical Reports Server (NTRS)

This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2005-01-01

316

Ethical Considerations and Planetary Protection for Future Space Exploration - Starting with the Basics  

NASA Astrophysics Data System (ADS)

As COSPAR scientists deliberate what types of frameworks and policy approaches may be applicable to future activities by various sectors in space exploration, it also needs to consider the challenging question of what ethical values and foundations should be used in dealing with life, objects and activities in outer space. A 2010 COSPAR Workshop Report on Ethical Considerations for Planetary Protection in Space Exploration recommended that it is appropriate to maintain the existing PP policy aimed at scientific concerns even as we begin to explore various practical approaches to future contamination avoidance policies. It is also appropriate to examine in parallel the ethical considerations applicable to potential indigenous extraterrestrial life, non-living extraterrestrial features and environments, and planned uses and activities involving diverse life from Earth. Since numerous sectors have begun to propose activities raising varied ethical concerns (e.g., protection and management on the moon, strip mining, space synthetic biology, space code of conduct, and commercial space transport), it is timely to initiate serious international discussions about the appropriate ethical foundations and questions applicable to future space exploration. Plans are underway for convening interdisciplinary work groups to explore and deliberate on the values (e.g., intrinsic and instrumental) and ethical foundations that are appropriate for use in deliberations involving potential indigenous extraterrestrial life and the different classes of target objects and environments in our solar system. More than ever, information on bioethics, environmental ethics and geoethics will provide helpful guidance and foundational approaches of relevance to future policy deliberations that seek to go beyond science protection per se.

Race, Margaret

2012-07-01

317

A bibliography of planetary geology and geophysics principal investigators and their associates, 1990-1991  

NASA Technical Reports Server (NTRS)

A compilation of selected bibliographic data specifically relating to recent publications submitted by principal investigators and their associates, supported through the NASA Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program is presented.

1991-01-01

318

A bibliography of planetary geology and geophysics principal investigators and their associates, 1989-1990  

NASA Technical Reports Server (NTRS)

This is a compilation of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through the NASA Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program.

1990-01-01

319

A bibliography of planetary geology and geophysics principal investigators and their associates, 1986-1987  

NASA Technical Reports Server (NTRS)

A compilation is presented of selected bibliographic data relating to recent publications submitted by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program

1989-01-01

320

In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions  

NASA Technical Reports Server (NTRS)

Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

2011-01-01

321

Servant Leadership: How does NASA Serve the Interests of Humankind in Aerospace Exploration and the Role STEM Plays in it?  

NASA Technical Reports Server (NTRS)

This presentation provides a description of technology efforts illustrative of NASA Glenn Research Center Core competencies and which exemplifies how NASA serves the interest of humankind in aerospace exploration. Examples are provided as talking points to illustrate the role that career paths in science, technology, engineering and mathematics (STEM) plays in the aforementioned endeavor.

Miranda, Felix A.

2013-01-01

322

Submission of Earth-based ring occultation observations to the NASA planetary data system rings discipline node  

NASA Technical Reports Server (NTRS)

This is a technical report summarizing our progress in our program of contributing high quality Earth-based occultation observations to NASA's Planetary Data System (PDS) Rings Node. During our first year of funding, we selected five data sets for eventual inclusion in the PDS Rings Node. These were Uranus occultation observations obtained by the PI and co-workers from the IRTF of event stars U34 (26 April 1986), U1052 (5 May 1988), U65 (21 June 1990), U7872 (25 June 1991), and U7808 (28 June 1991). In our original proposal, we described four tasks: data sets to a common format; documentation of the occultation observations and associated calibrations; calculation of the occultation geometry for each event; establish prototype PDS templates. As discussed in our renewal proposal, submitted 8 June 1993, we have completed the first three tasks, and are working on the fourth. As an indication of our progress to date, we provide information about each of the data sets, their formats, the documentation, and the method used for reconstructing the occultation geometry.

French, Richard G.

1993-01-01

323

The Zuni-Bandera Volcanic Field, NM: An Analog for Exploring Planetary Volcanic Terrains  

NASA Astrophysics Data System (ADS)

The Zuni-Bandera volcanic field, near Grants, New Mexico, is comprised of volcanic deposits from several basaltic eruptions during the last million years. This vent field exhibits a diverse group of coalesced lava flows and displays well-preserved volcanic features including a’a and pahoehoe flows, collapsed lava tubes, cinder cones and low shields. The McCartys flow is a 48-km long inflated basalt flow and is the youngest in the field at around 3000 years old. Over the last three years we have used the Zuni-Bandera volcanic field, and the McCartys flow in particular, as a terrestrial analog for exploring planetary volcanic fields, and understanding the role of lava sheet inflation in flow field development. We have conducted three different styles of analog tests, 1) basic field science focused on understanding lava sheet inflation, 2) mission operations tests related to EVA design and real-time modification of traverse plans, and 3) science enabling technology tests. The Zuni-Bandera field is an ideal location for each style of analog test because it provides easy access to a diverse set of volcanic features with variable quality of preservation. However, many limitations must also be considered in order to maximize lessons learned. The McCartys flow displays well-preserved inflation plateaus that rise up to 15 m above the surrounding field. The preservation state enables textures and morphologies indicative of this process to be characterized. However, the pristine nature of the flow does not compare well with the much older and heavily modified inflated flows of Mars and the Moon. Older flows west of McCartys add value to this aspect of analog work because of their degraded surfaces, development of soil horizons, loose float, and limited exposure of outcrops, similar to what might be observed on the Moon or Mars. EVA design tests and science enabling technology tests at the Zuni-Bandera field provide the opportunity to document and interpret the relationships of several overlapping flows in a limited area and also shows the challenge of exploring expansive (100-1000’s square kilometers) volcanic terrains on other planets. The Zuni-Bandera field represents one style of geologic processes (volcanic field development) and in essence is an “end-member” of volcanic field analogs. Results from these studies must be considered with comparable results from other geologic terrains to better represent the complexities of exploring other planetary surfaces.

Bleacher, J. E.; Garry, W. B.; Zimbelman, J. R.; Crumpler, L. S.; Aubele, J. C.

2010-12-01

324

Planetary Surface Exploration Using Time-Resolved Laser Spectroscopy on Rovers and Landers  

NASA Astrophysics Data System (ADS)

Planetary surface exploration using laser spectroscopy has become increasingly relevant as these techniques become a reality on Mars surface missions. The ChemCam instrument onboard the Curiosity rover is currently using laser induced breakdown spectroscopy (LIBS) on a mast-mounted platform to measure elemental composition of target rocks. The RLS Raman Spectrometer is included on the payload for the ExoMars mission to be launched in 2018 and will identify minerals and organics on the Martian surface. We present a next-generation instrument that builds on these widely used techniques to provide a means for performing both Raman spectroscopy and LIBS in conjunction with microscopic imaging. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size (~ 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. As an added benefit, we have found that with small changes in operating parameters we can include microscopic LIBS using the same hardware. This new technique relies on sub-ns, high rep-rate lasers with relatively low pulse energy and compact solid state detectors with sub-ns time resolution. The detector technology that makes this instrument possible is a newly developed Single-Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. The use of this solid state time-resolved detector offers a significant reduction in size, weight, power, and overall complexity - making time resolved detection feasible for planetary applications. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer. We will present results on planetary analog minerals to demonstrate the instrument performance including fluorescence rejection and combined Raman-LIBS capability.

Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Charbon, Edoardo; Rossman, George

2013-04-01

325

A New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) is developing new launch systems and preparing to retire the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the Ares V heavy-lift Cargo Launch Vehicle (CaLV) systems will build upon proven, reliable hardware derived from the Apollo-Saturn and Space Shuttle programs to deliver safe, reliable, affordable space transportation solutions. This approach leverages existing aerospace talent and a unique infrastructure, as well as legacy knowledge gained from nearly 50 years' experience developing space hardware. Early next decade, the Ares I will launch the new Orion Crew Exploration Vehicle (CEV) to the International Space Station (ISS) or to low-Earth orbit for trips to the Moon and, ultimately, Mars. Late next decade, the Ares V's Earth Departure Stage will carry larger payloads such as the lunar lander into orbit, and the Crew Exploration Vehicle will dock with it for missions to the Moon, where astronauts will explore new territories and conduct science and technology experiments. Both Ares I and Ares V are being designed to support longer future trips to Mars. The Exploration Launch Projects Office is designing, developing, testing, and evaluating both launch vehicle systems in partnership with other NASA Centers, Government agencies, and industry contractors. This paper provides top-level information regarding the genesis and evolution of the baseline configuration for the Ares V heavy-lift system. It also discusses riskbased, management strategies, such as building on powerful hardware and promoting common features between the Ares I and Ares V systems to reduce technical, schedule, and cost risks, as well as development and operations costs. Finally, it summarizes several notable accomplishments since October 2005, when the Exploration Launch Projects effort officially kicked off, and looks ahead at work planned for 2007 and beyond.

