Science.gov

Sample records for nasa shuttle logistics

  1. NASA Shuttle Logistics Depot (NSLD) - The application of ATE

    NASA Technical Reports Server (NTRS)

    Simpkins, Lorenz G.; Jenkins, Henry C.; Mauceri, A. Jack

    1990-01-01

    The concept of the NASA Shuttle Logistics Depot (NSLD) developed for the Space Shuttle Orbiter Program is described. The function of the NSLD at Cape Canaveral is to perform the acceptance and diagnostic testing of the Shuttle's space-rated line-replaceable units and shop-replaceable units (SRUs). The NSLD includes a comprehensive electronic automatic test station, program development stations, and assorted manufacturing support equipment (including thermal and vibration test equipment, special test equipment, and a card SRU test system). The depot activities also include the establishment of the functions for manufacturing of mechanical parts, soldering, welding, painting, clean room operation, procurement, and subcontract management.

  2. Space Shuttle operational logistics plan

    NASA Technical Reports Server (NTRS)

    Botts, J. W.

    1983-01-01

    The Kennedy Space Center plan for logistics to support Space Shuttle Operations and to establish the related policies, requirements, and responsibilities are described. The Directorate of Shuttle Management and Operations logistics responsibilities required by the Kennedy Organizational Manual, and the self-sufficiency contracting concept are implemented. The Space Shuttle Program Level 1 and Level 2 logistics policies and requirements applicable to KSC that are presented in HQ NASA and Johnson Space Center directives are also implemented.

  3. Continual Improvement in Shuttle Logistics

    NASA Technical Reports Server (NTRS)

    Flowers, Jean; Schafer, Loraine

    1995-01-01

    It has been said that Continual Improvement (CI) is difficult to apply to service oriented functions, especially in a government agency such as NASA. However, a constrained budget and increasing requirements are a way of life at NASA Kennedy Space Center (KSC), making it a natural environment for the application of CI tools and techniques. This paper describes how KSC, and specifically the Space Shuttle Logistics Project, a key contributor to KSC's mission, has embraced the CI management approach as a means of achieving its strategic goals and objectives. An overview of how the KSC Space Shuttle Logistics Project has structured its CI effort and examples of some of the initiatives are provided.

  4. Nuclear Shuttle Logistics Configuration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This 1971 artist's concept shows the Nuclear Shuttle in both its lunar logistics configuraton and geosynchronous station configuration. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to lunar orbits or other destinations then return to Earth orbit for refueling and additional missions.

  5. A Probabilistic Tool that Aids Logistics Engineers in the Establishment of High Confidence Repair Need-Dates at the NASA Shuttle Logistics Depot

    NASA Technical Reports Server (NTRS)

    Bullington, J. V.; Winkler, J. C.; Linton, D. G.; Khajenoori, S.

    1995-01-01

    The NASA Shuttle Logistics Depot (NSLD) is tasked with the responsibility for repair and manufacture of Line Replaceable Unit (LRU) hardware and components to support the Space Shuttle Orbiter. Due to shrinking budgets, cost effective repair of LRU's becomes a primary objective. To achieve this objective, is imperative that resources be assigned to those LRU's which have the greatest expectation of being needed as a spare. Forecasting the times at which spares are needed requires consideration of many significant factors including: failure rate, flight rate, spares availability, and desired level of support, among others. This paper summarizes the results of the research and development work that has been accomplished in producing an automated tool that assists in the assignment of effective repair start-times for LRU's at the NSLD. This system, called the Repair Start-time Assessment System (RSAS), uses probabilistic modeling technology to calculate a need date for a repair that considers the current repair pipeline status, as well as, serviceable spares and projections of future demands. The output from the system is a date for beginning the repair that has significantly greater confidence (in the sense that a desired probability of support is ensured) than times produced using other techniques. Since an important output of RSAS is the longest repair turn-around time that will ensure a desired probability of support, RSAS has the potential for being applied to operations at any repair depot where spares are on-hand and repair start-times are of interest. In addition, RSAS incorporates tenants of Just-in-Time (JIT) techniques in that the latest repair start-time (i.e., the latest time at which repair resources must be committed) may be calculated for every failed unit This could reduce the spares inventory for certain items, without significantly increasing the risk of unsatisfied demand.

  6. NASA Facts, Space Shuttle.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This newsletter from the National Aeronautics and Space Administration (NASA) contains a description of the purposes and potentials of the Space Shuttle craft. The illustrated document explains some of the uses for which the shuttle is designed; how the shuttle will be launched from earth, carry out its mission, and land again on earth; and what a

  7. NASA Facts, Space Shuttle.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This newsletter from the National Aeronautics and Space Administration (NASA) contains a description of the purposes and potentials of the Space Shuttle craft. The illustrated document explains some of the uses for which the shuttle is designed; how the shuttle will be launched from earth, carry out its mission, and land again on earth; and what a…

  8. NASA revises shuttle schedule

    NASA Astrophysics Data System (ADS)

    Wainger, Lisa A.

    The new schedule for Space Shuttle missions and expendable launch vehicles (ELV's) calls for a 7-month delay in sending up the Hubble Space Telescope. NASA was forced to put off launching the telescope until February 1990 to keep the Magellan and Galileo missions within their narrow launch windows. The first post-Challenger shuttle launch is now scheduled for late this month. Discovery's most recent delays were due to a hydrogen leak discovered July 29 that has still not been corrected and an engine valve malfunction during an August 4 test fire.

  9. Replacing NASA's Shuttle

    NASA Astrophysics Data System (ADS)

    Robertson, Donald F.

    1990-02-01

    The latest NASA Shuttle II proposal for an Advanced Manned Launch System (AMLS) is reviewed. It could achieve total reusability, with a glide-back booster stage and no solid rockets. The propellant load would be divided between the booster and orbiter stages. The AMLS payload of just over nine tons will be limited to crew and 'high-value' cargo, carried in the dorsal pod. Bulky freight and satellites will rely on expendable launchers. AMLS will be a Space Station ferry only and would not be used for on-orbit experiments. The operational history of the Space Shuttle program is shown, as well as its programmed future undertakings. Beyond the proposed Shuttle II, some insight is offered on the conceptual vehicle named Shuttle Z that could be the mainstay of Lunar-Base or Mars expeditions. Needed technologies and key features of a proposed AMLS orbiter are also mentioned. In addition, NASA proposals for a rescue vehicle for Space Station Freedom that will serve to return stranded or injured astronauts to earth is presented. One such proposed crew rescue vehicle would carry four people plus 450 kg of supplies, for a gross mass of 7146 kg.

  10. NASA Space Rocket Logistics Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Chris; Neeley, James R.; Jones, James V.; Watson, Michael D.; Inman, Sharon K.; Tuttle, Loraine

    2014-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2017. SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges. This presentation will address the SLS challenges, along with the analysis and decisions to mitigate the threats posed by each.

  11. NASA Space Rocket Logistics Challenges

    NASA Technical Reports Server (NTRS)

    Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2014-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

  12. Logistics Lessons Learned in NASA Space Flight

    NASA Technical Reports Server (NTRS)

    Evans, William A.; DeWeck, Olivier; Laufer, Deanna; Shull, Sarah

    2006-01-01

    The Vision for Space Exploration sets out a number of goals, involving both strategic and tactical objectives. These include returning the Space Shuttle to flight, completing the International Space Station, and conducting human expeditions to the Moon by 2020. Each of these goals has profound logistics implications. In the consideration of these objectives,a need for a study on NASA logistics lessons learned was recognized. The study endeavors to identify both needs for space exploration and challenges in the development of past logistics architectures, as well as in the design of space systems. This study may also be appropriately applied as guidance in the development of an integrated logistics architecture for future human missions to the Moon and Mars. This report first summarizes current logistics practices for the Space Shuttle Program (SSP) and the International Space Station (ISS) and examines the practices of manifesting, stowage, inventory tracking, waste disposal, and return logistics. The key findings of this examination are that while the current practices do have many positive aspects, there are also several shortcomings. These shortcomings include a high-level of excess complexity, redundancy of information/lack of a common database, and a large human-in-the-loop component. Later sections of this report describe the methodology and results of our work to systematically gather logistics lessons learned from past and current human spaceflight programs as well as validating these lessons through a survey of the opinions of current space logisticians. To consider the perspectives on logistics lessons, we searched several sources within NASA, including organizations with direct and indirect connections with the system flow in mission planning. We utilized crew debriefs, the John Commonsense lessons repository for the JSC Mission Operations Directorate, and the Skylab Lessons Learned. Additionally, we searched the public version of the Lessons Learned Information System (LLIS) and verified that we received the same result using the internal version of LLIS for our logistics lesson searches. In conducting the research, information from multiple databases was consolidated into a single spreadsheet of 300 lessons learned. Keywords were applied for the purpose of sorting and evaluation. Once the lessons had been compiled, an analysis of the resulting data was performed, first sorting it by keyword, then finding duplication and root cause, and finally sorting by root cause. The data was then distilled into the top 7 lessons learned across programs, centers, and activities.

  13. NASA Space Exploration Logistics Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    deWeek, Oliver; Evans, William A.; Parrish, Joe; James, Sarah

    2006-01-01

    As NASA has embarked on a new Vision for Space Exploration, there is new energy and focus around the area of manned space exploration. These activities encompass the design of new vehicles such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV) and the identification of commercial opportunities for space transportation services, as well as continued operations of the Space Shuttle and the International Space Station. Reaching the Moon and eventually Mars with a mix of both robotic and human explorers for short term missions is a formidable challenge in itself. How to achieve this in a safe, efficient and long-term sustainable way is yet another question. The challenge is not only one of vehicle design, launch, and operations but also one of space logistics. Oftentimes, logistical issues are not given enough consideration upfront, in relation to the large share of operating budgets they consume. In this context, a group of 54 experts in space logistics met for a two-day workshop to discuss the following key questions: 1. What is the current state-of the art in space logistics, in terms of architectures, concepts, technologies as well as enabling processes? 2. What are the main challenges for space logistics for future human exploration of the Moon and Mars, at the intersection of engineering and space operations? 3. What lessons can be drawn from past successes and failures in human space flight logistics? 4. What lessons and connections do we see from terrestrial analogies as well as activities in other areas, such as U.S. military logistics? 5. What key advances are required to enable long-term success in the context of a future interplanetary supply chain? These proceedings summarize the outcomes of the workshop, reference particular presentations, panels and breakout sessions, and record specific observations that should help guide future efforts.

  14. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    NASA Technical Reports Server (NTRS)

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  15. NASA nixes Centaur launches from shuttle

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    James C. Fletcher, the administrator of the National Aeronautics and Space Administration (NASA) announced on June 19, 1986, that because of safety considerations, the space shuttle will not be used to launch the Centaur Upper Stage. The Ulysses and Galileo missions, which were originally to have been launched in May 1986, would have been launched from the shuttle with the Centaur rocket (Eos, November 19, 1985, p. 1183; February 4, 1986, p. 57). The Galileo craft is to explore Jupiter; Ulysses is a joint mission of the European Space Agency (ESA) and NASA that is to orbit the sun around its poles, outside of the “ecliptic plane” where the planets lie. The decision seems likely to delay further the two missions, which were already delayed by the suspension of shuttle launches after the explosion of the space shuttle Challenger on January 28, 1986.

  16. NASA focusing beyond space shuttle era

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-07-01

    Although the NASA space shuttle Atlantis is set to close out the space shuttle era in July with the STS-135 mission, this final shuttle mission will not mark the end of America's leadership in human spaceflight, NASA administrator Charles Bolden said in a 1 July speech at the National Press Club in Washington, D. C. “When I hear people say, or listen to media reports [that indicate], that the final shuttle flight marks the end of U.S. human spaceflight, I have to say, ‘these folks must be living on another planet.’ We are not ending human spaceflight; we are recommitting ourselves to it and taking the necessary and difficult steps today to ensure America's preeminence in human space exploration for years to come.”

  17. NESTA: NASA Engineering Shuttle Telemetry Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Smith, Kevin E.; Boloni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed an agent based tool to monitor the Space Shuttle's ground processing telemetry stream. The application, the NASA Engineering Shuttle Telemetry Agent, increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when predefined criteria have been met. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules of this spaceport domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This paper discusses the rule-based telemetry agent used for Space Shuttle ground processing and explains the problem domain, development of the agent software, benefits of AT technology, and deployment and sustaining engineering of the product.

  18. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  19. NASA newsletters for the Weber Student Shuttle Involvement Project

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Sebesta, P. D.; Ladwig, A. M.; Jackson, J. T.; Knott, W. M., III

    1988-01-01

    Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix.

  20. NASA's Original Shuttle Carrier Departs Dryden - Duration: 84 seconds.

    NASA Video Gallery

    NASA's Space Shuttle Carrier Aircraft (SCA) No. 905, departed NASA's Dryden Flight Research Center on Oct. 24, 2012 for the final time, ending a 38-year association with the NASA field center at Ed...

  1. NASA Shuttle Training Aircraft flight simulation overview

    NASA Technical Reports Server (NTRS)

    Justiz, Charles R.; Patel, Suresh M.

    1988-01-01

    The Shuttle Training Aircraft (STA) is a variable stability, variable control law flying simulator used by NASA/JSC to train astronauts in the final landing phase of a Space Shuttle Orbiter. A general outline is given for the STA flight simulation system. An overview is given of the software generation and verification process through the Advanced Validation System (AVAS). The flight test techniques for software verification will be reviewed and the process for releasing the software for flight training will be covered. The astronaut STA training syllabus is examined. Parameter matching with the Orbiter in the final approach phase of de-orbit and landing is briefly examined. Simulation performance will be assessed against flight data, performance measurement, and cue synchronization.

  2. NASA Space Shuttle Program: Shuttle Environmental Assurance (SEA) Initiative

    NASA Technical Reports Server (NTRS)

    Glover, Steve E.; McCool, Alex (Technical Monitor)

    2002-01-01

    The first Space Shuttle flight was in 1981 and the fleet was originally expected to be replaced with a new generation vehicle in the early 21st century. Space Shuttle Program (SSP) elements proactively address environmental and obsolescence concerns and continue to improve safety and supportability. The SSP manager created the Shuttle Environmental Assurance (SEA) Initiative in 2000. SEA is to provide an integrated approach for the SSP to promote environmental excellence, proactively manage materials obsolescence, and optimize associated resources.

  3. NASA Now: Shuttle Engineering Challenge - Duration: 6 minutes, 8 seconds.

    NASA Video Gallery

    In this installment of NASA Now, you’ll meet Guidance, Navigation and Flight Controls engineer George Hatcher, who talks about the complex system needed to fly the space shuttle at extreme speeds...

  4. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    NASA Technical Reports Server (NTRS)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  5. Oshkosh Logistic Management and Public Relations Responsibilities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Beck, Danielle

    1995-01-01

    The central focus of my study for the summer of 1995 was to provide logistical support to Margaret Hunt, the logistics manager of the OSHKOSH airshow. In this capacity responsibilities included making arrangements for participants from NASA centers and SBIR companies for their stay in Wisconsin, while visiting the airshow, and managing staff for exhibits and the aerospace theater. A secondary purpose was to serve in other public service capacities by writing news releases, fact sheets, announcements, and articles for the Researcher News.

  6. Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.

  7. NASA management of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Peters, F.

    1975-01-01

    The management system and management technology described have been developed to meet stringent cost and schedule constraints of the Space Shuttle Program. Management of resources available to this program requires control and motivation of a large number of efficient creative personnel trained in various technical specialties. This must be done while keeping track of numerous parallel, yet interdependent activities involving different functions, organizations, and products all moving together in accordance with intricate plans for budgets, schedules, performance, and interaction. Some techniques developed to identify problems at an early stage and seek immediate solutions are examined.

  8. International aerospace engineering: NASA shuttle and European Spacelab

    NASA Technical Reports Server (NTRS)

    Bilstein, R. E.

    1981-01-01

    NASA negotiations and contractual arrangements involving European space research organizations' participation in manned space operations and efforts in building Spacelab for the U.S. Reusable Space Shuttle are discussed. Some of the diplomatic and technical collaboration involved in the international effort is reviewed.

  9. NASA Advanced Explorations Systems: Concepts for Logistics to Living

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

    2012-01-01

    The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project strives to enable a largely mission-independent cradle-to-grave-to-cradle approach to minimize logistics contributions to total mission architecture mass. The goals are to engineer logistics materials, common crew consumables, and container configurations to meet the following five basic goals: 1. Minimize intrinsic logistics mass and improve ground logistics flexibility. 2. Allow logistics components to be directly repurposed for on-orbit non-logistics functions (e.g., crew cabin outfitting) thereby indirectly reducing mass/volume. 3. Compact and process logistics that have not been directly repurposed to generate useful on-orbit components and/or compounds (e.g., radiation shielding, propellant, other usable chemical constituents). 4. Enable long-term stable storage and disposal of logistics end products that cannot be reused or repurposed (e.g., compaction for volume reduction, odor control, and maintenance of crew cabin hygienic conditions). 5. Allow vehicles in different mission phases to share logistics resources. This paper addresses the work being done to meet the second goal, the direct repurposing of logistics components to meet other on-orbit needs, through a strategy termed Logistics to Living (L2L). L2L has several areas but can be defined as repurposing or converting logistical items (bags, containers, foam, components, etc.) into useful crew items or life support augmentation on-orbit after they have provided their primary logistics function. The intent is that by repurposing items, dedicated crew items do not have to be launched and overall launch mass is decreased. For non-LEO missions, the vehicle interior volume will be relatively fixed so L2L will enable this volume to be used more effectively through reuse and rearrangement of logistical components. Past work in the area of L2L has already conceptually developed several potential technologies [Howe, Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

  10. NASA Experience with the Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Bickley, Fred; Schwinghamer, Robert J.

    1999-01-01

    This report is a presentation reviewing the external tanks which are used to provide the propellants for the space shuttle engines. The design of the external tank, and its lift capability improvements are reviewed. The configuration, materials, and key technologies of the super lightweight tank (SLWT) are also described. Among the key technologies which allow the SLWT project to succeed, are the successful development of an appropriate alloy. The reasons for choosing the alloy, Aluminum-Lithium 2195, and issues involved in welding are reviewed. Tests of the weld procedures, and pictures of the test results are shown. The External Tank Project has successfully made the transition from the LWT design to the SLWT design. The SLWT Provides two thirds of the weight savings required to place the Space Station in a 51.6 Degree Orbit.

  11. Developing a Logistics Data Process for Support Equipment for NASA Ground Operations

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman

    2010-01-01

    The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of the design of the equipment can make such operational effort unnecessary. Finally, this paper addresses processes of tying resources to a timeline of tasks performed in ground operations: this enables various overarching analyses, e.g., a summarization of all resources used for a given piece of equipment. Quality Control of data will also be discussed: importing and exporting data from product teams, including spreadsheets-todatabase or data exchange between databases.

  12. NASA's Shuttle Carrier Aircraft 911's Final Flight - Duration: 95 seconds.

    NASA Video Gallery

    NASA 911, one of NASA's two modified Boeing 747 space shuttle carrier aircraft, flew its final flight Feb. 8, a short hop from NASA's Dryden Flight Research Center at Edwards Air Force Base to the ...

  13. Formalizing New Navigation Requirements for NASA's Space Shuttle

    NASA Technical Reports Server (NTRS)

    DiVito, Ben L.

    1996-01-01

    We describe a recent NASA-sponsored pilot project intended to gauge the effectiveness of using formal methods in Space Shuttle software requirements analysis. Several Change Requests (CRs) were selected as promising targets to demonstrate the utility of formal methods in this demanding application domain. A CR to add new navigation capabilities to the Shuttle, based on Global Positioning System (GPS) technology, is the focus of this industrial usage report. Portions of the GPS CR were modeled using the language of SRI's Prototype Verification System (PVS). During a limited analysis conducted on the formal specifications, numerous requirements issues were discovered. We present a summary of these encouraging results and conclusions we have drawn from the pilot project.

  14. NASA Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III

    2011-01-01

    Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.

  15. Software Architecture of the NASA Shuttle Ground Operations Simulator - SGOS

    NASA Technical Reports Server (NTRS)

    Cook, Robert P.; Lostroscio, Charles T.

    2005-01-01

    The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. It is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,000 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.

  16. Perspectives on NASA flight software development - Apollo, Shuttle, Space Station

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    Flight data systems' software development is chronicled for the period encompassing NASA's Apollo, Space Shuttle, and (ongoing) Space Station Freedom programs, with attention to the methodologies and 'development tools' employed in each case and their mutual relationships. A dominant concern in all three programs has been the accommodation of software change; it has also been noted that any such long-term program carries the additional challenge of identifying which elements of its software-related 'institutional memory' are most critical, in order to preclude their loss through the retirement, promotion, or transfer of its 'last expert'.

  17. Managing NASA's International Space Station Logistics and Maintenance program

    NASA Astrophysics Data System (ADS)

    Butina, Anthony J.

    2001-02-01

    The International Space Station will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines-it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally complete in April of 2006. Space logistics is a new concept that will have wide reaching consequences for both space travel and life on Earth. What is it like to do something that no one has done before? What challenges do you face? What kind of organization do you put together to perform this type of task? How do you optimize your resources to procure what you need? How do you change a paradigm within a space agency? How do you coordinate and manage a one of a kind system with approximately 5,700 Orbital Replaceable Units (ORUs)? How do you plan for preventive and corrective maintenance, when you need to procure spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors? How do you transport large sections of ISS hardware around the country? These are some of the topics discussed in this paper. From conception to operation, the ISS requires a unique approach in all aspects of development and operation. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station and only time will tell if we did it right. This paper discusses some of the experiences of the author after working 12 years on the International Space Station's integrated logistics & maintenance program. From his early days as a contractor supportability engineer and manager, to the NASA manager responsible for the entire ISS Logistics and Maintenance program. .

  18. Simulation of Range Safety for the NASA Space Shuttle

    NASA Technical Reports Server (NTRS)

    Rabelo, Luis; Sepulveda, Jose; Compton, Jeppie; Turner, Robert

    2005-01-01

    This paper describes a simulation environment that seamlessly combines a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this simulation environment represent the different systems that must interact in order to determine the Expectation of casualties (E(sub c)) resulting from the toxic effects of the gas dispersion that occurs after a disaster affecting a Space Shuttle within 120 seconds of lift-off. The utilization of the Space Shuttle reliability models, trajectory models, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system are all integrated to create this environment. This simulation environment can help safety managers estimate the population at risk in order to plan evacuation, make sheltering decisions, determine the resources required to provide aid and comfort, and mitigate damages in case of a disaster. This simulation environment may also be modified and used for the landing phase of a space vehicle but will not be discussed in this paper.

  19. Status of Thermal NDT of Space Shuttle Materials at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Rweinhardt, Walter W.

    2006-01-01

    Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.

  20. Status of Thermal NDT of Space Shuttle Materials at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.

    2007-01-01

    Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.

  1. Status of Thermal NDT of Space Shuttle Materials at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.

    2006-01-01

    Since the Space Shuttle Columbia accident, NASA has focused on improving advanced nondestructive evaluation (NDE) techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.

  2. Status of thermal NDT of space shuttle materials at NASA

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.

    2006-04-01

    Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow in situ inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.

  3. Techniques and Tools of NASA's Space Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    McDanels, Steve J.

    2005-01-01

    The Space Shuttle Columbia accident investigation was a fusion of many disciplines into a single effort. From the recovery and reconstruction of the debris, Figure 1, to the analysis, both destructive and nondestructive, of chemical and metallurgical samples, Figure 2, a multitude of analytical techniques and tools were employed. Destructive and non-destructive testing were utilized in tandem to determine if a breach in the left wing of the Orbiter had occurred, and if so, the path of the resultant high temperature plasma flow. Nondestructive analysis included topometric scanning, laser mapping, and real-time radiography. These techniques were useful in constructing a three dimensional virtual representation of the reconstruction project, specifically the left wing leading edge reinforced carbon/carbon heat protectant panels. Similarly, they were beneficial in determining where sampling should be performed on the debris. Analytic testing included such techniques as Energy Dispersive Electron Microprobe Analysis (EMPA), Electron Spectroscopy Chemical Analysis (ESCA), and X-Ray dot mapping; these techniques related the characteristics of intermetallics deposited on the leading edge of the left wing adjacent to the location of a suspected plasma breach during reentry. The methods and results of the various analyses, along with their implications into the accident, are discussed, along with the findings and recommendations of the Columbia Accident Investigation Board. Likewise, NASA's Return To Flight efforts are highlighted.

  4. The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle

    NASA Technical Reports Server (NTRS)

    Heppenheimer, T. A.

    1999-01-01

    This significant new study of the decision to build the Space Shuttle explains the Shuttle's origins and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the Shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government. The weighty policy decision to build the Shuttle represents the first component of the broader story: future NASA volumes will cover the Shuttle's development and operational histories.

  5. Environmentally-driven Materials Obsolescence: Material Replacements and Lessons Learned from NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Meinhold, Anne

    2013-01-01

    The Space Shuttle Program was terminated in 2011 with the last flight of the Shuttle Endeavour. During the 30 years of its operating history, the number of domestic and international environmental regulations increased rapidly and resulted in materials obsolescence risks to the program. Initial replacement efforts focused on ozone depleting substances. As pressure from environmental regulations increased, Shuttle worked on the replacement of heavy metals. volatile organic compounds and hazardous air pollutants. Near the end of the program. Shuttle identified potential material obsolescence driven by international regulations and the potential for suppliers to reformulate materials. During the Shuttle Program a team focused on environmentally-driven materials obsolescence worked to identify and mitigate these risks. Lessons learned from the Shuttle experience can be applied to new NASA Programs as well as other high reliability applications.

  6. Managing NASA's International Space Station Logistics and Maintenance Program

    NASA Technical Reports Server (NTRS)

    Butina, Anthony

    2001-01-01

    The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.

  7. International Space Station (ISS) Gas Logistics Planning in the Post Shuttle Era

    NASA Technical Reports Server (NTRS)

    Leonard, Daniel J.; Cook, Anthony J.; Lehman, Daniel A.

    2011-01-01

    Over its life the International Space Station (ISS) has received gas (nitrogen, oxygen, and air) from various sources. Nitrogen and oxygen are used in the cabin to maintain total pressure and oxygen partial pressures within the cabin. Plumbed nitrogen is also required to support on-board experiments and medical equipment. Additionally, plumbed oxygen is required to support medical equipment as well as emergency masks and most importantly EVA support. Gas are supplied to ISS with various methods and vehicles. Vehicles like the Progress and ATV deliver nitrogen (both as a pure gas and as air) and oxygen via direct releases into the cabin. An additional source of nitrogen and oxygen is via tanks on the ISS Airlock. The Airlock nitrogen and oxygen tanks can deliver to various users via pressurized systems that run throughout the ISS except for the Russian segment. Metabolic oxygen is mainly supplied via cabin release from the Elektron and Oxygen Generator Assembly (OGA), which are water electrolyzers. As a backup system, oxygen candles (Solid Fuel Oxygen Generators-SFOGs) supply oxygen to the cabin as well. In the past, a major source of nitrogen and oxygen has come from the Shuttle via both direct delivery to the cabin as well as to recharge the ISS Airlock tanks. To replace the Shuttle capability to recharge the ISS Airlock tanks, a new system was developed called Nitrogen/Oxygen Recharge System (NORS). NIORS consists of high pressure (7000 psi) tanks which recharge the ISS Airlock tanks via a blowdown fill for both nitrogen and oxygen. NORS tanks can be brought up on most logistics vehicles such as the HTV, COTS, and ATV. A proper balance must be maintained to insure sufficient gas resources are available on-orbit so that all users have the required gases via the proper delivery method (cabin and/or plumbed).

  8. One of NASA's Two Modified Boeing 747 Shuttle Carrier (SCA) Aircraft in Flight over NASA Dryden Flig

    NASA Technical Reports Server (NTRS)

    1999-01-01

    One of NASA's Boeing 747 Shuttle Carrier Aircraft flies over the Dryden Flight Research Center main building at Edwards Air Force Base, Edwards, California, in May 1999. NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are: o Three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached o Two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability o Removal of all interior furnishings and equipment aft of the forward No. 1 doors o Instrumentation used by SCA flight crews and engineers to monitor orbiter electrical loads during the ferry flights and also during pre- and post-ferry flight operations. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Tex. NASA 905 NASA 905 was the first SCA. It was obtained from American Airlines in 1974. Shortly after it was accepted by NASA it was flown in a series of wake vortex research flights at the Dryden Flight Research Center in a study to seek ways of reducing turbulence produced by large aircraft. Pilots flying as much as several miles behind large aircraft have encountered wake turbulence that have caused control problems. The NASA study helped the Federal Aviation Administration modify flight procedures for commercial aircraft during airport approaches and departures. Following the wake vortex studies, NASA 905 was modified by Boeing to its present SCA configuration and the aircraft was returned to Dryden for its role in the 1977 Space Shuttle Approach and Landing Tests (ALT). This series of eight captive and five free flights with the orbiter prototype Enterprise, in addition to ground taxi tests, validated the aircraft's performance as an SCA, in addition to verifying the glide and landing characteristics of the orbiter configuration -- paving the way for orbital flights. A flight crew escape system, consisting of an exit tunnel extending from the flight deck to a hatch in the bottom of the fuselage, was installed during the modifications. The system also included a pyrotechnic system to activate the hatch release and cabin window release mechanisms. The flight crew escape system was removed from the NASA 905 following the successful completion of the ALT program. NASA 905 was the only SCA used by the space shuttle program until November 1990, when NASA 911 was delivered as an SCA. Along with ferrying Enterprise and the flight-rated orbiters between the launch and landing sites and other locations, NASA 905 also ferried Enterprise to Europe for display in England and at the Paris Air Show. NASA 911 The second SCA is designated NASA 911. It was obtained by NASA from Japan Airlines (JAL) in 1989. It was also modified by Boeing Corporation. It was delivered to NASA 20 November 1990.

  9. NASA's management concept for the Space Shuttle Program.

    NASA Technical Reports Server (NTRS)

    Myers, D. D.

    1972-01-01

    An overview of the Shuttle Program organization and management concepts suggests the necessity of careful measurements of contractor schedules, cost and technical performance, and program modification control to keep both the development and operating cost of the Program at the lowest possible level. Maximum use of the contractors' own management systems and the utilization of new technologies, procedures and materials during space operations are also envisaged as contributors to the reduction of costs per flight to acceptable limits.

  10. Research pressure instrumentation for NASA Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    The development of prototype pressure transducers which are targeted to meet the Space Shuttle Main Engine SSME performance design goals is discussed. The fabrication, testing and delivery of 10 prototype units is examined. Silicon piezoresistive strain sensing technology is used to achieve the objectives of advanced state-of-the-art pressure sensors in terms of reliability, accuracy and ease of manufacture. Integration of multiple functions on a single chip is the key attribute of this technology.

  11. The Space Shuttle Atlantis centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Space Shuttle Atlantis is centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center at Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  12. The Space Shuttle Endeavour receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Space Shuttle Endeavour receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, May 1, 2001. Once servicing was complete, one of NASA's two 747 Shuttle Carrier Aircraft, No. 905, was readied to ferry Endeavour back to the Kennedy Space Center, FL.

  13. NASA space shuttle Columbia hitched a ride on a special 747 carrier aircraft for the flight from Pal

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA space shuttle Columbia hitched a ride on a special 747 carrier aircraft for the flight from Palmdale, California, to Kennedy Space Center, Florida, on March 1, 2001. A half hour behind Columbia's takeoff, the shuttle Atlantis departed the NASA Dryden Flight Research Center at Edwards Air Force Base, California, also bound for Kennedy Space Center.

  14. NASA's New Approach for Evaluating Risk Reduction Due to Space Shuttle Upgrades

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Belyeu, Rebecca L.

    2000-01-01

    As part of NASA's intensive effort to incorporate quantitative risk assessment (QRA) tools in the Agency's decision-making process concerning Space Shuttle risk, NASA has developed a powerful risk assessment tool called the Quantitative Risk Assessment System (QRAS). The QRAS is a tool designed to estimate Space Shuttle risk and evaluate Space Shuttle upgrades. This paper presents an overview of the QRAS with focus on its application for evaluating the risk reduction due to proposed Space Shuttle upgrades. The application includes a case study from the Space Shuttle main engine (SSME). The QRAS overview section of the paper includes the QRAS development process, the technical approach to model development, the QRA quantification methods and techniques, and observations concerning the complex modeling involved in QRAS. The application section of the paper describes a practical case study using QRAS models for evaluating critical Space Shuttle Program upgrades, specifically a proposed SSME nozzle upgrade. This paper presents the method for evaluating the proposed upgrade by comparing the current nozzle (old design with well-established probabilistic models) to the channel wall nozzle (new design at the preliminary design level).

