Note: This page contains sample records for the topic nasa planetary exploration from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

NASA's Desert RATS Science Backroom: Remotely Supporting Planetary Exploration  

NASA Technical Reports Server (NTRS)

NASA's Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. In recent years, a D-RATS science backroom has conducted science operations and tested specific operational approaches. Approaches from the Apollo, Mars Exploration Rovers and Phoenix missions were merged to become the baseline for these tests. In 2010, six days of lunar-analog traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. In 2011, a variety of exploration science scenarios that tested operations for a near-earth asteroid using several small exploration vehicles and a single habitat. Communications between the ground and the crew in the field used a 50-second one-way delay, while communications between crewmembers in the exploration vehicles and the habitat were instantaneous. Within these frameworks, the team evaluated integrated science operations management using real-time science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results. Exploration scenarios for Mars may include architectural similarities such as crew in a habitat communicating with crew in a vehicle, but significantly more autonomy will have to be given to the crew rather than step-by-step interaction with a science backroom on Earth.

Cohen, Barbara A.; Eppler, Dean; Gruener, John; Horz, Fred; Ming, Doug; Yingst, R. Aileen

2012-01-01

2

Proceedings of the 2004 NASA/JPL Workshop on Physics for Planetary Exploration  

NASA Technical Reports Server (NTRS)

The conference was held April 20-22, 2004, the NASA/JPL Workshop on Physics for Planetary Exploration focused on NASA's new concentration on sending crewed missions to the Moon by 2020 and then to Mars and beyond. However, our ground-based physics experiments are continuing to be funded, and it will be possible to compete for $80-90 million in new money from the NASA exploration programs. Papers presented at the workshop related how physics research can help NASA to prepare for and accomplish this grand scheme of exploration. From sensors for water on the Moon and Mars, to fundamental research on those bodies, and to aids for navigating precisely to landing sites on distant planets, diverse topics were addressed by the Workshop speakers.

Strayer, Donald M. (Editor); Banerdt, Bruce; Barmatz, M.; Chung, Sang; Chui, Talso; Hamell, R.; Israelsson, Ulf; Jerebets, Sergei; Le, Thanh; Litchen, Stephen

2004-01-01

3

NASA Planetary Rover Program  

NASA Technical Reports Server (NTRS)

The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion concept at Carnegie Mellon University. The status and accomplishments of these two efforts are discussed. First, however, background information is given on the three rover types required for the Space Exploration Initiative (SEI) whose objective is a manned mission to Mars.

Lavery, David; Bedard, Roger J., Jr.

1991-01-01

4

Fiber lasers and amplifiers for Earth\\/planetary science and exploration at NASA Goddard Space Flight Center  

Microsoft Academic Search

We discuss present and near-term uses for high- power fiber lasers and amplifiers for NASA-specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration

Michael A. Krainak; Hossin Abdeldayem; James Abshire; Graham R. Allan; John Burris; Jeffrey Chen; Barry Coyle; Steven Li; Haris Riris; Antonios Seas; Mark Stephen; Emily Wilson; Anthony Yu

5

NASA Planetary Rover Program.  

National Technical Information Service (NTIS)

The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion conce...

D. Lavery R. J. Bedard

1991-01-01

6

Refocusing NASA Planetary Science Funding  

NASA Astrophysics Data System (ADS)

NASA should invest more money in data analysis for its planetary science missions, even if it means delaying or canceling afuture mission, members of the science committee of the NASA Advisory Council (NAC) suggested at a 12 October meeting.

Zielinski, Sarah

2006-10-01

7

TASTER: Trojan ASteroid Tour, Exploration and Rendezvous, a NASA Planetary Science Summer School Mission Design Exercise  

NASA Astrophysics Data System (ADS)

A detailed investigation of the Trojan asteroids occupying Jupiter's L4 and L5 Lagrangian points has been identified as a priority for future missions by the 2011 Planetary Science Decadal Survey. Observing these asteroids and getting clear measurements of their physical characteristics and composition may yield answers to fundamental questions relating to the early Solar System. In particular, Trojan asteroids are believed to harbor primordial material dating from the time of its formation. The source region for Trojans is still unknown; the Nice model predicts that some bodies may have originated in the primordial Kuiper belt and were subsequently scattered inward during the migration of Neptune and Uranus and settled in their current location. In alternative models, less radial scattering of small bodies would imply Trojans formed from material at a similar orbital distance to Jupiter. Determination of Trojan composition and structure will help identify their birth location, provide information about the impact history and subsequent evolution. Earth-based observations of size and surface characteristics are sparse; spectral measurements are unable to resolve composition (and show a puzzling lack of volatile signatures), indicating that close-range observation is needed. We present a mission design for a Trojan Tour and Rendezvous mission that is consistent with NASA's New Frontiers candidate recommended by the Decadal Survey, and which is the final result of the 2011 NASA-JPL Planetary Science Summer School Mission Design Exercise. Our proposed mission includes a tour phase that features a 500 km altitude fly-by of 1999 XS143. The spacecraft will then orbit and make detailed observations of 1919FD Agamemnon, a 167 km diameter asteroid located in the leading Lagrangian point (L4), from orbital altitudes of 1000 - 100 km over a 12 month nominal science data capture period. The mission's planned primary observations aim to (1) detect and identify volatile species and rock-forming elements on or just below the surface, (2) map the surface geology, and (3) determine size, shape, and rotational state. Our payload will provide unprecedented high-resolution, global dataset for the target bodies, yielding crucial information about the early history and evolution of the Solar System.

Diaz-silva, R.; Sayanagi, K. M.; Gil, S.; Diniega, S.; Balcerski, J.; Benneke, B.; Carande, B.; Fraeman, A. A.; Hudson, J. S.; Guzewich, S. D.; Livi, R.; Nahm, A.; Potter, S.; Route, M.; Urban, K. D.; Vasisht, S.; Williams, B.; Budney, C. J.; Lowes, L. L.

2011-12-01

8

Monitoring Floods with NASA's ST6 Autonomous Sciencecraft Experiment: Implications on Planetary Exploration  

NASA Technical Reports Server (NTRS)

NASA's New Millennium Program (NMP) Autonomous Sciencecraft Experiment (ASE) [1-3] has been successfully demonstrated in Earth-orbit. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control, image formation, and science processing software was uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 and has been undergoing onboard testing since May 2004 for the near real-time detection of surface modification related to transient geological and hydrological processes such as volcanism [4], ice formation and retreat [5], and flooding [6]. Space autonomy technology developed as part of ASE creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding. Part of the challenge has been the difficulty to observe flooding in real time at sufficient temporal resolutions; more importantly, it is the large spatial extent of most drainage networks coupled with the size of the data sets necessary to be downlinked from satellites that make it difficult to monitor flooding from space. Below is a description of the algorithms (referred to as ASE Flood water Classifiers) used in tandem with the Hyperion spectrometer instrument on EO-1 to identify flooding and some of the test results.

Ip, Felipe; Dohm, J. M.; Baker, V. R.; Castano, B.; Chien, S.; Cichy, B.; Davies, A. G.; Doggett, T.; Greeley, R.; Sherwood, R.

2005-01-01

9

Sharing Planetary Exploration: The Education and Public Outreach Program for the NASA MESSENGER Mission to Orbit Mercury  

NASA Astrophysics Data System (ADS)

The Education and Public Outreach (EPO) Program of the MESSENGER mission to the planet Mercury, supported by the NASA Discovery Program, is a full partnership between the project's science and engineering teams and a team of professionals from the EPO community. The Challenger Center for Space Science Education (CCSSE) and the Carnegie Academy for Science Education (CASE) are developing sets of MESSENGER Education Modules targeting grade-specific education levels across K-12. These modules are being disseminated through a MESSENGER EPO Website developed at Montana State University, an Educator Fellowship Program managed by CCSSE to train Fellows to conduct educator workshops, additional workshops planned for NASA educators and members of the Minority University - SPace Interdisciplinary Network (MU-SPIN), and existing inner-city science education programs (e.g., the CASE Summer Science Institute in Washington, D.C.). All lessons are mapped to national standards and benchmarks by MESSENGER EPO team members trained by the American Association for the Advancement of Science (AAAS) Project 2061, all involve user input and feedback and quality control by the EPO team, and all are thoroughly screened by members of the project science and engineering teams. At the college level, internships in science and engineering are provided to students at minority institutions through a program managed by MU-SPIN, and additional opportunities for student participation across the country are planned as the mission proceeds. Outreach efforts include radio spots (AAAS), museum displays (National Air and Space Museum), posters and traveling exhibits (CASE), general language books (AAAS), programs targeting underserved communities (AAAS, CCSSE, and MU-SPIN), and a documentary highlighting the scientific and technical challenges involved in exploring Mercury and how the MESSENGER team has been meeting these challenges. As with the educational elements, science and engineering team members are active partners in each of the public outreach efforts. MESSENGER fully leverages other NASA EPO programs, including the Solar System Exploration EPO Forum and the Solar System Ambassadors. The overarching goal of the MESSENGER EPO program is to convey the excitement of planetary exploration to students and the lay public throughout the nation.

Solomon, S. C.; Stockman, S.; Chapman, C. R.; Leary, J. C.; McNutt, R. L.

2003-12-01

10

NASA's Asteroid Redirect Mission: A Robotic Boulder Capture Option for Science, Human Exploration, Resource Utilization, and Planetary Defense  

NASA Technical Reports Server (NTRS)

NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar electric propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (4 - 10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (1 - 5 m) via robotic manipulators from the surface of a larger (100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well- characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense. Science: The RBC option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. In addition, the material surrounding the boulder can be collected from the surface, thus providing geological contextual information and additional samples of NEA regolith. The robotic manipulators used for capturing the boulder will ensure some of the surface remains undisturbed and that the boulder will retain its structural integrity, which will preserve the context of any samples collected by the astronauts and ensure a high level of science return. Human Exploration: Due to the coherent nature of the boulder that will be collected, entire encapsulation of the asteroid material is not required. This facilitates exploration and sample collection of the boulder by astronauts in a variety of ways. The total time for EVA during the crew portion of the mission is very limited. Current estimates are that each of the two EVAs will only last four hours. The RBC option will allow crew members to have good situational awareness of the work site and quickly identify sample sites of interest. In addition, the samples to be collected can be readily accessed without having to deal with removal of an encapsulation system, which adds extra complexity and risk for the astronauts during EVA. Resource Utilization: One of the most crucial aspects for resource utilization is the identification and collection of appropriate materials (e.g., volatiles, organics, metals, etc.) that contain components of interest. Prior characterization of NEAs is required in order to increase the likelihood that appropriate materials will be returned. Ground-based observations of small (<10 m) NEAs are challenging, but characterization efforts of larger targets have demonstrated that NEAs with volatiles and organics have been identified. Two potential targets for the RBC option (Bennu and 1999 JU3) have been previously identified as potentially rich in resources, and both are already targets of currently planned robotic missions that will characterize their physical properties in great detail. Planetary Defense: The RBC option involves interaction wi

Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

2014-01-01

11

Planetary exploration through year 2000: An augmented program. Part two of a report by the Solar System Exploration Committee of the NASA Advisory Council  

NASA Technical Reports Server (NTRS)

In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.

1986-01-01

12

NASA Planetary Visualization Tool  

Microsoft Academic Search

NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view

P. Hogan; R. Kim

2004-01-01

13

Airships for Planetary Exploration  

NASA Technical Reports Server (NTRS)

The feasibility of utilizing an airship for planetary atmospheric exploration was assessed. The environmental conditions of the planets and moons within our solar system were evaluated to determine their applicability for airship flight. A station-keeping mission of 50 days in length was used as the baseline mission. Airship sizing was performed utilizing both solar power and isotope power to meet the baseline mission goal at the selected planetary location. The results show that an isotope-powered airship is feasible within the lower atmosphere of Venus and Saturn s moon Titan.

Colozza, Anthony

2004-01-01

14

Teaching, Learning, and Planetary Exploration  

NASA Technical Reports Server (NTRS)

This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

Brown, Robert A.

2002-01-01

15

NASA Planetary Science Summer School: Longitudinal Study  

NASA Astrophysics Data System (ADS)

NASA’s Planetary Science Summer School is a program designed to prepare the next generation of scientists and engineers to participate in future missions of solar system exploration. The opportunity is advertised to science and engineering post-doctoral and graduate students with a strong interest in careers in planetary exploration. Preference is given to U.S. citizens. The “school” consists of a one-week intensive team exercise learning the process of developing a robotic mission concept into reality through concurrent engineering, working with JPL’s Advanced Project Design Team (Team X). This program benefits the students by providing them with skills, knowledge and the experience of collaborating with a concept mission design. A longitudinal study was conducted to assess the impact of the program on the past participants of the program. Data collected included their current contact information, if they are currently part of the planetary exploration community, if participation in the program contributed to any career choices, if the program benefited their career paths, etc. Approximately 37% of 250 past participants responded to the online survey. Of these, 83% indicated that they are actively involved in planetary exploration or aerospace in general; 78% said they had been able to apply what they learned in the program to their current job or professional career; 100% said they would recommend this program to a colleague.

Giron, Jennie M.; Sohus, A.

2006-12-01

16

NASA Exploration Design Challenge  

NASA Video Gallery

From the International Space Station, astronaut Sunita Williams welcomes participants to the NASA Exploration Design Challenge and explains the uncertainties about the effects of space radiation on...

17

A Virtual Planetary Exploration: Very Large Virtual Environment  

Microsoft Academic Search

IntroductionMoffett Field, CAVirtual Planetary Exploration (VPE) is a NASA Virtual Environment (VE) project. It is alf"research tool for investigating concepts, methods, and user-interaction strategies that may prove usefuor the design of planetary exploration workstations based on the virtual reality paradigm." The goal of1lsthis application is to support "virtual exploration" of planetary terrain that exhibits geomorphologicatructure and detail usable by planetary

Lewis E. Hitchner

1992-01-01

18

Physics in NASA Exploration  

NASA Technical Reports Server (NTRS)

The primary focus of the workshop was NASA's new concentration on sending crewed missions to the Moon by 2020, and then on to Mars and beyond. Several speakers, including JPL s Fred O Callaghan and NASA's Mark Lee, broached the problem that there is now a serious reduction of capability to perform experiments in the ISS, or to fly significant mass in microgravity by other means. By 2010, the shuttle fleet will be discontinued and Russian craft will provide the only access to the ISS. O Callaghan stated that the Fundamental Physics budget is being reduced by 70%. LTMPF and LCAP are slated for termination. However, ground-based experiments are continuing to be funded at present, and it will be possible to compete for $80-90 million in new money from the Human Research Initiative (HRI). The new program thrust is for exploration, not fundamental physics. Fundamental, we were told by Lee, does not ring well in Washington these days. Investigators were advised to consider how their work can benefit missions to the Moon and Mars. Work such as that regarding atomic clocks is looked upon with favor, for example, because it is considered important to navigation and planetary GPS. Mark Lee stressed that physicists must convey to NASA senior management that they are able and willing to contribute to the new exploration research programs. The new mentality must be we deliver products, not do research. This program needs to be able to say that it is doing at least 50% exploration-related research. JPL s Ulf Israelsson discussed the implications to OBPR, which will deliver methods and technology to assure human health and performance in extraterrestrial settings. The enterprise will provide advanced life-support systems and technology that are reliable, capable, simpler, less massive, smaller, and energy-efficient, and it may offer other necessary expertise in areas such as low-gravity behavior. Like Dr. Lee, he stated that the focus must be on products, not research. While there is not yet a formal direction, he said, LTMPF and PARCS ISS flight projects are slated to terminate in October 2004. All flight investigations are being returned to ground programs and phased out by the end of FY07. Physics ground programs are intact for now, but to survive we must shift about 50% of research to supporting exploration. Basic research programs in other disciplines are being cancelled. Product lines will support human health, safety and life-support, including countermeasures against radiation and other hazards, as well as advances in time-keeping, navigation and communications technologies. Israelsson said that the new Fundamental Physics for Exploration Roadmap points to how fundamental physics research can and does support exploration. JPL will use the roadmap to argue for support for fundamental physics research under several codes. Nicholas Bigelow of the University of Rochester encouraged attendees not to become discouraged, but rather to embrace the opportunities presented by NASA's new direction.

O'Callaghan, Fred

2004-01-01

19

Parallel Architectures for Planetary Exploration Requirements (PAPER)  

NASA Technical Reports Server (NTRS)

The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified.

Cezzar, Ruknet; Sen, Ranjan K.

1989-01-01

20

Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions: Overview of the Technology Maturation Efforts Funded by NASA's Game Changing Development Program  

NASA Technical Reports Server (NTRS)

The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of interest. The entry environment is not always guaranteed with a direct entry, and improving the entry system's robustness to a variety of environmental conditions could aid in reaching more varied landing sites."

Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

2012-01-01

21

Public communication strategy for NASA’s planetary protection program: Expanding the dialogue  

NASA Astrophysics Data System (ADS)

The US National Aeronautics and Space Administration (NASA) Planetary Protection Office, in the Science Mission Directorate, has a long-term initiative under way in communication research and planning. The possibility of extraterrestrial life and efforts to search for evidence of it is one of NASA’s key missions and a subject of great interest to the public. Planetary protection plays a key role in the search for signs of life elsewhere, and NASA’s Planetary Protection Office has long recognized the importance of communications in accomplishing its goals and objectives. With solar system exploration missions advancing into the era of sample return and with the science of astrobiology changing assumptions about the nature and boundaries of life, the NASA Planetary Protection Office is expanding its communication research efforts. For the past decade, communication research sponsored by the NASA planetary protection program has focused on reaching members of the science community and addressing legal and ethical concerns. In 2003, the program broadened its communication research efforts, initiating the development of a communication strategy based on an interactive model and intended to address the needs of a broad range of external audiences. The NASA Planetary Protection Office aims to ensure that its scientific, bureaucratic, and other constituencies are fully informed about planetary protection policies and procedures and that scientists and officials involved in planetary protection are prepared to communicate with a variety of public audiences about issues relating to planetary protection. This paper describes NASA’s ongoing planetary protection communication research, including development of a communication strategy and a risk communication plan.

Billings, Linda

2006-01-01

22

NASA's Small Explorer program  

NASA Technical Reports Server (NTRS)

This paper describes a new component of the NASA's Explorer Program, the Small Explorer program, initiated for the purpose of providing research opportunities characterized by quick and frequent small turn-around space missions. The objective of the Small Explorer program is to launch one to two payloads per year, depending on the mission cost and the availability of funds and launch vehicles. In the order of tentative launch date, the flight missions considered by the Small Explorer program are the Solar, Anomalous, and Magnetospheric Explorer; the Submillimeter Wave Astronomy Satellite; the Fast Auroral Snapshot Explorer; and the Total Ozone Mapping Spectrometer.

Jones, W. Vernon; Rasch, Nickolus O.

1989-01-01

23

Public communication strategy for NASA's planetary protection program  

NASA Astrophysics Data System (ADS)

The U.S. National Aeronautics and Space Administration (NASA) Planetary Protection Office, in the Office of Space Science, has a long-term initiative under way in communication research and planning. The possibility of extraterrestrial life and efforts to search for evidence of it is one of NASA's key missions, and of great interest to the public. Planetary protection plays a key role in the search for signs of life elsewhere, and as NASA expands its solar system exploration efforts, communication planning for planetary protection must expand to meet growing needs. NASA's Clearly Protection Office has long recognized the importance of communications in accomplishing its goals and objectives. With solar system exploration missions advancing into the era of sample return and with the science of astrobiology changing assumptions about the nature and boundaries of life, the Planetary Protection office is expanding its communication planning efforts and taking first steps toward implementation of a long-term strategy. For the past 10 years, communication research sponsored by the NASA planetary protection program has focused on reaching members of the science community and addressing legal and ethical concerns. In 2003, the program expanded its communication research efforts, initiating the development of a communication strategy based on a participatory model and intended to address the needs of a broad range of extra audiences. The Planetary Protection Office aims to ensure that its scientific, bureaucratic, and other constituencies are fully informed about planetary protection policies and procedures and prepared to communicate with a variety of public audiences about issues relating to planetary protection. This paper will describe NASA's ongoing planetary protection communication research efforts, focusing on development of a participatory communication strategy to enable broadest possible public participation in planning and development of solar system sample return missions and Earth-based sample receiving facilities.

Billings, L.

24

NASA: Mars Exploration Program  

NSDL National Science Digital Library

This site from NASA contains an overview of the Mars Exploration program and features the Latest Rover and Orbiter Updates. Resources for kids, students, educators, and the press are provided along with numerous images, press releases, and multimedia resources like the Rover Road Trip Slideshow. The site supplies a variety of resources and numerous web links.

2006-10-11

25

NASA: Solar System Exploration  

NSDL National Science Digital Library

This NASA website offers a wide variety of space science-related activities, multimedia, and facts for people of all ages. The website presents the latest news and upcoming space science events. Students and educators can explore space missions by name, decade, target, and nation. In the Science and Technology link, visitors can find the latest science and technology features, NASA science highlights, as well as information about astrobiology and power and propulsion. Kids will enjoy the Alien Safari interactive module and interesting facts about the planets. Teachers can easily locate activities about the science behind the latest NASA headlines through the Fast Lesson Finder. Everyone can view the images and videos of the planets, spacecraft, technology, and additional subjects.

2006-01-10

26

NASA's Mars Exploration Program  

NSDL National Science Digital Library

This site provides information and resources on the NASA Mars Exploration Program, a science-driven program that seeks to understand whether Mars was, is, or can be a habitable world, as suggested by the presence or absence of liquid water. Site materials include overviews of current and past Mars missions and spacecraft, facts and a virtual tour of the planet using the NASA Mars Atlas, and a brief discussion of the perception of Mars in popular culture. For students, there are interactive features, games, and activities. For educators, there are professional development materials, classroom resources (activities and lessons), and information on four major education programs connected with Mars exploration. Other materials include news articles, multimedia presentations, recent images, and updates from current missions.

27

Exploring Planetary Moons  

NSDL National Science Digital Library

This is a collection of mathematics problems relating to the moons of the solar system. Learners will use simple proportional relationships and work with fractions to study the relative sizes of the larger moons in our solar system, and explore how temperatures change from place to place using the Celsius and Kelvin scales.

28

Telescience from NASA planetary spacecraft  

NASA Technical Reports Server (NTRS)

Techniques reasonably classified as 'telescience' in NASA missions are discussed. The first interplanetary probe, Mariner 2, was launched towards Venus nearly 30 years ago. Since that time, NASA has successfully completed missions to Mercury (Mariner 10), Venus (Mariners 5 and 10, Pioneers 12 and 13, Galileo, and Magellan), Mars (Mariners 4, 6, 7, and 9, and Vikings 1 and 2), Jupiter (Pioneers 10 and 11, Voyagers 1 and 2, and the approaching Galileo), Saturn (Pioneer 11, Voyagers 1 and 2, and the planned Cassini), Uranus (Voyager 2), and Neptune (Voyager 2). Missions to asteroids (Galileo, CRAF, and Cassini), and to a comet (CRAF) are presently being prepared or underway. Procedures have to be adapted to permit the latest possible updating of the planned observational sequences, to counteract the effects of a 492 minute round trip light time, and to provide automatic fault sensing and correction. Special emphasis is placed on those used for the Voyager encounter with Neptune in Aug. 1989.

Miner, Ellis D.

1992-01-01

29

NASA's Planetary Aeolian Laboratory: Facilities and Plans for Future Availability  

NASA Astrophysics Data System (ADS)

The Planetary Aeolian Laboratory (PAL), supported by NASA's Planetary Geology and Geophysics (PG&G) program, is a unique facility used for conducting experiments and simulations of aeolian processes (windblown particles) under different planetary atmospheric environments, including Earth, Mars, and Saturn's moon Titan. With the death of PAL founder Ronald Greeley in 2011, there is concern in the planetary aeolian community whether the PAL will be maintained for continued use by planetary scientists. This presentation will review the PAL facilities, what are their current capabilities, how can interested scientists propose to NASA to use them, and what are the long-term plans for their continued use. The PAL includes one of the nation's largest pressure chambers for conducting low-pressure research. The primary purpose of the PAL is to enable scientific research into aeolian processes under controlled laboratory conditions, and enable testing and calibration of spacecraft instruments and components for NASA's solar system missions, including those requiring a large volume simulated Martian atmosphere. The PAL consists of: 1) the Mars Wind Tunnel (MARSWIT) and 2) Titan Wind Tunnel (TWT) located in the Structural Dynamics Building (N-242) at the NASA Ames Research Center (ARC) in Mountain View, California and administered by Arizona State University. Also available (although not officially part of the PAL facilities) is: 3) an ambient pressure/temperature wind tunnel (ASUWIT) and 4) a vortex (dust devil) generator (ASUVG) on the Tempe campus of Arizona State University (ASU), which is part of the ASU School of Earth and Space Exploration (SESE) and the Ronald Greeley Center for Planetary Studies. The TWT just came online in June 2012, and upgrades are underway to both the hardware and software of the MARSWIT and ASUWIT. Long-term plans are for ASU to continue to manage these facilities, to make them as capable as possible, so that they may be useful resources to NASA and the aeolian community for many years to come.

Williams, D. A.

2012-12-01

30

Teaching, learning, and planetary exploration  

NASA Technical Reports Server (NTRS)

The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers both at the technical and policy level to assure the efficiency and ultimate utility of these efforts to derive educational benefits from the space science and exploration program as a whole.

Brown, Robert A.

1992-01-01

31

Public Participation in Planetary Exploration  

NASA Astrophysics Data System (ADS)

In the past several years The Planetary Society has created several innovative opportunities for general public participation in the exploration of the solar system and the search for extraterrestrial life. The conduct of such exploration has traditionally been the province of a few thousand, at most, of professionally involved scientists and engineers. Yet the rationale for spending resources required by broad and far-reaching exploration involves a greater societal interest - it frequently being noted that the rationale cannot rely on science alone. This paper reports on the more notable of the opportunities for general public participation, in particular: 1) Visions of Mars: a CD containing the works of science fiction about Mars, designed to be placed on Mars as the first library to be found by eventual human explorers; 2) MAPEX: a Microelectronics And Photonics Experiment, measuring the radiation environment for future human explorers of Mars, and containing a electron beam lithograph of names of all the members of The Planetary Society at a particular time; 3) Naming of spacecraft: Involvement in the naming of spacecraft: Magellan, Sojourner; 4) The Mars Microphone: the first privately funded instrument to be sent to another world; 5) Red Rover Goes to Mars: the first commercial-education partnership on a planetary mission; 6) Student designed nanoexperiments: to fly on a Mars lander; and 7) SETI@home: a tool permitting millions to contribute to research and data processing in the search for extraterrestrial intelligence. A brief description of each of the projects will be given, and the opportunity it provided for public participation described. The evolving complexity of these projects suggest that more opportunities will be found, and that the role of public participation can increase at the same time as making substantive contributions to the flight missions. It will be suggested that these projects presage the day that planetary exploration will be truly and global and mass public enterprise, with people in their homes, and in schools, in direct communication, and even control, of robotic devices on other worlds. The effect of this on future human and robotic exploration plans is considered. Specific suggestions and plans for the Mars program will be offered - for the 2003, 2005 planned missions, for rovers, balloons and other aerostats, and for outposts leading to human flight. Partnerships among government and non-government organizations internationally and domestically and among different types of organizations contributing to education and public outreach will be discussed.

Friedman, Louis

2000-07-01

32

Investments by NASA to build planetary protection capability  

NASA Astrophysics Data System (ADS)

NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad

33

NASA'S Mars Exploration Homepage  

NSDL National Science Digital Library

This extensive site from NASA hosts a collection of science and news articles, images and animations, and resources for teachers and students. Information about various Martian missions and observational technologies are included as well as links to other NASA sites that relate to Mars.

Nasa

34

78 FR 15378 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...following topics: --Planetary Science Division Update --Mars Exploration Program Update --Mars Science Laboratory/Curiosity Update...202) 358- 3094. U.S. citizens and Permanent Residents...

2013-03-11

35

78 FR 56246 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Subcommittee reports to the Science Committee of the NAC. The...INFORMATION CONTACT: Ms. Ann Delo, Science Mission Directorate, NASA...following topics: --Planetary Science Division Update --Mars Exploration...202) 358-3092. U.S. citizens and Permanent Residents...

2013-09-12

36

Robots and Humans in Planetary Exploration: Working Together?  

NASA Technical Reports Server (NTRS)

Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

2002-01-01

37

Planetary Protection Technologies: Technical Challenges for Mars Exploration  

NASA Technical Reports Server (NTRS)

The search for life in the solar system, using either in situ analysis or sample return, brings with it special technical challenges in the area of planetary protection. Planetary protection (PP) requires planetary explorers to preserve biological and organic conditions for future exploration and to protect the Earth from potential extraterrestrial contamination that could occur as a result of sample return to the Earth-Moon system. In view of the exploration plans before us, the NASA Solar System Exploration Program Roadmap published in May 2003 identified planetary protection as one of 13 technologies for "high priority technology investments." Recent discoveries at Mars and Jupiter, coupled with new policies, have made this planning for planetary protection technology particularly challenging and relevant.New missions to Mars have been formulated, which present significantly greater forward contamination potential. New policies, including the introduction by COSPAR of a Category IVc for planetary protection, have been adopted by COSPAR in response. Some missions may not be feasible without the introduction of new planetary protection technologies. Other missions may be technically possible but planetary protection requirements may be so costly to implement with current technology that they are not affordable. A strategic investment strategy will be needed to focus on technology investments designed to enable future missions and reduce the costs of future missions. This presentation will describe some of the potential technological pathways that may be most protective.

Buxbaum, Karen L.

2005-01-01

38

Planetary explorer liquid propulsion study  

NASA Technical Reports Server (NTRS)

An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.

Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.

1971-01-01

39

Manned flight and planetary scientific exploration.  

NASA Astrophysics Data System (ADS)

Human explorers had a fundamental role in the success of the APOLLO moon programme, they were at the same time the indispensable pilots, scientific operators and on the last missions lead scientists. Since, man did not either return to the moon or land on Mars but manned operation centres on the earth are now conducting extensive telescience on both celestial bodies. Manned flights to moon, Mars and asteroids are however still on the agenda and even if the main drive of these projects is outside science, it is to the planetary scientists to both prepare the data bases necessary for these flights and to ensure that the scientific advantage of conducting research in real time and in situ is exploited to the maximum. The current manned flight programme in Europe concentrates on the use of the International Space Station, the scientific activities can be roughly divided between the pressurized payloads and the external payloads. Technology developments occur also in parallel and prepare new exploration techniques. The current planning leads to exploitation up to 2020 but the space agencies study further extensions, the date of 2028 having already been considered. The relation of these programmes to future manned planetary exploration will be described both from the science and development point of view. The complementary role of astronauts and ground operation centres will be described on the basis of the current experience of operation centres managing the International Space Station. Finally, the NASA ORION project of exploration in the solar system will be described with emphasis on its current European participations. The science opportunities presented by independent ventures as Inspiration Mars or Mars One will be presented.

Muller, Christian; Moreau, Didier

2014-05-01

40

Overview of Innovative Aircraft Power and Propulsion Systems and Their Applications for Planetary Exploration  

NASA Technical Reports Server (NTRS)

Planetary exploration may be enhanced by the use of aircraft for mobility. This paper reviews the development of aircraft for planetary exploration missions at NASA and reviews the power and propulsion options for planetary aircraft. Several advanced concepts for aircraft exploration, including the use of in situ resources, the possibility of a flexible all-solid-state aircraft, the use of entomopters on Mars, and the possibility of aerostat exploration of Titan, are presented.

Colozza, Anthony; Landis, Geoffrey; Lyons, Valerie

2003-01-01

41

Human-Robot Planetary Exploration Teams  

NASA Technical Reports Server (NTRS)

The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus areas of our research are safety and crew time efficiency. For safety, our work involves enabling humans to reliably communicate with a robot while moving in the same workspace, and enabling robots to monitor and advise humans of potential problems. Voice, gesture, remote computer control, and enhanced robot intelligence are methods we are studying. For crew time efficiency, we are investigating the effects of assigning different roles to humans and robots in collaborative exploration scenarios.

Tyree, Kimberly

2004-01-01

42

LAPE: laser altimeter for planetary exploration  

Microsoft Academic Search

Laser based altimetry can be very beneficial for planetary exploration, especially in the absence of any significant atmosphere. This technique can provide accurate information on the surface profile (topographic mapping) in a fast and cost effective manner, allowing, within the characteristics of the spacecraft orbit, repeated global coverage of the planet surface. The key characteristics of planetary laser altimetry are

Eamonn M. Murphy; Nicola Rando; Peter Falkner; Anthony Peacock

2004-01-01

43

Parallel Architectures for Planetary Exploration Requirements (PAPER)  

NASA Astrophysics Data System (ADS)

The project's main contributions have been in the area of student support. Throughout the project, at least one, in some cases two, undergraduate students have been supported. By working with the project, these students gained valuable knowledge involving the scientific research project, including the not-so-pleasant reporting requirements to the funding agencies. The other important contribution was towards the establishment of a graduate program in computer science at Hampton University. Primarily, the PAPER project has served as the main research basis in seeking funds from other agencies, such as the National Science Foundation, for establishing a research infrastructure in the department. In technical areas, especially in the first phase, we believe the trip to Jet Propulsion Laboratory, and gathering together all the pertinent information involving experimental computer architectures aimed for planetary explorations was very helpful. Indeed, if this effort is to be revived in the future due to congressional funding for planetary explorations, say an unmanned mission to Mars, our interim report will be an important starting point. In other technical areas, our simulator has pinpointed and highlighted several important performance issues related to the design of operating system kernels for MIMD machines. In particular, the critical issue of how the kernel itself will run in parallel on a multiple-processor system has been addressed through the various ready list organization and access policies. In the area of neural computing, our main contribution was an introductory tutorial package to familiarize the researchers at NASA with this new and promising field zone axes (20). Finally, we have introduced the notion of reversibility in programming systems which may find applications in various areas of space research.

Cezzar, Ruknet

1993-08-01

44

Evolving directions in NASA's planetary rover requirements and technology  

NASA Technical Reports Server (NTRS)

This paper reviews the evolution of NASA's planning for planetary rovers (i.e. robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that has been developed to achieve the desired capabilities. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. We first describe robotic vehicles, and their associated control systems, developed by NASA in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission. Suggested goals at that time for such an MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Subsequently, we present the current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions. This paper describes some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible.

Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

1993-01-01

45

Robots and Humans: Synergy in Planetary Exploration  

NASA Technical Reports Server (NTRS)

How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.

Landis, Geoffrey A.

2003-01-01

46

NASA establishes office of exploration  

NASA Astrophysics Data System (ADS)

The National Aeronautics and Space Administration (NASA) has a new Office of Exploration that will coordinate agency activities that would “expand the human presence beyond Earth,” particularly to the moon and Mars.Sally K. Ride is serving as the office's acting assistant administrator until mid August. Ride, the first U.S. woman in space, has been in charge of a NASA study to determine a possible new major space goal for the United States. Her study group recently identified four major areas for concentrated examination as possible initiatives for a new national space objective: intensive study of Earth systems for better understanding of how to protect Earth's environment,a stepped-up robotic program to explore the planets, moons, and other solar system bodies,the establishment of a scientific base and a permanent human presence on the moon, andintensive exploration of Mars by robot, followed by human exploration of the planet.

47

Planetary exploration through year 2000, a core program: Mission operations  

NASA Astrophysics Data System (ADS)

In 1980 the NASA Advisory Council created the Solar System Exploratory Committee (SSEC) to formulate a long-range program of planetary missions that was consistent with likely fiscal constraints on total program cost. The SSEC had as its primary goal the establishment of a scientifically valid, affordable program that would preserve the nation's leading role in solar system exploration, capitalize on two decades of investment, and be consistent with the coordinated set of scientific stategies developed earlier by the Committe on Planetary and Lunar Exploration (COMPLEX). The result of the SSEC effort was the design of a Core Program of planetary missions to be launched by the year 2000, together with a realistic and responsible funding plan. The Core Program Missions, subcommittee activities, science issues, transition period assumptions, and recommendations are discussed.

48

Planetary exploration through year 2000, a core program: Mission operations  

NASA Technical Reports Server (NTRS)

In 1980 the NASA Advisory Council created the Solar System Exploratory Committee (SSEC) to formulate a long-range program of planetary missions that was consistent with likely fiscal constraints on total program cost. The SSEC had as its primary goal the establishment of a scientifically valid, affordable program that would preserve the nation's leading role in solar system exploration, capitalize on two decades of investment, and be consistent with the coordinated set of scientific stategies developed earlier by the Committe on Planetary and Lunar Exploration (COMPLEX). The result of the SSEC effort was the design of a Core Program of planetary missions to be launched by the year 2000, together with a realistic and responsible funding plan. The Core Program Missions, subcommittee activities, science issues, transition period assumptions, and recommendations are discussed.

1986-01-01

49

Evolving directions in NASA's planetary rover requirements and technology  

NASA Technical Reports Server (NTRS)

The evolution of NASA's planning for planetary rovers (that is robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that was developed to achieve the desired capabilities is reviewed. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. Robotic vehicles and their associated control systems, developed in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission, are described. Goals suggested at the time for such a MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions are presented. Some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible are described.

Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

1993-01-01

50

Communication Research for NASA's Planetary Protection Program: Science, Risk, Models, Strategy  

NASA Astrophysics Data System (ADS)

Planetary protection is the term used to describe policies and practices that are intended to prevent 1) contamination of extraterrestrial environments by microbial Earth life (forward contamination) and 2) contamination of Earth's environment by possible extraterrestrial microbial life (back contamination) in the course of solar system exploration. The U.S. National Aeronautics and Space Administration (NASA) and the international Committee on Space Research (COSPAR) both have planetary protection policies in place. Because the practice of planetary protection involves many different disciplines and many different national and international and governmental and nongovernmental organizations, communication has always been an important element of the practice. Thus NASA Planetary Protection Office has a long-term communication research initiative under way, addressing legal and ethical issues relating to planetary protection, models and methods of science and risk communication, and communication strategy and planning. With the pace of solar system exploration picking up, the era of solar system sample return under way, and public concerns about biological contamination heightened, communication is an increasingly important concern in the planetary protection community. This paper will describe current activities in communication research for NASA's planetary protection program.