Sumrall, John P.; McArthur, J. Craig

2007-01-01

326

NASA's Space Launch System: A New Capability for Science and Exploration  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. SLS also offers substantial capability to support robotic science missions, offering benefits such as improved mass margins and radiation mitigation, and reduced mission durations. The SLS rocket, using significantly higher characteristic energy (C3), can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for advanced exploration.

Crumbly, Christopher M.; May, Todd A.; Robinson, Kimberly F.

2014-01-01

327

NASA's Space Launch System: A New Capability for Science and Exploration  

NASA Technical Reports Server (NTRS)

NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. SLS also offers substantial capability to support robotic science missions, offering benefits such as improved mass margins and radiation mitigation, and reduced mission durations. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for advanced exploration.

Robinson, Kimberly F.; Creech, Stephen D.; May, Todd A.

2014-01-01

328

NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable, Exploration  

NASA Technical Reports Server (NTRS)

Development of NASA's Space Launch System (SLS) exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated December 2017. SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. For the United States current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. This version will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. SLS is designed to evolve to a 130 t lift capability that can reduce mission costs, simplify payload design, reduce trip times, and lower overall risk. Each vehicle element completed its respective Preliminary Design Reviews, followed by the SLS Program. The Program also completed the Key Decision Point-C milestone to move from formulation to implementation in 2014. NASA hasthorized the program to proceed to Critical Design Review, scheduled for 2015. Accomplihments to date include: manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. This paper will discuss SLS Program successes over the past year and examine milestones and challenges ahead. The SLS Program and its elements are managed at NASA's Marshall Space Flight Center (MSFC).

Askins, Bruce R.; Robinson, Kimberly F.

2014-01-01

329

Development of NASA's Small Fission Power System for Science and Human Exploration  

NASA Technical Reports Server (NTRS)

Exploration of our solar system has brought great knowledge to our nation's scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASA's Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (greater than 1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue, assuming its availability, to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named "Kilopower" that is scalable from approximately 1-10 kWe.

Gibson, Marc A.; Mason, Lee; Bowman, Cheryl; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris

2014-01-01

330

NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable Exploration  

NASA Technical Reports Server (NTRS)

Development of NASA's Space Launch System exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated for December 2017. In recognition of the current fiscal realities, SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. Current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. It is this version that will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. This configuration is also designed to evolve to 130 t lift capability that offers several benefits, such as reduced mission costs, simplified payload design, faster trip times, and lower overall risk for missions of national significance. The SLS Program formally transitioned from the formulation phase to implementation during the past year, passing its Preliminary Design Review in 2013 and completion of Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015. Among the Program's many accomplishments are manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and the main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. The result is a launch vehicle that will carry human and robotic exploration on the history-making missions in the coming decades. This paper will discuss the program and technical successes over the past year and provide a look at the milestones and challenges ahead.

Askins, Bruce

2014-01-01

331

The Lunar Laser Communication Demonstration: NASA's First Step Toward Very High Data Rate Support of Science and Exploration Missions  

NASA Astrophysics Data System (ADS)

Future NASA missions for both Science and Exploration will have needs for much higher data rates than are presently available, even with NASA's highly-capable Space- and Deep-Space Networks. As a first step towards this end, for one month in late 2013, NASA's Lunar Laser Communication Demonstration (LLCD) successfully demonstrated for the first time high-rate duplex laser communications between a satellite in lunar orbit, the Lunar Atmosphere and Dust Environment Explorer (LADEE), and multiple ground stations on the Earth. It constituted the longest-range laser communication link ever built and demonstrated the highest communication data rates ever achieved to or from the Moon.

Boroson, Don M.; Robinson, Bryan S.

2014-12-01

332

The Role of Astrobiology in Solar System Exploration: Report from the NASA Astrobiology Institute to the NRC Solar-System Exploration Steering Group  

Microsoft Academic Search

Astrobiology as related to solar-system exploration addresses far more than just the search for life in our solar system. It is about understanding the planets in our solar system as representing different outcomes in their formation, the nature of processes that affected those outcomes, and how those same processes might have operated elsewhere. It is about understanding planetary evolution and

B. M. Jakosky; D. J. Des Marais

2001-01-01

333

Planetary Exploration in the Time of Astrobiology: Protecting Against Biological Contamination  

NSDL National Science Digital Library

This article discusses the history and future of planetary-protection restrictions. It begins by addressing the difficulty of discovering (possibly rare) life elsewhere, and then describes the potential difficulties of dealing with alien life that could be discovered on other worlds or in samples returned to the Earth from space. Sections include an introduction, planetary protection heritage, two examples forward and backward contamination, future planetary-protection challenges, and the role of academics.

Rummel, J. D. (John D.)

2010-02-08

334

Review of NASA approach to space radiation risk assessments for Mars exploration.  

PubMed

Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described. PMID:25551493

Cucinotta, Francis A

2015-02-01

335

Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"  

NASA Technical Reports Server (NTRS)

The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

Scott, John H.

2007-01-01

336

Helix Nebula (NGC 7293) www.nasa.gov  

E-print Network

Helix Nebula (NGC 7293) www.nasa.gov National Aeronautics and Space Administration #12;Helix Nebula (NGC 7293) www.nasa.gov This Galaxy Evolution Explorer (GALEX) ultraviolet image shows the Helix Nebula (also called NGC 7293), one of the largest and oldest planetary nebulae known. It is quite close to us

337

Lunar Communication Terminals for NASA Exploration Missions: Needs, Operations Concepts and Architectures  

NASA Technical Reports Server (NTRS)

NASA is conducting architecture studies prior to deploying a series of short- and long-duration human and robotic missions for the exploration of the Moon and Mars under the Vision for Space Exploration Initiative. A key objective of these missions is to establish and expand, through a series of launches, a system of systems approach to exploration capabilities and science return. The systems identified were Crew Exploration Vehicles, crew and cargo launch vehicles, crew EVA suits, crew and cargo landers, habitats, mobility carriers, and small, pressurized rovers. Multiple space communication networks and systems, deployed over time, will support these space exploration systems of systems. Each deployment phase will support interoperability of components and provide 20 years of legacy systems. In this paper, we describe the modular lunar communications terminals needed for the emerging lunar mission operational scenarios. These lunar communication terminals require flexibility for use in stationary, integrated, and mobile environments. They will support links directly to Earth, to lunar relay satellites, to astronauts and to fixed and mobile lunar surface systems. The operating concepts and traffic models are presented for these terminals within variety of lunar scenarios. A preliminary architecture is outlined, providing for suitable long-duration operations in the harsh lunar environment.

Bhasin, Kul B.; Warner, Joseph D.; Anderson, Lynn M.

2008-01-01

338

A Team Approach to the Development of Gamma Ray and x Ray Remote Sensing and in Situ Spectroscopy for Planetary Exploration Missions  

NASA Technical Reports Server (NTRS)

An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.

Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.

1993-01-01

339

Lidar Past, Present, and Future in NASA's Earth and Space Science Programs  

NASA Technical Reports Server (NTRS)

Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.

Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.

2004-01-01

340

NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision  

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

Hoberecht, Mark

2007-01-01

341

A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses  

NASA Astrophysics Data System (ADS)

I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

Rees, Richard F.

2015-01-01

342

Nanobiomimetic Active Shape Control - Fluidic and Swarm-Intelligence Embodiments for Planetary Exploration  

NASA Astrophysics Data System (ADS)

The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.

Santoli, S.

343

Aerosol optical depth and planetary Albedo in the visible from the Solar Mesosphere Explorer  

NASA Technical Reports Server (NTRS)

The Solar Mesosphere Explorer (SME) satellite has observed the visible sunlight scattered at the earth's limb since early 1982. By using a radiative-transfer model including multiple scattering and albedo effects, observations at 20 deg N latitude have been interpreted in terms of aerosol optical depth. The ratio of aerosol extinction to Rayleigh extinction at 431.8 nm shows a large increase after the eruption of El Chichon. A maximum ratio of 5 at 36 km and larger than 11 at 30 km occurred in the summer of 1982 followed by a decrease through 1983 and 1984. Aspects of the aerosol time evolution appear to be consistent with other observations and model predictions. Quantitative differences exist between inferred SME and lidar extinction coefficients, possibly due to the different wavelengths of the measurements and to the different scattering phase functions used in the two analyses. It is also shown that visible limb radiances provide information on the planetary albedo, which shows an increase from the equator to the poles with a maximum in the winter hemisphere and a minimum in the summer hemisphere.

Naudet, J. P.; Thomas, G. E.

1987-01-01

344

A micro seismometer based on molecular electronic transducer technology for planetary exploration  

SciTech Connect

This letter describes an implementation of micromachined seismometer based on molecular electronic transducer (MET) technology. As opposed to a solid inertial mass, MET seismometer senses the movement of liquid electrolyte relative to fixed electrodes. The employment of micro-electro-mechanical systems techniques reduces the internal size of the sensing cell to 1{mu}m and improves the reproducibility of the device. For operating bias of 600 mV, a sensitivity of 809 V/(m/s{sup 2}) was measured under acceleration of 400{mu}g(g{identical_to}9.81m/s{sup 2}) at 0.32 Hz. A -115 dB (relative to (m/s{sup 2})/{radical}(Hz)) noise level at 1 Hz was achieved. This work develops an alternative paradigm of seismic sensing device with small size, high sensitivity, low noise floor, high shock tolerance, and independence of installation angle, which is promising for next generation seismometers for planetary exploration.

