These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Space Shuttle operational logistics plan  

NASA Technical Reports Server (NTRS)

The Kennedy Space Center plan for logistics to support Space Shuttle Operations and to establish the related policies, requirements, and responsibilities are described. The Directorate of Shuttle Management and Operations logistics responsibilities required by the Kennedy Organizational Manual, and the self-sufficiency contracting concept are implemented. The Space Shuttle Program Level 1 and Level 2 logistics policies and requirements applicable to KSC that are presented in HQ NASA and Johnson Space Center directives are also implemented.

Botts, J. W.

1983-01-01

2

Continual Improvement in Shuttle Logistics  

NASA Technical Reports Server (NTRS)

It has been said that Continual Improvement (CI) is difficult to apply to service oriented functions, especially in a government agency such as NASA. However, a constrained budget and increasing requirements are a way of life at NASA Kennedy Space Center (KSC), making it a natural environment for the application of CI tools and techniques. This paper describes how KSC, and specifically the Space Shuttle Logistics Project, a key contributor to KSC's mission, has embraced the CI management approach as a means of achieving its strategic goals and objectives. An overview of how the KSC Space Shuttle Logistics Project has structured its CI effort and examples of some of the initiatives are provided.

Flowers, Jean; Schafer, Loraine

1995-01-01

3

A Probabilistic Tool that Aids Logistics Engineers in the Establishment of High Confidence Repair Need-Dates at the NASA Shuttle Logistics Depot  

NASA Technical Reports Server (NTRS)

The NASA Shuttle Logistics Depot (NSLD) is tasked with the responsibility for repair and manufacture of Line Replaceable Unit (LRU) hardware and components to support the Space Shuttle Orbiter. Due to shrinking budgets, cost effective repair of LRU's becomes a primary objective. To achieve this objective, is imperative that resources be assigned to those LRU's which have the greatest expectation of being needed as a spare. Forecasting the times at which spares are needed requires consideration of many significant factors including: failure rate, flight rate, spares availability, and desired level of support, among others. This paper summarizes the results of the research and development work that has been accomplished in producing an automated tool that assists in the assignment of effective repair start-times for LRU's at the NSLD. This system, called the Repair Start-time Assessment System (RSAS), uses probabilistic modeling technology to calculate a need date for a repair that considers the current repair pipeline status, as well as, serviceable spares and projections of future demands. The output from the system is a date for beginning the repair that has significantly greater confidence (in the sense that a desired probability of support is ensured) than times produced using other techniques. Since an important output of RSAS is the longest repair turn-around time that will ensure a desired probability of support, RSAS has the potential for being applied to operations at any repair depot where spares are on-hand and repair start-times are of interest. In addition, RSAS incorporates tenants of Just-in-Time (JIT) techniques in that the latest repair start-time (i.e., the latest time at which repair resources must be committed) may be calculated for every failed unit This could reduce the spares inventory for certain items, without significantly increasing the risk of unsatisfied demand.

Bullington, J. V.; Winkler, J. C.; Linton, D. G.; Khajenoori, S.

1995-01-01

4

NASA revises shuttle schedule  

NASA Astrophysics Data System (ADS)

The new schedule for Space Shuttle missions and expendable launch vehicles (ELV's) calls for a 7-month delay in sending up the Hubble Space Telescope. NASA was forced to put off launching the telescope until February 1990 to keep the Magellan and Galileo missions within their narrow launch windows. The first post-Challenger shuttle launch is now scheduled for late this month. Discovery's most recent delays were due to a hydrogen leak discovered July 29 that has still not been corrected and an engine valve malfunction during an August 4 test fire.

Wainger, Lisa A.

5

NASA Shuttle-Mir Web  

NSDL National Science Digital Library

The Shuttle/Mir site describes the cooperation, investigation, and operation components of the Shuttle/Mir project. Visitors can also find the latest space station news, information on the crew, videos, photos, and tracking information (through Hot Borsht). NASA related sites describe current happenings at NASA and also provide homepages of NASA missions including the Cassini space probe, the Mars Global Surveyor and, most recently, the launch of the Columbia space shuttle. Space exploration provides clues to how the solar system was formed, why life exists on earth and not on other known planets, and what the structures of the universe, matter, and energy are.

1998-01-01

6

NASA Space Rocket Logistics Challenges  

NASA Technical Reports Server (NTRS)

The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2017. SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges. This presentation will address the SLS challenges, along with the analysis and decisions to mitigate the threats posed by each.

Bramon, Chris; Neeley, James R.; Jones, James V.; Watson, Michael D.; Inman, Sharon K.; Tuttle, Loraine

2014-01-01

7

NASA Space Rocket Logistics Challenges  

NASA Technical Reports Server (NTRS)

The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

2014-01-01

8

Logistics Lessons Learned in NASA Space Flight  

NASA Technical Reports Server (NTRS)

The Vision for Space Exploration sets out a number of goals, involving both strategic and tactical objectives. These include returning the Space Shuttle to flight, completing the International Space Station, and conducting human expeditions to the Moon by 2020. Each of these goals has profound logistics implications. In the consideration of these objectives,a need for a study on NASA logistics lessons learned was recognized. The study endeavors to identify both needs for space exploration and challenges in the development of past logistics architectures, as well as in the design of space systems. This study may also be appropriately applied as guidance in the development of an integrated logistics architecture for future human missions to the Moon and Mars. This report first summarizes current logistics practices for the Space Shuttle Program (SSP) and the International Space Station (ISS) and examines the practices of manifesting, stowage, inventory tracking, waste disposal, and return logistics. The key findings of this examination are that while the current practices do have many positive aspects, there are also several shortcomings. These shortcomings include a high-level of excess complexity, redundancy of information/lack of a common database, and a large human-in-the-loop component. Later sections of this report describe the methodology and results of our work to systematically gather logistics lessons learned from past and current human spaceflight programs as well as validating these lessons through a survey of the opinions of current space logisticians. To consider the perspectives on logistics lessons, we searched several sources within NASA, including organizations with direct and indirect connections with the system flow in mission planning. We utilized crew debriefs, the John Commonsense lessons repository for the JSC Mission Operations Directorate, and the Skylab Lessons Learned. Additionally, we searched the public version of the Lessons Learned Information System (LLIS) and verified that we received the same result using the internal version of LLIS for our logistics lesson searches. In conducting the research, information from multiple databases was consolidated into a single spreadsheet of 300 lessons learned. Keywords were applied for the purpose of sorting and evaluation. Once the lessons had been compiled, an analysis of the resulting data was performed, first sorting it by keyword, then finding duplication and root cause, and finally sorting by root cause. The data was then distilled into the top 7 lessons learned across programs, centers, and activities.

Evans, William A.; DeWeck, Olivier; Laufer, Deanna; Shull, Sarah

2006-01-01

9

NASA/CP--2006214202 NASA Space Exploration Logistics Workshop  

E-print Network

NASA/CP--2006­214202 NASA Space Exploration Logistics Workshop Proceedings January 17-18, 2006 Hanover, MD 21076-1320 #12;NASA/CP--2006­214202 NASA Space Exploration Logistics Workshop Proceedings January 17-18, 2006 Washington, DC The first Space Exploration Logistics Workshop, hosted by MIT and SOLE

de Weck, Olivier L.

10

NASA Space Exploration Logistics Workshop Proceedings  

NASA Technical Reports Server (NTRS)

As NASA has embarked on a new Vision for Space Exploration, there is new energy and focus around the area of manned space exploration. These activities encompass the design of new vehicles such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV) and the identification of commercial opportunities for space transportation services, as well as continued operations of the Space Shuttle and the International Space Station. Reaching the Moon and eventually Mars with a mix of both robotic and human explorers for short term missions is a formidable challenge in itself. How to achieve this in a safe, efficient and long-term sustainable way is yet another question. The challenge is not only one of vehicle design, launch, and operations but also one of space logistics. Oftentimes, logistical issues are not given enough consideration upfront, in relation to the large share of operating budgets they consume. In this context, a group of 54 experts in space logistics met for a two-day workshop to discuss the following key questions: 1. What is the current state-of the art in space logistics, in terms of architectures, concepts, technologies as well as enabling processes? 2. What are the main challenges for space logistics for future human exploration of the Moon and Mars, at the intersection of engineering and space operations? 3. What lessons can be drawn from past successes and failures in human space flight logistics? 4. What lessons and connections do we see from terrestrial analogies as well as activities in other areas, such as U.S. military logistics? 5. What key advances are required to enable long-term success in the context of a future interplanetary supply chain? These proceedings summarize the outcomes of the workshop, reference particular presentations, panels and breakout sessions, and record specific observations that should help guide future efforts.

deWeek, Oliver; Evans, William A.; Parrish, Joe; James, Sarah

2006-01-01

11

NASA nixes Centaur launches from shuttle  

Microsoft Academic Search

James C. Fletcher, the administrator of the National Aeronautics and Space Administration (NASA) announced on June 19, 1986, that because of safety considerations, the space shuttle will not be used to launch the Centaur Upper Stage. The Ulysses and Galileo missions, which were originally to have been launched in May 1986, would have been launched from the shuttle with the

Judith A. Katzoff

1986-01-01

12

NESTA: NASA Engineering Shuttle Telemetry Agent  

NASA Technical Reports Server (NTRS)

The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed an agent based tool to monitor the Space Shuttle's ground processing telemetry stream. The application, the NASA Engineering Shuttle Telemetry Agent, increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when predefined criteria have been met. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules of this spaceport domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This paper discusses the rule-based telemetry agent used for Space Shuttle ground processing and explains the problem domain, development of the agent software, benefits of AT technology, and deployment and sustaining engineering of the product.

Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Smith, Kevin E.; Boloni, Ladislau

2005-01-01

13

Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan  

NASA Technical Reports Server (NTRS)

The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

1974-01-01

14

NASA newsletters for the Weber Student Shuttle Involvement Project  

NASA Technical Reports Server (NTRS)

Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix.

Morey-Holton, E. R.; Sebesta, P. D.; Ladwig, A. M.; Jackson, J. T.; Knott, W. M., III

1988-01-01

15

NASA's Original Shuttle Carrier Departs Dryden - Duration: 84 seconds.  

NASA Video Gallery

NASA's Space Shuttle Carrier Aircraft (SCA) No. 905, departed NASA's Dryden Flight Research Center on Oct. 24, 2012 for the final time, ending a 38-year association with the NASA field center at Ed...

16

NASA Shuttle Training Aircraft flight simulation overview  

NASA Technical Reports Server (NTRS)

The Shuttle Training Aircraft (STA) is a variable stability, variable control law flying simulator used by NASA/JSC to train astronauts in the final landing phase of a Space Shuttle Orbiter. A general outline is given for the STA flight simulation system. An overview is given of the software generation and verification process through the Advanced Validation System (AVAS). The flight test techniques for software verification will be reviewed and the process for releasing the software for flight training will be covered. The astronaut STA training syllabus is examined. Parameter matching with the Orbiter in the final approach phase of de-orbit and landing is briefly examined. Simulation performance will be assessed against flight data, performance measurement, and cue synchronization.

Justiz, Charles R.; Patel, Suresh M.

1988-01-01

17

NASA Space Shuttle Program: Shuttle Environmental Assurance (SEA) Initiative  

NASA Technical Reports Server (NTRS)

The first Space Shuttle flight was in 1981 and the fleet was originally expected to be replaced with a new generation vehicle in the early 21st century. Space Shuttle Program (SSP) elements proactively address environmental and obsolescence concerns and continue to improve safety and supportability. The SSP manager created the Shuttle Environmental Assurance (SEA) Initiative in 2000. SEA is to provide an integrated approach for the SSP to promote environmental excellence, proactively manage materials obsolescence, and optimize associated resources.

Glover, Steve E.; McCool, Alex (Technical Monitor)

2002-01-01

18

NASA Now: Shuttle Engineering Challenge - Duration: 6:08.  

NASA Video Gallery

In this installment of NASA Now, you??ll meet Guidance, Navigation and Flight Controls engineer George Hatcher, who talks about the complex system needed to fly the space shuttle at extreme speeds...

19

NASA/TP-2006-214203 Logistics Lessons Learned in NASA Space Flight  

E-print Network

NASA/TP-2006-214203 Logistics Lessons Learned in NASA Space Flight William A. (Andy) Evans, United 2006 #12;NASA STI Program ... in Profile Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part

de Weck, Olivier L.

20

Shuttle Spinoffs www.nasa.gov  

E-print Network

, and home video. Prosthesis Material: Foam insulation used to protect the shuttle's external tank is now racecars shield drivers from extreme engine heat using materials from the same thermal protection system available to produce master molds for prosthetics. Replacing heavy, fragile plaster, this new material

21

Oshkosh Logistic Management and Public Relations Responsibilities at NASA Langley  

NASA Technical Reports Server (NTRS)

The central focus of my study for the summer of 1995 was to provide logistical support to Margaret Hunt, the logistics manager of the OSHKOSH airshow. In this capacity responsibilities included making arrangements for participants from NASA centers and SBIR companies for their stay in Wisconsin, while visiting the airshow, and managing staff for exhibits and the aerospace theater. A secondary purpose was to serve in other public service capacities by writing news releases, fact sheets, announcements, and articles for the Researcher News.

Beck, Danielle

1995-01-01

22

International aerospace engineering: NASA shuttle and European Spacelab  

NASA Technical Reports Server (NTRS)

NASA negotiations and contractual arrangements involving European space research organizations' participation in manned space operations and efforts in building Spacelab for the U.S. Reusable Space Shuttle are discussed. Some of the diplomatic and technical collaboration involved in the international effort is reviewed.

Bilstein, R. E.

1981-01-01

23

NASA's Implementation Plan for Space Shuttle Return to Flight and Beyond June 3, 2005  

E-print Network

#12;#12;NASA's Implementation Plan for Space Shuttle Return to Flight and Beyond June 3, 2005 NASA plan is available at www.nasa.gov #12;#12;NASA's Implementation Plan for Space Shuttle Return to Flight and Beyond June 3, 2005 Tenth Edition Summary June 3, 2005 This edition of NASA's Implementation Plan

24

NASA management of the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The management system and management technology described have been developed to meet stringent cost and schedule constraints of the Space Shuttle Program. Management of resources available to this program requires control and motivation of a large number of efficient creative personnel trained in various technical specialties. This must be done while keeping track of numerous parallel, yet interdependent activities involving different functions, organizations, and products all moving together in accordance with intricate plans for budgets, schedules, performance, and interaction. Some techniques developed to identify problems at an early stage and seek immediate solutions are examined.

Peters, F.

1975-01-01

25

NASA's Shuttle Carrier Aircraft 911's Final Flight - Duration: 1:35.  

NASA Video Gallery

NASA 911, one of NASA's two modified Boeing 747 space shuttle carrier aircraft, flew its final flight Feb. 8, a short hop from NASA's Dryden Flight Research Center at Edwards Air Force Base to the ...

26

NASA Advanced Explorations Systems: Concepts for Logistics to Living  

NASA Technical Reports Server (NTRS)

The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project strives to enable a largely mission-independent cradle-to-grave-to-cradle approach to minimize logistics contributions to total mission architecture mass. The goals are to engineer logistics materials, common crew consumables, and container configurations to meet the following five basic goals: 1. Minimize intrinsic logistics mass and improve ground logistics flexibility. 2. Allow logistics components to be directly repurposed for on-orbit non-logistics functions (e.g., crew cabin outfitting) thereby indirectly reducing mass/volume. 3. Compact and process logistics that have not been directly repurposed to generate useful on-orbit components and/or compounds (e.g., radiation shielding, propellant, other usable chemical constituents). 4. Enable long-term stable storage and disposal of logistics end products that cannot be reused or repurposed (e.g., compaction for volume reduction, odor control, and maintenance of crew cabin hygienic conditions). 5. Allow vehicles in different mission phases to share logistics resources. This paper addresses the work being done to meet the second goal, the direct repurposing of logistics components to meet other on-orbit needs, through a strategy termed Logistics to Living (L2L). L2L has several areas but can be defined as repurposing or converting logistical items (bags, containers, foam, components, etc.) into useful crew items or life support augmentation on-orbit after they have provided their primary logistics function. The intent is that by repurposing items, dedicated crew items do not have to be launched and overall launch mass is decreased. For non-LEO missions, the vehicle interior volume will be relatively fixed so L2L will enable this volume to be used more effectively through reuse and rearrangement of logistical components. Past work in the area of L2L has already conceptually developed several potential technologies [Howe, Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

2012-01-01

27

Developing a Logistics Data Process for Support Equipment for NASA Ground Operations  

NASA Technical Reports Server (NTRS)

The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of the design of the equipment can make such operational effort unnecessary. Finally, this paper addresses processes of tying resources to a timeline of tasks performed in ground operations: this enables various overarching analyses, e.g., a summarization of all resources used for a given piece of equipment. Quality Control of data will also be discussed: importing and exporting data from product teams, including spreadsheets-todatabase or data exchange between databases.

Chakrabarti, Suman

2010-01-01

28

Formalizing New Navigation Requirements for NASA's Space Shuttle  

NASA Technical Reports Server (NTRS)

We describe a recent NASA-sponsored pilot project intended to gauge the effectiveness of using formal methods in Space Shuttle software requirements analysis. Several Change Requests (CRs) were selected as promising targets to demonstrate the utility of formal methods in this demanding application domain. A CR to add new navigation capabilities to the Shuttle, based on Global Positioning System (GPS) technology, is the focus of this industrial usage report. Portions of the GPS CR were modeled using the language of SRI's Prototype Verification System (PVS). During a limited analysis conducted on the formal specifications, numerous requirements issues were discovered. We present a summary of these encouraging results and conclusions we have drawn from the pilot project.

DiVito, Ben L.

1996-01-01

29

NASA Flight Planning Branch Space Shuttle Lessons Learned  

NASA Technical Reports Server (NTRS)

Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning.

Clevenger, Jennifer D.; Bristol, Douglas J.; Whitney, Gregory R.; Blanton, Mark R.; Reynolds, F. Fisher, III

2011-01-01

30

Software Architecture of the NASA Shuttle Ground Operations Simulator - SGOS  

NASA Technical Reports Server (NTRS)

The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. It is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,000 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.

Cook, Robert P.; Lostroscio, Charles T.