Billings, L.

2004-12-01

51

NASA Propulsion Investments for Exploration and Science  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high specific impulse chemical engine is in development that will add additional capability to performance-demanding space science missions. In summary, the paper provides a survey of current NASA development and risk reduction propulsion investments for exploration and science.

Smith, Bryan K.; Free, James M.; Klem, Mark D.; Priskos, Alex S.; Kynard, Michael H.

2008-01-01

52

76 FR 58303 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.  

Federal Register 2010, 2011, 2012, 2013

...11-081)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting. AGENCY: National Aeronautics...Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council...

2011-09-20

53

76 FR 62456 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...11-089] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics...Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council...

2011-10-07

54

76 FR 69292 - NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...SPACE ADMINISTRATION [Notice 11-113] NASA Advisory Council Science Committee Planetary...Aeronautics and Space Administration (NASA) announces that the meeting of the Planetary Science Subcommittee of the NASA Advisory Council originally...

2011-11-08

55

The Laser Altimeter for Planetary Exploration (LAPE)  

NASA Astrophysics Data System (ADS)

Laser based altimetry can be a very beneficial tool for remote planetary exploration. This technique can provide accurate information on the surface profile (topographic mapping) in a fast and cost effective manner, allowing, within the characteristics of the spacecraft orbit, repeated global coverage of the planet surface. A laser altimeter can further determine the shape of the planet and the amount of libration in the planets rotation. The key characteristics of laser altimetry are therefore: 1) good altitude resolution (of order 1 m) and range (of order 500-1000 km); 2) active measurements principle (i.e. not requiring direct sun illumination); 3) relatively simple detection chain (as compared to radar based systems); 4) low resources budget (e.g. mass, power, envelope, data rate); 5) relatively simple interface and integration with the spacecraft. Laser altimeters have already been flown onboard a number of space missions, including Earth Observation and Planetary Exploration missions. A laser altimeter forms a key component of the model payload for the ESA mission to Mercury, Bepi-Colombo (onboard the Planetary Orbiter, MPO). The European Space Agency is presently working on the definition of a generic laser altimeter for planetary exploration. The mission to Mercury is being used as a reference for the definition of the environmental and operational requirements. The paper presents the preliminary results obtained during the definition phase of the instrument design. It is envisaged that such instruments may in the future form part of a standard, yet flexible, package for future planetary remote sensing missions.

Rando, N.; Murphy, E.; Falkner, P.; Peacock, A.

2003-04-01

56

NASA: Exploration in 3D  

NSDL National Science Digital Library

NASA's Exploration in 3D website is well executed and is accompanied by music with that classic, creepy, outer space feel. For visitors who prefer silence while looking at images of deep, dark space, there is a mute button near the bottom right side of the homepage. With this website, NASA is allowing the public to see their next major project, which involves creating a transportation system to take astronauts to the moon and then on to Mars. To enable the interested public to watch the progress of their plans for space, NASA will be taking photos of the project and putting them on this website, so they can be downloaded and printed. Once said images are printed, that's where the 3-D pocket viewfinders come in. For visitors interested in getting a viewfinder, click on the link at the bottom of the page that says "Click here to request your own EXN3D Pocket Viewfinder". To view the latest images with your viewfinder that are ready to download and print, visitors can click on "Downloads". Interested parties should check back in the future to see newly added images of the progress of the transportation system.

57

The Laser Altimeter for Planetary Exploration (LAPE)  

Microsoft Academic Search

Laser based altimetry can be a very beneficial tool for remote planetary exploration. This technique can provide accurate information on the surface profile (topographic mapping) in a fast and cost effective manner, allowing, within the characteristics of the spacecraft orbit, repeated global coverage of the planet surface. A laser altimeter can further determine the shape of the planet and the

N. Rando; E. Murphy; P. Falkner; A. Peacock

2003-01-01

58

Ground Mobility Systems for Planetary Exploration  

Microsoft Academic Search

This paper surveys past and current designs of surface mobility systems lor planetary exploration i robots developed at JPL\\/Canech. Wheeled rovers are ! discussed in some detail, andxompared to new designs, such as legged and hopping robots, which are emerg- ing as viable alternatives to wheeled mobility for spe- cific applications. The paper discusses the main fea- tures of mobility

Paolo Fiorini

2000-01-01

59

Flash LIDAR Systems for Planetary Exploration  

NASA Astrophysics Data System (ADS)

Ball Aerospace offers a mature, highly capable 3D flash-imaging LIDAR system for planetary exploration. Multi mission applications include orbital, standoff and surface terrain mapping, long distance and rapid close-in ranging, descent and surface navigation and rendezvous and docking. Our flash LIDAR is an optical, time-of-flight, topographic imaging system, leveraging innovations in focal plane arrays, readout integrated circuit real time processing, and compact and efficient pulsed laser sources. Due to its modular design, it can be easily tailored to satisfy a wide range of mission requirements. Flash LIDAR offers several distinct advantages over traditional scanning systems. The entire scene within the sensor's field of view is imaged with a single laser flash. This directly produces an image with each pixel already correlated in time, making the sensor resistant to the relative motion of a target subject. Additionally, images may be produced at rates much faster than are possible with a scanning system. And because the system captures a new complete image with each flash, optical glint and clutter are easily filtered and discarded. This allows for imaging under any lighting condition and makes the system virtually insensitive to stray light. Finally, because there are no moving parts, our flash LIDAR system is highly reliable and has a long life expectancy. As an industry leader in laser active sensor system development, Ball Aerospace has been working for more than four years to mature flash LIDAR systems for space applications, and is now under contract to provide the Vision Navigation System for NASA's Orion spacecraft. Our system uses heritage optics and electronics from our star tracker products, and space qualified lasers similar to those used in our CALIPSO LIDAR, which has been in continuous operation since 2006, providing more than 1.3 billion laser pulses to date.

Dissly, Richard; Weinberg, J.; Weimer, C.; Craig, R.; Earhart, P.; Miller, K.

2009-01-01

60

Planetary Society: Explore for Kids  

NSDL National Science Digital Library

Educational activities related to space exploration suitable for elementary to middle-school students, including an opportunity to remotely drive (via home computer) a robotic Mars rover made of LEGOs. Instructions provided for observing and photographing meteor showers, constructing model rockets and comets, demonstrating the distances between planets, and creating a simulated volcanic eruption.

61

Information architecture for a planetary 'exploration web'  

NASA Technical Reports Server (NTRS)

'Web services' is a common way of deploying distributed applications whose software components and data sources may be in different locations, formats, languages, etc. Although such collaboration is not utilized significantly in planetary exploration, we believe there is significant benefit in developing an architecture in which missions could leverage each others capabilities. We believe that an incremental deployment of such an architecture could significantly contribute to the evolution of increasingly capable, efficient, and even autonomous remote exploration.

Lamarra, N.; McVittie, T.

2002-01-01

62

Miniaturisation of imaging spectrometer for planetary exploration  

NASA Astrophysics Data System (ADS)

Future planetary exploration on telluric or giant planets will need a new kind of instrumentation combining imaging and spectroscopy at high spectral resolution to achieve new scientific measurements, in particular for atmospheric studies in nadir configuration. We present here a study of a Fourier Transform heterodyne spectrometer, which can achieve these objectives, in the visible or infrared. The system is composed of a Michelson interferometer, whose mirrors have been replaced by gratings, a configuration studied in the early days of Fourier Transform spectroscopy, but only recently reused for space instrumentation, with the availability of large infrared mosaics. A complete study of an instrument is underway, with optical and electronic tests, as well as data processing analysis. This instrument will be proposed for future planetary missions, including ESA/Bepi Colombo Mercury Planetary Orbiter or Earth orbiting platforms.

Drossart, Pierre; Semery, Alain; Réess, Jean-Michel; Combes, Michel

2004-06-01

63

Scientific Assessment of NASA's Solar System Exploration Roadmap  

NASA Technical Reports Server (NTRS)

At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.

1996-01-01

64

Scientific Assessment of NASA's Solar System Exploration Roadmap  

NASA Astrophysics Data System (ADS)

At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.

1996-08-01

65

Submillimeter Planetary Atmospheric Chemistry Exploration Sounder  

NASA Technical Reports Server (NTRS)

Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

2013-01-01

66

NASA Planetary Scientist Profile Emily Wilson  

NASA Video Gallery

NASA scientist Emily Wilson discusses her work developing miniaturized instruments that measure greenhouse gases in the atmosphere. Her latest instrument, the mini-LHR, works in tandem with AERONET...

67

Plasma Experiment for Planetary Exploration (PEPE)  

Microsoft Academic Search

The Plasma Experiment for Planetary Exploration (PEPE) flown on Deep Space 1 combines an ion mass spectrometer and an electron\\u000a spectrometer in a single, low-resource instrument. Among its novel features PEPE incorporates an electrostatically swept field-of-view\\u000a and a linear electric field time-of-flight mass spectrometer. A significant amount of effort went into developing six novel\\u000a technologies that helped reduce instrument mass

D. T. Young; J. E. Nordholt; J. Baldonado; D. J. McComas; R. P. Bowman; R. A. Abeyta; J. Alexander; P. Barker; R. K. Black; T. L. Booker; P. J. Casey; L. Cope; F. J. Crary; J. P. Cravens; H. O. Funsten; R. Goldstein; D. R. Guerrero; S. F. Hahn; J. J. Hanley; B. P. Henneke; E. F. Horton; D. J. Lawrence; K. P. McCabe; D. Reisenfeld; R. P. Salazar; M. Shappirio; S. A. Storms; C. Urdiales; J. H. Waite

2007-01-01

68

75 FR 36445 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY...announces a meeting of the Planetary Science Subcommittee of the NASA Advisory...Group --Update on Progress of Planetary Science Technology Review...

2010-06-25

69

75 FR 80851 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY...announces a meeting of the Planetary Science Subcommittee of the NASA Advisory...following topics: --Update on the Planetary Science Division. --Update from...

2010-12-23

70

76 FR 31641 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY...announces a meeting of the Planetary Science Subcommittee of the NASA Advisory...following topics: --Review of the Planetary Science Division Response to the...

2011-06-01

71

76 FR 7235 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY...announces a meeting of the Planetary Science Subcommittee of the NASA Advisory...Budget Request and Impact to Planetary Science Division --Discussion...

2011-02-09

72

76 FR 10626 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY...Administration announces a meeting of the Planetary Science Subcommittee of the NASA Advisory...Discussion and Formulation of the Planetary Science Division's Response to...

2011-02-25

73

The NASA\\/USGS Planetary Geologic Mapping Program  

Microsoft Academic Search

NASA's Planetary Geologic Mapping Program (PGM) publishes geologic maps of the planets based on released, geodetically controlled spacecraft data. The general objectives of PGM include (1) production of geologic maps that will greatly increase our knowledge of the materials and processes that have contributed to the evolution of Solar System bodies, and (2) geologic surveys of areas of special interest

K. Tanaka

2006-01-01

74

Multimission ground data system support of NASA'S planetary program  

Microsoft Academic Search

NASA funds the Multimission Operations Systems Office (MOSO) at the Jet Propulsion Laboratory to design, develop, and operate the Advanced Multimission Operations (AMMOS) multimission ground data system capabilities that are used to control operational spacecraft and process data returned from a variety of planetary missions. The AMMOS design is based on use of modular, networked capabilities and industry standard hardware

William B. Green

1995-01-01

75

NASA's planetary protection program as an astrobiology teaching module  

NASA Astrophysics Data System (ADS)

We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

Kolb, Vera M.

2005-09-01

76

IUS application to NASA planetary missions  

NASA Technical Reports Server (NTRS)

The considerations involved in the selection of a new upper stage to launch three planetary missions following the decision to cancel the use of Centaur are discussed, and the methods by which the selected IUS will fly these missions are described. It is shown that the IUS is capable of accomplishing all three misssions (Magellan, Galileo, and Ulysses) with some compromises in mission transit time. Relatively minor modifications to the IUS, airborne support equipment, and software are required. The first of the three missions is to be accomplished two and a half years from go-ahead by the use of existing IUS flight hardware.

Hanford, Denton; Saucier, Sidney

1987-01-01

77

Advanced Sensors for NASA's Exploration Missions.  

National Technical Information Service (NTIS)

This paper presents a variety of advanced sensors needed for NASA's space exploration. The topics include: (1) The vision of the President of the United States of America for Space Exploration; (2) The report of the President's Commission on Implementatio...

R. B. Lal R. G. Clinton D. Frazier

2005-01-01

78

A perception system for a planetary explorer  

NASA Technical Reports Server (NTRS)

To perform planetary exploration without human supervision, a complete autonomous robot must be able to model its environment and to locate itself while exploring its surroundings. For that purpose, the authors propose a modular perception system for an autonomous explorer. The perception system maintains a consistent internal representation of the observed terrain from multiple sensor views. The representation can be accessed from other modules through queries. The perception system is intended to be used by the Ambler, a six-legged vehicle being built at CMU. A partial implementation of the system using a range scanner is presented as well as experimental results on a testbed that includes the sensor, one computer-controlled leg, and obstacles on a sandy surface.

Hebert, M.; Krotkov, E.; Kanade, T.

1989-01-01

79

Adaptive multisensor fusion for planetary exploration rovers  

NASA Technical Reports Server (NTRS)

The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.

Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri

1992-01-01

80

Remote Sensing Instrument Suite for Planetary Exploration  

NASA Astrophysics Data System (ADS)

Payloads onboard of orbiting spacecrafts around planetary bodies of our solar system are very strongly limited in mass because of the challenging Dv requirements to transfer the spacecraft and its scientific payload from Earth to the selected body and perform the orbit insertion. Also the overall cost envelope of the mission play a major role in the limitation of possible payload mass. On the other hand a range of different instruments (cameras, UV- and IR-spectrometer, Gamma-ray, x-ray and neutron spectrometer, laser altimeter, etc…) are required to perform a successful exploration of the planetary body by means of remote sensing. A viable solution is a strong integration of the envisaged instruments into a suite of instruments rather than a collection of single more or less independent instruments. The suite has to share available resources as much as possible and uses a central data handling system and an optimised payload power supply. Use of newest technologies for the detectors helps to reduce or at least relax cooling requirements of the instrument suite. Combination of instrument apertures and optics lead to a further reduction in mass and help to simplify the thermal design of the spacecraft. In the frame of the BepiColombo mission the instruments onboard of the Planetary Orbiter (MPO) undergo such an integration and optimisation process. During the talk the proposed instruments suit architecture and the resulting reductions in resource requirements are presented and compared with a conventional instrumentation approach.

Falkner, P.; Erd, C.; Kraft, S.; Peacock, A.

2003-04-01

81

Middle School Adventures in Planetary Exploration  

NASA Astrophysics Data System (ADS)

During the summer of 1998 the UW-Madison Office of Space Science Education (OSSE) developed and implemented a pilot summer school program to improve the math and science performance of middle school students. The program focused on the subject of solar system exploration for the summer school offered by the Milwaukee Public Schools (MPS) for middle school students. OSSE staff collaborated with science, math, and technology teachers from two middle schools (Milwaukee Education Center and Bell Middle School) to expand upon a series of hands-on, interdisciplinary lesson plans originally developed to accompany the Planetary Society's Red Rover, Red Rover Program. For six weeks, sixty inner city middle school students had the opportunity to explore new worlds as far reaching as Mars, Mercury, Titania, Uranus and Pluto with the assistance of Planetary Scientists and staff from the UW-Madison Space Science and Engineering Center. Students were provided with computers and internet connections by AT&T to conduct on-line research on their own research topic relating to planetary exploration. Based on their own research efforts, teams of five or six students wrote a mission statement and then proceeded to create a terrain resembling their desired planetary target. Team engineers then built a computer operated Lego Dacta rover designed especially for exploring the unique features of their targeted planet. In addition to strengthening their science and math skills, students also focused on the improvement of their communication skills by maintaining a daily journal of their experiences, tribulations and successes. Students were tested in the beginning and again at the end of the program. An independent group from University of Wisconsin-Milwaukee performed overall assessment of the summer program. Based on the overall success in achieving performance enchmarks, the Milwaukee Public Schools and UW-Extension Learning Innovations Center have elected to collaborate with the OSSE to expand the pilot space science curriculum for the academic school year. This effort was supported by a grant from the AT&T Educational Foundation.

Limaye, S. S.; Pertzborn, R. A.

1998-09-01

82

Planetary Protection Issues in the Human Exploration of Mars  

NASA Astrophysics Data System (ADS)

This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial contamination were last studied in a 1990 workshop ("Planetary Protection Issues and Future Mars Missions," NASA CP-10086, 1991), but the timing of that workshop allowed neither a careful examination of the full range of issues, nor an appreciation for the Mars that has been revealed by the Mars Global Surveyor and Mars Pathfinder missions. Future workshops will also have the advantage of Mars Odyssey, the Mars Exploration Rover missions, and ESA's Mars Express, but the Pingree Park workshop reported here had both the NCR's (1992) concern that "Missions carrying humans to Mars will contaminate the planet" and over a decade of careful study of human exploration objectives to guide them and to reconcile. A daunting challenge, and one that is not going to be simple (as the working title of this meeting, "When Ecologies Collide?" might suggest), it is clear that the planetary protection issues will have to be addressed to enable human explorers to safely and competently extend out knowledge about Mars, and its potential as a home for life whether martian or human.

Criswell, Marvin E.; Race, M. S.; Rummel, J. D.; Baker, A.

2005-06-01

83

Ambler - An autonomous rover for planetary exploration  

NASA Technical Reports Server (NTRS)

The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.

Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom

1989-01-01

84

Uniqueness Of The IRTF For NASA Missions And Planetary Astronomy  

NASA Astrophysics Data System (ADS)

The NASA Infrared Telescope Facility is situated at one of the best observing sites in the world and is a key resource for the Planetary Astronomy program. The IRTF provides three essential roles: (1) Timely ground-based observations in support of planetary missions, including Cassini, New Horizons, Mars Reconnaissance Orbiter, Mars Express, LCROSS, DAWN, MESSENGER , and Venus Express. (2) A dedicated telescope facility for the planetary astronomers and space scientists. (3) A training facility and platform for new instrumentation. Observing periods as short as one hour are routinely scheduled with remote observing for time-critical observations. In addition long-term observations can extend for over several decades, as has been the case for synoptic observations of Jupiter, Saturn, and Io. The IRTF also allows rapid response to changing research needs that are driven by new discoveries. We describe on-going improvements to the facility and instrumentation and an overview of mission support activities during the next decade. We acknowledge the support of NASA Cooperative Agreement no. NNX08AE38A with the National Aeronautics and Space Administration, Planetary Astronomy Program.

Tokunaga, Alan T.; Bus, S. J.; Rayner, J. T.; Tollestrup, E. V.

2009-09-01

85

76 FR 64387 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...SPACE ADMINISTRATION [Notice 11-098] NASA Advisory Council; Science Committee...Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This...

2011-10-18

86

75 FR 19661 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...ADMINISTRATION [Notice (10-044)] NASA Advisory Council; Science Committee...Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This...

2010-04-15

87

Space Networking Demonstrated for Distributed Human-Robotic Planetary Exploration.  

National Technical Information Service (NTIS)

Communications and networking experts from the NASA Glenn Research Center designed and implemented an innovative communications infrastructure for a simulated human-robotic planetary mission. The mission, which was executed in the Arizona desert during th...

T. P. Bizon M. A. Seibert

2003-01-01

88

The History of Planetary Exploration Using Mass Spectrometers  

NASA Technical Reports Server (NTRS)

At the Planetary Probe Workshop Dr. Paul Mahaffy will give a tutorial on the history of planetary exploration using mass spectrometers. He will give an introduction to the problems and solutions that arise in making in situ measurements at planetary targets using this instrument class.

Mahaffy, Paul R.

2012-01-01

89

Future NASA solar system exploration activities: A framework for international cooperation  

NASA Technical Reports Server (NTRS)

The goals and approaches for planetary exploration as defined for the NASA Solar System Exploration Program are discussed. The evolution of the program since the formation of the Solar System Exploration Committee (SSEC) in 1980 is reviewed and the primary missions comprising the program are described.

French, Bevan M.; Ramlose, Terri; Briggs, Geoffrey A.

1992-01-01

90

FIDO ROVER FIELD TRIALS AS REHEARSAL FOR THE NASA 2003 MARS EXPLORATION ROVERS MISSION  

Microsoft Academic Search

This paper describes recent extended field trials performed using the FIDO (Field Integrated Design & Operations) rover, an advanced NASA technology development platform and research prototype for the next planned rover mission to Mars. Realistic physical simulation of the NASA 2003 Mars Exploration Rovers mission was achieved through collaborative efforts of roboticists, planetary scientists, and mission operations personnel. An overview

Edward Tunstel; Terry Huntsberger; Hrand Aghazarian; Paul Backes; Eric Baumgartner; Yang Cheng; Michael Garrett; Brett Kennedy; Chris Leger; Lee Magnone; Jeffrey Norris; Mark Powell; Ashitey Trebi-Ollennu; Paul Schenker

2003-01-01

91

FIDO rover field trials as rehearsal for the NASA 2003 Mars Exploration Rovers mission  

Microsoft Academic Search

This paper describes recent extended field trials performed using the FIDO (Field Integrated Design & Operations) rover, an advanced NASA technology development platform and research prototype for the next planned rover mission to Mars. Realistic physical simulation of the NASA 2003 Mars Exploration Rovers mission was achieved through collaborative efforts of roboticists, planetary scientists, and mission operations personnel. An overview

Edward Tunstel; Terry Huntsberger; Hrand Aghazarian; Paul Backes; Eric Baumgartner; Yang Cheng; Michael Garrett; Brett Kennedy; Chris Leger; Lee Magnone; Jeffrey Norris; Mark Powell; Ashitey Trebi-Ollennu; Paul Schenker

2002-01-01

92

Planetary exploration through year 2000: A core Program, part 1  

NASA Astrophysics Data System (ADS)

The Core Program, goals for planetary exploration, continuity and expansion, core program missions, mission implementation, anticipated accomplishments, resource requirements, and near term budget decisions are discussed.

93

NASA Explorer Schools: School Recognition Opportunities  

NASA Video Gallery

NASA Explorer Schools not only provides access to high-quality STEM classroom resources and professional development but also recognizes teachers, schools and students who become highly engaged wit...

94

Explore Mars from the NASA Website  

ERIC Educational Resources Information Center

Here we show how to explore Mars based on data obtainable from the NASA website. The analysis and calculations of some physics questions provide interesting and useful examples of inquiry-based learning.

Zhaoyao, Meng

2005-01-01

95

NASA's Missions for Exoplanet Exploration  

NASA Astrophysics Data System (ADS)

Exoplanets are detected and characterized using a range of observational techniques - including direct imaging, astrometry, transits, microlensing, and radial velocities. Each technique illuminates a different aspect of exoplanet properties and statistics. This diversity of approach has contributed to the rapid growth of the field into a major research area in only two decades. In parallel with exoplanet observations, major efforts are now underway to interpret the physical and atmospheric properties of exoplanets for which spectroscopy is now possible. In addition, comparative planetology probes questions of interest to both exoplanets and solar system studies. In this talk I describe NASA's activities in exoplanet research, and discuss plans for near-future missions that have reflected-light spectroscopy as a key goal. The WFIRST-AFTA concept currently under active study includes a major microlensing survey, and now includes a visible light coronagraph for exoplanet spectroscopy and debris disk imaging. Two NASA-selected community-led teams are studying probe-scale (< 1B) mission concepts for imaging and spectroscopy. These concepts complement existing NASA missions that do exoplanet science (such as transit spectroscopy and debris disk imaging with HST and Spitzer) or are under development (survey of nearby transiting exoplanets with TESS, and followup of the most important targets with transit spectroscopy on JWST), and build on the work of ground-based instruments such as LBTI and observing with HIRES on Keck. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2014. California Institute of Technology. Government sponsorship acknowledged.

Unwin, Stephen

2014-05-01

96

Space Networking Demonstrated for Distributed Human-Robotic Planetary Exploration  

NASA Technical Reports Server (NTRS)

Communications and networking experts from the NASA Glenn Research Center designed and implemented an innovative communications infrastructure for a simulated human-robotic planetary mission. The mission, which was executed in the Arizona desert during the first 2 weeks of September 2002, involved a diverse team of researchers from several NASA centers and academic institutions.

Bizon, Thomas P.; Seibert, Marc A.

2003-01-01

97

Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human-Robotic Colonization  

Microsoft Academic Search

We overview our recent research on planetary mobility. Products of this effort include the Field Integrated Design & Operations rover (FIDO), Sample Return Rover (SRR), reconfigurable rover units that function as an All Terrain Explorer (ATE), and a multi-Robot Work Crew of closely cooperating rovers (RWC). FIDO rover is an advanced technology prototype; its design and field testing support NASA's

Paul S. Schenker; Terry L. Huntsberger; Paolo Pirjanian; Eric T. Baumgartner; Eddie Tunstel

2003-01-01

98

The origin of the smaller, faster, cheaper approach in NASA’s solar system exploration program 1 1 This article was the first prize winner in the 1998 Space Policy student essay competition  

Microsoft Academic Search

The current emphasis on smaller, faster, cheaper (SFC) spacecraft in NASA’s solar system exploration program is the product of a number of interacting – even interdependent – factors. The SFC concept as applied to NASA’s solar system exploration program can be viewed as the vector sum of (1) the space science community’s desire for more frequent planetary missions to plug

Stephanie A Roy

1998-01-01

99

NASA’s Planetary Data System—An Accumulating Archive developed by Scientists for Scientists  

NASA Astrophysics Data System (ADS)

NASA’s Planetary Data System (PDS) was formed in 1986 to ensure that digital data from our planetary missions are efficiently and effectively archived, and to provide the planetary science community access to that data. The archive now includes almost 60 years of data from NASA’s missions. The PDS is a distributed system with individual nodes with expertise tailored to meet the needs of specific discipline areas (from planetary geology to space physics). The PDS has multiple roles. First we work with NASA Flight Programs and missions from the initial Announcement of Opportunity through the end of mission to organize the data, including documentation to ensure that the data sets obtained will be useful for both current and future generations. This process includes peer-review by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented (and searchable). Another role of the PDS is to make the data in our accumulating archives easily searchable so that members of the science community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. A third role of the PDS (and a sister organization, the NSSDC) is to ensure long term preservation. As new capabilities in Information Technology (IT) become available (and as existing technologies become obsolete), it is necessary for the PDS to adapt to the current IT environment. A major new effort by the PDS, known as PDS4, was released in September, 2013. The first two NASA missions to archive under this new PDS4 system are LADEE and MAVEN.

Morgan, Thomas H.; McLaughlin, S. A.; Grayzeck, E. J.; Knopf, W. P.; Vilas, F.; Crichton, D. J.

2013-10-01

100

Magnetotelluric Sensor Development for Planetary Subsurface Exploration  

NASA Astrophysics Data System (ADS)

Electromagnetic (EM) Sounding is a powerful geophysical investigation technique capable of constraining planetary subsurface structure, including core size, mantle and crustal temperature profiles, and the distribution of electrical conductivity at depth. Natural sources of EM activity, including solar wind turbulence and plasma waves, can induce electric and magnetic fields in the Moon and other small bodies. These induced fields respond according to the electrical conductivity as a function of skin depth of the body in question. In a branch of EM Sounding known as Magnetotellurics (MT), measurements of the horizontal electric and magnetic fields at the planetary surface are inverted to produce constraints on the interior. MT is particularly worthwhile in that geophysically meaningful results can be obtained from a single station, thus avoiding network mission architectures. While surface magnetic field measurements were taken on the Moon during the Apollo era, to date no measurements of the surface horizontal electric field have been attempted. However electric field measurements on the lunar surface should be feasible given their long successful history on spacecraft missions in similar environments. Building upon the heritage of electric field sensor technology at the UC Berkeley Space Sciences Laboratory, we describe a development plan for this instrument from component level to a fully functional instrument assembly for use in EM sounding, highlighting operational requirements, science capabilities, required testing, anticipated results and challenges to overcome. Upon development, this lander electric field sensor will enable future MT surveys on the Moon, and will provide a new exploration method for other small airless bodies from a single station.

Fuqua, H.; Delory, G. T.; De Pater, I.; Grimm, R. E.

2012-12-01

101

Antarctic Exploration Parallels for Future Human Planetary Exploration: A Workshop Report  

NASA Technical Reports Server (NTRS)

Four Antarctic explorers were invited to a workshop at Johnson Space Center (JSC) to provide expert assessments of NASA's current understanding of future human exploration missions beyond low Earth orbit. These explorers had been on relatively sophisticated, extensive Antarctic expeditions with sparse or nonexistent support infrastructure in the period following World War II through the end of the International Geophysical Year. Their experience was similar to that predicted for early Mars or other planetary exploration missions. For example: one Antarctic a expedition lasted two years with only one planned resupply mission and contingency plans for no resupply missions should sea ice prevent a ship from reaching them; several traverses across Antarctica measured more than 1000 total miles, required several months to complete, and were made without maps (because they did not exist) and with only a few aerial photos of the route; and the crews of six to 15 were often international in composition. At JSC, the explorers were given tours of development, training, and scientific facilities, as well as documentation at operational scenarios for future planetary exploration. This report records their observations about these facilities and plans in answers to a series of questions provided to them before the workshop.

Hoffman, Stephen J. (Editor)

2002-01-01

102

Antarctic Exploration Parallels for Future Human Planetary Exploration: A Workshop Report  

NASA Astrophysics Data System (ADS)

Four Antarctic explorers were invited to a workshop at Johnson Space Center (JSC) to provide expert assessments of NASA's current understanding of future human exploration missions beyond low Earth orbit. These explorers had been on relatively sophisticated, extensive Antarctic expeditions with sparse or nonexistent support infrastructure in the period following World War II through the end of the International Geophysical Year. Their experience was similar to that predicted for early Mars or other planetary exploration missions. For example: one Antarctic a expedition lasted two years with only one planned resupply mission and contingency plans for no resupply missions should sea ice prevent a ship from reaching them; several traverses across Antarctica measured more than 1000 total miles, required several months to complete, and were made without maps (because they did not exist) and with only a few aerial photos of the route; and the crews of six to 15 were often international in composition. At JSC, the explorers were given tours of development, training, and scientific facilities, as well as documentation at operational scenarios for future planetary exploration. This report records their observations about these facilities and plans in answers to a series of questions provided to them before the workshop.

Hoffman, Stephen J.

2002-04-01

103

MEMS-Based Micro Instruments for In-Situ Planetary Exploration  

NASA Technical Reports Server (NTRS)

NASA's planetary exploration strategy is primarily targeted to the detection of extant or extinct signs of life. Thus, the agency is moving towards more in-situ landed missions as evidenced by the recent, successful demonstration of twin Mars Exploration Rovers. Also, future robotic exploration platforms are expected to evolve towards sophisticated analytical laboratories composed of multi-instrument suites. MEMS technology is very attractive for in-situ planetary exploration because of the promise of a diverse and capable set of advanced, low mass and low-power devices and instruments. At JPL, we are exploiting this diversity of MEMS for the development of a new class of miniaturized instruments for planetary exploration. In particular, two examples of this approach are the development of an Electron Luminescence X-ray Spectrometer (ELXS), and a Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer.

George, Thomas; Urgiles, Eduardo R; Toda, Risaku; Wilcox, Jaroslava Z.; Douglas, Susanne; Lee, C-S.; Son, Kyung-Ah; Miller, D.; Myung, N.; Madsen, L.; Leskowitz, G.; El-Gammal, R.; Weitekamp, D.

2005-01-01

104

NASA'S Robotic Mars Exploration Program: 2010 - 2020  

NASA Astrophysics Data System (ADS)

Exploration of Mars is currently a high priority for all space-faring nations. NASA has received initial Presidential approval for an aggressive program of Mars exploration extending until at least 2030. Among the central elements of this program are frequent visits by robotic missions. Following the Viking missions, NASA's robotic exploration of Mars was restarted in the mid-1990s with the Mars Global Surveyor and Mars Pathfinder. Today, six spacecraft in that program are operating at Mars. This paper describes NASA's plan for a discovery-driven program of robotic exploration in the next decade (2010 -- 2020). New opportunities are described for the worldwide science community to utilize orbiters, rovers and sample return missions for Mars research,

McCleese, D.; Garvin, J.

105

NASA's Space Lidar Measurements of Earth and Planetary Surfaces  

NASA Technical Reports Server (NTRS)

A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

Abshire, James B.

2010-01-01

106

Developing Advanced Human Support Technologies for Planetary Exploration Missions  

NASA Technical Reports Server (NTRS)

The United States Vision for Space Exploration calls for sending robots and humans to explore the Earth's moon, the planet Mars, and beyond. The National Aeronautics and Space Administration (NASA) is developing a set of design reference missions that will provide further detail to these plans. Lunar missions are expected to provide a stepping stone, through operational research and evaluation, in developing the knowledge base necessary to send crews on long duration missions to Mars and other distant destinations. The NASA Exploration Systems Directorate (ExSD), in its program of bioastronautics research, manages the development of technologies that maintain human life, health, and performance in space. Using a system engineering process and risk management methods, ExSD's Human Support Systems (HSS) Program selects and performs research and technology development in several critical areas and transfers the results of its efforts to NASA exploration mission/systems development programs in the form of developed technologies and new knowledge about the capabilities and constraints of systems required to support human existence beyond Low Earth Orbit. HSS efforts include the areas of advanced environmental monitoring and control, extravehicular activity, food technologies, life support systems, space human factors engineering, and systems integration of all these elements. The HSS Program provides a structured set of deliverable products to meet the needs of exploration programs. These products reduce the gaps that exist in our knowledge of and capabilities for human support for long duration, remote space missions. They also reduce the performance gap between the efficiency of current space systems and the greater efficiency that must be achieved to make human planetary exploration missions economically and logistically feasible. In conducting this research and technology development program, it is necessary for HSS technologists and program managers to develop a common currency for decision making and the allocation of funding. A high level assessment is made of both the knowledge gaps and the system performance gaps across the program s technical project portfolio. This allows decision making that assures proper emphasis areas and provides a key measure of annual technological progress, as exploration mission plans continue to mature.

Berdich, Debra P.; Campbell, Paul D.; Jernigan, J. Mark

2004-01-01

107

Planetary Surface Exploration Using Raman Spectroscopy on Rovers and Landers  

NASA Astrophysics Data System (ADS)

Planetary surface exploration using laser induced breakdown spectroscopy (LIBS) to probe the composition of rocks has recently become a reality with the operation of the mast-mounted ChemCam instrument onboard the Curiosity rover. Following this success, Raman spectroscopy has steadily gained support as a means for using laser spectroscopy to identify not just composition but mineral phases, without the need for sample preparation. The RLS Raman Spectrometer is included on the payload for the ExoMars mission, and a Raman spectrometer has been included in an example strawman payload for NASA’s Mars 2020 mission. Raman spectroscopy has been identified by the community as a feasible means for pre-selection of samples on Mars for subsequent return to Earth. We present a next-generation instrument that builds on the widely used green-Raman technique to provide a means for performing Raman spectroscopy without the background noise that is often generated by fluorescence of minerals and organics. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer, including the development of a new solid-state detector capable of sub-ns time resolution. We will present results on planetary analog minerals to demonstrate the instrument performance including fluorescence rejection.

Blacksberg, Jordana; Alerstam, E.; Maruyama, Y.; Charbon, E.; Rossman, G. R.

2013-10-01

108

Lunar Colonization and NASA's Exploration Changes  

NASA Astrophysics Data System (ADS)

Space colonization is not part of NASA's mission planning. NASA's exploration vision, mission goals and program implementations, however, can have an important affect on private lunar programs leading towards colonization. NASA's exploration program has been described as a journey not a race. It is not like the Apollo mission having tight schedules and relatively unchanging direction. NASA of this era has competing demands from the areas of aeronautics, space science, earth science, space operations and, there are competing demands within the exploration program itself. Under the journey not a race conditions, an entrepreneur thinking about building a hotel on the Moon, with a road to an exploration site, might have difficulty determining where and when NASA might be at a particular place on the Moon. Lunar colonization advocates cannot depend on NASA or other nations with space programs to lead the way to colonization. They must set their own visions, mission goals and schedules. In implementing their colonization programs they will be resource limited. They would be like ``hitchhikers'' following the programs of spacefaring nations identifying programs that might have a fit with their vision and be ready to switch to other programs that may take them in the colonization direction. At times they will have to muster their own limited resources and do things themselves where necessary. The purpose of this paper is to examine current changes within NASA, as a lunar colonization advocate might do, in order to see where there might be areas for fitting into a lunar colonization strategy. The approach will help understand how the ``hitchhiking'' technique might be better utilized.

Gavert, Raymond B.

2006-01-01

109

United States and Western Europe cooperation in planetary exploration  

NASA Technical Reports Server (NTRS)

A framework was sought for U.S.-European cooperation in planetary exploration. Specific issues addressed include: types and levels of possible cooperative activities in the planetary sciences; specific or general scientific areas that seem most promising as the main focus of cooperative efforts; potential mission candidates for cooperative ventures; identification of special issues or problems for resolution by negotiation between the agencies, and possible suggestions for their resolutions; and identification of coordinated technological and instrumental developments for planetary missions.