Huang, Hai; Tang, Rui [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States)] [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Carande, Bryce; Oiler, Jonathan [School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)] [School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States); Zaitsev, Dmitri; Agafonov, Vadim [Center of Molecular Electronics, Moscow Institute of Physics and Technology, Moscow (Russian Federation)] [Center of Molecular Electronics, Moscow Institute of Physics and Technology, Moscow (Russian Federation); Yu, Hongyu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States) [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

2013-05-13

345

Integration of planetary protection activities  

NASA Technical Reports Server (NTRS)

For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.

Race, Margaret S.

1995-01-01

346

Extensions to the Visual Odometry Pipeline for the Exploration of Planetary Surfaces  

NASA Astrophysics Data System (ADS)

Mars represents one of the most important targets for space exploration in the next 10 to 30 years, particularly because of evidence of liquid water in the planet's past. Current environmental conditions dictate that any existing water reserves will be in the form of ice; finding and sampling these ice deposits would further the study of the planet's climate history, further the search for evidence of life, and facilitate in-situ resource utilization during future manned exploration missions. This thesis presents a suite of algorithms to help enable a robotic ice-prospecting mission to Mars. Starting from visual odometry---the estimation of a rover's motion using a stereo camera as the primary sensor---we develop the following extensions: (i) a coupled surface/subsurface modelling system that provides novel data products to scientists working remotely, (ii) an autonomous retrotraverse system that allows a rover to return to previously visited places along a route for sampling, or to return a sample to an ascent vehicle, and (iii) the extension of the appearance-based visual odometry pipeline to an actively illuminated light detection and ranging sensor that provides data similar to a stereo camera but is not reliant on consistent ambient lighting, thereby enabling appearance-based vision techniques to be used in environments that are not conducive to passive cameras, such as underground mines or permanently shadowed craters on the moon. All algorithms are evaluated on real data collected using our field robot at the University of Toronto Institute for Aerospace Studies, or at a planetary analogue site on Devon Island, in the Canadian High Arctic.

Furgale, Paul Timothy

347

FAST Spacecraft Reveals Fundamental Plasma Wave Emission NASA's Fast Auroral Snapshot (FAST) Small Explorer has traveled to the source  

E-print Network

(FAST) Small Explorer has traveled to the source region of the Earth's most powerful radio emission the mechanism responsible for these waves, with major implications for other planetary and astrophysical radio between particles and waves travelling at the same velocity ­ such waves are trapped. · The cyclotron

Strangeway, Robert J.

348

Key Issues for Navigation and Time Dissemination in NASA's Space Exploration Program  

NASA Technical Reports Server (NTRS)

The renewed emphasis on robotic and human missions within NASA's space exploration program warrants a detailed consideration of how the positions of objects in space will be determined and tracked, whether they be spacecraft, human explorers, robots, surface vehicles, or science instrumentation. The Navigation Team within the NASA Space Communications Architecture Working Group (SCAWG) has addressed several key technical issues in this area and the principle findings are reported here. For navigation in the vicinity of the Moon, a variety of satellite constellations have been investigated that provide global or regional surface position determination and timely services analogous to those offered by GPS at Earth. In the vicinity of Mars, there are options for satellite constellations not available at the Moon due to the gravitational perturbations from Earth, such as two satellites in an aerostationary orbit. Alternate methods of radiometric navigation as considered, including one- and two-way signals, as well as autonomous navigation. The use of a software radio capable of receiving all available signal sources, such as GPS, pseudolites, and communication channels, is discussed. Methods of time transfer and dissemination are also considered in this paper.

Nelson, R. A.; Brodsky, B.; Oria, A. J.; Connolly, J. W.; Sands, O. S.; Welch, B. W.; Ely T.; Orr, R.; Schuchman, L.

2006-01-01

349

An Interactive Virtual 3D Tool for Scientific Exploration of Planetary Surfaces  

NASA Astrophysics Data System (ADS)

In this paper we present an interactive 3D visualization tool for scientific analysis and planning of planetary missions. At the moment scientists have to look at individual camera images separately. There is no tool to combine them in three dimensions and look at them seamlessly as a geologist would do (by walking backwards and forwards resulting in different scales). For this reason a virtual 3D reconstruction of the terrain that can be interactively explored is necessary. Such a reconstruction has to consider multiple scales ranging from orbital image data to close-up surface image data from rover cameras. The 3D viewer allows seamless zooming between these various scales, giving scientists the possibility to relate small surface features (e.g. rock outcrops) to larger geological contexts. For a reliable geologic assessment a realistic surface rendering is important. Therefore the material properties of the rock surfaces will be considered for real-time rendering. This is achieved by an appropriate Bidirectional Reflectance Distribution Function (BRDF) estimated from the image data. The BRDF is implemented to run on the Graphical Processing Unit (GPU) to enable realistic real-time rendering, which allows a naturalistic perception for scientific analysis. Another important aspect for realism is the consideration of natural lighting conditions, which means skylight to illuminate the reconstructed scene. In our case we provide skylights from Mars and Earth, which allows switching between these two modes of illumination. This gives geologists the opportunity to perceive rock outcrops from Mars as they would appear on Earth facilitating scientific assessment. Besides viewing the virtual reconstruction on multiple scales, scientists can also perform various measurements, i.e. geo-coordinates of a selected point or distance between two surface points. Rover or other models can be placed into the scene and snapped onto certain location of the terrain. These are important features to support the planning of rover paths. In addition annotations can be placed directly into the 3D scene, which also serve as landmarks to aid navigation. The presented visualization and planning tool is a valuable asset for scientific analysis of planetary mission data. It complements traditional methods by giving access to an interactive virtual 3D reconstruction, which is realistically rendered. Representative examples and further information about the interactive 3D visualization tool can be found on the FP7-SPACE Project PRoViDE web page http://www.provide-space.eu/interactive-virtual-3d-tool/. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 'PRoViDE'.

Traxler, Christoph; Hesina, Gerd; Gupta, Sanjeev; Paar, Gerhard

2014-05-01

350

Nonlinear adaptive formation control for a class of autonomous holonomic planetary exploration rovers  

NASA Astrophysics Data System (ADS)

This dissertation presents novel nonlinear adaptive formation controllers for a heterogeneous group of holonomic planetary exploration rovers navigating over flat terrains with unknown soil types and surface conditions. A leader-follower formation control architecture is employed. In the first part, using a point-mass model for robots and a Coulomb-viscous friction model for terrain resistance, direct adaptive control laws and a formation speed-adaptation strategy are developed for formation navigation over unknown and changing terrain in the presence of actuator saturation. On-line estimates of terrain frictional parameters compensate for unknown terrain resistance and its variations. In saturation events over difficult terrain, the formation speed is reduced based on the speed of the slowest saturated robot, using internal fleet communication and a speed-adaptation strategy, so that the formation error stays bounded and small. A formal proof for asymptotic stability of the formation system in non-saturated conditions is given. The performance of robot controllers are verified using a modular 3-robot formation simulator. Simulations show that the formation errors reduce to zero asymptotically under non-saturated conditions as is guaranteed by the theoretical proof. In the second part, the proposed adaptive control methodology is extended for formation control of a class of omnidirectional rovers with three independently-driven universal holonomic rigid wheels, where the rovers' rigid-body dynamics, drive-system electromechanical characteristics, and wheel-ground interaction mechanics are incorporated. Holonomic rovers have the ability to move simultaneously and independently in translation and rotation, rendering great maneuverability and agility, which makes them suitable for formation navigation. Novel nonlinear adaptive control laws are designed for the input voltages of the three wheel-drive motors. The motion resistance, which is due to the sinkage of rover wheels in soft planetary terrain, is modeled using classical terramechanics theory. The unknown system parameters for adaptive estimation pertain to the rolling resistance forces and scrubbing resistance torques at the wheel-terrain interfaces. Novel terramechanical formulas for terrain resistance forces and torques are derived via considering the universal holonomic wheels as rigid toroidal wheels moving forward and/or sideways as well as turning on soft ground. The asymptotic stability of the formation control system is rigorously proved using Lyapunov's direct method.

Ganji, Farid

351

Exploring the architectural trade space of NASAs Space Communication and Navigation Program  

NASA Astrophysics Data System (ADS)

NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati- n networks. It then presents the generalities of possible architectures for future space communication and navigation networks. Finally, it describes the tools and methods being developed, clearly indicating the architectural decisions that have been taken into account as well as the systematic approach followed to model them. The purpose of this study is to explore the SCaN architectural tradespace by means of a computational tool. This paper describes the tool, while the tradespace exploration is underway.

Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

352

Human Expeditions to Near-Earth Asteroids: An Update on NASA's Status and Proposed Activities for Small Body Exploration  

NASA Technical Reports Server (NTRS)

Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth- Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. The scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a mission to a NEA using NASA s proposed exploration systems a compelling endeavor.

Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Reeves, David; Drake, Bret; Friedensen, Victoria

2013-01-01

353

The Role of Astrobiology in Solar System Exploration: Report from the NASA Astrobiology Institute to the NRC Solar-System Exploration Steering Group  

NASA Astrophysics Data System (ADS)

Astrobiology as related to solar-system exploration addresses far more than just the search for life in our solar system. It is about understanding the planets in our solar system as representing different outcomes in their formation, the nature of processes that affected those outcomes, and how those same processes might have operated elsewhere. It is about understanding planetary evolution and its connection to habitability as well as the actual distribution of life. It is about looking at the solar system as an integrated system, and seeing the connections between the evolution of the inner solar system, the outer solar system, and small bodies, as viewed through the connecting perspective of habitability and biology. In this context, finding no life on Mars or Europa is not a failure but is an important scientific result; it allows us to better understand the conditions required for a planet to support life and the relationship between biology and planetary processes. The strength of the connections between planetary exploration and astrobiology is clear if one examines a list of spacecraft missions currently operating or under development; most, if not all, are addressing questions and themes that are linked strongly to astrobiology. Astrobiology is an integrating theme that brings together a substantial fraction of the issues in solar-system exploration under a common thread of understanding planetary habitability. This theme allows us to explain to the non-expert the connections between the component disciplines within planetary science, and to do so in a way that most people will appreciate as addressing core issues in human thought. Astrobiology is certainly one of the several highest-level themes that unites and integrates solar-system exploration and, as such, will need to be strongly integrated into the solar system strategy. The full text of the report from the NAI to the NRC is available at the DPS decadal strategy web site.

Jakosky, B. M.; Des Marais, D. J.; NASA Astrobiology Institute Executive Council

2001-11-01

354

NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration  

NASA Technical Reports Server (NTRS)

NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.

Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy

2005-01-01

355

77 FR 38680 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...the National Aeronautics and Space Administration (NASA) announces...Time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building...Mission Directorate --Status of International Space Station --Space Launch...

2012-06-28

356

From Paper to Production to Test: An Update on NASA's J-2X Engine for Exploration  

NASA Technical Reports Server (NTRS)

The NASA/industry team responsible for developing the J-2X upper stage engine for the Space Launch System (SLS) Program has made significant progress toward moving beyond the design phase and into production, assembly, and test of development hardware. The J-2X engine exemplifies the SLS Program goal of using proven technology and experience from more than 50 years of United States spaceflight experience combined with modern manufacturing processes and approaches. It will power the second stage of the fully evolved SLS Program launch vehicle that will enable a return to human exploration of space beyond low earth orbit. Pratt & Whitney Rocketdyne (PWR) is under contract to develop and produce the engine, leveraging its flight-proven LH2/LOX, gas generator cycle J-2 and RS-68 engine capabilities, recent experience with the X-33 aerospike XRS-2200 engine, and development knowledge of the J-2S tap-off cycle engine. The J- 2X employs a gas generator operating cycle designed to produce 294,000 pounds of vacuum thrust in primary operating mode with its full nozzle extension. With a truncated nozzle extension suitable to support engine clustering on the stage, the nominal vacuum thrust level in primary mode is 285,000 pounds. It also has a secondary mode, during which it operates at 80 percent thrust by altering its mixture ratio. The J-2X development philosophy is based on proven hardware, an aggressive development schedule, and early risk reduction. NASA Marshall Space Flight Center (MSFC) and PWR began development of the J-2X in June 2006. The government/industry team of more than 600 people within NASA and PWR successfully completed the Critical Design Review (CDR) in November 2008, following extensive risk mitigation testing. Assembly of the first development engine was completed in May 2011 and the first engine test was conducted at the NASA Stennis Space Center (SSC), test stand A2, on 14 July 2011. Testing of the first development engine will continue through the autumn of 2011, be paused for test stand modifications to the passive diffuser, and then restart in the spring of 2012. This testing will be followed by specialized powerpack testing intended to examine the design and operating margins of the engine turbomachinery. The development plan beyond this point leads through more system-level, engine testing of several samples, analytical model validation activities, functional and performance verification, and then ultimate certification to support human spaceflight. This paper will discuss the J-2X development background, provide top-level information on design and development planning, and will explore some of the development challenges and mitigation activities pursued to date.

Kynard, Michael

2011-01-01

357

A bibliography of planetary geology principal investigators and their associates, 1982 - 1983  

NASA Technical Reports Server (NTRS)

This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

Plescia, J. B.

1984-01-01

358

The NASA Solar System Exploration Virtual Institute: International Efforts in Advancing Lunar Science with Prospects for the Future  

NASA Astrophysics Data System (ADS)

The NASA Solar System Exploration Research Virtual Institute (SSERVI), originally chartered in 2008 as the NASA Lunar Science Institute (NLSI), is chartered to advance both the scientific goals needed to enable human space exploration, as well as the science enabled by such exploration. NLSI and SSERVI have in succession been “institutes without walls,” fostering collaboration between domestic teams (7 teams for NLSI, 9 for SSERVI) as well as between these teams and the institutes’ international partners, resulting in a greater global endeavor. SSERVI teams and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists and bringing the scientific results and excitement of exploration to the public. The domestic teams also respond to NASA’s strategic needs, providing community-based responses to NASA needs in partnership with NASA’s Analysis Groups. Through the many partnerships enabled by NLSI and SSERVI, scientific results have well exceeded initial projections based on the original PI proposals, proving the validity of the virtual institute model. NLSI and SSERVI have endeavored to represent not just the selected and funded domestic teams, but rather the entire relevant scientific community; this has been done through many means such as the annual Lunar Science Forum (now re-named Exploration Science Forum), community-based grass roots Focus Groups on a wide range of topics, and groups chartered to further the careers of young scientists. Additionally, NLSI and SSERVI have co-founded international efforts such as the pan-European lunar science consortium, with an overall goal of raising the tide of lunar science (and now more broadly exploration science) across the world.

Schmidt, Gregory

359

In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NED Mitigation  

NASA Technical Reports Server (NTRS)

The purpose of this NIAC study is to identify those volatile and mineral resources that are available on asteroids, comets, moons and planets in the solar system, and investigate methods to transform these resources into forms of power that will expand the capabilities of future robotic and human exploration missions to explore planetary bodies beyond the Moon and will mitigate hazards from NEOs. The sources of power used for deep space probe missions are usually derived from either solar panels for electrical energy, radioisotope thermal generators for thermal energy, or fuel cells and chemical reactions for chemical energy and propulsion.

Sibille, Laurent; Mantovani, James; Dominquez, Jesus

2011-01-01

360

In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NED Mitigation  

NASA Technical Reports Server (NTRS)

Volatile solids occur naturally on most planetary bodies including the Moon, Mars, asteroids and comets. Examples of recent discoveries include water ice, frozen carbon dioxide and hydrocarbons. The ability to utilize readily available resources for in-space propulsion and for powering surface systems during a planetary mission will help minimize the overall cost and extend the op.erational life of a mission. The utilization of volatile solids to achieve these goals is attractive for its simplicity. We have investigated the potential of subliming in situ volatiles and silicate minerals to power propulsion engines for a wide range of in-space applications where environmental conditions are favorable. This paper addresses the' practicality of using planetary solid volatiles as a power source for propulsion and surface systems by presenting results of modeling involving thermodynamic and physical mechanics calculations, and laboratory testing to measure the thrust obtained from ,a volatile solid engine (VSE). Applications of a VSE for planetary exploration are discussed as a means for propulsion and for mechanical actuators and surface mobility platforms.

Sibille, Laurent; Mantovani, James G.

2011-01-01

361

Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration  

NASA Technical Reports Server (NTRS)

Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the shortest route updates the edges in its path.

Alena, Richard I.; Lee, Charles

2004-01-01

362

A bibliography of planetary geology and geophysics principal investigators and their associates, 1983 - 1984  

NASA Technical Reports Server (NTRS)

A compilation is given of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program. Topics include the solar system, asteroids, volcanoes, stratigraphy, remote sensing, and planetary craters.

Witbeck, N. E. (editor)

1984-01-01

363

Student Planetary Investigators: Students Exploring the Moon Through Mini-RF  

NASA Astrophysics Data System (ADS)

The Student Planetary Investigator Program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department EPO office, where teams of high school students analyze data from the Moon through the Mini-RF insturment.

Grigsby, B.; Turney, D.; Patterson, W.; Bussey, D. B. J.; Neish, C.; Spudis, P.; Beisser, K.