2005-01-01

31

Simulation of Range Safety for the NASA Space Shuttle  

NASA Technical Reports Server (NTRS)

This paper describes a simulation environment that seamlessly combines a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this simulation environment represent the different systems that must interact in order to determine the Expectation of casualties (E(sub c)) resulting from the toxic effects of the gas dispersion that occurs after a disaster affecting a Space Shuttle within 120 seconds of lift-off. The utilization of the Space Shuttle reliability models, trajectory models, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system are all integrated to create this environment. This simulation environment can help safety managers estimate the population at risk in order to plan evacuation, make sheltering decisions, determine the resources required to provide aid and comfort, and mitigate damages in case of a disaster. This simulation environment may also be modified and used for the landing phase of a space vehicle but will not be discussed in this paper.

Rabelo, Luis; Sepulveda, Jose; Compton, Jeppie; Turner, Robert

2005-01-01

32

Status of Thermal NDT of Space Shuttle Materials at NASA  

NASA Technical Reports Server (NTRS)

Since the Space Shuttle Columbia accident, NASA has focused on improving advanced nondestructive evaluation (NDE) techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.

Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.

2006-01-01

33

Status of Thermal NDT of Space Shuttle Materials at NASA  

NASA Technical Reports Server (NTRS)

Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter's wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.

Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Rweinhardt, Walter W.

2006-01-01

34

Status of Thermal NDT of Space Shuttle Materials at NASA  

NASA Technical Reports Server (NTRS)

Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.

Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.

2007-01-01

35

Techniques and Tools of NASA's Space Shuttle Columbia Accident Investigation  

NASA Technical Reports Server (NTRS)

The Space Shuttle Columbia accident investigation was a fusion of many disciplines into a single effort. From the recovery and reconstruction of the debris, Figure 1, to the analysis, both destructive and nondestructive, of chemical and metallurgical samples, Figure 2, a multitude of analytical techniques and tools were employed. Destructive and non-destructive testing were utilized in tandem to determine if a breach in the left wing of the Orbiter had occurred, and if so, the path of the resultant high temperature plasma flow. Nondestructive analysis included topometric scanning, laser mapping, and real-time radiography. These techniques were useful in constructing a three dimensional virtual representation of the reconstruction project, specifically the left wing leading edge reinforced carbon/carbon heat protectant panels. Similarly, they were beneficial in determining where sampling should be performed on the debris. Analytic testing included such techniques as Energy Dispersive Electron Microprobe Analysis (EMPA), Electron Spectroscopy Chemical Analysis (ESCA), and X-Ray dot mapping; these techniques related the characteristics of intermetallics deposited on the leading edge of the left wing adjacent to the location of a suspected plasma breach during reentry. The methods and results of the various analyses, along with their implications into the accident, are discussed, along with the findings and recommendations of the Columbia Accident Investigation Board. Likewise, NASA's Return To Flight efforts are highlighted.

McDanels, Steve J.

2005-01-01

36

The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle  

NASA Technical Reports Server (NTRS)

This significant new study of the decision to build the Space Shuttle explains the Shuttle's origins and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the Shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government. The weighty policy decision to build the Shuttle represents the first component of the broader story: future NASA volumes will cover the Shuttle's development and operational histories.

Heppenheimer, T. A.

1999-01-01

37

Environmentally-driven Materials Obsolescence: Material Replacements and Lessons Learned from NASA's Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program was terminated in 2011 with the last flight of the Shuttle Endeavour. During the 30 years of its operating history, the number of domestic and international environmental regulations increased rapidly and resulted in materials obsolescence risks to the program. Initial replacement efforts focused on ozone depleting substances. As pressure from environmental regulations increased, Shuttle worked on the replacement of heavy metals. volatile organic compounds and hazardous air pollutants. Near the end of the program. Shuttle identified potential material obsolescence driven by international regulations and the potential for suppliers to reformulate materials. During the Shuttle Program a team focused on environmentally-driven materials obsolescence worked to identify and mitigate these risks. Lessons learned from the Shuttle experience can be applied to new NASA Programs as well as other high reliability applications.

Meinhold, Anne

2013-01-01

38

One of NASA's Two Modified Boeing 747 Shuttle Carrier (SCA) Aircraft in Flight over NASA Dryden Flig  

NASA Technical Reports Server (NTRS)

One of NASA's Boeing 747 Shuttle Carrier Aircraft flies over the Dryden Flight Research Center main building at Edwards Air Force Base, Edwards, California, in May 1999. NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are: o Three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached o Two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability o Removal of all interior furnishings and equipment aft of the forward No. 1 doors o Instrumentation used by SCA flight crews and engineers to monitor orbiter electrical loads during the ferry flights and also during pre- and post-ferry flight operations. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Tex. NASA 905 NASA 905 was the first SCA. It was obtained from American Airlines in 1974. Shortly after it was accepted by NASA it was flown in a series of wake vortex research flights at the Dryden Flight Research Center in a study to seek ways of reducing turbulence produced by large aircraft. Pilots flying as much as several miles behind large aircraft have encountered wake turbulence that have caused control problems. The NASA study helped the Federal Aviation Administration modify flight procedures for commercial aircraft during airport approaches and departures. Following the wake vortex studies, NASA 905 was modified by Boeing to its present SCA configuration and the aircraft was returned to Dryden for its role in the 1977 Space Shuttle Approach and Landing Tests (ALT). This series of eight captive and five free flights with the orbiter prototype Enterprise, in addition to ground taxi tests, validated the aircraft's performance as an SCA, in addition to verifying the glide and landing characteristics of the orbiter configuration -- paving the way for orbital flights. A flight crew escape system, consisting of an exit tunnel extending from the flight deck to a hatch in the bottom of the fuselage, was installed during the modifications. The system also included a pyrotechnic system to activate the hatch release and cabin window release mechanisms. The flight crew escape system was removed from the NASA 905 following the successful completion of the ALT program. NASA 905 was the only SCA used by the space shuttle program until November 1990, when NASA 911 was delivered as an SCA. Along with ferrying Enterprise and the flight-rated orbiters between the launch and landing sites and other locations, NASA 905 also ferried Enterprise to Europe for display in England and at the Paris Air Show. NASA 911 The second SCA is designated NASA 911. It was obtained by NASA from Japan Airlines (JAL) in 1989. It was also modified by Boeing Corporation. It was delivered to NASA 20 November 1990.

1999-01-01

39

The Space Shuttle Atlantis centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research  

NASA Technical Reports Server (NTRS)

The Space Shuttle Atlantis is centered in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center at Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

2001-01-01

40

The Space Shuttle Endeavour receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavour receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, May 1, 2001. Once servicing was complete, one of NASA's two 747 Shuttle Carrier Aircraft, No. 905, was readied to ferry Endeavour back to the Kennedy Space Center, FL.

2001-01-01

41

An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education  

NASA Astrophysics Data System (ADS)

This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

Lulla, Kamlesh

2012-07-01

42

International Space Station (ISS) Gas Logistics Planning in the Post Shuttle Era  

NASA Technical Reports Server (NTRS)

Over its life the International Space Station (ISS) has received gas (nitrogen, oxygen, and air) from various sources. Nitrogen and oxygen are used in the cabin to maintain total pressure and oxygen partial pressures within the cabin. Plumbed nitrogen is also required to support on-board experiments and medical equipment. Additionally, plumbed oxygen is required to support medical equipment as well as emergency masks and most importantly EVA support. Gas are supplied to ISS with various methods and vehicles. Vehicles like the Progress and ATV deliver nitrogen (both as a pure gas and as air) and oxygen via direct releases into the cabin. An additional source of nitrogen and oxygen is via tanks on the ISS Airlock. The Airlock nitrogen and oxygen tanks can deliver to various users via pressurized systems that run throughout the ISS except for the Russian segment. Metabolic oxygen is mainly supplied via cabin release from the Elektron and Oxygen Generator Assembly (OGA), which are water electrolyzers. As a backup system, oxygen candles (Solid Fuel Oxygen Generators-SFOGs) supply oxygen to the cabin as well. In the past, a major source of nitrogen and oxygen has come from the Shuttle via both direct delivery to the cabin as well as to recharge the ISS Airlock tanks. To replace the Shuttle capability to recharge the ISS Airlock tanks, a new system was developed called Nitrogen/Oxygen Recharge System (NORS). NIORS consists of high pressure (7000 psi) tanks which recharge the ISS Airlock tanks via a blowdown fill for both nitrogen and oxygen. NORS tanks can be brought up on most logistics vehicles such as the HTV, COTS, and ATV. A proper balance must be maintained to insure sufficient gas resources are available on-orbit so that all users have the required gases via the proper delivery method (cabin and/or plumbed).

Leonard, Daniel J.; Cook, Anthony J.; Lehman, Daniel A.

2011-01-01

43

Research pressure instrumentation for NASA Space Shuttle main engine  

NASA Technical Reports Server (NTRS)

The development of prototype pressure transducers which are targeted to meet the Space Shuttle Main Engine SSME performance design goals is discussed. The fabrication, testing and delivery of 10 prototype units is examined. Silicon piezoresistive strain sensing technology is used to achieve the objectives of advanced state-of-the-art pressure sensors in terms of reliability, accuracy and ease of manufacture. Integration of multiple functions on a single chip is the key attribute of this technology.

Anderson, P. J.; Nussbaum, P.; Gustafson, G.

1984-01-01

44

NESTA: NASA Engineering Shuttle Telemetry Agent Glenn S. Semmel  

E-print Network

Orlando, Florida, 32816 USA Abstract The Spaceport Processing Systems Branch at NASA Kennedy Space Center of this spaceport domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable

Bölöni, Ladislau L

45

Actinide Sub-Actinide Flux Ratio Estimated from NASA Challenger Space Shuttle Borne Passive Detector Experiment  

Microsoft Academic Search

A video trace analysis of 117 ultra heavy cosmic nuclei detected by NASA space shuttle borne lexan detectors has been presented here. The major axes of the elliptical track etch pits in the long hour etched detectors have been measured using a Hund microscope computerized for the measurements using a Pentium. The major axes distribution exhibits the existence of ultra

Basudhara Basu; D. P. Bhattacharyya; S. Biswas; D. O'Sullivan; A. Thompson

1998-01-01

46

Managing NASA's International Space Station Logistics and Maintenance Program  

NASA Technical Reports Server (NTRS)

The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.

Butina, Anthony

2001-01-01

47

Research pressure instrumentation for NASA space shuttle main engine  

NASA Technical Reports Server (NTRS)

The breadboard feasibility model of a silicon piezoresistive pressure transducer suitable for space shuttle main engine (SSME) applications was demonstrated. The development of pressure instrumentation for the SSME was examined. The objective is to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. Effective utilization of the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors for reliability, accuracy and ease of manufacture is analyzed. Integration of multiple functions on a single chip is the key attribute of the technology.

Anderson, P. J.; Nussbaum, P.; Gustafson, G.

1985-01-01

48

From Ship to Shuttle: NASA Orbiter Naming Program, September 1988 - May 1989  

NASA Technical Reports Server (NTRS)

By congressional action in 1987, the National Aeronautics and Space Administration (NASA) was authorized to provide an opportunity for American school students to name the new Space Shuttle orbiter being built to replace the Challenger. The Council of Chief State School Officers (CCSSO), an education organization representing the chief education officials of the nation, was asked by NASA to assist in the development and administration of this exciting and important educational activity. A selection of interdisciplinary activities related to the Space Shuttle that were designed by students for the NASA Orbiter-Naming Program are presented. The national winner's project is first followed by other projects listed in alphabetical order by state, and a bibliography compiled from suggestions by the state-level winning teams.

1991-01-01

49

From Ship to Shuttle: NASA Orbiter Naming Program, September 1988 - May 1989  

NASA Astrophysics Data System (ADS)

By congressional action in 1987, the National Aeronautics and Space Administration (NASA) was authorized to provide an opportunity for American school students to name the new Space Shuttle orbiter being built to replace the Challenger. The Council of Chief State School Officers (CCSSO), an education organization representing the chief education officials of the nation, was asked by NASA to assist in the development and administration of this exciting and important educational activity. A selection of interdisciplinary activities related to the Space Shuttle that were designed by students for the NASA Orbiter-Naming Program are presented. The national winner's project is first followed by other projects listed in alphabetical order by state, and a bibliography compiled from suggestions by the state-level winning teams.

1991-10-01

50

NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions  

NASA Technical Reports Server (NTRS)

The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking convened on May 24 and 25, 1994. Based on the meetings, the Task Force made the following recommendations: at a minimum, the mission commander and payload commander for all subsequent Shuttle-Mir missions should be named at least 18 months in advance of the scheduled launch date; in order to derive early operational experience in advance of the first Mir docking mission, the primary objective of STS-63 should be Mir rendezvous and proximity operations; and if at all possible, the launch date for STS-63 should be moved forward.

1994-01-01

51

Five NASA astronauts and two international payload specialists take a break from a Shuttle duration  

NASA Technical Reports Server (NTRS)

STS-78 ONBOARD VIEW --- Five NASA astronauts and two international payload specialists take a break from a Shuttle duration record-breaker flight to pose for the traditional inflight crew portrait. The photograph should be oriented with payload commander Susan J. Helms at bottom center. Others, clockwise, are French payload specialist Jean-Jacques Favier, Canadian payload specialist Robert B. Thirsk; and astronauts Kevin R. Kregel, pilot; and Charles J. (Chuck) Brady and Richard M. Linnehan, both mission specialists, and Terence T. (Tom) Henricks, mission commander. The crew chose the Life and Microgravity Spacelab (LMS-1) Science Module, situated in the Space Shuttle Columbias cargo bay, for the portrait setting.

1996-01-01

52

NASA's Space Shuttle Columbia: Synopsis of the Report of the Columbia Accident Investigation Board  

NASA Technical Reports Server (NTRS)

NASA's space shuttle Columbia broke apart on February 1, 2003 as it returned to Earth from a 16-day science mission. All seven astronauts aboard were killed. NASA created the Columbia Accident Investigation Board (CAIB), chaired by Adm. (Ret.) Harold Gehman, to investigate the accident. The Board released its report (available at [http://www.caib.us]) on August 26, 2003, concluding that the tragedy was caused by technical and organizational failures. The CAIB report included 29 recommendations, 15 of which the Board specified must be completed before the shuttle returns to flight status. This report provides a brief synopsis of the Board's conclusions, recommendations, and observations. Further information on Columbia and issues for Congress are available in CRS Report RS21408. This report will not be updated.

Smith, Marcia S.

2003-01-01

53

Second Shuttle Join NASA's STS Fleet: Challenger Launches First New Tracking Satellite  

NASA Technical Reports Server (NTRS)

NASA made a major stride in readying a second delivery vehicle for its Space Transportation System (STS) fleet with the perfect landing of Shuttle Orbiter Challenger at Edwards Air Force Base, California, April 9, 1983. Besides being the first flight test of Challenger's performance, the mission marked the orbiting of the first spacecraft in NASA's new Tracking and Data Relay Satellite System (TDRSS). The new family of orbiting space communications platforms is essential to serve future Shuttle missions. Although the Inertial Upper Stage (IUS) second stage engine firing failed to place TDRS in its final 35,888 kilometer (22,300 mile) geosynchronous orbit, its release from the orbiter cargo bay went as planned. Launch officials were confident they can achieve its planned orbit in a matter of weeks.

1983-01-01

54

The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet  

NASA Technical Reports Server (NTRS)

The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.

2000-01-01

55

NASA Shuttle Orbiter Reinforced Carbon Carbon (RCC) Crack Repair Arc-Jet Testing  

NASA Technical Reports Server (NTRS)

This NASA study demonstrates the capability for testing NOAX-repaired RCC crack models in high temperature environments representative of Shuttle Orbiter during reentry. Analysis methods have provided correlation of test data with flight predictions. NOAX repair material for RCC is flown on every STS flight in the event such a repair is needed. Two final test reports are being generated on arc-jet results (both calibration model runs and repaired models runs).

Clark, ShawnDella; Larin, Max; Rochelle, Bill

2007-01-01

56

The epistemic integrity of NASA practices in the Space Shuttle Program.  

PubMed

This article presents an account of epistemic integrity and uses it to demonstrate that the epistemic integrity of different kinds of practices in NASA's Space Shuttle Program was limited. We focus on the following kinds of practices: (1) research by working engineers, (2) review by middle-level managers, and (3) communication with the public. We argue that the epistemic integrity of these practices was undermined by production pressure at NASA, i.e., the pressure to launch an unreasonable amount of flights per year. Finally, our findings are used to develop some potential strategies to protect epistemic integrity in aerospace science. PMID:23432770

De Winter, Jan; Kosolosky, Laszlo

2013-01-01

57

Griffin Lifts Off at NASA With Calls for Speeding Shuttle Replacement, Reopening Hubble Decision  

NASA Technical Reports Server (NTRS)

Michael D. Griffin launched his tenure as NASA's 11th administrator on a fast track, using his "emergency" confiimation by the U.S. Senate to plug himself into space shuttle return-to-flight decision-making and urging faster development of the shuttle replacement. He also deftly sidestepped the treacherous issue of letting the aging Hubble Space Telescope die that was left behind by former Administrator Sean O'Keefe. Griffin told the Senate Commerce, Science and Transportation Committee that he would take another look at a shuttle mission to service the telescope, but not until the redesigned shuttle system makes a couple of test flights. Griffin made clear at his confirmation hearing Apr. 12 that he has long supported the ideas embodied in President Bush s push to move human exploration out of low Earth orbit, while finishing the International Space Station and retiring the space shuttle as soon as possible. And he showed right out of the blocks that his technical training and management background should serve him well in implementing Bush's directives.

Morring, Frank, Jr.