Levy, Eugene H.; Hunten, Donald M.; Masursky, Harold; Scarf, Frederick L.; Solomon, Sean C.; Wilkening, Laurel L.; Fechtig, Hugo; Balsiger, Hans; Blamont, Jacques; Fulchignoni, Marcello

1989-01-01

110

NASA plans for exploration of the Earth-Sun system  

NASA Astrophysics Data System (ADS)

NASA's Science Mission Directorate's Earth-Sun System Division (ESSD) uses the unique vantage point of space to understand and explore Earth and the Sun. The relationship between the Sun and the Earth is at the heart of a complex, dynamic system that researchers do not yet fully understand. The Earth-Sun system is comprised of diverse components that interact in complex ways, requiring unique capabilities for characterizing, understanding, and predicting change. Therefore, researchers need to understand the Sun, the heliosphere, and Earth's atmosphere, lithosphere, hydrosphere, cryosphere, and biosphere as a single connected system. At the center of the solar system is the Sun, a magnetically variable star. This variability has impacts on life and technology that are felt here on Earth and throughout the solar system. NASA is working to understand this planetary system because it is the only star-planet system researchers can investigate in detail. Using NASA's view from space to study the Earth-Sun system, researchers also can better predict critical changes to Earth and its space environment. NASA's ESSD has a critical role in implementing three major national directives: - Climate Change Research via Climate Change Science Program - Global Earth Observation System of Systems via the U.S. Group on Earth Observations (US GEO) - Vision for Space Exploration NASA Earth-Sun system science conducts and sponsors research, collects new observations from space, develops technologies and extends science and technology education to learners of all ages. NASA now has a system of spacecraft with the ability to characterize the current state of the Earth-Sun system. In the years ahead, NASA's fleet will evolve into constellations of smart satellites that can be reconfigured based on the changing needs of science and technology. From there we envision an intelligent and integrated observation network composed of sensors deployed in vantage points from the subsurface to deep space. Technical and programmatic details and status of representative Earth-Sun system missions will be presented.

Neeck, Steven P.; Gay, Charles J.

2005-10-01

111

77 FR 20851 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...NASA Advisory Council; Science Committee; Planetary Protection...Subcommittee reports to the Science Committee of the NAC. The...CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...202) 358-1377. U.S. citizens and green card holders...

2012-04-06

112

77 FR 71641 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...NASA Advisory Council; Science Committee; Planetary Protection...Subcommittee reports to the Science Committee of the NAC. The...CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...202) 358- 1377. U.S. citizens and green card holders...

2012-12-03

113

Planetary surface exploration MESUR/autonomous lunar rover  

NASA Technical Reports Server (NTRS)

Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

1992-01-01

114

Planetary surface exploration: MESUR/autonomous lunar rover  

NASA Technical Reports Server (NTRS)

Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

1992-01-01

115

NASA Lunar Robotics for Science and Exploration  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the robotic missions that NASA and the international partnership are undertaking to investigate the moon to support science and exploration objectives. These missions include the Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation and Sensing Satellite (LCROSS), Gravity Recovery and Interior Laboratory (GRAIL), Moon Mineralogy Mapper (MMM), Lunar Atmosphere, Dust and Environment Explorer (LADEE), and the International Lunar Network (ILN). The goals and instrumentation of these missions are reviewed.

Cohen, Barbara A.; Lavoie, Anthony R.; Gilbert, Paul A.; Horack, John M.

2008-01-01

116

Power Goals for the NASA Exploration Program  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the requirements for electrical power for future NASA exploration missions to the lunar surface. A review of the Constellation program is included as an introduction to the review of the batteries required for safe and reliable power for the ascent stage of the Altair Lunar Lander module.

Jeevarajan, J.

2009-01-01

117

The Space Launch System: NASA's Exploration Rocket  

NASA Technical Reports Server (NTRS)

Powerful, versatile, and capable vehicle for entirely new missions to deep space. Vital to NASA's exploration strategy and the Nation's space agenda. Safe, affordable, and sustainable. Engaging the U.S. aerospace workforce and infrastructure. Competitive opportunities for innovations that affordably upgrade performance. Successfully meeting milestones in preparation for Preliminary Design Review in 2013. On course for first flight in 2017.

Blackerby, Christopher; Cate, Hugh C., III

2013-01-01

118

Planning for Planetary Protection and Contamination Control for In Situ Solar System Exploration  

NASA Astrophysics Data System (ADS)

In-situ missions present new architectural and technical challenges in planetary protection where planetary protection preserves the chemical environment of a target body for future life-detection exploration and in sample return missions protects the Earth from potential extraterrestrial contamination The National Research Council s Decadal Survey of 2003 and the NASA Solar System Exploration Strategic Program roadmap of 2005 calls for a number of missions with in-situ analysis at bodies of interest for life-detection or prebiotic science including Europa Titan and comets These targets present challenges because NASA planetary protection policies specify new requirements for missions to Europa and new guidelines for Titan are anticipated furthermore the comet missions have additional significance because they are envisioned to be sample return missions Many of these challenges differ substantially from those seen on Mars and will require novel approaches and solutions In addition the scientific contamination control requirements are likely to require additional planning and technology development early consideration of these needs may lead to solutions that overlap with planetary protection implementation This presentation summarizes the technical challenges to planetary protection and contamination control for these targets of interest and outlines some of the considerations particularly at the system level in designing an appropriate technology investment strategy for in situ solar system exploration

Belz, A. P.; Cutts, J. A.

119

The role of small missions in planetary and lunar exploration  

NASA Technical Reports Server (NTRS)

The Space Studies Board of the National Research Council charged its Committee on Planetary and Lunar Exploration (COMPLEX) to (1) examine the degree to which small missions, such as those fitting within the constraints of the Discovery program, can achieve priority objectives in the lunar and planetary sciences; (2) determine those characteristics, such as level of risk, flight rate, target mix, university involvement, technology development, management structure and procedures, and so on, that could allow a successful program; (3) assess issues, such as instrument selection, mission operations, data analysis, and data archiving, to ensure the greatest scientific return from a particular mission, given a rapid deployment schedule and a tightly constrained budget; and (4) review past programmatic attempts to establish small planetary science mission lines, including the Planetary Observers and Planetary Explorers, and consider the impact management practices have had on such programs. A series of small missions presents the planetary science community with the opportunity to expand the scope of its activities and to develop the potential and inventiveness of its members in ways not possible within the confines of large, traditional programs. COMPLEX also realized that a program of small planetary missions was, in and of itself, incapable of meeting all of the prime objectives contained in its report 'An Integrated Strategy for the Planetary Sciences: 1995-2010.' Recommendations are provided for the small planetary missions to fulfill their promise.

1995-01-01

120

Traverse Planning Experiments for Future Planetary Surface Exploration.  

National Technical Information Service (NTIS)

The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, an...

P. C. Lee R. P. Mueller S. A. Voels S. J. Hoffman

2012-01-01

121

The Future of NASA's Deep Space Network and Applications to Planetary Probe Missions  

NASA Technical Reports Server (NTRS)

NASA's Deep Space Network (DSN) has been an invaluable tool in the world's exploration of space. It has served the space-faring community for more than 45 years. The DSN has provided a primary communication pathway for planetary probes, either through direct- to-Earth links or through intermediate radio relays. In addition, its radiometric systems are critical to probe navigation and delivery to target. Finally, the radio link can also be used for direct scientific measurement of the target body ('radio science'). This paper will examine the special challenges in supporting planetary probe missions, the future evolution of the DSN and related spacecraft technology, the advantages and disadvantages of radio relay spacecraft, and the use of the DSN radio links for navigation and scientific measurements.

Deutsch, Leslie J.; Preston, Robert A.; Vrotsos, Peter

2010-01-01

122

Instrument Design and In Orbit Performance of Planetary L1dars at NASA GSFC  

NASA Technical Reports Server (NTRS)

Space lidars provides a unique and powerful tool in earth environment monitoring and planetary exploration. Lidars operate at a much shorter wavelength than radars and can have a much narrower beam and much smaller transmitter and receiver. Lidars carry their own light sources and can continue measurement day and night, and over polar regions, where the passive instruments cannot observe. NASA Goddard Space Flight Center (GSFC) has developed several space lidars, three of them on planetary missions. These were the Mars Orbiter Laser Altimeter (MOLA) on the Mars Observer and Mars Global Surveyor missions, the Mercury Laser Altimeter (MLA) on the MErcury Surface Space ENvironment, GEochemistry and Ranging (MESSENGER) mission and the Lunar Orbital Laser Altimeter (LOLA) on the Lunar Reconnaissance (LRO) mission. These lidars all use similar technologies but with major improvement from one instrument In the next in size, power, measurement capability and operating environment.

Sun, Xiaoli; Cavanaugh, John F.; Smith, James C.; Abshire, James B.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

2012-01-01

123

Mission operations systems for planetary exploration  

NASA Technical Reports Server (NTRS)

The purpose of the paper is twofold: (1) to present an overview of the processes comprising planetary mission operations as conducted at the Jet Propulsion Laboratory, and (2) to present a project-specific and historical context within which this evolving process functions. In order to accomplish these objectives, the generic uplink and downlink functions are described along with their specialization to current flight projects. Also, new multimission capabilities are outlined, including prototyping of advanced-capability software for subsequent incorporation into more automated future operations. Finally, a specific historical ground is provided by listing some major operations software plus a genealogy of planetary missions beginning with Mariner 2 in 1962.

Mclaughlin, William I.; Wolff, Donna M.

1988-01-01

124

Remote Sensing Instrument Suite for Planetary Exploration  

Microsoft Academic Search

Payloads onboard of orbiting spacecrafts around planetary bodies of our solar system are very strongly limited in mass because of the challenging Dv requirements to transfer the spacecraft and its scientific payload from Earth to the selected body and perform the orbit insertion. Also the overall cost envelope of the mission play a major role in the limitation of possible

P. Falkner; C. Erd; S. Kraft; A. Peacock

2003-01-01

125

Multimodal Platform Control for Robotic Planetary Exploration Missions  

NASA Technical Reports Server (NTRS)

Planetary exploration missions pose unique problems for astronauts seeking to coordinate and control exploration vehicles. These include working in an environment filled with abrasive dust (e.g., regolith compositions), a desire to have effective hands-free communication, and a desire to have effective analog control of robotic platforms or end effectors. Requirements to operate in pressurized suits are particularly problematic due to the increased bulk and stiffness of gloves. As a result, researchers are considering alternative methods to perform fine movement control, for example capitalizing on higher-order voice actuation commands to perform control tasks. This paper presents current research at NASA s Neuro Engineering Laboratory that explores one method-direct bioelectric interpretation-for handling some of these problems. In this type of control system, electromyographic (EMG) signals are used both to facilitate understanding of acoustic speech in pressure-regulated suits 2nd to provide smooth analog control of a robotic platform, all without requiring fine-gained hand movement. This is accomplished through the use of non-invasive silver silver-chloride electrodes located on the forearm, throat, and lower chin, positioned so as to receive electrical activity originating from the muscles during contraction. For direct analog platform control, a small Personal Exploration Rover (PER) built by Carnegie Mellon University Robotics is controlled using forearm contraction duration and magnitudes, measured using several EMG channels. Signal processing is used to translate these signals into directional platform rotation rates and translational velocities. higher order commands were generated by differential contraction patterns called "clench codes."

Jorgensen, Charles; Betts, Bradley J.

2006-01-01

126

The exploration of outer space with cameras: A history of the NASA unmanned spacecraft missions  

Microsoft Academic Search

The use of television cameras and other video imaging devices to explore the solar system's planetary bodies with unmanned spacecraft is chronicled. Attention is given to the missions and the imaging devices, beginning with the Ranger 7 moon mission, which featured the first successfully operated electrooptical subsystem, six television cameras with vidicon image sensors. NASA established a network of parabolic,

M. M. Mirabito

1983-01-01

127

Revised planetary protection policy for solar system exploration  

NASA Technical Reports Server (NTRS)

In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained from planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a revised planetary protection policy with the following key features is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., Orbiter, Lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls.

Devincenzi, D. L.; Stabekis, P. D.

1984-01-01

128

77 FR 53919 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...following topics: --Planetary Science Division Update --Mars Exploration Program Update --Mars Science Laboratory/Curiosity Update...Program Update --Planetary Science Division Senior Review Update...202) 358- 4118. U.S. citizens and green card holders...

2012-09-04

129

75 FR 4589 - NASA Advisory Council Exploration Committee Meeting  

Federal Register 2010, 2011, 2012, 2013

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice...NASA Advisory Council Exploration Committee Meeting AGENCY...National Aeronautics and Space Administration. ACTION...National Aeronautics and Space Administration announces...NASA Advisory Council Exploration Committee....

2010-01-28

130

Planetary exploration program through the year 2000 - A progress report  

NASA Technical Reports Server (NTRS)

This paper covers the solar system exploration committee including their recommendations and plan options, and study approach. Also included are: planetary and solar system exploration program; thrusts, methodology, goals, recent history, approach to reduce costs/increase efficiency, spacecraft, recent problems, and plans for FY 1982. All of the different program ingredients are emphasized.

Briggs, G. A.

1982-01-01

131

Titan Explorer: A Future NASA Flagship Mission  

NASA Astrophysics Data System (ADS)

The Cassini-Huygens mission has provided startling new results at Titan - lakes, dunes, organic aerosol formation in the ionosphere, cryovolcanoes - just to name a view. The science is rich and compelling, but as is usually the case more new questions are raised than old ones answered. We propose a new NASA Flagship class mission, which will explore the Earth-like Organic-rich World of Titan. TITAN EXPLORER is configured as a three element mission: an orbiter, a lander, and a balloon designed to provide a multi-scale study of the intimately coupled interior-surface-atmosphere-magnetosphere system with special emphasis on the production and fate of organics. The full mission complement has 25 instruments ranging from radar altimeters to a surface chemical analysis package. TITAN EXPLORER will orbit Titan for 4 years, returning orders of magnitude more data than Cassini, whose flybys add up to only 4 days. The operations of the balloon and lander are planned to provide data for the first year of the mission. The multi-element nature of the mission presents many options for foreign teaming and cost containment : even an orbiter-only floor mission offers a striking scientific return. The results of the funded NASA study conducted by APL, JPL, Langley, and with science support from SwRI and other institutions are presented in this poster and include the scientific objectives, proposed payload, spacecraft elements and mission design.

Leary, J.; Lorenz, R. D.; Waite, J. H.; Lockwood, M.

2007-12-01

132

Titan Explorer: A Future NASA Flagship Mission  

NASA Astrophysics Data System (ADS)

The Cassini-Huygens mission has provided startling new results at Titan - lakes, dunes, organic aerosol formation in the ionosphere, cryovolcanoes - just to name a view. The science is rich and compelling, but as is usually the case more new questions are raised than old ones answered. We propose a new NASA Flagship class mission, which will explore the Earth-like Organic-rich World of Titan. TITAN EXPLORER is configured as a three element mission: an orbiter, a lander, and a balloon designed to provide a multi-scale study of the intimately coupled interior-surface-atmosphere-magnetosphere system with special emphasis on the production and fate of organics. The full mission complement has 25 instruments ranging from radar altimeters to a surface chemical analysis package. TITAN EXPLORER will orbit Titan for 4 years, returning orders of magnitude more data than Cassini, whose flybys add up to only 4 days. The operations of the balloon and lander are planned to provide data for the first year of the mission. The multi-element nature of the mission presents many options for foreign teaming and cost containment. The results of the funded NASA study conducted by APL, JPL, Langeley, and with science support from SwRI and other institutions are presented in this poster and include the scientific objectives, proposed payload, spacecraft elements and mission design.

Waite, J. H.; Lorenz, R.; Leary, J.; Lockwood, M. K.

2007-10-01

133

Antenna Technologies for Future NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions.

Miranda, Felix A.

2006-01-01

134

A Review of Antenna Technologies for Future NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

NASA's plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions.

Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acosta, J.

2007-01-01

135

Micro-technology for planetary exploration and education  

NASA Technical Reports Server (NTRS)

The use of combined miniaturization technology and distributed information systems in planetary exploration is discussed. Missions in which teams of microrovers collect samples from planetary surfaces are addressed, emphasizing the ability of rovers to provide coverage of large areas, reliability through redundancy, and participation of a large group of investigators. The latter could involve people from a variety of institutions, increasing the opportunity for wide education and the increased interest of society in general in space exploration. A three-phase program to develop the present approach is suggested.

Miller, David P.; Varsi, Giulio

1991-01-01

136

Autonomous Sample Acquisition for Planetary and Small Body Explorations  

NASA Technical Reports Server (NTRS)

Robotic drilling and autonomous sample acquisition are considered as the key technology requirements in future planetary or small body exploration missions. Core sampling or subsurface drilling operation is envisioned to be off rovers or landers. These supporting platforms are inherently flexible, light, and can withstand only limited amount of reaction forces and torques. This, together with unknown properties of sampled materials, makes the sampling operation a tedious task and quite challenging. This paper highlights the recent advancements in the sample acquisition control system design and development for the in situ scientific exploration of planetary and small interplanetary missions.

Ghavimi, Ali R.; Serricchio, Frederick; Dolgin, Ben; Hadaegh, Fred Y.

2000-01-01

137

NASA ARES Project: Exploring the Moon  

NSDL National Science Digital Library

This is a set of 17 inquiry-based lessons on Earth's moon: its properties, formation, and geological history. Designed for use in middle school, the lessons are organized into three units: 1) Pre-Apollo, 2) Learning from Apollo, and 3) The future of lunar exploration. Activities were developed to provide concrete experiences and models. For example, one lesson explores lunar surface formation by using crumbled toast and Oreo cookie crumbs. Another uses marbles, ball bearings, and golf balls to model impact cratering. Educators who complete a cost-free certification process with NASA may have use of a Lunar Sample Disk and accompanying slide show for classroom use. EDITOR'S NOTE: Since this resource was created, scientists have discovered compelling evidence of the presence of water at the Moon's polar regions. See Related Materials for more on this topic.

2010-03-10

138

78 FR 64253 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...INFORMATION CONTACT: Ms. Ann Delo, Science Mission Directorate, NASA Headquarters...Cached Mars Samples --Planetary Science Update --Mars Science Laboratory Lessons Learned Status...Rooms 183A and B. All U.S. citizens and Permanent Residents...

2013-10-28

139

Venus Exploration opportunities within NASA's Solar System Exploration roadmap  

NASA Technical Reports Server (NTRS)

Science goals to understand the origin, history and environment of Venus have been driving international space exploration missions for over 40 years. Past missions include the Magellan and Pioneer-Venus missions by the US; the Venera program by the USSR; and the Vega missions through international cooperation. Furthermore, the US National Research Council (NRC), in the 2003 Solar System Exploration (SSE) Decadal Survey, identified Venus as a high priority target, thus demonstrating a continuing interest in Earth's sister planet. In response to the NRC recommendation, the 2005 NASA SSE Roadmap included a number of potential Venus missions arching through all mission classes from small Discovery, to medium New Frontiers and to large Flagship class missions. While missions in all of these classes could be designed as orbiters with remote sensing capabilities, the desire for scientific advancements beyond our current knowledge - including what we expect to learn from the ongoing ESA Venus Express mission - point to in-situ exploration of Venus.

Balint, Tibor; Thompson, Thomas; Cutts, James; Robinson, James

2006-01-01

140

Comparing Apollo and Mars Exploration Rover (MER) Operations Paradigms for Human Exploration During NASA Desert-Rats Science Operations  

NASA Technical Reports Server (NTRS)

NASA's Desert Research and Technology Studies (D-RATS) field test is one of several analog tests that NASA conducts each year to combine operations development, technology advances and science under planetary surface conditions. The D-RATS focus is testing preliminary operational concepts for extravehicular activity (EVA) systems in the field using simulated surface operations and EVA hardware and procedures. For 2010 hardware included the Space Exploration Vehicles, Habitat Demonstration Units, Tri-ATHLETE, and a suite of new geology sample collection tools, including a self-contained GeoLab glove box for conducting in-field analysis of various collected rock samples. The D-RATS activities develop technical skills and experience for the mission planners, engineers, scientists, technicians, and astronauts responsible for realizing the goals of exploring planetary surfaces.

Yingst, R. A.; Cohen, B. A.; Ming, D. W.; Eppler, D. B.

2011-01-01

141

Ethical Considerations for Planetary Protection in Space Exploration: A Workshop  

PubMed Central

Abstract With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8–10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond “science protection” per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address “harmful contamination” beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations. Key Words: Planetary protection—Extraterrestrial life—Life in extreme environments—Environment—Habitability. Astrobiology 12, 1017–1023.

Rummel, J.D.; Horneck, G.

2012-01-01

142

La Geología en la exploración planetaria Geology in planetary exploration  

Microsoft Academic Search

Geological studies related to space exploration cover many different aspects that can not be faced without considering its interdisciplinary nature. Whereas planetary geology is significantly progressing in the academic and scientific contexts in Europe and the USA, the advance in Spain is still extremely slow. The present contribution is a summary of the debate from the round table entitled \\

J. Martínez Frías; R. Lunar; J. A. Rodríguez-Losada; A. Eff-Darwich; J. Madero Jarabo

143

Planetary protection issues and human exploration of Mars  

Microsoft Academic Search

A key feature of the Space Exploration Initiative involves human missions to Mars. The report describing the initiative cites the search for life on Mars, extant or extinct, as one of the five science themes for such an endeavor. Because of this, concerns for planetary protection (PP) have arisen of two fronts: (1) forward contamination of Mars by spacecraft-borne terrestrial

D. L. Devincenzi

1991-01-01

144

NASA Space Exploration Logistics Workshop Proceedings  

NASA Technical Reports Server (NTRS)

As NASA has embarked on a new Vision for Space Exploration, there is new energy and focus around the area of manned space exploration. These activities encompass the design of new vehicles such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV) and the identification of commercial opportunities for space transportation services, as well as continued operations of the Space Shuttle and the International Space Station. Reaching the Moon and eventually Mars with a mix of both robotic and human explorers for short term missions is a formidable challenge in itself. How to achieve this in a safe, efficient and long-term sustainable way is yet another question. The challenge is not only one of vehicle design, launch, and operations but also one of space logistics. Oftentimes, logistical issues are not given enough consideration upfront, in relation to the large share of operating budgets they consume. In this context, a group of 54 experts in space logistics met for a two-day workshop to discuss the following key questions: 1. What is the current state-of the art in space logistics, in terms of architectures, concepts, technologies as well as enabling processes? 2. What are the main challenges for space logistics for future human exploration of the Moon and Mars, at the intersection of engineering and space operations? 3. What lessons can be drawn from past successes and failures in human space flight logistics? 4. What lessons and connections do we see from terrestrial analogies as well as activities in other areas, such as U.S. military logistics? 5. What key advances are required to enable long-term success in the context of a future interplanetary supply chain? These proceedings summarize the outcomes of the workshop, reference particular presentations, panels and breakout sessions, and record specific observations that should help guide future efforts.

deWeek, Oliver; Evans, William A.; Parrish, Joe; James, Sarah

2006-01-01

145

78 FR 21421 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...13-048] NASA Advisory Council; Science Committee; Planetary Protection...Subcommittee reports to the Science Committee of the NAC. The...CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...202) 358-3094. U.S. citizens and Permanent Residents...

2013-04-10

146

78 FR 64024 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC. The meeting will be held via Teleconference and Webex for the purpose of soliciting, from the......

2013-10-25

147

78 FR 77719 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC. The meeting will be held for the purpose of soliciting, from the scientific community and other......

2013-12-24

148

Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense  

NASA Technical Reports Server (NTRS)

Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

2013-01-01

149

Analysis of planetary exploration spacesuit systems and evaluation of a modified partial-gravity simulation technique  

NASA Astrophysics Data System (ADS)

Building on prior experience during Apollo, NASA now plans to send humans back to the Moon and then on to Mars as part of its Vision for Space Exploration. An integral component for enabling this plan is the development of advanced spacesuit systems. A planetary exploration spacesuit system consists of an astronaut, a spacesuit, and the associated surface systems designed to enable completion of mission objectives. This thesis addresses all three aspects, beginning with an examination of the effects of locomotion stability in lunar and Mars gravity from a metabolic energy expenditure standpoint. An experiment to determine the effects of stability on running in reduced gravity was performed with a modified vertical offload partial gravity device. Operations scenarios were also developed, along with engineering analysis to understand the forces and moments involved in partial gravity locomotion. Analysis is presented to assess the applicability of terrestrial exploration systems and to adapt them for planetary exploration. Access systems for partial gravity planetary explorations are described that may allow humans in spacesuits to safely access scientifically significant terrain on the Moon and Mars. Contingency scenarios for effective rescue of astronauts from flat and sloped terrain were also analyzed. Conclusions and recommendations are offered regarding the effectiveness of the simulation technique developed. An Earth-based field testing program plan is presented with the intent of including access systems in the lunar surface system architecture requirements early enough to allow synergies in component design.

Chappell, Steven Patrick

150

Ethical considerations for planetary protection in space exploration: a workshop.  

PubMed

With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8-10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond "science protection" per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address "harmful contamination" beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations. PMID:23095097

Rummel, J D; Race, M S; Horneck, G

2012-11-01

151

Planetary protection issues in advance of human exploration of Mars  

NASA Technical Reports Server (NTRS)

The major planetary quarantine issues associated with human exploration of Mars, which is viewed as being more likely to harbor indigenous life than is the moon, are discussed. Special attention is given to the environmental impact of human missions to Mars due to contamination and mechanical disturbances of the local environment, the contamination issues associated with the return of humans, and the planetary quarantine strategy for a human base. It is emphasized that, in addition to the question of indigenous life, there may be some concern of returning to earth the earth microorganisms that have spent some time in the Martian environment. It is suggested that, due to the fact that a robot system can be subjected to more stringent controls and protective treatments than a mission involving humans, a robotic sample return mission can help to eliminate many planetary-quarantine concerns about returning samples.

Mckay, Christopher P.; Davis, Wanda L.

1989-01-01

152

Planetary Protection: Organisation, Requirements and Needs for Future Planetary Exploration Missions  

NASA Astrophysics Data System (ADS)

According to the United Nations (UN) Space Treaties and in line with the COSPAR recommendations, the exploration of the Solar System needs to comply with planetary protection constraints in order to avoid the contamination of extraterrestrial bodies (particularly the biological contamination by terrestrial microorganisms), and to protect our Earth from an eventual contamination carried by return systems or return samples. Indirectly, it is also required to preserve the properties of extraterrestrial samples in order to conduct exobiological investigations with the maximum degree of confidence. These constraints impose unusual tasks based principally on sterilisation, sterile and ultraclean integration, microbiological and cleanliness control, the use of high reliability systems in order to avoid crashs, and to implement them during each concerned project development and operation. In the frame of future planetary missions, taking into past experience, the main needs can now been defined in order to conduct European missions in compliance with planetary protection regulations.

Debus, A.

2004-04-01

153

Hybrid Mobile Communication Networks for Planetary Exploration  

NASA Technical Reports Server (NTRS)

A paper discusses the continuing work of the Mobile Exploration System Project, which has been performing studies toward the design of hybrid communication networks for future exploratory missions to remote planets. A typical network could include stationary radio transceivers on a remote planet, mobile radio transceivers carried by humans and robots on the planet, terrestrial units connected via the Internet to an interplanetary communication system, and radio relay transceivers aboard spacecraft in orbit about the planet. Prior studies have included tests on prototypes of these networks deployed in Arctic and desert regions chosen to approximate environmental conditions on Mars. Starting from the findings of the prior studies, the paper discusses methods of analysis, design, and testing of the hybrid communication networks. It identifies key radio-frequency (RF) and network engineering issues. Notable among these issues is the study of wireless LAN throughput loss due to repeater use, RF signal strength, and network latency variations. Another major issue is that of using RF-link analysis to ensure adequate link margin in the face of statistical variations in signal strengths.

Alena, Richard; Lee, Charles; Walker, Edward; Osenfort, John; Stone, Thom

2007-01-01

154

VIPER: Virtual Intelligent Planetary Exploration Rover  

NASA Technical Reports Server (NTRS)

Simulation and visualization of rover behavior are critical capabilities for scientists and rover operators to construct, test, and validate plans for commanding a remote rover. The VIPER system links these capabilities. using a high-fidelity virtual-reality (VR) environment. a kinematically accurate simulator, and a flexible plan executive to allow users to simulate and visualize possible execution outcomes of a plan under development. This work is part of a larger vision of a science-centered rover control environment, where a scientist may inspect and explore the environment via VR tools, specify science goals, and visualize the expected and actual behavior of the remote rover. The VIPER system is constructed from three generic systems, linked together via a minimal amount of customization into the integrated system. The complete system points out the power of combining plan execution, simulation, and visualization for envisioning rover behavior; it also demonstrates the utility of developing generic technologies. which can be combined in novel and useful ways.

Edwards, Laurence; Flueckiger, Lorenzo; Nguyen, Laurent; Washington, Richard

2001-01-01

155

ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION  

SciTech Connect

The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

R. C. O'Brien; S. D. Howe; J. E. Werner

2010-09-01

156

Planetary protection issues in advance of human exploration of Mars.  

PubMed

Current planetary quarantine considerations focus on robotic missions and attempt a policy of no biological contamination. The presence of humans on Mars, however, will inevitably result in biological contamination and physical alteration of the local environment. The focus of planetary quarantine must therefore shift toward defining and minimizing the inevitable contamination associated with humans. This will involve first determining those areas that will be affected by the presence of a human base, then verifying that these environments do not harbor indigenous life nor provide sites for Earth bacteria to grow. Precursor missions can provide salient information that can make more efficient the planning and design of human exploration missions. In particular, a robotic sample return mission can help to eliminate the concern about returning samples with humans or the return of humans themselves from a planetary quarantine perspective. Without a robotic return the cost of quarantine that would have to be added to a human mission may well exceed the cost of a robotic return mission. Even if the preponderance of scientific evidence argues against the presence of indigenous life, it must be considered as part of any serious planetary quarantine analysis for missions to Mars. If there is life on Mars, the question of human exploration assumes an ethical dimension. PMID:11537372

McKay, C P; Davis, W L

1989-01-01

157

The Science Goals of NASA's Exploration Initiative  

NASA Technical Reports Server (NTRS)

The recently released policy directive, "A Renewed Spirit of Discovery: The President's Vision for U. S. Space Exploration," seeks to advance the U. S. scientific, security and economic interest through a program of space exploration which will robotically explore the solar system and extend human presence to the Moon, Mars and beyond. NASA's implementation of this vision will be guided by compelling questions of scientific and societal importance, including the origin of our Solar System and the search for life beyond Earth. The Exploration Roadmap identifies four key targets: the Moon, Mars, the outer Solar System, and extra-solar planets. First, a lunar investigation will set up exploration test beds, search for resources, and study the geological record of the early Solar System. Human missions to the Moon will serve as precursors for human missions to Mars and other destinations, but will also be driven by their support for furthering science. The second key target is the search for past and present water and life on Mars. Following on from discoveries by Spirit and Opportunity, by the end of the decade there will have been an additional rover, a lander and two orbiters studying Mars. These will set the stage for a sample return mission in 2013, increasingly complex robotic investigations, and an eventual human landing. The third key target is the study of underground oceans, biological chemistry, and their potential for life in the outer Solar System. Beginning with the arrival of Cassini at Saturn in July 2004 and a landing on Titan in 2006, the next decade will see an extended investigation of the Jupiter icy moons by a mission making use of Project Prometheus, a program to develop space nuclear power and nuclear-electric propulsion. Finally, the search for Earth-like planets and life includes a series of telescopic missions designed to find and characterize extra-solar planets and search them for evidence of life. These missions include HST and Spitzer, operating now; Kepler, SIM, JWST, and TPF, currently under development; and the vision missions, Life Finder and Planet Imager, which will possibly be constructed in space by astronauts.

Gardner, Jonathan P.; Grunsfeld, John

2004-01-01

158

Overview of the Planetary Data System  

Microsoft Academic Search

The NASA Planetary Data System (PDS) is an active archive that provides high quality, usable planetary science data products to the science community. This system evolved in response to scientists' requests for improved availability of planetary data from NASA missions, with increased scientific involvement and oversight. It is sponsored by the NASA Solar System Exploration Division, and includes seven university\\/research

Susan K. McMahon

1996-01-01

159

Galileo Avionica's technologies and instruments for planetary exploration.  

PubMed

Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica's web-site at: http://www.galileoavionica.com . PMID:17120125

Battistelli, E; Falciani, P; Magnani, P; Midollini, B; Preti, G; Re, E

2006-12-01

160

Traverse Planning Experiments for Future Planetary Surface Exploration  

NASA Technical Reports Server (NTRS)

The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).

Hoffman, Stephen J.; Voels, Stephen A.; Mueller, Robert P.; Lee, Pascal C.

2012-01-01

161

Galileo Avionica’s Technologies and Instruments for Planetary Exploration  

Microsoft Academic Search

Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies:\\u000a Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples.\\u000a The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities\\u000a devoted to investigate

E. Battistelli; P. Falciani; P. Magnani; B. Midollini; G. Preti; E. Re

2006-01-01

162

Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future  

NASA Technical Reports Server (NTRS)

In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

Cruz, Juna R.; Lingard, J. Stephen

2006-01-01

163

NASA's Exploration of the Red Planet: An Overview  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews NASA's plans for the exploration of Mars. The reasons for the choice of Mars for exploration are reviewed: launch opportunity every 26 months, the closest planet, and potential extraterrestrial life.

Naderi, Firouz M.

2004-01-01

164

An evaluation of nuclear electric propulsion for planetary exploration missions  

NASA Technical Reports Server (NTRS)

A set of nuclear electric propulsion (NEP) system parameters for planetary exploration missions is described. Orbiter missions to the planets Saturn, Uranus and Neptune were selected for assessment, and five delivery modes were evaluated. The NEP system envisioned for this application consisted of a nuclear fission reactor with a thermoelectric conversion system and a thrust subsystem comprised of power processors coupled with mercury ion-bombardment thrusters. The results indicate that an NEP system sized at 90-160 kW electrical power rating and operating within a specific impulse range of 4500-5500 sec provides adequate performance for outer planet exploration.

Nagorski, R. P.; Boain, R. J.

1981-01-01

165

First results in terrain mapping for a roving planetary explorer  

NASA Technical Reports Server (NTRS)

To perform planetary exploration without human supervision, a complete autonomous rover must be able to model its environment while exploring its surroundings. Researchers present a new algorithm to construct a geometric terrain representation from a single range image. The form of the representation is an elevation map that includes uncertainty, unknown areas, and local features. By virtue of working in spherical-polar space, the algorithm is independent of the desired map resolution and the orientation of the sensor, unlike other algorithms that work in Cartesian space. They also describe new methods to evaluate regions of the constructed elevation maps to support legged locomotion over rough terrain.

Krotkov, E.; Caillas, C.; Hebert, M.; Kweon, I. S.; Kanade, Takeo

1989-01-01

166

A Review of the Approach of NASA Projects to Planetary Protection Compliance  

NASA Technical Reports Server (NTRS)

NASA planetary protection, formerly planetary quarantine, is a set of regulations for extraterrestrial space missions which addresses applicable COSPAR resolutions, and ultimately derives from a 1967 United Nations treaty (the "Moon treaty"). The purpose of the NASA regulations is set forth in a basic policy, NPD 8020.7E (Ref. 1). The purposes are: to protect extraterrestrial objects from terrestrial biological contamination that may interfere with the search for extant life or its remnants or its precursors; and to protect the Earth from the possible hazards of an extraterrestrial sample return.

Barengoltz, Jack B.

2005-01-01

167

Towards terrain interaction prediction for bioinspired planetary exploration rovers.  

PubMed

Deployment of a small legged vehicle to extend the reach of future planetary exploration missions is an attractive possibility but little is known about the behaviour of a walking rover on deformable planetary terrain. This paper applies ideas from the developing study of granular materials together with a detailed characterization of the sinkage process to propose and validate a combined model of terrain interaction based on an understanding of the physics and micro mechanics at the granular level. Whilst the model reflects the complexity of interactions expected from a walking rover, common themes emerge which enable the model to be streamlined to the extent that a simple mathematical representation is possible without resorting to numerical methods. Bespoke testing and analysis tools are described which reveal some unexpected conclusions and point the way towards intelligent control and foot geometry techniques to improve thrust generation. PMID:24434658

Yeomans, Brian; Saaj, Chakravathini M

2014-03-01

168

Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center  

NASA Technical Reports Server (NTRS)

We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and future deployment of instruments on exploration and science remote sensing orbiting satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. We present experimental progress on both the fiber transmitters and instrument prototypes for ongoing development efforts. These near-infrared instruments are laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pseudo-noise (PN) code laser ranging system. The associated fiber transmitters include high-power erbium, ytterbium, neodymium and Raman fiber amplifiers. In addition, we will discuss near-term fiber laser and amplifier requirements and programs for NASA free space optical communications, planetary topography and atmospheric spectroscopy.

Krainak, Michael A.; Abshire, James; Allan, Graham R.; Stephen Mark

2005-01-01

169

NASA Flight Tests Explore Supersonic Laminar Flow  

NASA Video Gallery

In partnership with Aerion Corporation of Reno, Nevada, NASA's Dryden Flight Research Centerâ??s tested supersonic airflow over a small experimental airfoil design on its F-15B Test Bed aircraft du...

170

NASA's Spitzer Marks Beginning of New Age of Planetary Science  

NSDL National Science Digital Library

This NASA press release describes results from the Spitzer Space Telescope. The instrument detected a dip in the infrared light curve as a planet passes behind a star. This is the first direct detection of light from an extrasolar planet.

2005-04-19

171

Instrument Design and In Orbit Performance of Planetary L1dars at NASA GSFC.  

National Technical Information Service (NTIS)

Space lidars provides a unique and powerful tool in earth environment monitoring and planetary exploration. Lidars operate at a much shorter wavelength than radars and can have a much narrower beam and much smaller transmitter and receiver. Lidars carry t...