  15. An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education

    NASA Astrophysics Data System (ADS)

    Lulla, Kamlesh

    2012-07-01

    This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

  16. NASA/MOD Operations Impacts from Shuttle Program

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Michael; Mattes, Gregory; Grabois, Michael; Griffith, Holly

    2011-01-01

    Operations plays a pivotal role in the success of any human spaceflight program. This paper will highlight some of the core tenets of spaceflight operations from a systems perspective and use several examples from the Space Shuttle Program to highlight where the success and safety of a mission can hinge upon the preparedness and competency of the operations team. Further, awareness of the types of operations scenarios and impacts that can arise during human crewed space missions can help inform design and mission planning decisions long before a vehicle gets into orbit. A strong operations team is crucial to the development of future programs; capturing the lessons learned from the successes and failures of a past program will allow for safer, more efficient, and better designed programs in the future. No matter how well a vehicle is designed and constructed, there are always unexpected events or failures that occur during space flight missions. Preparation, training, real-time execution, and troubleshooting are skills and values of the Mission Operations Directorate (MOD) flight controller; these operational standards have proven invaluable to the Space Shuttle Program. Understanding and mastery of these same skills will be required of any operations team as technology advances and new vehicles are developed. This paper will focus on individual Space Shuttle mission case studies where specific operational skills, techniques, and preparedness allowed for mission safety and success. It will detail the events leading up to the scenario or failure, how the operations team identified and dealt with the failure and its downstream impacts. The various options for real-time troubleshooting will be discussed along with the operations team final recommendation, execution, and outcome. Finally, the lessons learned will be summarized along with an explanation of how these lessons were used to improve the operational preparedness of future flight control teams.

  17. The NASA Life Sciences experiment program for Shuttle/Spacelab

    NASA Technical Reports Server (NTRS)

    Winter, D.

    1978-01-01

    The Life Sciences experiment program for the Shuttle/Spacelab has basically two scientific objectives. The first objective is related to an understanding and interpretation of the medical data from Skylab. The second objective is concerned with a utilization of the space environment, notably the very low g field, as an experimental variable in a broad range of fundamental studies. The program considered will use the pressurized module, almost exclusively, and will aim toward the greatest investigator participation in flight that is possible. Facilities must be provided to support such requirements as tissue biopses, blood, urine and tissue collections, and microbial and plant manipulations.

  18. Research pressure instrumentation for NASA space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1985-01-01

    The breadboard feasibility model of a silicon piezoresistive pressure transducer suitable for space shuttle main engine (SSME) applications was demonstrated. The development of pressure instrumentation for the SSME was examined. The objective is to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. Effective utilization of the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors for reliability, accuracy and ease of manufacture is analyzed. Integration of multiple functions on a single chip is the key attribute of the technology.

  19. Legal Issues inherent in space shuttle operations. [reviewed by NASA Deputy General Counsel

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The legal issues inherent in NASA's proceeding into the day-to-day operations of the space shuttle and other elements of the Space Transportation System are considered in light of the National Aeronautics and Space Act of 1958. Based on this review, it was concluded that there is no immediate need for substantive amendments to that legislation.

  20. NASA payload data book: Payload analysis for space shuttle applications, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Data describing the individual NASA payloads for the space shuttle are presented. The document represents a complete issue of the original payload data book. The subjects discussed are: (1) astronomy, (2) space physics, (3) planetary exploration, (4) earth observations (earth and ocean physics), (5) communications and navigation, (6) life sciences, (7) international rendezvous and docking, and (8) lunar exploration.

  1. From Ship to Shuttle: NASA Orbiter Naming Program, September 1988 - May 1989

    NASA Technical Reports Server (NTRS)

    1991-01-01

    By congressional action in 1987, the National Aeronautics and Space Administration (NASA) was authorized to provide an opportunity for American school students to name the new Space Shuttle orbiter being built to replace the Challenger. The Council of Chief State School Officers (CCSSO), an education organization representing the chief education officials of the nation, was asked by NASA to assist in the development and administration of this exciting and important educational activity. A selection of interdisciplinary activities related to the Space Shuttle that were designed by students for the NASA Orbiter-Naming Program are presented. The national winner's project is first followed by other projects listed in alphabetical order by state, and a bibliography compiled from suggestions by the state-level winning teams.

  2. From Ship to Shuttle: NASA Orbiter Naming Program, September 1988 - May 1989

    NASA Astrophysics Data System (ADS)

    1991-10-01

    By congressional action in 1987, the National Aeronautics and Space Administration (NASA) was authorized to provide an opportunity for American school students to name the new Space Shuttle orbiter being built to replace the Challenger. The Council of Chief State School Officers (CCSSO), an education organization representing the chief education officials of the nation, was asked by NASA to assist in the development and administration of this exciting and important educational activity. A selection of interdisciplinary activities related to the Space Shuttle that were designed by students for the NASA Orbiter-Naming Program are presented. The national winner's project is first followed by other projects listed in alphabetical order by state, and a bibliography compiled from suggestions by the state-level winning teams.

  3. Identification and status of design improvements to the NASA shuttle EMU for International Space Station application

    NASA Astrophysics Data System (ADS)

    Wilde, Richard C.; Mcbarron, James W.; Faszcza, Jeffrey J.

    1997-06-01

    To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modification to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.

  4. NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking convened on May 24 and 25, 1994. Based on the meetings, the Task Force made the following recommendations: at a minimum, the mission commander and payload commander for all subsequent Shuttle-Mir missions should be named at least 18 months in advance of the scheduled launch date; in order to derive early operational experience in advance of the first Mir docking mission, the primary objective of STS-63 should be Mir rendezvous and proximity operations; and if at all possible, the launch date for STS-63 should be moved forward.

  5. Pricing of NASA Space Shuttle transportation system cargo

    NASA Technical Reports Server (NTRS)

    Hale, C. W.

    1979-01-01

    A two-part pricing policy is investigated as the most feasible method of pricing the transportation services to be provided by NASA's SSTS. Engineering cost estimates and a deterministic operating cost model generate a data base and develop a procedure for pricing the services of the SSTS. It is expected that the SSTS will have a monopoly on space material processing in areas of crystal growth, glass processing, metallurgical space applications, and biomedical processes using electrophoresis which will require efficient pricing. Pricing problems, the SSTS operating costs based on orbit elevation, number of launch sites, and number of flights, capital costs of the SSTS, research and development costs, allocation of joint transportation costs of the SSTS to a particular space processing activity, and rates for the SSTS are discussed. It is concluded that joint costs for commercial cargoes carried in the SSTS can be most usefully handled by making cost allocations based on proportionate capacity utilization.

  6. Second Shuttle Join NASA's STS Fleet: Challenger Launches First New Tracking Satellite

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA made a major stride in readying a second delivery vehicle for its Space Transportation System (STS) fleet with the perfect landing of Shuttle Orbiter Challenger at Edwards Air Force Base, California, April 9, 1983. Besides being the first flight test of Challenger's performance, the mission marked the orbiting of the first spacecraft in NASA's new Tracking and Data Relay Satellite System (TDRSS). The new family of orbiting space communications platforms is essential to serve future Shuttle missions. Although the Inertial Upper Stage (IUS) second stage engine firing failed to place TDRS in its final 35,888 kilometer (22,300 mile) geosynchronous orbit, its release from the orbiter cargo bay went as planned. Launch officials were confident they can achieve its planned orbit in a matter of weeks.

  7. NASA's Space Shuttle Columbia: Synopsis of the Report of the Columbia Accident Investigation Board

    NASA Technical Reports Server (NTRS)

    Smith, Marcia S.

    2003-01-01

    NASA's space shuttle Columbia broke apart on February 1, 2003 as it returned to Earth from a 16-day science mission. All seven astronauts aboard were killed. NASA created the Columbia Accident Investigation Board (CAIB), chaired by Adm. (Ret.) Harold Gehman, to investigate the accident. The Board released its report (available at [http://www.caib.us]) on August 26, 2003, concluding that the tragedy was caused by technical and organizational failures. The CAIB report included 29 recommendations, 15 of which the Board specified must be completed before the shuttle returns to flight status. This report provides a brief synopsis of the Board's conclusions, recommendations, and observations. Further information on Columbia and issues for Congress are available in CRS Report RS21408. This report will not be updated.

  8. NASA Shuttle Orbiter Reinforced Carbon Carbon (RCC) Crack Repair Arc-Jet Testing

    NASA Technical Reports Server (NTRS)

    Clark, ShawnDella; Larin, Max; Rochelle, Bill

    2007-01-01

    This NASA study demonstrates the capability for testing NOAX-repaired RCC crack models in high temperature environments representative of Shuttle Orbiter during reentry. Analysis methods have provided correlation of test data with flight predictions. NOAX repair material for RCC is flown on every STS flight in the event such a repair is needed. Two final test reports are being generated on arc-jet results (both calibration model runs and repaired models runs).

  9. Griffin Lifts Off at NASA With Calls for Speeding Shuttle Replacement, Reopening Hubble Decision

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Michael D. Griffin launched his tenure as NASA's 11th administrator on a fast track, using his "emergency" confiimation by the U.S. Senate to plug himself into space shuttle return-to-flight decision-making and urging faster development of the shuttle replacement. He also deftly sidestepped the treacherous issue of letting the aging Hubble Space Telescope die that was left behind by former Administrator Sean O'Keefe. Griffin told the Senate Commerce, Science and Transportation Committee that he would take another look at a shuttle mission to service the telescope, but not until the redesigned shuttle system makes a couple of test flights. Griffin made clear at his confirmation hearing Apr. 12 that he has long supported the ideas embodied in President Bush s push to move human exploration out of low Earth orbit, while finishing the International Space Station and retiring the space shuttle as soon as possible. And he showed right out of the blocks that his technical training and management background should serve him well in implementing Bush's directives.

  10. The epistemic integrity of NASA practices in the Space Shuttle Program.

    PubMed

    De Winter, Jan; Kosolosky, Laszlo

    2013-01-01

    This article presents an account of epistemic integrity and uses it to demonstrate that the epistemic integrity of different kinds of practices in NASA's Space Shuttle Program was limited. We focus on the following kinds of practices: (1) research by working engineers, (2) review by middle-level managers, and (3) communication with the public. We argue that the epistemic integrity of these practices was undermined by production pressure at NASA, i.e., the pressure to launch an unreasonable amount of flights per year. Finally, our findings are used to develop some potential strategies to protect epistemic integrity in aerospace science. PMID:23432770

  11. The NASA fuel cell upgrade program for the Space Shuttle Orbiter

    SciTech Connect

    Warshay, M.; Prokopius, P.; Le, M.; Voecks, G.

    1997-12-31

    As part of NASA`s overall efforts to improve the Space Shuttle operations, a program to upgrade the existing fuel cell powerplant has begun. The upgrade will involve replacing the alkaline fuel cell (AFC) system with a proton exchange membrane (PEM) fuel cell system, resulting in a much lower life cycle cost of the powerplant. The program is being implemented by a team comprised of NASA/JSC, NASA/LeRC, and JPL personnel, with support from NASA/KSC. With extremely high annual maintenance costs and subsystem replacement costs, the need for a lower cost Orbiter fuel cell powerplant is obvious. Earlier NASA plant to upgrade the shuttle fuel cell were not adequately funded and only focused upon upgrading the existing AFC. For the current program, the PEM fuel cell system will be implemented because the projected long life (10,000 hrs. vs. 2,000 hrs. for AFC), high power density (PEM projected to produce 50% more power), and enhanced system reliability and safety all lead to significantly lower life cycle powerplant costs. And in addition to the Orbiter application, PEM fuel cell development would support a number of important space applications that the AFC would not, such as Lunar/Mars transportation, the Reusable Launch Vehicle (RLV), Space Station emergency power and/or future energy storage applications, and various portable applications. NASA is also leveraging all of the large scale PEM fuel cell development activities that are ongoing for DOE, DOD, and commercial applications. There is no activity in the AFC area. The Shuttle Fuel Cell Upgrade plan of the JSC/LeRC/JPL team includes the following key elements: (1) Systems Analyses to assure compatibility/maximum utilization by shuttle of the best PEM fuel cell characteristics; (2) Short Stack Testing of the leading PEM fuel cell contractors` hardware; (3) Detailed Task Objective (DTO) Flight Experiment to verify PEM system water management and thermal management under zero-g operation; (4) A Downselect to the best PEM system; and (5) Development of the Flight Hardware Powerplant system, including, of course both the power and accessory subsystems. The planned success-oriented, four year effort is a coherent program to develop a 20 kW PEM fuel cell powerplant. The current major program tasks under way are Short Stack Testing and Systems Analyses.

  12. Anomaly Analysis: NASA's Engineering and Safety Center Checks Recurring Shuttle Glitches

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    The NASA Engineering and Safety Center (NESC), set up in the wake of the Columbia accident to backstop engineers in the space shuttle program, is reviewing hundreds of recurring anomalies that the program had determined don't affect flight safety to see if in fact they might. The NESC is expanding its support to other programs across the agency, as well. The effort, which will later extend to the International Space Station (ISS), is a principal part of the attempt to overcome the normalization of deviance--a situation in which organizations proceeded as if nothing was wrong in the face of evidence that something was wrong--cited by sociologist Diane Vaughn as contributing to both space shuttle disasters.

  13. Neutron Diffraction Characterization of Residual Strain in Welded Inconel 718 for NASA Space Shuttle Flow Liners

    SciTech Connect

    Rathod, C.R.; Vaidyanathan, R.; Livescu, V.; Clausen, B.; Bourke, M. A. M.; Notardonato, W.U.; Femminineo, M.

    2004-06-28

    This work quantitatively assesses residual strains and stresses associated with the weld repair process used to repair cracks on NASA's space shuttle flow liners. The coupons used in this investigation were made of the same INCONEL 718 alloy used for the flow liners. They were subjected to identical welding and certification procedures that were carried out on the space shuttle. Neutron diffraction measurements at Los Alamos National Laboratory determined residual strains at selected locations in a welded coupon at 293 K and 135 K. The weld repair process introduced Mises effective residual stresses of up to 555 MPa. On comparing the measurements at 293 K and 135 K, no significant change to the residual strain profile was noted at the low temperature. This indicated minimal mismatch in the coefficients of thermal expansion between the base metal and the weld.

  14. NSTA-NASA Shuttle Student Involvement Project. Experiment Results: Insect Flight Observation at Zero Gravity

    NASA Technical Reports Server (NTRS)

    Nelson, T. E.; Peterson, J. R.

    1982-01-01

    The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.

  15. The Role and Training of NASA Astronauts in the Post-Shuttle Era

    NASA Technical Reports Server (NTRS)

    2011-01-01

    In May 2010 the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC's Committee on Human Spaceflight Crew Operations was tasked to: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change following space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA's human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA's human spaceflight program has garnered considerable discussion in recent years, and there is considerable uncertainty about what that program will involve in the coming years, the committee was not tasked to address whether or not human spaceflight should continue, or what form it should take. The committee's task restricted it to studying those activities managed by the Flight Crew Operations Directorate, or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  16. Ventilation Loss in the NASA Space Shuttle Crew Protective Garments: Potential for Heat Stress

    NASA Technical Reports Server (NTRS)

    Askew, Gregory K.; Kaufman, Jonathan W.

    1991-01-01

    The potential of the National Aeronautics and Space Administration (NASA) S1035 Launch/Entry suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment has been studied. The testing was designed to determine if the NASA S1035 poses a greater threat of inducing heat stress than the NASA S1032. Conditions were designed to simulate an extreme prelaunch situation, with chamber temperatures maintained at dry bulb temperature 27.2 +/- 0.1 C, globe temperature - 27.3 +/- 0.1 C, and wet bulb temperature 21.1 +/- 0.3 C. Four males, aged 28-48, were employed in this study, with three subjects having exposures in all four conditions and the fourth subject exposed to 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. No significant differences related to experimental conditions were noted in rectal temperatures, heart rates or sweat rates. The results indicate that the S1032 and S1035 garments, in either the V or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Shuttle cabin during launch or re-entry.

  17. Integrated tracking of components by engineering and logistics utilizing logistics asset tracking system

    NASA Technical Reports Server (NTRS)

    Renfroe, Michael B.; Mcdonald, Edward J.; Bradshaw, Kimberly

    1988-01-01

    The Logistics Asset Tracking System (LATS) devised by NASA contains data on Space Shuttle LRUs that are daily updated to reflect such LRU status changes as repair due to failure or modification due to changing engineering requirements. The implementation of LATS has substantially increased personnel responsiveness, preventing costly delays in Space Shuttle processing and obviating hardware cannibalization. An evaluation is presented of LATS achievements in the direction of an integrated logistical support posture.

  18. Fifth Report of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking missions examine a number of specific issues related to the Shuttle-Mir program. Three teams composed of Task Force members and technical advisors were formed to address the follow issues: preliminary results from STS-71 and the status of preparations for STS-74; NASA's presence in Russia; and NASA's automated data processing and telecommunications (ADP/T) infrastructure in Russia. The three review team reports have been included in the fifth report of the Task Force.

  19. Software Architecture of the NASA Shuttle Ground Operations Simulator--SGOS

    NASA Technical Reports Server (NTRS)

    Cook Robert P.; Lostroscio, Charles T.

    2005-01-01

    The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. it is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,00 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.

  20. The five crew members of the Space Shuttle Atlantis on the STS-98 mission depart NASA Dryden to retu

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The five crew members of the Space Shuttle Atlantis on the STS-98 mission depart NASA Dryden to return to the Johnson Space Center at Houston. They briefly extended greetings to Dryden staff members on the ramp area behind Dryden's Main Building at a crew ceremony on February 21, 2001. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  1. Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

  2. Gas standards development in support of NASA's sensor calibration program around the space shuttle.

    PubMed

    Rhoderick, George C; Thorn, William J; Miller, Walter R; Guenther, Franklin R; Gore, Eric J; Fish, Timothy O

    2009-05-15

    The National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) requires accurate gas mixtures containing argon (Ar), helium (He), hydrogen (H(2)), and oxygen (O(2)) in a balance of nitrogen (N(2)) to calibrate mass spectrometer-based sensors used around their manned and unmanned space vehicles. This also includes space shuttle monitoring around the launch area and inside the shuttle cabin. NASA was in need of these gas mixtures to ensure the safety of the shuttle cabin and the launch system. In 1993, the National Institute of Standards and Technology (NIST) was contracted by NASA to develop a suite of primary standard mixtures (PSMs) containing helium, hydrogen, argon, and oxygen in a balance gas of nitrogen. NIST proceeded to develop a suite of 20 new gravimetric primary PSMs. At the same time NIST contracted Scott Specialty Gases (Plumsteadville, PA) to prepare 18 cylinder gas mixtures which were then sent to NIST. NIST used their newly prepared PSMs to assign concentration values ranging from 100 to 10,000 micromol/mol with relative expanded uncertainties (95% confidence interval) of 0.8-10% to the 18 Scott Specialty Gases prepared mixtures. A total of 12 of the mixtures were sent to NASA as NIST traceable standards for calibration of their mass spectrometers. The remaining 6 AIRGAS mixtures were retained at NIST. In 2006, these original 12 gas standards at NASA had become low in pressure and additionally NASA needed a lower concentration level; therefore, NIST was contracted to certify three new sets of gas standards. NIST prepared a new suite of 22 PSMs with weighing uncertainties of <0.1%. These 22 PSMs were compared to some of the original 20 PSMs developed in 1993 and with the NIST valued assigned Scott Specialty Gas mixtures that NIST had retained. Results between the two suites of primary standards and the 1993 NASA mixtures agreed, verifying their stability. At the same time, NASA contracted AIRGAS (Chicago, Illinois) to prepare 45 cylinder gas mixtures which were then sent to NIST. Each of the 3 sets of standards contained 15 cylinder gas mixtures: set no. 1, He at 12,000 micromol/mol, H(2) at 600 micromol/mol, Ar at 100 micromol/mol, and O(2) at 600 micromol/mol; set no. 2, He at 15 000 micromol/mol, H(2) at 5000 micromol/mol, Ar at 1000 micromol/mol, O(2) at 5000 micromol/mol; and set no. 3, He at 50 micromol/mol, H(2), Ar, and O(2) each at 25 micromol/mol with a balance gas of N(2). NIST used their newly prepared primary standards to assign concentration values to each component in these three new mixture sets to relative expanded uncertainties of 0.5-2.2%. The NIST certified AIRGAS prepared mixtures were then sent to NASA to use as "working standards" to calibrate their mass spectrometers (MSs). PMID:19344177

  3. Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine

    NASA Technical Reports Server (NTRS)

    Rodenberg, H.; Myers, K. J.

    1995-01-01

    The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.

  4. Concepts and embodiment design of a reentry recumbent seating system for the NASA Space Shuttle

    NASA Technical Reports Server (NTRS)

    Mcmillan, Scott; Looby, Brent; Devany, Chris; Chudej, Chris; Brooks, Barry

    1993-01-01

    This report deals with the generation of a recumbent seating system which will be used by NASA to shuttle astronauts from the Russian space station Mir. We begin by examining the necessity for designing a special couch for the returning astronauts. Next, we discuss the operating conditions and constraints of the recumbent seating system and provide a detailed function structure. After working through the conceptual design process, we came up with ten alternative designs which are presented in the appendices. These designs were evaluated and weighted to systematically determine the best choice for embodiment design. A detailed discussion of all components of the selected system follows with design calculations for the seat presented in the appendices. The report concludes with an evaluation of the resulting design and recommendations for further development.

  5. Actinide Sub-Actinide Flux Ratio Estimated from NASA Challenger Space Shuttle Borne Passive Detector Experiment

    NASA Astrophysics Data System (ADS)

    Basu, Basudhara; Bhattacharyya, D. P.; Biswas, S.; O'Sullivan, D.; Thompson, A.

    A video trace analysis of 117 ultra heavy cosmic nuclei detected by NASA space shuttle borne lexan detectors has been presented here. The major axes of the elliptical track etch pits in the long hour etched detectors have been measured using a Hund microscope computerized for the measurements using a Pentium. The major axes distribution exhibits the existence of ultra heavy nuclei of charges of Z ranging from 72 to 96 compatible with the expected results from restricted energy loss calculations. The estimated actinide sub-actinide flux ratio has been found to be 0.0636±0.0248 which is comparable to the earlier observations by Fowler et al., Thompson et al. and O'Sullivan.

  6. Structural analysis of a frangible nut used on the NASA Space Shuttle

    SciTech Connect

    Metzinger, K.E.

    1993-11-01

    A structural analysis methodology has been developed for the NASA 2.5-inch frangible nut used on the Space Shuttle. Two of these nuts are used to secure the External Tank to the aft end of the Orbiter. Both nuts must completely fracture before the Orbiter can safely separate from the External Tank. Ideally, only one of the two explosive boosters contained in each nut must detonate to completely break a nut. However, after an uncontrolled change in the Inconel 718 material processing, recent tests indicate that in certain circumstances both boosters may be required. This report details the material characterization and subsequent structural analyses of nuts manufactured from two lots of Inconel 718. The nuts from the HSX lot were observed to consistently separate with only one booster, while the nuts from the HBT lot never completely fracture with a single booster. The material characterization requires only tensile test data and the determination of a tearing parameter based on a computer simulation of a tensile test. Subsequent structural analyses using the PRONTO2D finite element code correctly predict the differing response of nuts fabricated from these two lots. This agreement is important because it demonstrates that this technique can be used to screen lots of Inconel 718 before manufacturing frangible nuts from them. To put this new capability to practice, Sandia personnel have transferred this technology to the Pyrotechnics Group at NASA-JSC.

  7. Vibro-Acoustic Analysis of NASA's Space Shuttle Launch Pad 39A Flame Trench Wall

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi N.

    2009-01-01

    A vital element to NASA's manned space flight launch operations is the Kennedy Space Center Launch Complex 39's launch pads A and B. Originally designed and constructed In the 1960s for the Saturn V rockets used for the Apollo missions, these pads were modified above grade to support Space Shuttle missions. But below grade, each of the pad's original walls (including a 42 feet deep, 58 feet wide, and 450 feet long tunnel designed to deflect flames and exhaust gases, the flame trench) remained unchanged. On May 31, 2008 during the launch of STS-124, over 3500 of the. 22000 interlocking refractory bricks that lined east wall of the flame trench, protecting the pad structure were liberated from pad 39A. The STS-124 launch anomaly spawned an agency-wide initiative to determine the failure root cause, to assess the impact of debris on vehicle and ground support equipment safety, and to prescribe corrective action. The investigation encompassed radar imaging, infrared video review, debris transport mechanism analysis using computational fluid dynamics, destructive testing, and non-destructive evaluation, including vibroacoustic analysis, in order to validate the corrective action. The primary focus of this paper is on the analytic approach, including static, modal, and vibro-acoustic analysis, required to certify the corrective action, and ensure Integrity and operational reliability for future launches. Due to the absence of instrumentation (including pressure transducers, acoustic pressure sensors, and accelerometers) in the flame trench, defining an accurate acoustic signature of the launch environment during shuttle main engine/solid rocket booster Ignition and vehicle ascent posed a significant challenge. Details of the analysis, including the derivation of launch environments, the finite element approach taken, and analysistest/ launch data correlation are discussed. Data obtained from the recent launch of STS-126 from Pad 39A was instrumental in validating the design analysis philosophies outlined in this paper.

  8. NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Barnes, Robert S.; Belvin, Harry L.; Allmen, John; Otero, Angel

    2005-01-01

    Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy.

  9. The residue-measure criterion for model reduction in the analysis of the NASA Space Shuttle's digital flight control system

    NASA Technical Reports Server (NTRS)

    Gluch, D. P.

    1982-01-01

    A residue-measure criterion model reduction technique is applied to the vehicle dynamics model used in the design and analysis of the NASA Space Shuttle's digital flight control system. As implemented in this study the residue-measure technique involved an a priori residue calculation with control system biasing. The predictions of the reduced model are compared to vehicle level dynamic stability test data. These comparisons show an excellent correlation of the dominant spectral and response features between the model and test data. In addition, the application of the reduction technique to various Shuttle mission flight phases is demonstrated.

  10. KOVEC studies of radioisotope thermoelectric generator response (In connection with possible NASA space shuttle accident explosion scenarios)

    SciTech Connect

    Walton, J.; Weston, A.; Lee, E.

    1984-06-26

    The Department of Energy (DOE) commissioned a study leading to a final report (NUS-4543, Report of the Shuttle Transportation System (STS) Explosion Working Group (EWG), June 8, 1984), concerned with PuO/sub 2/ dispersal should the NASA space shuttle explode during the proposed Galileo and ISPN launches planned for 1986. At DOE's request, LLNL furnished appendices that describe hydrocode KOVEC calculations of potential damage to the Radioisotope Thermoelectric Generators, fueled by PuO/sub 2/, should certain explosion scenarios occur. These appendices are contained in this report.

  11. A guide for space lawyers to understanding the NASA Space Shuttle and the ESA Spacelab

    NASA Technical Reports Server (NTRS)

    Sloup, G. P.

    1977-01-01

    An investigation is conducted concerning the appropriate characterization of the Space Shuttle, taking into account appearance, functions, and purpose. It is concluded that in terms of purely technological criteria, the Shuttle can best be described as an 'aerospace vehicle'. Questions related to the legal characterization of the Shuttle are considered. On the basis of the Shuttle's purpose as the most important criterion, it is suggested that the Shuttle should be considered basically as a 'spacecraft', 'space vehicle', or 'space object'. Attention is given to the Shuttle's relationship to multilateral space conventions, the possibility that the Shuttle could be legally defined as an 'aircraft' under certain circumstances, the Shuttle and the Chicago Convention, and the status of Spacelab as only one part of a U.S. flag spacecraft.

  12. First haemorheological experiment on NASA space shuttle 'Discovery' STS 51-C: aggregation of red cells.

    PubMed

    Dintenfass, L; Osman, P D; Jedrzejczyk, H

    1985-01-01

    The 'secret' D.O.D. Mission on flight STS 51-C also carried nearly 100 kg of automated instrumentation of the Australian experiment on aggregation of red cells ("ARC"). The automated Slit-Capillary Photo Viscometer contained blood samples from subjects with history of coronary heart disease, cancer of the colon, insulin-dependent diabetes, etc., as well as normals. The experiment ran for nine hours, according to the program of its microcomputers. When shuttle landed and instrumentation recovered and opened in the presence of NASA quality control officers, it was obvious that experiment was a success. Tentative and preliminary results can be summarized as follows: red cells did not change shape under zero gravity; red cells do aggregate under zero gravity, although the size of aggregates is smaller than on the ground; the morphology of aggregates of red cells appears to be of rouleaux type under zero gravity, notwithstanding the fact that pathological blood was used. These results will have to be confirmed in the future flights. The background and history of development of the project are described, and put into context of our general haemorheological studies. PMID:11540599

  13. Simulation of Shuttle launch G forces and acoustic loads using the NASA Ames Research Center 20G centrifuge

    NASA Technical Reports Server (NTRS)

    Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.

    1994-01-01

    The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.

  14. Space Shuttle Program Tin Whisker Mitigation

    NASA Technical Reports Server (NTRS)

    Nishimi, Keith

    2007-01-01

    The discovery of tin whiskers (TW) on space shuttle hardware led to a program to investigate and removal and mitigation of the source of the tin whiskers. A Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly. The internal inspection of the box revealed TW growth visible without magnification. The results of the Tiger Team that was assembled to investigate and develop recommendations are reviewed in this viewgraph presentation.

  15. Shuttle Astronauts Visit NASA's X-Ray Observatory Operations Control Center in Cambridge to Coordinate Plans for Launch

    NASA Astrophysics Data System (ADS)

    1998-06-01

    CAMBRIDGE, MASS.-- June 25, 1998 Eileen Collins, the first U.S. woman commanderof a Space Shuttle mission and her fellow astronauts for NASA s STS-93 mission toured the Operations Control Center (OCC) for the Advanced X-ray Astrophysics Facility (AXAF) today. AXAF is scheduled for launch on January 26, 1999 aboard the Space Shuttle Columbia. They met with the staff of the OCC and discussed how the status of the observatory will be monitored while in the shuttle bay and during deployment. "We are honored to have this historic shuttle crew visit us and familiarize themselves with the OCC," said Harvey Tananbaum, director of the AXAF Science Center, which operates the OCC for the Smithsonian Astrophysical Observatory through a contract with NASA's Marshall Space Flight Center. "It is appropriate that a pathbreaking shuttle mission will deploy the premier X-ray observatory of this century." AXAF is the third of NASA s Great Observatories along with the Hubble Space Telescope and the Compton Gamma Ray Observatory. It will observe in greater detail than ever before the hot, violent regions of the universe that cannot be seen with optical telescopes. Exploding stars, black holes and vast clouds of gas in galaxy clusters are among the fascinating objects that AXAF is designed to study. The satellite is currently in the final stages of testing at TRW Space and Electronics Group,the prime contractor, in Redondo Beach, California. In late August it will be flown aboard a specially-outfitted Air Force C-5 aircraft to Kennedy Space Center in Florida where it will be integrated with a Boeing booster and then installed in the Shuttle bay. The shuttle crew that will take AXAF into space includes Collins (Col., USAF), Jeffrey Ashby (Cmdr., USN), pilot; Steven Hawley, Ph.D., mission specialist; Catherine Cady Coleman, Ph.D. (Major, USAF), mission specialist; and Michel Tognini (Col., French Air Force), mission specialist. While visiting the OCC the crew learned how critical data (temperatures, voltages, etc.,) will be monitored while AXAF is in the bay of the shuttle. This information will be relayed to the shuttle from the OCC via Johnson Space Center. The condition of the satellite during launch and the first few orbits will determine if it can be sent on its way. Unlike the Hubble Space telescope, AXAF will not be serviceable after it is in orbit. When the satellite has been released into space from the shuttle bay, a built in propulsion system will boost it into a large elliptical orbit around Earth. The nearest the observatory will come to Earth is 6,200 miles and its furthest point will be more than a third of the way to the moon. This means that the telescope will have approximately 52 hours of observing time each orbit. AXAF images will show fifty times more detail than any previous X-ray telescope. The revolutionary telescope combines the ability to make sharp images while measuring precisely the energies of X-rays coming from cosmic sources. The impact AXAF will have on X-ray astronomy can be compared to the difference between a fuzzy black and white and a sharp color picture.

  16. Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

    1983-01-01

    The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.

  17. Research analysis of Space Shuttle Orbiter entry aerothermodynamic flight data at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.

    1981-01-01

    The methods used to analyze the aerothermodynamic data gathered from the Shuttle protoflights are reviewed. Trajectory and atmospheric reconstruction allow an accurate definition of the freestream environment through which the Shuttle has flown. The reconstructions, combined with aerodynamic coefficient and convective heating rate determinations, provide predictive capability for comparison with future flights. Data are acquired by operational instrumentation (12,000 parameters), development flight instrumentation (4500 measurements), and Orbiter experiments instrumentation; tracking and meteorological data are also included in the analyses. The aerothermodynamic and aerodynamic technology base for large, winged, lifting body entry vehicles is being expanded by the analysis efforts. Sensor locations on the Shuttle and data management techniques are described.

  18. An analysis of Space Shuttle countdown activities: Preliminaries to a computational model of the NASA Test Director

    NASA Technical Reports Server (NTRS)

    John, Bonnie E.; Remington, Roger W.; Steier, David M.

    1991-01-01

    Before all systems are go just prior to the launch of a space shuttle, thousands of operations and tests have been performed to ensure that all shuttle and support subsystems are operational and ready for launch. These steps, which range from activating the orbiter's flight computers to removing the launch pad from the itinerary of the NASA tour buses, are carried out by launch team members at various locations and with highly specialized fields of expertise. The liability for coordinating these diverse activities rests with the NASA Test Director (NTD) at NASA-Kennedy. The behavior is being studied of the NTD with the goal of building a detailed computational model of that behavior; the results of that analysis to date are given. The NTD's performance is described in detail, as a team member who must coordinate a complex task through efficient audio communication, as well as an individual taking notes and consulting manuals. A model of the routine cognitive skill used by the NTD to follow the launch countdown procedure manual was implemented using the Soar cognitive architecture. Several examples are given of how such a model could aid in evaluating proposed computer support systems.