2012-03-01

364

Probability of Loss of Crew Achievability Studies for NASA's Exploration Systems Development  

NASA Technical Reports Server (NTRS)

Over the last few years, NASA has been evaluating various vehicle designs for multiple proposed design reference missions (DRM) beyond low Earth orbit in support of its Exploration Systems Development (ESD) programs. This paper addresses several of the proposed missions and the analysis techniques used to assess the key risk metric, probability of loss of crew (LOC). Probability of LOC is a metric used to assess the safety risk as well as a design requirement. These risk assessments typically cover the concept phase of a DRM, i.e. when little more than a general idea of the mission is known and are used to help establish "best estimates" for proposed program and agency level risk requirements. These assessments or studies were categorized as LOC achievability studies to help inform NASA management as to what "ball park" estimates of probability of LOC could be achieved for each DRM and were eventually used to establish the corresponding LOC requirements. Given that details of the vehicles and mission are not well known at this time, the ground rules, assumptions, and consistency across the programs become the important basis of the assessments as well as for the decision makers to understand.

Boyer, Roger L.; Bigler, Mark; Rogers, James H.

2014-01-01

365

Testing of the Crew Exploration Vehicle in NASA Langley's Unitary Plan Wind Tunnel  

NASA Technical Reports Server (NTRS)

As part of a strategic, multi-facility test program, subscale testing of NASA s Crew Exploration Vehicle was conducted in both legs of NASA Langley s Unitary Plan Wind Tunnel. The objectives of these tests were to generate aerodynamic and surface pressure data over a range of supersonic Mach numbers and reentry angles of attack for experimental and computational validation and aerodynamic database development. To provide initial information on boundary layer transition at supersonic test conditions, transition studies were conducted using temperature sensitive paint and infrared thermography optical techniques. To support implementation of these optical diagnostics in the Unitary Wind Tunnel, the experiment was first modeled using the Virtual Diagnostics Interface software. For reentry orientations of 140 to 170 degrees (heat shield forward), windward surface flow was entirely laminar for freestream unit Reynolds numbers equal to or less than 3 million per foot. Optical techniques showed qualitative evidence of forced transition on the windward heat shield with application of both distributed grit and discreet trip dots. Longitudinal static force and moment data showed the largest differences with Mach number and angle of attack variations. Differences associated with Reynolds number variation and/or laminar versus turbulent flow on the heat shield were very small. Static surface pressure data supported the aforementioned trends with Mach number, Reynolds number, and angle of attack.

Murphy, Kelly J.; Borg, Stephen E.; Watkins, Anthony N.; Cole, Daniel R.; Schwartz, Richard J.

2007-01-01

366

Exploring the solar system: the view of planetary surfaces with VIS/IR remote sensing methods  

NASA Astrophysics Data System (ADS)

The structure of planetary surfaces unveils basic formation processes and evolution lines of different objects in the solar system, and often the view on the top of a planet is the only available information about it. Advanced remote sensing technologies on deep space missions are aimed at accessing a maximum of relevant data to characterize a planetary object holistically. This approach requires concert strategies in planetary and engineering science. In this framework VIS/IR spectroscopic remote sensing methods are key technologies for imaging planetary atmospheres and surfaces, for studying their composition, texture, structure and dynamics. Basing on these analyses it succeeds to observe the single objects in more global geo-scientific content. The paper focuses on main geo-scientific output coming from spectroscopic studies of planetary surfaces in conjunction with their interiors, atmospheres, and the interplanetary space. It summarizes selected results of spectral studies onboard of the ESA deep space missions BepiColombo, Venus Express, Mars Express, and Rosetta. The corresponding spectral instruments are introduced. The complex conflation of special knowledge of the disciplines planetology, optical and IR measuring techniques, and space flight engineering is demonstrated in several examples. Finally, the paper gives an outlook of current developments for spectral studies in planned missions, and sums up some of the driving questions in planetary science.

Arnold, Gabriele E.

2011-09-01

367

Exploration Launch Projects RS-68B Engine Requirements for NASA's Heavy Lift Ares V  

NASA Technical Reports Server (NTRS)

NASA's Vision for Exploration requires a safe, efficient, reliable, and versatile launch vehicle capable of placing large payloads into Earth orbit for transfer to the Moon and destinations beyond. The Ares V Cargo Launch Vehicle (CaLV) will provide this heavy lift capability. The Ares V launch concept is shown in Fig. 1. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost 360 feet tall. As currently envisioned, it will lift 133,000 to 144,000 pounds to trans-lunar injection, depending on the length of loiter time on Earth orbit. This presentation will provide an overview of the Constellation architecture, the Ares launch vehicles, and, specifically, the latest developments in the RS-68B engine for the Ares V.

Sumrall, John P.; McArthur, J. Craig; Lacey, Matt

2007-01-01

368

NASA Workshop on Technology for Human Robotic Exploration and Development of Space  

NASA Technical Reports Server (NTRS)

Continued constrained budgets and growing interests in the industrialization and development of space requires NASA to seize every opportunity for assuring the maximum return on space infrastructure investments. This workshop provided an excellent forum for reviewing, evaluating, and updating pertinent strategic planning, identifying advanced concepts and high-risk/high-leverage research and technology requirements, developing strategies and roadmaps, and establishing approaches, methodologies, modeling, and tools for facilitating the commercial development of space and supporting diverse exploration and scientific missions. Also, the workshop addressed important topic areas including revolutionary space systems requiring investments in innovative advanced technologies; achieving transformational space operations through the insertion of new technologies; revolutionary science in space through advanced systems and new technologies enabling experiments to go anytime to any location; and, innovative and ambitious concepts and approaches essential for promoting advancements in space transportation. Details concerning the workshop process, structure, and results are contained in the ensuing report.

Mankins, J. C.; Marzwell, N.; Mullins, C. A.; Christensen, C. B.; Howell, J. T.; O'Neil, D. A.

2004-01-01

369

Middleware and Web Services for the Collaborative Information Portal of NASA's Mars Exploration Rovers Mission  

NASA Technical Reports Server (NTRS)

We describe the design and deployment of the middleware for the Collaborative Information Portal (CIP), a mission critical J2EE application developed for NASA's 2003 Mars Exploration Rover mission. CIP enabled mission personnel to access data and images sent back from Mars, staff and event schedules, broadcast messages and clocks displaying various Earth and Mars time zones. We developed the CIP middleware in less than two years time usins cutting-edge technologies, including EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed as a collection of independent, hot-deployable web services, providing secure access to back end file systems and databases. Throughout the middleware we enabled crosscutting capabilities such as runtime service configuration, security, logging and remote monitoring. This paper presents our approach to mitigating the challenges we faced, concluding with a review of the lessons we learned from this project and noting what we'd do differently and why.

Sinderson, Elias; Magapu, Vish; Mak, Ronald

2004-01-01

370

The Panoramic Camera (Pancam) Investigation on the NASA 2003 Mars Exploration Rover Mission  

NASA Technical Reports Server (NTRS)

The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.

Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.

2003-01-01

371

Pancam: A Multispectral Imaging Investigation on the NASA 2003 Mars Exploration Rover Mission  

NASA Technical Reports Server (NTRS)

One of the six science payload elements carried on each of the NASA Mars Exploration Rovers (MER; Figure 1) is the Panoramic Camera System, or Pancam. Pancam consists of three major components: a pair of digital CCD cameras, the Pancam Mast Assembly (PMA), and a radiometric calibration target. The PMA provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. The calibration target provides a set of reference color and grayscale standards for calibration validation, and a shadow post for quantification of the direct vs. diffuse illumination of the scene. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover in up to 12 unique wavelengths. The major characteristics of Pancam are summarized.

Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.

2003-01-01

372

Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC  

NASA Technical Reports Server (NTRS)

NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods.

Cooper, Kenneth G.; Good, James E.; Gilley, Scott D.

2007-01-01

373

Engaging Students from Minority Serving Institutions Through Research Internships in NASA Space Science and Exploration  

NASA Astrophysics Data System (ADS)

Through an ongoing partnership with NASA's Minority University Space Interdisciplinary Network (MU-SPIN) the MESSENGER, New Horizons and Lunar Reconnaissance Orbiter (LRO) missions have hosted science, engineering and computer science undergraduate and masters students in summer internships over the past several years. These programs have proved beneficial to students, their institutions and local communities, and to the NASA missions. The first internship opportunity was a highly successful partnership between MU-SPIN and the MESSENGER program where fifteen undergraduate and masters students were placed at the Johns Hopkins University Applied Physics Laboratory during the testing and integration of the MESSENGER spacecraft in Summer 2003. Many of these students are either in NASA related jobs or are pursuing advanced degrees. For example, of the five students from City University of New York one is an Aerospace Engineer at Wallops Flight Facility, another received her MS in Computer Science and is working for the NSF Louis Stokes Alliances for Minority Participation program. One just received her BS in Math and was accepted to the NASA Academy at Glenn Research Center while another is continuing his studies in Computer Engineering at City College of New York. The only community college student intern is now a Space Grant Fellow at Penn State, majoring in aerospace engineering. Student interns from the MESSENGER program were also involved in community outreach following their internship. Several students from South Carolina State University presented their internship experiences to local science teachers during an in-service teacher workshop on the MESSENGER mission. The second internship program took place in Summer 2005 and placed students at Goddard Space Flight Center with LRO and at JHUAPL with the New Horizons mission. LRO interns worked with individual instrument teams while New Horizons interns were engaged in environmental testing and software development for the Pluto-bound spacecraft. The majority of the interns have expressed a desire to return next summer and at least two students were given the opportunity to continue work at JHUAPL. During our presentation, we will provide the results of follow-up interviews with the mentors and interns who took part in the 2005 internship program. We will also discussed lessons learned for those who are exploring implementing similar programs at their research centers or colleges and universities.