2005-01-01

58

The NASA fuel cell upgrade program for the Space Shuttle Orbiter  

SciTech Connect

As part of NASA`s overall efforts to improve the Space Shuttle operations, a program to upgrade the existing fuel cell powerplant has begun. The upgrade will involve replacing the alkaline fuel cell (AFC) system with a proton exchange membrane (PEM) fuel cell system, resulting in a much lower life cycle cost of the powerplant. The program is being implemented by a team comprised of NASA/JSC, NASA/LeRC, and JPL personnel, with support from NASA/KSC. With extremely high annual maintenance costs and subsystem replacement costs, the need for a lower cost Orbiter fuel cell powerplant is obvious. Earlier NASA plant to upgrade the shuttle fuel cell were not adequately funded and only focused upon upgrading the existing AFC. For the current program, the PEM fuel cell system will be implemented because the projected long life (10,000 hrs. vs. 2,000 hrs. for AFC), high power density (PEM projected to produce 50% more power), and enhanced system reliability and safety all lead to significantly lower life cycle powerplant costs. And in addition to the Orbiter application, PEM fuel cell development would support a number of important space applications that the AFC would not, such as Lunar/Mars transportation, the Reusable Launch Vehicle (RLV), Space Station emergency power and/or future energy storage applications, and various portable applications. NASA is also leveraging all of the large scale PEM fuel cell development activities that are ongoing for DOE, DOD, and commercial applications. There is no activity in the AFC area. The Shuttle Fuel Cell Upgrade plan of the JSC/LeRC/JPL team includes the following key elements: (1) Systems Analyses to assure compatibility/maximum utilization by shuttle of the best PEM fuel cell characteristics; (2) Short Stack Testing of the leading PEM fuel cell contractors` hardware; (3) Detailed Task Objective (DTO) Flight Experiment to verify PEM system water management and thermal management under zero-g operation; (4) A Downselect to the best PEM system; and (5) Development of the Flight Hardware Powerplant system, including, of course both the power and accessory subsystems. The planned success-oriented, four year effort is a coherent program to develop a 20 kW PEM fuel cell powerplant. The current major program tasks under way are Short Stack Testing and Systems Analyses.

Warshay, M.; Prokopius, P. [NASA Lewis Research Center, Cleveland, OH (United States); Le, M. [NASA Johnson Space Center, Houston, TX (United States). Propulsion and Power Div.; Voecks, G. [Jet Propulsion Lab., Pasadena, CA (United States)

1997-12-31

59

NSTA-NASA Shuttle Student Involvement Project. Experiment Results: Insect Flight Observation at Zero Gravity  

NASA Technical Reports Server (NTRS)

The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.

Nelson, T. E.; Peterson, J. R.

1982-01-01

60

Neutron Diffraction Characterization of Residual Strain in Welded Inconel 718 for NASA Space Shuttle Flow Liners  

NASA Astrophysics Data System (ADS)

This work quantitatively assesses residual strains and stresses associated with the weld repair process used to repair cracks on NASA's space shuttle flow liners. The coupons used in this investigation were made of the same INCONEL 718 alloy used for the flow liners. They were subjected to identical welding and certification procedures that were carried out on the space shuttle. Neutron diffraction measurements at Los Alamos National Laboratory determined residual strains at selected locations in a welded coupon at 293 K and 135 K. The weld repair process introduced Mises effective residual stresses of up to 555 MPa. On comparing the measurements at 293 K and 135 K, no significant change to the residual strain profile was noted at the low temperature. This indicated minimal mismatch in the coefficients of thermal expansion between the base metal and the weld.

Rathod, C. R.; Livescu, V.; Clausen, B.; Bourke, M. A. M.; Notardonato, W. U.; Femminineo, M.; Vaidyanathan, R.

2004-06-01

61

Neutron Diffraction Characterization of Residual Strain in Welded Inconel 718 for NASA Space Shuttle Flow Liners  

SciTech Connect

This work quantitatively assesses residual strains and stresses associated with the weld repair process used to repair cracks on NASA's space shuttle flow liners. The coupons used in this investigation were made of the same INCONEL 718 alloy used for the flow liners. They were subjected to identical welding and certification procedures that were carried out on the space shuttle. Neutron diffraction measurements at Los Alamos National Laboratory determined residual strains at selected locations in a welded coupon at 293 K and 135 K. The weld repair process introduced Mises effective residual stresses of up to 555 MPa. On comparing the measurements at 293 K and 135 K, no significant change to the residual strain profile was noted at the low temperature. This indicated minimal mismatch in the coefficients of thermal expansion between the base metal and the weld.

Rathod, C.R.; Vaidyanathan, R. [University of Central Florida, Orlando, Florida, 32816 (United States); Livescu, V.; Clausen, B.; Bourke, M. A. M. [Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (United States); Notardonato, W.U.; Femminineo, M. [NASA Kennedy Space Center, Kennedy Space Center, Florida, 32899 (United States)

2004-06-28

62

Anomaly Analysis: NASA's Engineering and Safety Center Checks Recurring Shuttle Glitches  

NASA Technical Reports Server (NTRS)

The NASA Engineering and Safety Center (NESC), set up in the wake of the Columbia accident to backstop engineers in the space shuttle program, is reviewing hundreds of recurring anomalies that the program had determined don't affect flight safety to see if in fact they might. The NESC is expanding its support to other programs across the agency, as well. The effort, which will later extend to the International Space Station (ISS), is a principal part of the attempt to overcome the normalization of deviance--a situation in which organizations proceeded as if nothing was wrong in the face of evidence that something was wrong--cited by sociologist Diane Vaughn as contributing to both space shuttle disasters.

Morring, Frank, Jr.

2004-01-01

63

Fifth Report of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions  

NASA Technical Reports Server (NTRS)

The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking missions examine a number of specific issues related to the Shuttle-Mir program. Three teams composed of Task Force members and technical advisors were formed to address the follow issues: preliminary results from STS-71 and the status of preparations for STS-74; NASA's presence in Russia; and NASA's automated data processing and telecommunications (ADP/T) infrastructure in Russia. The three review team reports have been included in the fifth report of the Task Force.

1995-01-01

64

Ventilation Loss in the NASA Space Shuttle Crew Protective Garments: Potential for Heat Stress  

NASA Technical Reports Server (NTRS)

The potential of the National Aeronautics and Space Administration (NASA) S1035 Launch/Entry suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment has been studied. The testing was designed to determine if the NASA S1035 poses a greater threat of inducing heat stress than the NASA S1032. Conditions were designed to simulate an extreme prelaunch situation, with chamber temperatures maintained at dry bulb temperature 27.2 +/- 0.1 C, globe temperature - 27.3 +/- 0.1 C, and wet bulb temperature 21.1 +/- 0.3 C. Four males, aged 28-48, were employed in this study, with three subjects having exposures in all four conditions and the fourth subject exposed to 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. No significant differences related to experimental conditions were noted in rectal temperatures, heart rates or sweat rates. The results indicate that the S1032 and S1035 garments, in either the V or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Shuttle cabin during launch or re-entry.

Askew, Gregory K.; Kaufman, Jonathan W.

1991-01-01

65

The Role and Training of NASA Astronauts in the Post-Shuttle Era  

NASA Technical Reports Server (NTRS)

In May 2010 the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC's Committee on Human Spaceflight Crew Operations was tasked to: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change following space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA's human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA's human spaceflight program has garnered considerable discussion in recent years, and there is considerable uncertainty about what that program will involve in the coming years, the committee was not tasked to address whether or not human spaceflight should continue, or what form it should take. The committee's task restricted it to studying those activities managed by the Flight Crew Operations Directorate, or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

2011-01-01

66

Integrated tracking of components by engineering and logistics utilizing logistics asset tracking system  

NASA Technical Reports Server (NTRS)

The Logistics Asset Tracking System (LATS) devised by NASA contains data on Space Shuttle LRUs that are daily updated to reflect such LRU status changes as repair due to failure or modification due to changing engineering requirements. The implementation of LATS has substantially increased personnel responsiveness, preventing costly delays in Space Shuttle processing and obviating hardware cannibalization. An evaluation is presented of LATS achievements in the direction of an integrated logistical support posture.

Renfroe, Michael B.; Mcdonald, Edward J.; Bradshaw, Kimberly

1988-01-01

67

Software Architecture of the NASA Shuttle Ground Operations Simulator--SGOS  

NASA Technical Reports Server (NTRS)

The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. it is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,00 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.

Cook Robert P.; Lostroscio, Charles T.

2005-01-01

68

Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter  

NASA Technical Reports Server (NTRS)

Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

2010-01-01

69

Concepts and embodiment design of a reentry recumbent seating system for the NASA Space Shuttle  

NASA Technical Reports Server (NTRS)

This report deals with the generation of a recumbent seating system which will be used by NASA to shuttle astronauts from the Russian space station Mir. We begin by examining the necessity for designing a special couch for the returning astronauts. Next, we discuss the operating conditions and constraints of the recumbent seating system and provide a detailed function structure. After working through the conceptual design process, we came up with ten alternative designs which are presented in the appendices. These designs were evaluated and weighted to systematically determine the best choice for embodiment design. A detailed discussion of all components of the selected system follows with design calculations for the seat presented in the appendices. The report concludes with an evaluation of the resulting design and recommendations for further development.

Mcmillan, Scott; Looby, Brent; Devany, Chris; Chudej, Chris; Brooks, Barry

1993-01-01

70

Actinide Sub-Actinide Flux Ratio Estimated from NASA Challenger Space Shuttle Borne Passive Detector Experiment  

NASA Astrophysics Data System (ADS)

A video trace analysis of 117 ultra heavy cosmic nuclei detected by NASA space shuttle borne lexan detectors has been presented here. The major axes of the elliptical track etch pits in the long hour etched detectors have been measured using a Hund microscope computerized for the measurements using a Pentium. The major axes distribution exhibits the existence of ultra heavy nuclei of charges of Z ranging from 72 to 96 compatible with the expected results from restricted energy loss calculations. The estimated actinide sub-actinide flux ratio has been found to be 0.06360.0248 which is comparable to the earlier observations by Fowler et al., Thompson et al. and O'Sullivan.

Basu, Basudhara; Bhattacharyya, D. P.; Biswas, S.; O'Sullivan, D.; Thompson, A.

71

Vibro-Acoustic Analysis of NASA's Space Shuttle Launch Pad 39A Flame Trench Wall  

NASA Technical Reports Server (NTRS)

A vital element to NASA's manned space flight launch operations is the Kennedy Space Center Launch Complex 39's launch pads A and B. Originally designed and constructed In the 1960s for the Saturn V rockets used for the Apollo missions, these pads were modified above grade to support Space Shuttle missions. But below grade, each of the pad's original walls (including a 42 feet deep, 58 feet wide, and 450 feet long tunnel designed to deflect flames and exhaust gases, the flame trench) remained unchanged. On May 31, 2008 during the launch of STS-124, over 3500 of the. 22000 interlocking refractory bricks that lined east wall of the flame trench, protecting the pad structure were liberated from pad 39A. The STS-124 launch anomaly spawned an agency-wide initiative to determine the failure root cause, to assess the impact of debris on vehicle and ground support equipment safety, and to prescribe corrective action. The investigation encompassed radar imaging, infrared video review, debris transport mechanism analysis using computational fluid dynamics, destructive testing, and non-destructive evaluation, including vibroacoustic analysis, in order to validate the corrective action. The primary focus of this paper is on the analytic approach, including static, modal, and vibro-acoustic analysis, required to certify the corrective action, and ensure Integrity and operational reliability for future launches. Due to the absence of instrumentation (including pressure transducers, acoustic pressure sensors, and accelerometers) in the flame trench, defining an accurate acoustic signature of the launch environment during shuttle main engine/solid rocket booster Ignition and vehicle ascent posed a significant challenge. Details of the analysis, including the derivation of launch environments, the finite element approach taken, and analysistest/ launch data correlation are discussed. Data obtained from the recent launch of STS-126 from Pad 39A was instrumental in validating the design analysis philosophies outlined in this paper.

Margasahayam, Ravi N.

2009-01-01

72

Space Shuttle Program Tin Whisker Mitigation  

NASA Technical Reports Server (NTRS)

The discovery of tin whiskers (TW) on space shuttle hardware led to a program to investigate and removal and mitigation of the source of the tin whiskers. A Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly. The internal inspection of the box revealed TW growth visible without magnification. The results of the Tiger Team that was assembled to investigate and develop recommendations are reviewed in this viewgraph presentation.

Nishimi, Keith

2007-01-01

73

A guide for space lawyers to understanding the NASA Space Shuttle and the ESA Spacelab  

NASA Technical Reports Server (NTRS)

An investigation is conducted concerning the appropriate characterization of the Space Shuttle, taking into account appearance, functions, and purpose. It is concluded that in terms of purely technological criteria, the Shuttle can best be described as an 'aerospace vehicle'. Questions related to the legal characterization of the Shuttle are considered. On the basis of the Shuttle's purpose as the most important criterion, it is suggested that the Shuttle should be considered basically as a 'spacecraft', 'space vehicle', or 'space object'. Attention is given to the Shuttle's relationship to multilateral space conventions, the possibility that the Shuttle could be legally defined as an 'aircraft' under certain circumstances, the Shuttle and the Chicago Convention, and the status of Spacelab as only one part of a U.S. flag spacecraft.

Sloup, G. P.

1977-01-01

74

The evolution of the WPI Advance Space Design Program-an evolving program of technical and social analysis using the NASA Space Shuttle for engineering education  

Microsoft Academic Search

In December of 1982, Worcester Polytechnic Institute, with the cooperation and support of the Mitre Corporation, initiated a primarily undergraduate educational program to develop experiments to be flown onboard a NASA Space Shuttle. Christened the MITRE WPI Space Shuttle Program, it sponsored the development of five educationally meritorious experiments over a period of four years. Although the experiments were ready

Fred J. Looft; Robert C. Labonte; William W. Durgin

1991-01-01

75

Simulation of Shuttle launch G forces and acoustic loads using the NASA Ames Research Center 20G centrifuge  

NASA Technical Reports Server (NTRS)

The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.

Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.

1994-01-01

76

Shuttle Astronauts Visit NASA's X-Ray Observatory Operations Control Center in Cambridge to Coordinate Plans for Launch  

NASA Astrophysics Data System (ADS)

CAMBRIDGE, MASS.-- June 25, 1998 Eileen Collins, the first U.S. woman commanderof a Space Shuttle mission and her fellow astronauts for NASA s STS-93 mission toured the Operations Control Center (OCC) for the Advanced X-ray Astrophysics Facility (AXAF) today. AXAF is scheduled for launch on January 26, 1999 aboard the Space Shuttle Columbia. They met with the staff of the OCC and discussed how the status of the observatory will be monitored while in the shuttle bay and during deployment. "We are honored to have this historic shuttle crew visit us and familiarize themselves with the OCC," said Harvey Tananbaum, director of the AXAF Science Center, which operates the OCC for the Smithsonian Astrophysical Observatory through a contract with NASA's Marshall Space Flight Center. "It is appropriate that a pathbreaking shuttle mission will deploy the premier X-ray observatory of this century." AXAF is the third of NASA s Great Observatories along with the Hubble Space Telescope and the Compton Gamma Ray Observatory. It will observe in greater detail than ever before the hot, violent regions of the universe that cannot be seen with optical telescopes. Exploding stars, black holes and vast clouds of gas in galaxy clusters are among the fascinating objects that AXAF is designed to study. The satellite is currently in the final stages of testing at TRW Space and Electronics Group,the prime contractor, in Redondo Beach, California. In late August it will be flown aboard a specially-outfitted Air Force C-5 aircraft to Kennedy Space Center in Florida where it will be integrated with a Boeing booster and then installed in the Shuttle bay. The shuttle crew that will take AXAF into space includes Collins (Col., USAF), Jeffrey Ashby (Cmdr., USN), pilot; Steven Hawley, Ph.D., mission specialist; Catherine Cady Coleman, Ph.D. (Major, USAF), mission specialist; and Michel Tognini (Col., French Air Force), mission specialist. While visiting the OCC the crew learned how critical data (temperatures, voltages, etc.,) will be monitored while AXAF is in the bay of the shuttle. This information will be relayed to the shuttle from the OCC via Johnson Space Center. The condition of the satellite during launch and the first few orbits will determine if it can be sent on its way. Unlike the Hubble Space telescope, AXAF will not be serviceable after it is in orbit. When the satellite has been released into space from the shuttle bay, a built in propulsion system will boost it into a large elliptical orbit around Earth. The nearest the observatory will come to Earth is 6,200 miles and its furthest point will be more than a third of the way to the moon. This means that the telescope will have approximately 52 hours of observing time each orbit. AXAF images will show fifty times more detail than any previous X-ray telescope. The revolutionary telescope combines the ability to make sharp images while measuring precisely the energies of X-rays coming from cosmic sources. The impact AXAF will have on X-ray astronomy can be compared to the difference between a fuzzy black and white and a sharp color picture.

1998-06-01

77

An analysis of Space Shuttle countdown activities: Preliminaries to a computational model of the NASA Test Director  

NASA Technical Reports Server (NTRS)

Before all systems are go just prior to the launch of a space shuttle, thousands of operations and tests have been performed to ensure that all shuttle and support subsystems are operational and ready for launch. These steps, which range from activating the orbiter's flight computers to removing the launch pad from the itinerary of the NASA tour buses, are carried out by launch team members at various locations and with highly specialized fields of expertise. The liability for coordinating these diverse activities rests with the NASA Test Director (NTD) at NASA-Kennedy. The behavior is being studied of the NTD with the goal of building a detailed computational model of that behavior; the results of that analysis to date are given. The NTD's performance is described in detail, as a team member who must coordinate a complex task through efficient audio communication, as well as an individual taking notes and consulting manuals. A model of the routine cognitive skill used by the NTD to follow the launch countdown procedure manual was implemented using the Soar cognitive architecture. Several examples are given of how such a model could aid in evaluating proposed computer support systems.

John, Bonnie E.; Remington, Roger W.; Steier, David M.

1991-01-01

78

Preparing for the High Frontier: The Role and Training of NASA Astronauts in the Post- Space Shuttle Era  

NASA Technical Reports Server (NTRS)

In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

2011-01-01

79

Lori Garver, NASA Deputy Administrator Smithsonian/Boeing Space Shuttle Tribute Reception  

E-print Network

, for your outstanding contributions to America and the space program as a combat pilot, shuttle commander space flight for the coming decade. Its brave crews included the first American women and minorities

80

NASA/DOD earth orbit shuttle traffic models based on end to end loading of payloads  

NASA Technical Reports Server (NTRS)

An analysis of the spacecraft configurations and space missions for the Earth Orbit Shuttle traffic model based on an end-to-end loading of payloads is presented. Two possible reusable tugs are considered. The space missions are described with respect to the following: (1) number of earth orbit shuttle flights by inclination, (2) total payloads to orbit, (3) energy stages required, and (4) characteristics of reusable tug.

Kincade, R. E.; Donahoo, M. E.; Pruett, W. R.