  19. Preparing for the High Frontier: The Role and Training of NASA Astronauts in the Post- Space Shuttle Era

    NASA Technical Reports Server (NTRS)

    2011-01-01

    In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

  20. NASA/DOD earth orbit shuttle traffic models based on side by side loading of payloads

    NASA Technical Reports Server (NTRS)

    Kincade, R. E.; Donahoo, M. E.; Pruett, W. R.

    1971-01-01

    An analysis of the spacecraft configurations and space missions for the Earth Orbit Shuttle traffic model based on side-by-side loading of payloads is presented. The reusable tugs to be employed for the mission are examined. The space missions are described with respect to the following: (1) number of Earth Orbit Shuttle flights by inclination, (2) total payloads to orbit, (3) energy states required, and (4) characteristics of reusable tug.

  1. User benefits and funding strategies. [technology assessment and economic analysis of the space shuttles and NASA Programs

    NASA Technical Reports Server (NTRS)

    Archer, J. L.; Beauchamp, N. A.; Day, C. F.

    1975-01-01

    The justification, economic and technological benefits of NASA Space Programs (aside from pure scientific objectives), in improving the quality of life in the United States is discussed and outlined. Specifically, a three-step, systematic method is described for selecting relevant and highly beneficial payloads and instruments for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable Government and private industry cost-sharing strategies which would maximize the number of IUS payloads, and the benefits obtainable under a limited NASA budget were also determined. Charts are shown which list the payload instruments, and their relevance in contributing to such areas as earth resources management, agriculture, weather forecasting, and many others.

  2. Range Systems Simulation for the NASA Shuttle: Emphasis on Disaster and Prevention Management During Lift-Off

    NASA Technical Reports Server (NTRS)

    Rabelo, Lisa; Sepulveda, Jose; Moraga, Reinaldo; Compton, Jeppie; Turner, Robert

    2005-01-01

    This article describes a decision-making system composed of a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this distributed simulation environment represent the different systems that must collaborate to establish the Expectation of Casualties (E(sub c)) caused by a failed Space Shuttle launch and subsequent explosion (accidental or instructed) of the spacecraft shortly after liftoff. This decision-making tool employs Space Shuttle reliability models, trajectory models, a blast model, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system. Since one of the important features of this proposed simulation environment is to measure blast, toxic, and debris effects, the clear benefits is that it can help safety managers not only estimate the population at risk, but also to help plan evacuations, make sheltering decisions, establish the resources required to provide aid and comfort, and mitigate damages in case of a disaster.

  3. Design of the software development and verification system (SWDVS) for shuttle NASA study task 35

    NASA Technical Reports Server (NTRS)

    Drane, L. W.; Mccoy, B. J.; Silver, L. W.

    1973-01-01

    An overview of the Software Development and Verification System (SWDVS) for the space shuttle is presented. The design considerations, goals, assumptions, and major features of the design are examined. A scenario that shows three persons involved in flight software development using the SWDVS in response to a program change request is developed. The SWDVS is described from the standpoint of different groups of people with different responsibilities in the shuttle program to show the functional requirements that influenced the SWDVS design. The software elements of the SWDVS that satisfy the requirements of the different groups are identified.

  4. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  5. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 6

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Johnson, R. L.

    1984-01-01

    Research concerning the utilization of silicon piezoresistive strain sensing technology for space shuttle main engine applications is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  6. Update on NASA Space Shuttle Earth Observations Photography on the laser videodisc for rapid image access

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh

    1994-01-01

    There have been many significant improvements in the public access to the Space Shuttle Earth Observations Photography Database. New information is provided for the user community on the recently released videodisc of this database. Topics covered included the following: earlier attempts; our first laser videodisc in 1992; the new laser videodisc in 1994; and electronic database access.

  7. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    NASA Astrophysics Data System (ADS)

    Bejmuk, Bohdan I.; Williams, Larry

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations. The future success of NASA space programs and Rockwell hinges upon the ability to adopt new, more efficient and effective work processes. Efficiency, proficiency, cost effectiveness, and teamwork are a necessity for economic survival. Continuous improvement initiatives like the CEE are, and will continue to be, vehicles by which the road can be traveled with a vision to the future.

  8. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    NASA Technical Reports Server (NTRS)

    Bejmuk, Bohdan I.; Williams, Larry

    1992-01-01

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations. The future success of NASA space programs and Rockwell hinges upon the ability to adopt new, more efficient and effective work processes. Efficiency, proficiency, cost effectiveness, and teamwork are a necessity for economic survival. Continuous improvement initiatives like the CEE are, and will continue to be, vehicles by which the road can be traveled with a vision to the future.

  9. Autonomy, Interdependence, and Social Control: NASA and the Space Shuttle "Challenger."

    ERIC Educational Resources Information Center

    Vaughan, Diane

    1990-01-01

    Shows that the organizations responsible for regulating safety at the National Aeronautics and Space Administration (NASA) failed to identify flaws in management procedures and technical design that, if corrected, might have prevented the "Challenger" tragedy. Regulatory effectiveness was inhibited by the autonomy and interdependence of NASA and…

  10. Space Shuttle main engine. NASA has not evaluated the alternate fuel turbopump costs and benefits. Report to the Administrator of the National Aeronautics and Space Administration

    NASA Astrophysics Data System (ADS)

    1993-10-01

    NASA's plans to develop an alternate high pressure fuel turbopump for the Space Shuttle's main engines were assessed by the General Accounting Office as a part of the evaluation of the Space Shuttle Safety and Obsolescence Upgrade program. The objective was to determine whether NASA has adequately analyzed cost, performance, and benefits that are expected to result from this program in comparison to other alternatives before resuming development of the alternate pump, which was suspended in 1992. The alternate fuel pump is one of five improvements being developed or planned to significantly enhance safety margins of the engines.

  11. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics.

  12. Texture Modification of the Shuttle Landing Facility Runway at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Yager, Thomas J.

    1996-01-01

    This paper describes the test procedures and the selection criteria used in selecting the best runway surface texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-kt crosswinds if desired. This 5-kt increase over the previous 15-kt limit drastically increases landing safety and the ability to make on-time launches to support missions where space station rendezvous is planned.

  13. Assessment of Atmospheric Winds Aloft during NASA Space Shuttle Program Day-of-Launch Operations

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Leach, Richard

    2005-01-01

    The Natural Environments Branch at the National Aeronautics and Space Administration s Marshall Space Flight Center monitors the winds aloft at Kennedy Space Center in support of the Space Shuttle Program day of launch operations. High resolution wind profiles are derived from radar tracked Jimsphere balloons, which are launched at predetermined times preceding the launch, for evaluation. The spatial (shear) and temporal (persistence) wind characteristics are assessed against a design wind database to ensure wind change does not violate wind change criteria. Evaluations of wind profies are reported to personnel at Johnson Space Center.

  14. NASA's New Educator Astronauts Face Long Wait for Their Shuttle Missions

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2006-01-01

    When the U.S. space agency pinned badges on the 11 newest members of its astronaut corps this winter, it also increased by three its cadre of educator astronauts. Three former teachers-Dorothy M. Metcalf-Lindenburger, Richard R. Arnold II, and Joseph M. Acaba-graduated from NASA's grueling training program. The gauntlet of fitness test, survival…

  15. NASA's New Educator Astronauts Face Long Wait for Their Shuttle Missions

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2006-01-01

    When the U.S. space agency pinned badges on the 11 newest members of its astronaut corps this winter, it also increased by three its cadre of educator astronauts. Three former teachers-Dorothy M. Metcalf-Lindenburger, Richard R. Arnold II, and Joseph M. Acaba-graduated from NASA's grueling training program. The gauntlet of fitness test, survival

  16. NASA Lewis Thermal Barrier Feasibility Investigated for Use in Space Shuttle Solid-Rocket Motor Nozzle-to-Case Joints

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    1999-01-01

    Assembly joints of modern solid-rocket motor cases are usually sealed with conventional O-ring seals. The 5500 F combustion gases produced by rocket motors are kept a safe distance away from the seals by thick layers of insulation and by special compounds that fill assembly split-lines in the insulation. On limited occasions, NASA has observed charring of the primary O-rings of the space shuttle solid-rocket nozzle-assembly joints due to parasitic leakage paths opening up in the gap-fill compounds during rocket operation. Thus, solid-rocket motor manufacturer Thiokol approached the NASA Lewis Research Center about the possibility of applying Lewis braided-fiber preform seal as a thermal barrier to protect the O-ring seals. This thermal barrier would be placed upstream of the primary O-rings in the nozzle-to-case joints to prevent hot gases from impinging on the O-ring seals (see the following illustration). The illustration also shows joints 1 through 5, which are potential sites where the thermal barrier could be used.

  17. Assessment of the NASA Space Shuttle Program's Problem Reporting and Corrective Action System

    NASA Technical Reports Server (NTRS)

    Korsmeryer, D. J.; Schreiner, J. A.; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper documents the general findings and recommendations of the Design for Safety Programs Study of the Space Shuttle Programs (SSP) Problem Reporting and Corrective Action (PRACA) System. The goals of this Study were: to evaluate and quantify the technical aspects of the SSP's PRACA systems, and to recommend enhancements addressing specific deficiencies in preparation for future system upgrades. The Study determined that the extant SSP PRACA systems accomplished a project level support capability through the use of a large pool of domain experts and a variety of distributed formal and informal database systems. This operational model is vulnerable to staff turnover and loss of the vast corporate knowledge that is not currently being captured by the PRACA system. A need for a Program-level PRACA system providing improved insight, unification, knowledge capture, and collaborative tools was defined in this study.

  18. Assessment of the NASA Space Shuttle Program's problem reporting and corrective action system

    NASA Astrophysics Data System (ADS)

    Korsmeyer, David J.; Schreiner, John A.

    2001-07-01

    This paper documents the general findings and recommendations of the Design for Safety Program's Study of the Space Shuttle Program's (SSP) Problem Reporting and Corrective Action (PRACA) System. The goals of this Study were; to evaluate and quantify the technical aspects of the SSP's PRACA systems, and to recommend enhancements addressing specific deficiencies in preparation for future system upgrades. The Study determined that the extant SSP PRACA systems accomplished a project level support capability through the use of a large pool of domain experts and a variety of distributed formal and informal database systems. This operational model is vulnerable to staff turnover and loss of the vast corporate knowledge that is not currently being captured by the PRACA system. A need for a Program-level PRACA system providing improved insight, unification, knowledge capture, and collaborative tools was defined is this study.

  19. Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Leach, Richard

    2004-01-01

    The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.

  20. An experimental investigation of the NASA space shuttle external tank at hypersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Wittliff, C. E.

    1975-01-01

    Pressure and heat transfer tests were conducted simulating flight conditions which the space shuttle external tank will experience prior to break-up. The tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel and simulated entry conditions for nominal, abort-once-around (AOA), and return to launch site (RTLS) launch occurrences. Surface pressure and heat-transfer-rate distributions were obtained with and without various protuberences (or exterior hardware) on the model at Mach numbers from 15.2 to 17.7 at angles of attack from -15 deg to -180 deg and at several roll angles. The tests were conducted over a Reynolds number range from 1300 to 58,000, based on model length.

  1. Shuttle II

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1987-01-01

    This paper presents a status report on the study of a next-generation manned launch system, called Shuttle II, being conducted at the NASA Langley Research Center. Underlying reasons for considering such a system include the need for low-cost, safe, and reliable manned access to space. System and operational characteristics for a Shuttle II vehicle are presented. The need for fully reusable launch systems with radically simpler ground and flight operations is stated to be critical in reducing launch costs. Advancing technologies have a major impact on the choice of vehicle concepts. For a near-term level of technology, a two-stage vertical-takeoff rocket vehicle has been selected for further in-depth Shuttle II studies. The role of the Shuttle II vehicle in a proposed space transportation system, which includes heavy lift and Space Shuttle complementary manned systems, is discussed.

  2. Mini pressurized logistics module (MPLM)

    NASA Astrophysics Data System (ADS)

    Vallerani, E.; Brondolo, D.; Basile, L.

    1996-06-01

    The MPLM Program was initiated through a Memorandum of Understanding (MOU) between the United States' National Aeronautics and Space Administration (NASA) and Italy's ASI, the Italian Space Agency, that was signed on 6 December 1991. The MPLM is a pressurized logistics module that will be used to transport supplies and materials (up to 20,000 lb), including user experiments, between Earth and International Space Station Alpha (ISSA) using the Shuttle, to support active and passive storage, and to provide a habitable environment for two people when docked to the Station. The Italian Space Agency has selected Alenia Spazio to develop MPLM modules that have always been considered a key element for the new International Space Station taking benefit from its design flexibility and consequent possible cost saving based on the maximum utilization of the Shuttle launch capability for any mission. In the frame of the very recent agreement between the U.S. and Russia for cooperation in space, that foresees the utilization of MIR 1 hardware, the Italian MPLM will remain an important element of the logistics system, being the only pressurized module designed for re-entry. Within the new scenario of anticipated Shuttle flights to MIR 1 during Space Station phase 1, MPLM remains a candidate for one or more missions to provide MIR 1 resupply capabilities and advanced ISSA hardware/procedures verification. Based on the concept of Flexible Carriers, Alenia Spazio is providing NASA with three MPLM flight units that can be configured according to the requirements of the Human-Tended Capability (HTC) and Permanent Human Capability (PHC) of the Space Station. Configurability will allow transportation of passive cargo only, or a combination of passive and cold cargo accommodated in R/F racks. Having developed and qualified the baseline configuration with respect to the worst enveloping condition, each unit could be easily configured to the passive or active version depending upon the ISSA logistics requirements and their optimized fulfillment.

  3. Spaceflight Effects and Molecular Responses in the Mouse Eye: Observations after NASA Shuttle Mission STS-133

    NASA Technical Reports Server (NTRS)

    ProsperoPonce, Claudia Maria; Zanello, Susana B.; Theriot, Corey A.; Chevez-Barrios, Patricia

    2012-01-01

    Background: Human space exploration implies a combination of stressors including microgravityinduced cephalad fluid shift and radiation exposure. Ocular changes in astronauts leading to visual impairment are of occupational health relevance. The effect of this complex environment on ocular morphology and function is poorly understood. Material and Methods: Mice were assigned to a Flight (FLT) group flown on shuttle mission STS133, Animal Enclosure Module (AEM), or vivarium (VIV) ground controls. Eyes were collected at 1, 5 and 7 days after landing, and were fixed for histological sectioning. The contralateral eye was used for gene expression profiling by qRT-PCR. Routine histology and immunohistochemistry using 8-hydroxy-2'-deoxyguanosine (8-OHdG), caspase-3, glial fibrillary acidic protein (GFAP) and beta-amyloid were used to study the eyes. Results and Conclusions: 8-OHdG and caspase-3 immunoreactivity was increased in the retina in FLT samples at return from flight (R+1) compared to ground controls, and decreased at day 7 (R+7), suggesting an increase in oxidative stress and cell apoptosis. FLT mice showed evidence of retinal pigment epithelium (RPE) apoptosis possibly secondary to oxidative damage. Although attenuation of RPE has been related to retinal choroidal folds in astronauts, it is yet to be determined whether or not increased RPE apoptosis may contribute to the formation of choroidal folds or may increase the risk for other retinal pathologies, such as AMD. beta-amyloid was seen in the nerve fibers at the post-laminar region of the optic nerve in the flight samples (R+7). Deposition of beta-amyloid has a strong correlation with mechanical trauma. The coexpression of GFAP in astrocytes and oligodentrocytes in these same areas supports the possible mechanical origin probably secondary to intracranial pressure that is transmitted into the nerve, as a result of an increase in venous pressure associated to microgravity-induced cephalic fluid shift. However, there is the need to further investigate the nature of the changes through additional experimental work. Gene expression of oxidative and cellular stress response genes was unregulated in the retina of FLT samples upon landing followed by lower levels by R+7. These results suggest that reversible molecular damage occurs in the retina of mice exposed to spaceflight and that protective cellular and molecular pathways are induced in the retina in response to these changes.

  4. Results of a space shuttle pulme impingement investigation at stage separation in the NASA-MSFC impulse base flow facility

    NASA Technical Reports Server (NTRS)

    Mccanna, R. W.; Sims, W. H.

    1972-01-01

    Results are presented for an experimental space shuttle stage separation plume impingement program conducted in the NASA-Marshall Space Flight Center's impulse base flow facility (IBFF). Major objectives of the investigation were to: (1)determine the degree of dual engine exhaust plume simulation obtained using the equivalent engine; (2) determine the applicability of the analytical techniques; and (3) obtain data applicable for use in full-scale studies. The IBFF tests determined the orbiter rocket motor plume impingement loads, both pressure and heating, on a 3 percent General Dynamics B-15B booster configuration in a quiescent environment simulating a nominal staging altitude of 73.2 km (240,00 ft). The data included plume surveys of two 3 percent scale orbiter nozzles, and a 4.242 percent scaled equivalent nozzle - equivalent in the sense that it was designed to have the same nozzle-throat-to-area ratio as the two 3 percent nozzles and, within the tolerances assigned for machining the hardware, this was accomplished.

  5. Heat transfer tests of the NASA-MSC space shuttle configuration at the Langley Research Center Mach 8 Variable Density Facility

    NASA Technical Reports Server (NTRS)

    Connor, L. E.; Sparks, V. W.; Bhadsavle, A. G.

    1971-01-01

    The experimental investigations performed on the NASA-Manned Spacecraft Center Space Shuttle orbiter and booster configurations at a Mach 8 variable density facility are presented. The test program was a series of aerothermodynamic wind tunnel tests that were run over a range of angles of attack, yaw angles, and Reynolds numbers. Objectives of the test program were to obtain heat transfer data over the NASA-Manned Spacecraft Center Space Shuttle orbiter, booster, and launch configurations for a range of angles of attack from - 20 to + 30 deg, yaw angles of 0 and + or - 6 deg, and Reynolds numbers of 0.6, 2.0, and 3.7 x one million. The phase-change coating technique was used to obtain heat transfer data. Information received from these tests will be instrumental in performing thermal protection systems studies and vehicle aerodynamic design.

  6. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 1: Observations and conclusions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The NASA and contractor management systems, including policies, practices, and procedures for the development of critical systems, subsystems and integration of the program elements, were investigated. The technical development status of critical systems, subsystems, and interfaces is presented. Space shuttle elements were qualified as to potential risks and hazards. The elements included the orbiter, external tanks, main engine, solid rocket boosters, and the ground support facilities.

  7. Rocket Noise and Vibration Shuttle/Payload Processing and ISS: Launch Pad Vibroacoustics Research at NASA/KSC

    NASA Technical Reports Server (NTRS)

    Margasayam, Ravi; Voska, Ned (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the effects of noise of the SSME Space Shuttle Main Engine upon liftoff from Kennedy Space Center. It covers both effects experienced by astronauts within the Shuttles, and effects on the surrounding environment. The presentation then makes recommendations for design methods which take into account vibroacoustics.

  8. Organizational Learning Post Catastrophic Events: A Descriptive Case Study Exploring NASA's Learning over Time Following Two Catastrophic Shuttle Accidents Using the Schwandt's Organizational Learning System Model

    ERIC Educational Resources Information Center

    Castro, Edgar Oscar

    2013-01-01

    A 30-year contribution of the Space Shuttle Program is the evolution of NASA's social actions through organizational learning. This study investigated how NASA learned over time following two catastrophic accidents. Schwandt's (1997) organizational Learning System Model (OLSM) characterized the learning in this High Reliability…

  9. Organizational Learning Post Catastrophic Events: A Descriptive Case Study Exploring NASA's Learning over Time Following Two Catastrophic Shuttle Accidents Using the Schwandt's Organizational Learning System Model

    ERIC Educational Resources Information Center

    Castro, Edgar Oscar

    2013-01-01

    A 30-year contribution of the Space Shuttle Program is the evolution of NASA's social actions through organizational learning. This study investigated how NASA learned over time following two catastrophic accidents. Schwandt's (1997) organizational Learning System Model (OLSM) characterized the learning in this High Reliability

  10. Proceedings of the NASA/Florida Institute of Technology Environmental Engineering Conference on Nitrogen Tetroxide. [with emphasis on space shuttle

    NASA Technical Reports Server (NTRS)

    Rhodes, E. L.

    1978-01-01

    Methods of reducing the user hazards of nitrogen tetroxide, a hypergolic oxidizer are discussed. Kennedy Space Center developments in N2O4 control for the space shuttle are featured. Other areas covered are life support equipment and transportation.

  11. Statement of Chester M. Lee, Director, Space Transportation Systems Operations, NASA, and Phillip E. Culbertson, Assistant Administrator of Planning and Program Integration, NASA. [concerning NASA and non-NASA payloads for the space shuttle program

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Payloads for the Space Transportation System 560 flights, particularly the NASA payloads, are discussed. NASA payloads will make up approximately 50% of total payloads in these flights. Proposed Spacelab experiments are listed and discussed; plans for accommodating commercial user payloads are then outlined, including price schedules.

  12. A summary of the Space Shuttle Columbia tragedy and the use of digital high-speed photography in the accident investigation and NASA's return-to-flight effort

    NASA Astrophysics Data System (ADS)

    Pereira, J. Michael; Melis, Matthew E.; Revilock, Duane M.

    2005-03-01

    On February 1, 2003, the Space Shuttle Columbia broke apart during reentry resulting in loss of seven crewmembers and craft. For the next several months an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA concluded in August, 2003 that the cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into that mission's launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of the left wing which ultimately led to the breakup of the orbiter. Supporting the findings of the CAIB, were numerous ballistic impact testing programs conducted to investigate and quantify the physics of External Tank Foam impact on the RCC wing leading edge material. These tests ranged from fundamental material characterization tests to full-scale Orbiter Wing Leading Edge tests. Following the accident investigation, NASA turned its focus to returning the Shuttle safely to flight. Supporting this effort are many test programs to evaluate impact threats from various debris sources during ascent that must be completed for certifying the Shuttle system safe for flight. Digital high-speed cameras were used extensively to document these tests as significant advances in recent years have nearly eliminated the use of film in many areas of testing. Researchers at the NASA Glenn Ballistic Impact Laboratory have participated in several of the impact test programs supporting the Accident Investigation and Return-to-Flight efforts. This paper summarizes the Columbia Accident and the nearly seven month long investigation that followed. Highlights of the NASA Glenn contributions to the impact testing are presented with emphasis on the use of high speed digital photography to document theses tests.

  13. Engineering report. Part 3: NASA lightweight wheel and brake sub-system. Lightweight brake development. [for application to space shuttle

    NASA Technical Reports Server (NTRS)

    Bok, L. D.

    1973-01-01

    The development of light weight wheel and brake systems designed to meet the space shuttle type requirements was investigated. The study includes the use of carbon graphite composite and beryllium as heat sink materials and the compatibility of these heat sink materials with the other structural components of the wheel and brake.

  14. Stennis tests shuttle valves

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Flames burst from the E-1 Test Stand as Stennis Space Center engineers perform one of dozens of shuttle flow valve tests in early February. Stennis engineers teamed with Innovative Partnership Program partners to perform the tests after NASA officials delayed the launch of the STS-119 mission because of concerns with the shuttle part.

  15. Potential Future Shuttle Improvements

    NASA Technical Reports Server (NTRS)

    Henderson, Edward

    2001-01-01

    NASA has just recently completed the 104th flight of the Space Shuttle. Each of the four Orbiters in the Shuttle fleet have a design life of 100 flights each. Thus the fleet is capable of almost 300 more flights, and at current flight rates could potentially operate well past 2020 if necessary. This paper addresses some of the potential Shuttle system improvements that could be considered if the decision is made to continue operations of this vehicle for such an extended period. The national space transportation policy envisions a decision around 2005-2006 concerning readiness to start development of a Shuttle replacement system. Leading up to that decision point NASA is investing in the Space Launch Initiative (SLI) to reduce the development risks associated with key technologies needed for the next generation reusable launch vehicle (RLV). The Shuttle replacement could be a new design RLV or could be based on a Shuttle derived design: i.e., a vehicle based on the current Shuttle but with major design changes. The technology investment strategy of SLI is supportive of either approach. However, if NASA and industry are not ready to develop a replacement vehicle in the 2006-2012 timeframe, then another option would be to continue to make important, but evolutionary changes, to the existing Shuttle fleet. The overall strategy for next generation RLV planning, including possible Shuttle evolution, is captured in Figure 1.

  16. Instrumentation applications to Space Shuttle models and thermal protection system tiles tested in NASA-AMES wind tunnels

    NASA Technical Reports Server (NTRS)

    Coe, C. F.; Brownson, J. J.

    1981-01-01

    The highlights of the many wind-tunnel tests conducted in the course of the Space Shuttle development program are presented with emphasis on instrumentation applications. The examples of tests discussed include airframe aerodynamics, aerodynamic heating, aerodynamic noise, tile dynamic response, and tile loads. Many of the tests were conducted with standard wind-tunnel instrumentation. Most of the more unusual instrumentation requirements were related to the thermal protection system, where some pressure-sensor concepts were adapted to measure airloads on tiles. These measurements provided the only quantitative data that could be used to confirm the airload analysis procedure. Limited applications of computers to experimental control, in conjunction with data taken during Shuttle tests, have resulted in substantial benefits in overall test efficiency.

  17. A waning of technocratic faith - NASA and the politics of the Space Shuttle decision, 1967-1972

    NASA Technical Reports Server (NTRS)

    Launius, R. D.

    1992-01-01

    This paper analyzes the decision to build the Space Shuttle as part of a broader public policy trend away from a deference to technical experts and toward greater politicization of traditionally apolitical issues. At the beginning of the 1960s U.S. leaders had a strong faith in the ability of technology to solve most problems. By 1970 this commitment to technological answers had waned and a resurgence of the right of elected officials to control technical matters was gaining currency. The lengthy and bitter Shuttle decision-making process was part of a much broader shift in the formation of public policy, played out in other arenas as well, aimed at the reemergence of direct political management of technological and scientific affairs by politicians.

  18. A Model for Space Shuttle Orbiter Tire Side Forces Based on NASA Landing Systems Research Aircraft Test Results

    NASA Technical Reports Server (NTRS)

    Carter, John F.; Nagy, Christopher J.; Barnicki, Joseph S.

    1997-01-01

    Forces generated by the Space Shuttle orbiter tire under varying vertical load, slip angle, speed, and surface conditions were measured using the Landing System Research Aircraft (LSRA). Resulting data were used to calculate a mathematical model for predicting tire forces in orbiter simulations. Tire side and drag forces experienced by an orbiter tire are cataloged as a function of vertical load and slip angle. The mathematical model is compared to existing tire force models for the Space Shuttle orbiter. This report describes the LSRA and a typical test sequence. Testing methods, data reduction, and error analysis are presented. The LSRA testing was conducted on concrete and lakebed runways at the Edwards Air Force Flight Test Center and on concrete runways at the Kennedy Space Center (KSC). Wet runway tire force tests were performed on test strips made at the KSC using different surfacing techniques. Data were corrected for ply steer forces and conicity.

  19. Engineering report. Part 2: NASA wheel and brake material tradeoff study for space shuttle type environmental requirements

    NASA Technical Reports Server (NTRS)

    Bok, L. D.

    1973-01-01

    The study included material selection and trade-off for the structural components of the wheel and brake optimizing weight vs cost and feasibility for the space shuttle type application. Analytical methods were used to determine section thickness for various materials, and a table was constructed showing weight vs. cost trade-off. The wheel and brake were further optimized by considering design philosophies that deviate from standard aircraft specifications, and designs that best utilize the materials being considered.

  20. Development of forward and aft separation bolts for the NASA Space Shuttle solid rocket booster separation system

    NASA Technical Reports Server (NTRS)

    Nein, H.; Williams, V.

    1979-01-01

    A program is underway to design, develop, fabricate, and qualify large high-load forward and aft separation bolts for the Space Shuttle; the bolts will serve as attachment between two solid rocket boosters and the external tank. This paper reviews bolt development, with emphasis on the scaling of components, the use of high strength maraging steel for the internal components, and the use of lead as a hydraulic fluid.

  1. Air cargo market outlook and impact via the NASA CLASS project. [Cargo/Logistics Airlift Systems Study

    NASA Technical Reports Server (NTRS)

    Winston, M. M.; Conner, D. W.

    1980-01-01

    An overview is given of the Cargo/Logistics Airlift Systems Study (CLASS) project which was a 10 man-year effort carried out by two contractor teams, aimed at defining factors impacting future system growth and obtaining market requirements and design guidelines for future air freighters. Growth projection was estimated by two approaches: one, an optimal systems approach with a more efficient and cost effective system considered as being available in 1990; and the other, an evolutionary approach with an econometric behavior model used to predict long term evolution from the present system. Both approaches predict significant growth in demand for international air freighter services and less growth for U.S. domestic services. Economic analysis of air freighter fleet options indicate very strong market appeal of derivative widebody transports in 1990 with little incentive to develop all new dedicated air freighters utilizing the 1990's technology until sometime beyond the year 2000. Advanced air freighters would be economically attractive for a wide range of payload sizes (to 500 metric tons), however, if a government would share in the RD and T costs by virtue of its needs for a slightly modified version of a civil air freighter design (a.g. military airlifter).

  2. Flow-field surveys on the windward side of the NASA 040A space shuttle orbiter at 31 deg angle of attack and Mach 20 in helium

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Helms, V. T., III

    1977-01-01

    Pitot pressure and flow angle distributions in the windward flow field of the NASA 040A space shuttle orbiter configuration and surface pressures were measured, at a Mach number of 20 and an angle of attack of 31 deg. The free stream Reynolds number, based on model length, was 5.39 x 10 to the 6th power. Results show that cores of high pitot pressure, which are related to the body-shock-wing-shock intersections, occur on the windward plane of symmetry in the vicinity of the wing-body junction and near midspan on the wing. Theoretical estimates of the flow field pitot pressures show that conical flow values for the windward plane of symmetry surface are representative of the average level over the entire lower surface.

  3. Space Shuttle Projects Overview to Columbia Air Forces War College

    NASA Technical Reports Server (NTRS)

    Singer, Jody; McCool, Alex (Technical Monitor)

    2000-01-01

    This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

  4. NASA

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The guiding principles for US exploration of air and space have remained remarkably consistent for more than 80 years. In 1915, Congress created an organization that would `supervise and direct the scientific study of the problems of flight, with a view to their practical solutions'. That organization, the National Advisory Committee for Aeronautics (NACA), evolved into NASA four decades later....

  5. A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.

    1998-01-01

    The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very nature will require specialized support for new databases and analyses for wind, atmospheric parameters (pressure, temperature, and density versus altitude), and weather. It is for this reason that project managers are encouraged to collaborate with natural environment specialists early in the conceptual design phase. Such action will give the lead time necessary to meet the natural environment design and operational requirements, and thus, reduce development costs.

  6. Autonomous Space Shuttle

    NASA Technical Reports Server (NTRS)

    Siders, Jeffrey A.; Smith, Robert H.

    2004-01-01

    The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

  7. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1

  8. Space Shuttle Payload Information Source

    NASA Technical Reports Server (NTRS)

    Griswold, Tom

    2000-01-01

    The Space Shuttle Payload Information Source Compact Disk (CD) is a joint NASA and USA project to introduce Space Shuttle capabilities, payload services and accommodations, and the payload integration process. The CD will be given to new payload customers or to organizations outside of NASA considering using the Space Shuttle as a launch vehicle. The information is high-level in a visually attractive format with a voice over. The format is in a presentation style plus 360 degree views, videos, and animation. Hyperlinks are provided to connect to the Internet for updates and more detailed information on how payloads are integrated into the Space Shuttle.

  9. Space Shuttle redesign status

    NASA Technical Reports Server (NTRS)

    Brand, Vance D.

    1986-01-01

    NASA has conducted an extensive redesign effort for the Space Shutle in the aftermath of the STS 51-L Challenger accident, encompassing not only Shuttle vehicle and booster design but also such system-wide factors as organizational structure, management procedures, flight safety, flight operations, sustainable flight rate, and maintenance safeguards. Attention is presently given to Solid Rocket Booster redesign features, the Shuttle Main Engine's redesigned high pressure fuel and oxidizer turbopumps, the Shuttle Orbiter's braking and rollout (landing gear) system, the entry control mode of the flight control system, a 'split-S' abort maneuver for the Orbiter, and crew escape capsule proposals.

  10. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5 foot hypersonic wind tunnel (IH3), volume 1

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat transfer data for the 0.0175-scale space shuttle vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-foot hypersonic wind tunnel at Mach 5.3 for nominal free stream Reynolds number per foot values of 1.5, and 5.0 million.

  11. STS-114 Space Shuttle Discovery Performs Back Flip For Photography

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  12. Underside View of STS-114 Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  13. Underside View of STS-114 Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the under side of the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

  14. Space shuttle operational risk assessment

    NASA Astrophysics Data System (ADS)

    Fragola, Joseph R.; Maggio, Gaspare

    1996-03-01

    A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated quantitative assessment of the risk of the loss of the shuttle vehicle from 3 seconds prior to liftoff to wheel-stop at mission end. The study which was conducted under the direction of NASA's Shuttle Safety and Mission Assurance office at Johnson Spaceflight Center focused on shuttle operational risk but included consideration of all the shuttle flight and test history since the beginning of the program through Mission 67 in July of 1994.