Stockman, S. A.; Harrington, J. L.

2005-12-01

374

The Case of the Great Space Exploration: An Educator Guide with Activities in Mathematics, Science, and Technology. The NASA SCI Files. EG-2004-09-12-LARC  

ERIC Educational Resources Information Center

In this companion to the "NASA SCI Files" episode "The Case of the Great Space Exploration," the tree house detectives learn about NASA's new vision for exploring space. In four segments aimed at grades 3-5, students learn about a variety of aspects of space exploration. Each segment of the guide includes an overview, a set of objectives,…

Ricles, Shannon; Jaramillo, Becky; Fargo, Michelle

2004-01-01

375

NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate high-priority science experiments. SLS affordability initiatives include streamlining interfaces, applying risk-based insight into contracted work, centralizing systems engineering and integration, and nurturing a learning culture that continually benchmarks its performance against successful ventures. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

May, Todd A.

2012-01-01

376

NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Cargo Vehicle s first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate high-priority science experiments. SLS affordability initiatives include streamlining interfaces, applying risk-based insight into contracted work, centralizing systems engineering and integration, and nurturing a learning culture that continually benchmarks its performance against successful ventures. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

May, Todd

2012-01-01

377

The NASA Atlas of the Solar System  

Microsoft Academic Search

The exploration of our solar system by spacecraft has been one of the greatest scientific achievements of the twentieth century. The mapping of other worlds has resulted from numerous space missions by NASA, extending over many years. The data from these planetary missions have been synthesised by the US Geological Survey to produce detailed maps. Every planet, moon, or small

Ronald Greeley; Raymond Batson

1997-01-01

378

Publications of the planetary biology program for 1975: A special bibliography. [on NASA programs and research projects on extraterrestrial life  

NASA Technical Reports Server (NTRS)

The Planetary Biology Program of the National Aeronautics and Space Administration is the first and only integrated program to methodically investigate the planetary events which may have been responsible for, or related to, the origin, evolution, and distribution of life in the universe. Research supported by this program is divided into the seven areas listed below: (1) chemical evolution, (2) organic geochemistry, (3) life detection, (4) biological adaptation, (5) bioinstrumentation, (6) planetary environments, and (7) origin of life. The arrangement of references in this bibliography follows the division of research described above. Articles are listed alphabetically by author under the research area with which they are most closely related. Only those publications which resulted from research supported by the Planetary Biology Program and which bear a 1975 publication date have been included. Abstracts and theses are not included because of the preliminary and abbreviated nature of the former and the frequent difficulty of obtaining the latter.

Souza, K. A. (compiler); Young, R. S. (compiler)

1976-01-01

379

Determining the Relative Criticality of Diverse Exploration Risks in NASA's Human Research Program  

NASA Technical Reports Server (NTRS)

The mission of NASA s Human Research Program (HRP) is to understand and reduce the risk to crew health and performance in exploration missions. The HRP addresses 27 specific risks, primarily in the context of Continuous Risk Management. Each risk is evaluated in terms of two missions (a six month stay on the Moon and a thirty month round trip to Mars) and three types of consequences (in-mission crew health, post-mission crew health, and in-mission performance). The lack of a common metric between the three consequence scales, such as financial costs or quality adjusted life years lost, makes it difficult to compare the relative criticality of the risks. We are, therefore, exploring the use of a ternary scale of criticality based on the common metric of influencing an operational decision. The three levels correspond to the level of concern the risk generates for a "go/no-go" decision to launch a mission: 1) no-go; 2) go with significant reservations; 3) go. The criticality of each of the 27 risks is scored for the three types of consequence in both types of mission. The scores are combined to produce an overall criticality rating for each risk. The overall criticality rating can then be used to guide the prioritization of resources to affect the greatest amount of risk reduction.

Kundrot, Craig E.; Edwards, J. Michelle; Anton, Wilma; Robotham, Kwesi

2009-01-01

380

NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration s (NASA s) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making measurable progress toward delivering a new capability for human and scientific exploration. To arrive at the current plan, government and industry experts carefully analyzed hundreds of architecture options and selected the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. Slated for its maiden voyage in 2017, the SLS will provide a platform for further cooperation in space based on the International Space Station model. This briefing will focus on specific progress that has been made by the SLS team in its first year, as well as provide a framework for evolving the vehicle for far-reaching missions to destinations such as near-Earth asteroids, Lagrange Points, and Mars. As this briefing will show, the SLS will serve as an infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

May, Todd A.; Creech, Stephen D.

2012-01-01

381

NASA Now: Earth Science Week: Exploring Energy - Duration: 7:32.  

NASA Video Gallery

During this installment of NASA Now, youâ??ll see some of the ways NASA studies Earth. Youâ??ll meet Eric Brown de Colstoun, a physical scientist at NASAâ??s Goddard Space Flight Center in Greenbel...

382

Using NASA NEO and ImageJ to Explore the Role of Snow Cover in Shaping Climate  

NSDL National Science Digital Library

In this activity students download satellite images displaying land surface temperature, snow cover, and reflected short wave radiation data from the NASA Earth Observation (NEO) Web site. They then explore and animate these images using the free tool ImageJ and utilize the Web-based analysis tools built into NEO to observe, graph, and analyze the relationships among these three variables.

Youngman, B.; Mcauliffe, C.; Freuder, R.; Lockwood, J.; Ward, K.; Herring, D.

383

Field Geologic Observation and Sample Collection Strategies for Planetary Surface Exploration: Insights from the 2010 Desert RATS Geologist Crewmembers  

NASA Technical Reports Server (NTRS)

Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic field- work, the Desert RATS(Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crew members who participated in the 2010 field test.We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies relatedtoduplicationofsamplesandobservations;logisticalconstraintson the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to flexibly execute their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

Hurtado, Jose M., Jr.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W., Jr.

2012-01-01

384

On the Potential Implementation of Ground-based Scanning & Imaging LIDARs on Future Surface Planetary Exploration Missions  

NASA Astrophysics Data System (ADS)

To this date Landers and Rovers used in planetary exploration have relied on stereoscopic camera systems to provide 3D information used to perform both scientific imaging and navigation tasks. Despite being highly reliable, stereoscopic systems have several limitations in the creation of accurate 3D models. Light Detection and Ranging (LIDAR) systems have evolved from simple ranging devices used as altimeters to complex mapping systems capable of developing highly accurate 3D models. Data collected using a COTS Scanning and Imaging LIDAR (SIL) under simulated planetary surface conditions is presented and evaluated as an alternative to the traditional stereoscopic imaging systems, to provide navigation and scientific data for future planetary surface missions. SIL data set includes 3D spatial information (XYZ coordinates), laser return intensity and mapped to each laser point, the RGB pixel value obtained from the imaging sensor. The main advantage of SIL over stereo cameras is that it establishes a precise Cartesian coordinate system which enables the scientific and imaging data to be integrated into a single spatially coherent data set. A complete description of the pros and cons between stereo imagers and SIL is given.

Singhania, A.; Fernandez, J. C.

2006-12-01

385

Field geologic observation and sample collection strategies for planetary surface exploration: Insights from the 2010 Desert RATS geologist crewmembers  

NASA Astrophysics Data System (ADS)

Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic fieldwork, the Desert RATS (Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crewmembers who participated in the 2010 field test. We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies related to duplication of samples and observations; logistical constraints on the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to "flexibly execute" their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

Hurtado, José M.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W.

2013-10-01

386

Evolutionary Strategy for the Use of Nuclear Electric Propulsion in Planetary Exploration  

Microsoft Academic Search

* Abstract. Given the recent advancements in power generation, waste heat rejection systems and electric propulsion, a reassessment of the benefits of Nuclear Electric Propulsion (NEP) is provided. Six different planetary missions are evaluated: a Pluto rendezvous, a Europa rendezvous, a TitadSaturn sample return, a Europa sample return, a fast Mars piloted mission and a fast Neptune piloted mission. These

Muriel Noca; James E. Polk; Roger Lenard

387

This is NASA  

NASA Technical Reports Server (NTRS)

Highlights of NASA's first 20 years are described including the accomplishments of the National Advisory Committee for Aeronautics from its creation in 1915 until its absorption into NASA in 1958. Current and future activities are assessed in relation to the Federal R&D research plan for FY 1980 and to U.S. civil space policy. A NASA organization chart accompanies descriptions of the responsibilities of Headquarters, its various offices, and field installations. Directions are given for contacting the agency for business activities or contracting purposes; for obtaining educational publications and other media, and for tours. Manpower statistics are included with a list of career opportunities. Special emphasis is given to manned space flight, space launch vehicles, space shuttle, planetary exploration, and investigations of the stars and the solar system.