1971-01-01

81

User benefits and funding strategies. [technology assessment and economic analysis of the space shuttles and NASA Programs  

NASA Technical Reports Server (NTRS)

The justification, economic and technological benefits of NASA Space Programs (aside from pure scientific objectives), in improving the quality of life in the United States is discussed and outlined. Specifically, a three-step, systematic method is described for selecting relevant and highly beneficial payloads and instruments for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable Government and private industry cost-sharing strategies which would maximize the number of IUS payloads, and the benefits obtainable under a limited NASA budget were also determined. Charts are shown which list the payload instruments, and their relevance in contributing to such areas as earth resources management, agriculture, weather forecasting, and many others.

Archer, J. L.; Beauchamp, N. A.; Day, C. F.

1975-01-01

82

Range Systems Simulation for the NASA Shuttle: Emphasis on Disaster and Prevention Management During Lift-Off  

NASA Technical Reports Server (NTRS)

This article describes a decision-making system composed of a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this distributed simulation environment represent the different systems that must collaborate to establish the Expectation of Casualties (E(sub c)) caused by a failed Space Shuttle launch and subsequent explosion (accidental or instructed) of the spacecraft shortly after liftoff. This decision-making tool employs Space Shuttle reliability models, trajectory models, a blast model, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system. Since one of the important features of this proposed simulation environment is to measure blast, toxic, and debris effects, the clear benefits is that it can help safety managers not only estimate the population at risk, but also to help plan evacuations, make sheltering decisions, establish the resources required to provide aid and comfort, and mitigate damages in case of a disaster.

Rabelo, Lisa; Sepulveda, Jose; Moraga, Reinaldo; Compton, Jeppie; Turner, Robert

2005-01-01

83

Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program  

NASA Astrophysics Data System (ADS)

As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations. The future success of NASA space programs and Rockwell hinges upon the ability to adopt new, more efficient and effective work processes. Efficiency, proficiency, cost effectiveness, and teamwork are a necessity for economic survival. Continuous improvement initiatives like the CEE are, and will continue to be, vehicles by which the road can be traveled with a vision to the future.

Bejmuk, Bohdan I.; Williams, Larry

84

Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program  

NASA Technical Reports Server (NTRS)

As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations. The future success of NASA space programs and Rockwell hinges upon the ability to adopt new, more efficient and effective work processes. Efficiency, proficiency, cost effectiveness, and teamwork are a necessity for economic survival. Continuous improvement initiatives like the CEE are, and will continue to be, vehicles by which the road can be traveled with a vision to the future.

Bejmuk, Bohdan I.; Williams, Larry

1992-01-01

85

Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5  

NASA Technical Reports Server (NTRS)

Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

Anderson, P. J.; Nussbaum, P.; Gustafson, G.

1984-01-01

86

Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 6  

NASA Technical Reports Server (NTRS)

Research concerning the utilization of silicon piezoresistive strain sensing technology for space shuttle main engine applications is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

Anderson, P. J.; Johnson, R. L.

1984-01-01

87

Six astronauts of NASA's recent space shuttle mission STS-120 visited  

E-print Network

perform- ing your daily operations, in particular those for SSME. Our safety and our lives depend on the space shuttle is the rocket engines. We can't go without them. It's crucial we continue to test. Thanks for all that you do to make Stennis the premier rocket propul- sion test center that it is. I hope

88

Successful application of software reliability engineering for the NASA Space Shuttle  

Microsoft Academic Search

Summary form only given. The Space Shuttle Primary Avionics Software Subsystem (PASS) represents a successful integration of many of the computer industry's most advanced software engineering practices and approaches. Beginning in the late 1970's this software development and maintenance project has evolved one of the world's most mature software processes applying the principles of the highest levels of the Software

T. Keller; N. F. Schneidewind

1997-01-01

89

Successful application of software reliability engineering for the NASA Space Shuttle  

Microsoft Academic Search

The Space Shuttle avionics software represents a successful integration of many of the computer industry's most advanced software engineering practices and approaches. Beginning in the late 1970s this software development and maintenance project has evolved one of the world's most mature software processes applying the principles of the highest levels of the Carnegie Mellon University Software Engineering Institute's Capability Maturity

Ted Keller; Norman F. Schneidewind

1997-01-01

90

NASA Advisory Council Space Operations Committee July 2010  

E-print Network

. Leroy Chiao Former NASA Astronaut and International Space Station Commander Mr. Tommy Holloway Former Space Shuttle and International Space Station Program Manager Mr. Glynn Lunney Former NASA Flight) International Space Station Logistics Plan KSC Site Visit · · · · · · Space Life Sciences Lab, Launch Complexes

Waliser, Duane E.

91

Autonomy, Interdependence, and Social Control: NASA and the Space Shuttle "Challenger."  

ERIC Educational Resources Information Center

Shows that the organizations responsible for regulating safety at the National Aeronautics and Space Administration (NASA) failed to identify flaws in management procedures and technical design that, if corrected, might have prevented the "Challenger" tragedy. Regulatory effectiveness was inhibited by the autonomy and interdependence of NASA and

Vaughan, Diane

1990-01-01

92

SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC)  

E-print Network

SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC) NASA Marshall Space Flight Center, Huntsville, Alabama January 9, 2003 1 STS-107/ET-93 Flight Readiness Review External Tank Project #12;SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC) NASA Marshall Space Flight Center, Huntsville

Christian, Eric

93

SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC)  

E-print Network

SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC) NASA Marshall Space Flight Center;SPACE SHUTTLE PROGRAM Space Shuttle Projects Office (MSFC) NASA Marshall Space Flight Center, Huntsville, Alabama Presenter Date Page 2September 17, 2002 J. Pilet / LMSSC-ET Overview Limited Life Component

Christian, Eric

94

Serpentine manipulator planning and control for NASA Space-Shuttle payload servicing  

NASA Astrophysics Data System (ADS)

The use of a highly-redundant manipulator, so-called 'serpentine' manipulator, is proposed as a solution for servicing space-payloads during the payload installation process before launch on the Space-Shuttle. The staging of the system would be inside a large cleanroom area, the Payload Changeout Room (PCR), which sits on the Rotating Service Structure (RSS), allowing it to be swung into mated contact with the Space-Shuttle as it sits on the launchpad at the John F. Kennedy Space Center in Cape Canaveral, Florida. This report is not so much concerned with the design and implementation issues associated with a serpentine manipulator, but rather with the planning, control and user-interface issues. We thus present a brief introduction to the actual application environment and its restrictions, followed by the theoretical background and implementation issues of planning and control algorithms developed specifically for a serpentine manipulator operating within the confined spaces of the PCR and the Space-Shuttle cargo-bay. The approach used to generate a continuous path is to develop and use a minimizing continuous energy curve for the manipulator, and then fit the discretized link-sections to that curve. The operator is then able to modify this curve directly, allowing for shaping of the serpentine, and for the placement of obstacles that can then be avoided. This algorithm can be implemented in real-time, and curve-parameters can also be adjusted such as flexibility and curvature of the curve. An A* method is used to search for the shortest distance between two goal points in order to construct the curve. In order to avoid obstacles (real and artificial), available from a database or which can be placed by the operator using the operator interface display, we use an obstacle potential field FIRAS function.

Herman, Herman; Schempf, Hagen

1992-10-01

95

Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5  

NASA Technical Reports Server (NTRS)

The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics.

Anderson, P. J.; Nussbaum, P.; Gustafson, G.

1984-01-01

96

Assessment of Atmospheric Winds Aloft during NASA Space Shuttle Program Day-of-Launch Operations  

NASA Technical Reports Server (NTRS)

The Natural Environments Branch at the National Aeronautics and Space Administration s Marshall Space Flight Center monitors the winds aloft at Kennedy Space Center in support of the Space Shuttle Program day of launch operations. High resolution wind profiles are derived from radar tracked Jimsphere balloons, which are launched at predetermined times preceding the launch, for evaluation. The spatial (shear) and temporal (persistence) wind characteristics are assessed against a design wind database to ensure wind change does not violate wind change criteria. Evaluations of wind profies are reported to personnel at Johnson Space Center.

Decker, Ryan K.; Leach, Richard

2005-01-01

97

NASA Lewis Thermal Barrier Feasibility Investigated for Use in Space Shuttle Solid-Rocket Motor Nozzle-to-Case Joints  

NASA Technical Reports Server (NTRS)

Assembly joints of modern solid-rocket motor cases are usually sealed with conventional O-ring seals. The 5500 F combustion gases produced by rocket motors are kept a safe distance away from the seals by thick layers of insulation and by special compounds that fill assembly split-lines in the insulation. On limited occasions, NASA has observed charring of the primary O-rings of the space shuttle solid-rocket nozzle-assembly joints due to parasitic leakage paths opening up in the gap-fill compounds during rocket operation. Thus, solid-rocket motor manufacturer Thiokol approached the NASA Lewis Research Center about the possibility of applying Lewis braided-fiber preform seal as a thermal barrier to protect the O-ring seals. This thermal barrier would be placed upstream of the primary O-rings in the nozzle-to-case joints to prevent hot gases from impinging on the O-ring seals (see the following illustration). The illustration also shows joints 1 through 5, which are potential sites where the thermal barrier could be used.

Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

1999-01-01

98

NASA\\/JSC Radio Frequency Analysis in support of Space Shuttle Communication System Design & Operations  

Microsoft Academic Search

The Electronic Systems Test Laboratory (ESTL) and Communication System Simulation Laboratory (CSSL) at the National Aeronautics and Space Administration (NASA)\\/Johnson Space Center (JSC) were established to perform manned spacecraft communication system performance and compatibility tests and simulation analysis. The ESTL and CSSL have developed system design evaluation testing techniques as well as analytical and numerical simulation tools that model spacecraft

S. U. Hwu

2011-01-01

99

NASA's New Educator Astronauts Face Long Wait for Their Shuttle Missions  

ERIC Educational Resources Information Center

When the U.S. space agency pinned badges on the 11 newest members of its astronaut corps this winter, it also increased by three its cadre of educator astronauts. Three former teachers-Dorothy M. Metcalf-Lindenburger, Richard R. Arnold II, and Joseph M. Acaba-graduated from NASA's grueling training program. The gauntlet of fitness test, survival

Trotter, Andrew

2006-01-01

100

Assessment of the NASA Space Shuttle Program's Problem Reporting and Corrective Action System  

NASA Technical Reports Server (NTRS)

This paper documents the general findings and recommendations of the Design for Safety Programs Study of the Space Shuttle Programs (SSP) Problem Reporting and Corrective Action (PRACA) System. The goals of this Study were: to evaluate and quantify the technical aspects of the SSP's PRACA systems, and to recommend enhancements addressing specific deficiencies in preparation for future system upgrades. The Study determined that the extant SSP PRACA systems accomplished a project level support capability through the use of a large pool of domain experts and a variety of distributed formal and informal database systems. This operational model is vulnerable to staff turnover and loss of the vast corporate knowledge that is not currently being captured by the PRACA system. A need for a Program-level PRACA system providing improved insight, unification, knowledge capture, and collaborative tools was defined in this study.

Korsmeryer, D. J.; Schreiner, J. A.; Norvig, Peter (Technical Monitor)

2001-01-01

101

Space Shuttle Body Flap Actuator Bearing Testing for NASA Return to Flight  

NASA Technical Reports Server (NTRS)

The Space Shuttle body flap is located beneath the main engine nozzles and is required for proper aerodynamic control during orbital descent. Routine inspection of one of four body flap actuators found one of the actuator bearings had degraded and blackened balls. A test program was initiated to demonstrate that it is acceptable to operate bearings which are degraded from operation over several flights. This test exposed the bearing to predicted flight axial loads, speeds and temperatures. Testing at 140 F has been completed, and results indicate the previously flown bearings are acceptable for up to 12 additional missions. Additional testing is underway to determine the lubricant life at various temperatures and stresses and to further understand the mechanism that caused the blacken balls. Initial results of this testing indicates that bearing life is shorten at room temperature possibly due fact that higher temperature (140 F) accelerates the flow of grease and oil into the wear surface

Jett, Timothy R.; Predmore, Roamer E.; Dube, Michael J.; Jones, William R., Jr.

2006-01-01

102

An experimental investigation of the NASA space shuttle external tank at hypersonic Mach numbers  

NASA Technical Reports Server (NTRS)

Pressure and heat transfer tests were conducted simulating flight conditions which the space shuttle external tank will experience prior to break-up. The tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel and simulated entry conditions for nominal, abort-once-around (AOA), and return to launch site (RTLS) launch occurrences. Surface pressure and heat-transfer-rate distributions were obtained with and without various protuberences (or exterior hardware) on the model at Mach numbers from 15.2 to 17.7 at angles of attack from -15 deg to -180 deg and at several roll angles. The tests were conducted over a Reynolds number range from 1300 to 58,000, based on model length.

Wittliff, C. E.

1975-01-01

103

Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.

Decker, Ryan; Leach, Richard

2004-01-01

104

Results of a space shuttle pulme impingement investigation at stage separation in the NASA-MSFC impulse base flow facility  

NASA Technical Reports Server (NTRS)

Results are presented for an experimental space shuttle stage separation plume impingement program conducted in the NASA-Marshall Space Flight Center's impulse base flow facility (IBFF). Major objectives of the investigation were to: (1)determine the degree of dual engine exhaust plume simulation obtained using the equivalent engine; (2) determine the applicability of the analytical techniques; and (3) obtain data applicable for use in full-scale studies. The IBFF tests determined the orbiter rocket motor plume impingement loads, both pressure and heating, on a 3 percent General Dynamics B-15B booster configuration in a quiescent environment simulating a nominal staging altitude of 73.2 km (240,00 ft). The data included plume surveys of two 3 percent scale orbiter nozzles, and a 4.242 percent scaled equivalent nozzle - equivalent in the sense that it was designed to have the same nozzle-throat-to-area ratio as the two 3 percent nozzles and, within the tolerances assigned for machining the hardware, this was accomplished.

Mccanna, R. W.; Sims, W. H.

1972-01-01

105

Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 1: Observations and conclusions  

NASA Technical Reports Server (NTRS)

The NASA and contractor management systems, including policies, practices, and procedures for the development of critical systems, subsystems and integration of the program elements, were investigated. The technical development status of critical systems, subsystems, and interfaces is presented. Space shuttle elements were qualified as to potential risks and hazards. The elements included the orbiter, external tanks, main engine, solid rocket boosters, and the ground support facilities.

1975-01-01

106

Spaceflight Effects and Molecular Responses in the Mouse Eye: Observations after NASA Shuttle Mission STS-133  

NASA Technical Reports Server (NTRS)

Background: Human space exploration implies a combination of stressors including microgravityinduced cephalad fluid shift and radiation exposure. Ocular changes in astronauts leading to visual impairment are of occupational health relevance. The effect of this complex environment on ocular morphology and function is poorly understood. Material and Methods: Mice were assigned to a Flight (FLT) group flown on shuttle mission STS133, Animal Enclosure Module (AEM), or vivarium (VIV) ground controls. Eyes were collected at 1, 5 and 7 days after landing, and were fixed for histological sectioning. The contralateral eye was used for gene expression profiling by qRT-PCR. Routine histology and immunohistochemistry using 8-hydroxy-2'-deoxyguanosine (8-OHdG), caspase-3, glial fibrillary acidic protein (GFAP) and beta-amyloid were used to study the eyes. Results and Conclusions: 8-OHdG and caspase-3 immunoreactivity was increased in the retina in FLT samples at return from flight (R+1) compared to ground controls, and decreased at day 7 (R+7), suggesting an increase in oxidative stress and cell apoptosis. FLT mice showed evidence of retinal pigment epithelium (RPE) apoptosis possibly secondary to oxidative damage. Although attenuation of RPE has been related to retinal choroidal folds in astronauts, it is yet to be determined whether or not increased RPE apoptosis may contribute to the formation of choroidal folds or may increase the risk for other retinal pathologies, such as AMD. beta-amyloid was seen in the nerve fibers at the post-laminar region of the optic nerve in the flight samples (R+7). Deposition of beta-amyloid has a strong correlation with mechanical trauma. The coexpression of GFAP in astrocytes and oligodentrocytes in these same areas supports the possible mechanical origin probably secondary to intracranial pressure that is transmitted into the nerve, as a result of an increase in venous pressure associated to microgravity-induced cephalic fluid shift. However, there is the need to further investigate the nature of the changes through additional experimental work. Gene expression of oxidative and cellular stress response genes was unregulated in the retina of FLT samples upon landing followed by lower levels by R+7. These results suggest that reversible molecular damage occurs in the retina of mice exposed to spaceflight and that protective cellular and molecular pathways are induced in the retina in response to these changes.

ProsperoPonce, Claudia Maria; Zanello, Susana B.; Theriot, Corey A.; Chevez-Barrios, Patricia

2012-01-01

107

NASA  

NSDL National Science Digital Library

The National Aeronautics and Space Administration home page provides information on current events at NASA, general information about NASA, and links to a plethora of NASA web sites, educational resources, and NASA Centers.

108

Logistics 46 3 Logistics  

E-print Network

Logistics #12;Logistics 46 3 Logistics Logistics plays an increasingly important role in society there are currently two workgroups active in the field of international logistics engineering research. The workgroup Global Production Logistics led by Prof. Dr.-Ing. Katja Windt and the workgroup Maritime Logis- tics led

Henkel, Werner

109

Organizational Learning Post Catastrophic Events: A Descriptive Case Study Exploring NASA's Learning over Time Following Two Catastrophic Shuttle Accidents Using the Schwandt's Organizational Learning System Model  

ERIC Educational Resources Information Center

A 30-year contribution of the Space Shuttle Program is the evolution of NASA's social actions through organizational learning. This study investigated how NASA learned over time following two catastrophic accidents. Schwandt's (1997) organizational Learning System Model (OLSM) characterized the learning in this High Reliability

Castro, Edgar Oscar

2013-01-01

110

NASA replanning efforts continue  

Microsoft Academic Search

A task force of the National Aeronautics and Space Administration (NASA) is producing new launch schedules for NASA's three remaining space shuttle orbiters, possibly supplemented by expendable launch vehicles. In the wake of the explosion of the space shuttle Challenger on January 28, 1986, the task force is assuming a delay of 12-18 months before resumption of shuttle flights.NASA's Headquarters

Judith A. Katzoff

1986-01-01

111

Proceedings of the NASA/Florida Institute of Technology Environmental Engineering Conference on Nitrogen Tetroxide. [with emphasis on space shuttle  

NASA Technical Reports Server (NTRS)

Methods of reducing the user hazards of nitrogen tetroxide, a hypergolic oxidizer are discussed. Kennedy Space Center developments in N2O4 control for the space shuttle are featured. Other areas covered are life support equipment and transportation.