  15. Space Shuttle Familiarization

    NASA Technical Reports Server (NTRS)

    Mellett, Kevin

    2006-01-01

    This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.

  16. Logistics support of space facilities

    NASA Technical Reports Server (NTRS)

    Lewis, William C.

    1988-01-01

    The logistic support of space facilities is described, with special attention given to the problem of sizing the inventory of ready spares kept at the space facility. Where possible, data from the Space Shuttle Orbiter is extrapolated to provide numerical estimates for space facilities. Attention is also given to repair effort estimation and long duration missions.

  17. Space Shuttle: Ground Support

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This video gives an overview of the function and importance of the Ground Support System to the Space Station missions. Details are given on the individual responsibilities and contributions of each of the NASA centers, from the design and construction of the Space Shuttle to its launch, on-orbit performance, and landing.

  18. Space Shuttle

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The space shuttle flight system and mission profile are briefly described. Emphasis is placed on the economic and social benefits of the space transportation system. The space shuttle vehicle is described in detail.

  19. Space Shuttle.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The plans for utilizing reusable space shuttles which could replace almost all present expendable launch vehicles are briefly described. Many illustrations are included showing the artists' concepts of various configurations proposed for space shuttles. (PR)

  20. NASA Vision

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

  1. Space Shuttle mission: STS-67

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

  2. Space Shuttle mission: STS-67

    NASA Astrophysics Data System (ADS)

    1995-03-01

    The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

  3. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 4

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale Space Shuttle Vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of Orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-Foot Hypersonic Wind Tunnel at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1.5 x 1,000,000 and 5.0 x 1,000,000.

  4. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  5. Lunar Commercial Mining Logistics

    NASA Astrophysics Data System (ADS)

    Kistler, Walter P.; Citron, Bob; Taylor, Thomas C.

    2008-01-01

    Innovative commercial logistics is required for supporting lunar resource recovery operations and assisting larger consortiums in lunar mining, base operations, camp consumables and the future commercial sales of propellant over the next 50 years. To assist in lowering overall development costs, ``reuse'' innovation is suggested in reusing modified LTS in-space hardware for use on the moon's surface, developing product lines for recovered gases, regolith construction materials, surface logistics services, and other services as they evolve, (Kistler, Citron and Taylor, 2005) Surface logistics architecture is designed to have sustainable growth over 50 years, financed by private sector partners and capable of cargo transportation in both directions in support of lunar development and resource recovery development. The author's perspective on the importance of logistics is based on five years experience at remote sites on Earth, where remote base supply chain logistics didn't always work, (Taylor, 1975a). The planning and control of the flow of goods and materials to and from the moon's surface may be the most complicated logistics challenges yet to be attempted. Affordability is tied to the innovation and ingenuity used to keep the transportation and surface operations costs as low as practical. Eleven innovations are proposed and discussed by an entrepreneurial commercial space startup team that has had success in introducing commercial space innovation and reducing the cost of space operations in the past. This logistics architecture offers NASA and other exploring nations a commercial alternative for non-essential cargo. Five transportation technologies and eleven surface innovations create the logistics transportation system discussed.

  6. Aerial views of construction on the RLV hangar at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This aerial view shows the construction of a multi-purpose hangar, which is part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. In the background is the Shuttle Landing Facility, with (left) a C-5 air cargo plane, the offloaded canister in front of it containing the Multi-Purpose Logistics Module Raffaello, and (right) the mate/demate tower that is used when an orbiter is transported to and from KSC atop a modified Boeing 747. The RLV complex will also include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  7. Human Factor Investigation of Waste Processing System During the HI-SEAS 4-month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Hintze, Paul E.; Miles, John D.

    2014-01-01

    NASA's Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  8. Human Factor Investigation of Waste Processing System During the HI-SEAS 4 Month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Hintze, Paul; Miles, John D.

    2014-01-01

    NASAs Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  9. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  10. The Shuttle Cost and Price model

    NASA Technical Reports Server (NTRS)

    Leary, Katherine; Stone, Barbara

    1983-01-01

    The Shuttle Cost and Price (SCP) model was developed as a tool to assist in evaluating major aspects of Shuttle operations that have direct and indirect economic consequences. It incorporates the major aspects of NASA Pricing Policy and corresponds to the NASA definition of STS operating costs. An overview of the SCP model is presented and the cost model portion of SCP is described in detail. Selected recent applications of the SCP model to NASA Pricing Policy issues are presented.

  11. NASA replanning efforts continue

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    A task force of the National Aeronautics and Space Administration (NASA) is producing new launch schedules for NASA's three remaining space shuttle orbiters, possibly supplemented by expendable launch vehicles. In the wake of the explosion of the space shuttle Challenger on January 28, 1986, the task force is assuming a delay of 12-18 months before resumption of shuttle flights.NASA's Headquarters Replanning Task Force, which meets daily, is separate from the agency's Data and Design Analysis Task Force, which collects and analyzes information about the accident for the use of the investigative commission appointed by President Ronald Reagan.

  12. Space Shuttle Endeavour Heads West - Duration: 111 seconds.

    NASA Video Gallery

    NASA's Shuttle Carrier Aircraft, a modified 747, flew retired shuttle Endeavour from Kennedy Space Center in Florida to Houston on Sept. 19, 2012, to complete the first leg of Endeavour's trip to L...

  13. Shuttle Landing Facility - Duration: 6 minutes, 28 seconds.

    NASA Video Gallery

    The Shuttle Landing Facility at NASA's Kennedy Space Center in Florida marked the finish line for space shuttle missions since 1984. It is also staffed by a group of air traffic controllers who wor...

  14. Shuttle Endeavour Flyover of Los Angeles Landmarks - Duration: 15 minutes.

    NASA Video Gallery

    Space shuttle Endeavour atop NASA's Shuttle Carrier Aircraft flew over many Los Angeles area landmarks on its final ferry flight Sept. 21, 2012, including the Coliseum, the Hollywood Sign, Griffith...

  15. Shuttle: forever young?

    PubMed

    Sietzen, Frank

    2002-01-01

    NASA has started a 4-phase program of upgrades designed to increase safety and extend use of the space shuttles through the year 2020. Phase I is aimed at improving vehicle safety and supporting the space station. Phase II is aimed at combating obsolescence and includes a checkout launch and control system and protection from micrometeoroids and orbital debris. Phase III is designed to expand or enhance the capabilities of the shuttle and includes development of an auxiliary power unit, avionics, a channel-wall nozzle, extended nose landing gear, long-life fuel cells, a nontoxic orbital maneuvering system/reaction control system, and a water membrane evaporator. Phase IV is aimed at design of system changes that would alter the shuttle mold line and configuration; projects include a five-segment solid rocket booster, liquid flyback boosters, and a crew escape module. PMID:11794337

  16. New shuttle schedule released

    NASA Astrophysics Data System (ADS)

    1986-10-01

    The Hubble Space Telescope has a tentative launch date of November 17, 1988, according to an announcement made October 3, 1986, by the National Aeronautics and Space Administration (NASA). The plan calls for the first shuttle launch to take place on February 18, 1988, when Discovery is slated to launch a second Tracking and Data Relay Satellite (TDRS). A TDRS satellite was aboard Challenger when it exploded on January 28, 1986.The $1.3 billion telescope would be launched aboard the fifth shuttle mission in 1988. After launching the TDRS satellite, NASA plans to send Atlantis and then Columbia spacebound with military payloads. In September 1988, Discovery would be launched again with a third TDRS satellite.

  17. The Shuttle Enterprise

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Shuttle Enterprise rolls out of the Palmdale manufacturing facilities with Star Trek television cast members. From left to right they are: Dr. James D. Fletcher, NASA Administrator, DeForest Kelley (Dr. 'Bones' McCoy), George Takei (Mr. Sulu), Nichelle Nichols (Lt. Uhura), Leonard Nimoy (the indefatigable Mr. Spock), Gene Rodenberry (The Great Bird of the Galaxy), and Walter Koenig (Ensign Pavel Checkov).

  18. Mobile Christian - shuttle flight

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Louis Stork, 13, and Erin Whittle, 14, look on as Brianna Johnson, 14, conducts a 'test' of a space shuttle main engine in the Test Control Center exhibit in StenniSphere, the visitor center at NASA's John C. Stennis Space Center near Bay St. Louis, Miss. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.

  19. Shuttle Launch

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Space Shuttle thunders to space, powered by three main engines and two solid rocket boosters. At ignition, a close-up view shows the distinct cone-shaped flame of the Space Shuttle Main Engines that are tested and flight-certified at Stennis Space Center.

  20. Space Shuttle Strategic Planning Status

    NASA Technical Reports Server (NTRS)

    Norbraten, Gordon L.; Henderson, Edward M.

    2007-01-01

    The Space Shuttle Program is aggressively flying the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Completing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA's Crew Exploration Vehicle (Orion) and Crew and Cargo Launch Vehicles (Ares I). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the Vision for Space Exploration, and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

  1. Space Shuttle Strategic Planning Status

    NASA Technical Reports Server (NTRS)

    Henderson, Edward M.; Norbraten, Gordon L.

    2006-01-01

    The Space Shuttle Program is aggressively planning the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Implementing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA s Crew Exploration Vehicle (CEV) and Crew and Cargo Launch Vehicles (CLV). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the President s "Vision for Space Exploration," and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

  2. NASA Technology Applications Team

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The contributions of NASA to the advancement of the level of the technology base of the United States are highlighted. Technological transfer from preflight programs, the Viking program, the Apollo program, and the Shuttle and Skylab programs is reported.

  3. Report to the NASA Administrator by the Aerospace Safety Advisory Panel on the Space Shuttle Program. Part 1: Observations and Conclusions

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Each system was chosen on the basis of its importance with respect to crew safety and mission success. An overview of the systems management is presented. The space shuttle main engine, orbiter thermal protection system, avionics, external tanks and solid rocket boosters were examined. The ground test and ground support equipment programs were studied. Program management was found to have an adequate understanding of the significant ground and flight risks involved.

  4. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  5. The Space Shuttle in perspective

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1981-01-01

    Commercial aspects of the Space Shuttle are examined, with attention given to charges to users, schedule of launches and reimbursement, kinds of payload and their selection, NASA authority, space allocation, and risk, liability, and insurance. It is concluded that insurance to reduce the risk, incentives that NASA is willing to make available to U.S. industry, and the demonstrated willingness of industry and the financial community to invest their funds in space ventures indicate that the new Shuttle capabilities will exponentially increase commercial activities in space during the 1980s.

  6. NASA: Data on the Web.

    ERIC Educational Resources Information Center

    Galica, Carol

    1997-01-01

    Provides an annotated bibliography of selected NASA Web sites for K-12 math and science teachers: the NASA Lewis Research Center Learning Technologies K-12 Home Page, Spacelink, NASA Quest, Basic Aircraft Design Page, International Space Station, NASA Shuttle Web Site, LIFTOFF to Space Education, Telescopes in Education, and Space Educator's…

  7. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  8. Transition heating rates obtained on a matted and isolated 0.006 scale model (41-OT) space shuttle orbiter and external tank in the NASA/LaRC variable density hypersonic tunnel (IH17)

    NASA Technical Reports Server (NTRS)

    Cummings, J.

    1976-01-01

    Model information and data obtained from wind tunnel tests performed on a 0.006 scale model of the Rockwell International space shuttle orbiter and external tank in the 18 inch Variable Density Hypersonic Wind Tunnel (VDHT) at NASA Langley Research Center are presented. Tests were performed at a Mach number of 8.0 over a Reynolds Number range from 0.1 to 10.0 million per foot at 0 deg and -5 deg angle of attack and 0 deg sideslip angle. Transition heating rates were determined using thin skin thermocouples located at various locations on the orbiter and ET. The test was conducted in three stages: orbiter plus external tank (mated configuration); orbiter alone, and external tank alone. The effects of boundary layer trips were also included in the test sequence. The plotted results presented show the effect of configuration interference on the orbiter lower surface and on the ET. Tabulated data are given.

  9. Results of investigations on a 0.015-scale model 2A configuration of the Rockwell International space shuttle orbiter in the NASA/Ames Research Center 3.5 foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Milam, M. D.; Nichols, M. E.; Mellenthin, J. A.

    1973-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Ames 3.5-Foot Hypersonic wind Tunnel during the interim April 9-18, 1973 on a 0.015-scale model of the Rockwell International Space Shuttle Orbiter, configuration 2A. Six component aerodynamic force and moment data were recorded over an angle of attack range from -3 deg to 42 deg at 0 deg angle of sideslip and from -10 deg to 10 deg sideslip at 0 deg and 45 deg constant angle of attack. Test Mach numbers were 5.27 and 7.32 at unit Reynolds number of 2.5 million per foot. Various elevon, rudder, speedbrake, and body flap deflections were tested to determine longitudinal and lateral-directional stability characteristics and to establish trim capability.

  10. Results of tests OA63 and IA29 on an 0.015 scale model of the space shuttle configuration 140 A/B in the NASA/ARC 6- by 6-foot transonic wind tunnel, volume 1

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.; Thornton, D. E.

    1974-01-01

    Tests were conducted in the NASA/ARC 6- by 6-foot transonic wind tunnel from September 12 to September 28, 1973 on an 0.015-scale model of the space shuttle configuration 140 A/B. Surface pressure data were obtained for the orbiter for both launch and entry configuration at Mach numbers from 0.6 to 2.0. The surface pressures were obtained in the vicinity of the cargo bay door hinge and parting lines, the side of the fuselage at the crew compartment and below the OMS pods at the aft compartment. Data were obtained at angles of attack and sideslip consistent with the expected divergencies along the nominal trajectory. These tests were first in a series of tests supporting the orbiter venting analysis. The series will include tests in three facilities covering a total Mach number range from 0.6 to 10.4.

  11. Hypersonic aeroheating test of space shuttle vehicle: Configuration 3 (model 22 OTS) in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH20), volume 2

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Lockman, W. K.

    1975-01-01

    The model tested was an 0.0175-scale version of the vehicle 3 space shuttle configuration. Temperature measurements were made on the launch configuration, orbiter plus tank, orbiter alone, tank alone, and solid rocket booster (SRB) alone to provide heat transfer data. The test was conducted at free stream Mach numbers of 5.3 and 7.3 and at free stream Reynolds numbers of 1.5, 3.7, 5.0, and 7.0 million per foot. The model was tested at angles of attack from -5 deg to 20 deg and side slip angles of -5 deg and 0 deg.

  12. The Shuttle Mission simulator visual imagery

    NASA Technical Reports Server (NTRS)

    Henderson, T. H.

    1982-01-01

    Shuttle Mission Simulator visual imagery at the NASA Johnson Space Center is described. SMS visual imagery includes low earth orbit, six landing sites, landing aids systems, the Orbiter payload bay, stars and miscellaneous objects. Visual imagery of early space shuttle mission payloads in the SMS is described. Two current visual simulation problems are discussed.

  13. Launch of STS-67 Space Shuttle Endeavour

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Carrying a crew of seven and a complement of astronomic experiments, the Space Shuttle Endeavour embarks on NASA's longest shuttle flight to date. Endeavour's liftoff from Launch Pad 39A occurred at 1:38:13 a.m. (EST), March 2, 1995. In this view the fence line near the launch pad is evident in the foreground.

  14. Report of the Shuttle Processing Review Team

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The intent of this report is to summarize the assessment of the shuttle processing operations at the Kennedy Space Center (KSC) as requested by the NASA Administrator. He requested a team reaffirmation that safety is the number one priority and review operations to ensure confidence in the shuttle processing procedures at KSC.

  15. Liftoff of STS-67 Space Shuttle Endeavour

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Carrying a crew of seven and a compliment of astronomic experiments, the Space Shuttle Endeavour embarks on NASA's longest Shuttle flight to date. Endeavour's liftoff from Launch Pad 39A occurred at 1:38:13 a.m. (EST), March 2, 1995.

  16. Liftoff of STS-67 Space Shuttle Endeavour

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Carrying a crew of seven and a complement of astronomic experiments, the Space Shuttle Endeavour embarks on NASA's longest Shuttle flight to date. Endeavour's liftoff from Launch Pad 39A occurred at 1:38:13 a.m. (EST), March 2, 1995.

  17. Student Experiments Fly with the Shuttle.

    ERIC Educational Resources Information Center

    Saunders, Walter; And Others

    1979-01-01

    Describes various experiments which high school students are preparing, to be carried on NASA's 500 or more Space Shuttle flights in the 1980s. The project is intended to stimulate superior secondary school students. (SA)

  18. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 'fish-eye' lens was used to record the image.

  19. Shuttle Rocket Motor Program: NASA should delay awarding some construction contracts. Report to the Chair, Subcommittee on Government Activities and Transportation, Committee on Government Operations, House of Representatives

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Even though the executive branch has proposed terminating the Advanced Solid Rocket Motor (ASRM) program, NASA is proceeding with all construction activity planned for FY 1992 to avoid schedule slippage if the program is reinstated by Congress. However, NASA could delay some construction activities for at least a few months without affecting the current launch data schedule. For example, NASA could delay Yellow Creek's motor storage and dock projects, Stennis' dock project, and Kennedy's rotation processing and surge facility and dock projects. Starting all construction activities as originally planned could result in unnecessarily incurring additional costs and termination liability if the funding for FY 1993 is not provided. If Congress decides to continue the program, construction could still be completed in time to avoid schedule slippage.

  20. Shuttle Rocket Motor Program: NASA should delay awarding some construction contracts. Report to the Chair, Subcommittee on Government Activities and Transportation, Committee on Government Operations, House of Representatives

    NASA Astrophysics Data System (ADS)

    1992-04-01

    Even though the executive branch has proposed terminating the Advanced Solid Rocket Motor (ASRM) program, NASA is proceeding with all construction activity planned for FY 1992 to avoid schedule slippage if the program is reinstated by Congress. However, NASA could delay some construction activities for at least a few months without affecting the current launch data schedule. For example, NASA could delay Yellow Creek's motor storage and dock projects, Stennis' dock project, and Kennedy's rotation processing and surge facility and dock projects. Starting all construction activities as originally planned could result in unnecessarily incurring additional costs and termination liability if the funding for FY 1993 is not provided. If Congress decides to continue the program, construction could still be completed in time to avoid schedule slippage.

  1. A comparison of in-cloud HCl concentrations from the NASA/MSFC MDM to measurements for the space shuttle launch

    NASA Technical Reports Server (NTRS)

    Glasser, M. E.

    1981-01-01

    The Multilevel Diffusion Model (MDM) Version 5 was modified to include features of more recent versions. The MDM was used to predict in-cloud HCl concentrations for the April 12 launch of the space Shuttle (STS-1). The maximum centerline predictions were compared with measurements of maximum gaseous HCl obtained from aircraft passes through two segments of the fragmented shuttle ground cloud. The model over-predicted the maximum values for gaseous HCl in the lower cloud segment and portrayed the same rate of decay with time as the observed values. However, the decay with time of HCl maximum predicted by the MDM was more rapid than the observed decay for the higher cloud segment, causing the model to under-predict concentrations which were measured late in the life of the cloud. The causes of the tendency for the MDM to be conservative in over-estimating the HCl concentrations in the one case while tending to under-predict concentrations in the other case are discussed.

  2. Shuttle Reference Data

    NASA Astrophysics Data System (ADS)

    2002-12-01

    This collection of shuttle reference data contains the following information: shuttle abort history, shuttle abort modes, abort decisions, space shuttle rendezvous maneuvers, space shuttle main engines, space shuttle solid rocket boosters, hold-down posts, SRB (solid rocket boosters) ignition, electrical power distribution, hydraulic power units, thrust vector control, SBR rate gyro assemblies, SBR separation and Space Shuttle Super Super Light Weight Tank (SLWT).

  3. ]Space Shuttle Independent Assessment Team

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Shuttle program is one of the most complex engineering activities undertaken anywhere in the world at the present time. The Space Shuttle Independent Assessment Team (SIAT) was chartered in September 1999 by NASA to provide an independent review of the Space Shuttle sub-systems and maintenance practices. During the period from October through December 1999, the team led by Dr. McDonald and comprised of NASA, contractor, and DOD experts reviewed NASA practices, Space Shuffle anomalies, as well as civilian and military aerospace experience. In performing the review, much of a very positive nature was observed by the SIAT, not the least of which was the skill and dedication of the workforce. It is in the unfortunate nature of this type of review that the very positive elements are either not mentioned or dwelt upon. This very complex program has undergone a massive change in structure in the last few years with the transition to a slimmed down, contractor-run operation, the Shuttle Flight Operations Contract (SFOC). This has been accomplished with significant cost savings and without a major incident. This report has identified significant problems that must be addressed to maintain an effective program. These problems are described in each of the Issues, Findings or Observations summarized, and unless noted, appear to be systemic in nature and not confined to any one Shuttle sub-system or element. Specifics are given in the body of the report, along with recommendations to improve the present systems.

  4. Multi-Purpose Logistics Module (MPLM) Cargo Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zampiceni, John J.; Harper, Lon T.

    2002-01-01

    This paper describes the New Shuttle Orbiter's Multi- Purpose Logistics Modulo (MPLM) Cargo Heat Exchanger (HX) and associated MPLM cooling system. This paper presents Heat Exchanger (HX) design and performance characteristics of the system.

  5. Shuttle accident stalls science plans

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    Plans to make 1986 a uniquely productive year for U.S. space science activities ended in one horrible moment with the January 28, 1986, explosion of the space shuttle Challenger. The joyless scene at Cape Canaveral, Fla., stood in sharp contrast to the overwhelming success of Voyager 2 in its encounter with Uranus 4 days earlier. (Scientific details of that encounter will follow in upcoming issues of Eos.)Of the 15 space shuttle flights planned for fiscal year 1986, beginning October 1, 1985, a total of seven were to have carried scientific payloads for the National Aeronautics and Space Administration (NASA). The remaining eight flights were evenly divided between missions for the U.S. Department of Defense and commercial missions for NASA's paying customers. The explosion caused NASA to put its entire space shuttle program on hold to allow time for engineers to find the cause of the accident and for NASA to implement corrective measures. As Eos went to press, NASA acting administrator William R. Graham had not yet released the names of those who would serve on the formal investigative panel. “I think everybody's agreed that it will take weeks to months to unravel,” said Alexander Dessler, director of the space science laboratory at NASA's Marshall Space Flight Center near Huntsville, Ala. Dessler speculated that investigators would begin with a list of hundreds of possible causes for the explosion.

  6. Shuttle Net, Tuna Net

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Rockwell International, NASA's prime contractor for the Space Shuttle, asked West Coast Netting (WCN) to develop a safety net for personnel working on the Shuttle Orbiter. This could not be an ordinary net, it had to be relatively small, yet have extraordinary tensile strength. It also had to be fire resistant and resistant to ultraviolet (UV) light. After six months, WCN found the requisite fiber, a polyester-like material called NOMEX. The company was forced to invent a more sophisticated twisting process since conventional methods did not approach specified breaking strength. The resulting product, the Hyperester net, sinks faster and fishes deeper, making it attractive to fishing fleets. A patented treatment for UV protection and greater abrasion resistance make Hyperester nets last longer, and the no-shrink feature is an economic bonus.

  7. Hypersonic aeroheating test of space shuttle vehicle configuration 3 (model 22-OTS) in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH20), volume 1

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Lockman, W. K.

    1975-01-01

    The results of hypersonic wind tunnel testing of an 0.0175 scale version of the vehicle 3 space shuttle configuration are presented. Temperature measurements were made on the launch configuration, orbiter plus tank, orbiter alone, tank alone, and solid rocket booster alone to provide heat transfer data. The test was conducted at free-stream Mach numbers of 5.3 and 7.3 and at free-stream Reynolds numbers of 1.5 million, 3.7 million, 5.0 million, and 7.0 million per foot. The model was tested at angles of attack from -5 deg to 20 deg and side slip angles of -5 deg and 0 deg.

  8. NASA's Getaway Special.

    ERIC Educational Resources Information Center

    Randal, Judith

    1978-01-01

    The "Getaway Special" is NASA's semiofficial program for low-budget researchers, who can arrange bookings for their own space experiments on regular flights of the space shuttle. Information about arranging for NASA to take individual experiment packages is presented. (LBH)

  9. NASA Information Summaries.

    ERIC Educational Resources Information Center

    Mar, May 1987, 1988

    1988-01-01

    This document consists of 11 "NASA Information Summaries" grouped together: (1) "Our Planets at a Glance" (PMS-010); (2) "Space Shuttle Mission Summary: 1985-1986" (PMS-005); (3) "Astronaut Selection and Training" (PMS-019); (4) "Space Station" (PMS-008); (5) "Materials Processing in Space" (PMS-026); (6) "Countdown!: NASA Launch Vehicles and…

  10. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This booklet of pocket statistics includes the 1996 NASA Major Launch Record, NASA Procurement, Financial, and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Luanch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  11. Space Shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A general description of the space shuttle program is presented, with emphasis on its application to the use of space for commercial, scientific, and defense needs. The following aspects of the program are discussed: description of the flight system (orbiter, external tank, solid rocket boosters) and mission profile, direct benefits related to life on earth (both present and expected), description of the space shuttle vehicle and its associated supporting systems, economic impacts (including indirect benefits such as lower inflation rates), listing of participating organizations.

  12. Biomass Logistics

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  13. Success Legacy of the Space Shuttle Program: Changes in Shuttle Post Challenger and Columbia

    NASA Technical Reports Server (NTRS)

    Jarrell, George

    2010-01-01

    This slide presentation reviews the legacy of successes in the space shuttle program particularly with regards to the changes in the culture of NASA's organization after the Challenger and Columbia accidents and some of the changes to the shuttles that were made manifest as a result of the accidents..

  14. Space Shuttle Program Update

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Bruce Buckingham, from NASA Public Affairs, introduces Wayne Hale, Space Shuttle Program Manager, and Mike Leinbach, NASA launch Director. Wayne Hale begins discussing the Flight Readiness Review (FRR) that has just occurred to see if they were ready to fly. He points out that the review was a debris verification review (DVR). This review was done to ascertain how well they have done to eliminate the potential for debris to come off of the External Tank (ET), or any other part of the launch vehicle. He expresses that they have made significant improvements to the ET. He gives a description of the ET that is presently on the launch pad. Mike Leinbach discusses hardware processing and the condition of the launch vehicle. Questions from the news media about possible modifications to the ice frost ramp, Solid Rocket Booster (SRB) electrical problems, ET foam loss, amount of debris loss expectation during ascent, and return to flight costs are all addressed.

  15. Diary of an astronaut: examination of the remains of the late Israeli astronaut Colonel Ilan Ramon's Crew Notebook recovered after the loss of NASA's space shuttle Columbia.

    PubMed

    Brown, Sharon; Sin-David, Laser

    2007-05-01

    Two months after the fatal re-entering into the Earth's atmosphere of Columbia flight STS-107, the remains of Israeli astronaut Colonel Ilan Ramon's Crew Notebook were found strewn in a field in San Augustine County, TX. The random pile of papers was found to have survived the calamity of the Shuttle's disintegration remarkably well. Most of the papers recovered were torn and/or washed out to varying degrees but only mildly charred around the edges. The sheets of paper could be categorized into four groups: Group I: eight sides of paper written while in space in black ink and in pencil--Ramon's personal diary; the writing on these eight sides of paper survived well and is only missing where the pages were torn. Small fragments found in the field were physically matched to holes in the pages thus locating their original positions in the text. Group II: six sides of technical preparation notes written by Ramon before the mission. The writing on these pages was washed out entirely, but much of it was visualized using infrared luminescence. Group III: eight sides of personal notes prepared by Ramon before the mission written in blue ink. The writing on these pages was barely visible to the naked eye and not visualized by infrared luminescence, but was made largely legible by digital enhancement imaging. Group IV: a few sides of printed technical information. These pages were mostly intact and were not examined at length as they contained standard printed material. After completion of examinations at the Questioned Document Laboratory of the Israel Police, the diary was transferred to the Paper Conservation Department of the Israel Museum for preservation and strengthening treatments. PMID:17456105

  16. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 2: Summary of information developed in the Panel's fact-finding activities

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The management areas and the individual elements of the shuttle system were investigated. The basic management or design approach including the most obvious limits or hazards that are significant to crew safety was reviewed. Shuttle program elements that were studied included the orbiter, the space shuttle main engine, the external tank project, solid rocket boosters, and the launch and landing elements.

  17. Shuttle extravehicular life support equipment

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.

    1973-01-01

    A Shuttle EVA/IVA Requirements Study was conducted by Hamilton Standard for NASA. The objectives of this study were to establish a baseline EVA approach for Shuttle and to prepare requirements for the EVA equipment required to support these operations. This paper presents the results of the EVA life support requirements definition effort and defines candidate configurations which meet these requirements. Various subsystem and system concepts were identified and evaluated to determine the most desirable approaches. Both independent and umbilical configurations are considered. Because certain EVA missions could involve contamination-sensitive payloads, the impact of integrating noncontaminating equipment is also considered.

  18. Payload Flight Assignments: NASA Mixed Fleet

    NASA Technical Reports Server (NTRS)

    Parker, Robert A. R.

    1997-01-01

    This manifest summarizes the missions planned by NASA for the Space Shuttle and Expendable Launch Vehicles (ELV's) as of the date of publication. Space Shuttle and ELV missions are shown through calendar year 2003. Space Shuttle missions for calendar years 2002-2003 are under review pending the resolution of details in the assembly sequence of the International Space Station (ISS).

  19. Shuttle Processing

    NASA Technical Reports Server (NTRS)

    Guodace, Kimberly A.

    2010-01-01

    This slide presentation details shuttle processing flow which starts with wheel stop and ends with launching. The flow is from landing the orbiter is rolled into the Orbiter Processing Facility (OPF), where processing is performed, it is then rolled over to the Vehicle Assembly Building (VAB) where it is mated with the propellant tanks, and payloads are installed. A different flow is detailed if the weather at Kennedy Space Center requires a landing at Dryden.

  20. Expendable launch vehicles in Space Station Freedom logistics resupply operations

    NASA Astrophysics Data System (ADS)

    Newman, J. Steven; Courtney, Roy L.; Brunt, Peter

    The projected Space Station Freedom (SSF) annual logistics resupply requirements were predicted to exceed the 1988 baseline Shuttle resupply system capability. This paper examines the implications of employing a 'mixed fleet' of Shuttles and ELVs to provide postassembly, steady-state logistics resupply. The study concluded that ELVs supported by the OMV could provide the additional required resupply capability with one to three launches per annum. However, the study determined that such a capability would require significant programmatic commitments, including baseline SSF OMV accommodations, on-orbit OMV monoprop replenishment capability, and substantial economics investments. The study also found the need for a half-size pressurized logistics module for the increase in the efficiency of logistics manifesting on the Shuttle as well as ELVs.

  1. Expendable launch vehicles in Space Station Freedom logistics resupply operations

    NASA Technical Reports Server (NTRS)

    Newman, J. Steven; Courtney, Roy L.; Brunt, Peter

    1990-01-01

    The projected Space Station Freedom (SSF) annual logistics resupply requirements were predicted to exceed the 1988 baseline Shuttle resupply system capability. This paper examines the implications of employing a 'mixed fleet' of Shuttles and ELVs to provide postassembly, steady-state logistics resupply. The study concluded that ELVs supported by the OMV could provide the additional required resupply capability with one to three launches per annum. However, the study determined that such a capability would require significant programmatic commitments, including baseline SSF OMV accommodations, on-orbit OMV monoprop replenishment capability, and substantial economics investments. The study also found the need for a half-size pressurized logistics module for the increase in the efficiency of logistics manifesting on the Shuttle as well as ELVs.

  2. Subsonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 of the space shuttle orbiter tested in the NASA/ARC 12-foot pressure tunnel (LA66)

    NASA Technical Reports Server (NTRS)

    Underwood, J. M.; Parrell, H.

    1976-01-01

    The investigation was conducted in the NASA/Ames Research Center 12-foot Pressure Tunnel. The model was a Langley-built 0.015-scale SSV orbiter model with remote independently operated left and right elevon surfaces. The objective of the test was to generate a detailed aerodynamic data base for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle of attack range from -4 deg to 24 deg at angles of sideslip of 0 deg and + or - 4 deg. Additional tests were made over an angle of sideslip range from -6 deg to 6 deg at selected angles of attack. The test Mach numbers were 0.22 and 0.29 and the Reynolds number was varied from 2.0 to 8.5 million per foot.

  3. Results of investigations of an 0.010-scale 140A/B configuration (model 72-OTS) of the Rockwell International space shuttle orbiter in the NASA/Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.

  4. Space Shuttle.

    ERIC Educational Resources Information Center

    Bierly, Ken; Dalheim, Mary

    1981-01-01

    Presents an elementary teaching unit on NASA's space program, including teacher background information, suggested student activities, and a list of resources. Appended is a transcript of an interview conducted by elementary children with astronaut candidate Sherwood (Woody) Spring. (SJL)

  5. Liquid lift for the Shuttle

    NASA Astrophysics Data System (ADS)

    Demeis, Richard

    1989-02-01

    After the operational failure of a Solid Rocket Booster (SRB) led to the Space Shuttle Challenger accident, NASA reexamined the use of liquid-fueled units in place of the SRBs in order to ascertain whether they could improve safety and payload. In view of favorable study results obtained, the posibility has arisen of employing a common liquid rocket booster for the Space Shuttle, its cargo version ('Shuttle-C'), and the next-generation Advanced Launch System. The system envisioned would involve two booster units, whose four engines/unit would be fed by integral LOX and kerosene tanks. Mission aborts with one-booster unit and two-unit failures would not be catastrophic, and would respectively allow LEO or an emergency landing in Africa.