D. E. Smith G. A. Neumann J. B. Abshire J. C. Smith J. F. Cavanaugh M. T. Zuber X. Sun

2012-01-01

172

Rovers as Geological Helpers for Planetary Surface Exploration  

NASA Technical Reports Server (NTRS)

Rovers can be used to perform field science on other planetary surfaces and in hostile and dangerous environments on Earth. Rovers are mobility systems for carrying instrumentation to investigate targets of interest and can perform geologic exploration on a distant planet (e.g. Mars) autonomously with periodic command from Earth. For nearby sites (such as the Moon or sites on Earth) rovers can be teleoperated with excellent capabilities. In future human exploration, robotic rovers will assist human explorers as scouts, tool and instrument carriers, and a traverse "buddy". Rovers can be wheeled vehicles, like the Mars Pathfinder Sojourner, or can walk on legs, like the Dante vehicle that was deployed into a volcanic caldera on Mt. Spurr, Alaska. Wheeled rovers can generally traverse slopes as high as 35 degrees, can avoid hazards too big to roll over, and can carry a wide range of instrumentation. More challenging terrain and steeper slopes can be negotiated by walkers. Limitations on rover performance result primarily from the bandwidth and frequency with which data are transmitted, and the accuracy with which the rover can navigate to a new position. Based on communication strategies, power availability, and navigation approach planned or demonstrated for Mars missions to date, rovers on Mars will probably traverse only a few meters per day. Collecting samples, especially if it involves accurate instrument placement, will be a slow process. Using live teleoperation (such as operating a rover on the Moon from Earth) rovers have traversed more than 1 km in an 8 hour period while also performing science operations, and can be moved much faster when the goal is simply to make the distance. I will review the results of field experiments with planetary surface rovers, concentrating on their successful and problematic performance aspects. This paper will be accompanied by a working demonstration of a prototype planetary surface rover.

Stoker, Carol; DeVincenzi, Donald (Technical Monitor)

2000-01-01

173

77 FR 22807 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Subcommittee reports to the Science Committee of the NAC. The...CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...Programmatic Impacts on the Planetary Science Division; --Status of the...202) 358- 4118. U.S. citizens and green card holders...

2012-04-17

174

MEMS-based micro instruments for in-situ planetary exploration (Keynote Paper)  

NASA Astrophysics Data System (ADS)

NASA's planetary exploration strategy is primarily targeted to the detection of extant or extinct signs of life. Thus, the agency is moving towards more in-situ landed missions as evidenced by the recent, successful demonstration of twin Mars Exploration Rovers. Also, future robotic exploration platforms are expected to evolve towards sophisticated analytical laboratories composed of multi-instrument suites. MEMS technology is very attractive for in-situ planetary exploration because of the promise of a diverse and capable set of advanced, low mass and low-power devices and instruments. At JPL, we are exploiting this diversity of MEMS for the development of a new class of miniaturized instruments for planetary exploration. In particular, two examples of this approach are the development of an Electron Luminescence X-ray Spectrometer (ELXS), and a Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer. The ELXS is a compact (< 1 kg) electron-beam based microinstrument that can determine the chemical composition of samples in air via electron-excited x-ray fluorescence and cathodoluminescence. The enabling technology is a 200-nm-thick, MEMS-fabricated silicon nitride membrane that encapsulates the evacuated electron column while yet being thin enough to allow electron transmission into the ambient atmosphere. The MEMS FDNMR spectrometer, at 2-mm diameter, will be the smallest NMR spectrometer in the world. The significant innovation in this technology is the ability to immerse the sample in a homogenous, uniform magnetic field required for high-resolution NMR spectroscopy. The NMR signal is detected using the principle of modulated dipole-dipole interaction between the sample's nuclear magnetic moment and a 60-micron-diameter detector magnet. Finally, the future development path for both of these technologies, culminating ultimately in infusion into space missions, is discussed.

George, T.; Urgiles, E.; Toda, R.; Wilcox, J. Z.; Douglas, S.; Lee, C.-S.; Son, K.; Miller, D.; Myung, N.; Madsen, L.; Leskowitz, G.; El-Gammal, R.; Weitekamp, D.

2005-07-01

175

Everybody Dreams: Preparing a New Generation. NASA Explorer Schools Project  

ERIC Educational Resources Information Center

NASA Explorer Schools provides unique opportunities for students and teachers by offering access to technology and resources that are seemingly beyond reach. Combining new technologies with NASA content, lesson plans, and real-world experiments enables teachers to enhance inquiry-based learning and augment student engagement. This publication…

National Aeronautics and Space Administration, 2005

2005-01-01

176

Galileo Avionica's Technologies and Instruments for Planetary Exploration  

NASA Astrophysics Data System (ADS)

Several missions for planetary exploration, including comets and asteroids, are ongoing or planned by the European Space Agencies: Rosetta, Venus Express, Bepi Colombo, Dawn, Aurora and all Mars Programme (in its past and next missions) are good examples. The satisfaction of the scientific request for the mentioned programmes calls for the development of new instruments and facilities devoted to investigate the body (planet, asteroid or comet) both remotely and by in situ measurements. The paper is an overview of some instruments for remote sensing and in situ planetary exploration already developed or under study by Galileo Avionica Space & Electro-Optics B.U. (in the following shortened as Galileo Avionica) for both the Italian Space Agency (ASI) and for the European Space Agency (ESA). Main technologies and specifications are outlined; for more detailed information please refer to Galileo Avionica’s web-site at: http://www.galileoavionica.com .

Battistelli, E.; Falciani, P.; Magnani, P.; Midollini, B.; Preti, G.; Re, E.

2006-12-01

177

Mars--NASA Explores the Red Planet: Program Overview  

NSDL National Science Digital Library

This NASA site contains a statement of NASA's strategy to investigate life on Mars. The main page has an image of Mars captured by a spacecraft flying by in 1965. The Science Overview section provides a description of the four science goals of the entire Mars exploration initiative, extending well into the future. The page for Goal 4 links to the January 2004 statement by President George W. Bush on human exploration of space.

2012-08-28

178

A Small Fission Power System for NASA Planetary Science Missions  

NASA Technical Reports Server (NTRS)

In March 2010, the Decadal Survey Giant Planets Panel (GPP) requested a short-turnaround study to evaluate the feasibility of a small Fission Power System (FPS) for future unspecified National Aeronautics and Space Administration (NASA) science missions. FPS technology was considered a potential option for power levels that might not be achievable with radioisotope power systems. A study plan was generated and a joint NASA and Department of Energy (DOE) study team was formed. The team developed a set of notional requirements that included 1-kW electrical output, 15-year design life, and 2020 launch availability. After completing a short round of concept screening studies, the team selected a single concept for concentrated study and analysis. The selected concept is a solid block uranium-molybdenum reactor core with heat pipe cooling and distributed thermoelectric power converters directly coupled to aluminum radiator fins. This paper presents the preliminary configuration, mass summary, and proposed development program.

Mason, Lee; Casani, John; Elliott, John; Fleurial, Jean-Pierre; MacPherson, Duncan; Nesmith, William; Houts, Michael; Bechtel, Ryan; Werner, James; Kapernick, Rick; Poston, David; Qualls, Arthur Lou; Lipinski, Ron; Radel, Ross; Bailey, Sterling; Weitzberg, Abraham

2011-01-01

179

A Small Fission Power System for NASA Planetary Science Missions  

NASA Astrophysics Data System (ADS)

In March 2010, the Decadal Survey Giant Planets Panel (GPP) requested a short-turnaround study to evaluate the feasibility of a small Fission Power System (FPS) for future unspecified National Aeronautics and Space Administration (NASA) science missions. FPS technology was considered a potential option for power levels that might not be achievable with radioisotope power systems. A study plan was generated and a joint NASA and Department of Energy (DOE) study team was formed. The team developed a set of notional requirements that included 1-kW electrical output, 15-year design life, and 2020 launch availability. After completing a short round of concept screening studies, the team selected a single concept for concentrated study and analysis. The selected concept is a solid block uranium-molybdenum reactor core with heat pipe cooling and distributed thermoelectric power converters directly coupled to aluminum radiator fins. This paper presents the preliminary configuration, mass summary, and proposed development program.

Mason, L.; Casani, J.; Elliott, J.; Fleurial, J.-P.; Macpherson, D.; Nesmith, B.; Houts, M.; Bechtel, R.; Werner, J.; Kapernick, R.; Poston, D.; Qualls, L.; Lipinski, R.; Radel, R.; Bailey, S.; Weitzberg, A.

180

Planetary protection requirements for orbiter and netlander elements of the CNES/NASA Mars sample return mission  

NASA Astrophysics Data System (ADS)

In the framework of Mars exploration, particularly for missions dedicated to the search for life or for traces of ancient forms of life, NASA and CNES have decided to join their efforts in order to build a Mars sample return mission. Taking into account article IX of the OUTER SPACE TREATY (Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial, referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966, ratified in London / Washington January 27, 1967) and in order to comply with the COSPAR planetary protection recommendations, a common planetary protection program has to be established. Mars in-situ experimentations are limited by the size and the mass of the instruments necessary to perform exobiology investigations and, consequently, it appears that the best way to conduct such experiments is to bring back Mars samples to Earth. A sample return mission enables the use of a very large number of instruments and analysis protocols, giving exobiologists the best chance to find living entities or organic compounds related to life. Such a mission is complicated from a planetary protection point of view, it combines constraints for the protection of both the Mars environment as well as Earth, including the preservation of samples to ensure the validity of exobiological experiments.

Debus, A.

181

MICROWAVE REMOTE SENSING OF PLANETARY ATMOSPHERES: THE 50 YEARS FROM MARINER 2 TO NASA-JUNO  

NASA Astrophysics Data System (ADS)

In November 2012, the world celebrated the 50th anniversary of spacecraft-based exploration of planets and satellites other our own. The first successful interplanetary mission (Mariner 2) included the first spaceborne microwave radiometer for studying planetary atmospheres which measured the 1.3 and 2.0 cm emission spectrum of Venus (also known as the Cytherean spectrum), These measurements, plus accompanying earth-based observations of the centimeter-wavelength spectrum were used to establish early models of the composition and structure of Venus. Shortly thereafter, measurements of the microwave emission spectrum of Jupiter (also known as the Jovian spectrum) from 1.18 to 1.58 cm were conducted. In both sets of observations, wavelengths near the 1.35 cm water-vapor resonance were selected in hope of detecting the spectral signature of water vapor, but none was found. Thus the question remained, “where’s the water?” The NASA-Juno mission is the first mission since Mariner 2 to carry a microwave radiometer instrument designed specifically for atmospheric sensing. It is expected to finally detect water in the Jovian atmosphere.

Steffes, Paul G.

2013-10-01

182

Planetary Science Enabled by High Power Ion Propulsion Systems from NASA's Prometheus Program  

NASA Astrophysics Data System (ADS)

NASA's Prometheus program seeks to develop new generations of spacecraft nuclear-power and ion propulsion systems for applications to future planetary missions. The Science Definition Team for the first mission in the Prometheus series, the Jupiter Icy Moons Orbiter (JIMO), has defined science objectives for in-situ orbital exploration of the icy Galilean moons (Europa, Ganymede, Callisto) and the Jovian magnetosphere along with remote observations of Jupiter's atmosphere and aurorae, the volcanic moon Io, and other elements of the Jovian system. Important to this forum is that JIMO power and propulsion systems will need to be designed to minimize magnetic, radio, neutral gas, and plasma backgrounds that might otherwise interfere with achievement of mission science objectives. Another potential Prometheus mission of high science interest would be an extended tour of primitive bodies in the solar system, including asteroids, Jupiter family comets, Centaurs, and Kuiper Belt Objects (KBO). The final landed phase of this mission might include an active keplerian experiment for detectable (via downlink radio doppler shift) acceleration of a small kilometer-size Centaur or KBO object, likely the satellite of a larger object observable from Earth. This would have obvious application to testing of mitigation techniques for Earth impact hazards.

Cooper, John

2004-11-01

183

Traverse Planning Experiments for Future Planetary Surface Exploration  

NASA Technical Reports Server (NTRS)

This paper describes the results of a recent (July-August 2010 and July 2011) planetary surface traverse planning experiment. The purpose of this experiment was to gather data relevant to robotically repositioning surface assets used for planetary surface exploration. This is a scenario currently being considered for future human exploration missions to the Moon and Mars. The specific scenario selected was a robotic traverse on the lunar surface from an outpost at Shackleton Crater to the Malapert Massif. As these are exploration scenarios, the route will not have been previously traversed and the only pre-traverse data sets available will be remote (orbital) observations. Devon Island was selected as an analog location where a traverse route of significant length could be planned and then traveled. During the first half of 2010, a team of engineers and scientists who had never been to Devon Island used remote sensing data comparable to that which is likely to be available for the Malapert region (eg., 2-meter/pixel imagery, 10-meter interval topographic maps and associated digital elevation models, etc.) to plan a 17-kilometer (km) traverse. Surface-level imagery data was then gathered on-site that was provided to the planning team. This team then assessed whether the route was actually traversable or not. Lessons learned during the 2010 experiment were then used in a second experiment in 2011 for which a much longer traverse (85 km) was planned and additional surface-level imagery different from that gathered in 2010 was obtained for a comparative analysis. This paper will describe the route planning techniques used, the data sets available to the route planners and the lessons learned from the two traverses planned and carried out on Devon Island.

Hoffman, S. J.; Voels, S. A.; Mueller, R. P.; Lee, P. C.

2011-01-01

184

Optimising the Operation and Performance of a Raman Spectroscopy Instrument Developed for Planetary Exploration Applications  

NASA Astrophysics Data System (ADS)

A description of a software based instrument simulator, developed to aid the optimisation of the operation and performance of Raman spectroscopy instruments, for the purposes of planetary exploration.

McHugh, M.; Hutchinson, I. B.; Ingley, R.; Nelms, N.; Edwards, H. G. M.

2014-06-01

185

The Moon as a way station for planetary exploration  

NASA Technical Reports Server (NTRS)

The Moon can be on the pathway to the exploration of other planets in the solar system in three distinct ways: science, systems and technology experience, and as a fuel depot. The most important of these from the point of view of near term potential is to provide systems and technology development that increases capability and reduces the cost and risk of Mars exploration. The development of capability for a lunar program, if planned properly, can significantly influence strategies for sending humans to Mars. In conclusion, the exploration of the Moon should come before the exploration of Mars. This is a statement of developmental and operational logic that is almost self evident. Technological advancement could, however, make a different strategy reasonable. Principally, the development of a propulsion capability that could substantially reduce round trip mission times to Mars (to say 6 to 12 months) could eliminate much of the argument that the Moon is an essential stepping stone. This would reduce the problem to one of similitude with current space station program concepts. However, for any reasonably near term program, such technology does not appear likely to be available. Thus, the answer remains that lunar exploration should come first, and the expectation that it will make Mars exploration much more affordable and safe. The use of lunar propellant in an Earth-Mars transportation system is not practical with current propulsion systems; however, the discovery of caches of water ice at a lunar pole could change considerably the strategy for utilization of lunar resources in planetary exploration.

Duke, M. B.

1994-01-01

186

NASA launches dual Dynamics Explorer spacecraft  

NASA Technical Reports Server (NTRS)

A Delta launch vehicle was used to insert Dynamics Explorer A into a highly elliptical polar orbit, ranging from 675 to 24,945 km, and Dynamics Explorer B satellite into a low polar orbit, ranging from 306 to 1,300 km. The two spacecraft are designed to provide specific knowledge about the interaction of energy, electric currents, electric fields, and plasmas between the magnetosphere, the ionosphere, and the atmosphere.

1981-01-01

187

Software Architecture of Sensor Data Distribution In Planetary Exploration  

NASA Technical Reports Server (NTRS)

Data from mobile and stationary sensors will be vital in planetary surface exploration. The distribution and collection of sensor data in an ad-hoc wireless network presents a challenge. Irregular terrain, mobile nodes, new associations with access points and repeaters with stronger signals as the network reconfigures to adapt to new conditions, signal fade and hardware failures can cause: a) Data errors; b) Out of sequence packets; c) Duplicate packets; and d) Drop out periods (when node is not connected). To mitigate the effects of these impairments, a robust and reliable software architecture must be implemented. This architecture must also be tolerant of communications outages. This paper describes such a robust and reliable software infrastructure that meets the challenges of a distributed ad hoc network in a difficult environment and presents the results of actual field experiments testing the principles and actual code developed.

Lee, Charles; Alena, Richard; Stone, Thom; Ossenfort, John; Walker, Ed; Notario, Hugo

2006-01-01

188

Multi-Wavelength Dielectrometer (MWD) Sensor For Planetary Subsurface Exploration  

NASA Technical Reports Server (NTRS)

NASA's mission to Moon, Mars, and Beyond envisions landing of a light weight measurement platform on the planetary surface. The Multi-Wavelength Dielectrometer (MWD) on-board consists of essential electronics and metallic plates acting as electrodes attached to the body of such platform. An electric signal applied to one of the electrodes acting as a cathode sets up electric field pattern (in the soil medium) between the cathode and other electrodes acting as anodes. The electrodes are swept through multiple wavelengths (1Hz-1MHz) and the electric current drawn by the electrodes is measured at each frequency. The measured current whose amplitude and phase depend upon electrode spacing, dielectric constant of the subsurface soil, and the frequency is then used to estimate electrical properties of the soil. In this paper the MWD sensor that will measure the dielectric properties of Moon/Mars s soil is presented. A procedure to process the MWD measured data for extracting the soil properties is also described. Assuming the subsurface soil structure as multilayer strata having varying electric properties, an electric equivalent circuit of the multiple electrodes configuration placed on a multi-layer soil sample is obtained. The current drawn by the equivalent circuit from the low frequency signal generator is then calculated. By minimizing the difference between the model s estimated current and measured MWD data the electric properties of soil samples are extracted. Experimental and simulated results will be presented to validate the proposed procedure for extracting soil properties.

Deshpande, Manohar; VanSteenberg, Michael; Hilliard, Lawrence

2006-01-01

189

A Review of Technology Development for NASA's Planetary Science Division Missions  

NASA Astrophysics Data System (ADS)

NASA has made tremendous progress in addressing critical questions about our solar system but often the knowledge gained raises new and more challenging questions. Future robotic space missions need to be endowed with more capable instruments, spacecraft subsystems and ground support on order to be able to answer the new and more difficult questions that lay before us. Developing future instrument, spacecraft subsystem, or ground support technologies for robotic planetary missions is a complicated and challenging endeavor. Recognizing this, the Planetary Science Division (PSD) in NASA's Science Mission Directorate has chartered a panel to review its current technology development programs and provide recommendations on process and policy improvements that will enable better utilization of technology. This paper discusses the work and findings of that panel, known as the Planetary Science Technology Review (PSTR) panel. The paper discusses the technology development challenges faced by the PSD as well as panel findings and observations about the current programs and processes employed. The paper also discusses the potential recommendations that may be considered by the Planetary Science Division in future technology development efforts.

Beauchamp, Patricia; Clarke, J. T.; Lorenz, R.; Kremic, T.; Hughes, P.; Perry, B.; Singleton, J.

2010-10-01

190

Robotic automation for space: planetary surface exploration, terrain-adaptive mobility, and multirobot cooperative tasks  

Microsoft Academic Search

During the last decade, there has been significant progress toward a supervised autonomous robotic capability for remotely controlled scientific exploration of planetary surfaces. While planetary exploration potentially encompasses many elements ranging from orbital remote sensing to subsurface drilling, the surface robotics element is particularly important to advancing in situ science objectives. Surface activities include a direct characterization of geology, mineralogy,

Paul S. Schenker; Terrance L. Huntsberger; Paolo Pirjanian; Eric T. Baumgartner; Hrand Aghazarian; Ashitey Trebi-Ollennu; Patrick C. Leger; Yang Cheng; Paul G. Backes; Edward Tunstel; Steven Dubowsky; Karl D. Iagnemma; Gerard T. McKee

2001-01-01

191

The Potential of Phased Arrays for Planetary Exploration  

NASA Technical Reports Server (NTRS)

Phased array antennas provide a set of operational capabilities which are very attractive for certain mission applications and not very attractive for others. Such antennas are by no means a panacea for telecommunications. In this paper the features of phased arrays are reviewed and their implications for space missions are considered in terms of benefits and costs. The primary capability provided by a phased array is electronic beam agility. The beam direction may be controlled at electronic speeds (vs. mechanical actuation) permitting time division multiplexing of multiple "users." Moreover, the beam direction can be varied over a full hemisphere (for a planar array). On the other hand, such antennas are typically much more complicated than the more commonly used reflectors and horns and this implies higher cost. In some applications, this increased cost must be accepted if the mission is to be carried out at all. The SIR-C radar is an example of such a case albeit not for deep space. Assuming for the sake of argument that the complexity and cost of a phased array can be significantly reduced, where can such antennas be of value in the future of planetary exploration? Potential applications to be discussed are planetary rovers, landers, and orbiters including both the areosynchronous and low orbit varieties. In addition, consideration is given to links from deep space to earth. As may be fairly obvious, the deep space link to earth would not benefit from the wide angle steering capability provided by a phase array whereas a rover could gain advantage from the capability to steer a beam anywhere in the sky. In the rover case, however, physical size of the aperture becomes a significant factor which, of course, has implications regarding the choice of frequency band. Recent research work concerning phased arrays has suggested that future phased arrays might be made less complex and, therefore, less costly. Successful realization of such phased arrays would enable many of the planetary missions discussed in this paper and significantly broaden the telecommunications capabilities available to the mission designers of the future.

Pogorzelski, Ronald J.

2000-01-01

192

Advanced Materials and Cell Components for NASA's Exploration Missions  

NASA Technical Reports Server (NTRS)

This is an introductory paper for the focused session "Advanced Materials and Cell Components for NASA's Exploration Missions". This session will concentrate on electrochemical advances in materials and components that have been achieved through efforts sponsored under NASA's Exploration Systems Mission Directorate (ESMD). This paper will discuss the performance goals for components and for High Energy and Ultra High Energy cells, advanced lithium-ion cells that will offer a combination of higher specific energy and improved safety over state-of-the-art. Papers in this session will span a broad range of materials and components that are under development to enable these cell development efforts.

Reid, Concha M.

2009-01-01

193

Reports and recommendations from COSPAR Planetary Exploration Committee (PEX) & International Lunar Exploration Working Group (ILEWG)  

NASA Astrophysics Data System (ADS)

In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We present the GLUC/ICEUM11 declaration (with emphasis on Science and exploration; Technologies and resources, Infrastructures and human aspects; Moon, Space, Society and Young Explorers) (http://sci.esa.int/iceum11). We give a report on ongoing relevant ILEWG community activities. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap.

Ehrenfreund, Pascale; Foing, Bernard

2014-05-01

194

Your Planetary Protection Officer  

NSDL National Science Digital Library

This is a brief article about John Rummel, NASA's Planetary Protection Officer. It explains the purpose of planetary protection (to prevent contamination of Earth by alien life forms and of space by Earth's life forms), gives some historical background about NASA's planetary protection policies, and gives examples of recent protocols for sterilization of spacecraft. There are links to the Planetary Protection Office website, the 1967 Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Bodies, and updated policy guidelines.

Koerner, Brendan I.; Slate

195

Knowledge Sharing at NASA: Extending Social Constructivism to Space Exploration  

ERIC Educational Resources Information Center

Social constructivism provides the framework for exploring communities of practice and storytelling at the National Aeronautics and Space Administration (NASA) in this applied theory paper. A brief overview of traditional learning and development efforts as well as the current knowledge sharing initiative is offered. In addition, a conceptual plan…

Chindgren, Tina M.

2008-01-01

196

Volatile Analysis by Pyrolysis of Regolith for Planetary Resource Exploration  

NASA Technical Reports Server (NTRS)

The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 C and determining the composition of volatiles released as a function of temperature.

Glavin, Daniel P.; Malespin, Charles; ten Kate, Inge L.; Getty, Stephanie A.; Holmes, Vincent E.; Mumm, Erik; Franz, Heather B.; Noreiga, Marvin; Dobson, Nick; Southard, Adrian E.; Feng, Steven H.; Kotecki, Carl A.; Dworkin, Jason P.; Swindle, Timothy D.; Bleacher, Jacob E.; Rice, James W.; Mahaffy, Paul R.

2012-01-01

197

New Carriers and Sensors for Robotic Planetary Exploration  

NASA Astrophysics Data System (ADS)

The robotic element of planetary exploration missions does play a crucial role for a successful mission completion. The development of reliable and rugged systems with at the same time low resource requirements and a generous acceptance of harsh environmental conditions is an important constituent of supportive research and development programs. This paper introduces a selection of new technologies developed by ESA support programs to foster the European scientific community and industry. Presented is a focused selection of potential scientific payload carrier modules and its highly integrated scientific instruments designed for in-situ exploration missions to planets and small bodies of our solar system. These developments could serve surface modules with very low resource availability. Low resource requirements and a highly integrated character is an important technology driver of all development plans. The Nanokhod micro-rover is a mobile element capable to explore the surrounding of a stationary lander unit within a radius of 50 meter. Via a tether connection the provision of all communication and power distribution is ensured. The Nanokhod concepts merges the idea of the design of an "as small as possible" mobile element yet keeping the capability to carry a substantial scientific payload suite to analyse the near-by landing site. The engineering model has been build and will undergo a challenging test campaign in the near future. The development of the Geochemistry Instrument Package Facility (GIPF), the payload suite designed for the Nanokhod rover, has been finalized and delivered to ESA. It consists of an Alpha Particle X-ray Spectrometer (APXS), a Mössbauer spectrometer (MIMOS2) and a micro camera (MIROCAM). The instrument front ends have already been thermally qualified at cryogenic temperatures. Beyond a partial heritage from existing flight models all instruments were modified towards an accommodation in the rover's payload cabin and an increased performance. An alternative payload element for the payload cabin is an extremely small Laser Mass Spectrometer (LMS). A breadboard of this instrument is currently part of an extensive 1 test and evaluation campaign. Also this instrument will be re-designed to fit into the Nanokhod modular payload suite. The Instrumented Mole System (IMS) is based on a device that penetrates regolith down to a depth of 5 meter. The Heat Flow and Physical Properties Package (HP3 ) demonstrates that a scientifically meaningful payload can be integrated into the payload compartment. This package comprises an active temperature measurement module, a densitometer to determine the density of the penetrated regolith and a device to determine the precise location of the mole. An alternative instrument is based on an Attenuated Total Reflection (ATR) infrared spectrometer. It will observe and analyse through a window all material adjacent to the hull of the payload compartment within the penetration hole. A newly implemented project is the design and fabrication of a melting probe. This probe enables the subsurface exploration of icy layers. It will be capable to carry scientific instrumentation into depth and decipher the stratigraphy of ice and dust deposition on planetary bodies. The overall goal of all support activities is to analyse, design and built all critical components of a technologies which has no space application so far. Once all technical hurdles have been overcome by the breadboard development, a given instrumentation can rapidly be inserted into a flight model programme. 2

Romstedt, J.; Schiele, A.; Boudin, N.; Coste, P.; Lindner, R.

198

A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed  

NASA Technical Reports Server (NTRS)

The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design concepts, mission scenarios, and highlights recent tests and analyses of Tumbleweed prototypes.

Antol, Jeffrey

2005-01-01

199

Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky  

NASA Technical Reports Server (NTRS)

We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new capability enables up to 13X increased photometric sensitivity and 160X increased observing speed relative to a Sun- Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRL-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the science performance of much larger long development time systems; thus, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions. SEP is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

Greenhouse, Matthew A.; Benson, Scott W.; Falck, Robert D.; Fixsen, Dale J.; Gardner, Joseph P.; Garvin, James B.; Kruk, Jeffrey W.; Oleson, Stephen R.; Thronson, Harley A.

2012-01-01

200

Breakthrough capability for the NASA astrophysics explorer program: reaching the darkest sky  

NASA Astrophysics Data System (ADS)

We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new capability enables up to ~13X increased photometric sensitivity and ~160X increased observing speed relative to a Sun- Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRL-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the science performance of much larger long development time systems; thus, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions. SEP is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

Greenhouse, Matthew A.; Benson, Scott W.; Falck, Robert D.; Fixsen, Dale J.; Gardner, Jonathan P.; Garvin, James B.; Kruk, Jeffrey W.; Oleson, Steven R.; Thronson, Harley A.

2012-09-01

201

Autonomous Surface Sample Acquisition for Planetary and Lunar Exploration  

NASA Astrophysics Data System (ADS)

Surface science sample acquisition is a critical activity within any planetary and lunar exploration mission, and our research is focused upon the design, implementation, experimentation and demonstration of an onboard autonomous surface sample acquisition capability for a rover equipped with a robotic arm upon which are mounted appropriate science instruments. Images captured by a rover stereo camera system can be processed using shape from stereo methods and a digital elevation model (DEM) generated. We have developed a terrain feature identification algorithm that can determine autonomously from DEM data suitable regions for instrument placement and/or surface sample acquisition. Once identified, surface normal data can be generated autonomously which are then used to calculate an arm trajectory for instrument placement and sample acquisition. Once an instrument placement and sample acquisition trajectory has been calculated, a collision detection algorithm is required to ensure the safe operation of the arm during sample acquisition.We have developed a novel adaptive 'bounding spheres' approach to this problem. Once potential science targets have been identified, and these are within the reach of the arm and will not cause any undesired collision, then the 'cost' of executing the sample acquisition activity is required. Such information which includes power expenditure and duration can be used to select the 'best' target from a set of potential targets. We have developed a science sample acquisition resource requirements calculation that utilises differential inverse kinematics methods to yield a high fidelity result, thus improving upon simple 1st order approximations. To test our algorithms a new Planetary Analogue Terrain (PAT) Laboratory has been created that has a terrain region composed of Mars Soil Simulant-D from DLR Germany, and rocks that have been fully characterised in the laboratory. These have been donated by the UK Planetary Analogue Field Study network, and constitute the science targets for our autonomous sample acquisition work. Our PAT Lab. terrain has been designed to support our new rover chassis which is based upon the ExoMars rover Concept-E mechanics which were investigated during the ESA ExoMars Phase A study. The rover has 6 wheel drives, 6 wheels steering, and a 6 wheel walking capability. Mounted on the rover chassis is the UWA robotic arm and mast. We have designed and built a PanCam system complete with a computer controlled pan and tilt mechanism. The UWA PanCam is based upon the ExoMars PanCam (Phase A study) and hence supports two Wide Angle Cameras (WAC - 64 degree FOV), and a High Resolution Camera (HRC - 5 degree FOV). WAC separation is 500 mm. Software has been developed to capture images which form the data input into our on-board autonomous surface sample acquisition algorithms.

Barnes, D. P.

2007-08-01

202

NASA Human Spaceflight Architecture Team: Lunar Surface Exploration Strategies  

NASA Technical Reports Server (NTRS)

NASA s agency wide Human Spaceflight Architecture Team (HAT) has been developing Design Reference Missions (DRMs) to support the ongoing effort to characterize NASA s future human exploration strategy. The DRM design effort includes specific articulations of transportation and surface elements, technologies and operations required to enable future human exploration of various destinations including the moon, Near Earth Asteroids (NEAs) and Mars as well as interim cis-lunar targets. In prior architecture studies, transportation concerns have dominated the analysis. As a result, an effort was made to study the human utilization strategy at each specific destination and the resultant impacts on the overall architecture design. In particular, this paper considers various lunar surface strategies as representative scenarios that could occur in a human lunar return, and demonstrates their alignment with the internationally developed Global Exploration Roadmap (GER).

Mueller, Rob P.

2012-01-01

203

NASA's new Mars Exploration Program: the trajectory of knowledge.  

PubMed

NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils." PMID:12448977

Garvin, J B; Figueroa, O; Naderi, F M

2001-01-01

204

NASA's new Mars Exploration Program: the trajectory of knowledge  

NASA Technical Reports Server (NTRS)

NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils.".

Garvin, J. B.; Figueroa, O.; Naderi, F. M.

2001-01-01

205

NASA's Space Launch System: An Enabling Capability for International Exploration  

NASA Technical Reports Server (NTRS)

As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

2014-01-01

206

NASA's New Mars Exploration Program: The Trajectory of Knowledge  

NASA Astrophysics Data System (ADS)

NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."

Garvin, James B.; Figueroa, Orlando; Naderi, Firouz M.

2001-12-01

207

The Collaborative Information Portal and NASA's Mars Exploration Rover Mission  

NASA Technical Reports Server (NTRS)

The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

Mak, Ronald; Walton, Joan

2005-01-01

208

Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration  

NASA Technical Reports Server (NTRS)

The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.

Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)

2001-01-01

209

Archive: NASA/NSTA Symposium: 21st Century Explorer - Today's Knowledge for Tomorrow's Explorer, Boston, MA: March 27, 2008  

NSDL National Science Digital Library

During this half-day symposium, sponsored by the National Aeronautics and Space Administration (NASA), scientists and education specialists shared information with teachers about the 21st Century Explorer project, about NASA's Crew Exploration Vehicle, an

1900-01-01

210

Products from NASA's In-Space Propulsion Program Applicable to Low-Cost Planetary Missions  

NASA Technical Reports Server (NTRS)

NASAs In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. The technology areas include electric propulsion technologies, spacecraft bus technologies, entry vehicle technologies, and design tools for systems analysis and mission trajectories. The electric propulsion technologies include critical components of both gridded and non-gridded ion propulsion systems. The spacecraft bus technologies under development include an ultra-lightweight tank (ULTT) and advanced xenon feed system (AXFS). The entry vehicle technologies include the development of a multi-mission entry vehicle, mission design tools and aerocapture. The design tools under development include system analysis tools and mission trajectory design tools.

Anderson, David; Pencil, Eric J.; Glabb, Louis J.; Falck, Robert D.; Dankanich, John

2013-01-01

211

Discovering Planetary Nebula Geometries: Explorations with a Hierarchy of Models  

NASA Technical Reports Server (NTRS)

Astronomical objects known as planetary nebulae (PNe) consist of a shell of gas expelled by an aging medium-sized star as it makes its transition from a red giant to a white dwarf. In many cases this gas shell can be approximately described as a prolate ellipsoid. Knowledge of the physics of ionization processes in this gaseous shell enables us to construct a model in three dimensions (3D) called the Ionization-Bounded Prolate Ellipsoidal Shell model (IBPES model). Using this model we can generate synthetic nebular images, which can be used in conjunction with Hubble Space Telescope (HST) images of actual PNe to perform Bayesian model estimation. Since the IBPES model is characterized by thirteen parameters, model estimation requires the search of a 13-dimensional parameter space. The 'curse of dimensionality,' compounded by a computationally intense forward problem, makes forward searches extremely time-consuming and frequently causes them to become trapped in local solutions. We find that both the speed and of the search can be improved by judiciously reducing the dimensionality of the search space. Our basic approach employs a hierarchy of models of increasing complexity that converges to the IBPES model. Earlier studies establish that a hierarchical sequence converges more quickly, and to a better solution, than a search relying only on the most complex model. Here we report results for a hierarchy of five models. The first three models treat the nebula as a 2D image, while the last two models explore its characteristics as a 3D object and enable us to characterize the physics of the nebula. This five-model hierarchy is applied to HST images of ellipsoidal PNe to estimate their geometric properties and gas density profiles.

Huyser, Karen A.; Knuth, Kevin H.; Fischer, Bernd; Schumann, Johann; Granquist-Fraser, Domhnull; Hajian, Arsen R.

2004-01-01

212

Field Immune Assessment during Simulated Planetary Exploration in the Canadian Arctic  

NASA Technical Reports Server (NTRS)

Dysregulation of the immune system has been shown to occur during space flight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions has yet to be established. In addition, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive field immunology assessment on crewmembers participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate mission-associated effects on the human immune system, as well as to evaluate techniques developed for processing immune samples in remote field locations. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, wholeblood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles and plasma EBV viral antibody levels. Study timepoints were L-30, midmission and R+60. The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed in the field location, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in Astronauts following spaceflight. The sample processing protocol developed for this study may have applications for immune assessment during exploration-class space missions or in remote terrestrial field locations. The data validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology.

Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence

2006-01-01

213

Fiber lasers and amplifiers for science and exploration at NASA Goddard Space Flight Center.  

National Technical Information Service (NTIS)

We discuss present and near-term uses for high-power fiber lasers and amplifiers for NASA- specific applications including planetary topography and atmospheric spectroscopy. Fiber lasers and amplifiers offer numerous advantages for both near-term and futu...

M. A. Krainak J. Abshire G. R. Allan

2005-01-01

214

Products from NASA's in-space propulsion technology program applicable to low-cost planetary missions  

NASA Astrophysics Data System (ADS)

Since September 2001, NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Under development are several technologies for low-cost sample return missions. These include a low-cost Hall-effect thruster (HIVHAC) which will be completed in 2011, light-weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA's future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.

Anderson, David J.; Pencil, Eric; Vento, Daniel; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle M.

2014-01-01

215

Grading NASA's Solar System Exploration Program: A Midterm Report  

NASA Technical Reports Server (NTRS)

The Committee on Assessing the Solar System Exploration Program has reviewed NASA's progress to date in implementing the recommendations made in the National Research Council's (NRC's) solar system exploration decadal survey covering the period 2003-2013, New Frontiers in the Solar System, and in its Mars Architecture report, Assessment of NASA s Mars Architecture 2007-2016. The committee assessed NASA's progress with respect to each individual recommendation in these two reports, assigning an academic-style grade, explaining the rationale for the grade and trend, and offering recommendations for improvement. The committee generally sought to develop recommendations in cases where it determined that the grade, the trend, or both were worrisome and that the achievement of a decadal survey recommendation would require some kind of corrective action on NASA's part. This usually meant that the committee sought to offer a recommendation when the grade was a "C" or lower. However, the committee did offer recommendations in connection with some higher grades when it believed that minor corrective action was possible and desirable. More importantly, the committee did not offer recommendations for some of the activities given lower grades, particularly in the enabling technologies area (Chapter 6), because the committee determined that only the restoration of funding and the development of a strategic technology development program would solve these problems.