Rhodes, E. L.

1978-01-01

112

Engineering report. Part 3: NASA lightweight wheel and brake sub-system. Lightweight brake development. [for application to space shuttle  

NASA Technical Reports Server (NTRS)

The development of light weight wheel and brake systems designed to meet the space shuttle type requirements was investigated. The study includes the use of carbon graphite composite and beryllium as heat sink materials and the compatibility of these heat sink materials with the other structural components of the wheel and brake.

Bok, L. D.

1973-01-01

113

A Model for Space Shuttle Orbiter Tire Side Forces Based on NASA Landing Systems Research Aircraft Test Results  

NASA Technical Reports Server (NTRS)

Forces generated by the Space Shuttle orbiter tire under varying vertical load, slip angle, speed, and surface conditions were measured using the Landing System Research Aircraft (LSRA). Resulting data were used to calculate a mathematical model for predicting tire forces in orbiter simulations. Tire side and drag forces experienced by an orbiter tire are cataloged as a function of vertical load and slip angle. The mathematical model is compared to existing tire force models for the Space Shuttle orbiter. This report describes the LSRA and a typical test sequence. Testing methods, data reduction, and error analysis are presented. The LSRA testing was conducted on concrete and lakebed runways at the Edwards Air Force Flight Test Center and on concrete runways at the Kennedy Space Center (KSC). Wet runway tire force tests were performed on test strips made at the KSC using different surfacing techniques. Data were corrected for ply steer forces and conicity.

Carter, John F.; Nagy, Christopher J.; Barnicki, Joseph S.

1997-01-01

114

A waning of technocratic faith - NASA and the politics of the Space Shuttle decision, 1967-1972  

NASA Technical Reports Server (NTRS)

This paper analyzes the decision to build the Space Shuttle as part of a broader public policy trend away from a deference to technical experts and toward greater politicization of traditionally apolitical issues. At the beginning of the 1960s U.S. leaders had a strong faith in the ability of technology to solve most problems. By 1970 this commitment to technological answers had waned and a resurgence of the right of elected officials to control technical matters was gaining currency. The lengthy and bitter Shuttle decision-making process was part of a much broader shift in the formation of public policy, played out in other arenas as well, aimed at the reemergence of direct political management of technological and scientific affairs by politicians.

Launius, R. D.

1992-01-01

115

Development of forward and aft separation bolts for the NASA Space Shuttle solid rocket booster separation system  

NASA Technical Reports Server (NTRS)

A program is underway to design, develop, fabricate, and qualify large high-load forward and aft separation bolts for the Space Shuttle; the bolts will serve as attachment between two solid rocket boosters and the external tank. This paper reviews bolt development, with emphasis on the scaling of components, the use of high strength maraging steel for the internal components, and the use of lead as a hydraulic fluid.

Nein, H.; Williams, V.

1979-01-01

116

Results from investigations in three NASA/LaRC hypersonic wind tunnels on a .004 scale model space shuttle orbiter (model 13P-O) to determine real gas effects (LA78, LA87, LA88)  

NASA Technical Reports Server (NTRS)

Results from tests in the NASA/CF4, 20 inch Mach 6 and the 22 inch Helium Tunnel consist of pressure measurements on the lower surfaces of the Rockwell Space Shuttle Orbiter. All data are in absolute pressures. Data were recorded with the model at a Mach number of 6 and 20 at angles of 10 deg to 30 deg.

Ball, J. W.; Klug, G. W.

1976-01-01

117

Autonomous space shuttle  

Microsoft Academic Search

The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall strategic plan. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires shuttle to fly through at least the middle of the next decade to complete assembly of the station, provide crew transport, and to provide heavy lift up

J. A. Siders; R. H. Smith

2004-01-01

118

Shuttle Landing Facility - Duration: 6:28.  

NASA Video Gallery

The Shuttle Landing Facility at NASA's Kennedy Space Center in Florida marked the finish line for space shuttle missions since 1984. It is also staffed by a group of air traffic controllers who wor...

119

Autonomous Space Shuttle  

NASA Technical Reports Server (NTRS)

The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

Siders, Jeffrey A.; Smith, Robert H.

2004-01-01

120

A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs  

NASA Technical Reports Server (NTRS)

The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very nature will require specialized support for new databases and analyses for wind, atmospheric parameters (pressure, temperature, and density versus altitude), and weather. It is for this reason that project managers are encouraged to collaborate with natural environment specialists early in the conceptual design phase. Such action will give the lead time necessary to meet the natural environment design and operational requirements, and thus, reduce development costs.

Smith, O. E.; Adelfang, S. I.

1998-01-01

121

Post-Shuttle EVA Operations on ISS  

NASA Technical Reports Server (NTRS)

The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1

West, William; Witt, Vincent; Chullen, Cinda

2010-01-01

122

Space Shuttle Payload Information Source  

NASA Technical Reports Server (NTRS)

The Space Shuttle Payload Information Source Compact Disk (CD) is a joint NASA and USA project to introduce Space Shuttle capabilities, payload services and accommodations, and the payload integration process. The CD will be given to new payload customers or to organizations outside of NASA considering using the Space Shuttle as a launch vehicle. The information is high-level in a visually attractive format with a voice over. The format is in a presentation style plus 360 degree views, videos, and animation. Hyperlinks are provided to connect to the Internet for updates and more detailed information on how payloads are integrated into the Space Shuttle.

Griswold, Tom

2000-01-01

123

Air cargo market outlook and impact via the NASA CLASS project. [Cargo/Logistics Airlift Systems Study  

NASA Technical Reports Server (NTRS)

An overview is given of the Cargo/Logistics Airlift Systems Study (CLASS) project which was a 10 man-year effort carried out by two contractor teams, aimed at defining factors impacting future system growth and obtaining market requirements and design guidelines for future air freighters. Growth projection was estimated by two approaches: one, an optimal systems approach with a more efficient and cost effective system considered as being available in 1990; and the other, an evolutionary approach with an econometric behavior model used to predict long term evolution from the present system. Both approaches predict significant growth in demand for international air freighter services and less growth for U.S. domestic services. Economic analysis of air freighter fleet options indicate very strong market appeal of derivative widebody transports in 1990 with little incentive to develop all new dedicated air freighters utilizing the 1990's technology until sometime beyond the year 2000. Advanced air freighters would be economically attractive for a wide range of payload sizes (to 500 metric tons), however, if a government would share in the RD and T costs by virtue of its needs for a slightly modified version of a civil air freighter design (a.g. military airlifter).

Winston, M. M.; Conner, D. W.

1980-01-01

124

LSRA with Shuttle main gear  

NASA Technical Reports Server (NTRS)

A space shuttle landing gear system is visible between the two main landing gear components on this NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA). The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program, conducted at NASA's Dryden Flight Research Center, Edwards, California, provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.

1993-01-01

125

Space shuttle operational risk assessment  

NASA Astrophysics Data System (ADS)

A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated quantitative assessment of the risk of the loss of the shuttle vehicle from 3 seconds prior to liftoff to wheel-stop at mission end. The study which was conducted under the direction of NASA's Shuttle Safety and Mission Assurance office at Johnson Spaceflight Center focused on shuttle operational risk but included consideration of all the shuttle flight and test history since the beginning of the program through Mission 67 in July of 1994.

Fragola, Joseph R.; Maggio, Gaspare

1996-03-01

126

LSRA with Shuttle main gear  

NASA Technical Reports Server (NTRS)

A space shuttle landing gear system is visible between the two main landing gear components on this NASA CV-990, modified as a Landing Systems Research Aircraft. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance.

1993-01-01

127

The ceremonial transfer of Leonardo, the first MPLM, from ASI to NASA  

NASA Technical Reports Server (NTRS)

NASA Administrator Daniel S. Goldin (at right) shakes the hand of Sergio De Julio, president of the Italian Space Agency, Agenzia Spaziale Italiana (ASI), during the ceremony transferring the 'Leonardo' Multipurpose Logistics Module (MPLM) from ASI to NASA. The event was held in the Space Station Processing Facility beside Leonardo. The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000.

1998-01-01

128

The ceremonial transfer of Leonardo, the first MPLM, from ASI to NASA  

NASA Technical Reports Server (NTRS)

Sergio De Julio (at right), president of the Italian Space Agency, Agenzia Spaziale Italiana (ASI), shakes the hand of NASA Adminstrator Daniel S. Goldin while holding the document which signifies the transfer of the 'Leonardo' Multipurpose Logistics Module (MPLM) from ASI to NASA. The ceremonial event was held in the Space Station Processing Facility beside Leonardo. The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000.

1998-01-01

129

The ceremonial transfer of Leonardo, the first MPLM, from ASI to NASA  

NASA Technical Reports Server (NTRS)

NASA Administrator Daniel S. Goldin speaks at the Space Station Processing Facility ceremony transferring the 'Leonardo' Multipurpose Logistics Module (MPLM) from the Agenzia Spaziale Italiana (ASI) to NASA. Standing behind him in front of Leonardo is KSC Director Roy D. Bridges Jr. The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000.

1998-01-01

130

America's shuttle returns to space  

NASA Technical Reports Server (NTRS)

The Shuttle management structure, streamlined since the Challenger accident, is outlined. The associate administrators for space flight are identified and their responsibilities clearly spelled out. The NASA policy of assigning astronauts to management positions is described. A spaceflight safety panel is described. Non-managerial safety enhancement programs are outlined. These include: solid rocker booster changes, shuttle crew escape systems, and landing improvements.

Moorehead, Robert W.

1989-01-01

131

Space shuttle operational risk assessment  

Microsoft Academic Search

A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated

Joseph R. Fragola; Gaspare Maggio

1996-01-01

132

Space Shuttle Familiarization  

NASA Technical Reports Server (NTRS)

This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.

Mellett, Kevin

2006-01-01

133

Space Shuttle Endeavour Rollout  

NASA Technical Reports Server (NTRS)

NASA Administrator Richard H. Truly addresses the audience in attendance at the rollout ceremonies of the Space Shuttle Orbiter Endeavour which occured on April 25, 1991, at the Rockwell International facility, Palmdale, Calif. Endeavour, the fourth Orbiter to join the fleet, replacing the lost Challenger, can be seen in the background.

1991-01-01

134

Volume 4 Issue 12 www.nasa.gov/centers/stennis December 2009 Space shuttle Atlantis crewmembers began their STS-129 mission to the International Space Station  

E-print Network

began their STS-129 mission to the International Space Station with a perfect, on-time launch Nov. 16, other equipment and supplies to the International Space Station. The STS-129 mission featured three. Space Shuttle Main Engines tested here lifted four shuttle missions to the space station, plus the final

135

Space Shuttle mission: STS-67  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

1995-01-01

136

NASA Vision  

NASA Technical Reports Server (NTRS)

This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

Fenton, Mary (Editor); Wood, Jennifer (Editor)

2003-01-01

137

Space Shuttle  

NASA Technical Reports Server (NTRS)

The space shuttle flight system and mission profile are briefly described. Emphasis is placed on the economic and social benefits of the space transportation system. The space shuttle vehicle is described in detail.

1976-01-01

138

Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 4  

NASA Technical Reports Server (NTRS)

Heat-transfer data for the 0.0175-scale Space Shuttle Vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of Orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-Foot Hypersonic Wind Tunnel at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1.5 x 1,000,000 and 5.0 x 1,000,000.

Foster, T. F.; Lockman, W. K.

1975-01-01

139

Space Shuttle Endeavour Heads West - Duration: 111 seconds.  

NASA Video Gallery

NASA's Shuttle Carrier Aircraft, a modified 747, flew retired shuttle Endeavour from Kennedy Space Center in Florida to Houston on Sept. 19, 2012, to complete the first leg of Endeavour's trip to L...

140

The Shuttle Cost and Price model  

NASA Technical Reports Server (NTRS)

The Shuttle Cost and Price (SCP) model was developed as a tool to assist in evaluating major aspects of Shuttle operations that have direct and indirect economic consequences. It incorporates the major aspects of NASA Pricing Policy and corresponds to the NASA definition of STS operating costs. An overview of the SCP model is presented and the cost model portion of SCP is described in detail. Selected recent applications of the SCP model to NASA Pricing Policy issues are presented.

Leary, Katherine; Stone, Barbara

1983-01-01

141

NASA replanning efforts continue  

NASA Astrophysics Data System (ADS)

A task force of the National Aeronautics and Space Administration (NASA) is producing new launch schedules for NASA's three remaining space shuttle orbiters, possibly supplemented by expendable launch vehicles. In the wake of the explosion of the space shuttle Challenger on January 28, 1986, the task force is assuming a delay of 12-18 months before resumption of shuttle flights.NASA's Headquarters Replanning Task Force, which meets daily, is separate from the agency's Data and Design Analysis Task Force, which collects and analyzes information about the accident for the use of the investigative commission appointed by President Ronald Reagan.

Katzoff, Judith A.

142

Space Shuttle Main Engine Public Test Firing  

NASA Technical Reports Server (NTRS)

A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

2000-01-01

143

Shuttle: forever young?  

PubMed

NASA has started a 4-phase program of upgrades designed to increase safety and extend use of the space shuttles through the year 2020. Phase I is aimed at improving vehicle safety and supporting the space station. Phase II is aimed at combating obsolescence and includes a checkout launch and control system and protection from micrometeoroids and orbital debris. Phase III is designed to expand or enhance the capabilities of the shuttle and includes development of an auxiliary power unit, avionics, a channel-wall nozzle, extended nose landing gear, long-life fuel cells, a nontoxic orbital maneuvering system/reaction control system, and a water membrane evaporator. Phase IV is aimed at design of system changes that would alter the shuttle mold line and configuration; projects include a five-segment solid rocket booster, liquid flyback boosters, and a crew escape module. PMID:11794337

Sietzen, Frank

2002-01-01

144

New shuttle schedule released  

NASA Astrophysics Data System (ADS)

The Hubble Space Telescope has a tentative launch date of November 17, 1988, according to an announcement made October 3, 1986, by the National Aeronautics and Space Administration (NASA). The plan calls for the first shuttle launch to take place on February 18, 1988, when Discovery is slated to launch a second Tracking and Data Relay Satellite (TDRS). A TDRS satellite was aboard Challenger when it exploded on January 28, 1986.The $1.3 billion telescope would be launched aboard the fifth shuttle mission in 1988. After launching the TDRS satellite, NASA plans to send Atlantis and then Columbia spacebound with military payloads. In September 1988, Discovery would be launched again with a third TDRS satellite.

1986-10-01

145

Mobile Christian - shuttle flight  

NASA Technical Reports Server (NTRS)

Louis Stork, 13, and Erin Whittle, 14, look on as Brianna Johnson, 14, conducts a 'test' of a space shuttle main engine in the Test Control Center exhibit in StenniSphere, the visitor center at NASA's John C. Stennis Space Center near Bay St. Louis, Miss. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.

2009-01-01

146

Space Shuttle Strategic Planning Status  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program is aggressively flying the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Completing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA's Crew Exploration Vehicle (Orion) and Crew and Cargo Launch Vehicles (Ares I). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the Vision for Space Exploration, and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

Norbraten, Gordon L.; Henderson, Edward M.

2007-01-01

147

Space Shuttle Strategic Planning Status  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program is aggressively planning the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Implementing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA s Crew Exploration Vehicle (CEV) and Crew and Cargo Launch Vehicles (CLV). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the President s "Vision for Space Exploration," and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

Henderson, Edward M.; Norbraten, Gordon L.

2006-01-01

148

NASA Technology Applications Team  

NASA Technical Reports Server (NTRS)

The contributions of NASA to the advancement of the level of the technology base of the United States are highlighted. Technological transfer from preflight programs, the Viking program, the Apollo program, and the Shuttle and Skylab programs is reported.

1979-01-01

149

The Space Shuttle in perspective  

NASA Technical Reports Server (NTRS)

Commercial aspects of the Space Shuttle are examined, with attention given to charges to users, schedule of launches and reimbursement, kinds of payload and their selection, NASA authority, space allocation, and risk, liability, and insurance. It is concluded that insurance to reduce the risk, incentives that NASA is willing to make available to U.S. industry, and the demonstrated willingness of industry and the financial community to invest their funds in space ventures indicate that the new Shuttle capabilities will exponentially increase commercial activities in space during the 1980s.

Hosenball, S. N.

1981-01-01

150

NASA: Data on the Web.  

ERIC Educational Resources Information Center

Provides an annotated bibliography of selected NASA Web sites for K-12 math and science teachers: the NASA Lewis Research Center Learning Technologies K-12 Home Page, Spacelink, NASA Quest, Basic Aircraft Design Page, International Space Station, NASA Shuttle Web Site, LIFTOFF to Space Education, Telescopes in Education, and Space Educator's

Galica, Carol

1997-01-01

151

Human Factor Investigation of Waste Processing System During the HI-SEAS 4-month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas  

NASA Technical Reports Server (NTRS)

NASA's Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

Caraccio, Anne; Hintze, Paul E.; Miles, John D.

2014-01-01

152

Report of the Shuttle Processing Review Team  

NASA Technical Reports Server (NTRS)

The intent of this report is to summarize the assessment of the shuttle processing operations at the Kennedy Space Center (KSC) as requested by the NASA Administrator. He requested a team reaffirmation that safety is the number one priority and review operations to ensure confidence in the shuttle processing procedures at KSC.

1993-01-01

153

Lunar Commercial Mining Logistics  

NASA Astrophysics Data System (ADS)

Innovative commercial logistics is required for supporting lunar resource recovery operations and assisting larger consortiums in lunar mining, base operations, camp consumables and the future commercial sales of propellant over the next 50 years. To assist in lowering overall development costs, ``reuse'' innovation is suggested in reusing modified LTS in-space hardware for use on the moon's surface, developing product lines for recovered gases, regolith construction materials, surface logistics services, and other services as they evolve, (Kistler, Citron and Taylor, 2005) Surface logistics architecture is designed to have sustainable growth over 50 years, financed by private sector partners and capable of cargo transportation in both directions in support of lunar development and resource recovery development. The author's perspective on the importance of logistics is based on five years experience at remote sites on Earth, where remote base supply chain logistics didn't always work, (Taylor, 1975a). The planning and control of the flow of goods and materials to and from the moon's surface may be the most complicated logistics challenges yet to be attempted. Affordability is tied to the innovation and ingenuity used to keep the transportation and surface operations costs as low as practical. Eleven innovations are proposed and discussed by an entrepreneurial commercial space startup team that has had success in introducing commercial space innovation and reducing the cost of space operations in the past. This logistics architecture offers NASA and other exploring nations a commercial alternative for non-essential cargo. Five transportation technologies and eleven surface innovations create the logistics transportation system discussed.