  6. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  7. NASA Pocket Statistics: 1997 Edition

    NASA Technical Reports Server (NTRS)

    1997-01-01

    POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, Aeronautics and Space Transportation and NASA Procurement, Financial and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. All Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  8. EVA 2010: Preparing for International Space Station EVA Operations Post-Space Shuttle Retirement

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; West, William W.

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the OneEVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history.

  9. Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights

    NASA Technical Reports Server (NTRS)

    Wedge, T. E.; Williamson, R. P.

    1973-01-01

    Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.

  10. Structural Health Monitoring of the Space Shuttle's Wing Leading Edge

    NASA Astrophysics Data System (ADS)

    Madaras, Eric I.; Prosser, William H.; Studor, George; Gorman, Michael R.; Ziola, Steven M.

    2006-03-01

    In a response to the Columbia Accident Investigation Board's recommendations following the loss of the Space Shuttle Columbia in 2003, NASA developed methods to monitor the orbiters while in flight so that on-orbit repairs could be made before reentry if required. One method that NASA investigated was an acoustic based impact detection system. A large array of ground tests successfully demonstrated the capability to detect and localize impact events on the Shuttle's wing structure. Subsequently, a first generation impact sensing system was developed and deployed on the Shuttle Discovery, the first Shuttle scheduled for return to flight.

  11. The Representative Shuttle Environmental Control System

    NASA Technical Reports Server (NTRS)

    Brose, H. F.; Greenwood, F. H.; Thompson, C. D.; Willis, N. C.

    1974-01-01

    The Representative Shuttle Environmental Control System (RSECS) program was conceived to provide NASA with a prototype system representative of the Shuttle Environmental Control System (ECS). Discussed are the RSECS program objectives, predicated on updating and adding to the early system as required to retain its usefulness during the Shuttle ECS development and qualification effort. Ultimately, RSECS will be replaced with a flight-designed system using either refurbished development or qualification equipment to provide NASA with a flight simulation capability during the Shuttle missions. The RSECS air revitalization subsystem and the waste management support subsystem are being tested. A water coolant subsystem and a freon coolant subsystem are in the development and planning phases.

  12. Shuttle Hitchhiker Experiment Launcher System (SHELS)

    NASA Technical Reports Server (NTRS)

    Daelemans, Gerry

    1999-01-01

    NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.

  13. Space science plans for the shuttle era.

    NASA Technical Reports Server (NTRS)

    Naugle, J. E.; Johnson, R. W.

    1973-01-01

    Three separate and distinct modes of using the space shuttle system have been identified. These modes include the boost of a spacecraft plus one or more propulsion stages into earth orbit or parking orbit, the establishment and maintenance of automated observatories in space, and the support of exploratory research and instrument development. Studies show that approximately 60% of all planned NASA missions require a shuttle third stage. Illustrations are presented to show how the largest spacecraft, Viking, and its propulsion system, Centaur, and a communications satellite, with an Agena stage to place it into a geostationary orbit, would fit into the shuttle. Results of the NASA Shuttle Sortie Workshop studies are discussed together with prospects of European cooperation in future workshop experiments.

  14. SESAC statement on shuttle accident

    NASA Astrophysics Data System (ADS)

    The Space and Earth Science Advisory Committee (SESAC) of the NASA Advisory Council (NAC) shares NASA's and the nation's grief in the loss of the Challenger crew—seven exceptional individuals whose lives were dedicated to some of our country's loftiest goals. Over the years, these dedicated individuals and their fellow astronauts have worked closely with the scientific community to ensure that the scientific aspects of the United States space program would be productive in the era of the space shuttle. Through their efforts, the value of manned space flight for accomplishing important research in several areas of space science has been unambiguously demonstrated. Further, as space science has become increasingly an international enterprise, the capabilities of the space shuttle have become central to much scientific planning worldwide.

  15. ISS Logistics Hardware Disposition and Metrics Validation

    NASA Technical Reports Server (NTRS)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  16. Endeavour Leaves NASA Dryden for LAX - Duration: 15 minutes.

    NASA Video Gallery

    NASA's 747 Shuttle Carrier Aircraft, carrying space shuttle Endeavour, departed Edwards Air Force Base at 8:17 a.m. PDT on Sept. 21 to begin a four-and-a-half hour flyover of northern California an...

  17. Formalizing Space Shuttle Software Requirements

    NASA Technical Reports Server (NTRS)

    Crow, Judith; DiVito, Ben L.

    1996-01-01

    This paper describes two case studies in which requirements for new flight-software subsystems on NASA's Space Shuttle were analyzed, one using standard formal specification techniques, the other using state exploration. These applications serve to illustrate three main theses: (1) formal methods can complement conventional requirements analysis processes effectively, (2) formal methods confer benefits regardless of how extensively they are adopted and applied, and (3) formal methods are most effective when they are judiciously tailored to the application.

  18. The Shuttle Era

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview of the Space Shuttle Program is presented. The missions of the space shuttle orbiters, the boosters and main engine, and experimental equipment are described. Crew and passenger accommodations are discussed as well as the shuttle management teams.

  19. Legal issues inherent in Space Shuttle operations

    NASA Technical Reports Server (NTRS)

    Mossinghoff, G. J.; Sloup, G. P.

    1978-01-01

    The National Aeronautics and Space Act of 1958 (NASAct) is discussed with reference to its relevance to the operation of the Space Shuttle. The law is interpreted as giving NASA authority to regulate specific Shuttle missions, as well as authority to decide how much space aboard the Shuttle gets rented to whom. The Shuttle will not, however, be considered a 'common carrier' either in terms of NASAct or FAA regulations, because it will not be held available to the public-at-large, as are the flag carriers of various national airlines, e.g., Lufthansa, Air France, Aeroflot, etc. It is noted that the Launch Policy of 1972, which ensures satellite launch assistance to other countries or international organizations, shall not be interpreted as conferring common carrier status on the Space Shuttle.

  20. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    U.S. Geological Survey

    2003-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Imagery and Mapping Agency (NIMA), the U.S. Geological Survey (USGS) is now distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project between NASA and NIMA to map the Earth's land surface in three dimensions at a level of detail unprecedented for such a large area. Flown aboard the NASA Space Shuttle Endeavour February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface, for most of the area between 60? N. and 56? S. latitude. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected specifically with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  1. Exploration Mission Benefits From Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Ewert, Michael K.; Schlesinger, Thilini

    2016-01-01

    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logistical mass can have a significant impact because it also reduces the packaging burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting, and trash processing technologies are under development to increase habitable volume and improve protection against solar storm events. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and to help locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio-frequency-identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and their mission benefits for exploration missions.

  2. Results of experimental investigations to determine external tank protuberance loads using a 0.03-scale model of the Space Shuttle launch configuration (model 47-OTS) in the NASA/ARC unitary plan wind tunnel, volume 1

    NASA Technical Reports Server (NTRS)

    Houlihan, S. R.

    1992-01-01

    Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA190A/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA190A) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA190B). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline, (2) GO2 pressure line, (3) LO2 antigeyser line, (4) GH2 pressure line, (5) LH2 tank cable tray, (6) LO2 tank cable tray, (7) Bipod, (8) ET/SRB cable tray, and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: (1) Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above. (2) 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements. (3) Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures. (4) Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

  3. Results of Experimental Investigations to Determine External Tank Protuberance Loads Using a 0.03-Scale Model of the Space Shuttle Launch Configuration (Model 47-OTS) in the NASA/ARC Unitary Plan Wind Tunnel, Volume 2

    NASA Technical Reports Server (NTRS)

    Houlihan, S. R.

    1992-01-01

    Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA19OA/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA19OA) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA19OB). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline; (2) GO2 pressure line; (3) LO2 antigeyser line; (4) GH2 pressure line; (5) LH2 tank cable tray; (6) LO2 tank cable tray; (7) Bipod; (8) ET/SRB cable tray; and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above; 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements; Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures; and Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

  4. STS-109 Shuttle Mission

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is the insignia of the STS-109 Space Shuttle mission. Carrying a crew of seven, the Space Shuttle Orbiter Columbia was launched with goals of maintenance and upgrades to the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm where four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 27th flight of the Orbiter Columbia and the 108th flight overall in NASA's Space Shuttle Program.

  5. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel on the space shuttle program. Part 2: Summary of information developed in the panel's fact-finding activities

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.

  6. NASA launch schedule

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The National Aeronautics and Space Administration (NASA) has a record-setting launch schedule for 1984—10 space shuttle flights (see Table 1), 10 satellite deployments from the space shuttle in orbit and 12 unmanned missions using expendable launch vehicles. Also scheduled is the launch on March 1 for the National Oceanic and Atmospheric Administration of Landsat D‧, the nation's second earth resources satellite.The launch activity will begin February 3 with the launch of shuttle mission 41-B using the orbiter Challenger. Two communications satellites will be deployed from 41-B: Westar-VI, for Western Union, and Palapa B-2 for the government of Indonesia. The 8-day mission will feature the first shuttle landing at Kennedy Space Center in Florida; and the first flight of the Manned Maneuvering Unit, a self-contained, propulsive backpack that will allow astronauts to move about in space without being tethered to the spacecraft.

  7. NASA highlights, 1986 - 1988

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Highlights of NASA research from 1986 to 1988 are discussed. Topics covered include Space Shuttle flights, understanding the Universe and its origins, understanding the Earth and its environment, air and space transportation, using space to make America more competitive, using space technology an Earth, strengthening America's education in science and technology, the space station, and human exploration of the solar system.

  8. A Shuttle evolution strategy

    NASA Technical Reports Server (NTRS)

    Teixeira, Charles; Mallini, Charles

    1989-01-01

    An overview of a potential Space Shuttle evolution strategy is presented. A Shuttle development study which reviews past and ongoing studies, implements a Shuttle Enhancement Data Base, and develops a methodology and a strawman evolution strategy is discussed. The long-term goals of a Shuttle evolution strategy, including increased reliability, lower cost, robustness, resiliency, increased capability, and assured access are addressed.

  9. Convair-240 aircraft modified with shuttle hatch for CES testing

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Shuttle Crew Escape System (CES) hardware includes space shuttle side hatch incorporated into Convair-240 aircraft at Naval Weapons Center, China Lake, California. Closeup shows dummy positioned in the Convair-240 escape hatch. Beginning this month, tests will be conducted here to evaluate a tractor rocket system - one of two escape methods being studied by NASA to provide crew egress capability during Space Shuttle controlled gliding flight.

  10. Logistics Reduction Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.

  11. Exploration Mission Benefits From Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Schlesinger, Thilini; Ewert, Michael K.

    2016-01-01

    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logical mass can have a significant impact because it also reduces the packing burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting and trash processing technologies to increase habitable volume and improve protection against solar storm events are under development. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio frequency identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and there mission benefits for exploration missions.

  12. STS-105 Shuttle Orbiter Discovery

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a view of the Space Shuttle Discovery as it approaches the International Space Station (ISS) during the STS-105 mission. Visible in the payload bay of Discovery are the Multipurpose Logistics Module (MPLM) Leonardo at right, which stores various supplies and experiments to be transferred into the ISS; at center, the Integrated Cargo Carrier (ICC) which carries the Early Ammonia Servicer (EAS); and two Materials International Space Station Experiment (MISSE) containers at left. Aboard Discovery were the ISS Expedition Three crew, who were to replace the Expedition Two crew that had been living on the ISS for the past five months.

  13. NASA Video Catalog

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  14. Thousands gather to watch a Space Shuttle Main Engine Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Approximately 13,000 people fill the grounds at NASA's John C. Stennis Space Center for the first-ever evening public engine test of a Space Shuttle Main Engine. The test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  15. Stennis Holds Last Planned Space Shuttle Engine Test

    NASA Technical Reports Server (NTRS)

    2009-01-01

    With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

  16. Closeup view looking into the nozzle of the Space Shuttle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view looking into the nozzle of the Space Shuttle Main Engine number 2061 looking at the cooling tubes along the nozzle wall and up towards the Main Combustion Chamber and Injector Plate - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. Direct Visualization of Shock Waves in Supersonic Space Shuttle Flight

    NASA Technical Reports Server (NTRS)

    OFarrell, J. M.; Rieckhoff, T. J.

    2011-01-01

    Direct observation of shock boundaries is rare. This Technical Memorandum describes direct observation of shock waves produced by the space shuttle vehicle during STS-114 and STS-110 in imagery provided by NASA s tracking cameras.

  18. A Celebration of the Space Shuttle Program - Duration: 105 seconds.

    NASA Video Gallery

    On September 23, 2011, NASA Langley hosted a Shuttle Celebration at the Virginia Air & Space Center in Hampton, Va. More than 650 guests attended, including STS-135 Commander Chris Ferguson and NAS...

  19. An Integrated Approach to Thermal Management of International Space Station Logistics Flights, Improving the Efficiency

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Day, Greg; Roberts, Barry; Leahy, Frank

    2003-01-01

    The efficiency of re-useable aerospace systems requires a focus on the total operations process rather than just orbital performance. For the Multi-Purpose Logistics Module this activity included special attention to terrestrial conditions both pre-launch and post-landing and how they inter-relate to the mission profile. Several of the efficiencies implemented for the MPLM Mission Engineering were NASA firsts and all served to improve the overall operations activities. This paper will provide an explanation of how various issues were addressed and the resulting solutions. Topics range from statistical analysis of over 30 years of atmospheric data at the launch and landing site to a new approach for operations with the Shuttle Carrier Aircraft. In each situation the goal was to "tune" the thermal management of the overall flight system for minimizing requirement risk while optimizing power and energy performance.

  20. Shuttle Discovery Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  1. NASA policy on pricing shuttle launch services

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1977-01-01

    The paper explains the rationale behind key elements of the pricing policy for STS, the major features of the non-government user policy, and some of the stimulating features of the policy which will open space to a wide range of new users. Attention is given to such major policy features as payment schedule, cost and standard services, the two phase pricing structure, optional services, shared flights, cancellation and postponement, and earnest money.

  2. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  3. Photonic component qualification and implementation activities at NASA Goddard Space Flight Center

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; Macmurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-08-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier (ELC), and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  4. Shuttle Radar Topography Mission (SRTM)

    USGS Publications Warehouse

    U.S. Geological Survey

    2009-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  5. Remote observations of reentering spacecraft including the space shuttle orbiter

    NASA Astrophysics Data System (ADS)

    Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, Jay H.; Gibson, David M.

    Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.

  6. Remote Observations of Reentering Spacecraft Including the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, jay H.; Gibson, David

    2013-01-01

    Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.

  7. STS-102 Astronaut Thomas Views International Space Station Through Shuttle Window

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  8. Results of flutter test OS7 obtained using the 0.14-scale space shuttle orbiter fin/rudder model number 55-0 in the NASA LaRC 16-foot transonic dynamics wind tunnel

    NASA Technical Reports Server (NTRS)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter vertical tail was tested in a 16-foot transonic dynamic wind tunnel to determine flutter, buffet, and rudder buzz boundaries. Mach numbers between .5 and 1.11 were investigated. Rockwell shuttle model 55-0 was used for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  9. Shuttle Case Study Collection Website Development

    NASA Technical Reports Server (NTRS)

    Ransom, Khadijah S.; Johnson, Grace K.

    2012-01-01

    As a continuation from summer 2012, the Shuttle Case Study Collection has been developed using lessons learned documented by NASA engineers, analysts, and contractors. Decades of information related to processing and launching the Space Shuttle is gathered into a single database to provide educators with an alternative means to teach real-world engineering processes. The goal is to provide additional engineering materials that enhance critical thinking, decision making, and problem solving skills. During this second phase of the project, the Shuttle Case Study Collection website was developed. Extensive HTML coding to link downloadable documents, videos, and images was required, as was training to learn NASA's Content Management System (CMS) for website design. As the final stage of the collection development, the website is designed to allow for distribution of information to the public as well as for case study report submissions from other educators online.

  10. KSC ISS Logistics Support

    NASA Technical Reports Server (NTRS)

    Tellado, Joseph

    2014-01-01

    The presentation contains a status of KSC ISS Logistics Operations. It basically presents current top level ISS Logistics tasks being conducted at KSC, current International Partner activities, hardware processing flow focussing on late Stow operations, list of KSC Logistics POC's, and a backup list of Logistics launch site services. This presentation is being given at the annual International Space Station (ISS) Multi-lateral Logistics Maintenance Control Panel meeting to be held in Turin, Italy during the week of May 13-16. The presentatiuon content doesn't contain any potential lessons learned.

  11. Shuttle-C user requirements and applications

    NASA Astrophysics Data System (ADS)

    Mirth, J. D.

    1990-02-01

    NASA's Shuttle-C is being considered to provide additional access to space and to take fullest advantage of the existing Space Transportation System (STS) infrastructure. Considerations are presented to accommodate the larger and heavier payloads needed for the manned Lunar-Mars missions under study. Shuttle-C can help reduce the frequency of manned Shuttle launches, thus stretching the Orbiter's lifetime and availability. It can also offer cost-effective service as a test bed to demonstrate improved STS elements now under development or being planned. This can help to improve reliability, performance, and operational capability of current STS and new space launch systems, with resultant cost savings. It is noted that numerous missions and payloads, including space station deployment, launch of planetary probes, scientific and military satellites, and demonstration of advanced technologies, can benefit from the availability of Shuttle-C.

  12. Space Shuttle Atlantis after RSS rollback

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On Launch Pad 39A, the Rotating Service Structure has rolled back to reveal Space Shuttle Atlantis poised for launch. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

  13. 48 CFR 1852.228-72 - Cross-waiver of liability for space shuttle services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... prescribed by regulation (14 CFR part 1266), NASA agreements involving Space Shuttle flights are required to... for space shuttle services. 1852.228-72 Section 1852.228-72 Federal Acquisition Regulations System... CLAUSES Texts of Provisions and Clauses 1852.228-72 Cross-waiver of liability for space shuttle...

  14. 48 CFR 1852.228-72 - Cross-waiver of liability for space shuttle services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Space Shuttle Services (SEP 1993) (a) As prescribed by regulation (14 CFR part 1266), NASA agreements... for space shuttle services. 1852.228-72 Section 1852.228-72 Federal Acquisition Regulations System... CLAUSES Texts of Provisions and Clauses 1852.228-72 Cross-waiver of liability for space shuttle...

  15. The Shuttle Radar Topography Mission

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Kobrick, Mike

    2000-01-01

    On February 22, 2000 Space Shuttle Endeavour landed at Kennedy Space Center, completing the highly successful 11-day flight of the Shuttle Radar Topography Mission (SRTM). Onboard were over 300 high-density tapes containing data for the highest resolution, most complete digital topographic map of Earth ever made. SRTM is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission was designed to use a single-pass radar interferometer to produce a digital elevation model (DEM) of the Earth's land surface between about 60 deg north and 56 deg south latitude. When completed, the DEM will have 30 m pixel spacing and about 15 m vertical accuracy. Two orthorectified image mosaics (one from the ascending passes with illumination from the southeast and one from descending passes with illumination from the southwest) will also be produced.

  16. Shuttle derived manned transportation systems

    NASA Technical Reports Server (NTRS)

    Ordway, Wayne L.

    1991-01-01

    Shuttle derivatives have been under study by the National Aeronautics and Space Administration (NASA) for a number of years. With Space Station Freedom and the Lunar/Mars Initiative established as national objectives, the demand for access to earth orbit is accelerating. These objectives have resulted in efforts to address additional launch requirements that must be met as the turn of the century approaches. Among the top level requirements are increased safety, higher reliability, lower cost, and the need for heavy lift launch capability. To satisfy these requirements, some of the largest technology demands will be placed upon the propulsion systems. Shuttle derived manned concepts are presented and the associated propulsion issues which arise from the top level requirements are discussed. These concepts are presented in terms of an overall architecture which can be achieved with modest up-front development.

  17. Shuttle seated extraction feasibility study

    NASA Technical Reports Server (NTRS)

    Onagel, Steven R.; Bement, Laurence J.

    1989-01-01

    Following the Space Shuttle Challenger accident, serious attention has turned to in-flight escape. Prior to the resumption of flight, a manual bailout system was qualified and installed. For the long term, a seated extraction system to expand the escape envelope is being investigated. This paper describes a 1987 study, conducted jointly by NASA/Johnson Space Center and Langley Research Center, to determine the feasibility of modifying the Space Shuttle Orbiters to incorporate the seated extraction system. Results of the study are positive, indicating retrofit opportunity and high probability of escape for early ascent, late entry, and even for uncontrolled flight such as the Challenger breakup. The system, as envisioned, can extract seven crewmembers within two seconds.

  18. Shuttle seated extraction feasibility study

    NASA Astrophysics Data System (ADS)

    Onagel, Steven R.; Bement, Laurence J.

    Following the Space Shuttle Challenger accident, serious attention has turned to in-flight escape. Prior to the resumption of flight, a manual bailout system was qualified and installed. For the long term, a seated extraction system to expand the escape envelope is being investigated. This paper describes a 1987 study, conducted jointly by NASA/Johnson Space Center and Langley Research Center, to determine the feasibility of modifying the Space Shuttle Orbiters to incorporate the seated extraction system. Results of the study are positive, indicating retrofit opportunity and high probability of escape for early ascent, late entry, and even for uncontrolled flight such as the Challenger breakup. The system, as envisioned, can extract seven crewmembers within two seconds.

  19. Using Space Shuttle Data in the Classroom.

    ERIC Educational Resources Information Center

    Feldman, Allan P.

    1984-01-01

    Describes how to use data from television broadcasts of shuttle launches along with data from National Aeronautics and Space Administration (NASA) "Educational Briefs for the Classroom" to establish relevant connections of high school physics with the real world. Includes graphs of range/altitude, speed/time, and three tables with launch data and…

  20. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 35mm camera was used to record the image, which includes much of the base of the launch site as well as the launch itself.

  1. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 70mm camera was used to record the image. Note the vegetation and the reflection of the launch in the water across from the launch pad.

  2. Shuttle Entry Imaging Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

    2007-01-01

    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne imaging platforms used within DoD along with agency assets developed and optimized for use during Shuttle ascent to demonstrate capability (i.e., tracking, acquisition of multispectral data, spatial resolution) and identify system limitations (i.e., radiance modeling, saturation) using state-of-the-art imaging instrumentation and communication systems. Global infrared intensity data have been transformed to temperature by comparison to Shuttle flight thermocouple data. Reasonable agreement is found between the flight thermography images and numerical prediction. A discussion of lessons learned and potential application to a potential Shuttle boundary layer transition flight test is presented.

  3. Mated aerodynamic characteristics investigation for the 0.04 scale model TE 1065 (Boeing 747-100) of the 747 CAM and the 0.0405 scale model (43-0) of the space shuttle orbiter in the NASA Langley V/STOL transition research wind tunnel (CA8), volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Aerodynamic force data are presented in tables and graphs for the NASA Langley V/STOL Transition Research Wind Tunnel tests on a 0.04 scale model of the 747 with a 0.0405 scale Orbiter space shuttle. The investigation included the effects of flap setting, stabilizer angle, elevator angle, ground proximity, and Orbiter tailcone fairing. Data were obtained in the pitch plane only. The test was run at M = 0.15, with a dynamic pressure of 35 psf. Six static pressures were measured on each side of the 747 CAM nose to determine the effects of the Orbiter on the 747 airspeed and altitude indicators.

  4. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  5. Results of test 0A82 in the NASA/LRC 31 inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction and to investigate RT real gas effects

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1975-01-01

    Tests were conducted in the NASA Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel to determine RCS jet interaction effects on hypersonic aerodynamic characteristics and to investigate RT (gas constant times temperature) scaling effects on the RCS similitude. The model was an 0.010-scale replica of the Space Shuttle Orbiter Configuration 3. Hypersonic aerodynamic data were obtained from tests at Mach 10.3 and dynamic pressures of 200, 150, 125, and 100 psf. The RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 20 psf were investigated.

  6. An Analysis of Shuttle Crew Scheduling Violations

    NASA Technical Reports Server (NTRS)

    Bristol, Douglas

    2012-01-01

    From the early years of the Space Shuttle program, National Aeronautics and Space Administration (NASA) Shuttle crews have had a timeline of activities to guide them through their time on-orbit. Planners used scheduling constraints to build timelines that ensured the health and safety of the crews. If a constraint could not be met it resulted in a violation. Other agencies of the federal government also have scheduling constraints to ensure the safety of personnel and the public. This project examined the history of Space Shuttle scheduling constraints, constraints from Federal agencies and branches of the military and how these constraints may be used as a guide for future NASA and private spacecraft. This was conducted by reviewing rules and violations with regard to human aerospace scheduling constraints, environmental, political, social and technological factors, operating environment and relevant human factors. This study includes a statistical analysis of Shuttle Extra Vehicular Activity (EVA) related violations to determine if these were a significant producer of constraint violations. It was hypothesized that the number of SCSC violations caused by EVA activities were a significant contributor to the total number of violations for Shuttle/ISS missions. Data was taken from NASA data archives at the Johnson Space Center from Space Shuttle/ISS missions prior to the STS-107 accident. The results of the analysis rejected the null hypothesis and found that EVA violations were a significant contributor to the total number of violations. This analysis could help NASA and commercial space companies understand the main source of constraint violations and allow them to create constraint rules that ensure the safe operation of future human private and exploration missions. Additional studies could be performed to evaluate other variables that could have influenced the scheduling violations that were analyzed.

  7. NASA Robotics for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fischer, RIchard T.

    2007-01-01

    This presentation focuses on NASA's use of robotics in support of space exploration. The content was taken from public available websites in an effort to minimize any ITAR or EAR issues. The agenda starts with an introduction to NASA and the "Vision for Space Exploration" followed by NASA's major areas of robotic use: Robotic Explorers, Astronaut Assistants, Space Vehicle, Processing, and In-Space Workhorse (space infrastructure). Pictorials and movies of NASA robots in use by the major NASA programs: Space Shuttle, International Space Station, current Solar Systems Exploration and Mars Exploration, and future Lunar Exploration are throughout the presentation.

  8. NASA Human Spaceflight Conjunction Assessment: Recent Conjunctions of Interest

    NASA Technical Reports Server (NTRS)

    Browns, Ansley C.

    2010-01-01

    This viewgraph presentation discusses a brief history of NASA Human Spaceflight Conjunction Assessment (CA) activities, an overview of NASA CA process for ISS and Shuttle, and recent examples from Human Spaceflight conjunctions.

  9. STS-109 Shuttle Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Carrying a crew of seven, the Space Shuttle Orbiter Columbia soared through some pre-dawn clouds into the sky as it began its 27th flight, STS-109. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm. Here four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  10. Shuttle interaction study extension

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The following areas of Space Shuttle technology were discussed: variable altitude strategy, spacecraft servicing, propellant storage, orbiter plume impingement, space based design, mating (docking and berthing), shuttle fleet utilization, and mission/traffic model.

  11. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis erupts from Launch Pad 39A amid billows of smoke and steam as it climbs into the early evening sky. Nearby, pelicans also launch from their perches at the roar of the liftoff. Launch occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:00 p.m. EST.

  12. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Rising from clouds of smoke and steam, Space Shuttle Atlantis rushes into the night sky as it lifts off from Launch Pad 39A. The glare of the flames and clouds is captured in the water near the pad. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:00 p.m. EST.

  13. Space Shuttle Propulsion Finishing Strong

    NASA Technical Reports Server (NTRS)

    Owen, James W.; Singer, Jody

    2011-01-01

    Numerous lessons have been documented from the Space Shuttle Propulsion elements. Major events include loss of the SRB's on STS-4 and shutdown of an SSME during ascent on STS- 51F. On STS-112 only half the pyrotechnics fired to release the vehicle from the launch pad, a testament for redundancy. STS-91 exhibited freezing of a main combustion chamber pressure measurement and on STS-93 nozzle tube ruptures necessitated a low liquid level oxygen cut off of the main engines. A number of on pad aborts were experienced during the early program resulting in delays. And the two accidents, STS-51L and STS-107, had unique heritage in history from early Program decisions and vehicle configuration. Following STS-51L significant resources were invested in developing fundamental physical understanding of solid rocket motor environments and material system behavior. Human rating of solid rocket motors was truly achieved. And following STS-107, the risk of ascent debris was better characterized and controlled. Situational awareness during all mission phases improved, and the management team instituted effective risk assessment practices. These major events and lessons for the future are discussed. The last 22 flights of the Space Shuttle, following the Columbia accident, were characterized by remarkable improvement in safety and reliability. Numerous problems were solved in addition to reduction of the ascent debris hazard. The propulsion system elements evolved to high reliability and heavy lift capability. The Shuttle system, though not a operable as envisioned in the 1970's, successfully assembled the International Space Station (ISS) and provided significant logistics and down mass for ISS operations. By the end of the Program, the remarkable Space Shuttle Propulsion system achieved very high performance, was largely reusable, exhibited high reliability, and is a heavy lift earth to orbit propulsion system. The story of this amazing system is discussed in detail in the paper.

  14. Results of investigations (OA20C) on an 0.015-scale configuration 140A/B space shuttle vehicle orbiter model (49-0) in the NASA/Langley Research Center Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1974-01-01

    Data obtained from the wind tunnel tests of a scale model of the space shuttle orbiter configuration 140 A/B are presented. The test was conducted at Mach numbers of 2.5, 3.9, and 4.6 with Reynolds numbers from 1.25 million per foot to 5.0 million per foot. Various control surface settings were used ranging from an angle of attack range from minus 4 to plus 42 degrees at zero angle of yaw. Longitudinal stability and control characteristics of the space shuttle configuration were analyzed.

  15. Transition heating rates determined on a 0.006 scale space shuttle orbiter model (no. 50-0) in the NASA/LaRC Mach 8 variable density wind tunnel test (OH14)

    NASA Technical Reports Server (NTRS)

    Cummings, J.

    1976-01-01

    Data obtained from wind tunnel tests of an .006-scale space shuttle orbiter model in the 18 in. Variable Density Wind Tunnel are presented. The tests, denoted as OH14, were performed to determine transition heating rates using thin skin thermocouples located at various locations on the space shuttle orbiter. The model was tested at M = 8.0 for a range of Reynolds numbers per foot varying from 1.0 to 10.0 million with angles-of-attack from 20 to 35 degrees incremented by 5 degrees.

  16. Shuttle plate braiding machine

    NASA Technical Reports Server (NTRS)

    Huey, Jr., Cecil O. (Inventor)

    1994-01-01

    A method and apparatus for moving yarn in a selected pattern to form a braided article. The apparatus includes a segmented grid of stationary support elements and a plurality of shuttles configured to carry yarn. The shuttles are supported for movement on the grid assembly and each shuttle includes a retractable plunger for engaging a reciprocating shuttle plate that moves below the grid assembly. Such engagement at selected times causes the shuttles to move about the grid assembly in a selected pattern to form a braided article of a particular geometry.

  17. Shuttle Transportation System Case-Study Development

    NASA Technical Reports Server (NTRS)

    Ransom, Khadijah

    2012-01-01

    A case-study collection was developed for NASA's Space Shuttle Program. Using lessons learned and documented by NASA KSC engineers, analysts, and contractors, decades of information related to processing and launching the Space Shuttle was gathered into a single database. The goal was to provide educators with an alternative means to teach real-world engineering processes and to enhance critical thinking, decision making, and problem solving skills. Suggested formats were created to assist both external educators and internal NASA employees to develop and contribute their own case-study reports to share with other educators and students. Via group project, class discussion, or open-ended research format, students will be introduced to the unique decision making process related to Shuttle missions and development. Teaching notes, images, and related documents will be made accessible to the public for presentation of Space Shuttle reports. Lessons investigated included the engine cutoff (ECO) sensor anomaly which occurred during mission STS-114. Students will be presented with general mission infom1ation as well as an explanation of ECO sensors. The project will conclude with the design of a website that allows for distribution of information to the public as well as case-study report submissions from other educators online.

  18. Shuttle TPS inspection using triangulation scanning technology

    NASA Astrophysics Data System (ADS)

    Deslauriers, Adam; Showalter, Ian; Montpool, Andrew; Taylor, Ross; Christie, Iain

    2005-05-01

    With the loss of the Space Shuttle Columbia, there has been intense focus at NASA on being able to detect and characterize damage that may have been sustained by the orbiter during the launch phase. To help perform this task, the Neptec Laser Camera System (LCS) has been selected as one of the sensors to be mounted at the end of a boom extension to the Shuttle Robotic Manipulator System (SRMS). A key factor in NASA"s selection of the LCS was its successful performance during flight STS-105 as a Detailed Test Objective (DTO). The LCS is based on a patented designed which has been exclusively licensed to Neptec for space applications. The boom will be used to position the sensor package to inspect critical areas of the Shuttle"s Thermal Protection System (TPS). The operational scenarios under which the LCS will be used have required solutions to problems not often encountered in 3D sensing systems. For example, under many of the operational scenarios, the scanner will encounter both commanded and uncommanded motion during the acquisition of data. In addition, various ongoing studies are refining the definition of what constitutes a critical breach of the TPS. Each type of damage presents new challenges for robust detection. This paper explores these challenges with a focus on the operational solutions which address them.