1979-01-01

388

Planetary Science Division UpdatePlanetary Science Division UpdatePlanetary Science Division Update James L. GreenJames L. Green  

E-print Network

Planetary Science Division UpdatePlanetary Science Division UpdatePlanetary Science Division Update James L. GreenJames L. Green Director, Planetary ScienceDirector, Planetary Science NASA Headquarters;Planetary Science Program Content Notional #12;Planetary Funding Profiles FY11 and FY12 Requests President

Rathbun, Julie A.

389

The Scale of Exploration: Planetary Missions Set in the Context of Tourist Destinations on Earth  

NASA Astrophysics Data System (ADS)

What if the Apollo astronauts explored Washington, DC, or the Mars Exploration Rovers explored Disney World? We present educational versions of the traverse maps for Apollo and MER missions set in the context of popular tourist destinations on Earth.

Garry, W. B.; Bleacher, L. V.; Bleacher, J. E.; Petro, N. E.; Mest, S. C.; Williams, S. H.

2012-03-01

390

On-Board Perception System For Planetary Aerobot Balloon Navigation  

NASA Technical Reports Server (NTRS)

NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.

Balaram, J.; Scheid, Robert E.; T. Salomon, Phil

1996-01-01

391

Robonaut 2 Maps The Way For Human Exploration - Duration: 2:43.  

NASA Video Gallery

Robonaut 2 is one of the advanced robotic capabilities being developed by NASA to survey deep space and planetary surfaces, and to map the way for future human exploration. From working onboard the...

392

Solar system exploration  

NASA Technical Reports Server (NTRS)

The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.

Chapman, Clark R.; Ramlose, Terri (editor)

1989-01-01

393

Portable Diagnostics Technology Assessment for Space Missions. Part 1; General Technology Capabilities for NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

The changes in the scope of NASA s mission in the coming decade are profound and demand nimble, yet insightful, responses. On-board clinical and environmental diagnostics must be available for both mid-term lunar and long-term Mars exploration missions in an environment marked by scarce resources. Miniaturization has become an obvious focus. Despite solid achievements in lab-based devices, broad-based, robust tools for application in the field are not yet on the market. The confluence of rapid, wide-ranging technology evolution and internal planning needs are the impetus behind this work. This report presents an analytical tool for the ongoing evaluation of promising technology platforms based on mission- and application-specific attributes. It is not meant to assess specific devices, but rather to provide objective guidelines for a rational down-select of general categories of technology platforms. In this study, we have employed our expertise in the microgravity operation of fluidic devices, laboratory diagnostics for space applications, and terrestrial research in biochip development. A rating of the current state of technology development is presented using the present tool. Two mission scenarios are also investigated: a 30-day lunar mission using proven, tested technology in 5 years; and a 2- to 3-year mission to Mars in 10 to 15 years.

Nelson, Emily S.; Chait, Arnon

2010-01-01

394

Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration  

NASA Technical Reports Server (NTRS)

Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010.

Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; Drake, B. G.; Friedensen, V. P.

2012-01-01

395

Students and Teachers Exploring Live the Limits of Life on Earth with a Nasa/seti Expedition to the Highest Lakes on Earth  

NASA Astrophysics Data System (ADS)

"Life at the Extreme" is an education and public outreach (E/PO) project that engaged teachers and 4-12th grade students (an in part, Prek-3rd grade students) in an internet-based, virtual expedition with scientists as they conducted experiments in a unique planetary analog environment in the Bolivian High-Andes at nearly 6,000 m (~20,000ft). Through high altitude diving and sampling, they explored the Licancabur volcano summit lake, which is one of the closest analogs to ancient lakes on Mars. Their goal was to characterize the environment and to study the defense strategies of life against extreme physical conditions in order to understand the biological potential of Mars and prepare future planetary missions. This "virtual field" was in the form of an interactive web site, live interactive discussions, a live video webcast with the San Francisco Exploratorium, and videotapes. Through this medium, about 2,700 students, 90 schools and teachers were able to directly participate and extend their knowledge of scientific processes as they explored an extreme and unique terrestrial environment. In the weeks leading up to the expedition, and during in-the-field activities, students were able to communicate with scientists as they prepared for and conducted scientific investigations. The general public could follow the expedition as well on the web. Overall, the website received ~70,000 hits from all over the world during the time of the expedition. Allowing this access to scientists as they performed their investigations proved invaluable as students understood the implications of scientific work. The broader impact of this experience provided ground work for other educational institutions to conduct similar activities with leading scientists and bridge the gap that often exists between scientists and education. The project was conducted in partnership with the NASA's Ames Research Center's expedition to the Licancabur volcano, located on the border between Chile and Bolivia and is the location of one of the least explored lakes in the world. K-12 educators played a key roll in the development and implementation of curriculum for this project. In 2002, a teacher accompanied the scientific team to the summit to document their research for the benefit of all k-12 educators both as the exploration occurs and as an ongoing educational enquiry. The virtual field experience was funded through an IDEAS (The Initiative to Develop Education through Astronomy and Space Science) grant. The 2002-03, and 2003-04 virtual field experience can be found at: http://www.extremeenvironment.com.

Cabrol, N. A.; Grigsby, B. H.

2004-12-01

396

Passengers on Voyages of Exploration: The Beautiful and Surprising Work Amateurs Can Do With Raw Image Data from Planetary Missions  

NASA Astrophysics Data System (ADS)

Many recent planetary science missions, including the Mars Exploration Rovers, Cassini-Huygens, and New Horizons, have instituted a policy of the rapid release of "raw" images to the Internet within days or even hours of their acquisition. The availability of these data, along with the increasing power of home computers and availability of high-bandwidth Internet connections, have stimulated the development of a worldwide community of armchair planetary scientists, who are able to participate in the everyday drama of exploratory missions' encounters with new worlds and new landscapes. Far from passive onlookers, many of these enthusiasts have taught themselves image processing techniques and have even written software to perform automated processing and mosaicking of these raw data sets. They rapidly produce stunning visualizations and then post them to their own blogs or online forums, where they also engage in discussing scientific observations and inferences about the data sets, broadening missions' public outreach efforts beyond their direct contact. These amateur space scientists feel a deep sense of involvement in and connection to space missions, which makes them enthusiastic (and occasionally demanding) supporters of space exploration. The presentation will include examples of amateurs' work, guides to the resources available to space enthusiasts interested in following active missions through their raw image data sets, and suggestions for how the science community can efficiently engage the amateur community and promote its development.

Lakdawalla, Emily

2008-05-01

397

Passengers on Voyages of Exploration: The Beautiful and Surprising Work Amateurs Can do with Raw Image Data from Planetary Missions  

NASA Astrophysics Data System (ADS)

Many recent planetary science missions, including the Mars Exploration Rovers, Cassini-Huygens, and New Horizons, have instituted a policy of the rapid release of ``raw'' images to the Internet within days or even hours of their acquisition. The availability of these data, along with the increasing power of home computers and availability of high-bandwidth Internet connections, have stimulated the development of a worldwide community of armchair planetary scientists, who are able to participate in the everyday drama of exploratory missions' encounters with new worlds and new landscapes. Far from passive onlookers, many of these enthusiasts have taught themselves image processing techniques and have even written software to perform automated processing and mosaicking of these raw data sets. They rapidly produce stunning visualizations and then post them to their own blogs or online forums, where they also engage in discussing scientific observations and inferences about the data sets, broadening missions' public outreach efforts beyond their direct reach. These amateur space scientists feel a deep sense of involvement in and connection to space missions, which makes them enthusiastic (and occasionally demanding) supporters of space exploration.

Lakdawalla, E. S.

2008-11-01

398

A secular model for efficient exploration of mutually-inclined planetary systems  

NASA Astrophysics Data System (ADS)

Dynamical studies of exoplanets largely assume coplanarity because of the lack of inclination information in many cases. However, the multiplanet system Upsilon Andromedae has orbital planes inclined by 30 degrees, models of planet-planet scattering predict large mutual inclinations, and astrometry missions such as Gaia have the power to reveal the 3 dimensional architecture of planetary systems. As the dynamics of systems with non-planar orbits will be key to understanding origins, and ultimately habitability where applicable, we present a computationally efficient model for the orbital evolution of planetary systems with modest inclinations and eccentricities which are not in a mean motion resonance. Specifically, our model is based on the disturbing function and extends to 4th order in eccentricity and inclination. We present comparisons to N-body models for known systems, such as the Solar System and Upsilon Andromedae, and hypothetical systems with a range of orbital configurations. We describe the eccentricity and inclination conditions under which the model is valid. We further calculate the rotational evolution of planets based on the orbital evolution and the stellar torque and find a wide range of obliquity evolution is possible. As obliquity is a key driver of planetary climate, Earth-like planets in non-planar systems may have climates dominated by their orbital evolution.