Kistler, Walter P.; Citron, Bob; Taylor, Thomas C.

2008-01-01

154

The ceremonial transfer of Leonardo, the first MPLM, from ASI to NASA  

NASA Technical Reports Server (NTRS)

Participants pose for a photo at the Space Station Processing Facility ceremony transferring the 'Leonardo' Multipurpose Logistics Module (MPLM) from the Italian Space Agency, Agenzia Spaziale Italiana (ASI), to NASA. From left, they are astronaut Jim Voss, European Space Agency astronauts Umberto Guidoni of Italy and Christer Fuglesang of Sweden, NASA International Space Station Program Manager Randy Brinkley, NASA Administrator Daniel S. Goldin, ASI President Sergio De Julio and Stephen Francois, director, International Space Station Launch Site Support at KSC. The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000.

1998-01-01

155

Transition heating rates obtained on a matted and isolated 0.006 scale model (41-OT) space shuttle orbiter and external tank in the NASA/LaRC variable density hypersonic tunnel (IH17)  

NASA Technical Reports Server (NTRS)

Model information and data obtained from wind tunnel tests performed on a 0.006 scale model of the Rockwell International space shuttle orbiter and external tank in the 18 inch Variable Density Hypersonic Wind Tunnel (VDHT) at NASA Langley Research Center are presented. Tests were performed at a Mach number of 8.0 over a Reynolds Number range from 0.1 to 10.0 million per foot at 0 deg and -5 deg angle of attack and 0 deg sideslip angle. Transition heating rates were determined using thin skin thermocouples located at various locations on the orbiter and ET. The test was conducted in three stages: orbiter plus external tank (mated configuration); orbiter alone, and external tank alone. The effects of boundary layer trips were also included in the test sequence. The plotted results presented show the effect of configuration interference on the orbiter lower surface and on the ET. Tabulated data are given.

Cummings, J.

1976-01-01

156

Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1  

NASA Technical Reports Server (NTRS)

The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

Nichols, M. E.

1976-01-01

157

Results of investigations on a 0.015-scale model 2A configuration of the Rockwell International space shuttle orbiter in the NASA/Ames Research Center 3.5 foot hypersonic wind tunnel  

NASA Technical Reports Server (NTRS)

Experimental aerodynamic investigations were conducted in the NASA/Ames 3.5-Foot Hypersonic wind Tunnel during the interim April 9-18, 1973 on a 0.015-scale model of the Rockwell International Space Shuttle Orbiter, configuration 2A. Six component aerodynamic force and moment data were recorded over an angle of attack range from -3 deg to 42 deg at 0 deg angle of sideslip and from -10 deg to 10 deg sideslip at 0 deg and 45 deg constant angle of attack. Test Mach numbers were 5.27 and 7.32 at unit Reynolds number of 2.5 million per foot. Various elevon, rudder, speedbrake, and body flap deflections were tested to determine longitudinal and lateral-directional stability characteristics and to establish trim capability.

Milam, M. D.; Nichols, M. E.; Mellenthin, J. A.

1973-01-01

158

Results of investigations on the 0.004-scale model 74-0 of the configuration 4 (modified) space shuttle vehicle orbiter in the NASA/MSFC 14-by-14-inch trisonic wind tunnel (oa131)  

NASA Technical Reports Server (NTRS)

The results of an oil flow boundary-layer visualization wind tunnel test of an 0.004-scale model of the Space Shuttle Vehicle Orbiter in the NASA/Marshall Space Flight Center 14-by-14-inch Trisonic Wind Tunnel are presented. The model was tested at Mach numbers from 0.60 through 2.75, at angles-of-attack from 0 through 25 degrees, and at unit Reynolds numbers from 5.0 to 7.0 million per foot. The test program involved still and motion picture photography of oil-paint flow patterns on the orbiter, during and immediately after tunnel flow, to determine areas of boundary layer separation and regions of potential auxiliary power unit exhaust recirculation during transonic and low supersonic re-entry flight.

Nichols, M. E.

1975-01-01

159

]Space Shuttle Independent Assessment Team  

NASA Technical Reports Server (NTRS)

The Shuttle program is one of the most complex engineering activities undertaken anywhere in the world at the present time. The Space Shuttle Independent Assessment Team (SIAT) was chartered in September 1999 by NASA to provide an independent review of the Space Shuttle sub-systems and maintenance practices. During the period from October through December 1999, the team led by Dr. McDonald and comprised of NASA, contractor, and DOD experts reviewed NASA practices, Space Shuffle anomalies, as well as civilian and military aerospace experience. In performing the review, much of a very positive nature was observed by the SIAT, not the least of which was the skill and dedication of the workforce. It is in the unfortunate nature of this type of review that the very positive elements are either not mentioned or dwelt upon. This very complex program has undergone a massive change in structure in the last few years with the transition to a slimmed down, contractor-run operation, the Shuttle Flight Operations Contract (SFOC). This has been accomplished with significant cost savings and without a major incident. This report has identified significant problems that must be addressed to maintain an effective program. These problems are described in each of the Issues, Findings or Observations summarized, and unless noted, appear to be systemic in nature and not confined to any one Shuttle sub-system or element. Specifics are given in the body of the report, along with recommendations to improve the present systems.

2000-01-01

160

Shuttle accident stalls science plans  

NASA Astrophysics Data System (ADS)

Plans to make 1986 a uniquely productive year for U.S. space science activities ended in one horrible moment with the January 28, 1986, explosion of the space shuttle Challenger. The joyless scene at Cape Canaveral, Fla., stood in sharp contrast to the overwhelming success of Voyager 2 in its encounter with Uranus 4 days earlier. (Scientific details of that encounter will follow in upcoming issues of Eos.)Of the 15 space shuttle flights planned for fiscal year 1986, beginning October 1, 1985, a total of seven were to have carried scientific payloads for the National Aeronautics and Space Administration (NASA). The remaining eight flights were evenly divided between missions for the U.S. Department of Defense and commercial missions for NASA's paying customers. The explosion caused NASA to put its entire space shuttle program on hold to allow time for engineers to find the cause of the accident and for NASA to implement corrective measures. As Eos went to press, NASA acting administrator William R. Graham had not yet released the names of those who would serve on the formal investigative panel. I think everybody's agreed that it will take weeks to months to unravel, said Alexander Dessler, director of the space science laboratory at NASA's Marshall Space Flight Center near Huntsville, Ala. Dessler speculated that investigators would begin with a list of hundreds of possible causes for the explosion.

Katzoff, Judith A.

161

today@nasa.gov  

NSDL National Science Digital Library

Today@nasa.gov, contains the latest information and news releases from NASA missions. Visitors can also find out information about NASA's four strategic enterprises: Aeronautics, Human Exploration and Development of Space, Mission to Planet Earth, and Space Science. NASA related sites describe current happenings at NASA and also provide homepages of NASA missions including the Cassini space probe, the Mars Global Surveyor and, most recently, the launch of the Columbia space shuttle. Space exploration provides clues to how the solar system was formed, why life exists on earth and not on other known planets, and what the structures of the universe, matter, and energy are.

1998-01-01

162

Shuttle Reference Data  

NASA Technical Reports Server (NTRS)

This collection of shuttle reference data contains the following information: shuttle abort history, shuttle abort modes, abort decisions, space shuttle rendezvous maneuvers, space shuttle main engines, space shuttle solid rocket boosters, hold-down posts, SRB (solid rocket boosters) ignition, electrical power distribution, hydraulic power units, thrust vector control, SBR rate gyro assemblies, SBR separation and Space Shuttle Super Super Light Weight Tank (SLWT).

2002-01-01

163

The Shuttle Radar Topography Mission  

Microsoft Academic Search

The Shuttle Radar Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth. The project was a joint endeavor of NASA, the National Geospatial-Intelligence Agency, and the German and Italian Space Agencies and flew in February 2000. It used dual radar antennas to acquire interferometric radar data, processed to digital topographic data at 1 arc sec resolution.

Tom G. Farr; Paul A. Rosen; Edward Caro; Robert Crippen; Riley Duren; Scott Hensley; Michael Kobrick; Mimi Paller; Ernesto Rodriguez; Ladislav Roth; David Seal; Scott Shaffer; Joanne Shimada; Jeffrey Umland; Marian Werner; Michael Oskin; Douglas Burbank; Douglas Alsdorf

2007-01-01

164

Liquid lift for the Shuttle  

Microsoft Academic Search

After the operational failure of a Solid Rocket Booster (SRB) led to the Space Shuttle Challenger accident, NASA reexamined the use of liquid-fueled units in place of the SRBs in order to ascertain whether they could improve safety and payload. In view of favorable study results obtained, the posibility has arisen of employing a common liquid rocket booster for the

Richard Demeis

1989-01-01

165

Shuttle seated extraction feasibility study  

Microsoft Academic Search

Following the Space Shuttle Challenger accident, serious attention has turned to in-flight escape. Prior to the resumption of flight, a manual bailout system was qualified and installed. For the long term, a seated extraction system to expand the escape envelope is being investigated. This paper describes a 1987 study, conducted jointly by NASA\\/Johnson Space Center and Langley Research Center, to

Steven R. Onagel; Laurence J. Bement

1989-01-01

166

Shuttle Net, Tuna Net  

NASA Technical Reports Server (NTRS)

Rockwell International, NASA's prime contractor for the Space Shuttle, asked West Coast Netting (WCN) to develop a safety net for personnel working on the Shuttle Orbiter. This could not be an ordinary net, it had to be relatively small, yet have extraordinary tensile strength. It also had to be fire resistant and resistant to ultraviolet (UV) light. After six months, WCN found the requisite fiber, a polyester-like material called NOMEX. The company was forced to invent a more sophisticated twisting process since conventional methods did not approach specified breaking strength. The resulting product, the Hyperester net, sinks faster and fishes deeper, making it attractive to fishing fleets. A patented treatment for UV protection and greater abrasion resistance make Hyperester nets last longer, and the no-shrink feature is an economic bonus.

1983-01-01

167

NASA Information Summaries.  

ERIC Educational Resources Information Center

This document consists of 11 "NASA Information Summaries" grouped together: (1) "Our Planets at a Glance" (PMS-010); (2) "Space Shuttle Mission Summary: 1985-1986" (PMS-005); (3) "Astronaut Selection and Training" (PMS-019); (4) "Space Station" (PMS-008); (5) "Materials Processing in Space" (PMS-026); (6) "Countdown!: NASA Launch Vehicles and

Mar, May 1987, 1988

1988-01-01

168

Shuttle Rocket Motor Program: NASA should delay awarding some construction contracts. Report to the Chair, Subcommittee on Government Activities and Transportation, Committee on Government Operations, House of Representatives  

NASA Technical Reports Server (NTRS)

Even though the executive branch has proposed terminating the Advanced Solid Rocket Motor (ASRM) program, NASA is proceeding with all construction activity planned for FY 1992 to avoid schedule slippage if the program is reinstated by Congress. However, NASA could delay some construction activities for at least a few months without affecting the current launch data schedule. For example, NASA could delay Yellow Creek's motor storage and dock projects, Stennis' dock project, and Kennedy's rotation processing and surge facility and dock projects. Starting all construction activities as originally planned could result in unnecessarily incurring additional costs and termination liability if the funding for FY 1993 is not provided. If Congress decides to continue the program, construction could still be completed in time to avoid schedule slippage.

1992-01-01

169

A comparison of in-cloud HCl concentrations from the NASA/MSFC MDM to measurements for the space shuttle launch  

NASA Technical Reports Server (NTRS)

The Multilevel Diffusion Model (MDM) Version 5 was modified to include features of more recent versions. The MDM was used to predict in-cloud HCl concentrations for the April 12 launch of the space Shuttle (STS-1). The maximum centerline predictions were compared with measurements of maximum gaseous HCl obtained from aircraft passes through two segments of the fragmented shuttle ground cloud. The model over-predicted the maximum values for gaseous HCl in the lower cloud segment and portrayed the same rate of decay with time as the observed values. However, the decay with time of HCl maximum predicted by the MDM was more rapid than the observed decay for the higher cloud segment, causing the model to under-predict concentrations which were measured late in the life of the cloud. The causes of the tendency for the MDM to be conservative in over-estimating the HCl concentrations in the one case while tending to under-predict concentrations in the other case are discussed.

Glasser, M. E.

1981-01-01

170

NASA Human Spaceflight  

NSDL National Science Digital Library

The NASA Human Spaceflight site provides information on all crewed NASA missions, especially the Space Shuttle and International Space Station. Materials include realtime data and tracking information, updates for ongoing missions, press releases, videos and photos, and daily news and events from the various NASA centers. There is also information on historic crewed missions, and fact sheets on astronauts, shuttle missions, first flights, and scientific research facilities. Users may also subscribe to an e-mail service to receive status reports, news releases, and other current information.

2002-01-01

171

Success Legacy of the Space Shuttle Program: Changes in Shuttle Post Challenger and Columbia  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the legacy of successes in the space shuttle program particularly with regards to the changes in the culture of NASA's organization after the Challenger and Columbia accidents and some of the changes to the shuttles that were made manifest as a result of the accidents..

Jarrell, George

2010-01-01

172

Multi-Purpose Logistics Module (MPLM) Cargo Heat Exchanger  

NASA Technical Reports Server (NTRS)

This paper describes the New Shuttle Orbiter's Multi- Purpose Logistics Modulo (MPLM) Cargo Heat Exchanger (HX) and associated MPLM cooling system. This paper presents Heat Exchanger (HX) design and performance characteristics of the system.

Zampiceni, John J.; Harper, Lon T.

2002-01-01

173

Results of the 0.015 scale space shuttle vehicle orbiter test (OA17) in the NASA low turbulence pressure tunnel  

NASA Technical Reports Server (NTRS)

Experimental aerodynamic investigations were conducted on a 0.015 scale model of the Space Shuttle Orbiter in a low turbulence pressure tunnel. Six component static aerodynamic force and moment data were recorded while the model was pitched from -2 deg to +26 deg angle of attack. The yaw angles during these pitch sweeps were 0 deg, -5 deg, and 7 1/2 deg. Base, sting cavity, vertical tail, wing trailing edge, and elevon pressures, as well as elevon and rudder hinge moment data were also obtained. The tests were conducted at a nominal Mach number of 0.25. The Reynolds number was varied throughout the test program from 2.5 million to 4.7 million to 10.0 million to 12.5 million.

Milam, M. D.; Petrozzi, M. T.

1974-01-01

174

Space Shuttle  

NASA Technical Reports Server (NTRS)

A general description of the space shuttle program is presented, with emphasis on its application to the use of space for commercial, scientific, and defense needs. The following aspects of the program are discussed: description of the flight system (orbiter, external tank, solid rocket boosters) and mission profile, direct benefits related to life on earth (both present and expected), description of the space shuttle vehicle and its associated supporting systems, economic impacts (including indirect benefits such as lower inflation rates), listing of participating organizations.

1975-01-01

175

Space shuttle based microgravity smoldering combustion experiments  

Microsoft Academic Search

Results from four microgravity smoldering combustion experiments conducted aboard the NASA Space Shuttle are presented in this work. The experiments are part of the NASA funded Microgravity Smoldering Combustion (MSC) research program, aimed to study the smolder characteristics of porous combustible materials in a microgravity environment. The objective of the study is to provide a better understanding of the controlling

David C. Walther; A. Carlos Fernandez-Pello; David L. Urban

1999-01-01

176

Collins named First Woman Shuttle Commander  

Microsoft Academic Search

Just a few hours after NASA revealed that there is water ice on the Moon, U.S. First Lady Hillary Rodham Clinton introduced Air Force Lieutenant Colonel Eileen Collins to a packed auditorium at Dunbar Senior High School in Washington, D.C., as the first woman who will command a NASA space shuttle mission. With students at this school, which is noted

Randy Showstack

1998-01-01

177

Payload Flight Assignments: NASA Mixed Fleet  

NASA Technical Reports Server (NTRS)

This manifest summarizes the missions planned by NASA for the Space Shuttle and Expendable Launch Vehicles (ELV's) as of the date of publication. Space Shuttle and ELV missions are shown through calendar year 2003. Space Shuttle missions for calendar years 2002-2003 are under review pending the resolution of details in the assembly sequence of the International Space Station (ISS).

Parker, Robert A. R.

1997-01-01

178

Logistics classification evolution and microscopic logistics freight integration  

Microsoft Academic Search

Logistics is divided into macroscopic logistics (also called social logistics) and microscopic logistics (also called enterprise logistics), according to microscope pattern and evolution line of TRIZ theory, this paper divides logistics into macroscopic logistics (social logistics), mesoscopic logistics (enterprise logistics) and microscopic logistics (individual logistics). we concentrate on microscopic logistics goods freight. We make use of integration pattern of evolution

Suxin Wang; Ruiping Shi; Leizhen Wang; Songzhu Zhang; Hongxin Zhou

2010-01-01

179

Shuttle Endeavour Flyover of Los Angeles Landmarks - Duration: 15:11.  

NASA Video Gallery

Space shuttle Endeavour atop NASA's Shuttle Carrier Aircraft flew over many Los Angeles area landmarks on its final ferry flight Sept. 21, 2012, including the Coliseum, the Hollywood Sign, Griffith...

180

Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 2: Summary of information developed in the Panel's fact-finding activities  

NASA Technical Reports Server (NTRS)

The management areas and the individual elements of the shuttle system were investigated. The basic management or design approach including the most obvious limits or hazards that are significant to crew safety was reviewed. Shuttle program elements that were studied included the orbiter, the space shuttle main engine, the external tank project, solid rocket boosters, and the launch and landing elements.

1975-01-01

181

EVA 2010: Preparing for International Space Station EVA Operations Post-Space Shuttle Retirement  

NASA Technical Reports Server (NTRS)

The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the OneEVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history.

Chullen, Cinda; West, William W.