  19. Simulating Avionics Upgrades to the Space Shuttles

    NASA Technical Reports Server (NTRS)

    Deger, Daniel; Hill, Kenneth; Braaten, Karsten E.

    2008-01-01

    Cockpit Avionics Prototyping Environment (CAPE) is a computer program that simulates the functions of proposed upgraded avionics for a space shuttle. In CAPE, pre-existing space-shuttle-simulation programs are merged with a commercial-off-the-shelf (COTS) display-development program, yielding a package of software that enables high-fi46 NASA Tech Briefs, September 2008 delity simulation while making it possible to rapidly change avionic displays and the underlying model algorithms. The pre-existing simulation programs are Shuttle Engineering Simulation, Shuttle Engineering Simulation II, Interactive Control and Docking Simulation, and Shuttle Mission Simulator playback. The COTS program Virtual Application Prototyping System (VAPS) not only enables the development of displays but also makes it possible to move data about, capture and process events, and connect to a simulation. VAPS also enables the user to write code in the C or C++ programming language and compile that code into the end-product simulation software. As many as ten different avionic-upgrade ideas can be incorporated in a single compilation and, thus, tested in a single simulation run. CAPE can be run in conjunction with any or all of four simulations, each representing a different phase of a space-shuttle flight.

  20. Shuttle Student Involvement Project for Secondary Schools

    NASA Technical Reports Server (NTRS)

    Wilson, G. P.; Ladwig, A.

    1981-01-01

    The National Aeronautics and Space Administration (NASA) has initiated the Shuttle Student Involvement Project for Secondary Schools (SSIP-S), an annual nationwide competition to select student proposals for experiments suitable for flight aboard the Space Shuttle. The objective of the project is to stimulate the study of science and technology in grades 9 through 12 by directly relating students to a space research program. This paper will analyze the first year of the project from a standpoint of how the competition was administered; the number and types of proposals that were submitted; and will discuss the process involved in preparing the winning experiments for eventual flight.

  1. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 3

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale space shuttle vehicle 3 are presented, and interference heating effects were investigated by a model build-up technique of the orbiter. The test program was conducted at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1,500,000 and 5,000,000.

  2. Space Shuttle Status News Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Richard Gilbech, External Tank "Tiger Team" Lead, begins this space shuttle news conference with detailing the two major objectives of the team. The objectives include: 1) Finding the root cause of the foam loss on STS-114; and 2) Near and long term improvements for the external tank. Wayne Hale, Space Shuttle Program Manager, presents a chart to explain the external tank foam loss during STS-114. He gives a possible launch date for STS-121 after there has been a repair to the foam on the External Tank. He further discusses the changes that need to be made to the surrounding areas of the plant in New Orleans, due to Hurricane Katrina. Bill Gerstemaier, NASA Associate Administrator for Space Operations, elaborates on the testing of the external tank foam loss. The discussion ends with questions from the news media about a fix for the foam, replacement of the tiles, foam loss avoidance, the root cause of foam loss and a possible date for a new external tank to be shipped to NASA Kennedy Space Center.

  3. Analysis of Logistics in Support of a Human Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Cirillo, William; Earle, Kevin; Goodliff, Kandyce; Reeves, j. D.; Andrashko, Mark; Merrill, R. Gabe; Stromgren, Chel

    2008-01-01

    Strategic level analysis of the integrated behavior of lunar transportation system and lunar surface system architecture options is performed to inform NASA Constellation Program senior management on the benefit, viability, affordability, and robustness of system design choices. This paper presents an overview of the approach used to perform the campaign (strategic) analysis, with an emphasis on the logistics modeling and the impacts of logistics resupply on campaign behavior. An overview of deterministic and probabilistic analysis approaches is provided, with a discussion of the importance of each approach to understanding the integrated system behavior. The logistics required to support lunar surface habitation are analyzed from both 'macro-logistics' and 'micro-logistics' perspectives, where macro-logistics focuses on the delivery of goods to a destination and micro-logistics focuses on local handling of re-supply goods at a destination. An example campaign is provided to tie the theories of campaign analysis to results generation capabilities.

  4. Space shuttle/payload interface analysis (study 2.4). Volume 2: Space shuttle traffic analysis

    NASA Technical Reports Server (NTRS)

    Plough, J. A.

    1973-01-01

    The transfer is reported of the capability to perform capture/cost analyses to MSFC. Space shuttle performance and direct costs, tug characteristics, reliability, and cost data were provided by NASA. The launch vehicle, mission models, payloads, and computer programs are discussed along with capture/cost analysis, and cost estimates. For Vol. 1, see N74-12493.

  5. Methods and Techniques for Risk Prediction of Space Shuttle Upgrades

    NASA Technical Reports Server (NTRS)

    Hoffman, Chad R.; Pugh, Rich; Safie, Fayssal

    1998-01-01

    Since the Space Shuttle Accident in 1986, NASA has been trying to incorporate probabilistic risk assessment (PRA) in decisions concerning the Space Shuttle and other NASA projects. One major study NASA is currently conducting is in the PRA area in establishing an overall risk model for the Space Shuttle System. The model is intended to provide a tool to predict the Shuttle risk and to perform sensitivity analyses and trade studies including evaluation of upgrades. Marshall Space Flight Center (MSFC) and its prime contractors including Pratt and Whitney (P&W) are part of the NASA team conducting the PRA study. MSFC responsibility involves modeling the External Tank (ET), the Solid Rocket Booster (SRB), the Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME). A major challenge that faced the PRA team is modeling the shuttle upgrades. This mainly includes the P&W High Pressure Fuel Turbopump (HPFTP) and the High Pressure Oxidizer Turbopump (HPOTP). The purpose of this paper is to discuss the various methods and techniques used for predicting the risk of the P&W redesigned HPFTP and HPOTP.

  6. The October 1973 space shuttle traffic model, revision 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Traffic model data for the space shuttle for calendar years 1980 through 1991 are presented along with some supporting and summary data. This model was developed from the 1973 NASA Payload Model, dated October 1973, and the NASA estimate of the 1973 Non-NASA/Non-DoD Payload Model. The estimates for the DoD flights included are based on the 1971 DoD Mission Model.

  7. Logistics Reduction Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are very limited by the launch mass capacity of existing and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing five logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description and the challenges of the five technologies under development and the estimated overall mission benefits of each technology.

  8. NASA's approach to space commercialization

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV

    1986-01-01

    The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

  9. Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)

    NASA Technical Reports Server (NTRS)

    Foust, J. W.

    1979-01-01

    Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

  10. Low supersonic stability and control characteristics of .015-scale (remotely controlled elevon) model 44-0 of space shuttle orbiter tests in NASA/LaRC 4-ft UPWT (leg 1) (LA63A). [wind tunnel stability tests

    NASA Technical Reports Server (NTRS)

    Gamble, J. D.

    1975-01-01

    A Langley-built 0.015-scale Space Shuttle Orbiter model with remote independently operated left and right elevon surfaces was tested. The objective of the test was to generate a detailed aerodynamic data base for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle of attack range from -2 deg to 20 deg at angles of sideslip of 0 deg and plus or minus 2 deg. Additional tests were made over an angle of range from -6 deg to 8 deg at selected angles of attack. The test Mach numbers were 1.5 and 2.0 while the Reynolds number held at a constant two million per foot. Photographs of the test configuration are shown.

  11. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, Bill; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The EVA hardware used to assemble and maintain the ISS was designed with the assumption that it would be returned to Earth on the Space Shuttle for ground processing, refurbishment, or failure investigation (if necessary). With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (EMU, Airlock Systems, EVA tools, and associated support equipment and consumables) to perform ISS EVAs until 2016 and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, NASA and the One EVA contractor team jointly initiated the EVA 2010 Project. Challenges were addressed to extend the operating life and certification of EVA hardware, secure the capability to launch EVA hardware safely on alternate launch vehicles, and protect EMU hardware operability on orbit for long durations.

  12. Orbital impacts and the Space Shuttle windshield

    NASA Technical Reports Server (NTRS)

    Edelstein, Karen S.

    1995-01-01

    The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have changes over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

  13. Shuttle communications design study

    NASA Technical Reports Server (NTRS)

    Cartier, D. E.

    1975-01-01

    The design and development of a space shuttle communication system are discussed. The subjects considered include the following: (1) Ku-band satellite relay to shuttle, (2) phased arrays, (3) PN acquisition, (4) quadriplexing of direct link ranging and telemetry, (5) communications blackout on launch and reentry, (6) acquisition after blackout on reentry, (7) wideband communications interface with the Ku-Band rendezvous radar, (8) aeroflight capabilities of the space shuttle, (9) a triple multiplexing scheme equivalent to interplex, and (10) a study of staggered quadriphase for use on the space shuttle.

  14. Shuttle Wastewater Solution Characterization

    NASA Technical Reports Server (NTRS)

    Adam, Niklas; Pham, Chau

    2011-01-01

    During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.

  15. 48 CFR 1828.371 - Clauses for cross-waivers of liability for Space Shuttle services, Expendable Launch Vehicle (ELV...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... of liability for Space Shuttle services, Expendable Launch Vehicle (ELV) launches, and Space Station... Shuttle services, certain ELV launches, and Space Station activities, NASA and other signatories...

  16. Understanding the Columbia Space Shuttle Accident

    SciTech Connect

    Osheroff, Doug

    2004-06-16

    On February 1, 2003, the NASA space shuttle Columbia broke apart during re-entry over East Texas at an altitude of 200,000 feet and a velocity of approximately 12,000 mph. All aboard perished. Prof. Osheroff was a member of the board that investigated the origins of this accident, both physical and organizational. In his talk he will describe how the board was able to determine with almost absolute certainty the physical cause of the accident. In addition, Prof. Osherhoff will discuss its organizational and cultural causes, which are rooted deep in the culture of the human spaceflight program. Why did NASA continue to fly the shuttle system despite the persistent failure of a vital sub-system that it should have known did indeed pose a safety risk on every flight? Finally, Prof. Osherhoff will touch on the future role humans are likely to play in the exploration of space.

  17. Shuttle Enterprise Mated to 747 SCA for Delivery to Smithsonian

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Enterprise atop the NASA 747 Shuttle Carrier Aircraft as it leaves NASA's Dryden Flight Research Center, Edwards, California. The Enterprise, first orbiter built, was not spaceflight rated and was used in 1977 to verify the landing, approach, and glide characteristics of the orbiters. It was also used for engineering fit-checks at the shuttle launch facilities. Following approach and landing tests in 1977 and its use as an engineering vehicle, Enterprise was donated to the National Air and Space Museum in Washington, D.C. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  18. Space Station fluid management logistics

    NASA Technical Reports Server (NTRS)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  19. Space shuttle entry terminal area energy management

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.

    1991-01-01

    A historical account of the development for Shuttle's Terminal Area Energy Management (TAEM) is presented. A derivation and explanation of logic and equations are provided as a supplement to the well documented guidance computation requirements contained within the official Functional Subsystem Software Requirements (FSSR) published by Rockwell for NASA. The FSSR contains the full set of equations and logic, whereas this document addresses just certain areas for amplification.

  20. (abstract) The Shuttle Radar Topography Mapper

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Kobrick, Mike

    1996-01-01

    The Shuttle Radar Topography Mapper (SRTM), is a cooperative project between NASA and the Defense Mapping Agency of the U.S. Department of Defense. The mission is designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and south latitude. The DEM will have 30 m horizontal resolution and about 10 m vertical errors.

  1. Space shuttle main engine plume radiation model

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Lee, Y. C.

    1978-01-01

    The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.

  2. Shuttle Engine Designs Revolutionize Solar Power

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Space Shuttle Main Engine was built under contract to Marshall Space Flight Center by Rocketdyne, now part of Pratt & Whitney Rocketdyne (PWR). PWR applied its NASA experience to solar power technology and licensed the technology to Santa Monica, California-based SolarReserve. The company now develops concentrating solar power projects, including a plant in Nevada that has created 4,300 jobs during construction.

  3. Liftoff of STS-59 Shuttle Endeavour

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Endeavour heads for its sixth mission in space. Liftoff occurred at 7:05 a.m., April 9, 1994. This photograph was taken by Karen Dillon of San Jose, California, who observed the liftoff from the NASA causeway. It shows the orbiter as a bright spot at the top of a trail of smoke, with the water from a nearby marsh in the foreground.

  4. Palapa-B communications satellite launched from the Shuttle Challenger

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Indonesian Palapa-B communications satellite is just about to clear the vertical stabilizer of the shuttle Challenger as it moves into its orbit. Also visible are the shuttle pallet satellite, the experiment package for NASA's Office of Space and Terrestrial Applications (OSTA-2), the now vacated cradles for Palapa and Telsat Canada's Anik C2 satellites, some getaway special (GAS) canisters and the Canadian-built remote manipulator system (RMS) arm.

  5. Space Shuttle Solid Rocket Booster Debris Assessment

    NASA Technical Reports Server (NTRS)

    Kendall, Kristin; Kanner, Howard; Yu, Weiping

    2006-01-01

    The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

  6. Space Shuttle Underside Astronaut Communications Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  7. Space Shuttle Atlantis after RSS rollback

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lights on the Fixed Service Structure give a holiday impression at Launch Pad 39A where Space Shuttle Atlantis is poised for launch. Above the yellow-orange external tank is the Gaseous Oxygen Vent Arm, with the '''beanie cap''' vent hood raised. Before cryogenic loading, the hood will be lowered into position over the external tank vent louvers to vent gaseous oxygen vapors away from the Shuttle. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11- day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

  8. Langley's Space Shuttle Technology: A bibliography

    NASA Technical Reports Server (NTRS)

    Champine, G. R.

    1981-01-01

    This bibliography documents most of the major publications, research reports, journal articles, presentations, and contractor reports, which have been published since the inception of the Space Shuttle Technology Task Group at the NASA Langley Reseach Center on July 11, 1969. This research work was performed in house by the Center staff or under contract, monitored by the Center staff. The report is arranged according to method of publication: (1) NASA Formal Reports; (2) Contractor Reports; and (3) Articles and Conferences. Disciplines covered are in the areas of aerothermodynamics, structures, dynamics and aeroelasticity, environmental, and materials. The publications are listed without abstracts for quick reference and planning.

  9. Infrared spectral measurement of space shuttle glow

    SciTech Connect

    Ahmadijian, M.

    1992-01-01

    Infrared spectral measurements of the space shuttle glow were successfully conducted during the STS-39 space shuttle mission. Analysis indicates that NO, NO[sup +], OH, and CO are among the molecules associated with the infrared glow phenomenon. During orbiter thruster firings the glow intensities in the infrared are enhanced by factors of 10x to 100x with significant changes in spectral distribution. These measurements were obtained with the Spacecraft Kinetic Infrared Test (SKIRT) payload which included a cryogenic infrared circular variable filter (CVF) spectrometer (0.6 [mu]m to 5.4 [mu]) and a number of infrared, visible, and ultraviolet radiometers (0.2 [mu]m to 5.4 [mu]m and 9.9 [mu]m to 10.4 [mu]m). In addition, glow measurements were unsuccessfully attempted with the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1A) with its 2.5 [mu]m to 25 [mu]m Fourier transform interferometer. SKIRT CVF obtained over 14,000 spectra of quiescent shuttle glow, thruster enhanced shuttle glow, upper atmosphere airglow, aurora, orbiter environment, and deep space non-glow backgrounds during its eight day mission. The SKIRT radiometers operated almost continuously throughout the mission to provide a detailed history of the IR/VIS/UV optical environment associated with the operation of large spacecraft structures in low earth orbit. This dissertation will primarily address those measurements conducted by the SKIRT spectrometer as they relate to space shuttle glow in the infrared. The STS-39 Space Shuttle Discovery was launched from the NASA Kennedy Space Center on 28 April 1991 into a 57 degree inclination circular orbit at an altitude of 260 km.

  10. An Engineering Look at Space Shuttle and ISS Operations

    NASA Technical Reports Server (NTRS)

    Hernandez, Jose M.

    2004-01-01

    This slide presentation, in Spanish, is an overview of NASA's Space Shuttle operations and preparations for serving the International Space Station. There is information and or views of the shuttle's design, the propulsion system, the external tanks, the foam insulation, the reusable solid rocket motors, the vehicle assembly building (VAB), the mobile launcher platform being moved from the VAB to the launch pad. There is a presentation of some of the current issues with the space shuttle: cracks in the LH2 flow lines, corrosion and pitting, the thermal protection system, and inspection of the thermal protection system while in orbit. The shuttle system has served for more than 20 years, it is still a challenge to re-certify the vehicles for flight. Materials and material science remain as chief concerns for the shuttle,

  11. Logistics planning for phased programs.

    NASA Technical Reports Server (NTRS)

    Cook, W. H.

    1973-01-01

    It is pointed out that the proper and early integration of logistics planning into the phased program planning process will drastically reduce these logistics costs. Phased project planning is a phased approach to the planning, approval, and conduct of major research and development activity. A progressive build-up of knowledge of all aspects of the program is provided. Elements of logistics are discussed together with aspects of integrated logistics support, logistics program planning, and logistics activities for phased programs. Continuing logistics support can only be assured if there is a comprehensive sequential listing of all logistics activities tied to the program schedule and a real-time inventory of assets.

  12. Space Shuttle: Incomplete data and funding approach increase cost risk for upgrade program. Report to Congressional Requesters

    NASA Astrophysics Data System (ADS)

    Warren, David R.; Edwards, Lee; Beard, James; Wyatt, Terry

    1994-05-01

    The space shuttle is the only U.S. launch system capable of carrying people to and from space. It has operated for over 10 years and is likely to be used well into the next century. As the shuttle ages, NASA will be faced with increased need to update and replace various components due to obsolescence or to enhance safety. A review is presented of the shuttle program to determine (1) the assumptions NASA has made regarding the length of time the current shuttle fleet will be in operation and (2) NASA's processes and criteria for selecting needed safety and obsolescence upgrades.

  13. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1989-01-01

    This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.

  14. Results of tests in the NASA/LARC 31-inch CFHT on an 0.010-scale model (32-OT) of the space shuttle configuration 3 to determine the RCS jet flowfield interaction effects on aerodynamic characteristics (IA60/OA105), volume 1

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1974-01-01

    Tests were conducted in the NASA Langley Research Center 31-inch continuous Flow Hypersonic Wind Tunnel to determine RCS jet interaction effect on the hypersonic aerodynamic and stability and control characteristics prior to return to launch site (RTLS) abort separation. The model used was an 0.010-scale replica of the Space Shuttle Vehicle Configuration 3. Hypersonic stability data were obtained from tests at Mach 10.3 and dynamic pressure of 150 psf for the integrated Orbiter and external tank and the Orbiter alone. RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 7, 20, and 50 psf were investigated. The effects of speedbrake, bodyflap, elevon, and aileron deflections were also investigated.

  15. Heat transfer test of an 0.006-scale thin-skin thermocouple space shuttle model (50-0, 41-T) in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel at Mach 5.3 (IH28), volume 1

    NASA Technical Reports Server (NTRS)

    Cummings, J. W.; Foster, T. F.; Lockman, W. K.

    1976-01-01

    Data obtained from a heat transfer test conducted on an 0.006-scale space shuttle orbiter and external tank in the NASA-Ames Research Center 3.5-foot Hypersonic Wind Tunnel are presented. The purpose of this test was to obtain data under simulated return-to-launch-site abort conditions. Configurations tested were integrated orbiter and external tank, orbiter alone, and external tank alone at angles of attack of 0, + or - 30, + or - 60, + or - 90, and + or - 120 degrees. Runs were conducted at Mach numbers of 5.2 and 5.3 for Reynolds numbers of 1.0 and 4.0 million per foot, respectively. Heat transfer data were obtained from 75 orbiter and 75 external tank iron-constantan thermocouples.

  16. Results of tests in the NASA/LaRC 31-inch CFHT on an 0.010-scale model (32-OT) of the space shuttle configuration 3 to determine the RCS jet flowfield interaction effects on aerodynamic characteristics (IA60/0A105), volume 2

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1974-01-01

    Tests were conducted in the NASA Langley Research Center 31-inch continuous flow hypersonic wind tunnel from 14 February to 22 February 1974, to determine RCS jet interaction effect on the hypersonic aerodynamic and stability and control characteristics prior to RTLS abort separation. The model used was an 0.010-scale replica of the space shuttle vehicle configuration 3. Hypersonic stability data were obtained from tests at Mach 10.3 and dynamic pressure of 150 psf for the intergrated orbiter and external tank and the orbiter alone. RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 7, 20, and 50 psf were investigated. The effects of speedbrake, bodyflap, elevon, and aileron deflections were also investigated.

  17. Shuttle Discovery Mated to 747 SCA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Discovery rides atop '905,' NASA's 747 Shuttle Carrier Aircraft, on its delivery flight from California to the Kennedy Space Center, Florida, where it was prepared for its first orbital mission for 30 August to 5 September 1984. The NASA 747, obtained in 1974, has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. A second modified 747, no. 911, went in to service in November 1990 and is also used to ferry orbiters to destinations where ground transportation is not practical. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  18. Maintaining space shuttle safety within an environment of change

    NASA Astrophysics Data System (ADS)

    Greenfield, Michael A.

    1999-09-01

    In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle Flight Operations Contractor (SFOC) has been chosen to operate the Shuttle. The Government role will change from direct "oversight" to "insight" gained through understanding and measuring the contractor's processes. This paper describes the program management changes underway and the NASA Safety and Mission Assurance (S&MA) organization's philosophy, role, and methodology for pursuing this new approach. It describes how audit and surveillance will replace direct oversight and how meaningful performance metrics will be implemented.

  19. An investigation to determine the static pressure distribution of the 0.00548 scale shuttle solid rocket booster (MSFC model number 468) during reentry in the NASA/MSFC 14 inch trisonic wind tunnel (SA28F)

    NASA Technical Reports Server (NTRS)

    Braddock, W. F.; Streby, G. D.

    1977-01-01

    The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.

  20. Results from investigations in the NASA/MSFC TWT on a .004 scale model space shuttle launch vehicle (model 13P-OTS) to determine gas supply strut effects on model pressure environment (IA53)

    NASA Technical Reports Server (NTRS)

    Garton, W. P.

    1975-01-01

    The Rockwell Space Shuttle Launch Vehicle components were tested in a Trisonic Wind Tunnel. Pressure measurements were made on the aft portion, in the base regions, and on the wing surfaces. Axial force determination were made from the pressure data. Data were recorded with the model at zero degrees angle of attack and sideslip through a Mach number from 0.9 to 3.0. The only configuration changes investigated were strut mounting techniques and gas line fairing location between the external tank and the orbiter.

  1. Results of heat transfer tests of a 0.0175-scale space shuttle vehicle 5 model (60-OTS) in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (test IH48)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.; Lockman, W. K.

    1976-01-01

    Heat transfer data are presented for a .0175-scale model of the Rockwell International Space Shuttle Vehicle 5. The primary purpose of these tests was to obtain aerodynamic interference heating data on the external tank in the tank alone, second-, and first-stage configurations. Data were also obtained on the Orbiter and solid rocket boosters. Nominal Mach Nos. of 5.2 and 5.3 at nominal freestream unit Reynolds numbers of 1.5 and 5.0 million per foot, respectively, were investigated. Photographs of the tested configurations and test equipment are shown.

  2. NASA Video Catalog. Supplement 15

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  3. NASA Video Catalog. Supplement 12

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report lists 1878 video productions from the NASA STI Database. This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged by STAR categories. A complete Table of Contents describes the scope of each category. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  4. NASA Video Catalog. Supplement 14

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  5. NASA Video Catalog. Supplement 13

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  6. Practical Session: Logistic Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr341.pdf). This example is based on data given in the file evans.txt coming from http://www.sph.emory.edu/dkleinb/logreg3.htm#data.

  7. This is NASA

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Highlights of NASA's first 20 years are described including the accomplishments of the National Advisory Committee for Aeronautics from its creation in 1915 until its absorption into NASA in 1958. Current and future activities are assessed in relation to the Federal R&D research plan for FY 1980 and to U.S. civil space policy. A NASA organization chart accompanies descriptions of the responsibilities of Headquarters, its various offices, and field installations. Directions are given for contacting the agency for business activities or contracting purposes; for obtaining educational publications and other media, and for tours. Manpower statistics are included with a list of career opportunities. Special emphasis is given to manned space flight, space launch vehicles, space shuttle, planetary exploration, and investigations of the stars and the solar system.

  8. Report of the Space Shuttle Management Independent Review Team

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

  9. STS-109 Shuttle Mission Launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Carrying the STS-109 crew of seven, the Space Shuttle Orbiter Columbia blasted from its launch pad as it began its 27th flight and 108th flight overall in NASA's Space Shuttle Program. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST) which was developed, designed, and constructed by the Marshall Space Flight Center. Captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, the HST received the following upgrades: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Four of the crewmembers performed 5 space walks in the 10 days, 22 hours, and 11 minutes of the the STS-109 mission.

  10. Results of tests using a 0.030-scale model (45-0) of space shuttle vehicle orbiter in the NASA/ARC 12-foot pressure wind tunnel (OA159)

    NASA Technical Reports Server (NTRS)

    Marroquin, J.

    1975-01-01

    An experimental investigation (test OA159) was conducted in the NASA/ARC 12-foot Pressure Wind Tunnel from June 23 through July 8, 1975. The objective was to obtain detailed strut tare and interference effects of the support system used in the NASA/ARC 40 x 80-foot wind tunnel during 0.36-scale orbiter testing (OA100). Six-component force and moment data were obtained through an angle-of-attack range from -9 through +18 degrees with 0 deg angle of sideslip and a sideslip angle range from -9 through +18 degrees at 9 deg angle of attack results are presented.

  11. Space Shuttle Vehicle Illustration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  12. Space Shuttle-Illustration

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  13. Shuttle Safety Improvements

    NASA Technical Reports Server (NTRS)

    Henderson, Edward

    2001-01-01

    The Space Shuttle has been flying for over 20 years and based on the Orbiter design life of 100 missions it should be capable of flying at least 20 years more if we take care of it. The Space Shuttle Development Office established in 1997 has identified those upgrades needed to keep the Shuttle flying safely and efficiently until a new reusable launch vehicle (RLV) is available to meet the agency commitments and goals for human access to space. The upgrade requirements shown in figure 1 are to meet the program goals, support HEDS and next generation space transportation goals while protecting the country 's investment in the Space Shuttle. A major review of the shuttle hardware and processes was conducted in 1999 which identified key shuttle safety improvement priorities, as well as other system upgrades needed to reliably continue to support the shuttle miss ions well into the second decade of this century. The high priority safety upgrades selected for development and study will be addressed in this paper.

  14. Space Shuttle RTOS Bayesian Network

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores. Using a prioritization of measures from the decision-maker, trade-offs between the scores are used to rank order the available set of RTOS candidates.

  15. STS-79 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

  16. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1992-01-01

    This volume is the fifth in an ongoing series on aerospace project management at NASA. Articles in this volume cover: an overview of the project cycle; SE&I management for manned space flight programs; shared experiences from NASA Programs and Projects - 1975; cost control for Mariner Venus/Mercury 1973; and the Space Shuttle - a balancing of design and politics. A section on resources for NASA managers rounds out the publication.

  17. Space Shuttle Abort Evolution

    NASA Technical Reports Server (NTRS)

    Henderson, Edward M.; Nguyen, Tri X.

    2011-01-01

    This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.

  18. MSFC shuttle lightning research

    NASA Technical Reports Server (NTRS)

    Vaughan, Otha H., Jr.

    1993-01-01

    The shuttle mesoscale lightning experiment (MLE), flown on earlier shuttle flights, and most recently flown on the following space transportation systems (STS's), STS-31, -32, -35, -37, -38, -40, -41, and -48, has continued to focus on obtaining additional quantitative measurements of lightning characteristics and to create a data base for use in demonstrating observation simulations for future spaceborne lightning mapping systems. These flights are also providing design criteria data for the design of a proposed shuttle MLE-type lightning research instrument called mesoscale lightning observational sensors (MELOS), which are currently under development here at MSFC.

  19. The Space Shuttle

    NASA Technical Reports Server (NTRS)

    Moffitt, William L.

    2003-01-01

    As missions have become increasingly more challenging over the years, the most adaptable and capable element of space shuttle operations has proven time and again to be human beings. Human space flight provides unique aspects of observation. interaction and intervention that can reduce risk and improve mission success. No other launch vehicle - in development or in operation today - can match the space shuttle's human space flight capabilities. Preserving U.S. leadership in human space flight requires a strategy to meet those challenges. The ongoing development of next generation vehicles, along with upgrades to the space shuttle, is the most effective means for assuring our access to space.

  20. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  1. Legacy of Biomedical Research During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  2. Mission Possible: BioMedical Experiments on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Bopp, E.; Kreutzberg, K.

    2011-01-01

    Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.

  3. Space Shuttle: The Renewed Promise.

    ERIC Educational Resources Information Center

    McAleer, Neil

    This booklet describes the history of the space shuttle, especially after the Challenger accident. Topics include: (1) "Introduction"; (2) "Return to Flight: The Recovery"; (3) "Space Shuttle Chronology"; (4) "Examples of Other Modifications on Shuttle's Major Systems"; (5) "Space Shuttle Recovery Chronology"; (6) "Poised for Launch: Space Shuttle…

  4. High supersonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 space shuttle orbiter tested in the NASA/LaRC 4-foot UPWT (LEG 2) (LA75), volume 1

    NASA Technical Reports Server (NTRS)

    Ball, J. W.

    1976-01-01

    Wind tunnel tests are reported on a 0.015-scale SSV orbiter model with remote independently operated left and right elevon surfaces. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments. Six component aerodynamic force and moment and elevon position data were recorded for the space shuttle orbiter with various elevon, aileron rudder and speed brake deflection combinations over an angle of attack range from -4 deg to 32 deg at angles of sideslip of 0 deg and 3 deg. Additional tests were made over an angle of sideslip range from -6 deg to 8 deg at selected angles of attack. Test Mach numbers were 2.86, 2.90, 3.90 and 4.60 with Reynolds numbers held at a constant 2.0 x 1 million per foot.

  5. A low speed wind tunnel test of the 0.050 scale NASA-JSC shuttle orbiter 089B to determine the longitudinal and lateral directional effects of control surface modifications

    NASA Technical Reports Server (NTRS)

    Oldenbuttel, R. H.

    1973-01-01

    Wind tunnel tests to determine the longitudinal and lateral-directional effects of control surface modifications on the space shuttle orbiter aerodynamic characteristics are discussed. A total of 103 data runs were made which consisted of pitch runs through a range of zero to 28 degrees at a zero yaw angle and yaw runs from minus 6 to plus 6 degrees at various fixed pitch angles. At each data point, data from an internal strain gage balance was sampled with the digital data system. Also recorded were the model angles of pitch and yaw and the test section static pressure. Results are presented in the form of tabulated aerodynamic coefficient data about the model reference center.

  6. Results of investigations on a 0.015-scale model (49-0) of the space shuttle orbiter in the NASA/Ames 3.5-foot hypersonic wind tunnel (OA87)

    NASA Technical Reports Server (NTRS)

    Petrozzi, M. T.; Milam, M. D.; Mellenthin, J. A.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a scale model of the space shuttle orbiter, Configuration 140A/B. The objectives of this test were to: 1) verify supersonic stability and control characteristics, 2) analyze aerodynamic problem areas, 3) verify control surface effectiveness, and 4) investigate Reynolds number effects. Six-component aerodynamic force and moment data were recorded over an angle of attack range from 22 deg to 46 deg at a constant sideslip angle of 0 deg. The test Mach number was varied from 5.3 to 7.3 to 10.3. The Reynolds number per unit length was varied from 805,000 to 10 million per foot.

  7. Results of investigations on a 0.010-scale 140A/B configuration space shuttle vehicle orbiter model 72-0 in the NASA/Langley Research Center continuous flow hypersonic tunnel (OA90)

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1975-01-01

    Data are documented which were obtained during wind tunnel tests. The test was conducted beginning 4 March and ending 6 March 1974 for a total of 24 occupancy hours. all test runs were conducted at a Mach number of 10.3 and at Reynolds numbers of 0.65, 1.0 and 1.33 million per foot. Only the complete 140A/B was tested with various elevon, speedbrake, and bodyflap settings at angles of attack from 12 to 37 degrees at 0 and -5 degrees of beta, and from 0 to -9 degrees of beta at 20 and 30 degrees angle of attack. The purpose was to obtain hypersonic longitudinal and lateral-directional stability and control characteristics of the updated space shuttle vehicle configuration.

  8. Results of investigations on an 0.015-scale model (49-0) of the Rockwell International Space Shuttle orbiter in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (0A98)

    NASA Technical Reports Server (NTRS)

    Milam, M. D.; Dzuibala, T. J.

    1975-01-01

    The results of a wind tunnel test are presented; the model used for this test was 0.015-scale 140 A/B hybrid configuration of the space shuttle orbiter. The primary test objectives were to obtain incremental data on the effects of a sting mount on base pressures and force and moment data. The increments obtained included the addition of MPS nozzles as well as the deletion of the simulated sting mount. Six-component aerodynamic force and moment data were recorded over an angle of attack range from 12 to 42 degrees at 0 and 5 degrees angles of sideslip. The testing was accomplished at Mach 5.3 and Mach 10.3. The effects of various elevon, body flap, and speed brake settings were investigated, and static pressures were measured at the fuselage base for use in force-data reduction.