2008-01-01

216

Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions  

NASA Technical Reports Server (NTRS)

The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. In addition, recently released NASA Space Technology Roadmaps and Priorities, by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reductions in spacecraft structural mass more efficient, lighter thermal protection systems more efficient lighter propulsion systems and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location(s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of interest. The entry environment is not always guaranteed with a direct entry, and improving the entry systems robustness to a variety of environmental conditions could aid in reaching more varied landing sites. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: 1) Mass to Surface, 2) Surface Access, 3) Precision Landing, 4) Surface Hazard Detection and Avoidance, 5) Safety and Mission Assurance, and 6) Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems is manufactured using techniques that require filling of each (3/8 cell) by hand and within a limited amount of time once the ablative compound is mixed, all of the cells have to be filled and the entire heat-shield has to be cured. The tile systems such as PICA pose a different challenge as the mechanical strength characteristic and the manufacturing limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS> A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials.

Beck, R.; Arnold, J.; Gasch, M.; Stackpole, M.; Wercinski, R.; Venkatapathy, E.; Fan, W.; Thornton, J; Szalai, C.

2012-01-01

217

Past and current developments in human flight operations for planetary exploration.  

NASA Astrophysics Data System (ADS)

Human exploration of the Moon and Mars was the original objective of the nineteenth and twentieth century astronautics pioneers. The APOLLO programme constitutes until now the only demonstration of the benefits of human direct intervention in a planetary mission.

Muller, C.; This, N.; Moreau, D.

2012-09-01

218

Integrated Medium for Planetary Exploration (IMPEx): an infrastructure to bridge space missions data and computational models in planetary science  

NASA Astrophysics Data System (ADS)

The FP7-SPACE project Integrated Medium for Planetary Exploration (IMPEx) has started in June 2011. The aim of the project is the Creation of an integrated interactive IT framework where data from space missions will be interconnected to numerical models, providing a possibility to 1) simulate planetary phenomena and interpret spacecraft data; 2) test and improve models versus experimental data; 3) fill gaps in measurements by appropriate modelling runs; 4) solve technological tasks of mission operation and preparation. Data analysis and visualization within IMPEx will be based on the advanced computational models of the planetary environments. Specifically, the 'modeling sector' of IMPEx is formed of four well established numerical codes and their related computational infrastructures: 1) 3D hybrid modeling platform HYB for the study of planetary plasma environments, hosted at FMI; 2) an alternative 3D hybrid modeling platform, hosted at LATMOS; 3) MHD modelling platform GUMICS for 3D terrestrial magnetosphere, hosted at FMI; and 4) the global 3D Paraboloid Magnetospheric Model for simulation of magnetospheres of different Solar System objects, hosted at SINP. Modelling results will be linked to the corresponding experimental data from space and planetary missions via several online tools: 1/ AMDA (Automated Multi-Dataset Analysis) which provides cross-linked visualization and operation of experimental and numerical modelling data, 2/ 3DView which will propose 3D visualization of spacecraft trajectories in simulated and observed environments, and 3/ "CLWeb" software which enables computation of various micro-scale physical products (spectra, distribution functions, etc.). In practice, IMPEx is going to provide an external user with an access to an extended set of space and planetary missions' data and powerful, world leading computing models, equipped with advanced visualization tools. Via its infrastructure, IMPEx will enable to merge spacecraft data bases and scientific modelling tools, providing their joint interconnected operation for the better understanding of related space and planetary physics phenomena.

Khodachenko, M. L.; Kallio, E. J.; Génot, V. N.; Al-Ubaidi, T.; Topf, F.; Schmidt, W.; Alexeev, I. I.; Modolo, R.; André, N.; Gangloff, M.; Belenkaya, E. S.

2012-04-01

219

Commission Fleshes Out Bush Administration's Space Exploration Agenda for NASA  

NASA Astrophysics Data System (ADS)

A commission appointed by President George W. Bush has unanimously endorsed his plan to dramatically re-orient NASA to focus on space exploration and manned and robotic missions to the Moon, Mars, and other destinations. The 16 June report of the President's Commission on Implementation of United States Space Exploration Policy finds that the new space agenda announced by Bush on 14 January will help the U.S. economy, security, and technological leadership, and provide educational opportunities. The report presents a series of recommendations for implementing the plan.

Showstack, Randy

2004-06-01

220

A New Concept in Planetary Exploration: ISRU With Power Bursts  

NASA Astrophysics Data System (ADS)

The concept of generating power bursts upon demand in space exploration is presented. As acknowledged by two NASA Novel Technology Report (NTR) awards, the concept is new and innovative. As a general background, it must be recalled that power has always been a major limiting factor in exploration, especially in the exploration of far off sites like Mars (contrasted with LEO or GEO). Without the high power ability, no amount of energy (that can only be expended at a low rate, i.e., low power) can accomplish such simple operations as: crushing a rock, hopping over an obstacle, drilling deep, and eventually ascent from the planet to an orbiting craft above, or even the return journey to Earth. The concept presented here is an advance over the much studied In-Situ Resource Utilization (ISRU); we use ISRU for the extraction of the needed fuel and oxidizer from the local resources, store these gases, and expend them rapidly when needed. In the martian scenario, these gases will be carbon monoxide (fuel) and oxygen (oxidizer) extracted from the atmospheric carbon dioxide; subsequently, higher chemistry is possible after the discovery, and utilization of water which enables the production of an entire spectrum of hydrocarbons and carbohydrates. If nitrogen can also be added at a still later date, many more chemicals in the ammonia based family are possible. At SERC (University of Arizona) we have pioneered all of these chemical productions. In another award-winning innovation, an ultra-light weight material, popularly known as muscle wires, is used in a biology-inspired robot called BiRoD. The expenditure of energy in these materials produces power that results in mechanical motion. The short term power generation is thousands of times the average power that was used to harness the local resource in the first place. At the time of this abstract, BiRoD has been designed, assembled, and shown to work in a primitive way, in its component form; new media have carried the high-profile story all over the nation. At the time of the Congress, we expect to no only have many more pieces of quantitative, engineering data from BiRoD but we still also attempt to bring that robot to the session for an actual demonstration.

Streibech, Douglas; Urdaneta, Mario; Chapman, Patricia; Furfaro, Roberto; Ramohalli, Kumar

2000-01-01

221

NASA's initial flight missions in the Small Explorer Program  

NASA Technical Reports Server (NTRS)

A new component of NASA's Explorer Program has been initiated in order to provide research opportunities characterized by small, quick-turn-around, and frequent space missions. Objectives include the launching of one or two payloads per year, depending on mission cost and availability of funds and launch vehicles. The four missions chosen from the proposals solicited by the Small Explorer Announcement Opportunity are discussed in detail. These include the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) designed to carry out energetic particle studies of outstanding questions in the fields of space plasma, solar, heliospheric, cosmic ray, and middle atmospheric physics; the Submillimeter Wave Astronomy Satellite (SWAS), which will conduct both pointed and survey observations of dense galactic molecular clouds; the Fast Auroral Snapshot Explorer (FAST); and the Total Ozone Mapping Spectrometer (TOMS).

Rasch, Nickolus O.; Brown, William W.

1989-01-01

222

Ultrasonic\\/Sonic Sampler and Sensor Platform for In-Situ Planetary Exploration  

Microsoft Academic Search

The search for existing or past life in the Universe is one of the most important objectives of NASA's mission. In support of this objective, an ultrasonic\\/sonic mechanism is currently being developed at JPL to allow probing and sampling of rocks and to use the mechanism as a sensor platform for in-situ planetary analysis. The technology is based on the

Yoseph Bar-cohen; Stewart Sherrit; Xiaoqi Bao; Zensheu Chang

2003-01-01

223

Simulation Based Acquisition for NASA's Office of Exploration Systems  

NASA Technical Reports Server (NTRS)

In January 2004, President George W. Bush unveiled his vision for NASA to advance U.S. scientific, security, and economic interests through a robust space exploration program. This vision includes the goal to extend human presence across the solar system, starting with a human return to the Moon no later than 2020, in preparation for human exploration of Mars and other destinations. In response to this vision, NASA has created the Office of Exploration Systems (OExS) to develop the innovative technologies, knowledge, and infrastructures to explore and support decisions about human exploration destinations, including the development of a new Crew Exploration Vehicle (CEV). Within the OExS organization, NASA is implementing Simulation Based Acquisition (SBA), a robust Modeling & Simulation (M&S) environment integrated across all acquisition phases and programs/teams, to make the realization of the President s vision more certain. Executed properly, SBA will foster better informed, timelier, and more defensible decisions throughout the acquisition life cycle. By doing so, SBA will improve the quality of NASA systems and speed their development, at less cost and risk than would otherwise be the case. SBA is a comprehensive, Enterprise-wide endeavor that necessitates an evolved culture, a revised spiral acquisition process, and an infrastructure of advanced Information Technology (IT) capabilities. SBA encompasses all project phases (from requirements analysis and concept formulation through design, manufacture, training, and operations), professional disciplines, and activities that can benefit from employing SBA capabilities. SBA capabilities include: developing and assessing system concepts and designs; planning manufacturing, assembly, transport, and launch; training crews, maintainers, launch personnel, and controllers; planning and monitoring missions; responding to emergencies by evaluating effects and exploring solutions; and communicating across the OExS enterprise, within the Government, and with the general public. The SBA process features empowered collaborative teams (including industry partners) to integrate requirements, acquisition, training, operations, and sustainment. The SBA process also utilizes an increased reliance on and investment in M&S to reduce design risk. SBA originated as a joint Industry and Department of Defense (DoD) initiative to define and integrate an acquisition process that employs robust, collaborative use of M&S technology across acquisition phases and programs. The SBA process was successfully implemented in the Air Force s Joint Strike Fighter (JSF) Program.

Hale, Joe

2004-01-01

224

Solar discrepancies: Mars exploration and the curious problem of inter-planetary time  

NASA Astrophysics Data System (ADS)

The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support technology and of the technologies supporting Mars time, Mirmalek explores some of the effects that follow from failing to recognize time as a socio-cultural construction that emerges, fundamentally, in and through a physical relationship between the environment and the human body. In this investigation of Mars time as a phenomenon comprised of several contradictory logics, Mirmalek takes into account several aspects of the social, technical, and cultural processes constituting the relationship between time and work at NASA and specifically on the MER mission.

Mirmalek, Zara Lenora

225

Overview of Wind-Driven Rovers for Planetary Exploration.  

National Technical Information Service (NTIS)

The use of in-situ propulsion is considered enabling technology for long duration planetary surface missions. Most studies have focused on stored energy from chemicals extracted from the soil or the use of soil chemicals to produce photovoltaic arrays. An...

G. A. Hajos J. A. Jones A. Behar M. Dodd

2005-01-01

226

New Mobility System for Small Planetary Body Exploration  

Microsoft Academic Search

Under the micro gravity environment, such as on the surface of small planetary bodies (asteroids or comets), traditional wheeled rovers are not expected to move effectively due to the low friction and the inevitable detachment from the surface. This paper discusses the friction-based mobility around the surface of small bodies and proposes a new mobility mechanism that drives the rover

Tetsuo Yoshimitsu; Ichiro Nakatani; Takashi Kubota

1999-01-01

227

Exploration Metaphor.  

National Technical Information Service (NTIS)

NASA's experience in planetary exploration has demonstrated that the desktop workstation is inadequate for many visualization situations. The primary mission displays for the unmanned Surveyor missions to the moon during the mid-1960's, for example, were ...

M. W. Mcgreevy

1991-01-01

228

NASA thesaurus: Astronomy vocabulary  

NASA Technical Reports Server (NTRS)

A terminology of descriptors used by the NASA Scientific and Technical information effort to index documents in the area of astronomy is presented. The terms are listed in hierarchical format derived from the 1988 edition of the NASA Thesaurus Volume 1 -- Hierarchical Listing. Over 1600 terms are included. In addition to astronomy, space sciences covered include astrophysics, cosmology, lunar flight and exploration, meteors and meteorites, celestial mechanics, planetary flight and exploration, and planetary science.

1988-01-01

229

Transition in the Human Exploration of Space at NASA  

NASA Technical Reports Server (NTRS)

NASA is taking the next step in human exploration, beyond low Earth orbit. We have been going to low Earth orbit for the past 50 years and are using this experience to work with commercial companies to perform this function. This will free NASA resources to develop the systems necessary to travel to a Near Earth Asteroid, the Moon, Lagrange Points, and eventually Mars. At KSC, we are positioning ourselves to become a multi-user launch complex and everything we are working on is bringing us closer to achieving this goal. A vibrant multi-use spaceport is to the 21st Century what the airport was to the 20th Century - an invaluable transportation hub that supports government needs while promoting economic development and commercial markets beyond Earth's atmosphere. This past year saw the end of Shuttle, but the announcements of NASA's crew module, Orion, and heavy-lift rocket, the SLS, as well as the establishment of the Commercial Crew Program. We have a busy, but very bright future ahead of us and KSC is looking forward to playing an integral part in the next era of human space exploration. The future is SLS, 21st Century Ground Systems Program, and the Commercial Crew Program; and the future is here.

Koch, Carla A.; Cabana, Robert

2011-01-01

230

Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration  

NASA Technical Reports Server (NTRS)

NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid lubricant coatings, thus necessitating the use of liquid lubricants for long life.

Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin

2012-01-01

231

Planetary Protection: A Major Challenge in the Exploration of Life in the Solar System  

NASA Astrophysics Data System (ADS)

The picture of Mars that is now emerging from the Mars Global Surveyor and Odyssey results stands in marked contrast from that portrayed shortly after the Viking missions of the mid-1970s. The abundance of water ice seen both in the polar caps themselves, and in lower latitudes outside of the polar regions is particularly intriguing, and adds to the heightened consideration Mars as a planet that might support life--either Mars life or life brought from Earth. Elsewhere in the Solar System the situation also intrigues those looking for habitable niches. The tides of Europa are thought to keep its icy shell melted, thus providing ample liquid water in an ocean that may be on the order of 100 km deep. Other icy bodies may also be as interesting, whether they orbit Jupiter or are found around Saturn or the other outer planets. The intriguing nature of these bodies, and their potential niches for life, highlight the problems involved with possible biological contamination that may be carried by future missions, and its possible effects. A particular challenge are missions carrying perennial heat sources of high capacity and longevity (e.g., Radioisotope Thermoelectric Generators) which could, by non-nominal landings or other mission operations, be introduced to close contact with water ice--potentially forming Earthlike environments that could accommodate the growth of contaminant organisms. Maintaining the cleanliness of solar system bodies from biological growth is of critical importance to the future success of NASA's science and exploration missions, as is protecting the Earth from the importation of life from elsewhere, if it exists. Recently, the ICSU Committee on Space Research (COSPAR) has published an international consensus planetary protection policy that provides a standard to address the prevention of biological contamination in sensitive areas on Mars, and in the Jovian moons.. Furthermore, as our array of missions grow, new data will drive future planetary protection concerns. A framework for assessing required contamination control measures must be developed.

Rummel, J. D.

2003-12-01

232

Electrochemical Energy Storage and Power Sources for NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

An overview of NASA s electrochemical energy storage programs for NASA Exploration missions is being presented at the 10th Electrochemical Power Sources R&D Symposium, which is being held in Williamsburg, VA on August 20-23, 2007. This public domain venue, which is sponsored by the U.S. Navy and held every two years, serves as a forum for the dissemination of research and development results related to electrochemical energy storage technology programs that are currently being supported and managed within governmental agencies. Technology areas of primary interest include batteries, fuel cells, and both overview and focused presentations on such are given by both governmental and contractual researchers. The forum also provides an opportunity to assess technology areas of mutual interest with respect to establishing collaborative and/or complementary programmatic interactions.

Baldwin, Richard S.

2007-01-01

233

Overview of NASA's Thermal Control System Development for Exploration Project  

NASA Technical Reports Server (NTRS)

NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

Stephan, Ryan A.

2010-01-01

234

Overview of NASA's Thermal Control System Development for Exploration Project  

NASA Technical Reports Server (NTRS)

NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles thermal control system. NASA s Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of approximately six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

Stephan, Ryan A.

2009-01-01

235

Overview of NASA's Thermal Control System Development for Exploration Project  

NASA Technical Reports Server (NTRS)

NASA s Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles thermal control system. NASA s Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids. The current paper will provide an update to a similar overview paper published at last year s International Conference on Environmental Systems (ICES).

Stephan, Ryan A.

2009-01-01

236

NASA Center for Intelligent Robotic Systems for Space Exploration  

NASA Technical Reports Server (NTRS)

NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

1990-01-01

237

Wireless sensor networks for planetary exploration: Experimental assessment of communication and deployment  

NASA Astrophysics Data System (ADS)

Planetary surface exploration is an appealing application of wireless sensor networks that has been investigated in recent years by the space community, including the European Space Agency. The idea is to deploy a number of self-organizing sensor nodes forming a wireless networked architecture to provide a distributed instrument for the study and exploration of a planetary body. To explore this concept, ESA has funded the research project RF Wireless for Planetary Exploration (RF-WIPE), carried out by GMV, SUPSI and UPM. The purpose of RF-WIPE was to simulate and prototype a wireless sensor network in order to assess the potential and limitations of the technology for the purposes of planetary exploration. In this paper, we illustrate the results of the work carried out within the context of RF-WIPE. Two test case scenarios have been investigated: a distributed sensor network-based instrument and networked planetary surface exploration. Each scenario is related to a particular network configuration. For such configurations, energy models and communication protocols have been developed, simulated, and validated both on laboratory tests and with outdoor field tests. Additionally, node deployment was investigated, and a deployment system based on a mobile robotics platform has been designed and tested.

Sanz, D.; Barrientos, A.; Garzón, M.; Rossi, C.; Mura, M.; Puccinelli, D.; Puiatti, A.; Graziano, M.; Medina, A.; Mollinedo, L.; de Negueruela, C.

2013-09-01

238

Planetary Exploration Capabilities Enabled by the MIDAS Concept  

NASA Astrophysics Data System (ADS)

The Multiple Instrument Distributed Aperture Sensor (MIDAS) concept provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of traditional space telescopes. By integrating optical interferometry technologies into a mature multiple aperture array concept, MIDAS capabilities fulfil the need for advancing future planetary science remote sensing on missions such as the Jupiter Icy Moons Orbiter (JIMO). MIDAS acts as a single front-end remote sensing science payload for multiple missions, reducing the cost, resources, complexity, and risks with a set of back-end science instruments (SI's) tailored to each specific mission. MIDAS enables either sequential or concurrent SI operations in all functional modes, such as passive imaging by any one SI or multispectral imaging by all SI's concurrently. In its active remote sensing modes using an integrated laser source, MIDAS enables LIDAR, vibrometry, illumination, ablation, and various laser spectroscopies. MIDAS inherently provides nanometer-resolution hyperspectral imaging to help determine the geochemistry of planetary surface materials without the need for any moving parts in the SI's. The MIDAS optical design enables high-resolution spectral imaging at high-altitude with long dwell times, enabling real-time wide-area long-duration remote sensing of active processes on the planet surface. The powerful combination of MIDAS passive and active imaging capabilities, each with sequential or concurrent SI operational modes, significantly increases the potential return for future planetary science missions.

Pitman, J.; Duncan, A.; Stubbs, D.; Sigler, R.; Kendrick, R.; Chilese, J.; Smith, E.; Bierhaus, E.; Delory, G.; Lipps, J.; Manga, M.; Graham, J.; Depater, I.; Rieboldt, S.; Dalton, B.; Fienup, J.; Yu, J.

2004-05-01

239

NASA's Analog Missions: Driving Exploration Through Innovative Testing  

NASA Technical Reports Server (NTRS)

Human exploration beyond low-Earth orbit (LEO) will require a unique collection of advanced, innovative technologies and the precise execution of complex and challenging operational concepts. One tool we in the Analog Missions Project at the National Aeronautics and Space Administration (NASA) utilize to validate exploration system architecture concepts and conduct technology demonstrations, while gaining a deeper understanding of system-wide technical and operational challenges, is our analog missions. Analog missions are multi-disciplinary activities that test multiple features of future spaceflight missions in an integrated fashion to gain a deeper understanding of system-level interactions and integrated operations. These missions frequently occur in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They allow us to test robotics, vehicle prototypes, habitats, communications systems, in-situ resource utilization, and human performance as it relates to these technologies. And they allow us to validate architectural concepts, conduct technology demonstrations, and gain a deeper understanding of system-wide technical and operational challenges needed to support crewed missions beyond LEO. As NASA develops a capability driven architecture for transporting crew to a variety of space environments, including the moon, near-Earth asteroids (NEA), Mars, and other destinations, it will use its analog missions to gather requirements and develop the technologies that are necessary to ensure successful human exploration beyond LEO. Currently, there are four analog mission platforms: Research and Technology Studies (RATS), NASA s Extreme Environment Mission Operations (NEEMO), In-Situ Resource Utilization (ISRU), and International Space Station (ISS) Test bed for Analog Research (ISTAR).

Reagan, Marcum L.; Janoiko, Barbara A.; Parker, Michele L.; Johnson, James E.; Chappell, Steven P.; Abercromby, Andrew F.

2012-01-01

240

Using Perilog to Explore "Decision Making at NASA"  

NASA Technical Reports Server (NTRS)

Perilog, a context intensive text mining system, is used as a discovery tool to explore topics and concerns in "Decision Making at NASA," chapter 6 of the Columbia Accident Investigation Board (CAIB) Report, Volume I. Two examples illustrate how Perilog can be used to discover highly significant safety-related information in the text without prior knowledge of the contents of the document. A third example illustrates how "if-then" statements found by Perilog can be used in logical analysis of decision making. In addition, in order to serve as a guide for future work, the technical details of preparing a PDF document for input to Perilog are included in an appendix.

McGreevy, Michael W.

2005-01-01

241

NASA.  

National Technical Information Service (NTIS)

Some of the most exciting documentary footage traces the 25-year history of nasa. Emphasis is placed on the numerous challenges and accomplishments which have marked a quarter century of air and space research and exploration. Primary audience: mass audie...

1994-01-01

242

NASA Technology Area 07: Human Exploration Destination Systems Roadmap  

NASA Technical Reports Server (NTRS)

This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments.

Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

2011-01-01

243

Wheeling Jesuit University/NASA-Exploring the Environment: Coral Reefs  

NSDL National Science Digital Library

From Wheeling Jesuit University and NASA-Classroom of the Future, this website introduces students to environmental challenges facing the world's coral reefs. This Coral Reefs learning module is part of the Exploring the Environment series (first reported on in the January 1, 1998 Scout Report for Science & Engineering) which present students with real-world environmental problems resulting from human activities. The Coral Reef site contains concise sections that address Biodiversity, Climate Change, Spheres (e.g. Anthrosphere, Hydrosphere, Biosphere), and Remote Sensing. The site's Teacher Pages provide support information for using the module including instructions for software-use, and objectives for Problem-Based Learning. The site also contains good-quality photographs, related links, and references. Other modules in the Exploring the Environment site include Mountain Gorillas, Florida Everglades, Yellowstone Fires, Temperate Rainforest, and more.

244

Planetary rover technology development requirements  

NASA Technical Reports Server (NTRS)

Planetary surface (including lunar) mobility and sampling capability is required to support proposed future National Aeronautics and Space Administration (NASA) solar system exploration missions. The NASA Office of Aeronautics and Space Technology (OAST) is addressing some of these technology needs in its base research and development program, the Civil Space Technology Initiative (CSTI) and a new technology initiative entitled Pathfinder. The Pathfinder Planetary Rover (PPR) and Sample Acquisition, Analysis and Preservation (SAAP) programs will develop and validate the technologies needed to enable both robotic and piloted rovers on various planetary surfaces. The technology requirements for a planetary roving vehicle and the development plans of the PPR and SAAP programs are discussed.

Bedard, Roger J., Jr.; Muirhead, Brian K.; Montemerlo, Melvin D.; Hirschbein, Murray S.

1989-01-01

245

Cytochemical studies of planetary microorganisms explorations in exobiology  

NASA Technical Reports Server (NTRS)

Experiments to identify free living organisms in soils that may be substantially simpler in genetic content, and mirroring a more primitive stage of evolution than the species with which we are familiar to date, were designed. Organic chemical studies on the composition and disposition of elementary carbon leave nothing wanting as an aboriginal substrate for the original of life and early chemical evolution. Such studies were missed when it came to the interpretation of the Viking lander data, and needed for conceptual planning of future planetary missions.

Levinthal, E. C.

1980-01-01

246

A Proposed Role of Aeroelasticity in NASA's New Exploration Vision  

NASA Technical Reports Server (NTRS)

On 14 January 2004, NASA received a mandate to return astronauts to the Moon, evolve a sustained presence there, then head out into the solar system to Mars and perhaps beyond. This new space exploration initiative directs NASA to develop human and robotic technologies that can deliver payloads larger than Apollo to the Moon, to Mars, and bring astronauts and samples safely back to Earth at costs much lower than Apollo. These challenges require creative aerospace systems. On proposed technology for safely delivering payloads to the surface of Mars and returning samples to Earth involves deployed flexible and inflatable decelerators for atmospheric entry. Because inflatable decelerators provide the entry vehicle more drag surface area at smaller mass than traditional ablative devices, this class of decelerators can potentially accomodate larger mass payloads. The flexibility of these lightweight aeroshells can pose both vehicle and aeroelastic stability problems if not properly designed for the expected flight regimes. Computational tools need to be developed for modelling the large and nonlinear deformations of these highly flexible structures. Unlike wind tunnel testing, an integrated and efficient aeroelastic analysis tool can explore the entire flight environment. This paper will provide some background on flexible deployable decelerators, survey the current state of technology and outline the proposed development of an aeroelastic analysis and capability.

Bartels, Robert E.; Moses, Robert W.; Scott, Robert C.; Templeton, Justin D.; Cheatwood, F. McNeil; Gnoffo, Peter A.; Buck, Greg M.

2005-01-01

247

Evaluation of Dual Pressurized Rover Operations During Simulated Planetary Surface Exploration  

NASA Technical Reports Server (NTRS)

Introduction: A pair of small pressurized rovers (Space Exploration Vehicles, or SEVs) is at the center of the Global Point-of-Departure architecture for future human planetary exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. Methods: A 14-day mission simulation was conducted in the Arizona desert as part of NASA?s 2010 Desert Research and Technology Studies (DRATS). The simulation involved two SEV concept vehicles performing geological exploration under varied operational modes affecting both the extent to which the SEVs must maintain real-time communications with mission control ("Continuous" vs. "Twice-a-Day") and their proximity to each other ("Lead-and-Follow" vs. "Divide-and-Conquer"). As part of a minimalist lunar architecture, no communications relay satellites were assumed. Two-person crews consisting of an astronaut and a field geologist operated each SEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Standard metrics enabled quantification of the habitability and usability of all aspects of the SEV concept vehicles throughout the mission, as well as comparison of the extent to which the operating modes affected crew productivity and performance. Practically significant differences in the relevant metrics were prospectively defined for the testing of all hypotheses. Results and Discussion: Data showed a significant 14% increase in available science time (AST) during Lead-and-Follow mode compared with Divide-and-Conquer, primarily because of the minimal overhead required to maintain communications during Lead-and-Follow. In Lead-and-Follow mode, there was a non-significant 2% increase in AST during Twice-a-Day vs. Continuous communications. Situational awareness of the other vehicle?s location, activities, and contingency return constraints were enhanced during Lead-and-Follow and Twice-a-Day communications modes due to line-of-sight and direct SEV-to-SEV communication. Preliminary analysis of Scientific Data Quality and Observation Quality metrics showed no significant differences between modes.

Abercromby, Andrew F. J.; Gernhardt, Michael L.

2010-01-01

248

Microsystems, Space Qualified Electronics and Mobile Sensor Platforms for Harsh Environment Applications and Planetary Exploration  

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center is presently developing and applying a range of sensor and electronic technologies that can enable future planetary missions. These include space qualified instruments and electronics, high temperature sensors for Venus missions, mobile sensor platforms, and Microsystems for detection of a range of chemical species and particulates. A discussion of each technology area and its level of maturity is given. It is concluded that there is a strong need for low power devices which can be mobile and provide substantial characterization of the planetary environment where and when needed. While a given mission will require tailoring of the technology for the application, basic tools which can enable new planetary missions are being developed.

Hunter, Gary W.; Okojie, Robert S.; Krasowski, Michael J.; Beheim, Glenn M.; Fralick, Gustave C.; Wrbanek, John D.; Greenberg, Paul S.; Xu, Jennifer

2007-01-01

249

Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings  

NASA Technical Reports Server (NTRS)

Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

2003-01-01

250

Exploration Planetary Surface Structural Systems: Design Requirements and Compliance  

NASA Technical Reports Server (NTRS)

The Lunar Surface Systems Project developed system concepts that would be necessary to establish and maintain a permanent human presence on the Lunar surface. A variety of specific system implementations were generated as a part of the scenarios, some level of system definition was completed, and masses estimated for each system. Because the architecture studies generally spawned a large number of system concepts and the studies were executed in a short amount of time, the resulting system definitions had very low design fidelity. This paper describes the development sequence required to field a particular structural system: 1) Define Requirements, 2) Develop the Design and 3) Demonstrate Compliance of the Design to all Requirements. This paper also outlines and describes in detail the information and data that are required to establish structural design requirements and outlines the information that would comprise a planetary surface system Structures Requirements document.

Dorsey, John T.

2011-01-01

251

Planetary Science Questions for the Manned Exploration of MARS.  

National Technical Information Service (NTIS)

A major goal of a manned Mars mission is to explore the planet and to investigate scientific questions for which the intensive study of Mars is essential. The systematic exploration of planets was outlined by the National Academy of Science. The nearest a...

D. P. Blanchard

1986-01-01

252

Immune system changes during simulated planetary exploration on Devon Island, high arctic  

PubMed Central

Background Dysregulation of the immune system has been shown to occur during spaceflight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions have yet to be established. Also, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive immune assessment on field team members participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate the effect of mission-associated stressors on the human immune system. To perform the study, the development of techniques for processing immune samples in remote field locations was required. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, whole-blood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles, plasma cortisol and EBV viral antibody levels. Study timepoints were 30 days prior to mission start, mid-mission and 60 days after mission completion. Results The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed on Devon Island, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in astronauts following spaceflight. Conclusion The immune system changes described during the HMP field deployment validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology. The sample processing protocol developed for this study may have applications for immune studies in remote terrestrial field locations. Elements of this protocol could possibly be adapted for future in-flight immunology studies conducted during space missions.

Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence

2007-01-01

253

NASA's Mars Exploration Program: Characterize the Geology of Mars  

NSDL National Science Digital Library

A study of the geology of Mars should reveal answers to such questions as how Mars developed into the planet we see today and what accounts for the differences and similarities between Earth and Mars. Visitors to this site can learn about ancient magnetism recently discovered by the Mars Global Surveyor that suggests the planet was once more dynamic and Earth-like with a magnetic field shielding the surface from cosmic radiation. They can read about the importance of studying the age and composition of Martian rocks, particularly those rocks and minerals which might have been formed in the presence of water. This is part of NASA's presentation of four science goals for its Mars Exploration Program, a science-driven effort to discover whether Mars was, is, or can be, a habitable world.

254

Integrated Software Systems for Crew Management During Extravehicular Activity in Planetary Terrain Exploration  

NASA Technical Reports Server (NTRS)

Initial planetary explorations with the Apollo program had a veritable ground support army monitoring the safety and health of the 12 astronauts who performed lunar surface extravehicular activities (EVAs). Given the distances involved, this will not be possible on Mars. A spacesuit for Mars must be smart enough to replace that army. The next generation suits can do so using 2 software systems serving as virtual companions, LEGACI (Life support, Exploration Guidance Algorithm and Consumable Interrogator) and VIOLET (Voice Initiated Operator for Life support and Exploration Tracking). The system presented in this study integrates data inputs from a suite of sensors into the MIII suit s communications, avionics and informatics hardware for distribution to remote managers and data analysis. If successful, the system has application not only for Mars but for nearer term missions to the Moon, and the next generation suits used on ISS as well. Field tests are conducted to assess capabilities for next generation spacesuits at Johnson Space Center (JSC) as well as the Mars and Lunar analog (Devon Island, Canada). LEGACI integrates data inputs from a suite of noninvasive biosensors in the suit and the astronaut (heart rate, suit inlet/outlet lcg temperature and flowrate, suit outlet gas and dewpoint temperature, pCO2, suit O2 pressure, state vector (accelerometry) and others). In the Integrated Walkback Suit Tests held at NASA-JSC and the HMP tests at Devon Island, communication and informatics capabilities were tested (including routing by satellite from the suit at Devon Island to JSC in Houston via secure servers at VCU in Richmond, VA). Results. The input from all the sensors enable LEGACI to compute multiple independent assessments of metabolic rate, from which a "best" met rate is chosen based on statistical methods. This rate can compute detailed information about the suit, crew and EVA performance using test-derived algorithms. VIOLET gives LEGACI voice activation capability, allowing the crew to query the suit, and receive feedback and alerts that will lead to corrective action. LEGACI and VIOLET can also automatically control the astronaut's cooling and consumable use rate without crew input if desired. These findings suggest that non-invasive physiological and environmental sensors supported with data analysis can allow for more effective management of mission task performance during EVA. Integrated remote and local view of data metrics allow crewmember to receive real time feedback in synch with mission control in preventing performance shortcomings for EVA in exploration missions.

Kuznetz, Lawrence; Nguen, Dan; Jones, Jeffrey; Lee, Pascal; Merrell, Ronald; Rafiq, Azhar

2008-01-01

255

Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses  

NASA Technical Reports Server (NTRS)

Topics covered include: Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses; Parallels Between Antarctic Travel in 1950 and Planetary Travel in 2050 (to Accompany Notes on "The Norwegian British-Swedish Antarctic Expedition 1949-52"); My IGY in Antarctica; Short Trips and a Traverse; Geologic Traverse Planning for Apollo Missions; Desert Research and Technology Studies (DRATS) Traverse Planning; Science Traverses in the Canadian High Arctic; NOR-USA Scientific Traverse of East Antarctica: Science and Logistics on a Three-Month Expedition Across Antarctica's Farthest Frontier; A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface; and The Princess Elisabeth Station.

Hoffman, Stephen J. (Editor); Voels, Stephen A. (Editor)

2012-01-01

256

The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration  

NASA Technical Reports Server (NTRS)

With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten key areas. Various case studies are discussed to illustrate the approach.

Snook, K. J.; Mendell, W. W.

2004-01-01

257

Robotic Assistance for Human Planetary and Lunar Exploration  

NASA Technical Reports Server (NTRS)

Human exploration of space will need robotic assistance in many areas. The type and functionality of such robots needs to be more clearly defined as we resume human missions to the moon and begin human missions to Mars. This paper will identify possible robotic assistants, including their control modes, workplaces, and physical attributes. Current JSC human-robot interaction projects are described, and lessons learned from extensive field tests are given. Future scenario considerations are then detailed. Earth-based testing of varied robotic assistants will provide a means of defining what capabilities are needed for future exploration.

Tyree, Kimberly S.

2004-01-01

258

Tier-Scalable Reconnaissance Missions For The Autonomous Exploration Of Planetary Bodies  

Microsoft Academic Search

A fundamentally new (scientific) reconnaissance mission concept, termed tier-scalable reconnaissance, for remote planetary (including Earth) atmospheric, surface and subsurface exploration recently has been devised that soon will replace the engineering and safety constrained mission designs of the past, allowing for optimal acquisition of geologic, paleohydrologic, paleoclimatic, and possible astrobiologic information of Venus, Mars, Europa, Ganymede, Titan, Enceladus, Triton, and other

Wolfgang Fink; James M. Dohm; Mark A. Tarbell; Trent M. Hare; Victor R. Baker; D. Schulze-Makuch; R. Furfaro; A. G. Fairen; T. P. Ferre; H. Miyamoto; G. Komatsu; W. C. Mahaney

2007-01-01

259

Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human-Robotic Colonization  

Microsoft Academic Search

We overview our recent research on planetary mobility. Products of this effort include the Field Inte- grated Design & Operations rover (FIDO), Sample Return Rover (SRR), reconfigurable rover units that function as an All Terrain Explorer (ATE), and a multi-Robot Work Crew of closely cooperating rovers (RWC). FIDO rover is an advanced technology prototype; its design and field testing support

Paul S. Schenker; Terrance L. Huntsberger; Paolo Pirjanian; Eric T. Baumgartner; Edward Tunstel

2003-01-01

260

Interactives: Comets, Orbital Motions, and Virtual Ballooning to Explore Planetary Atmospheres  

Microsoft Academic Search

We will demonstrate interactives and animations from the Windows to the Universe web site (www.windows.ucar.edu) covering three topics: cometary orbits and tails, orbit shapes and orbital motions, and virtual ballooning to explore planetary atmospheres. The comet interactive illustrates the range of shapes and sizes of cometary orbits, the formation of tails when a comet nears the Sun, and the orientations

R. M. Russell; R. M. Johnson; J. Genyuk

2009-01-01

261

Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil  

Microsoft Academic Search

This paper presents analytical models to investigate the steering maneuvers of planetary exploration rovers on loose soil. The models are based on wheel-soil interaction mechan- ics, or terramechanics, with which the traction and disturbance forces of a wheel are evaluated for various slip conditions. These traction forces are decomposed into the lon- gitudinal and lateral directions of the wheel. The

Genya Ishigami; Akiko Miwa; Keiji Nagatani; Kazuya Yoshida

2007-01-01

262

Lunar Landing Sites to Explore the Extent of KREEP and Its Significance to Key Planetary Processes  

Microsoft Academic Search

We present a list of possible lunar landing sites that explore the extent of KREEP. Samples of lunar material from these sites may help to determine the nature of primordial urKREEP and KREEP basalts, to further constrain models of key planetary formation processes.

C. E. Jilly; P. Sharma; A. L. Souchon; J. F. Blanchette-Guertin; J. Flauhaut; D. A. Kring

2011-01-01

263

Benefit of Small Radioisotope Power Systems for NASA Exploration Missions  

NASA Astrophysics Data System (ADS)

The increased use of smaller spacecraft over the last decade, in combination with studies of potential science applications, has suggested the need for Radioisotope Power Systems (RPSs) yielding much lower power levels than the 100 watt-scale devices used in the past. Small milliwatt to multiwatt-scale RPS units have the potential to extend the capability of small science payloads and instruments, and to enable many new mission applications. Such units could also find application in future human exploration missions involving use of monitoring stations and autonomous devices, similar to the ALSEP units deployed on the Moon during the Apollo program. Although flight-qualified RPS units in this size and power range do not presently exist, their potential to support a broad range of exploration tasks has led NASA and the Department of Energy (DOE) to consider the development of small-RPS units such that they might be available for missions by the early part of next decade. This paper summarizes the results of activities to date and provides possible options for future development.