2010-01-01

182

Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights  

NASA Technical Reports Server (NTRS)

Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.

Wedge, T. E.; Williamson, R. P.

1973-01-01

183

The ceremonial transfer of Leonardo, the first MPLM, from ASI to NASA  

NASA Technical Reports Server (NTRS)

Participants pose for a photo at the Space Station Processing Facility ceremony transferring the 'Leonardo' Multipurpose Logistics Module (MPLM) from the Italian Space Agency, Agenzia Spaziale Italiana (ASI), to NASA. From left, they are astronaut Jim Voss, ASI President Sergio De Julio, European Space Agency astronaut Umberto Guidoni of Italy, NASA Administrator Daniel S. Goldin and European Space Agency astronaut Christer Fuglesang of Sweden. The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000.

1998-01-01

184

Structural Health Monitoring of the Space Shuttle's Wing Leading Edge  

NASA Astrophysics Data System (ADS)

In a response to the Columbia Accident Investigation Board's recommendations following the loss of the Space Shuttle Columbia in 2003, NASA developed methods to monitor the orbiters while in flight so that on-orbit repairs could be made before reentry if required. One method that NASA investigated was an acoustic based impact detection system. A large array of ground tests successfully demonstrated the capability to detect and localize impact events on the Shuttle's wing structure. Subsequently, a first generation impact sensing system was developed and deployed on the Shuttle Discovery, the first Shuttle scheduled for return to flight.

Madaras, Eric I.; Prosser, William H.; Studor, George; Gorman, Michael R.; Ziola, Steven M.

2006-03-01

185

Liquid lift for the Shuttle  

NASA Astrophysics Data System (ADS)

After the operational failure of a Solid Rocket Booster (SRB) led to the Space Shuttle Challenger accident, NASA reexamined the use of liquid-fueled units in place of the SRBs in order to ascertain whether they could improve safety and payload. In view of favorable study results obtained, the posibility has arisen of employing a common liquid rocket booster for the Space Shuttle, its cargo version ('Shuttle-C'), and the next-generation Advanced Launch System. The system envisioned would involve two booster units, whose four engines/unit would be fed by integral LOX and kerosene tanks. Mission aborts with one-booster unit and two-unit failures would not be catastrophic, and would respectively allow LEO or an emergency landing in Africa.

Demeis, Richard

1989-02-01

186

Shuttle Processing  

NASA Technical Reports Server (NTRS)

This slide presentation details shuttle processing flow which starts with wheel stop and ends with launching. The flow is from landing the orbiter is rolled into the Orbiter Processing Facility (OPF), where processing is performed, it is then rolled over to the Vehicle Assembly Building (VAB) where it is mated with the propellant tanks, and payloads are installed. A different flow is detailed if the weather at Kennedy Space Center requires a landing at Dryden.

Guodace, Kimberly A.

2010-01-01

187

Future NASA spaceborne SAR missions  

Microsoft Academic Search

Two Earth-orbiting radar missions are planned for the near future by NASA-Shuttle Radar Topography Mission (SRTM) and LightSAR. The SRTM will fly aboard the Shuttle using interferometric synthetic aperture radar (IFSAR) to provide a global digital elevation map. SRTM is jointly sponsored by NASA and the National Imagery and Mapping Agency (NIMA). The LightSAR will utilize emerging technology to reduce

Jeffrey E. Hilland; Frederick V. Stuhr; Anthony Freeman; David Imel; Yuhsyen Shen; R. L. Jordan; E. R. Caro

1998-01-01

188

NASA Pocket Statistics: 1997 Edition  

NASA Technical Reports Server (NTRS)

POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, Aeronautics and Space Transportation and NASA Procurement, Financial and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. All Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

1997-01-01

189

Endeavour Leaves NASA Dryden for LAX - Duration: 15:10.  

NASA Video Gallery

NASA's 747 Shuttle Carrier Aircraft, carrying space shuttle Endeavour, departed Edwards Air Force Base at 8:17 a.m. PDT on Sept. 21 to begin a four-and-a-half hour flyover of northern California an...

190

Subsonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 of the space shuttle orbiter tested in the NASA/ARC 12-foot pressure tunnel (LA66)  

NASA Technical Reports Server (NTRS)

The investigation was conducted in the NASA/Ames Research Center 12-foot Pressure Tunnel. The model was a Langley-built 0.015-scale SSV orbiter model with remote independently operated left and right elevon surfaces. The objective of the test was to generate a detailed aerodynamic data base for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle of attack range from -4 deg to 24 deg at angles of sideslip of 0 deg and + or - 4 deg. Additional tests were made over an angle of sideslip range from -6 deg to 6 deg at selected angles of attack. The test Mach numbers were 0.22 and 0.29 and the Reynolds number was varied from 2.0 to 8.5 million per foot.

Underwood, J. M.; Parrell, H.

1976-01-01

191

Results of investigations of an 0.010-scale 140A/B configuration (model 72-OTS) of the Rockwell International space shuttle orbiter in the NASA/Langley Research Center unitary plan wind tunnel  

NASA Technical Reports Server (NTRS)

Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.

Petrozzi, M. T.; Milam, M. D.

1975-01-01

192

Wind tunnel tests of the 0.010-scale space shuttle integrated vehicle (model 52-QT) in the NASA/Ames 3.5-foot hypersonic wind tunnel (IA18)  

NASA Technical Reports Server (NTRS)

Experimental aerodynamic investigations were conducted in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel on an 0.010-scale model of the space shuttle integrated vehicle consisting of an orbiter and external tank. The basic hypersonic stability characteristics of the orbiter attached rigidly to the external tank and the basic hypersonic stability characteristics of external tank alone simulating RTLS abort conditions were evaluated. The integrated vehicle was tested at angles of attack from- 8 deg through +30 deg and angles of sideslip of- 8 deg through +8 deg at fixed angles of attack of -4 deg, 0 deg, and +4 deg. A maximum angle of attack range of +15 deg through +40 deg was obtained for this configuration, at Mach number 7.3, for one run only. External tank alone testing was conducted at angles of attack from +8 deg through -30 deg and angles of sideslip of -8 deg at fixed angles of attack of -4 deg, 0 deg and +4 deg. Six-component force data and static base pressures were recorded during the test.

Esparza, V.; Chee, E.; Stone, J.; Mellenthin, J. A.

1975-01-01

193

Shuttle Hitchhiker Experiment Launcher System (SHELS)  

NASA Technical Reports Server (NTRS)

NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.

Daelemans, Gerry

1999-01-01

194

NASA Agency Overview Briefing  

NASA Technical Reports Server (NTRS)

The briefing opened with Dean Acosta (NASA Press Secretary) introducing Michael Griffin (NASA Administrator) and Bill Gerstenmaier (Associate Administrator for Space Operations). Bill Griffin stated that they would resume the Shuttle Fight to Return process, that the vehicle was remarkably clean and if the weather was good, the Shuttle would be ready to launch as scheduled. Bill Gerstenmaier stated that the preparations and processing of the vehicle went extremely well and they are looking forward to increasing the crew size to three. Then the floor was open to questions from the press.

2006-01-01

195

SESAC statement on shuttle accident  

NASA Astrophysics Data System (ADS)

The Space and Earth Science Advisory Committee (SESAC) of the NASA Advisory Council (NAC) shares NASA's and the nation's grief in the loss of the Challenger crewseven exceptional individuals whose lives were dedicated to some of our country's loftiest goals. Over the years, these dedicated individuals and their fellow astronauts have worked closely with the scientific community to ensure that the scientific aspects of the United States space program would be productive in the era of the space shuttle. Through their efforts, the value of manned space flight for accomplishing important research in several areas of space science has been unambiguously demonstrated. Further, as space science has become increasingly an international enterprise, the capabilities of the space shuttle have become central to much scientific planning worldwide.

196

Formalizing Space Shuttle Software Requirements  

NASA Technical Reports Server (NTRS)

This paper describes two case studies in which requirements for new flight-software subsystems on NASA's Space Shuttle were analyzed, one using standard formal specification techniques, the other using state exploration. These applications serve to illustrate three main theses: (1) formal methods can complement conventional requirements analysis processes effectively, (2) formal methods confer benefits regardless of how extensively they are adopted and applied, and (3) formal methods are most effective when they are judiciously tailored to the application.

Crow, Judith; DiVito, Ben L.

1996-01-01

197

Advantages of a round-body shuttle  

NASA Technical Reports Server (NTRS)

A cylindrical fuselage cross-section SSTOV representing the design generation beyond the current NASA Space Shuttle has been projected capable of reducing the cost of payload delivery to orbit while increasing mission scope. Due to its intrinsically greater wetted-area and structural weight efficiencies, this cylindrical vehicle would carry 40 percent greater payload than the Space Shuttle system despite a 20-percent lower gross liftoff weight. A LOX/hydrocarbon fuel combination would be employed during the early portion of flight, thereupon shifting to LOX/hydrogen. The cylindrical SSTOV would have eight times the volume of the Space Shuttle Orbiter.

Arrington, James P.; Wells, William L.; Lepsch, Roger A., Jr.; Huffman, Jarrett K.; Macconochie, Ian O.

1989-01-01

198

The Shuttle Era  

NASA Technical Reports Server (NTRS)

An overview of the Space Shuttle Program is presented. The missions of the space shuttle orbiters, the boosters and main engine, and experimental equipment are described. Crew and passenger accommodations are discussed as well as the shuttle management teams.

1981-01-01

199

Shuttle interaction study extension  

NASA Technical Reports Server (NTRS)

The implications of using the Shuttle with the SOC were analyzed, including constraints that the Shuttle places upon the SOC design. All the considerations involved in the use of the shuttle as a part of the SOC concept were identified.

1981-01-01

200

Close-up of LSRA Shuttle main gear  

NASA Technical Reports Server (NTRS)

A space shuttle landing gear system is clearly seen between the two main landing gear components on this NASA CV-990, modified as a Landing Systems Research Aircraft. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program, conducted at NASA's Dryden Flight Research Center, Edwards, California, provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.

1993-01-01

201

STS-109 Shuttle Mission  

NASA Technical Reports Server (NTRS)

This is the insignia of the STS-109 Space Shuttle mission. Carrying a crew of seven, the Space Shuttle Orbiter Columbia was launched with goals of maintenance and upgrades to the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm where four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 27th flight of the Orbiter Columbia and the 108th flight overall in NASA's Space Shuttle Program.

2001-01-01

202

Restartable solid motor stage for shuttle applications  

NASA Technical Reports Server (NTRS)

The application of restartable solid motor stages to shuttle missions has been shown to provide a viable supplement to the shuttle program. Restartable solid motors in the 3000 pound class provide a small expendable transfer stage that reduces the demand on the shuttle for the lower energy missions. Shuttle operational requirements and preliminary performance data provided an input for defining design features required for restartable solid motor applications. These data provided a basis for a configuration definition that is compatible with shuttle operations. Mission by mission analysis showed the impact on a NASA supplied mission model. The results showed a 15% reduction in the number of shuttle flights required. In addition the amount of shuttle capability used to complete the mission objectives was significantly reduced. For example, in the 1979 missions there was a 62% reduction in shuttle capability used. The study also showed that the solid motor could provide a supplement to the TUG that would allow TUGS to be used in a recoverable rather than an expendable mode. The study shows a 71% reduction in the number of TUGs that would be expended.

Rohrbaugh, D. J.

1973-01-01

203

Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center  

NASA Technical Reports Server (NTRS)

The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

2006-01-01

204

Results of experimental investigations to determine external tank protuberance loads using a 0.03-scale model of the Space Shuttle launch configuration (model 47-OTS) in the NASA/ARC unitary plan wind tunnel, volume 1  

NASA Technical Reports Server (NTRS)

Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA190A/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA190A) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA190B). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline, (2) GO2 pressure line, (3) LO2 antigeyser line, (4) GH2 pressure line, (5) LH2 tank cable tray, (6) LO2 tank cable tray, (7) Bipod, (8) ET/SRB cable tray, and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: (1) Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above. (2) 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements. (3) Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures. (4) Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

Houlihan, S. R.

1992-01-01

205

What's next for NASA?  

E-print Network

Im here to tell you that American leadership in space will continue for at least the next half-century because we have laid the foundation for success and failure is not an option.Charles Bolden, NASA Administrator Amid the retirement of the space shuttle fleet and fights for funding, many ask: Whats next for NASA? NASA has been telling anyone who will listen that the end of the space shuttle is not the end of NASA, or even of NASA sending humans into space. From studying earth sciences to developing new rockets, NASA has a plan. Earth Science Research How is the global earth system changing? How will the earth system change in the future? These are the big questions about the planet that NASA aims to answer and around which future NASA missions are centered. Upcoming NASA missions will enable scientists to make more accurate estimates of rain and snowfall, and better predict extreme weather events like hurricanes, floods, landslides, and droughts. NASA launched the Near Polar-Orbiting Operational Environmental Satellite System Preparatory Project (NPP) in late October 2011 to help meet these goals. NPP is collecting data that will assist in making more accurate weather forecasts, as well as contribute data to research in climate change. NASA recognizes that the earth is 26 Radiations Fall 2011 currently warming and at a faster rate than ever measured before. [1] It plans to study the way this system is changing so that we can better understand the impact humans are having on the earth. NASA will assist with research on the climate, carbon cycle, ecosystems, water cycle, biogeochemistry, and the earths surface and interior. As the earths climate changes, it is vital for NASA to keep track of the consequences, from changes in the ice sheets to topography to the atmosphere, and anticipate what they mean for the future of the planet. [2

Elizabeth Hook; Sps Communications Specialist

206

Behind the Scenes: Under the Shuttle - Duration: 9:40.  

NASA Video Gallery

In this episode of "NASA Behind the Scenes," astronaut Mike Massimino takes you up to - and under - the space shuttle as it waits on launch pad 39A at the Kennedy Space Center for the start of a re...

207

Direct Visualization of Shock Waves in Supersonic Space Shuttle Flight  

NASA Technical Reports Server (NTRS)

Direct observation of shock boundaries is rare. This Technical Memorandum describes direct observation of shock waves produced by the space shuttle vehicle during STS-114 and STS-110 in imagery provided by NASA s tracking cameras.

OFarrell, J. M.; Rieckhoff, T. J.

2011-01-01

208

NASA highlights, 1986 - 1988  

NASA Technical Reports Server (NTRS)

Highlights of NASA research from 1986 to 1988 are discussed. Topics covered include Space Shuttle flights, understanding the Universe and its origins, understanding the Earth and its environment, air and space transportation, using space to make America more competitive, using space technology an Earth, strengthening America's education in science and technology, the space station, and human exploration of the solar system.

1990-01-01

209

Thousands gather to watch a Space Shuttle Main Engine Test  

NASA Technical Reports Server (NTRS)

Approximately 13,000 people fill the grounds at NASA's John C. Stennis Space Center for the first-ever evening public engine test of a Space Shuttle Main Engine. The test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

2001-01-01

210

Stennis Holds Last Planned Space Shuttle Engine Test  

NASA Technical Reports Server (NTRS)

With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

2009-01-01

211

National Aeronautics and Space Administration Space Shuttle Transition and Retirement  

E-print Network

National Aeronautics and Space Administration NASAfacts Space Shuttle Transition and Retirement.S. Space and Rocket Center of Huntsville,Ala., National Air and Space Museum in Washington, and Evergreen Three NASA space shuttles are undergoing an extensive transition and retirement (T&R) phase

212

Closeup view looking into the nozzle of the Space Shuttle ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Close-up view looking into the nozzle of the Space Shuttle Main Engine number 2061 looking at the cooling tubes along the nozzle wall and up towards the Main Combustion Chamber and Injector Plate - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

213

Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel on the space shuttle program. Part 2: Summary of information developed in the panel's fact-finding activities  

NASA Technical Reports Server (NTRS)

Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.

1976-01-01

214

Space Shuttle Main Engine reaches milestoneSpace Shuttle Main Engine reaches milestone One in a million . . .  

E-print Network

the long-term effects of space travel on humans, preparing for the longer journeys of the future. After in a million . . . A milestone in human spaceflight was achieved Wednesday, Jan. 21, at NASA Stennis SpaceSpace Shuttle Main Engine reaches milestoneSpace Shuttle Main Engine reaches milestone One

215

Remote Observations of Reentering Spacecraft Including the Space Shuttle Orbiter  

NASA Technical Reports Server (NTRS)

Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.

Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, jay H.; Gibson, David

2013-01-01

216

NASA Video Catalog  

NASA Technical Reports Server (NTRS)

This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2006-01-01

217

ISS Logistics Hardware Disposition and Metrics Validation  

NASA Technical Reports Server (NTRS)

I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

Rogers, Toneka R.

2010-01-01

218

Shuttle Carrier Aircraft (SCA) Fleet Photo  

NASA Technical Reports Server (NTRS)

NASA's two Boeing 747 Shuttle Carrier Aircraft (SCA) are seen here nose to nose at Dryden Flight Research Center, Edwards, California. The front mounting attachment for the Shuttle can just be seen on top of each. The SCAs are used to ferry Space Shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are; three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached, and two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Texas. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) t

1995-01-01

219

Space Shuttle thermal protection system inspection by 3D imaging laser radar  

Microsoft Academic Search

NASA has developed a sensor suite to inspect the Space Shuttle Thermal Protection System while the Shuttle is flying in orbit. When the Space Shuttle returns to flight, it will carry a 3D Imaging Laser Radar as part of the sensor suite to observe the Thermal Protection System and indicate any damages that may need to be repaired before return

James C. Lamoreux; James D. Siekierski; J. P. N. Carter

2004-01-01

220

China's rural logistics distribution  

Microsoft Academic Search

Only including agricultural products logistics, agricultural means of production logistics, rural daily consumer goods logistics, as well as rural reverse logistics, it really be considered ldquorural logisticsrdquo. This paper analyzes the distribution of agricultural products, and distribution of daily consumer goods, agricultural means of production distribution, rural reverse logistics; states that chain management should be one of its meaning in

Guojun Ji; Weiwang Huang

2009-01-01

221

Shuttle Case Study Collection Website Development  

NASA Technical Reports Server (NTRS)

As a continuation from summer 2012, the Shuttle Case Study Collection has been developed using lessons learned documented by NASA engineers, analysts, and contractors. Decades of information related to processing and launching the Space Shuttle is gathered into a single database to provide educators with an alternative means to teach real-world engineering processes. The goal is to provide additional engineering materials that enhance critical thinking, decision making, and problem solving skills. During this second phase of the project, the Shuttle Case Study Collection website was developed. Extensive HTML coding to link downloadable documents, videos, and images was required, as was training to learn NASA's Content Management System (CMS) for website design. As the final stage of the collection development, the website is designed to allow for distribution of information to the public as well as for case study report submissions from other educators online.