  9. Space Shuttle Main Engine Joint Data List Applying Today's Desktop Technologies to Facilitate Engine Processing

    NASA Technical Reports Server (NTRS)

    Jacobs, Kenneth; Drobnick, John; Krell, Don; Neuhart, Terry; McCool, A. (Technical Monitor)

    2001-01-01

    Boeing-Rocketdyne's Space Shuttle Main Engine (SSME) is the world's first large reusable liquid rocket engine. The space shuttle propulsion system has three SSMEs, each weighing 7,400 lbs and providing 470,000 lbs of thrust at 100% rated power level. To ensure required safety and reliability levels are achieved with the reusable engines, each SSME is partially disassembled, inspected, reassembled, and retested at Kennedy Space Center between each flight. Maintenance processing must be performed very carefully to replace any suspect components, maintain proper engine configuration, and avoid introduction of contaminants that could affect performance and safety. The long service life, and number, complexity, and pedigree of SSME components makes logistics functions extremely critical. One SSME logistics challenge is documenting the assembly and disassembly of the complex joint configurations. This data (joint nomenclature, seal and fastener identification and orientation, assembly sequence, fastener torques, etc.) must be available to technicians and engineers during processing. Various assembly drawings and procedures contain this information, but in this format the required (practical) joint data can be hard to find, due to the continued use of archaic engineering drawings and microfilm for field site use. Additionally, the release system must traverse 2,500 miles between design center and field site, across three time zones, which adds communication challenges and time lags for critical engine configuration data. To aid in information accessibility, a Joint Data List (JDL) was developed that allows efficient access to practical joint data. The published JDL has been a very useful logistics product, providing illustrations and information on the latest SSME configuration. The JDL identifies over 3,350 unique parts across seven fluid systems, over 300 joints, times two distinct engine configurations. The JDL system was recently converted to a web-based, navigable electronic manual that contains all the required data and illustrations in expanded view format using standard PC products (Word, Excel, PDF, Photoshop). The logistics of accurately releasing this information to field personnel was greatly enhanced via the utilization of common office products to produce a more user-friendly format than was originally developed under contract to NASA. This was done without reinventing the system, which would be cost prohibitive on a program of this maturity. The brunt of the joint part tracking is done within the logistics organization and disseminated to all field sites, without duplicating effort at each site. The JDL is easily accessible across the country via the NASA intranet directly at the SSME workstand. The advent of this logistics data product has greatly enhanced the reliability of tracking dynamic changes to the SSME and greatly reduces engineering change turnaround time and potential for errors. Since the inception of the JDL system in 1997, no discrepant parts have propagated to engine assembly operations. This presentation focuses on the challenges overcome and the techniques used to apply today's desktop technologies to an existing logistics data source.

  10. Shuttle/GPSPAC experimentation study

    NASA Technical Reports Server (NTRS)

    Moses, J.; Flack, J. F.

    1977-01-01

    The utilization is discussed of the GPSPAC, which is presently being developed to be used on the low altitude host vehicle (LAHV), for possible use in the shuttle avionics system to evaluate shuttle/GPS navigation performance. Analysis and tradeoffs of the shuttle/GPS link, shuttle signal interface requirements, oscillator tradeoffs and GPSPAC mechanical modifications for shuttle are included. Only the on-orbit utilization of GPSPAC for the shuttle is discussed. Other phases are briefly touched upon. Recommendations are provided for using the present GPSPAC and the changes required to perform shuttle on-orbit navigation.

  11. NASA's SCAs--Birds of a Feather Flock Together - Duration: 108 seconds.

    NASA Video Gallery

    NASA's two modified Boeing 747 Shuttle Carrier Aircraft briefly flew in formation for the first time ever over the Edwards Air Force Base test range on Aug. 2, 2011. NASA 911 was on a pilot profici...

  12. Space Shuttle system capability

    NASA Technical Reports Server (NTRS)

    Thompson, R. F.

    1980-01-01

    The Space Shuttle system capability is described in the historical context of previous pioneering transportation systems. A general overall report on the program's development status and currently programmed system and operational capabilities is presented.

  13. Shuttle car loading system

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr. (Inventor)

    1985-01-01

    A system is described for loading newly mined material such as coal, into a shuttle car, at a location near the mine face where there is only a limited height available for a loading system. The system includes a storage bin having several telescoping bin sections and a shuttle car having a bottom wall that can move under the bin. With the bin in an extended position and filled with coal the bin sections can be telescoped to allow the coal to drop out of the bin sections and into the shuttle car, to quickly load the car. The bin sections can then be extended, so they can be slowly filled with more while waiting another shuttle car.

  14. Shuttle Inventory Management

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Inventory Management System (SIMS) consists of series of integrated support programs providing supply support for both Shuttle program and Kennedy Space Center base opeations SIMS controls all supply activities and requirements from single point. Programs written in COBOL.

  15. Space Shuttle astrodynamical constants

    NASA Technical Reports Server (NTRS)

    Cockrell, B. F.; Williamson, B.

    1978-01-01

    Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.

  16. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.

  17. The Launch Processing System for Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Springer, D. A.

    1973-01-01

    In order to reduce costs and accelerate vehicle turnaround, a single automated system will be developed to support shuttle launch site operations, replacing a multiplicity of systems used in previous programs. The Launch Processing System will provide real-time control, data analysis, and information display for the checkout, servicing, launch, landing, and refurbishment of the launch vehicles, payloads, and all ground support systems. It will also provide real-time and historical data retrieval for management and sustaining engineering (test records and procedures, logistics, configuration control, scheduling, etc.).

  18. Space Shuttle Endeavour launch

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  19. Computer graphics aid mission operations. [NASA missions

    NASA Technical Reports Server (NTRS)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  20. First-ever evening public engine test of a Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  1. Space Shuttle Documentary (Narrated by William Shatner) - Duration: 1 hour, 20 minutes.

    NASA Video Gallery

    This feature-length documentary looks at the history of the most complex machine ever built. For 30 years, NASA's space shuttle carried humans to and from space, launched amazing observatories, and...

  2. Behind the Scenes: Under the Shuttle - Duration: 9 minutes, 40 seconds.

    NASA Video Gallery

    In this episode of "NASA Behind the Scenes," astronaut Mike Massimino takes you up to - and under - the space shuttle as it waits on launch pad 39A at the Kennedy Space Center for the start of a re...

  3. 48 CFR 1852.228-72 - Cross-waiver of liability for space shuttle services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Space Shuttle Services (SEP 1993) (a) As prescribed by regulation (14 CFR part 1266), NASA agreements..., test, training, simulation, or guidance and control equipment and related facilities or services....

  4. Astronauts Train for Final Shuttle Mission - Duration: 3 minutes, 53 seconds.

    NASA Video Gallery

    The crew of STS-135, the final space shuttle mission, rehearsed their launch day process at NASA's Kennedy Space Center in Florida during a Terminal Countdown Demonstration Test that took place Jun...

  5. Behind the Scenes: Shuttle Crawls to Launch Pad - Duration: 14 minutes.

    NASA Video Gallery

    In this episode of NASA Behind the Scenes, take a look at what's needed to roll a space shuttle out of the Vehicle Assembly Building and out to the launch pad. Astronaut Mike Massimino talks to som...

  6. Shuttle Columbia Post-landing Tow - with Reflection in Water

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. MartinMarietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  7. Space Station logistics system evolution

    NASA Technical Reports Server (NTRS)

    Tucker, Michael W.

    1990-01-01

    This task investigates logistics requirements and logistics system concepts for the evolutionary Space Station. Requirements for the basic station, crew, user equipment, and free-flying platforms, as requirements for manned exploration initiative elements and crews while at the Space Station. Data is provided which assesses the ability of the Space Freedom logistics carriers to accommodate the logistics loads per year. Also, advanced carrier concepts are defined and assessed against the logistics requirements. The implications on Earth-to-orbit vehicles of accommodating the logistics requirements, using various types of carriers, are assessed on a year by year basis.

  8. Space Shuttle: The Renewed Promise

    NASA Technical Reports Server (NTRS)

    McAleer, Neil

    1989-01-01

    NASA celebrated its 30th anniversary in 1988, two days after the Space Shuttle soared into space once more. When Congress approved the creation of the National Aeronautics and Space Administration in 1958, the United States had successfully launched only four small satellites and no American astronaut had yet flown in space. In the three decades since, four generations of manned spacecraft have been built and flown, twelve men have walked on the Moon, more than 100 Americans have flown and worked in space, and communications satellites and other Space-Age technologies have transformed life on planet Earth. When NASA's Golden Anniversary is celebrated in 2008, it is likely that men and women will be permanently living and working in space. There may be a base on the Moon, and a manned mission to Mars may only be years away. If a brief history of the first half-century of the Space Age is written for that event, it will show clearly how the exploration of space has altered the course of human history and allowed us to take a better hold of our destiny on and off planet Earth.

  9. Space Shuttle Atlantis after RSS rollback

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis's cockpit. Below Atlantis, on either side of the tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

  10. Logistics Reduction and Repurposing Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Ewert, Michael K.

    2011-01-01

    All human space missions, regardless of destination, require significant logistical mass and volume that is strongly proportional to mission duration. Anything that can be done to reduce initial mass and volume of supplies or reuse items that have been launched will be very valuable. Often, the logistical items require disposal and represent a trash burden. Utilizing systems engineering to analyze logistics from cradle-to-grave and then to potential reuse, can minimize logistics contributions to total mission architecture mass. In NASA's Advanced Exploration Systems Logistics Reduction and Repurposing Project , various tasks will reduce the intrinsic mass of logistical packaging, enable reuse and repurposing of logistical packaging and carriers for other habitation, life support, crew health, and propulsion functions, and reduce or eliminate the nuisances aspects of trash at the same time. Repurposing reduces the trash burden and eliminates the need for hardware whose function can be provided by use of spent logistic items. However, these reuse functions need to be identified and built into future logical systems to enable them to effectively have a secondary function. These technologies and innovations will help future logistic systems to support multiple exploration missions much more efficiently.

  11. Mission Benefits Analysis of Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James Lee, Jr.

    2013-01-01

    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  12. Mission Benefits Analysis of Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James L.

    2012-01-01

    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  13. STS-98 Space Shuttle Atlantis after RSS rollback

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis is revealed after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room is an environmentally controlled area that provides entry for the crew into Atlantis'''s cockpit. Above the yellow-orange external tank is the Gaseous Oxygen Vent Arm, with the '''beanie cap''' vent hood raised. Before cryogenic loading, the hood will be lowered into position over the external tank vent louvers to vent gaseous oxygen vapors away from the Shuttle. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.

  14. The MATHEMATICA economic analysis of the Space Shuttle System

    NASA Technical Reports Server (NTRS)

    Heiss, K. P.

    1973-01-01

    Detailed economic analysis shows the Thrust Assisted Orbiter Space Shuttle System (TAOS) to be the most economic Space Shuttle configuration among the systems studied. The development of a TAOS Shuttle system is economically justified within a level of space activities between 300 and 360 Shuttle flights in the 1979-1990 period, or about 25 to 30 flights per year, well within the U.S. Space Program including NASA and DoD missions. If the NASA and DoD models are taken at face value (624 flights), the benefits of the Shuttle system are estimated to be $13.9 billion with a standard deviation of plus or minus $1.45 billion in 1970 dollars (at a 10% social rate of discount). If the expected program is modified to 514 flights (in the 1979-1990 period), the estimated benefits of the Shuttle system are $10.2 billion, with a standard deviation of $940 million (at a 10% social rate of discount).

  15. NASA RFID Applications

    NASA Technical Reports Server (NTRS)

    Fink, Patrick, Ph.D.; Kennedy, Timothy, Ph.D; Powers, Anne; Haridi, Yasser; Chu, Andrew; Lin, Greg; Yim, Hester; Byerly, Kent, Ph.D.; Barton, Richard, Ph.D.; Khayat, Michael, Ph.D.; Studor, George; Brocato, Robert; Ngo, Phong; Arndt, G. D., Ph.D.; Gross, Julia; Phan, Chau; Ni, David, Ph.D.; Dusl, John; Dekome, Kent

    2007-01-01

    This viewgraph document reviews some potential uses for Radio Frequency Identification in space missions. One of these is inventory management in space, including the methods used in Apollo, the Space Shuttle, and Space Station. The potential RFID uses in a remote human outpost are reviewed. The use of Ultra-Wideband RFID for tracking are examined such as that used in Sapphire DART The advantages of RFID in passive, wireless sensors in NASA applications are shown such as: Micrometeoroid impact detection and Sensor measurements in environmental facilities The potential for E-textiles for wireless and RFID are also examined.

  16. NASA program plan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

  17. NASA Enterprise Visual Analysis

    NASA Technical Reports Server (NTRS)

    Lopez-Tellado, Maria; DiSanto, Brenda; Humeniuk, Robert; Bard, Richard, Jr.; Little, Mia; Edwards, Robert; Ma, Tien-Chi; Hollifield, Kenneith; White, Chuck

    2007-01-01

    NASA Enterprise Visual Analysis (NEVA) is a computer program undergoing development as a successor to Launch Services Analysis Tool (LSAT), formerly known as Payload Carrier Analysis Tool (PCAT). NEVA facilitates analyses of proposed configurations of payloads and packing fixtures (e.g. pallets) in a space shuttle payload bay for transport to the International Space Station. NEVA reduces the need to use physical models, mockups, and full-scale ground support equipment in performing such analyses. Using NEVA, one can take account of such diverse considerations as those of weight distribution, geometry, collision avoidance, power requirements, thermal loads, and mechanical loads.

  18. NASA Administrator Dan Goldin talks with STS-78 crew

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Administrator Dan Goldin (left) chats with STS-78 Mission Commander Terence 'Tom' Henricks (center) and KSC Director Jay Honeycutt underneath the orbiter Columbia. Columbia and her seven-member crew touched down on Runway 33 of KSC's Shuttle Landing Facility at 8:36 a.m. EDT, July 7, bringing to a close the longest Shuttle flight to date. STS-78, which also was the 78th Shuttle flight, lasted 16 days, 21 minutes and 47 seconds.

  19. Heat-transfer test results for a .0275-scale space shuttle external tank with a 10 deg/40 deg double cone-ogive nose in the NASA/AMES 3.5-foot hypersonic wind tunnel (FH14), volume 2

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1977-01-01

    A .0275 scale forebody model of the new baseline configuration of the space shuttle external tank vent cap configuration was tested to determine the flow field due to the double cone configuration. The tests were conducted in a 3.5 foot hypersonic wind tunnel at alpha = -5 deg, -4.59 deg, 0 deg, 5 deg, and 10 deg; beta = 0 deg, -3 deg, -5.51 deg, -6 deg, -9 deg, and +6 deg; nominal freestream Reynolds numbers per foot of 1.5 x 1 million, 3.0 x 1 million, and 5.0 x 1 million; and a nominal Mach number of 5. Separation and reattached flow from thermocouple data, shadowgraphs, and oil flows indicate that separation begins about 80% from the tip of the 10 deg cone, then reattaches on the vent cap and produces fully turbulent flow over most of the model forebody. The hardware disturbs the flow over a much larger area than present TPS application has assumed. A correction to the flow disturbance was experimentally suggested from the results of an additional test run.

  20. 75 FR 11200 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... cargo; space operations associated with the Space Shuttle and the International Space Station; and... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In accordance with the...

  1. 75 FR 51853 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ..., Micrometeoroid Orbital Debris and Radiation Protection, International Space Station and Space Shuttle Program... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the...

  2. Transonic stability and control characteristics of a 0.015 scale model 69-0 of the space shuttle orbiter with forebody RSI modification in the NASA/LaRC 8 foot TPT (LA72)

    NASA Technical Reports Server (NTRS)

    Ball, J. W.; Edwards, C. R.

    1976-01-01

    Tests were conducted in the NASA/LaRC 8 foot transonic wind tunnel from March 26 through 31, 1976. The model was a 0.015 scale SSV Orbiter with forebody modifications to simulate slight reductions in the reusable surface insulation (RSI) thickness. Six component aerodynamic force and moment data were obtained at Mach numbers from 0.35 to 1.20 over an angle of attack range from -2 deg to 20 deg at sideslip angles of 0 deg and 5 deg.

  3. Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.

  4. Orbit transfer operations for the Space Shuttle era

    NASA Technical Reports Server (NTRS)

    Davis, H. P.

    1979-01-01

    Orbit transfer operations are reviewed relative to the objectives, operational factors, and crew model concepts of future mission requirements. The review is based on studies presently underway and on projected needs and goals of the Space Shuttle era. Numerous tradeoff studies and further analyses are needed before the best form of the manned geostationary vehicle becomes fixed. However, the Shuttle can provide the necessary low-orbit logistics service for dispatching manned geostationary missions on as frequent a schedule as will be needed to serve the advanced geostationary satellites of the near future.

  5. Payloads simulation in the Shuttle Mission Training Facility

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.; Brown, Patrick M.

    1989-01-01

    The Shuttle Mission Training Facility (SMFT) at the NASA Johnson Space Center is the primary facility for full mission training of astronauts. The training provided in the SMTF includes payload operations that are performed by the astronauts while the Space Shuttle is in orbit. This training requires real-time simulation of the operational aspects of Shuttle payloads as well as simulation of the interaction between payloads and the Orbiter. For this purpose the SMTF contains Payloads Simulators (PLS) that are coupled to and operated in synchronization with the Shuttle Vehicle Simulators. The PLS are used for simulating all payloads with the exception of the European Space Agency's Spacelab. The SMTF contains a separate Spacelab Simulator for training Spacelab astronauts. This paper provides a synopsis of actual payload operations, the methodology for payload simulation in the SMTF, and the system architecture of the PLS.

  6. Results from a GPS Shuttle Training Aircraft flight test

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.

    1991-01-01

    A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.

  7. Space Shuttle Orbiter waste collection system conceptual study

    NASA Technical Reports Server (NTRS)

    Abbate, M.

    1985-01-01

    The analyses and studies conducted to develop a recommended design concept for a new fecal collection system that can be retrofited into the space shuttle vehicle to replace the existing troublesome system which has had limited success in use are summarized. The concept selected is a cartridge compactor fecal collection subsystem which utilizes an airflow collection mode combined with a mechanical compaction and vacuum drying mode that satisfies the shuttle requirements with respect to size, weight, interfaces, and crew comments. A follow-on development program is recommended which is to result in flight test hardware retrofitable on a shuttle vehicle. This permits NASA to evaluate the system which has space station applicablity before committing production funds for the shuttle fleet and space station development.

  8. Space Shuttle Atlantis rolls back to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Photographed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis creeps along the crawlerway for the 3.4-mile trek to Launch Pad 39A (upper left). In the background is the Atlantic Ocean; on either side is water from the Banana Creek (left) and Banana River (right). The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA's SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. Launch of Atlantis on STS-98 has been rescheduled to Feb. 7 at 6:11 p.m. EST.

  9. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As Space Shuttle Atlantis blasts off from Launch Pad 39A on mission STS-98, it lights up the nearby water. Billows of smoke and steam fill Launch Pad 39A. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11- day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1 p.m. EST.

  10. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As Space Shuttle Atlantis lifts off from Launch Pad 39A on mission STS-98, clouds of smoke and steam appear to surround it. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1 p.m. EST.

  11. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Space Shuttle Atlantis roars into the moonlit sky while clouds of steam and smoke cascade behind. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11- day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.

  12. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Clouds of smoke and steam roll out from the launch pad as Space Shuttle Atlantis roars into the moonlit sky. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.

  13. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Like 10,000 fireworks going off at once, Space Shuttle Atlantis roars into the moonlit sky while clouds of steam and smoke cascade behind. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.

  14. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Space Shuttle Atlantis spews clouds of smoke and steam over Launch Pad 39A as it blasts into the sky on mission STS-98. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1 p.m. EST.

  15. An imaging spectrometer experiment for the Shuttle

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Goetz, A. F. H.; Herring, M.; Vane, G.

    1983-01-01

    An imaging spectrometer experiment concept for earth remote sensing, developed as part of NASA's Multispectral Linear Array program, will map a series of test sites at high spatial and spectral resolution from the vantage point of the Shuttle payload bay. The instrument covers the spectral range from 0.4 to 2.5 micrometers with a sampling interval of 10 nanometers in the visible and near infrared (to 1.0 micrometer) and 20 nanometers in the short wavelength infrared (1.0 to 2.5 micrometers). Resolution corresponding to a ground instantaneous field of view (pixel size) of 30 meters is provided over a swath width of 12 kilometers. On-board data editing is utilized to select a subset of the data stream for transmission to the ground. The instrument utilizes silicon and mercury cadmium telluride area array detectors. Pointing mirrors are included to permit specific test sites to be imaged from the Shuttle orbit.

  16. Space Shuttle security policies and programs

    NASA Astrophysics Data System (ADS)

    Keith, E. L.

    The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

  17. Space Shuttle security policies and programs

    NASA Technical Reports Server (NTRS)

    Keith, E. L.

    1985-01-01

    The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

  18. One Idea for a Next Generation Shuttle

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; Cerro, Jeffrey A.

    2004-01-01

    In this configuration, the current Shuttle External Tank serves as core structure for a fully reusable second stage. This stage is equipped with wings, vertical fin, landing gear, and thermal protection. The stage is geometrically identical to (but smaller than) a single stage that has been tested hyper-sonically, super-sonically, and sub-sonically in the NASA Langley Research Center wind tunnels. The three LOX/LH engines that currently serve as main propulsion for the Shuttle Orbiter, serve as main propulsion on the new stage. The new stage is unmanned but is equipped with the avionics needed for automatic maneuvering on orbit and for landing on a runway. Three rails are installed along the top surface of the vehicle for attachment of various payloads. Pay- loads might include third stages with satellites attached, personnel pods, propellants, or other items.

  19. The logistics of choice.

    PubMed

    Killeen, Peter R

    2015-07-01

    The generalized matching law (GML) is reconstructed as a logistic regression equation that privileges no particular value of the sensitivity parameter, a. That value will often approach 1 due to the feedback that drives switching that is intrinsic to most concurrent schedules. A model of that feedback reproduced some features of concurrent data. The GML is a law only in the strained sense that any equation that maps data is a law. The machine under the hood of matching is in all likelihood the very law that was displaced by the Matching Law. It is now time to return the Law of Effect to centrality in our science. PMID:25988932

  20. Steganalysis using logistic regression

    NASA Astrophysics Data System (ADS)

    Lubenko, Ivans; Ker, Andrew D.

    2011-02-01

    We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

  1. Empirical Bayes logistic regression.

    PubMed

    Strimenopoulou, Foteini; Brown, Philip J

    2008-01-01

    We construct a diagnostic predictor for patient disease status based on a single data set of mass spectra of serum samples together with the binary case-control response. The model is logistic regression with Bernoulli log-likelihood augmented either by quadratic ridge or absolute L1 penalties. For ridge penalization using the singular value decomposition we reduce the number of variables for maximization to the rank of the design matrix. With log-likelihood loss, 10-fold cross-validatory choice is employed to specify the penalization hyperparameter. Predictive ability is judged on a set-aside subset of the data. PMID:18312223

  2. Space Shuttle Launch: STS-129 - Duration: 11 minutes.

    NASA Video Gallery

    STS-129. Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday, Nov 16, 2009, with a 2:28 p.m. EST launch from NASA's Kennedy S...

  3. Logistics support economy and efficiency through consolidation and automation

    NASA Technical Reports Server (NTRS)

    Savage, G. R.; Fontana, C. J.; Custer, J. D.

    1985-01-01

    An integrated logistics support system, which would provide routine access to space and be cost-competitive as an operational space transportation system, was planned and implemented to support the NSTS program launch-on-time goal of 95 percent. A decision was made to centralize the Shuttle logistics functions in a modern facility that would provide office and training space and an efficient warehouse area. In this warehouse, the emphasis is on automation of the storage and retrieval function, while utilizing state-of-the-art warehousing and inventory management technology. This consolidation, together with the automation capabilities being provided, will allow for more effective utilization of personnel and improved responsiveness. In addition, this facility will be the prime support for the fully integrated logistics support of the operations era NSTS and reduce the program's management, procurement, transportation, and supply costs in the operations era.

  4. STS-9 and Spacelab 1. NASA Educational Briefs for the Classroom.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Designed for classroom use, this publication provides an overview of the first Space Shuttle/Spacelab mission, a cooperative venture between the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The main purpose of ESA's Spacelab, which will be carried aboard NASA's Space Shuttle (technically called the…

  5. NASA mobile satellite program

    NASA Astrophysics Data System (ADS)

    Knouse, G.; Weber, W.

    1985-04-01

    A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.

  6. NASA head sworn in

    NASA Astrophysics Data System (ADS)

    James C. Fletcher was sworn in on May 12, 1986, as administrator of the National Aeronautics and Space Administration (NASA). At a news conference after he was sworn in, Fletcher said that NASA would deal with both its technical problems and its procedural problems before the shuttle will fly again. According to press accounts, he stressed that funds should be made available to replace the Challenger orbiter, which was lost in an explosion on January 28.Fletcher, who had also headed the agency from 1971 to 1977, succeeds James M. Beggs, who was indicted in December 1985 for conspiring to defraud the federal government while serving as a senior executive at the General Dynamics Corporation.

  7. 7. YOSEMITE VALLEY SHUTTLE BUS AT SENTINEL BRIDGE SHUTTLE BUS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. YOSEMITE VALLEY SHUTTLE BUS AT SENTINEL BRIDGE SHUTTLE BUS AND PARKING LOT AREA. LOOKING WNW. GIS: N-37 40 36.2 / W-119 44 45.0 - Yosemite National Park Roads & Bridges, Yosemite Village, Mariposa County, CA

  8. NASA and the practice of space law

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1985-01-01

    The paper discusses the need for increased awareness in space law due to advances in space technology and a trend toward commercialization of space. A list of national and international treaties, conventions, agreements, laws, and regulations relevant to space activities is presented. NASA lawyers specialize in international and municipal laws that affect the NASA space mission; an example of the lawyers working with insurance companies in negotiating the first Space Shuttle liability policy is provided. The increased participation of the public sector in space activities, for example, the commercialization of the Space Shuttle transportation system, is examined.

  9. Launch Vehicle Demonstrator Using Shuttle Assets

    NASA Technical Reports Server (NTRS)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center undertook a study to define candidate early heavy lift demonstration launch vehicle concepts derived from existing space shuttle assets. The objective was to determine the performance capabilities of these vehicles and characterize potential early demonstration test flights. Given the anticipated budgetary constraints that may affect America's civil space program, and a lapse in U.S. heavy launch capability with the retirement of the space shuttle, an early heavy lift launch vehicle demonstration flight would not only demonstrate capabilities that could be utilized for future space exploration missions, but also serve as a building block for the development of our nation s next heavy lift launch system. An early heavy lift demonstration could be utilized as a test platform, demonstrating capabilities of future space exploration systems such as the Multi Purpose Crew Vehicle. By using existing shuttle assets, including the RS-25D engine inventory, the shuttle equipment manufacturing and tooling base, and the segmented solid rocket booster industry, a demonstrator concept could expedite the design-to-flight schedule while retaining critical human skills and capital. In this study two types of vehicle designs are examined. The first utilizes a high margin/safety factor battleship structural design in order to minimize development time as well as monetary investment. Structural design optimization is performed on the second, as if an operational vehicle. Results indicate low earth orbit payload capability is more than sufficient to support various vehicle and vehicle systems test programs including Multi-Purpose Crew Vehicle articles. Furthermore, a shuttle-derived, hydrogen core vehicle configuration offers performance benefits when trading evolutionary paths to maximum capability.

  10. Flight Planning Branch Space Shuttle Lessons Learned

    NASA Technical Reports Server (NTRS)

    Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.

    2011-01-01

    Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.

  11. Asymmetrical booster ascent guidance and control system design study. Volume 1: Summary. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Williams, F. E.; Lemon, R. S.; Jaggers, R. F.; Wilson, J. L.

    1974-01-01

    Dynamics and control, stability, and guidance analyses are summarized for the asymmetrical booster ascent guidance and control system design studies, performed in conjunction with space shuttle planning. The mathematical models developed for use in rigid body and flexible body versions of the NASA JSC space shuttle functional simulator are briefly discussed, along with information on the following: (1) space shuttle stability analysis using equations of motion for both pitch and lateral axes; (2) the computer program used to obtain stability margin; and (3) the guidance equations developed for the space shuttle powered flight phases.

  12. Application of Terahertz Radiation to the Detection of Corrosion under the Shuttle's Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

  13. Workforce Transition Strategy: Initial Report. Space Shuttle and Constellation Workforce Focus

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The transition from Space Shuttle to Constellation over the next few years provides a rare opportunity to reinvigorate the Nation's space exploration capabilities. During that time, NASA's greatest challenge and top priority will be to safely fly out the Space Shuttle manifest, complete assembly of the International Space Station (ISS), and honor commitments to our international partners prior to retiring the Shuttle in 2010, all while developing the new Constellation space systems and preparing them for flight as soon as possible after the Shuttles last mission.

  14. Space Shuttle status report.

    NASA Technical Reports Server (NTRS)

    Peil, N. G.

    1973-01-01

    A description is given of the design evolution during 1972-1973 of a reusable transportation system intended to place payloads of up to 65,000 lb in a 100 nm 28-degree inclination orbit, and to retrieve and return to earth 25,000 lb from orbit. The shuttle will be launched vertically as a rocket and will land horizontally as an airplane at about 170 kts with a cross range sufficient to return to the launch site after one orbit. The shuttle system is comprised of a reusable orbiter, two recoverable solid-propellant boosters, and an expendable liquid-propellant tank.

  15. Space Shuttle Aging Elastomers

    NASA Technical Reports Server (NTRS)

    Curtis, Cris E.

    2007-01-01

    The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The Space Shuttle's uses various types of elastomers and they play a vital role in mission success. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the elastomers are performing. This paper will outline a strategic assessment plan, how identified problems were resolved and the integration activities between subsystems and Aging Orbiter Working Group.

  16. Nanoparticle shuttle memory

    DOEpatents

    Zettl, Alex Karlwalter

    2012-03-06

    A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

  17. STS II - Beyond Shuttle

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.

    1984-01-01

    Advanced launch vehicle systems, which could replace the Space Shuttle to meet the expanded space transportation demands of commercial, governmental, and military space users in the post 2000 time frame, are examined. Vehicle scenarios, mission requirements, vehicle concepts, economics, and technology requirements are assessed. Vehicle requirements are to achieve significant reductions in operations and life-cycle costs while increasing the overall launch capacity. Vehicle designs emphasize conventional rocket-powered configurations derived from Space Shuttle concepts and based on evolutionary technologies. Technologies focus on high performance, cost-effective design and manufacturing and on high operational productivity.

  18. Logistics Reduction and Repurposing Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James L., Jr.

    2012-01-01

    All human space missions, regardless of destination, require significant logistical mass and volume that is strongly proportional to mission duration. Anything that can be done to reduce initial mass and volume of supplies or reuse items that have been launched will be very valuable. Often, the logistical items require disposal and represent a trash burden. Logistics contributions to total mission architecture mass can be minimized by considering potential reuse using systems engineering analysis. In NASA's Advanced Exploration Systems "Logistics Reduction and Repurposing Project," various tasks will reduce the intrinsic mass of logistical packaging, enable reuse and repurposing of logistical packaging and carriers for other habitation, life support, crew health, and propulsion functions, and reduce or eliminate the nuisance aspects of trash at the same time. Repurposing reduces the trash burden and eliminates the need for hardware whose function can be provided by use of spent logistical items. However, these reuse functions need to be identified and built into future logical systems to enable them to effectively have a secondary function. These technologies and innovations will help future logistics systems to support multiple exploration missions much more efficiently.

  19. Shuttle model tailcone pressure distribution at low subsonic speeds of a 0.03614-scale model in the NASA/LaRC low-turbulence pressure tunnel (LA81), volume 1

    NASA Technical Reports Server (NTRS)

    Ball, J. W.; Lindahl, R. H.

    1976-01-01

    An investigation was conducted in the NASA/LaRC Low-Turbulence Pressure Tunnel on a 0.03614-scale orbiter model of a 089B configuration with a 139B configuration nose forward of F.S. 500. The tailcone was the TC sub 4 design and was instrumented with eighty-nine pressure orifices. Control surfaces were deflected and three wind tunnel mounting techniques were investigated over an angle-of-attack range from -2 deg to a maximum of 18 deg. In order to determine the sensitivity of the tailcone to changes in Reynolds number, most of the test was made at a Mach number of 0.20 over a Reynolds number range of 2.0 to 10 million per foot. A few runs were made at a Mach number of 0.30 at Reynolds numbers of 4.0, 6.0, and 8 million per foot.

  20. Assessment Regarding Impact of Atmospheric Conditions on Space Shuttle Launch Delays

    NASA Technical Reports Server (NTRS)

    Johnson D. L.; Pearson, S. D.; Vaughan, W. W.; Batts, G. W.