Schmidt, George R.; Abelson, Robert D.; Wiley, Robert L.

2005-02-01

264

Planetary Protection Issues in the Human Exploration of Mars.  

National Technical Information Service (NTIS)

This workshop report, long delayed, is the first 21st century contribution to what will likely be a series of reports examining the effects of human exploration on the overall scientific study of Mars. The considerations of human-associated microbial cont...

M. E. Criswell M. S. Race J. D. Rummel A. Baker

2005-01-01

265

New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed.  

National Technical Information Service (NTIS)

The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insur...

J. Antol

2005-01-01

266

New Planetary Explorer with Appropriate Mobility Mechanism for Gravity Environment  

Microsoft Academic Search

For space exploration robots, the difference of gravitational accelerations is very important for these mobility. This paper discusses the appropriate mobility to move under the different gravitational accelerations. Hopping mobility is efficient under microgarvity from the viewpoint of energy consumption. On the other hand, wheeled robots can move efficiently in higher gravity environment. Under the middle gravitational environment such as

Shingo Shimoda; Takashi Kubota; Ichiro Nakatani

2005-01-01

267

Planetary science questions for the manned exploration of Mars  

NASA Technical Reports Server (NTRS)

A major goal of a manned Mars mission is to explore the planet and to investigate scientific questions for which the intensive study of Mars is essential. The systematic exploration of planets was outlined by the National Academy of Science. The nearest analogy to the manned Mars mission is the Apollo program and manned missions to the Moon, but the analogy is limited. The case is argued here that Mars may have to be explored far more systematically than was the pre-Apollo Moon to provide the detailed information necessary if plans are made to use any of the resources available on Mars. Viking missions provided a wealth of information, yet there are great gaps in the fundamental knowledge of essential facts such as the properties of the Martian surface materials and their interaction with the atmosphere. Building on a strong data base of precursor missions, human exploration will allow great leaps in understanding the Martian environment and geologic history and its evolutionary role in the solar system.

Blanchard, Douglas P.

1986-01-01

268

Planetary Protection Issues and Human Exploration of MARS (Abstract Only ).  

National Technical Information Service (NTIS)

A key feature of the Space Exploration Initiative involves human missions to Mars. The report describing the initiative cites the search for life on Mars, extant or extinct, as one of the five science themes for such an endeavor. Because of this, concerns...

D. L. Devincenzi

1991-01-01

269

Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense  

NASA Astrophysics Data System (ADS)

Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at a NEA with total mission duration limits of 180 days or less. Hence, these missions would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while simultaneously conducting detailed investigations of these primitive objects with instruments and equipment that exceed the mass and power capabilities delivered by robotic spacecraft. All of these activities will be vital for refinement of resource characterization/identification and development of extraction/utilization technologies to be used on airless bodies under low- or micro-gravity conditions. In addition, gaining enhanced understanding of a NEA's geotechnical properties and its gross internal structure will assist the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific, resource utilization, and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted sample return mission to a NEA using NASA's proposed human exploration systems a compelling endeavor.

Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

2012-12-01

270

Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense  

NASA Technical Reports Server (NTRS)

Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at a NEA with total mission duration limits of 180 days or less. Hence, these missions would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while simultaneously conducting detailed investigations of these primitive objects with instruments and equipment that exceed the mass and power capabilities delivered by robotic spacecraft. All of these activities will be vital for refinement of resource characterization/identification and development of extraction/utilization technologies to be used on airless bodies under low- or micro-gravity conditions. In addition, gaining enhanced understanding of a NEA s geotechnical properties and its gross internal structure will assist the development of hazard mitigation techniques for planetary defense. Conclusions: The scientific, resource utilization, and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a piloted sample return mission to a NEA using NASA s proposed human exploration systems a compelling endeavor.

Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

2012-01-01

271

The MASSE Project: Applications of Biotechnology for Planetary Exploration  

NASA Technical Reports Server (NTRS)

Automated life-detection experiments for solar system exploration have been previously. proposed and used onboard the. Viking, Mars lander,s, although. with ambiguous results. The recent advances in biotechnology such as biosensors, protein microarrays, and microfluidics alongside increased. knowledge in biomarker science have led to vastly improved sophistication and sensitivity for a new approach in life detection. The MASSE project has taken the challenge of integrating all of this knowledge into a new generation of interplanetary flight instrumentation for the main purpose.ot combining several mutually. confirming tests for life, organic/microbial contamination, prebiotic and abiotic chemicals into a small low powered instrument. Although the primary goal is interplanetary exploration, several terrestrial applications have become apparent specifically in point-of-care medical technology, bio-warfare, environmental sensing and microbial monitoring of manned space-flight vehicles.

Lynch, Kennda; Steele, Andrew; Hedgecock, Jud; Wainwright, Norm; McKay, David S.; Maule, Jake; Schweitzer, Mary

2003-01-01

272

PDS and NASA Tournament Laboratory Progress in Engaging Developers to Provide New Access to the Nation’s Planetary Data  

NASA Astrophysics Data System (ADS)

The Planetary Data System (PDS), working through the NASA Tournament Lab (NTL) and TopCoder® , used challenge-based competition to generate an optimized data base and API for comet data at the PDS Small Bodies Node (SBN). Additional, follow-on contests challenged the competitors to create new, transparent, agile tools for public access to NASA’s planetary data, where “public” includes not just researchers, but also students and educators. Since the initial start-up last year, the installation at SBN now provides ready access to the comet data holdings of the SBN, and has introduced new users and new developers to PDS data. We report on recent developments arising from that first success. Specifically, the experience gained in that process is being applied to establishing a second installation at the PDS Planetary Rings Node (Rings), to serve as the basis for a new series of challenges - this time to develop similar access tools at Rings to make the growing archive of CASSINI images available through the API; and to develop a crowd-sourcing project with eventual application across the PDS holdings.

Raugh, Anne C.; LaMora, A.; Erickson, K.; Gordon, M.; Grayzeck, E. J.; Morgan, T. H.; Showalter, M.; Knopf, W.

2013-10-01

273

Evaluation of dual multi-mission space exploration vehicle operations during simulated planetary surface exploration  

NASA Astrophysics Data System (ADS)

IntroductionA pair of small pressurized rovers (multi-mission space exploration vehicles, or MMSEVs) is at the center of the Global Point-of-Departure architecture for future human lunar exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. MethodsA 14-day mission simulation was conducted in the Arizona desert as part of NASA's 2010 Desert Research and Technology Studies (DRATS) field test. The simulation involved two MMSEV earth-gravity prototypes performing geological exploration under varied operational modes affecting both the extent to which the MMSEVs must maintain real-time communications with the mission control center (Continuous [CC] versus Twice-a-Day [2/D]) and their proximity to each other (Lead-and-Follow [L&F] versus Divide-and-Conquer [D&C]). As part of a minimalist lunar architecture, no communication relay satellites were assumed. Two-person crews (an astronaut and a field geologist) operated each MMSEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Metrics and qualitative observations enabled evaluation of the extent to which the operating modes affected productivity and scientific data quality (SDQ). Results and discussionSDQ was greater during CC mode than during 2/D mode; metrics showed a marginal increase while qualitative assessments suggested a practically significant difference. For the communications architecture evaluated, significantly more crew time (14% per day) was required to maintain communications during D&C than during L&F (5%) or 2/D (2%), increasing the time required to complete all traverse objectives. Situational awareness of the other vehicle's location, activities, and contingency return constraints were qualitatively enhanced during L&F and 2/D modes due to line-of-sight and direct MMSEV-to-MMSEV communication. Future testing will evaluate approaches to operating without real-time space-to-earth communications and will include quantitative evaluation and comparison of the efficacy of mission operations, science operations, and public outreach operations.

Abercromby, Andrew F. J.; Gernhardt, Michael L.; Jadwick, Jennifer

2013-10-01

274

Science Friday: Planetary Exploration / McNeil's Nebula  

NSDL National Science Digital Library

This site provides two radio broadcasts: an update on several space missions and a discussion of McNeil's Nebula. The first 33-minute broadcast discusses space missions exploring the planets in our solar system, such as Cassini in its orbit around Saturn, the twin Mars rovers, and Messenger, soon to lift off for the planet Mercury. The second, a 15-minute clip, discusses how a newborn star is shining some light on McNeil's Nebula and on the origin of our solar system.

275

U.S. planetary exploration program technology implications  

NASA Technical Reports Server (NTRS)

As a consequence of the widespread acceptance of the recommendations of the Solar System Exploration Committee, the U.S. Program for exploring the planets has entered a new phase. The objectives to be pursued involve a reduction of costs, while maintaining a high level of scientific return. Plans for the activities to be conducted in this new phase are related to a Core Program and to 'augmentation missions'. One part of the Core Program is concerned with the utilization of the technology, developed for earth-orbiting spacecraft, in missions within the inner solar system to targets ranging from Venus to the inner portion of the asteroid belt. However, modified earth-orbiting buses are not suitable for missions outside the inner solar system. For the second part of the Core Program, which is concerned with the outer solar system and small bodies, a modularized spacecraft based on Viking, Voyager, and Galileo technology will be developed. 'Augmentation missions' will be conducted when possible or desirable.

Diaz, A. V.; Rea, D. G.

1984-01-01

276

Laboratory Tests of a Handheld X-Ray Fluorescence Spectrometer: A Tool for Planetary Exploration  

NASA Astrophysics Data System (ADS)

Maximizing the science return from a mission to another planetary surface involves the integration of science objectives with deployable technologies that enable the collection of data and samples. For long duration manned missions, it is likely that more samples will be collected than can be returned to Earth due to mass limits. A niche exists for technologies that help prioritize samples for return, provide data for future sample handling and curation, and characterization for samples that are not returned to Earth. To fill this niche, hardware and protocols for field instruments are currently being developed and evaluated at NASA Johnson Space Center and Arizona State University. Our goal is to develop an easily used, environmentally isolated facility as part of the astronaut surface habitat for preliminary sample characterization and down-selection. NASA has constructed a prototype, GeoLab, as a testbed for evaluating the scientific applicability and operational considerations of various analytical instruments. One instrument under evaluation is a small, portable x-ray fluorescence (XRF) spectrometer that can be also be used by astronaut explorers as part of their field gear while on scientific sorties, or on robotic field assistants. We report on preliminary usability tests for commercially available handheld XRF instruments. These instruments collect data by contacting the surface of a rock or sediment sample with an 8 mm-wide sensor window. Within 60 seconds, the devices can provide relatively precise data on the abundance of major and trace elements heavier than Na. Lab-based handheld XRF analyses of terrestrial and lunar samples, compared with those made with full-scale laboratory XRF systems, show good correlation, but we continue to investigate potential sources of error and the need for careful calibration with standards of known composition. Specifically, we use a suite of five terrestrial and five lunar basalts, all well characterized by conventional XRF technology, to evaluate the handheld technology. All of these samples are fine-grained and homogeneous, and were selected to eliminate effects introduced to the data by inconsistencies in the sample matrix, or added complexities like increased vesicularity or phenocryst content. Our calibration curves are built from smooth, sawed surfaces. We have examined all major elements, minus Na (which falls below the instrument sensitivity). Initial tests show that reproducible and reliable calibration curves are produced for Ca, Fe, Al, Ti, and Si, but the curves produced for Mg, Mn, K and P include greater uncertainties. We are currently investigating how the instrument signal variably drops off as a function of surface roughness and distance to the instrument window. Through studies such as these in the simulated GeoLab setting, we can better understand the instrument's capabilities in a field environment, both on Earth and for potential future missions to other planetary surfaces.

Young, K. E.; Evans, C. A.; Hodges, K.

2011-12-01

277

Path-Following Control of Wheeled Planetary Exploration Robots Moving on Deformable Rough Terrain  

PubMed Central

The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip.

Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren

2014-01-01

278

Overview of NASA's Thermal Control System Development for Exploration Project  

NASA Technical Reports Server (NTRS)

The now-cancelled Constellation Program included the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, were planned to be manned space vehicles while the third element was much more diverse and included several sub-elements. Among other things, these sub-elements were Rovers and a Lunar Habitat. The planned missions involving these systems and vehicles included several risks and design challenges. Due to the unique thermal operating environment, many of these risks and challenges were associated with the vehicles thermal control system. NASA s Exploration Technology Development Program (ETDP) consisted of various technology development projects. The project chartered with mitigating the aforementioned thermal risks and design challenges was the Thermal Control System Development for Exploration Project. These risks and design challenges were being addressed through a rigorous technology development process that was planned to culminate with an integrated thermal control system test. Although the technologies being developed were originally aimed towards mitigating specific Constellation risks, the technology development process is being continued within a new program. This continued effort is justified by the fact that many of the technologies are generically applicable to future spacecraft thermal control systems. The current paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing a material compatibility assessment for a promising thermal control system working fluid. The to-date progress and lessons-learned from these development efforts will be discussed throughout the paper.

Stephan, Ryan A.

2011-01-01

279

Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, Resource Utilization, and Planetary Defense  

NASA Technical Reports Server (NTRS)

U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. Space Exploration Policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

Abell, Paul A.

2011-01-01

280

Science Operations During Planetary Surface Exploration: Desert-RATS Tests 2009-2011  

NASA Technical Reports Server (NTRS)

NASA s Research and Technology Studies (RATS) team evaluates technology, human-robotic systems and extravehicular equipment for use in future human space exploration missions. Tests are conducted in simulated space environments, or analog tests, using prototype instruments, vehicles, and systems. NASA engineers, scientists and technicians from across the country gather annually with representatives from industry and academia to perform the tests. Test scenarios include future missions to near-Earth asteroids (NEA), the moon and Mars.. Mission simulations help determine system requirements for exploring distant locations while developing the technical skills required of the next generation of explorers.

Cohen, Barbara

2012-01-01

281

Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team  

NASA Technical Reports Server (NTRS)

Personnel representing several NASA field centers have formulated a "Reference Mission" addressing human exploration of Mars. This report summarizes their work and describes a plan for the first human missions to Mars, using approaches that are technically feasible, have reasonable risks, and have relatively low costs. The architecture for the Mars Reference Mission builds on previous work of the Synthesis Group (1991) and Zubrin's (1991) concepts for the use of propellants derived from the Martian Atmosphere. In defining the Reference Mission, choices have been made. In this report, the rationale for each choice is documented; however, unanticipated technology advances or political decisions might change the choices in the future.

Hoffman, Stephen J. (Editor); Kaplan, David I. (Editor)

1997-01-01

282

Exploring NASA Earth Science Satellite Data in the K-12 Classroom Using MY NASA DATA  

Microsoft Academic Search

Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs (MY NASA DATA) is an Internet-based project aimed to bring real NASA Earth system satellite data into the K-12 science classroom. MY NASA DATA consists of a Web site that collects lesson plans, science project ideas, and specially developed documentation to help the target audience

C. S. Phelps; L. H. Chambers; D. D. Diones; S. W. Moore; P. C. Oots

2007-01-01

283

78 FR 42805 - NASA Advisory Council; Human Exploration Operations Committee; Research Subcommittee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice...Advisory Council; Human Exploration Operations Committee...National Aeronautics and Space Administration. ACTION...National Aeronautics and Space Administration (NASA...Subcommittee of the Human Exploration and Operations...

2013-07-17

284

NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE)  

NASA Technical Reports Server (NTRS)

Nearly 40 years have passed since the last Apollo missions investigated the mysteries of the lunar atmosphere and the question of levitated lunar dust. The most important questions remain: what is the composition, structure and variability of the tenuous lunar exosphere? What are its origins, transport mechanisms, and loss processes? Is lofted lunar dust the cause of the horizon glow observed by the Surveyor missions and Apollo astronauts? How does such levitated dust arise and move, what is its density, and what is its ultimate fate? The US National Academy of Sciences/National Research Council decadal surveys and the recent "Scientific Context for Exploration of the Moon" (SCEM) reports have identified studies of the pristine state of the lunar atmosphere and dust environment as among the leading priorities for future lunar science missions. These measurements have become particularly important since recent observations by the Lunar Crater Observation and Sensing Satellite (LCROSS) mission point to significant amounts of water and other volatiles sequestered within polar lunar cold traps. Moreover Chandrayaan/M3, EPOXI and Cassini/VIMS have identified molecular water and hydroxyl on lunar surface regolith grains. Variability in concentration suggests these species are likely to be present in the exosphere, and thus constitute a source for the cold traps. NASA s Lunar Atmosphere and Dust Environment Explorer (LADEE) is currently under development to address these goals. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. LADEE will also determine whether dust is present in the lunar exosphere, and reveal its sources and variability. LADEE s results are relevant to surface boundary exospheres and dust processes throughout the solar system, will address questions regarding the origin and evolution of lunar volatiles, and will have implications for future exploration activities. LADEE will be the first mission based on the Ames Common Bus design. LADEE employs a high heritage instrument payload: a Neutral Mass Spectrometer (NMS), an Ultraviolet/Visible Spectrometer (UVS), and the Lunar Dust Experiment (LDEX). It will also carry a space terminal as part of the Lunar Laser Communication Demonstration (LLCD), which is a technology demonstration. LLCD will also supply a ground terminal. LLCD is funded by the Space Operations Mission Directorate (SOMD), managed by GSFC, and built by MIT Lincoln Lab. NMS was directed to the Goddard Space Flight Center (GSFC) and UVS to Ames Research Center (ARC). LDEX was selected through the Stand Alone Missions of Opportunity Notice (SALMON) Acquisition Process, and is provided by the University of Colorado at Boulder. The LADEE NMS covers a m/z range of 2-150 and draws its design from mass spectrometers developed at GSFC for the MSL/SAM, Cassini Orbiter, CONTOUR, and MAVEN missions. The UVS instrument is a next-generation, high-reliability version of the LCROSS UV-Vis spectrometer, spanning 250-800 nm wavelength, with high (<1 nm) spectral resolution. UVS will also perform dust occultation measurements via a solar viewer optic. LDEX senses dust impacts in situ, at LADEE orbital altitudes of 50 km and below, with a particle size range of between 100 nm and 5 micron. Dust particle impacts on a large hemispherical target create electron and ion pairs. The latter are focused and accelerated in an electric field and detected at a microchannel plate. LADEE is an important part of NASA s portfolio of near-term lunar missions; launch is planned for May, 2013. The lunar atmosphere is the most accessible example of a surface boundary exosphere, and may reveal the sources and cycling of volatiles. Dynamic dust activity must be accounted for in the design and operation of lunar surface operations.

Elphic, Richard; Delory, Gregory; Colaprete, Anthony; Horanyi, Mihaly; Mahaffy, Paul; Hine, Butler; McClard, Steven; Grayzeck, Edwin; Boroson, Don

2011-01-01

285

Lunar and Planetary Science XXXV: Mars Polar Science and Exploration  

NASA Technical Reports Server (NTRS)

The session, "Mars Polar Science and Exploration" included the following reports: Evidence for Possible Exposed Water Ice Deposits in Martian Low Latitude Chasms and Chaos; Stability and Exchange of Subsurface Ice on Mars; Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions; Seasonal Cycle of Carbon Dioxide and Atmospheric Circulation in Mars Southern Hemisphere as Observed by Neutron Spectroscopy; Imaging Polarimetry of Mars with Hubble Space Telescope in 2003 Opposition; GCM Simulations of Tropical Ice Accumulations: Implications for Cold-based Glaciers; Numerical Modeling of Glaciers in Martian Paleoclimates; Valley Glaciers on Mars: Calculation of Flow Rate and Thickness; Internal Structure of the Southern Polar Cap of Mars and Formation Implications; Sublimation at the Base of a Seasonal CO2 Slab on Mars; Impact Crater Abundance of the Martian South Polar Layered Deposits from THEMIS Visible Imaging; Recent Changes in South-Polar-Polygonal Terrain During One Martian Year: Implications for Subsurface Ice-Wedges; and An Historical Search for Unfrozen Water at the Phoenix Landing Site.

2004-01-01

286

Robosphere: Self Sustaining Robotic Ecologies as Precursors to Human Planetary Exploration  

NASA Technical Reports Server (NTRS)

The present sequential mission oriented approach to robotic planetary exploration, could be changed to an infrastructure building approach where a robotic presence is permanent, self sustaining and growing with each mission. We call this self-sustaining robotic ecology approach robosphere and discuss the technological issues that need to be addressed before this concept can be realized. One of the major advantages of this approach is that a robosphere would include much of the infrastructure required by human explorers and would thus lower the preparation and risk threshold inherent in the transition from robotic to human exploration. In this context we discuss some implications for space architecture.

Colombano, Silvano P.

2003-01-01

287

Back to the future: the role of the ISS and future space stations in planetary exploration.  

NASA Astrophysics Data System (ADS)

Space stations as stepping stones to planets appear already in the1954 Disney-von Braun anticipation TV show but the first study with a specific planetary scientific objective was the ANTEUS project of 1978. This station was an evolution of SPACELAB hardware and was designed to analyse Mars samples with better equipment than the laboratory of the VIKING landers. It would have played the role of the reception facility present in the current studies of Mars sample return, after analysis, the "safe" samples would have been returned to earth by the space shuttle. This study was followed by the flights of SPACELAB and MIR. Finally after 35 years of development, the International Space Station reaches its final configuration in 2010. Recent developments of the international agreement between the space agencies indicate a life extending to 2025, it is already part of the exploration programme as its crews prepare the long cruise flights and missions to the exploration targets. It is now time to envisage also the use of this stable 350 tons spacecraft for planetary and space sciences. Planetary telescopes are an obvious application; the present SOLAR payload on COLUMBUS is an opportunity to use the target pointing capabilities from the ISS. The current exposure facilities are also preparing future planetary protection procedures. Other applications have already been previously considered as experimental collision and impact studies in both space vacuum and microgravity. Future space stations at the Lagrange points could simultaneously combine unique observation platforms with an actual intermediate stepping stone to Mars.

Muller, Christian; Moreau, Didier

2010-05-01

288

75 FR 40852 - NASA Advisory Council; Exploration Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Advisory Council; Exploration Committee; Meeting...Aeronautics and Space Administration...Aeronautics and Space Administration announces...a meeting of the Exploration Committee of the...Exploration, Exploration Systems Mission...Aeronautics and Space Administration...

2010-07-14

289

75 FR 15743 - NASA Advisory Council; Exploration Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Advisory Council; Exploration Committee; Meeting...Aeronautics and Space Administration...Aeronautics and Space Administration announces...a meeting of the Exploration Committee of the...Exploration, Exploration Systems Mission...Aeronautics and Space Administration...

2010-03-30

290

Strategic Research to Enable NASA's Exploration Missions Conference  

NASA Technical Reports Server (NTRS)

Abstracts are presented from a conference sponsored by the NASA Office of Biological and Physical Research and hosted by NASA Glenn Research Center and the National Center for Microgravity Research on Fluids and Combustion, held in Cleveland, Ohio, June 22-23, 2004. Topics pertained to the behavior of processes and materials in microgravity as well as physiological-biological studies and microgravity effects.

Nahra, Henry (Compiler)

2004-01-01

291

NASA Advanced Explorations Systems: Concepts for Logistics to Living  

NASA Technical Reports Server (NTRS)

The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project strives to enable a largely mission-independent cradle-to-grave-to-cradle approach to minimize logistics contributions to total mission architecture mass. The goals are to engineer logistics materials, common crew consumables, and container configurations to meet the following five basic goals: 1. Minimize intrinsic logistics mass and improve ground logistics flexibility. 2. Allow logistics components to be directly repurposed for on-orbit non-logistics functions (e.g., crew cabin outfitting) thereby indirectly reducing mass/volume. 3. Compact and process logistics that have not been directly repurposed to generate useful on-orbit components and/or compounds (e.g., radiation shielding, propellant, other usable chemical constituents). 4. Enable long-term stable storage and disposal of logistics end products that cannot be reused or repurposed (e.g., compaction for volume reduction, odor control, and maintenance of crew cabin hygienic conditions). 5. Allow vehicles in different mission phases to share logistics resources. This paper addresses the work being done to meet the second goal, the direct repurposing of logistics components to meet other on-orbit needs, through a strategy termed Logistics to Living (L2L). L2L has several areas but can be defined as repurposing or converting logistical items (bags, containers, foam, components, etc.) into useful crew items or life support augmentation on-orbit after they have provided their primary logistics function. The intent is that by repurposing items, dedicated crew items do not have to be launched and overall launch mass is decreased. For non-LEO missions, the vehicle interior volume will be relatively fixed so L2L will enable this volume to be used more effectively through reuse and rearrangement of logistical components. Past work in the area of L2L has already conceptually developed several potential technologies [Howe, Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

2012-01-01

292

NASA Space Engineering Research Center for utilization of local planetary resources  

NASA Technical Reports Server (NTRS)

In 1987, responding to widespread concern about America's competitiveness and future in the development of space technology and the academic preparation of our next generation of space professionals, NASA initiated a program to establish Space Engineering Research Centers (SERC's) at universities with strong doctoral programs in engineering. The goal was to create a national infrastructure for space exploration and development, and sites for the Centers would be selected on the basis of originality of proposed research, the potential for near-term utilization of technologies developed, and the impact these technologies could have on the U.S. space program. The Centers would also be charged with a major academic mission: the recruitment of topnotch students and their training as space professionals. This document describes the goals, accomplishments, and benefits of the research activities of the University of Arizona/NASA SERC. This SERC has become recognized as the premier center in the area known as In-Situ Resource Utilization or Indigenous Space Materials Utilization.

1992-01-01

293

Adhesion of Silicone Elastomer Seals for NASA's Crew Exploration Vehicle  

NASA Technical Reports Server (NTRS)

Silicone rubber seals are being considered for a number of interfaces on NASA's Crew Exploration Vehicle (CEV). Some of these joints include the docking system, hatches, and heat shield-to-back shell interface. A large diameter molded silicone seal is being developed for the Low Impact Docking System (LIDS) that forms an effective seal between the CEV and International Space Station (ISS) and other future Constellation Program spacecraft. Seals between the heat shield and back shell prevent high temperature reentry gases from leaking into the interface. Silicone rubber seals being considered for these locations have inherent adhesive tendencies that would result in excessive forces required to separate the joints if left unchecked. This paper summarizes adhesion assessments for both as-received and adhesion-mitigated seals for the docking system and the heat shield interface location. Three silicone elastomers were examined: Parker Hannifin S0899-50 and S0383-70 compounds, and Esterline ELA-SA-401 compound. For the docking system application various levels of exposure to atomic oxygen (AO) were evaluated. Moderate AO treatments did not lower the adhesive properties of S0899-50 sufficiently. However, AO pretreatments of approximately 10(exp 20) atoms/sq cm did lower the adhesion of S0383-70 and ELA-SA-401 to acceptable levels. For the heat shield-to-back shell interface application, a fabric covering was also considered. Molding Nomex fabric into the heat shield pressure seal appreciably reduced seal adhesion for the heat shield-to-back shell interface application.

deGroh, Henry C., III; Miller, Sharon K. R.; Smith, Ian M.; Daniels, Christopher C.; Steinetz, Bruce M

2008-01-01

294

Integrated Medium for Planetary Exploration (IMPEx): a new EU FP7-SPACE project  

NASA Astrophysics Data System (ADS)

The FP7-SPACE project Integrated Medium for Planetary Exploration (IMPEx) has started in June 2011. It will create an interactive framework for exploitation of space missions' data. Data analysis and visualization will be based on the advanced computational models of the planetary environments. Specifically, the 'modeling sector' of IMPEx is formed of four well established numerical codes and their related computational infrastructures: 1) 3D hybrid modeling platform HYB for the study of planetary plasma environments, hosted at FMI; 2) an alternative 3D hybrid modeling platform, hosted at LATMOS; 3) MHD modelling platform GUMICS for 3D terrestrial magnetosphere, hosted at FMI; and 4) the global 3D Paraboloid Magnetospheric Model for simulation of magnetospheres of different Solar System objects, hosted at SINP. Modelling results will be linked to the corresponding experimental data from space and planetary missions via several online tools: 1/ AMDA (Automated Multi-Dataset Analysis, http://cdpp-amda.cesr.fr/) which provides cross-linked visualization and operation of experimental and numerical modelling data, 2/ 3DView which will propose 3D visualization of spacecraft trajectories in simulated and observed environments, and 3/ "CLWeb" software which enables computation of various micro-scale physical products (spectra, distribution functions, etc.). In practice, IMPEx is going to provide an external user with an access to an extended set of space and planetary missions' data and powerful, world leading computing models, equipped with advanced visualization tools. Via its infrastructure, IMPEx will bring the data and models outside of the mission teams and specialized modelling groups making them accessible and useful for a broad planetary science community.

Khodachenko, M. L.; Genot, V. N.; Kallio, E. J.; Alexeev, I. I.; Modolo, R.; Al-Ubaidi, T.; André, N.; Gangloff, M.; Schmidt, W.; Belenkaya, E. S.; Topf, F.; Stoeckler, R.

2011-12-01

295

Efficient Representation in Three-Dimensional Environment Modeling for Planetary Robotic Exploration  

Microsoft Academic Search

Good situational awareness is an absolute must when operating mobile robots for planetary exploration. Three-dimensional (3-D) sensing and modeling data gathered by the robot are, hence, crucial for the operator. However, standard methods based on stereo vision have their limitations, especially in scenarios where there is no or only very limited visibility, e.g., due to extreme light conditions. Three-dimensional laser

Narunas Vaskevicius; Andreas Birk; Kaustubh Pathak; Sören Schwertfeger

2010-01-01

296

Field Testing of an Integrated Surface\\/Subsurface Modeling Technique for Planetary Exploration  

Microsoft Academic Search

While there has been much interest in developing ground-penetrating radar (GPR) technology for rover-based planetary exploration, relatively little work has been done on the data collection process. Starting from the manual method, we fully automate GPR data collection using only sensors typically found on a rover. Further, we produce two novel data products: (1) a three-dimensional, photorealistic surface model coupled

Paul Timothy Furgale; Timothy D. Barfoot; Nadeem Ghafoor; Kevin Williams; Gordon Osinski

2010-01-01

297

Three synergistic studies: A Manned Lunar Outpost, a Manned Mars Explorer, and an Antarctic Planetary Testbed  

NASA Technical Reports Server (NTRS)

The students at the University of Houston College of Architecture undertook three synergistic studies during the 1987-1988 academic year. These studies included a Manned Lunar Outpost, a Manned Mars Explorer Mission, and an Antarctic Planetary Testbed which would provide the necessary data and facilities for testing proposed missions to the Moon, Mars and beyond. All research was based on existing or near-term technology.

1988-01-01

298

Japanese Exploration to Solar System Small Bodies: Rewriting a Planetary Formation Theory with Astromaterial Connection (Invited)  

NASA Astrophysics Data System (ADS)

Three decades ago, Japan's deep space exploration started with Sakigake and Suisei, twin flyby probes to P/Halley. Since then, the Solar System small bodies have been one of focused destinations to the Japanese solar system studies even today. Only one year after the Halley armada launch, the very first meeting was held for an asteroid sample return mission at ISAS, which after 25 years, materialized as the successful Earth return of Hayabusa , an engineering verification mission for sample return from surfaces of an NEO for the first time in the history. Launched in 2003 and returned in 2010, Hayabusa became the first to visit a sub-km, rubble-pile potentially hazardous asteroid in near Earth space. Its returned samples solved S-type asteroid - ordinary chondrite paradox by proving space weathering evidences in sub-micron scale. Between the Halley missions and Hayabusa, SOCCER concept by M-V rocket was jointly studied between ISAS and NASA; yet it was not realized due to insufficient delta-V for intact capture by decelerating flyby/encounter velocity to a cometary coma. The SOCCER later became reality as Stardust, NASA Discovery mission for cometary coma dust sample return in1999-2006. Japan has collected the second largest collection of the Antarctic meteorites and micrometeorites of the world and asteromaterial scientists are eager to collaborate with space missions. Also Japan enjoyed a long history of collaborations between professional astronomers and high-end amateur observers in the area of observational studies of asteroids, comets and meteors. Having these academic foundations, Japan has an emphasis on programmatic approach to sample returns of Solar System small bodies in future prospects. The immediate follow-on to Hayabusa is Hayabusa-2 mission to sample return with an artificial impactor from 1999 JU3, a C-type NEO in 2014-2020. Following successful demonstration of deep space solar sail technique by IKAROS in 2010-2013, the solar power sail is a deep space probe with hybrid propulsion of solar photon sail and ion engine system that will enable Japan to reach out deep interplanetary space beyond the main asteroid belt. Since 2002, Japanese scientists and engineers have been investigating the solar power sail mission to Jupiter Trojans and interdisciplinary cruising science, such as infrared observation of zodiacal light due to cosmic dust, which at the same time hit a large cross section of the solar sail membrane dust detector, concentrating inside the main asteroid belt. Now the mission design has extended from cruising and fly-by only to rendezvous and sample return options from Jupiter Trojan asteroids. Major scientific goal of Jupiter Trojan exploration is to constrain its origin between two competing hypothesis such as remnants of building blocks the Jovian system as the classic model and the second generation captured EKBOs as the planetary migration models, in which several theories are in deep discussion. Also important is to better understand mixing process of material and structure of the early Solar System just beyond snow line. The current plan involves its launch and both solar photon and IES accelerations combined with Earth and Jupiter gravity assists in 2020's, detailed rendezvous investigation of a few 10-km sized D-type asteroid among Jupiter Trojans in early 2030's and an optional sample return of its surface materials to the Earth in late 2030's.

Yano, H.

2013-12-01

299

Planetary protection and humans on Mars: NASA\\/ESA workshop results  

Microsoft Academic Search

Planetary protection requirements for future human missions to Mars will strongly influence mission and spacecraft designs, particularly those related to the operation of advanced life support systems (ALS), extravehicular activity (EVA), laboratory and in situ sampling operations, and associated environmental monitoring and control systems. In order to initiate communication, understanding and working relations among the ALS, EVA, and planetary protection

Margaret S. Race; Gerhard Kminek; John D. Rummel

2008-01-01

300

75 FR 52375 - NASA Advisory Council; Exploration Committee  

Federal Register 2010, 2011, 2012, 2013

...Advisory Council; Exploration Committee AGENCY...Aeronautics and Space Administration...Aeronautics and Space Administration announces...a meeting of the Exploration Committee of the...Jane Parham, Exploration Systems Mission...Aeronautics and Space Administration...

2010-08-25

301

75 FR 80081 - NASA Advisory Council; Exploration Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Advisory Council; Exploration Committee; Meeting...Aeronautics and Space Administration...Aeronautics and Space Administration announces...a meeting of the Exploration Committee of the...Bette Siegel, Exploration Systems Mission...Aeronautics and Space Administration...

2010-12-21

302

76 FR 18800 - NASA Advisory Council; Exploration Committee; Meeting.  

Federal Register 2010, 2011, 2012, 2013

...Advisory Council; Exploration Committee; Meeting...Aeronautics and Space Administration...Aeronautics and Space Administration...meeting of the Exploration Committee of the...Recapturing a Future for Space Exploration: Life and...

2011-04-05

303

Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team  

NASA Technical Reports Server (NTRS)

The Reference Mission was developed over a period of several years and was published in NASA Special Publication 6107 in July 1997. The purpose of the Reference Mission was to provide a workable model for the human exploration of Mars, which is described in enough detail that alternative strategies and implementations can be compared and evaluated. NASA is continuing to develop the Reference Mission and expects to update this report in the near future. It was the purpose of the Reference Mission to develop scenarios based on the needs of scientists and explorers who want to conduct research on Mars; however, more work on the surface-mission aspects of the Reference Mission is required and is getting under way. Some aspects of the Reference Mission that are important for the consideration of the surface mission definition include: (1) a split mission strategy, which arrives at the surface two years before the arrival of the first crew; (2) three missions to the outpost site over a 6-year period; (3) a plant capable of producing rocket propellant for lifting off Mars and caches of water, O, and inert gases for the life-support system; (4) a hybrid physico-chemical/bioregenerative life-support system, which emphasizes the bioregenerative system more in later parts of the scenario; (5) a nuclear reactor power supply, which provides enough power for all operations, including the operation of a bioregenerative life-support system as well as the propellant and consumable plant; (6) capability for at least two people to be outside the habitat each day of the surface stay; (7) telerobotic and human-operated transportation vehicles, including a pressurized rover capable of supporting trips of several days' duration from the habitat; (7) crew stay times of 500 days on the surface, with six-person crews; and (8) multiple functional redundancies to reduce risks to the crews on the surface. New concepts are being sought that would reduce the overall cost for this exploration program and reducing the risks that are indigenous to Mars exploration. Among those areas being explored are alternative space propulsion approaches, solar vs. nuclear power, and reductions in the size of crews.

Connolly, John

1998-01-01

304

Planetary Exploration with a Raman Spectrometer: A Study of Carbonaceous Material Using Portable Instrumentation (532 and 785 nm)  

NASA Astrophysics Data System (ADS)

Deposits of carbonaceous material (CM) in rock could indicate former habitats of living organisms. Here we present a Raman spectroscopy (532 and 785 nm) study of CM in Archaean chert and discuss implications for planetary exploration missions.

Harris, L. V.; Hutchinson, I. B.; Ingley, R.; Marshall, C. P.; Olcott Marshall, A.; Edwards, H. G. M.