Deitrick, Russell; Barnes, Rory

2015-01-01

399

78 FR 42110 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...AGENCY: National Aeronautics and Space Administration. ACTION: Notice...the National Aeronautics and Space Administration (NASA) announces...Systems Development --Status of International Space Station --Status of Commercial...

2013-07-15

400

78 FR 70963 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Time. ADDRESSES: NASA Kennedy Space Center, Headquarters Building, Room 2229, Kennedy Space Center, FL 32899. FOR FURTHER...Systems Development --Status of International Space Station --Update on Capability...

2013-11-27

401

Global Reachability and Path Planning for Planetary Exploration with Montgolfiere Balloons  

E-print Network

planning problem for all possible target locations, thereby providing a reachability analysis of the montgolfiere. We then discretize the search space, converting the planning problem into a graph search problem Mission (TSSM), which would be a joint NASA- ESA partnership that plans to employ a montgolfiere along

Williams, Brian C.

402

Update on Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions  

NASA Astrophysics Data System (ADS)

In FY13, more advanced testing and modeling of the new NASA conformal ablative TPS material was performed. Most notable were the 3- and 4-point bending tests and the aerothermal testing on seams and joints in shear. The material outperformed PICA.

Beck, R. A. S.; Arnold, J. O.; Gasch, M. J.; Stackpoole, M. M.; Venkatapathy, E.

2014-06-01

403

Evaluating Handheld X-Ray Fluorescence (XRF) Technology in Planetary Exploration: Demonstrating Instrument Stability and Understanding Analytical Constraints and Limits for Basaltic Rocks  

NASA Technical Reports Server (NTRS)

While large-footprint X-ray fluorescence (XRF) instruments are reliable providers of elemental information about geologic samples, handheld XRF instruments are currently being developed that enable the collection of geochemical data in the field in short time periods (approx.60 seconds) [1]. These detectors are lightweight (1.3kg) and can provide elemental abundances of major rock forming elements heavier than Na. While handheld XRF detectors were originally developed for use in mining, we are working with commercially available instruments as prototypes to explore how portable XRF technology may enable planetary field science [2,3,4]. If an astronaut or robotic explorer visited another planetary surface, the ability to obtain and evaluate geochemical data in real-time would be invaluable, especially in the high-grading of samples to determine which should be returned to Earth. We present our results on the evaluation of handheld XRF technology as a geochemical tool in the context of planetary exploration.

Young, K. E.; Hodges, K. V.; Evans, C. A.

2012-01-01

404

Developing Algebra Concepts through Applications Related to NASA's Space Exploration Program  

E-print Network

Administration [NASA] has a new focus for manned space travel to go beyond Earth's orbit for purposes of human as a problem solving tool. The connection between and among mathematical ideas and to real-world situations also offers promise in making algebra more relevant. The tasks developed within the context of NASA

Spagnolo, Filippo

405

NASA program plan  

NASA Technical Reports Server (NTRS)

Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

1980-01-01

406

Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0  

NASA Technical Reports Server (NTRS)

This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

Drake, Bret G. (Editor)

1998-01-01

407

The Challenges of Integrating NASA's Human, Budget, and Data Capital within the Constellation Program's Exploration Launch Projects Office  

NASA Technical Reports Server (NTRS)

The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into usehl knowledge that equips the team to design and develop superior products for customers and stakeholders. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates these resources to create an engineering business environment that promotes mission success.

Kidd, Luanne; Morris, Kenneth B.; Self, Tim

2006-01-01

408

Restructuring Planetary Science's Research & Analysis Program  

E-print Network

Restructuring Planetary Science's Research & Analysis Program James Green NASA, Planetary Science: An Integrated Strategy for the Planetary Sciences 2010: Community R&A survey 2010 2012: Planetary Workforce R&A program by the Planetary Sciences Subcommittee (PSS) as a Response to the NRC report ­ Ron

Rathbun, Julie A.

409

Robotic Thin Section Sample Preparation Device for In Situ Planetary Exploration  

NASA Astrophysics Data System (ADS)

Petrographic thin sections are used on Earth to identify minerals. The data from thin sections together with chemical rock data could result in a much better interpretation of planetary geology. A petrographic thin section is a well polished thin (~30 micron) sample of rock mounted on a glass slide. When viewed under a polarizing microscope one can quickly observe minerals from the interference colors. With unpolarized light some textural and structural features can be identified. Making of thin section is an art that takes many years of experience to acquire. All thin sections on Earth have been done manually. The Colorado School of Mines and Honeybee Robotics have been developing a robotic thin section device that one day may be used on planetary surface missions to autonomously slice, grind and polish a piece of rock. In particular, we have been developing methods for rough cutting, epoxy/slide application, and grinding/polishing of a rock to thin section quality. Examination of rock surface finish was done quantitatively using surface roughness measurement and qualitatively by a thin section expert. Here we report on the progress to date.

Dreyer, C. B.; Zacny, K.; Skok, J.; Steele, J.; Paulsen, G.; Nakagawa, M.; Schwendeman, J.; Carrell, T.; Szczesiak, M.

2008-12-01

410

Investment in Open Innovation Service Providers: NASA's Innovative Strategy for Solving Space Exploration Challenges  

NASA Technical Reports Server (NTRS)

In an effort to expand routes for open communication and create additional opportunities for public involvement with NASA, Open Innovation Service Provider (OISP) methodologies have been incorporated as a tool in NASA's problem solving strategy. NASA engaged the services of two OISP providers, InnoCentive and Yet2.com, to test this novel approach and its feasibility in solving NASA s space flight challenges. The OISPs were chosen based on multiple factors including: network size and knowledge area span, established process, methodology, experience base, and cost. InnoCentive and Yet2.com each met the desired criteria; however each company s approach to Open Innovation is distinctly different. InnoCentive focuses on posting individual challenges to an established web-based network of approximately 200,000 solvers; viable solutions are sought and granted a financial award if found. Based on a specific technological need, Yet2.com acts as a talent scout providing a broad external network of experts as potential collaborators to NASA. A relationship can be established with these contacts to develop technologies and/or maintained as an established network of future collaborators. The results from the first phase of the pilot study have shown great promise for long term efficacy of utilizing the OISP methodologies. Solution proposals have been received for the challenges posted on InnoCentive and are currently under review for final disposition. In addition, Yet2.com has identified new external partners for NASA and we are in the process of understanding and acting upon these new opportunities. Compared to NASA's traditional routes for external problem solving, the OISP methodologies offered NASA a substantial savings in terms of time and resources invested. In addition, these strategies will help NASA extend beyond its current borders to build an ever expanding network of experts and global solvers.

Fogarty, Jennifer A.; Rando, Cynthia; Baumann, David; Richard, Elizabeth; Davis, Jeffrey

2010-01-01

411

NASA Now: Exploring Asteroids: An Analog Mission - Duration: 5:27.  

NASA Video Gallery

NASAâ??s Extreme Environment Mission Operations, or NEEMO, project lead Bill Todd describes this analog mission and how aquanauts living and working in an undersea habitat are helping NASA prepare ...

412

77 FR 66082 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...the National Aeronautics and Space Administration (NASA) announces...Headquarters, 300 E Street SW., Space Operations Center, Room 7C61...Development Programs and Integration --International Space Station Status --Outreach...

2012-11-01

413

76 FR 63663 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013, 2014

...Aeronautics and Space Administration...meeting of the Human Exploration and Operations...Siegel, Human Exploration and Operations...Aeronautics and Space Administration...Development Global Exploration Roadmap Space Life and...

2011-10-13

414

Preparing NASA Atmospheric Data Exploration Tools for NPOESS Data Visualization and Analysis  

Microsoft Academic Search

The NASA Goddard Space Flight Center (GSFC) Earth Sciences (GES) Atmospheric Composition Data and Information Services Center (ACDISC) (http:\\/\\/acdisc.gsfc.nasa.gov\\/ or google on 'acdisc'), known for its development and deployment of responsive, user oriented, data management and value added data tools, has implemented a visualization and analysis tool that is rapidly receiving much use by the Atmospheric Composition (AC) community. Giovanni,

G. G. Leptoukh; S. J. Kempler; I. Gerasimov; S. W. Berrick; J. Johnson; S. Ahmad

2005-01-01

415

Lidar and the mobile Scene Modeler (mSM) as scientific tools for planetary exploration  

Microsoft Academic Search

With the continued success of the Mars Exploration Rovers and the return of humans to the Moon within the next decade, a considerable amount of research is being done on the technologies required to provide surface mobility and the tools required to provide scientific capability. Here, we explore the utility of lidar and the mobile Scene Modeler (mSM) – which

Gordon R. Osinski; Timothy D. Barfoot; Nadeem Ghafoor; Matt Izawa; Neil Banerjee; Piotr Jasiobedzki; Jeff Tripp; Robert Richards; Simon Auclair; H