    1998-01-01

    The atmospheric environment definition has played a key role in the development and operation of the NASA Space Shuttle as it has in other NASA Space Vehicle Programs. The objective of any definition of natural environment design requirements for a space vehicle development is to insure that the vehicle will perform safely and in a timely manner relative to the mission(s) for which the vehicle is being developed. The NASA Space Shuttle has enjoyed the longest tenure of any Space Vehicle from an operational standpoint. As such, it has provided a wealth of information on many engineering aspects of a Space Vehicle plus the influence of the atmosphere on operational endeavors. The atmospheric environment associated with the NASA Space Shuttle launches at the NASA Kennedy Space Center in Florida has been reviewed and studied over the entire NASA Space Shuttle flight history. The results of the analysis of atmospheric environment related launch delays relative to other sources of launch delays has been assessed. This paper will provide a summary of those conditions as well as mission analysis examples focused on atmospheric constraints for launch. Atmospheric conditions associated with NASA Space Shuttle launch delays will be presented to provide a reference as to the type conditions experienced which have mainly caused the delays.

  1. Shuttle Upgrade Using 5-Segment Booster (FSB)

    NASA Technical Reports Server (NTRS)

    Sauvageau, Donald R.; Huppi, Hal D.; McCool, A. A. (Technical Monitor)

    2000-01-01

    In support of NASA's continuing effort to improve the over-all safety and reliability of the Shuttle system- a 5-segment booster (FSB) has been identified as an approach to satisfy that overall objective. To assess the feasibility of a 5-segment booster approach, NASA issued a feasibility study contract to evaluate the potential of a 5-segment booster to improve the overall capability of the Shuttle system, especially evaluating the potential to increase the system reliability and safety. In order to effectively evaluate the feasibility of the 5-segment concept, a four-member contractor team was established under the direction of NASA Marshall Space Flight Center (MSFC). MSFC provided the overall program oversight and integration as well as program contractual management. The contractor team consisted of Thiokol, Boeing North American Huntington Beach (BNA), Lockheed Martin Michoud Space Systems (LMMSS) and United Space Alliance (USA) and their subcontractor bd Systems (Control Dynamics Division, Huntsville, AL). United Space Alliance included the former members of United Space Booster Incorporated (USBI) who managed the booster element portion of the current Shuttle solid rocket boosters. Thiokol was responsible for the overall integration and coordination of the contractor team across all of the booster elements. They were also responsible for all of the motor modification evaluations. Boeing North American (BNA) was responsible for all systems integration analyses, generation of loads and environments. and performance and abort mode capabilities. Lockheed Martin Michoud Space Systems (LMMSS) was responsible for evaluating the impacts of any changes to the booster on the external tank (ET), and evaluating any design changes on the external tank necessary to accommodate the FSB. USA. including the former USBI contingent. was responsible for evaluating any modifications to facilities at the launch site as well as any booster component design modifications.

  2. An Overview of Quantitative Risk Assessment of Space Shuttle Propulsion Elements

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    1998-01-01

    Since the Space Shuttle Challenger accident in 1986, NASA has been working to incorporate quantitative risk assessment (QRA) in decisions concerning the Space Shuttle and other NASA projects. One current major NASA QRA study is the creation of a risk model for the overall Space Shuttle system. The model is intended to provide a tool to estimate Space Shuttle risk and to perform sensitivity analyses/trade studies, including the evaluation of upgrades. Marshall Space Flight Center (MSFC) is a part of the NASA team conducting the QRA study; MSFC responsibility involves modeling the propulsion elements of the Space Shuttle, namely: the External Tank (ET), the Solid Rocket Booster (SRB), the Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME). This paper discusses the approach that MSFC has used to model its Space Shuttle elements, including insights obtained from this experience in modeling large scale, highly complex systems with a varying availability of success/failure data. Insights, which are applicable to any QRA study, pertain to organizing the modeling effort, obtaining customer buy-in, preparing documentation, and using varied modeling methods and data sources. Also provided is an overall evaluation of the study results, including the strengths and the limitations of the MSFC QRA approach and of qRA technology in general.

  3. EA Shuttle Document Retention Effort

    NASA Technical Reports Server (NTRS)

    Wagner, Howard A.

    2010-01-01

    This slide presentation reviews the effort of code EA at Johnson Space Center (JSC) to identify and acquire databases and documents from the space shuttle program that are adjudged important for retention after the retirement of the space shuttle.

  4. NASA astronaut and Mir 24 crew member David Wolf after landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian Space Station Mir since late September 1997, greets his friend, Tammy Kruse, shortly after his return to Earth on Jan. 31. Dr. Wolf returned aboard the orbiter Endeavour with the rest of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded Dr. Wolf on Mir and is scheduled to remain on the Russian space station until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts.

  5. Marshall's George Hopson Recieves NASA's Highest Honors

    NASA Technical Reports Server (NTRS)

    2003-01-01

    After four decades of contribution to America's space program, George Hopson, manager of the Space Shuttle Main Engine Project at Marshall Space Flight Center, accepted NASA's Distinguished Service Medal. Awarded to those who, by distinguished ability or courage, have made a personal contribution to the NASA mission, NASA's Distinguished Service Medal is the highest honor NASA confers. Hopson's contributions to America's space program include work on the country's first space station, Skylab; the world's first reusable space vehicle, the Space Shuttle; and the International Space Station. Hopson joined NASA's Marshall team as chief of the Fluid and Thermal Systems Branch in the Propulsion Division in 1962, and later served as chief of the Engineering Analysis Division of the Structures and Propulsion Laboratory. In 1979, he was named director of Marshall's Systems Dynamics Laboratory. In 1981, he was chosen to head the Center's Systems Analysis and Integration. Seven years later, in 1988, Hopson was appointed associate director for Space Transportation Systems and one year later became the manager of the Space Station Projects Office at Marshall. In 1994, Hopson was selected as deputy director for Space Systems in the Science and Engineering Directorate at Marshall where he supervised the Chief Engineering Offices of both marned and unmanned space systems. He was named manager of the Space Shuttle Main Engine Project in 1997. In addition to the Distinguished Service Medal, Hopson has also been recognized with the NASA Outstanding Leadership Medal and NASA's Exceptional Service Medal.

  6. Space Shuttle Orbiter windshield bird impact analysis

    NASA Technical Reports Server (NTRS)

    Edelstein, Karen S.; Mccarty, Robert E.

    1988-01-01

    The NASA Space Shuttle Orbiter's windshield employs three glass panes separated by air gaps. The brittleness of the glass offers much less birdstrike energy-absorption capability than the laminated polycarbonate windshields of more conventional aircraft; attention must accordingly be given to the risk of catastrophic bird impact, and to methods of strike prevention that address bird populations around landing sites rather than the modification of the window's design. Bird populations' direct reduction, as well as careful scheduling of Orbiter landing times, are suggested as viable alternatives. The question of birdstrike-resistant glass windshield design for hypersonic aerospacecraft is discussed.

  7. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  8. New Atmospheric Turbulence Model for Shuttle Applications

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Campbell, C. W.; Doubleday, M. K.; Johnson, D. L.

    1990-01-01

    An updated NASA atmospheric turbulence model, from 0 to 200 km altitude, which was developed to be more realistic and less conservative when applied to space shuttle reentry engineering simulation studies involving control system fuel expenditures is presented. The prior model used extreme turbulence (3 sigma) for all altitudes, whereas in reality severe turbulence is patchy within quiescent atmospheric zones. The updated turublence model presented is designed to be more realistic. The prior turbulence statistics (sigma and L) were updated and were modeled accordingly.

  9. Space shuttles: A pyrotechnic overview

    NASA Technical Reports Server (NTRS)

    Graves, T. J.

    1980-01-01

    Pyrotechnic components specified in Shuttle system designs to accomplish varied tasks during all mission phases are described. The function of these pyrotechnics in the operation of the space shuttle vehicle is discussed. Designs are presented for pyrotechnics with innovative features of those meeting unique shuttle requirements for safety and reliability. A rationale for the qualification and certification of these devices is developed. Maintenance of this qualified system in production hardware is explained through a description of shuttle flight certification review process.

  10. An assessment of space shuttle flight software development processes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

  11. Independent verification and validation for Space Shuttle flight software

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Committee for Review of Oversight Mechanisms for Space Shuttle Software was asked by the National Aeronautics and Space Administration's (NASA) Office of Space Flight to determine the need to continue independent verification and validation (IV&V) for Space Shuttle flight software. The Committee found that the current IV&V process is necessary to maintain NASA's stringent safety and quality requirements for man-rated vehicles. Therefore, the Committee does not support NASA's plan to eliminate funding for the IV&V effort in fiscal year 1993. The Committee believes that the Space Shuttle software development process is not adequate without IV&V and that elimination of IV&V as currently practiced will adversely affect the overall quality and safety of the software, both now and in the future. Furthermore, the Committee was told that no organization within NASA has the expertise or the manpower to replace the current IV&V function in a timely fashion, nor will building this expertise elsewhere necessarily reduce cost. Thus, the Committee does not recommend moving IV&V functions to other organizations within NASA unless the current IV&V is maintained for as long as it takes to build comparable expertise in the replacing organization.

  12. Shuttle Blast-Off!

    ERIC Educational Resources Information Center

    Gage, Marilyn Kay; And Others

    1993-01-01

    Two articles describe ideas for school library media centers interested in promoting space education. The first article explains how to construct an inexpensive simulation of a space shuttle and suggests associated activities. The second presents steps for identifying resources and organizing them into a resources file; relevant information

  13. Shuttle Communications Blackout Study

    NASA Technical Reports Server (NTRS)

    Haben, R. L.; Budica, R. J.

    1983-01-01

    Space Shuttle Orbiter Entry Communications Blackout Study computer program models, investigates, and predicts communication blackout envelopes based on mission entry trajectory and associated data from tracking stations. Of interest to those designing and using communications systems susceptible to blackout. Program is readily adapted to predict entry communications blackout for any nonablative entry vehicle.

  14. Aboard the Space Shuttle.

    ERIC Educational Resources Information Center

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  15. Shuttle Blast-Off!

    ERIC Educational Resources Information Center

    Gage, Marilyn Kay; And Others

    1993-01-01

    Two articles describe ideas for school library media centers interested in promoting space education. The first article explains how to construct an inexpensive simulation of a space shuttle and suggests associated activities. The second presents steps for identifying resources and organizing them into a resources file; relevant information…

  16. Mobile Christian - shuttle flight

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Erin Whittle, 14, (seated) and Brianna Johnson, 14, look on as Louis Stork, 13, attempts a simulated landing of a space shuttle at StenniSphere. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.

  17. Space Shuttle news reference

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.

  18. The Shuttle Environment Workshop

    NASA Technical Reports Server (NTRS)

    Lehmann, J.; Tanner, S. G. (Editor); Wilkerson, T. (Editor)

    1983-01-01

    Results of shuttle environmental measurement programs were presented. The implications for plasma, infrared and ultraviolet experiments were discussed. The prelaunch environmental conditions, results of key environmental measurements made during the flights of STS 1, 2, 3, 4, and postlanding environmental conditions were covered.

  19. Nondestructive Evaluation for the Space Shuttle's Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Prosser, William H.; Wincheski, Russell A.; Cramer, K. Elliot

    2005-01-01

    The loss of the Space Shuttle Columbia highlighted concerns about the integrity of the Shuttle's thermal protection system, which includes Reinforced Carbon-Carbon (RCC) on the leading edge. This led NASA to investigate nondestructive evaluation (NDE) methods for certifying the integrity of the Shuttle's wing leading edge. That investigation was performed simultaneously with a large study conducted to understand the impact damage caused by errant debris. Among the many advanced NDE methods investigated for applicability to the RCC material, advanced digital radiography, high resolution computed tomography, thermography, ultrasound, acoustic emission and eddy current systems have demonstrated the maturity and success for application to the Shuttle RCC panels. For the purposes of evaluating the RCC panels while they are installed on the orbiters, thermographic detection incorporating principal component analysis (PCA) and eddy current array scanning systems demonstrated the ability to measure the RCC panels from one side only and to detect several flaw types of concern. These systems were field tested at Kennedy Space Center (KSC) and at several locations where impact testing was being conducted. Another advanced method that NASA has been investigating is an automated acoustic based detection system. Such a system would be based in part on methods developed over the years for acoustic emission testing. Impact sensing has been demonstrated through numerous impact tests on both reinforced carbon-carbon (RCC) leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. A variety of impact materials and conditions have been evaluated including foam, ice, and ablator materials at ascent velocities as well as simulated hypervelocity micrometeoroid and orbital debris impacts. These tests have successfully demonstrated the capability to detect and localize impact events on Shuttle's wing structures. A first generation impact sensing system has been designed for the next Shuttle flight and is undergoing final evaluation for deployment on the Shuttle's first return to flight. This system will employ wireless accelerometer sensors that were qualified for other applications on previous Shuttle flights. These sensors will be deployed on the wing's leading edge to detect impacts on the RCC leading edge panels. The application of these methods will help to insure the continued integrity of the Shuttle wing's leading edge system as the Shuttle flights resume and until their retirement.

  20. STS-71, Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Frike, Robert W., Jr.

    1995-01-01

    The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

  1. NASA's Myriad Uses of Digital Video

    NASA Technical Reports Server (NTRS)

    Grubbs, Rodney; Lindblom, Walt; George, Sandy

    1999-01-01

    Since it's inception, NASA has created many of the most memorable images seen this Century. From the fuzzy video of Neil Armstrong taking that first step on the moon, to images of the Mars surface available to all on the internet, NASA has provided images to inspire a generation, all because a scientist or researcher had a requirement to see something unusual. Digital Television technology will give NASA unprecedented new tools for acquiring, analyzing, and distributing video. This paper will explore NASA's DTV future. The agency has a requirement to move video from one NASA Center to another, in real time. Specifics will be provided relating to the NASA video infrastructure, including video from the Space Shuttle and from the various Centers. A comparison of the pros and cons of interlace and progressive scanned images will be presented. Film is a major component of NASA's image acquisition for analysis usage. The future of film within the context of DTV will be explored.

  2. Liftoff of Space Shuttle Atlantis on mission STS-98

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis surpasses the full moon for beauty as it roars into the early evening sky trailing a tail of smoke. The upper portion catches the sun'''s rays as it climbs above the horizon and a flock of birds soars above the moon. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.

  3. STS-98 Space Shuttle Atlantis after RSS rollback

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis'''s cockpit. Below Atlantis, on either side of the tail, are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter'''s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  5. Space shuttle auxiliary propulsion system design study. Executive summary

    NASA Technical Reports Server (NTRS)

    Kelly, P. J.; Schweickert, T. F.

    1972-01-01

    The development and characteristics of an auxiliary propulsion system for space shuttle applications are presented. The system design data necessary for selection of preferred system concepts and the requirements for complementing component design and test programs are analyzed. The use of cryogenic oxygen and hydrogen as a propellant combination is explained on the basis of high vehicle impulse requirements, safety factors, reuse, and logistics considerations. The final configurations for the alternate propellant system, with primary emphasis on earth storable propellants is described.

  6. Space shuttle food system study. Volume 1: System design report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Data were assembled which define the optimum food system to support the space shuttle program, and which provide sufficient engineering data to support necessary requests for proposals towards final development and installment of the system. The study approach used is outlined, along with technical data and sketches for each functional area. Logistic support analysis, system assurance, and recommendations and conclusions based on the study results are also presented.

  7. Collins named First Woman Shuttle Commander

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Just a few hours after NASA revealed that there is water ice on the Moon, U.S. First Lady Hillary Rodham Clinton introduced Air Force Lieutenant Colonel Eileen Collins to a packed auditorium at Dunbar Senior High School in Washington, D.C., as the first woman who will command a NASA space shuttle mission. With students at this school, which is noted for its pre-engineering program, cheering, Clinton said that Collins' selection “is one big step forward for women and one giant step for humanity.” Clinton added, “It doesn't matter if you are a boy or a girl, you can be an astronaut or a pilot, if you get a first-rate education in math and science.”

  8. Material Issues in Space Shuttle Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Jensen, Brian J.; Gates, Thomas S.; Morgan, Roger J.; Thesken, John C.; Phoenix, S. Leigh

    2006-01-01

    Composite Overwrapped Pressure Vessels (COPV) store gases used in four subsystems for NASA's Space Shuttle Fleet. While there are 24 COPV on each Orbiter ranging in size from 19-40", stress rupture failure of a pressurized Orbiter COPV on the ground or in flight is a catastrophic hazard and would likely lead to significant damage/loss of vehicle and/or life and is categorized as a Crit 1 failure. These vessels were manufactured during the late 1970's and into the early 1980's using Titanium liners, Kevlar 49 fiber, epoxy matrix resin, and polyurethane coating. The COPVs are pressurized periodically to 3-5ksi and therefore experience significant strain in the composite overwrap. Similar composite vessels were developed in a variety of DOE Programs (primarily at Lawrence Livermore National Laboratories or LLNL), as well as for NASA Space Shuttle Fleet Leader COPV program. The NASA Engineering Safety Center (NESC) formed an Independent Technical Assessment (ITA) team whose primary focus was to investigate whether or not enough composite life remained in the Shuttle COPV in order to provide a strategic rationale for continued COPV use aboard the Space Shuttle Fleet with the existing 25-year-old vessels. Several material science issues were examined and will be discussed in this presentation including morphological changes to Kevlar 49 fiber under stress, manufacturing changes in Kevlar 49 and their effect on morphology and tensile strength, epoxy resin strain, composite creep, degradation of polyurethane coatings, and Titanium yield characteristics.

  9. Operations analysis (study 2.6). Volume 4: Computer specification; logistics of orbiting vehicle servicing (LOVES)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The logistics of orbital vehicle servicing computer specifications was developed and a number of alternatives to improve utilization of the space shuttle and the tug were investigated. Preliminary results indicate that space servicing offers a potential for reducing future operational and program costs over ground refurbishment of satellites. A computer code which could be developed to simulate space servicing is presented.

  10. A convoy of specialized support vehicles follow the Space Shuttle Endeavour as it is towed up a taxi

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A convoy of specialized support vehicles follow the Space Shuttle Endeavour as it is towed up a taxiway at NASA's Dryden Flight Research Center on Edwards Air Force Base, California, after landing on May 1, 2001. The two largest vehicles trailing the shuttle provide electrical power and air conditioning to the shuttle's systems during post-flight recovery operations. The Endeavour had just completed mission STS-100, an almost 12-day mission to install the Canadarm 2 robotic arm and deliver some three tons of supplies and experiments to the International Space Station. The landing was the 48th shuttle landing at Edwards since shuttle flights began in 1981. After post-flight processing, the Endeavour was mounted atop one of NASA's modified Boeing 747 shuttle carrier aircraft and ferried back to the Kennedy Space Center in Florida on May 8, 2001.

  11. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  12. Shuttle/Centaur Upper Stage Capability

    NASA Technical Reports Server (NTRS)

    Clark, H. J.

    1984-01-01

    A joint project to design, develop, procure, and produce Centaur upper stages for use with the Space Shuttle is discussed. A common Centaur G stage 6 meters (19.5 feet) in length is being jointly developed. A longer version designated Centaur G Prime is being developed by NASA to accomplish the Galileo and International Solar-Polar Mission flights in 1986. The Centaur G and G Prime will have the capability to place, respectively, approximately 4540 kilograms (10,000 pounds) and 5910 kilograms (13,000 pounds) into geosynchronous orbit from a standard Shuttle parking orbit of 278 kilometers (150 nautical miles) and Shuttle performance (lift) capability 29,500 kilograms (65,000 pounds). The advent of high energy upper stage capability in 1986 will permit space users and spacecraft developers to utilize spacecraft growth, stage combination concepts with storage modules, teleoperator systems, and other mission peculiar devices to satisfy complex mission demands. These capabilities should greatly enhance the usefulness of the space environment and stimulate mission planners toward conception of innovative means to meet ever increasing mission requirements.

  13. Lightning protection for shuttle propulsion elements

    NASA Technical Reports Server (NTRS)

    Goodloe, Carolyn C.; Giudici, Robert J.

    1991-01-01

    The results of lightning protection analyses and tests are weighed against the present set of waivers to the NASA lightning protection specification. The significant analyses and tests are contrasted with the release of a new and more realistic lightning protection specification, in September 1990, that resulted in an inordinate number of waivers. A variety of lightning protection analyses and tests of the Shuttle propulsion elements, the Solid Rocket Booster, the External Tank, and the Space Shuttle Main Engine, were conducted. These tests range from the sensitivity of solid propellant during shipping to penetration of cryogenic tanks during flight. The Shuttle propulsion elements have the capability to survive certain levels of lightning strikes at certain times during transportation, launch site operations, and flight. Changes are being evaluated that may improve the odds of withstanding a major lightning strike. The Solid Rocket Booster is the most likely propulsion element to survive if systems tunnel bond straps are improved. Wiring improvements were already incorporated and major protection tests were conducted. The External Tank remains vulnerable to burn-through penetration of its skin. Proposed design improvements include the use of a composite nose cone and conductive or laminated thermal protection system coatings.

  14. Integration and Test for Small Shuttle Payloads

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.; Day, John H. (Technical Monitor)

    2001-01-01

    Recommended approaches for shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of small shuttle payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of the NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration, and interface testing; and (7) Postflight operations. This paper is of special interest to those payload projects which have small budgets and few resources: That is, the truly 'faster, cheaper, better' projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.

  15. Integration and Test of Shuttle Small Payloads

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    2003-01-01

    Recommended approaches for space shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of shuttle small payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration and interface testing; (7) Postflight operations. This paper is of special interest to those payload projects that have small budgets and few resources: that is, the truly faster, cheaper, better projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.

  16. Multinomial logistic regression ensembles.

    PubMed

    Lee, Kyewon; Ahn, Hongshik; Moon, Hojin; Kodell, Ralph L; Chen, James J

    2013-05-01

    This article proposes a method for multiclass classification problems using ensembles of multinomial logistic regression models. A multinomial logit model is used as a base classifier in ensembles from random partitions of predictors. The multinomial logit model can be applied to each mutually exclusive subset of the feature space without variable selection. By combining multiple models the proposed method can handle a huge database without a constraint needed for analyzing high-dimensional data, and the random partition can improve the prediction accuracy by reducing the correlation among base classifiers. The proposed method is implemented using R, and the performance including overall prediction accuracy, sensitivity, and specificity for each category is evaluated on two real data sets and simulation data sets. To investigate the quality of prediction in terms of sensitivity and specificity, the area under the receiver operating characteristic (ROC) curve (AUC) is also examined. The performance of the proposed model is compared to a single multinomial logit model and it shows a substantial improvement in overall prediction accuracy. The proposed method is also compared with other classification methods such as the random forest, support vector machines, and random multinomial logit model. PMID:23611203

  17. Closeup View of the Space Shuttle Main Engine (SSME) 2044 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up View of the Space Shuttle Main Engine (SSME) 2044 mounted in a SSME Engine Handler in the SSME processing Facility at Kennedy Space Center. This view shows SSME 2044 with its expansion nozzle removed and an Engine Leak-Test Plug is set in the throat of the Main Combustion Chamber in the approximate center of the image, the insulated, High-Pressure Fuel Turbopump sits below that and the Low Pressure Oxidizer Turbopump Discharge Duct sits towards the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. Preliminary design of the Shuttle-C avionics recovery system

    NASA Technical Reports Server (NTRS)

    Brookfield, Morgan; Decker, Deron; Gilbert, Harold; Moore, David; Rist, Mark

    1989-01-01

    The analysis done in developing a recovery system for the Shuttle-C cargo vehicle is presented. This recovery system is comprised of a reentry capsule which houses the vehicles avionics. The avionics are contained in a single package which is extracted from the capsule by the parachute recovery system. The Shuttle-C will be able to satisfy NASA's design and mission requirements. Included, is an analysis of the structural, thermal protection, and parachute recovery systems. A discussion of the merits of the proposed system is also included.

  19. HAL/S programmer's guide. [for space shuttle program

    NASA Technical Reports Server (NTRS)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.

  20. STS-113 visitors watch the Space Shuttle Endeavour launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Watching the launch of Space Shuttle Endeavour on mission STS-113 are NASA Administrator Sean O'Keefe (left) and Associate Administrator of Public Affairs Glen Mahone. Liftoff occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey.

  1. Launch Vehicle Demonstrator Using Shuttle Assets

    NASA Technical Reports Server (NTRS)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration and test platform for the Orion Program. Critical spacecraft systems, re-entry and recovery systems, and launch abort systems of Orion could also be demonstrated in early test flights of the launch vehicle demo. Furthermore, an early demonstrator of this type would provide a stop-gap for retaining critical human capital and infrastructure while affording the current emerging generation of young engineers opportunity to work with and capture lessons learned from existing STS program offices and personnel, who were integral in the design and development of the Space Shuttle before these resources are no longer available. The objective of this study is to define candidate launch vehicle demonstration concepts that are based on Space Shuttle assets and determine their performance capabilities and how these demonstration vehicles could evolve to a heavy lift capability to low earth orbit.

  2. Refining, revising, augmenting, compiling and developing computer assisted instruction K-12 aerospace materials for implementation in NASA spacelink electronic information system

    NASA Technical Reports Server (NTRS)

    Blake, Jean A.

    1988-01-01

    The NASA Spacelink is an electronic information service operated by the Marshall Space Flight Center. The Spacelink contains extensive NASA news and educational resources that can be accessed by a computer and modem. Updates and information are provided on: current NASA news; aeronautics; space exploration: before the Shuttle; space exploration: the Shuttle and beyond; NASA installations; NASA educational services; materials for classroom use; and space program spinoffs.

  3. A perfect liftoff of Space Shuttle Endeavour on mission STS-100

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Flames from Space Shuttle Endeavour light up the clouds as the Shuttle races into space on mission STS-100. Liftoff of Endeavour on the ninth flight to the International Space Station occurred at 2:40:42 p.m. EDT. The 11- day mission will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator System and the UHF Antenna. The mission includes two planned spacewalks for installation of the SSRMS on the Station. Also onboard is the Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platforms.

  4. Electron shuttles in biotechnology.

    PubMed

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes. PMID:19833503

  5. Shuttle entry guidance revisited

    NASA Technical Reports Server (NTRS)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1992-01-01

    The Shuttle entry guidance concept is reviewed which is aimed at tracking a reference drag trajectory that leads to the specified range and velocity for the initiation of the terminal energy management phase. An approximate method of constructing the domain of attraction is proposed, and its validity is ascertained by simulation. An alternative guidance law yielding global exponential tracking in the absence of control saturation is derived using a feedback linearization method. It is noted that the alternative guidance law does not improve on the stability and performance of the current guidance law, for the operating domain and control capability of the Shuttle. It is suggested that the new guidance law with a larger operating domain and increased lift-to-drag capability would be superior.

  6. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  7. The Shuttle inertial system

    NASA Technical Reports Server (NTRS)

    Swingle, W. L.; Kang, Y.

    1982-01-01

    The Space Shuttle inertial system is built around a sensor assembly called the inertial measurement unit (IMU). The system includes a redundant set of three structurally integrated IMU's that operate in conjunction with parallel strung data system computers to provide precise attitude and velocity information to user system functions. The inertial system is actually a separate subsystem function integrated into the overall avionics system. Software resident in the system computers is the final link in the inertial system. The inertial software is comprised of two major sets, including a subsystem operating program (SOP) called the IMU SOP and redundancy management. Attention is given to system applications, systems performance, attitude sensitivities, the IMU platform, IMU thermal management, aspects of IMU calibration, and Shuttle program experience.

  8. Shuttle freezer conceptual design

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Russell, D. J.

    1975-01-01

    A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.

  9. Future plans for the NASA suborbital program

    NASA Astrophysics Data System (ADS)

    Shawhan, S. D.; Holtz, J. R.

    1987-08-01

    The development of more reliable heavy-lift balloons and a fine pointed gondola; the development of the Black Brant-12 rocket for auroral research; and the development of a collaborative Orbiting Payload Using Scout program are outlined. Through 1989 NASA will conduct a comprehensive program of aircraft, balloon, and rocket campaigns in conjunction with Shuttle and satellite measurements on the Supernovae 1987a.

  10. Shuttle imaging radar experiment.

    PubMed

    Elachi, C; Brown, W E; Cimino, J B; Dixon, T; Evans, D L; Ford, J P; Saunders, R S; Breed, C; Masursky, H; McCauley, J F; Schaber, G; Dellwig, L; England, A; Macdonald, H; Martin-Kaye, P; Sabins, F

    1982-12-01

    The shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean features were also observed, including large internal waves in the Andaman Sea. PMID:17790588

  11. INCO shuttle communication system

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok K.; Larsen, Ronald L.

    1989-01-01

    In a previous work we have defined a general architectural model for autonomous systems, which can be mapped easily to describe the functions of any automated system (SDAG-86-01). In this note, we use the model to describe the Shuttle communication system. First we briefly review the architecture, then we present the environment of our application, and finally we detail the specific function for each functional block of the architecture for that environment.

  12. Silicone Contamination Camera for Developed for Shuttle Payloads

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On many shuttle missions, silicone contamination from unknown sources from within or external to the shuttle payload bay has been a chronic problem plaguing experiment payloads. There is currently a wide range of silicone usage on the shuttle. Silicones are used to coat the shuttle tiles to enhance their ability to shed rain, and over 100 kg of RTV 560 silicone is used to seal white tiles to the shuttle surfaces. Silicones are also used in electronic components, potting compounds, and thermal control blankets. Efforts to date to identify and eliminate the sources of silicone contamination have not been highly successful and have created much controversy. To identify the sources of silicone contamination on the space shuttle, the NASA Lewis Research Center developed a contamination camera. This specially designed pinhole camera utilizes low-Earth-orbit atomic oxygen to develop a picture that identifies sources of silicone contamination on shuttle-launched payloads. The volatile silicone species travel through the aperture of the pinhole camera, and since volatile silicone species lose their hydrocarbon functionalities under atomic oxygen attack, the silicone adheres to the substrate as SiO_x. This glassy deposit should be spatially arranged in the image of the sources of silicone contamination. To view the contamination image, one can use ultrasensitive thickness measurement techniques, such as scanning variable-angle ellipsometry, to map the surface topography of the camera's substrate. The demonstration of a functional contamination camera would resolve the controversial debate concerning the amount and location of contamination sources, would allow corrective actions to be taken, and would demonstrate a useful tool for contamination documentation on future shuttle payloads, with near negligible effect on cost and weight.

  13. Processing near-infrared imagery of hypersonic space shuttle reentries

    NASA Astrophysics Data System (ADS)

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Osei-Wusu, Kwame; Horvath, Thomas J.; Zalameda, Joseph N.; Tomek, Deborah M.; Tietjen, Alan B.; Tack, Steve; Schwartz, Richard J.

    2010-05-01

    High-resolution, calibrated, near-infrared imagery of the Space Shuttle during reentry has been obtained by a US Navy NP-3D Orion aircraft as part of NASA's HYTHIRM (Hypersonic Thermodynamic InfraRed Measurements) project. The long-range optical sensor package is called Cast Glance. Three sets of imagery have been processed thus far: 1) STS- 119 when Shuttle Discovery was at 52 km away at Mach 8.4, 2) STS-125 when Shuttle Atlantis was 71 km away at Mach 14.3, and 3) STS-128 when Shuttle Discovery was at 80 km away at Mach 14.7. The challenges presented in processing a manually-tracked high-angular rate, air-to-air image data collection include management of significant frame-to-frame motions, motion-induced blurring, changing orientations and ranges, daylight conditions, and sky backgrounds (including some cirrus clouds). This paper describes processing the imagery to estimate Shuttle surface temperatures. Our goal is to reduce the detrimental effects due to motions (sensor and Shuttle), vibration, and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity variations. Our approach is to select and utilize only the highest quality images, register many cotemporal image frames to a single image frame, and then add the registered frames to improve image quality and reduce noise. These registered and averaged intensity images are converted to temperatures on the Shuttle's windward surface using a series of steps starting with preflight calibration data. Comparisons with thermocouples at different points along the space Shuttle and between the three reentries will be shown.

  14. Logistic Regression: Concept and Application

    ERIC Educational Resources Information Center

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  15. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better understanding of the mission assurance that MOD brings to commercial ventures to the ISS

  16. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares 1-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.

  17. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    NASA Technical Reports Server (NTRS)

    McArthur, J. Craig

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares I-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.

  18. NASA Network

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

  19. Innovation @ NASA

    NASA Technical Reports Server (NTRS)

    Roman, Juan A.

    2014-01-01

    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  20. NASA trend analysis procedures

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication is primarily intended for use by NASA personnel engaged in managing or implementing trend analysis programs. 'Trend analysis' refers to the observation of current activity in the context of the past in order to infer the expected level of future activity. NASA trend analysis was divided into 5 categories: problem, performance, supportability, programmatic, and reliability. Problem trend analysis uncovers multiple occurrences of historical hardware or software problems or failures in order to focus future corrective action. Performance trend analysis observes changing levels of real-time or historical flight vehicle performance parameters such as temperatures, pressures, and flow rates as compared to specification or 'safe' limits. Supportability trend analysis assesses the adequacy of the spaceflight logistics system; example indicators are repair-turn-around time and parts stockage levels. Programmatic trend analysis uses quantitative indicators to evaluate the 'health' of NASA programs of all types. Finally, reliability trend analysis attempts to evaluate the growth of system reliability based on a decreasing rate of occurrence of hardware problems over time. Procedures for conducting all five types of trend analysis are provided in this publication, prepared through the joint efforts of the NASA Trend Analysis Working Group.