2014-06-01

305

The Search for Habitable Worlds: Planetary Exploration in the 21st Century  

Microsoft Academic Search

The search for and detailed characterization of habitable environments on other worlds – places where liquid water, heat\\/energy sources, and biologically important organic molecules exist or could have once existed – is a major twenty-first-century goal for space exploration by NASA and other space agencies, motivated by intense public interest and highly ranked science objectives identified in recent National Academy

James F. Bell

2012-01-01

306

The development of the human exploration demonstration project (HEDP), a planetary systems testbed  

NASA Technical Reports Server (NTRS)

The Human Exploration Demonstration Project (HEDP) is an ongoing task at the National Aeronautics and Space Administration's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment will consist of life support systems, physiological monitoring of project crew, a virtual environment workstation, and centralized data acquisition and habitat systems health monitoring. There will be several robotic systems on a simulated planetary landscape external to the habitat environment to provide representative work loads for the crew. This paper describes the status of the HEDP after one year, the major facilities composing the HEDP, the project's role as an Ames Research Center testbed, and the types of demonstration scenarios that will be run to showcase the technologies.

Chevers, Edward S.; Korsmeyer, David J.

1993-01-01

307

Scientific exploration of low-gravity planetary bodies using the Highland Terrain Hopper  

NASA Astrophysics Data System (ADS)

Field geoscientists need to collect three-dimensional data in order characterise the lithologic succession and structure of terrains, recontruct their evolution, and eventually reveal the history of a portion of the planet. This is achieved by walking up and down mountains and valleys, interpreting geological and geophysical traverses, and reading measures made at station located at key sites on mountain peaks or rocky promontories. These activities have been denied to conventional planetary exploration rovers because engineering constraints for landing are strong, especially in terms of allowed terrain roughness and slopes. The Highland Terrain Hopper, a new, light and robust locomotion system, addresses the challenge of accessing most areas on low-gravity planetary body for performing scientific observations and measurements, alone or as part of a hopper commando. Examples of geological applications on Mars and the Moon are given.

Mège, D.; Grygorczuk, J.; Gurgurewicz, J.; Wi?niewski, ?.; Rickman, H.; Banaszkiewicz, M.; Kuci?ski, T.; Skocki, K.

2013-09-01

308

EXPLORING NASA AND ESA ATMOSPHERIC DATA USING GIOVANNI, THE ONLINE VISUALIZATION AND ANALYSIS TOOL  

Microsoft Academic Search

Giovanni, the NASA Goddard online visualization and analysis tool (h ttp:\\/\\/giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis. 1. GIOVANNI Giov anni (1),

Gregory Leptoukh; Steve Cox; John Farley; Arun Gopalan; Jianping Mao; Stephen Berrick

2007-01-01

309

Operational Support Issues for the new NASA Exploration Initiative  

Microsoft Academic Search

The recent proposal for NASA to fly astronauts to the Moon and Mars is both very exciting and, at the same time, daunting. Any flight away from the protection of the Earth's magnetic field poses special problems for space weather operational support providers such as NOAA's Space Environment Center. Since the Apollo flights in the 1960's, SEC has provided forecasts

J. Kunches; C. Balch; W. Murtagh

2004-01-01

310

NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit.  

National Technical Information Service (NTIS)

The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic clim...

T. A. May

2012-01-01

311

NASA  

NSDL National Science Digital Library

The National Aeronautics and Space Administration home page provides information on current events at NASA, general information about NASA, and links to a plethora of NASA web sites, educational resources, and NASA Centers.

312

Development of In Situ Instruments for Planetary Exploration - Unique Challenges in Design, Development, and Execution  

NASA Technical Reports Server (NTRS)

A viewgraph presentation describing in situ instruments for NASA missions is shown. The topics include: 1) In Situ Instrumentation; 2) Planetary Extremes; 3) Mars Surface Environment; 4) Lunar Precursor Mission Environment; 5) Europa Surface Analogue; 6) Other Parameters; 7) Space In Situ Instrumentation still in its Infancy; 8) Needed Capabilities For In Situ Science; 9) Framework For Putting The Pieces Together; 10) The Wild World of Astrobiology; 11) Timeline; 12) Example: MOD; 13) In Situ Sample Analysis Laboratories are more complex; 14) technologies In Situ Sample Analysis Requires Integration of Many Emerging Advanced Concepts; 15) Supporting technologies for In Situ Laboratories; 16) Micro-laboratory example; 17) In Situ Instrument Classes; and 18) Key for Analytical Instrument:Sample Preparation.

Krabach, Timothy; Beauchamp, Patricia

2006-01-01

313

Determining Desirable Cursor Control Device Characteristics for NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

A test battery was developed for cursor control device evaluation: four tasks were taken from ISO 9241-9, and three from previous studies conducted at NASA. The tasks focused on basic movements such as pointing, clicking, and dragging. Four cursor control devices were evaluated with and without Extravehicular Activity (EVA) gloves to identify desirable cursor control device characteristics for NASA missions: 1) the Kensington Expert Mouse, 2) the Hulapoint mouse, 3) the Logitech Marble Mouse, and 4) the Honeywell trackball. Results showed that: 1) the test battery is an efficient tool for differentiating among input devices, 2) gloved operations were about 1 second slower and had at least 15% more errors; 3) devices used with gloves have to be larger, and should allow good hand positioning to counteract the lack of tactile feedback, 4) none of the devices, as designed, were ideal for operation with EVA gloves.

Sandor, Aniko; Holden, Kritina L.

2007-01-01

314

Measurements from an Aerial Vehicle: A New Tool for Planetary Exploration  

NASA Technical Reports Server (NTRS)

Aerial vehicles fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Aerial vehicles used in planetary exploration bridge the scale and resolution measurement gaps between orbiters (global perspective with limited spatial resolution) and landers (local perspective with high spatial resolution) thus complementing and extending orbital and landed measurements. Planetary aerial vehicles can also survey scientifically interesting terrain that is inaccessible or hazardous to landed missions. The use of aerial assets for performing observations on Mars, Titan, or Venus will enable direct measurements and direct follow-ons to recent discoveries. Aerial vehicles can be used for remote sensing of the interior, surface and atmosphere of Mars, Venus and Titan. Types of aerial vehicles considered are airplane "heavier than air" and airships and balloons "lighter than air". Interdependencies between the science measurements, science goals and objectives, and platform implementation illustrate how the proper balance of science, engineering, and cost, can be achieved to allow for a successful mission. Classification of measurement types along with how those measurements resolve science questions and how these instruments are accommodated within the mission context are discussed.

Wright, Henry S.; Levine, Joel S.; Croom, Mark A.; Edwards, William C.; Qualls, Garry D.; Gasbarre, Joseph F.

2004-01-01

315

Highly sensitive tunable diode laser spectrometers for in situ planetary exploration  

NASA Astrophysics Data System (ADS)

This paper describes highly sensitive tunable diode laser spectrometers suitable for in situ planetary exploration. The technology developed at JPL is based on wavelength modulated cavity enhanced absorption spectroscopy. It is capable of sensitively detecting chemical signatures of life through the abundance of biogenic molecules and their isotopic composition, and chemicals such as water necessary for habitats of life. The technology would be suitable for searching for biomarkers, extinct life, potential habitats of extant life, and signatures of ancient climates on Mars; and for detecting biomarkers, prebiotic chemicals and habitats of life in the outer Solar System. It would be useful for prospecting for water on the Moon and asteroids, and characterizing its isotopic composition. Deployment on the Moon could provide ground truth to the recent remote measurements and help to uncover precious records of the early bombardment history of the inner Solar System buried at the shadowed poles, and elucidate the mechanism for the generation of near-surface water in the illuminated regions. The technology would also be useful for detecting other volatile molecules in planetary atmospheres and subsurface reservoirs, isotopic characterization of planetary materials, and searching for signatures of extinct life preserved in solid matrices.

Vasudev, R.; Mansour, K.; Webster, C. R.

316

Exploration Roadmap Working Group (ERWG) Data Collection, NASA's Inputs  

NASA Technical Reports Server (NTRS)

This slide presentation reviews four areas for further space exploration: (1) Human Exploration of Mars Design Reference Architecture (DRA) 5.0, (2) Robotic Precursors targeting Near Earth Objects (NEO) for Human Exploration, (3) Notional Human Exploration of Near Earth Objects and (4) Low Earth Orbit (LEO) Refueling to Augment Human Exploration. The first presentation reviews the goals and objectives of the Mars DRA, presents a possible mission profile, innovation requirements for the mission and key risks and challenges for human exploration of Mars. The second presentation reviews the objective and goals of the robotic precursors to the NEO and the mission profile of such robotic exploration. The third presentation reviews the mission scenario of human exploration of NEO, the objectives and goals, the mission operational drivers, the key technology needs and a mission profile. The fourth and last presentation reviews the examples of possible refueling in low earth orbit prior to lunar orbit insertion, to allow for larger delivered payloads for a lunar mission.

Drake, Bret; Landis, Rob; Thomas, Andrew; Mauzy, Susan; Graham, Lee; Culbert, Chris; Troutman, Pat

2010-01-01

317

AS12-AS101-3 Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky  

NASA Technical Reports Server (NTRS)

We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. Over the above wavelength range, observatory performance is limited by zodiacal light. This new capability enables up to 10X increased photometric sensitivity and 160X increased observing speed relative to a Sun-Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRl-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the Science performance of much larger long development time systems; thuS, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions and is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

Greenhouse, Matthew; Benson, S.; Falck, R.; Fixsen, D.; Gardner, J.; Garvin, J.; Kruk, J.; Oleson, S.; Thronson, H.

2011-01-01

318

Operational Support Issues for the new NASA Exploration Initiative  

NASA Astrophysics Data System (ADS)

The recent proposal for NASA to fly astronauts to the Moon and Mars is both very exciting and, at the same time, daunting. Any flight away from the protection of the Earth's magnetic field poses special problems for space weather operational support providers such as NOAA's Space Environment Center. Since the Apollo flights in the 1960's, SEC has provided forecasts and warnings of important space weather to NASA at Johnson Space Center. The NASA Space Radiation Analysis Group (SRAG) receives SEC products and services to aid them in their function of safeguarding the astronaut's health and safety. But to travel away from the Geo-magnetosphere and then the Sun-Earth line, new services will be necessary to insure the warning of imminent solar energetic particle (SEP) events, a severe threat to astronaut safety. Currently SEP forecasts are marginally accurate and must be improved. These SEP add to perhaps the most serious threat to safety, the constant bombardment of Galactic Cosmic Rays (GCR). Fortunately, the GCR behavior, though variable, is well understood. The presentation will consist first of a status report on the state of the predictive art for the near-Earth environment. That report will include both data and models currently used at SEC, as well as prediction verification statistics. Following that, there will be a look into future time on issues related to a lunar flight and a stay on the moon. Lastly some thoughts will be given on what may be required to provide adequate operational support for a flight to and from, and habitation on Mars.

Kunches, J.; Balch, C.; Murtagh, W.

2004-12-01

319

Nuclear electric propulsion for planetary science missions: NASA technology program planning  

Microsoft Academic Search

This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for

Michael P. Doherty

1993-01-01

320

Nuclear electric propulsion for planetary science missions: NASA technology program planning  

Microsoft Academic Search

This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the

Michael P. Doherty

1993-01-01

321

Microwave Remote Sensing of Planetary Atmospheres: From Staelin and Barrett to the Nasa Juno Mission  

Microsoft Academic Search

Early seminal contributions by Staelin helped initiate the field of microwave remote sensing as a key tool for the study of planetary atmospheres. Recent studies of the microwave emission from the neutral atmosphere of Venus have been used to identify the abundance and spatial distribution of microwave absorbing constituents such as sulfuric acid vapor and sulfur dioxide. A new mission

Paul G. Steffes; Bryan M. Karpowicz

2008-01-01

322

Battery and Fuel Cell Development for NASA's Exploration Missions  

NASA Technical Reports Server (NTRS)

NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

Manzo, Michelle A.; Reid, Concha M.

2009-01-01

323

Planetary protection requirements for orbiter and netlander elements of the CNES\\/NASA Mars sample return mission  

Microsoft Academic Search

In the framework of Mars exploration, particularly for missions dedicated to the search for life or for traces of ancient forms of life, NASA and CNES have decided to join their efforts in order to build a Mars sample return mission. Taking into account article IX of the OUTER SPACE TREATY (Treaty on principles governing the activities of states in

A. Debus

2002-01-01

324

Considering the Ethical Implications of Space Exploration and Potential Impacts on Planetary Environments and Possible Indigenous Life  

NASA Astrophysics Data System (ADS)

Since the early days of the Outer Space Treaty, a primary concern of planetary protection policy has been to avoid contamination of planetary environments by terrestrial microbes that could compromise current or subsequent scientific investigations, particularly those searching for indigenous life. Over the past decade robotic missions and astrobiological research have greatly increased our understanding of diverse planetary landscapes and altered our views about the survivability of terrestrial organisms in extreme environments. They have also expanded notions about the prospect for finding evidence of extraterrestrial life. Recently a number of different groups, including the COSPAR Planetary Protection Workshop in Montreal (January 2008), have questioned whether it is advisable to re-examine current biological planetary protection policy in light of the ethical implications and responsibilities to preserve planetary environments and possible indigenous life. This paper discusses the issues and concerns that have led to recent recommendations for convening an international workshop specifically to discuss planetary protection policy and practices within a broader ethical and practical framework, and to consider whether revisions to policy and practices should be made. In addition to including various international scientific and legal organizations and experts in such a workshop, it will be important to find ways to involve the public in these discussions about ethical aspects of planetary exploration.

Race, Margaret

325

Compact time-resolved remote Raman system for detection of anhydrous and hydrous minerals and ices for planetary exploration  

NASA Astrophysics Data System (ADS)

The University of Hawaii and NASA Langley Research Center are developing small, compact, and portable remote Raman systems with pulsed lasers for planetary exploration under the Mars Instrument Development Program. The remote Raman instruments developed previously utilized small telescopes with clear apertures of 125 mm and 100 mm diameters and were able to detect water, ice, water bearing minerals, carbon in carbonate form in calcite, magnesite, dolomite, and siderite from a distance of 10 to 50 m under daytime and nighttime conditions. Recently, we significantly reduced the size of our time-resolved (TR) remote Raman system in order to build a compact system suitable for future space missions. This compact time-resolved Raman system was developed by utilizing (i) a regular 85 mm Nikon (F/1.8) lens with a clear aperture of 50 mm as a collection optic, and (ii) a miniature Raman spectrograph that is 1/14th in volume in comparison to the commercial spectrograph used in our previous work. In this paper, we present the TR remote Raman spectra obtained during daytime from various hydrous and anhydrous minerals, water, water-ice, and CO2-ice using this new compact remote Raman system to 50 m radial distance.

Sharma, S. K.; Misra, A. K.; Acosta, T. E.; Lucey, P. G.; Abedin, M. Nurul

2010-04-01

326

Space Applications of the FLUKA Monte-Carlo Code: Lunar and Planetary Exploration  

NASA Technical Reports Server (NTRS)

NASA has recognized the need for making additional heavy-ion collision measurements at the U.S. Brookhaven National Laboratory in order to support further improvement of several particle physics transport-code models for space exploration applications. FLUKA has been identified as one of these codes and we will review the nature and status of this investigation as it relates to high-energy heavy-ion physics.

Anderson, V.; Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Elkhayari, N.; Empl, A.; Fasso, A.; Ferrari, A.; Gadoli, E.; Gazelli, M. V.; LeBourgeois, M.; Lee, K. T.; Mayes, B.; Muraro, S.; Ottolenghi, A.; Pelliccioni, M.; Pinsky, L. S.; Rancati, T.; Ranft, J.; Roesler, S.; Sala, P. R.; Scannocchio, D.; Smirnov, G.

2004-01-01

327

Exploration of Terminal Procedures Enabled by NASA Wake VAS Technologies  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) tasked The MITRE Corporation's Center for Advanced Aviation System Development (CAASD) to investigate potential air traffic control (ATC) procedures that could benefit from technology used or developed in NASA's Wake Vortex Advisory System (WakeVAS). The task also required developing an estimate of the potential benefits of the candidate procedures. The main thrust of the investigation was to evaluate opportunities for improved capacity and efficiency in airport arrival and departure operations. Other procedures that would provide safety enhancements were also considered. The purpose of this investigation was to provide input to the WakeVAS program office regarding the most promising areas of development for the program. A two-fold perspective was desired: First, identification of benefits from possible procedures enabled by both incremental components and the mature state of WakeVAS technology; second identification of procedures that could be expected to evolve from the current Federal Aviation Administration (FAA) procedures. The evolution of procedures should provide meaningful increments of benefit and a low risk implementation of the WakeVAS technologies.

Lunsford, Clark R.; Smith, Arthur P., III; Cooper, Wayne W., Jr.; Mundra, Anand D.; Gross, Amy E.; Audenaerd, Laurence F.; Killian, Bruce E.

2004-01-01

328

Solar system exploration from the Moon: Synoptic and comparative study of bodies in our Planetary system  

NASA Technical Reports Server (NTRS)

An observational approach to Planetary Sciences and exploration from Earth applies to a quite limited number of targets, but most of these are spatially complex, and exhibit variability and evolution on a number of temporal scales which lie within the scope of possible observations. Advancing our understanding of the underlying physics requires the study of interactions between the various elements of such systems, and also requires study of the comparative response of both a given object to various conditions and of comparable objects to similar conditions. These studies are best conducted in 'campaigns', i.e. comprehensive programs combining simultaneous coherent observations of every interacting piece of the puzzle. The requirements include both imaging and spectroscopy over a wide spectral range, from UV to IR. While temporal simultaneity of operation in various modes is a key feature, these observations are also conducted over extended periods of time. The moon is a prime site offering long unbroken observation times and high positional stability, observations at small angular separation from the sun, comparative studies of planet Earth, and valuable technical advantages. A lunar observatory should become a central piece of any coherent set of planetary missions, supplying in-situ explorations with the synoptic and comparative data necessary for proper advance planning, correlative observations during the active exploratory phase, and follow-up studies of the target body or of related objects.

Bruston, P.; Mumma, M. J.

1994-01-01

329

Development of Spacecraft to Exploit Electric Propulsion for Outer Planetary Exploration  

NASA Technical Reports Server (NTRS)

Outer planetary exploration spacecraft have relied on Radioisotope Power Systems (RPS) to provide power. This is necessary as solar power is not useful beyond the inner planets. For propulsion these spacecraft have made use of chemical systems. A study was undertaken to look at the possibility of designing a spacecraft for outer planetary exploration that would use an RPS in combination with Electric Propulsion. That is, the RPS would be the sole power provider to the EP system. Recent improvements in RPS s have made Radioisotope Electric Propulsion (REP) more of a possibility. The combined power and propulsion technologies of REP and a direct trajectory would potentially enable a new class of missions - high delta V, beyond Mars orbit for a small spacecraft primarily suited for small body capture (orbit capture or co-orbit). A study was undertaken to evaluate the feasibility of a REP spacecraft for a selected representative mission of this type. To evaluate the potential of these technologies, a design reference mission was established and a conceptual design of a spacecraft developed. The following paper describes the Ion Propulsion System, one particular subsystem onboard of the spacecraft.

Roche, Joseph M. (Technical Monitor); Noland, Jonathan

2005-01-01

330

Demonstration of the feasibility of an integrated x ray laboratory for planetary exploration  

NASA Technical Reports Server (NTRS)

The identification of minerals and elemental compositions is an important component in the geological and exobiological exploration of the solar system. X ray diffraction and fluorescence are common techniques for obtaining these data. The feasibility of combining these analytical techniques in an integrated x ray laboratory compatible with the volume, mass, and power constraints imposed by many planetary missions was demonstrated. Breadboard level hardware was developed to cover the range of diffraction lines produced by minerals, clays, and amorphous; and to detect the x ray fluorescence emissions of elements from carbon through uranium. These breadboard modules were fabricated and used to demonstrate the ability to detect elements and minerals. Additional effort is required to establish the detection limits of the breadboard modules and to integrate diffraction and fluorescence techniques into a single unit. It was concluded that this integrated x ray laboratory capability will be a valuable tool in the geological and exobiological exploration of the solar system.

Franco, E. D.; Kerner, J. A.; Koppel, L. N.; Boyle, M. J.

1993-01-01

331

News and Views: Good publicity? Astrophysicists win Kavli Prizes; Maps for the planetary explorer; Small galaxies reveal property of dark matter  

NASA Astrophysics Data System (ADS)

The inaugural Kavli Prizes, including the Astrophysics award, were marked by a ceremony in Oslo in 9 September, celebrating international scientific success. Planetary explorers may have the equivalent of SatNav to guide them, but to avoid ending up in the space equivalent of a double-decker bus wedged under a low bridge, they need proper maps. And the topographer who is mapping exploration targets has received an Exceptional Achievement medal from NASA for the quality of his work. How big is the smallest galaxy? About 10 million solar masses, according to researchers mapping the small faint galaxies around the Milky Way. And they think that this figure might indicate something about dark matter.

2008-10-01

332

NASA Explorer Institutes: Exploring the Possibilities for Collaboration with the Informal Education Community. Report of the NASA Explorer Institutes--Focus Groups and Pilot Workshops, September 2004-March 2005; Planning and Evaluation Meeting, March 14-17, 2005  

ERIC Educational Resources Information Center

This report contains summary information and conclusions from the pilot workshops, focus groups, and the NEI (NASA Explorer Institutes) Planning and Evaluation Conference which united representatives of the workshops, focus groups, and NASA education. The culmination of these NEI pilot initiatives resulted in the identification of strategies that…

Gallaway, Debbie; Freeman, Jason; Walker, Gretchen; Davis, Hilarie

2005-01-01

333

NASA UTILIZATION OF THE INTERNATIONAL SPACE STATION AND THE VISION FOR SPACE EXPLORATION  

NASA Technical Reports Server (NTRS)

Under U.S. President Bush s Vision for Space Exploration (January 14, 2004), NASA has refocused its utilization plans for the International Space Station (ISS). This use will now focus on: (1) the development of countermeasures that will protect crews from the hazards of the space environment, (2) testing and validating technologies that will meet information and systems needs for future exploration missions.

Robinson, Julie A.; Thomas, Donald A.

2006-01-01

334

NASA's Role in Addressing Misconceptions: Scale of Our Solar System and Other Planetary Systems  

NASA Astrophysics Data System (ADS)

Our Solar System is no longer unique. As of early September 2013, there were over 940 known planets orbiting other stars. Planetary systems are fairly common, and astronomers are now finding Earth-sized planets in the “Goldilocks Zone,” implying that there may be many habitable planets. The Next Generation Science Standards includes the Disciplinary Core Idea: Earth's Place in the Universe and Crosscutting Concepts: Patterns; Scale, Portion, and Quantity; and Systems and System Models. While we are learning more about the nature of our Solar System and its planets by studying other planetary systems, our discoveries are heavily biased by the techniques used to detect these systems: primarily radial velocity, transits, and direct observations.

Lebofsky, L. A.; McCarthy, D. W.; Higgins, M. L.; Lebofsky, N. R.

2014-07-01

335

The use of harmonic drives on NASA's Mars Exploration Rover  

NASA Technical Reports Server (NTRS)

The Mars Exploration Rover (MER) mission will send two 185 kg rovers to Mars in 2003 to continue the scientific community's search for evidence of past water on Mars. These twin robotic vehicles will carry harmonic drives and their performance will be characterized at various temperatures, speeds and loads.

Krishnan, S.; Voorhees, C.

2001-01-01

336

Auxiliary Propulsion Activities in Support of NASA's Exploration Initiative  

NASA Technical Reports Server (NTRS)

The Space Launch Initiative (SLI) procurement mechanism NRA8-30 initiated the Auxiliary Propulsion System/Main Propulsion System (APS/MPS) Project in 2001 to address technology gaps and development risks for non-toxic and cryogenic propellants for auxiliary propulsion applications. These applications include reaction control and orbital maneuvering engines, and storage, pressure control, and transfer technologies associated with on-orbit maintenance of cryogens. The project has successfully evolved over several years in response to changing requirements for re-usable launch vehicle technologies, general launch technology improvements, and, most recently, exploration technologies. Lessons learned based on actual hardware performance have also played a part in the project evolution to focus now on those technologies deemed specifically relevant to the Exploration Initiative. Formal relevance reviews held in the spring of 2004 resulted in authority for continuation of the Auxiliary Propulsion Project through Fiscal Year 2005 (FY05), and provided for a direct reporting path to the Exploration Systems Mission Directorate. The tasks determined to be relevant under the project were: continuation of the development, fabrication, and delivery of three 870 lbf thrust prototype LOX/ethanol reaction control engines; the fabrication, assembly, engine integration and testing of the Auxiliary Propulsion Test Bed at White Sands Test Facility; and the completion of FY04 cryogenic fluid management component and subsystem development tasks (mass gauging, pressure control, and liquid acquisition elements). This paper presents an overview of those tasks, their scope, expectations, and results to-date as carried forward into the Exploration Initiative.

Best, Philip J.; Unger, Ronald J.; Waits, David A.

2005-01-01

337

Refining the Ares V Design to Carry Out NASA's Exploration Initiative  

NASA Technical Reports Server (NTRS)

NASA's Ares V cargo launch vehicle is part of an overall architecture for u.S. space exploration that will span decades. The Ares V, together with the Ares I crew launch vehicle, Orion crew exploration vehicle and Altair lunar lander, will carry out the national policy goals of retiring the Space Shuttle, completing the International Space Station program, and expanding exploration of the Moon as a steps toward eventual human exploration of Mars. The Ares fleet (Figure 1) is the product of the Exploration Systems Architecture study which, in the wake of the Columbia accident, recommended separating crew from cargo transportation. Both vehicles are undergoing rigorous systems design to maximize safety, reliability, and operability. They take advantage of the best technical and operational lessons learned from the Apollo, Space Shuttle and more recent programs. NASA also seeks to maximize commonality between the crew and cargo vehicles in an effort to simplify and reduce operational costs for sustainable, long-term exploration.

Creech, Steve

2008-01-01

338

Time-resolved stand-off UV-Raman spectroscopy for planetary exploration  

NASA Astrophysics Data System (ADS)

The exploration of Mars, Europa and Enceladus has provided evidence that support the existence of present or past potentially habitable environments, which may shelter signatures of extinct or extant life. A search for further evidence for habitability or for life requires the development of sophisticated instruments and techniques that enable detailed investigations of locations, which are of great interest to planetary scientists and astrobiologists. Raman spectroscopy is a powerful and versatile technique; a rover based Raman Laser Spectrometer (RLS) operating at 532 nm excitation wavelength has been selected for the 2018 ExoMars mission. In this study, we demonstrate the feasibility of the utilisation of a time-resolved stand-off UV-Raman prototype for the detection and identification of pure organics, organics mixed in a quartz matrix and minerals that have been selected based on their potential relevance to astrobiology and planetary exploration. The samples of organics (?-carotene, L-ascorbic acid, thiamine hydrochloride, L-alanine, L-serine, thymine), carbonates (calcite, dolomite), sulfates (gypsum), silicates (quartz), and natural rock (an altered meta-volcanic rock featuring quartz inclusions) were analyzed at a distance of 6 m using a 355 nm excitation source and a gated intensified charged-coupled device (ICCD) as the detector. We were able to obtain spectra with clear Raman signals enabling unequivocal identification of all selected samples. We assert for the first time, that such an instrument can effectively identify minerals and a wide range of organics that may serve as geo- and biomarkers thus showing great potential for the exploration of planets and astrobiology.

Skulinova, M.; Lefebvre, C.; Sobron, P.; Eshelman, E.; Daly, M.; Gravel, J.-F.; Cormier, J.-F.; Châteauneuf, F.; Slater, G.; Zheng, W.; Koujelev, A.; Léveillé, R.

2014-03-01

339

Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex): NASA's Next Human-Rated Testing Facility  

NASA Technical Reports Server (NTRS)

As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.

Tri, Terry O.

1999-01-01

340

Benefit assessment of NASA space technology goals  

NASA Technical Reports Server (NTRS)

The socio-economic benefits to be derived from system applications of space technology goals developed by NASA were assessed. Specific studies include: electronic mail; personal telephone communications; weather and climate monitoring, prediction, and control; crop production forecasting and water availability; planetary engineering of the planet Venus; and planetary exploration.

1976-01-01

341

CECE: Expanding the Envelope of Deep Throttling Technology in Liquid Oxygen/Liquid Hydrogen Rocket Engines for NASA Exploration Missions.  

National Technical Information Service (NTIS)

As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to be...

R. T. Lyda T. G. Leonard T. S. Kim V. J. Giuliano

2010-01-01

342

Exploring NASA Satellite Data with High Resolution Visualization  

NASA Astrophysics Data System (ADS)

Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme event (such as volcano eruption, dust storm, ...etc) interpretation from satellite. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. Such obstacles may be avoided by providing satellite data as ';Images' with accurate pixel-level (Level 2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. We will present a prototype service from the Goddard Earth Sciences Data and Information Services Center (GES DISC) supporting various visualization and data accessing capabilities from satellite Level 2 data (non-aggregated and un-gridded) at high spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement, like NO2 and SO2 from Ozone Monitoring Instrument (OMI), or same parameter with different methods of aggregation, like NO2 in OMNO2G and OMNO2D products), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting. The portal interface will connect to the backend services with OGC standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls. The interface will also be able to connect to other OGC WMS and WCS servers, which will greatly enhance its expandability to integrate additional outside data/map sources.

Wei, J. C.; Yang, W.; Johnson, J. E.; Shen, S.; Zhao, P.; Gerasimov, I. V.; Vollmer, B.; Vicente, G. A.; Pham, L.

2013-12-01

343

Nuclear electric propulsion for planetary science missions: NASA technology program planning  

SciTech Connect

This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

Doherty, M.P.

1993-05-01

344

Nuclear electric propulsion for planetary science missions: NASA technology program planning  

SciTech Connect

This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

Doherty, M.P. (NASA Lewis Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States))

1993-01-10

345

Impact of the Columbia Supercomputer on NASA Space and Exploration Mission  

NASA Technical Reports Server (NTRS)

NASA's 10,240-processor Columbia supercomputer gained worldwide recognition in 2004 for increasing the space agency's computing capability ten-fold, and enabling U.S. scientists and engineers to perform significant, breakthrough simulations. Columbia has amply demonstrated its capability to accelerate NASA's key missions, including space operations, exploration systems, science, and aeronautics. Columbia is part of an integrated high-end computing (HEC) environment comprised of massive storage and archive systems, high-speed networking, high-fidelity modeling and simulation tools, application performance optimization, and advanced data analysis and visualization. In this paper, we illustrate the impact Columbia is having on NASA's numerous space and exploration applications, such as the development of the Crew Exploration and Launch Vehicles (CEV/CLV), effects of long-duration human presence in space, and damage assessment and repair recommendations for remaining shuttle flights. We conclude by discussing HEC challenges that must be overcome to solve space-related science problems in the future.

Biswas, Rupak; Kwak, Dochan; Kiris, Cetin; Lawrence, Scott

2006-01-01

346

NASA Space Engineering Research Center for utilization of local planetary resources  

NASA Technical Reports Server (NTRS)

Reports covering the period from 1 Nov. 1991 to 31 Oct. 1992 and documenting progress at the NASA Space Engineering Research Center are included. Topics covered include: (1) processing of propellants, volatiles, and metals; (2) production of structural and refractory materials; (3) system optimization discovery and characterization; (4) system automation and optimization; and (5) database development.

1992-01-01

347

The Titan Wind Tunnel: a resource in the NASA Ames Planetary Aeolian Laboratory  

NASA Astrophysics Data System (ADS)

The Titan Wind Tunnel in the NASA Ames Research Center is now available to simulate the kinematic viscosity and wind speeds of the Titan near-surface atmosphere. Early results indicate that threshold wind speeds may differ from previous (terrestrial) models.

Burr, D. M.; Bridges, N.; Marshall, J.; Smith, J. K.; White, B.; Williams, D. A.

2013-09-01

348

The NASA Exploration Design Team; Blueprint for a New Design Paradigm  

NASA Technical Reports Server (NTRS)

NASA has chosen JPL to deliver a NASA-wide rapid-response real-time collaborative design team to perform rapid execution of program, system, mission, and technology trade studies. This team will draw on the expertise of all NASA centers and external partners necessary. The NASA Exploration Design Team (NEDT) will be led by NASA Headquarters, with field centers and partners added according to the needs of each study. Through real-time distributed collaboration we will effectively bring all NASA field centers directly inside Headquarters. JPL's Team X pioneered the technique of real time collaborative design 8 years ago. Since its inception, Team X has performed over 600 mission studies and has reduced per-study cost by a factor of 5 and per-study duration by a factor of 10 compared to conventional design processes. The Team X concept has spread to other NASA centers, industry, academia, and international partners. In this paper, we discuss the extension of the JPL Team X process to the NASA-wide collaborative design team. We discuss the architecture for such a process and elaborate on the implementation challenges of this process. We further discuss our current ideas on how to address these challenges.

Oberto, Robert E.; Nilsen, Erik; Cohen, Ron; Wheeler, Rebecca; DeFlorio, Paul

2005-01-01

349

ExoFly: a flapping wing aerobot for planetary survey and exploration  

NASA Astrophysics Data System (ADS)

ExoFly is a light-weight (20 to 200 g.) flappingwing robotic fly, capable of exploration and scientific observations of the surface and lower atmosphere of planets. It is only in the last years that flapping wing insect flight is fully understood, and the step to robotic flapping-wing concept is very recent [1,2,3]. The concept of ExoFly is based on the DelFly, which has successfully been developed in the last years by the Technical University Delft, Wageningen University and TNO. Flapping winged flight is well suited to the low density and highly viscous Martian atmosphere, but may also be used in a denser atmosphere such as Titan. In any planetary mission, ExoFly would be a highly innovative mission element, technically part of the mission infrastructure, but enabling scientific breakthrough observations with the imaging system and micro-payload.

Zegers, T. E.; Mulder, J. A.; Remes, B.; Berkouwer, W.; Peeters, B.; Lentink, D.; Passchier, C.

2008-09-01

350

International ultraviolet explorer spectral atlas of planetary nebulae, central stars, and related objects  

NASA Technical Reports Server (NTRS)

The International Ultraviolet Explorer (IUE) archives contain a wealth of information on high quality ultraviolet spectra of approximately 180 planetary nebulae, their central stars, and related objects. Selected are representative low-dispersion IUE spectra in the range 1200 to 3200 A for 177 objects arranged by Right Ascension (RA) for this atlas. For most entries, the combined short wavelength (SWP) (1200to 1900) and long wavelength (LWR) (or LWP, 1900 to 3200 A) regions are shown on 30 cm by 10 cm Calcomp plots on a uniform scale to facilitate intercomparison of the spectra. Each calibrated spectrum is also shown on an expanded vertical scale to bring out some of the weaker features.

Feibelman, Walter A.; Oliversen, Nancy A.; Nicholsbohlin, Joy; Garhart, Matthew P.

1988-01-01

351

International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.  

PubMed

Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation. PMID:16592781

Aller, L H; Keyes, C D

1980-03-01

352

The Space Exploration Initiative and NASA Langley Research Center test facilities  

NASA Technical Reports Server (NTRS)

The NASA Exploration Technology Program (ETP) will make possible the U.S. Space Exploration Initiative (SEI), and is structured according to mission thrusts that are based on technologies to be developed and tested or that will otherwise be utilized to support SEI. Twenty-seven technology projects have thus far been established, and NASA's Langley Research Center is responsible for six lead roles and four participating roles. This report briefly defines these ten Langley-assigned ETP technology projects, and it describes both existing and proposed test facilities capable of supporting the Center's responsibilities.

Mouring, John L.; Hook, W. Ray

1990-01-01

353

NASA Video Catalog  

NASA Technical Reports Server (NTRS)

This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2006-01-01

354

Determining Desirable Cursor Control Device Characteristics for NASA Exploration Missions  

NASA Technical Reports Server (NTRS)

The Crew Exploration Vehicle (CEV) that will travel to the moon and Mars, and all future Exploration vehicles and habitats will be highly computerized, necessitating an accurate method of interaction with the computers. The design of a cursor control device will have to take into consideration g-forces, vibration, gloved operations, and the specific types of tasks to be performed. The study described here is being undertaken to begin identifying characteristics of cursor control devices that will work well for the unique Exploration mission environments. The objective of the study is not to identify a particular device, but to begin identifying design characteristics that are usable and desirable for space missions. Most cursor control devices have strengths and weaknesses; they are more appropriate for some tasks and less suitable for others. The purpose of this study is to collect some initial usability data on a large number of commercially available and proprietary cursor control devices. A software test battery was developed for this purpose. Once data has been collected using these low-level, basic point/click/drag tasks, higher fidelity, scenario-driven evaluations will be conducted with a reduced set of devices. The standard tasks used for testing cursor control devices are based on a model of human movement known as Fitts law. Fitts law predicts that the time to acquire a target is logarithmically related to the distance over the target size. To gather data for analysis with this law, fundamental, low-level tasks are used such as dragging or pointing at various targets of different sizes from various distances. The first four core tasks for the study were based on the ISO 9241-9:(2000) document from the International Organization for Standardization that contains the requirements for non-keyboard input devices. These include two pointing tasks, one dragging and one tracking task. The fifth task from ISO 9241-9, the circular tracking task was not used because it is a movement that is not applicable to most of the applications used on aviation displays. Additionally, we opted to add a multi-size and multi-distance pointing task, and two ecologically more valid tasks which included text selection, and interaction with drop down menus, sliders, and checkboxes. The Visual Basic test battery tracks the task and trial numbers, measures the pointing, tracking or dragging time, as well as the number and types of errors. The testing session includes a practice set for each input device, then the randomized 7 tasks, and finally a questionnaire about the device. This is repeated for all the devices tested within a session. The experiment is a within-subjects design, with participants returning for multiple sessions to test additional devices. The input devices will be compared based on objective performance data from the tasks, as well as subjective feedback and ratings on the questionnaire.

Sandor, Aniko; Holden, Kritina

2007-01-01

355

NASA's Learning Technology Project: Developing Educational Tools for the Next Generation of Explorers  

NASA Astrophysics Data System (ADS)

Since 1996, NASA's Learning Technology has pioneered the use of innovative technology toinspire students to pursue careers in STEM(Science, Technology, Engineering and Math.) In the past this has included Web sites like Quest and the Observatorium, webcasts and distance learning courses, and even interactive television broadcasts. Our current focus is on development of several mission oriented software packages, targeted primarily at the middle-school population, but flexible enough to be used by elementary to graduate students. These products include contributions to an open source solar system simulator, a 3D planetary encyclopedia), development of a planetary surface viewer (atlas) and others. Whenever possible these software products are written to be 'open source' and multi-platform, for the widest use and easiest access for developers. Along with the software products, we are developing activities and lesson plans that are tested and used by educators in the classroom. The products are reviewed by professional educators. Together these products constitute the NASA Experential Platform for learning, in which the tools used by the public are similar (and in some respects) the same as those used by professional investigators. Efforts are now underway to incorporate actual MODIS and other real time data uplink capabilities.

Federman, A. N.; Hogan, P. J.

2003-12-01

356

Validation of the measuring condition for a planetary subsurface explorer robot that uses peristaltic crawling  

NASA Astrophysics Data System (ADS)

Subsurface exploration is required to obtain resources such as oil and minerals, and to construct buildings and houses. It would also be necessary in any future expansion of human activity on the Moon or other planets. We have developed a small unmanned planetary subsurface explorer suitable for nascent stages of exploration. The subsurface excavator consists of both propulsion and excavation units, and its movements are based on those of an actual earthworm. The prototype excavator showed good performance in excavation experiments, and it could excavate at the same depth as in its own weight in the case of an excavator that is 1/6th of its own weight using counterweights. It was difficult to obtain and evaluate an underground environment and the right condition for an excavator in the excavation process. Therefore, we improved a propulsion unit equipped with sensors to detect the pushing force in a radial direction and then performed excavation experiments using the improved excavator from a launcher. We discuss data obtained from sensors, the excavation depth and motor torque. Our excavator showed good performance.

Omori, H.; Murakami, T.; Nagai, H.; Nakamura, T.; Kubota, T.

357

Ethical Considerations and Planetary Protection for Future Space Exploration - Starting with the Basics  

NASA Astrophysics Data System (ADS)

As COSPAR scientists deliberate what types of frameworks and policy approaches may be applicable to future activities by various sectors in space exploration, it also needs to consider the challenging question of what ethical values and foundations should be used in dealing with life, objects and activities in outer space. A 2010 COSPAR Workshop Report on Ethical Considerations for Planetary Protection in Space Exploration recommended that it is appropriate to maintain the existing PP policy aimed at scientific concerns even as we begin to explore various practical approaches to future contamination avoidance policies. It is also appropriate to examine in parallel the ethical considerations applicable to potential indigenous extraterrestrial life, non-living extraterrestrial features and environments, and planned uses and activities involving diverse life from Earth. Since numerous sectors have begun to propose activities raising varied ethical concerns (e.g., protection and management on the moon, strip mining, space synthetic biology, space code of conduct, and commercial space transport), it is timely to initiate serious international discussions about the appropriate ethical foundations and questions applicable to future space exploration. Plans are underway for convening interdisciplinary work groups to explore and deliberate on the values (e.g., intrinsic and instrumental) and ethical foundations that are appropriate for use in deliberations involving potential indigenous extraterrestrial life and the different classes of target objects and environments in our solar system. More than ever, information on bioethics, environmental ethics and geoethics will provide helpful guidance and foundational approaches of relevance to future policy deliberations that seek to go beyond science protection per se.

Race, Margaret

2012-07-01

358

75 FR 33838 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting  

Federal Register 2010, 2011, 2012, 2013

...National Aeronautics and Space Administration. ACTION...National Aeronautics and Space Administration announces...CONTACT: Ms. Jane Parham, Exploration Systems Mission Directorate, National Aeronautics and Space Administration...

2010-06-15

359

75 FR 15742 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting  

Federal Register 2010, 2011, 2012, 2013

...National Aeronautics and Space Administration. ACTION...National Aeronautics and Space Administration announces...CONTACT: Ms. Jane Parham, Exploration Systems Mission Directorate, National Aeronautics and Space Administration...

2010-03-30

360

75 FR 43565 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting  

Federal Register 2010, 2011, 2012, 2013

...National Aeronautics and Space Administration. ACTION...National Aeronautics and Space Administration announces...CONTACT: Ms. Jane Parham, Exploration Systems Mission Directorate, National Aeronautics and Space Administration...

2010-07-26

361

Ultrasonic/Sonic Driller/Corer (USDC) as a Subsurface Sampler and Sensors Platform for Planetary Exploration Applications  

NASA Technical Reports Server (NTRS)

The search for existing or past life in the Universe is one of the most important objectives of NASA's mission. For this purpose, effective instruments that can sample and conduct in-situ astrobiology analysis are being developed. In support of this objective, a series of novel mechanisms that are driven by an Ultrasonic/Sonic actuator have been developed to probe and sample rocks, ice and soil. This mechanism is driven by an ultrasonic piezoelectric actuator that impacts a bit at sonic frequencies through the use of an intermediate free-mass. Ultrasonic/Sonic Driller/Corer (USDC) devices were made that can produce both core and powdered cuttings, operate as a sounder to emit elastic waves and serve as a platform for sensors. For planetary exploration, this mechanism has the important advantage of requiring low axial force, virtually no torque, and can be duty cycled for operation at low average power. The advantage of requiring low axial load allows overcoming a major limitation of planetary sampling in low gravity environments or when operating from lightweight robots and rovers. The ability to operate at duty cycling with low average power produces a minimum temperature rise allowing for control of the sample integrity and preventing damage to potential biological markers in the acquired sample. The development of the USDC is being pursued on various fronts ranging from analytical modeling to mechanisms improvements while considering a wide range of potential applications. While developing the analytical capability to predict and optimize its performance, efforts are made to enhance its capability to drill at higher power and high speed. Taking advantage of the fact that the bit does not require rotation, sensors (e.g., thermocouple and fiberoptics) were integrated into the bit to examine the borehole during drilling. The sounding effect of the drill was used to emit elastic waves in order to evaluate the surface characteristics of rocks. Since the USDC is driven by piezoelectric actuation mechanism it can designed to operate at extreme temperature environments from very cold as on Titan and Europa to very hot as on Venus. In this paper, a review of the latest development and applications of the USDC will be given.

Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Aldrich, Jack; Chang, Zensheu

2006-01-01

362

Propulsion Controls and Diagnostics Research in Support of NASA Aeronautics and Exploration Mission Programs  

NASA Technical Reports Server (NTRS)

The Controls and Dynamics Branch (CDB) at National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research and Exploration Systems Missions. This paper provides a brief overview of the various CDB tasks in support of the NASA programs. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.

Garg, Sanjay

2011-01-01

363

Earth Science Resource Teachers: A Mentor Program for NASA's Explorer Schools  

NASA Astrophysics Data System (ADS)

Each year, the NASA Explorer Schools (NES) program establishes a three-year partnership between NASA and 50 school teams, consisting of teachers and education administrators from diverse communities across the country. While partnered with NASA, NES teams acquire and use new teaching resources and technology tools for grades 4 - 9 using NASA's unique content, experts and other resources. Schools in the program are eligible to receive funding (pending budget approval) over the three-year period to purchase technology tools that support science and mathematics instruction. Explorer School teams attend a one-week summer institute at one of NASA's field centers each summer. The weeklong institutes are designed to introduce the teachers and administrators to the wealth of NASA information and resources available and to provide them with content background on NASA's exploration programs. During the 2004 summer institutes at Goddard Space Flight Center (GSFC) the National Earth Science Teachers Association (NESTA) entered into a pilot program with NES to test the feasibility of master teachers serving as mentors for the NES teams. Five master teachers were selected as Earth Science Resource Teachers (ESRT) from an application pool and attended the NES workshop at GSFC. During the workshop they participated in the program along side the NES teams which provided the opportunity for them to meet the teams and develop a rapport. Over the next year the ESRT will be in communication with the NES teams to offer suggestions on classroom management, content issues, classroom resources, and will be able to assist them in meeting the goals of NES. This paper will discuss the planning, selection, participation, outcomes, costs, and suggestions for future ESRT mentorship programs.

Ireton, F.; Owens, A.; Steffen, P. L.

2004-12-01

364

NASA's M and S Accreditation Process Plan and Specification for Space Exploration  

NASA Technical Reports Server (NTRS)

NASA's Exploration Systems Mission Directorate (ESMD) is implementing a management approach for modeling and simulation (M&S) that will provide decision-makers information on the model's fidelity, credibility, and quality. This information will allow the decision-maker to understand the risks involved in using a model's results in the decision-making process. This presentation will discuss NASA's overall approach to achieving formal accreditation of its models or simulations supporting space exploration. The development of a formal Accreditation Plan is a key component in the preliminary activities for modeling and simulation (M&S) assessment. This presentation will describe NASA's process for identifying risks associated with M&S use and the associated M&S assessments that will dictate the level of data certification and M&S verification and validation (V&V) activities required to support the decision-making process. The M&S Accreditation Plan and Report templates for ESMD will also be illustrated.

O'Neil, David; Hale, Joe

2006-01-01

365

Exploration of the solar system - achievements and future plans in NASA's programme.  

NASA Astrophysics Data System (ADS)

Culminating with the Voyager 2 encounter with Uranus in January and a multifaceted program of ground-based and spacecraft observations of comet Halley during the spring, the year 1986 has capped a quarter century of NASA solar system exploration. Although our understanding of the solar system has been greatly increased, the data obtained thus far has served primarily to whet the appetite for further, more detailed exploration.

Brunk, W.

1986-11-01

366

Planetary Surface Exploration Using Time-Resolved Laser Spectroscopy on Rovers and Landers  

NASA Astrophysics Data System (ADS)

Planetary surface exploration using laser spectroscopy has become increasingly relevant as these techniques become a reality on Mars surface missions. The ChemCam instrument onboard the Curiosity rover is currently using laser induced breakdown spectroscopy (LIBS) on a mast-mounted platform to measure elemental composition of target rocks. The RLS Raman Spectrometer is included on the payload for the ExoMars mission to be launched in 2018 and will identify minerals and organics on the Martian surface. We present a next-generation instrument that builds on these widely used techniques to provide a means for performing both Raman spectroscopy and LIBS in conjunction with microscopic imaging. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size (~ 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. As an added benefit, we have found that with small changes in operating parameters we can include microscopic LIBS using the same hardware. This new technique relies on sub-ns, high rep-rate lasers with relatively low pulse energy and compact solid state detectors with sub-ns time resolution. The detector technology that makes this instrument possible is a newly developed Single-Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. The use of this solid state time-resolved detector offers a significant reduction in size, weight, power, and overall complexity - making time resolved detection feasible for planetary applications. We will discuss significant advances leading to the feasibility of a compact time-resolved spectrometer. We will present results on planetary analog minerals to demonstrate the instrument performance including fluorescence rejection and combined Raman-LIBS capability.

Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Charbon, Edoardo; Rossman, George

2013-04-01

367

NASA utilization of the International Space Station and the Vision for Space Exploration  

Microsoft Academic Search

In response to the US President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for International Space Station (ISS) to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long-duration voyages, (2) ISS as a test bed for research and technology developments

Julie A. Robinson; Tracy L. Thumm; Donald A. Thomas

2007-01-01

368

New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle.  

National Technical Information Service (NTIS)

The National Aeronautics and Space Administration (NASA) is developing new launch systems and preparing to retire the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle (CLV) and the...

J. C. McArthur J. P. Sumrall

2007-01-01

369

New Heavy-Lift Capability for Space Exploration: NASA's Ares V Cargo Launch Vehicle.  

National Technical Information Service (NTIS)

The National Aeronautics and Space Administration (NASA) is developing new launch systems in preparation for the retirement of the Space Shuttle by 2010, as directed in the United States (U.S.) Vision for Space Exploration. The Ares I Crew Launch Vehicle ...

J. P. Sumrall

2006-01-01

370

"Festival of Flight Special": Opening Space for Next Generation Explorers. NASA CONNECT[TM]. [Videotape].  

ERIC Educational Resources Information Center

The National Aeronautics and Space Administration's (NASA) Space Launch Initiative (SLI) Program will ultimately move from the explorations of the Mercury, Gemini, Apollo, and Space Shuttle missions to a new period of pioneering in which people and businesses are more routinely traveling, working, and living in space. (Author/NB)

National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

371

NASA Utilization of the International Space Station and the Vision for Space Exploration  

NASA Technical Reports Server (NTRS)

In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

2006-01-01

372

NASA Utilization of the International Space Station and the Vision for Space Exploration  

NASA Technical Reports Server (NTRS)

In response to the U.S. President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

Robinson, Julie A.; Thomas, Donald A.; Thumm, Tracy L.

2006-01-01

373

NASA Utilization of the International Space Station and the Vision for Space Exploration  

NASA Technical Reports Server (NTRS)

In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

2007-01-01

374

Earth Exploration Toolbook Chapter: Using NASA NEO and ImageJ to Explore the Role of Snow Cover in Shaping Climate  

NSDL National Science Digital Library

DATA: NASA Satellite Images. TOOLS: ImageJ and Image Composite Explorer (ICE) of NASA Earth Observations (NEO). SUMMARY: Explore and animate satellite images of reflected short wave radiation, snow cover, and land surface temperature downloaded. Then observe, graph, and analyze the relationship between these three variables.

375

Planetary Exploration in the Time of Astrobiology: Protecting Against Biological Contamination  

NSDL National Science Digital Library

This article discusses the history and future of planetary-protection restrictions. It begins by addressing the difficulty of discovering (possibly rare) life elsewhere, and then describes the potential difficulties of dealing with alien life that could be discovered on other worlds or in samples returned to the Earth from space. Sections include an introduction, planetary protection heritage, two examples forward and backward contamination, future planetary-protection challenges, and the role of academics.

Rummel, J. D. (John D.)

2010-02-08

376

Moving Towards a Common Ground and Flight Data Systems Architecture for NASA's Exploration Missions  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration has embarked on an ambitious effort to return man to the moon and then on to Mars. The Exploration Vision requires development of major new space and ground assets and poses challenges well beyond those faced by many of NASA's recent programs. New crewed vehicles must be developed. Compatible supply vehicles, surface mobility modules and robotic exploration capabilities will supplement the manned exploration vehicle. New launch systems will be developed as well as a new ground communications and control infrastructure. The development must take place in a cost-constrained environment and must advance along an aggressive schedule. Common solutions and system interoperability and will be critical to the successful development of the Exploration data systems for this wide variety of flight and ground elements. To this end, NASA has assembled a team of engineers from across the agency to identify the key challenges for Exploration data systems and to establish the most beneficial strategic approach to be followed. Key challenges and the planned NASA approach for flight and ground systems will be discussed in the paper. The described approaches will capitalize on new technologies, and will result in cross-program interoperability between spacecraft and ground systems, from multiple suppliers and agencies.

Rader. Steve; Kearney, Mike; McVittie, Thom; Smith, Dan

2006-01-01

377

Lunar Exploration Neutron Detector for NASA’s LRO mission: instrument concept and first data  

NASA Astrophysics Data System (ADS)

Results from the Lunar Exploration Neutron Detector (LEND) instrument on board the Lunar Reconnaissance Orbiter (LRO) spacecraft will be presented. This instrument can measure both the neutron emission from the lunar surface and the local neutron background in orbit. Since neutron emission from the Moon is strongly affected by the presence of hydrogen in the regolith, analysis of these data will make a significant contribution to the search for possible water bearing regions. The measurement of the lunar neutron flux will also help to determine the lunar neutron radiation environment, which is of great importance in the planning and operation of future human missions to the Moon. To provide neutron data with high spatial resolution, the instrument has four high pressure 3He proportional counters each with a Cd foil cover (CSETN1 - 4) inside four holes of the Module of Collimation (MC). The fifth collimated sensor with stilbene (organic crystal scintillator) measures high energy neutrons (SHEN). It is placed within the central hole of the MC. The collimator is constructed from polyethylene and boron isotope, 10B. The physical design is such that the collimator defines a surface footprint of 10 km diameter (FWHM) for a spacecraft mapping orbit of 50 km. To characterize the neutron environment at the spacecraft in orbit, the LEND also carries four additional 3He detectors external to MC: one sensor of epithermal neutrons (SETN) and three sensors of thermal neutrons (STN 1 - 3). The sensors STN 1 and 2 measure thermal neutrons with velocity vectors parallel and anti-parallel to the LRO flight direction and analysis of these data will be performed using the Doppler filter method for distinguishing the local background of the spacecraft from neutron emission of the Moon. The first mapping data of Moon neutron emission will be presented from observations on the commissioning orbit. Results of neutron measurements will be discussed for the representative sample of about 40 permanently shadowed regions (PSRs) around the south pole with sufficiently large areas of >100 km2. Statistics of these PSRs is enough for testing the signature of enhancement of hydrogen in the regolith of these regions in comparison with illuminated surface around them. LEND data for hydrogen content will be discussed in more details for the site of LCROSS impact in comparison with measurements by another space instruments and Earth-based observatories.

Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Garvin, J.; Golovin, D.; Harshman, K.; Kozyrev, A.; Litvak, M. L.; Malakhov, A.; McClanahan, T. P.; Milikh, G. M.; Mokrousov, M.; Nandikotkur, G.; Sagdeev, R.; Sanin, A. B.; Shevchenko, V.; Shvecov, V.; Starr, R. D.; Tomlina, T.; Tretyakov, V.; Trombka, J.; Varenikov, A.; Vostrukhin, A. A.

2009-12-01

378

Encyclopedia of Planetary Sciences  

NASA Astrophysics Data System (ADS)

Containing more than 450 entries by some 200 eminent contributors from all over the world, the Encyclopedia of Planetary Sciences is the first book to present this information in an authoritative yet approachable way. This encyclopedia deals with the atmospheres, surfaces and interiors of the planets and moons, and with the interplanetary environment of plasma fields, as well as with asteroids and meteorites. Processes such as accretion, differentiation, thermal evolution and impact cratering form another category of entries. Remote sensing techniques employed in investigation and exploration, such as magnetometry, photometry, and spectroscopy are described in separate articles. In addition the Encyclopedia chronicles the history of planetary science, including biographies of pioneering scientists, and detailed descriptions of all major lunar and planetary missions and programs. The Encyclopedia of Planetary Sciences is superbly illustrated throughout with over 450 line drawings, 180 black and white photographs, and 63 colour illustrations. It will be a key reference source for planetary scientists, astronomers, and workers in related disciplines such as geophysics, geology and the atmospheric sciences. Included in this book is a PC and Mac compatible CD-ROM containing over 200 relevant planetary and related images available from NASA. This CD-ROM has been specially compiled for the Encyclopedia by The United States National Space Science Data Center.

Shirley, J. H.; Fairbridge, R. W.

1997-09-01

379

A micro seismometer based on molecular electronic transducer technology for planetary exploration  

SciTech Connect

This letter describes an implementation of micromachined seismometer based on molecular electronic transducer (MET) technology. As opposed to a solid inertial mass, MET seismometer senses the movement of liquid electrolyte relative to fixed electrodes. The employment of micro-electro-mechanical systems techniques reduces the internal size of the sensing cell to 1{mu}m and improves the reproducibility of the device. For operating bias of 600 mV, a sensitivity of 809 V/(m/s{sup 2}) was measured under acceleration of 400{mu}g(g{identical_to}9.81m/s{sup 2}) at 0.32 Hz. A -115 dB (relative to (m/s{sup 2})/{radical}(Hz)) noise level at 1 Hz was achieved. This work develops an alternative paradigm of seismic sensing device with small size, high sensitivity, low noise floor, high shock tolerance, and independence of installation angle, which is promising for next generation seismometers for planetary exploration.

Huang, Hai; Tang, Rui [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States)] [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Carande, Bryce; Oiler, Jonathan [School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)] [School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States); Zaitsev, Dmitri; Agafonov, Vadim [Center of Molecular Electronics, Moscow Institute of Physics and Technology, Moscow (Russian Federation)] [Center of Molecular Electronics, Moscow Institute of Physics and Technology, Moscow (Russian Federation); Yu, Hongyu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States) [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

2013-05-13

380

Estimation of subsurface dielectric target depth for GPR planetary exploration: Laboratory measurements and modeling  

NASA Astrophysics Data System (ADS)

In order to test the accuracy of Ground Penetrating Radar (GPR) in the detection of subsurface targets for planetary exploration, a laboratory scale experiment is performed based on a 'sand box' setup using two different bistatic GPR commercial instruments. Specific attention is paid to the challenging case of buried dielectric scatterers whose location and dimensions are of the same order of magnitude of the GPR antenna separation and signal wavelengths. The target depth is evaluated by using the wave propagation velocity measured with Time Domain Reflectometry (TDR). By means of a proper modeling of the different wave-propagation contributions to the gathered signal, the position of buried targets is correctly estimated with both GPRs even for rather shallow and small-size scatterers in near-field conditions. In this frame, relevant results for a basalt block buried in a silica soil are discussed. The experimental configuration is also simulated with an ad-hoc numerical code, whose synthetic radar sections fully confirm the measured results. The acquired information is of paramount importance for the analysis of various scenarios involving GPR on-site application in future space missions.

Lauro, Sebastian Emanuel; Mattei, Elisabetta; Barone, Pier Matteo; Pettinelli, Elena; Vannaroni, Giuliano; Valerio, Guido; Comite, Davide; Galli, Alessandro

2013-06-01

381

McIDAS-Explorer: A Version of McIDAS for Planetary Applications.  

National Technical Information Service (NTIS)

McIDAS-eXplorer is a set of software tools developed for analysis of planetary data published by the Planetary Data System on CD-ROM's. It is built upon McIDAS-X, an environment which has been in use nearly two decades now for earth weather satellite data...

S. S. Limaye R. S. Saunders L. A. Sromovsky M. Martin

1994-01-01

382

A Subjective Assessment of Alternative Mission Architecture Operations Concepts for the Human Exploration of Mars at NASA Using a Three-Dimensional Multi-Criteria Decision Making Model  

NASA Technical Reports Server (NTRS)

The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.

Tavana, Madjid

2003-01-01

383

NASA Space Engineering Research Center for utilization of local planetary resources  

NASA Technical Reports Server (NTRS)

Because of a change in the NASA funding cycle, the present reporting period covers only the six months from March to September 1991. Nevertheless, remarkable progress was made in a number of areas, some of the most noteworthy of which are: (1) Engineering operation of a breadboard CO2 yields O2 demonstration plant that produced over 10 grams of oxygen per day during several runs of over 100 hours each with a single electrolytic cell. Complete automation of controls, monitoring of various inputs/outputs and critical internal variables, diagnostics, and emergency shutdown in an orderly manner were also included. Moreover, 4-cell and 16-cell units, capable of much higher rates of production, were assembled and tested. (2) Demonstration of a 200 percent increase in the carbothermal reduction of ilmenite through vapor deposition of carbon layers on particles of that material. (3) Demonstration of the deposition of strong iron films from carbonyl chemical vapor deposition, establishing the crucial role of additive gases in governing the process. (4) Discovery of an apparent 800 percent increase in the conversion rates of a modified ilmenite simulant in a plasma-augmented reactor, including direct enhancement by solar radiation absorption. (5) Proof that test specimens of lunar soil with small amounts of metallic additives, recrystallized at moderate temperatures, exhibit an improvement of several orders of magnitude in ductility/tensile strength. (6) Experiments establishing the feasibility of producing silicon-based polymers from indigenous lunar materials. (7) Application of CCD technology to the production of maps of TiO2 abundance, defining primary ilmenite deposits, on the disk of the full moon. (8) Attainment of a discovery rate of approximately 3 new near-Earth asteroids per month by Spacewatch, more than doubling the previous global rate. (9) Coordination of industry and university magma electrolysis investigations in a workshop designed to define remaining problem areas and propose critical experiments.

Ramohalli, Kumar; Lewis, John S.

1991-01-01

384

An Interactive Virtual 3D Tool for Scientific Exploration of Planetary Surfaces  

NASA Astrophysics Data System (ADS)

In this paper we present an interactive 3D visualization tool for scientific analysis and planning of planetary missions. At the moment scientists have to look at individual camera images separately. There is no tool to combine them in three dimensions and look at them seamlessly as a geologist would do (by walking backwards and forwards resulting in different scales). For this reason a virtual 3D reconstruction of the terrain that can be interactively explored is necessary. Such a reconstruction has to consider multiple scales ranging from orbital image data to close-up surface image data from rover cameras. The 3D viewer allows seamless zooming between these various scales, giving scientists the possibility to relate small surface features (e.g. rock outcrops) to larger geological contexts. For a reliable geologic assessment a realistic surface rendering is important. Therefore the material properties of the rock surfaces will be considered for real-time rendering. This is achieved by an appropriate Bidirectional Reflectance Distribution Function (BRDF) estimated from the image data. The BRDF is implemented to run on the Graphical Processing Unit (GPU) to enable realistic real-time rendering, which allows a naturalistic perception for scientific analysis. Another important aspect for realism is the consideration of natural lighting conditions, which means skylight to illuminate the reconstructed scene. In our case we provide skylights from Mars and Earth, which allows switching between these two modes of illumination. This gives geologists the opportunity to perceive rock outcrops from Mars as they would appear on Earth facilitating scientific assessment. Besides viewing the virtual reconstruction on multiple scales, scientists can also perform various measurements, i.e. geo-coordinates of a selected point or distance between two surface points. Rover or other models can be placed into the scene and snapped onto certain location of the terrain. These are important features to support the planning of rover paths. In addition annotations can be placed directly into the 3D scene, which also serve as landmarks to aid navigation. The presented visualization and planning tool is a valuable asset for scientific analysis of planetary mission data. It complements traditional methods by giving access to an interactive virtual 3D reconstruction, which is realistically rendered. Representative examples and further information about the interactive 3D visualization tool can be found on the FP7-SPACE Project PRoViDE web page http://www.provide-space.eu/interactive-virtual-3d-tool/. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 'PRoViDE'.

Traxler, Christoph; Hesina, Gerd; Gupta, Sanjeev; Paar, Gerhard

2014-05-01

385

A team approach to the development of gamma ray and x ray remote sensing and in situ spectroscopy for planetary exploration missions  

NASA Technical Reports Server (NTRS)

An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.

Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.

1993-01-01

386

NASA Langley Research Center Systems Analysis & Concepts Directorate Participation in the Exploration Systems Architecture Study  

NASA Technical Reports Server (NTRS)

The NASA Langley Research Center (LaRC) Systems Analysis & Concepts Directorate (SACD) began studying human exploration missions beyond low Earth orbit (LEO) in the year 1999. This included participation in NASA s Decadal Planning Team (DPT), the NASA Exploration Team (NExT), Space Architect studies and Revolutionary Aerospace Systems Concepts (RASC) architecture studies that were used in formulating the new Vision for Space Exploration. In May of 2005, NASA initiated the Exploration Systems Architecture Study (ESAS). The primary outputs of the ESAS activity were concepts and functional requirements for the Crewed Exploration Vehicle (CEV), its supporting launch vehicle infrastructure and identification of supporting technology requirements and investments. An exploration systems analysis capability has evolved to support these functions in the past and continues to evolve to support anticipated future needs. SACD had significant roles in supporting the ESAS study team. SACD personnel performed the liaison function between the ESAS team and the Shuttle/Station Configuration Options Team (S/SCOT), an agency-wide team charged with using the Space Shuttle to complete the International Space Station (ISS) by the end of Fiscal Year (FY) 2010. The most significant of the identified issues involved the ability of the Space Shuttle system to achieve the desired number of flights in the proposed time frame. SACD with support from the Kennedy Space Center performed analysis showing that, without significant investments in improving the shuttle processing flow, that there was almost no possibility of completing the 28-flight sequence by the end of 2010. SACD performed numerous Lunar Surface Access Module (LSAM) trades to define top level element requirements and establish architecture propellant needs. Configuration trades were conducted to determine the impact of varying degrees of segmentation of the living capabilities of the combined descent stage, ascent stage, and other elements. The technology assessment process was developed and implemented by SACD as the ESAS architecture was refined. SACD implemented a rigorous and objective process which included (a) establishing architectural functional needs, (b) collection, synthesis and mapping of technology data, and (c) performing an objective decision analysis resulting in technology development investment recommendations. The investment recommendation provided budget, schedule, and center/program allocations to develop required technologies for the exploration architecture, as well as the identification of other investment opportunities to maximize performance and flexibility while minimizing cost and risk. A summary of the trades performed and methods utilized by SACD for the Exploration Systems Mission Directorate (ESAS) activity is presented along with how SACD is currently supporting the implementation of the Vision for Space Exploration.

Keyes, Jennifer; Troutman, Patrick A.; Saucillo, Rudolph; Cirillo, William M.; Cavanaugh, Steve; Stromgren, Chel

2006-01-01

387

A bibliography of planetary geology and geophysics principal investigators and their associates, 1989-1990  

NASA Technical Reports Server (NTRS)

This is a compilation of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through the NASA Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program.

1990-01-01

388

A bibliography of planetary geology and geophysics principal investigators and their associates, 1990-1991  

NASA Technical Reports Server (NTRS)

A compilation of selected bibliographic data specifically relating to recent publications submitted by principal investigators and their associates, supported through the NASA Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program is presented.

1991-01-01

389

Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session. Volume 2  

NASA Technical Reports Server (NTRS)

Reports are presented from volume 2 of the conference titled Strategic Research to Enable NASA's Exploration Missions, poster session. Topics included spacecraft fire suppression and fire extinguishing agents,materials flammability, various topics on the effects of microgravity including crystal growth, fluid mechanics, electric particulate suspension, melting and solidification, bubble formation, the sloshing of liquid fuels, biological studies, separation of carbon dioxide and carbon monoxide for Mars ISRU.

Nahra, Henry (Compiler)

2004-01-01

390

Integration of planetary protection activities  

NASA Technical Reports Server (NTRS)

For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.

Race, Margaret S.

1995-01-01

391

Architecting the Communication and Navigation Networks for NASA's Space Exploration Systems  

NASA Technical Reports Server (NTRS)

NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of the missions is to grow, through a series of launches, a system of systems communication, navigation, and timing infrastructure at minimum cost while providing a network-centric infrastructure that maximizes the exploration capabilities and science return. There is a strong need to use architecting processes in the mission pre-formulation stage to describe the systems, interfaces, and interoperability needed to implement multiple space communication systems that are deployed over time, yet support interoperability with each deployment phase and with 20 years of legacy systems. In this paper we present a process for defining the architecture of the communications, navigation, and networks needed to support future space explorers with the best adaptable and evolable network-centric space exploration infrastructure. The process steps presented are: 1) Architecture decomposition, 2) Defining mission systems and their interfaces, 3) Developing the communication, navigation, networking architecture, and 4) Integrating systems, operational and technical views and viewpoints. We demonstrate the process through the architecture development of the communication network for upcoming NASA space exploration missions.

Bhassin, Kul B.; Putt, Chuck; Hayden, Jeffrey; Tseng, Shirley; Biswas, Abi; Kennedy, Brian; Jennings, Esther H.; Miller, Ron A.; Hudiburg, John; Miller, Dave; Jeffries, Alan; Sartwell, Tom

2007-01-01

392

Student Planetary Investigators: Students Exploring the Moon Through Mini-RF  

NASA Astrophysics Data System (ADS)

The Student Planetary Investigator Program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department EPO office, where teams of high school students analyze data from the Moon through the Mini-RF insturment.

Grigsby, B.; Turney, D.; Patterson, W.; Bussey, D. B. J.; Neish, C.; Spudis, P.; Beisser, K.

2012-03-01

393

Design and Evaluation of a Fiber Optic Probe as a means of Subsurface Planetary Exploration  

NASA Astrophysics Data System (ADS)

The Optical Probe for Regolith Analysis (OPRA) is an instrumentation concept designed to provide spectroscopic analysis of the near subsurface of unconsolidated regolith on bodies such as moons, asteroids and planets. Below a chemically altered surface may lay the geological history in the form of stratigraphy that is shielded from degradation due to harsh external environments. Most of what we know about our solar system comes from remote platforms, such as satellites that are deployed into orbit around the target body. In the case of Mars, we have had several successful landers and rovers however, with the exception of the Mars Science Laboratory that just drilled its first hole, the complexity of subsurface excavation has limited the extent of subsurface exploration to simple scoops deployed on the ends of robotic arms which, by their very nature, will erase any stratigraphy that it may be digging into. The OPRA instrumentation concept allows for an integrated, lightweight and simple apparatus for subsurface exploration via a small, spike like structure which contains integrated optical fibers coupled to small windows running down the length of the probe. Each window is connected to a spectrometer housed onboard the deploying spacecraft. Each window is separately interrogated via the spectrometer over the wavelength range 1-2.5 nm to produce a spectroscopic profile as a function of depth. This project takes the Technology Readiness Level (TRL) of the OPRA instrumentation concept to level 3, which is defined by NASA to be the demonstration either analytically or experimentally of the proof of concept for critical functions of the proposed instrument. Firstly, to demonstrate that optical fibers are feasible for this type of application, we report on the techniques used by NASA to space qualify optical fibers. We investigate the optical performance of several fiber optic bundle configurations, both experimentally and numerically, to help optimize bundle performance. Optical bundles were then spectrally validated via a series of spectral comparisons between standardized reflectance spectroscopy targets and spectra obtained with the bundles. We also report on the integration of fiber optical bundles into other research and experimental results from several other groups within our research teams to obtain spectra under a more "space like" environment. Finally, the probe housing structural performance was investigated via finite element analysis, using probe penetration forces derived from data analysis of experimentation conducted by the Apollo lunar missions, and investigations into a mechanical analogue for the Martian regolith.

Pilgrim, Robert Paul

394

Exploring the solar system: the view of planetary surfaces with VIS/IR remote sensing methods  

NASA Astrophysics Data System (ADS)

The structure of planetary surfaces unveils basic formation processes and evolution lines of different objects in the solar system, and often the view on the top of a planet is the only available information about it. Advanced remote sensing technologies on deep space missions are aimed at accessing a maximum of relevant data to characterize a planetary object holistically. This approach requires concert strategies in planetary and engineering science. In this framework VIS/IR spectroscopic remote sensing methods are key technologies for imaging planetary atmospheres and surfaces, for studying their composition, texture, structure and dynamics. Basing on these analyses it succeeds to observe the single objects in more global geo-scientific content. The paper focuses on main geo-scientific output coming from spectroscopic studies of planetary surfaces in conjunction with their interiors, atmospheres, and the interplanetary space. It summarizes selected results of spectral studies onboard of the ESA deep space missions BepiColombo, Venus Express, Mars Express, and Rosetta. The corresponding spectral instruments are introduced. The complex conflation of special knowledge of the disciplines planetology, optical and IR measuring techniques, and space flight engineering is demonstrated in several examples. Finally, the paper gives an outlook of current developments for spectral studies in planned missions, and sums up some of the driving questions in planetary science.

Arnold, Gabriele E.

2011-09-01

395

NASA Facts, Mars and Earth.  

ERIC Educational Resources Information Center

Presented is one of a series of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. In this publication, emphasis is placed on the sun's planetary system with note made that there is no one theory for the origin and subsequent evolution of the Solar System that is generally accepted. Ideas from many scientists…

National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

396

In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NED Mitigation  

NASA Technical Reports Server (NTRS)

Volatile solids occur naturally on most planetary bodies including the Moon, Mars, asteroids and comets. Examples of recent discoveries include water ice, frozen carbon dioxide and hydrocarbons. The ability to utilize readily available resources for in-space propulsion and for powering surface systems during a planetary mission will help minimize the overall cost and extend the op.erational life of a mission. The utilization of volatile solids to achieve these goals is attractive for its simplicity. We have investigated the potential of subliming in situ volatiles and silicate minerals to power propulsion engines for a wide range of in-space applications where environmental conditions are favorable. This paper addresses the' practicality of using planetary solid volatiles as a power source for propulsion and surface systems by presenting results of modeling involving thermodynamic and physical mechanics calculations, and laboratory testing to measure the thrust obtained from ,a volatile solid engine (VSE). Applications of a VSE for planetary exploration are discussed as a means for propulsion and for mechanical actuators and surface mobility platforms.

Sibille, Laurent; Mantovani, James G.

2011-01-01

397

In-Space Propulsion Engine Architecture Based on Sublimation of Planetary Resources: From Exploration Robots to NED Mitigation  

NASA Technical Reports Server (NTRS)

The purpose of this NIAC study is to identify those volatile and mineral resources that are available on asteroids, comets, moons and planets in the solar system, and investigate methods to transform these resources into forms of power that will expand the capabilities of future robotic and human exploration missions to explore planetary bodies beyond the Moon and will mitigate hazards from NEOs. The sources of power used for deep space probe missions are usually derived from either solar panels for electrical energy, radioisotope thermal generators for thermal energy, or fuel cells and chemical reactions for chemical energy and propulsion.

Sibille, Laurent; Mantovani, James; Dominquez, Jesus

2011-01-01

398

In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions  

NASA Technical Reports Server (NTRS)

Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

2011-01-01

399

NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development  

NASA Technical Reports Server (NTRS)

Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

2010-01-01

400

Refinements in the Design of the Ares V Cargo Launch Vehicle for NASA's, Exploration Strategy  

NASA Technical Reports Server (NTRS)

NASA is developing a new launch vehicle fleet to fulfill the national goals of replacing the shuttle fleet, completing the International Space Station (ISS), and exploring the Moon on the way to eventual exploration of Mars and beyond. Programmatic and technical decisions during early architecture studies and subsequent design activities were focused on safe, reliable operationally efficient vehicles that could support a sustainable exploration program. A pair of launch vehicles was selected to support those goals the Ares I crew launch vehicle and the Ares V cargo launch vehicle. They will be the first new human-rated launch vehicles developed by NASA in more than 30 years (Figure 1). Ares I will be the first to fly, beginning space station ferry operations no later than 2015. It will be able to carry up to six astronauts to ISS or support up to four astronauts for expeditions to the moon. Ares V is scheduled to be operational in the 2020 timeframe and will provide the propulsion systems and payload to truly extend human exploration beyond low-Earth orbit. (LEO).

Creech, Steve

2008-01-01