Ransom, Khadijah S.; Johnson, Grace K.

2012-01-01

222

NASA Human Spaceflight Conjunction Assessment: Recent Conjunctions of Interest  

NASA Technical Reports Server (NTRS)

This viewgraph presentation discusses a brief history of NASA Human Spaceflight Conjunction Assessment (CA) activities, an overview of NASA CA process for ISS and Shuttle, and recent examples from Human Spaceflight conjunctions.

Browns, Ansley C.

2010-01-01

223

NASA Alternate Access to Station Service Concept  

Microsoft Academic Search

The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity

M. D. Bailey; C. Crumbly

2002-01-01

224

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

On Launch Pad 39A, the Rotating Service Structure has rolled back to reveal Space Shuttle Atlantis poised for launch. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

225

An Analysis of Shuttle Crew Scheduling Violations  

NASA Technical Reports Server (NTRS)

From the early years of the Space Shuttle program, National Aeronautics and Space Administration (NASA) Shuttle crews have had a timeline of activities to guide them through their time on-orbit. Planners used scheduling constraints to build timelines that ensured the health and safety of the crews. If a constraint could not be met it resulted in a violation. Other agencies of the federal government also have scheduling constraints to ensure the safety of personnel and the public. This project examined the history of Space Shuttle scheduling constraints, constraints from Federal agencies and branches of the military and how these constraints may be used as a guide for future NASA and private spacecraft. This was conducted by reviewing rules and violations with regard to human aerospace scheduling constraints, environmental, political, social and technological factors, operating environment and relevant human factors. This study includes a statistical analysis of Shuttle Extra Vehicular Activity (EVA) related violations to determine if these were a significant producer of constraint violations. It was hypothesized that the number of SCSC violations caused by EVA activities were a significant contributor to the total number of violations for Shuttle/ISS missions. Data was taken from NASA data archives at the Johnson Space Center from Space Shuttle/ISS missions prior to the STS-107 accident. The results of the analysis rejected the null hypothesis and found that EVA violations were a significant contributor to the total number of violations. This analysis could help NASA and commercial space companies understand the main source of constraint violations and allow them to create constraint rules that ensure the safe operation of future human private and exploration missions. Additional studies could be performed to evaluate other variables that could have influenced the scheduling violations that were analyzed.

Bristol, Douglas

2012-01-01

226

NASA Robotics for Space Exploration  

NASA Technical Reports Server (NTRS)

This presentation focuses on NASA's use of robotics in support of space exploration. The content was taken from public available websites in an effort to minimize any ITAR or EAR issues. The agenda starts with an introduction to NASA and the "Vision for Space Exploration" followed by NASA's major areas of robotic use: Robotic Explorers, Astronaut Assistants, Space Vehicle, Processing, and In-Space Workhorse (space infrastructure). Pictorials and movies of NASA robots in use by the major NASA programs: Space Shuttle, International Space Station, current Solar Systems Exploration and Mars Exploration, and future Lunar Exploration are throughout the presentation.

Fischer, RIchard T.

2007-01-01

227

Shuttle Entry Imaging Using Infrared Thermography  

NASA Technical Reports Server (NTRS)

During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne imaging platforms used within DoD along with agency assets developed and optimized for use during Shuttle ascent to demonstrate capability (i.e., tracking, acquisition of multispectral data, spatial resolution) and identify system limitations (i.e., radiance modeling, saturation) using state-of-the-art imaging instrumentation and communication systems. Global infrared intensity data have been transformed to temperature by comparison to Shuttle flight thermocouple data. Reasonable agreement is found between the flight thermography images and numerical prediction. A discussion of lessons learned and potential application to a potential Shuttle boundary layer transition flight test is presented.

Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

2007-01-01

228

Shuttle seated extraction feasibility study  

NASA Astrophysics Data System (ADS)

Following the Space Shuttle Challenger accident, serious attention has turned to in-flight escape. Prior to the resumption of flight, a manual bailout system was qualified and installed. For the long term, a seated extraction system to expand the escape envelope is being investigated. This paper describes a 1987 study, conducted jointly by NASA/Johnson Space Center and Langley Research Center, to determine the feasibility of modifying the Space Shuttle Orbiters to incorporate the seated extraction system. Results of the study are positive, indicating retrofit opportunity and high probability of escape for early ascent, late entry, and even for uncontrolled flight such as the Challenger breakup. The system, as envisioned, can extract seven crewmembers within two seconds.

Onagel, Steven R.; Bement, Laurence J.

229

Europe gets aboard the Shuttle  

NASA Technical Reports Server (NTRS)

A series of experiments directed by NASA for the European Space Agency's Spacelab are planned for early 1983. Spacelab 1 is scheduled to carry equipment for upper atmosphere research and for experiments in plasma and solar physics, medicine, and thermodynamics. Spacelab 2 will provide equipment for research in astronomy, high-energy physics, astrophysics, and solar physics. Spacelab 3 will be equipped to study materials processing in space, biological tests, and cloud physics. Spacelab is modular and reusable, with the planned life equal to 50 missions. The Space Shuttle will carry a Spacelab with scientific equipment of up to 8800 kg into orbits ranging in altitude from 160 to 1100 km and transmitting data at up to 50 Mb/s. The cost of launching a Shuttle/Spacelab mission is estimated at $28 million.

Moye, J. E.

1980-01-01

230

Shuttle seated extraction feasibility study  

NASA Technical Reports Server (NTRS)

Following the Space Shuttle Challenger accident, serious attention has turned to in-flight escape. Prior to the resumption of flight, a manual bailout system was qualified and installed. For the long term, a seated extraction system to expand the escape envelope is being investigated. This paper describes a 1987 study, conducted jointly by NASA/Johnson Space Center and Langley Research Center, to determine the feasibility of modifying the Space Shuttle Orbiters to incorporate the seated extraction system. Results of the study are positive, indicating retrofit opportunity and high probability of escape for early ascent, late entry, and even for uncontrolled flight such as the Challenger breakup. The system, as envisioned, can extract seven crewmembers within two seconds.

Onagel, Steven R.; Bement, Laurence J.

1989-01-01

231

An Integrated Approach to Thermal Management of International Space Station Logistics Flights, Improving the Efficiency  

NASA Technical Reports Server (NTRS)

The efficiency of re-useable aerospace systems requires a focus on the total operations process rather than just orbital performance. For the Multi-Purpose Logistics Module this activity included special attention to terrestrial conditions both pre-launch and post-landing and how they inter-relate to the mission profile. Several of the efficiencies implemented for the MPLM Mission Engineering were NASA firsts and all served to improve the overall operations activities. This paper will provide an explanation of how various issues were addressed and the resulting solutions. Topics range from statistical analysis of over 30 years of atmospheric data at the launch and landing site to a new approach for operations with the Shuttle Carrier Aircraft. In each situation the goal was to "tune" the thermal management of the overall flight system for minimizing requirement risk while optimizing power and energy performance.

Holladay, Jon; Day, Greg; Roberts, Barry; Leahy, Frank

2003-01-01

232

Results of test 0A82 in the NASA/LRC 31 inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction and to investigate RT real gas effects  

NASA Technical Reports Server (NTRS)

Tests were conducted in the NASA Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel to determine RCS jet interaction effects on hypersonic aerodynamic characteristics and to investigate RT (gas constant times temperature) scaling effects on the RCS similitude. The model was an 0.010-scale replica of the Space Shuttle Orbiter Configuration 3. Hypersonic aerodynamic data were obtained from tests at Mach 10.3 and dynamic pressures of 200, 150, 125, and 100 psf. The RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 20 psf were investigated.

Thornton, D. E.

1975-01-01

233

Mated aerodynamic characteristics investigation for the 0.04 scale model TE 1065 (Boeing 747-100) of the 747 CAM and the 0.0405 scale model (43-0) of the space shuttle orbiter in the NASA Langley V/STOL transition research wind tunnel (CA8), volume 1  

NASA Technical Reports Server (NTRS)

Aerodynamic force data are presented in tables and graphs for the NASA Langley V/STOL Transition Research Wind Tunnel tests on a 0.04 scale model of the 747 with a 0.0405 scale Orbiter space shuttle. The investigation included the effects of flap setting, stabilizer angle, elevator angle, ground proximity, and Orbiter tailcone fairing. Data were obtained in the pitch plane only. The test was run at M = 0.15, with a dynamic pressure of 35 psf. Six static pressures were measured on each side of the 747 CAM nose to determine the effects of the Orbiter on the 747 airspeed and altitude indicators.

1976-01-01

234

Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1  

NASA Technical Reports Server (NTRS)

Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

Nichols, M. E.

1976-01-01

235

Shuttle bay telerobotics demonstration  

NASA Technical Reports Server (NTRS)

A demonstration of NASA's robotics capabilities should be a balanced agenda of servicing and assembly tasks combined with selected key technical experiments. The servicing tasks include refueling and module replacement. Refueling involves the mating of special fluid connectors while module replacement requires an array of robotic technologies such as special tools, the arm of a logistics tool, and the precision mating of orbital replacement units to guides. The assembly task involves the construction of a space station node and truss structure. The technological experiments will focus on a few important issues: the precision manipulation of the arms by a teleoperator, the additional use of several mono camera views in conjunction with the stereo system, the use of a general purpose end effector versus a caddy of tools, and the dynamics involved with using a robot with a stabilizer.

Chun, W.; Cogeos, P.

1987-01-01

236

STS-109 Shuttle Mission  

NASA Technical Reports Server (NTRS)

Carrying a crew of seven, the Space Shuttle Orbiter Columbia soared through some pre-dawn clouds into the sky as it began its 27th flight, STS-109. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm. Here four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

2002-01-01

237

The Space Shuttle and Its Operations 53 Shuttle and  

E-print Network

The Space Shuttle and Its Operations 53 The Space Shuttle and Its Operations The Space Shuttle Shuttle Builds the International Space Station #12;The Space Shuttle design was remarkable. The idea Space Telescope through refurbishments. The most impressive product that resulted from the shuttle

238

NASA Advisory Council Space Operations Committee February 2011  

E-print Network

Holloway Former Space Shuttle and International Space Station Program Manager Dr. John Grunsfeld Former Station Commander Mr. Jacob Keaton, Executive Secretary, NASA 2 #12;NASA Advisory Council Space Operations Administrator for Space Shuttle · International Space Station and ISS Non-Profit Organization · Mark Uhran

Waliser, Duane E.

239

Logistics Reduction Technologies for Exploration Missions  

NASA Technical Reports Server (NTRS)

Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.

Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

2014-01-01

240

www.nasa.gov Fiscal Year  

E-print Network

's progress toward achieving the challenging mission of space exploration, scientific discovery four successful Space Shuttle launches to the International Space Station (ISS) since last Novemberwww.nasa.gov Fiscal Year PERFORMANCE AND ACCOUNTABILITY REPORT 2010 National Aeronautics and Space

241

Shuttle interaction study extension  

NASA Technical Reports Server (NTRS)

The following areas of Space Shuttle technology were discussed: variable altitude strategy, spacecraft servicing, propellant storage, orbiter plume impingement, space based design, mating (docking and berthing), shuttle fleet utilization, and mission/traffic model.

1982-01-01

242

FUTURE LOGISTICS LIVING LABORATORY  

E-print Network

FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

Heiser, Gernot

243

Shuttle Transportation System Case-Study Development  

NASA Technical Reports Server (NTRS)

A case-study collection was developed for NASA's Space Shuttle Program. Using lessons learned and documented by NASA KSC engineers, analysts, and contractors, decades of information related to processing and launching the Space Shuttle was gathered into a single database. The goal was to provide educators with an alternative means to teach real-world engineering processes and to enhance critical thinking, decision making, and problem solving skills. Suggested formats were created to assist both external educators and internal NASA employees to develop and contribute their own case-study reports to share with other educators and students. Via group project, class discussion, or open-ended research format, students will be introduced to the unique decision making process related to Shuttle missions and development. Teaching notes, images, and related documents will be made accessible to the public for presentation of Space Shuttle reports. Lessons investigated included the engine cutoff (ECO) sensor anomaly which occurred during mission STS-114. Students will be presented with general mission infom1ation as well as an explanation of ECO sensors. The project will conclude with the design of a website that allows for distribution of information to the public as well as case-study report submissions from other educators online.

Ransom, Khadijah

2012-01-01

244

Shuttle TPS inspection using triangulation scanning technology  

NASA Astrophysics Data System (ADS)

With the loss of the Space Shuttle Columbia, there has been intense focus at NASA on being able to detect and characterize damage that may have been sustained by the orbiter during the launch phase. To help perform this task, the Neptec Laser Camera System (LCS) has been selected as one of the sensors to be mounted at the end of a boom extension to the Shuttle Robotic Manipulator System (SRMS). A key factor in NASA"s selection of the LCS was its successful performance during flight STS-105 as a Detailed Test Objective (DTO). The LCS is based on a patented designed which has been exclusively licensed to Neptec for space applications. The boom will be used to position the sensor package to inspect critical areas of the Shuttle"s Thermal Protection System (TPS). The operational scenarios under which the LCS will be used have required solutions to problems not often encountered in 3D sensing systems. For example, under many of the operational scenarios, the scanner will encounter both commanded and uncommanded motion during the acquisition of data. In addition, various ongoing studies are refining the definition of what constitutes a critical breach of the TPS. Each type of damage presents new challenges for robust detection. This paper explores these challenges with a focus on the operational solutions which address them.

Deslauriers, Adam; Showalter, Ian; Montpool, Andrew; Taylor, Ross; Christie, Iain

2005-05-01

245

Space Shuttle Program Status  

E-print Network

1 Space Shuttle Program Status John Casper Associate Manager Space Shuttle Program September 13, 2010 NAC Space Operations Committee #12;2 Operations #12;3 Flown Manifest March 2009 ­ May 2010 #12, 2010 · 132nd Space Shuttle mission · 32nd Flight of Atlantis (120,650,907 statute miles) · 294 Total

Waliser, Duane E.

246

STS-129 shuttle crew visits Stennis  

NASA Technical Reports Server (NTRS)

Members of the STS-129 space shuttle crew visited NASA's John C. Stennis Space Center on Jan. 19 to share details of their November visit to the International Space Station. During their 11-day mission aboard shuttle Atlantis, crew members delivered equipment, supplies and spare parts to the ISS. Following their mission report, the astronauts traded commemorative plaques with Stennis Space Center Director Gene Goldman (center). Astronauts visiting Stennis were (l to r) Pilot Barry Wilmore, Mission Specialist Randy Bresnik, Commander Charles Hobaugh and Mission Specialists Mike Foreman and Robert Satcher.

2010-01-01

247

Shuttle Student Involvement Project for Secondary Schools  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) has initiated the Shuttle Student Involvement Project for Secondary Schools (SSIP-S), an annual nationwide competition to select student proposals for experiments suitable for flight aboard the Space Shuttle. The objective of the project is to stimulate the study of science and technology in grades 9 through 12 by directly relating students to a space research program. This paper will analyze the first year of the project from a standpoint of how the competition was administered; the number and types of proposals that were submitted; and will discuss the process involved in preparing the winning experiments for eventual flight.

Wilson, G. P.; Ladwig, A.

1981-01-01

248

Simulating Avionics Upgrades to the Space Shuttles  

NASA Technical Reports Server (NTRS)

Cockpit Avionics Prototyping Environment (CAPE) is a computer program that simulates the functions of proposed upgraded avionics for a space shuttle. In CAPE, pre-existing space-shuttle-simulation programs are merged with a commercial-off-the-shelf (COTS) display-development program, yielding a package of software that enables high-fi46 NASA Tech Briefs, September 2008 delity simulation while making it possible to rapidly change avionic displays and the underlying model algorithms. The pre-existing simulation programs are Shuttle Engineering Simulation, Shuttle Engineering Simulation II, Interactive Control and Docking Simulation, and Shuttle Mission Simulator playback. The COTS program Virtual Application Prototyping System (VAPS) not only enables the development of displays but also makes it possible to move data about, capture and process events, and connect to a simulation. VAPS also enables the user to write code in the C or C++ programming language and compile that code into the end-product simulation software. As many as ten different avionic-upgrade ideas can be incorporated in a single compilation and, thus, tested in a single simulation run. CAPE can be run in conjunction with any or all of four simulations, each representing a different phase of a space-shuttle flight.

Deger, Daniel; Hill, Kenneth; Braaten, Karsten E.

2008-01-01

249

Results of investigations (OA20C) on an 0.015-scale configuration 140A/B space shuttle vehicle orbiter model (49-0) in the NASA/Langley Research Center Unitary Plan Wind Tunnel  

NASA Technical Reports Server (NTRS)

Data obtained from the wind tunnel tests of a scale model of the space shuttle orbiter configuration 140 A/B are presented. The test was conducted at Mach numbers of 2.5, 3.9, and 4.6 with Reynolds numbers from 1.25 million per foot to 5.0 million per foot. Various control surface settings were used ranging from an angle of attack range from minus 4 to plus 42 degrees at zero angle of yaw. Longitudinal stability and control characteristics of the space shuttle configuration were analyzed.

Nichols, M. E.

1974-01-01

250

Methods and Techniques for Risk Prediction of Space Shuttle Upgrades  

NASA Technical Reports Server (NTRS)

Since the Space Shuttle Accident in 1986, NASA has been trying to incorporate probabilistic risk assessment (PRA) in decisions concerning the Space Shuttle and other NASA projects. One major study NASA is currently conducting is in the PRA area in establishing an overall risk model for the Space Shuttle System. The model is intended to provide a tool to predict the Shuttle risk and to perform sensitivity analyses and trade studies including evaluation of upgrades. Marshall Space Flight Center (MSFC) and its prime contractors including Pratt and Whitney (P&W) are part of the NASA team conducting the PRA study. MSFC responsibility involves modeling the External Tank (ET), the Solid Rocket Booster (SRB), the Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME). A major challenge that faced the PRA team is modeling the shuttle upgrades. This mainly includes the P&W High Pressure Fuel Turbopump (HPFTP) and the High Pressure Oxidizer Turbopump (HPOTP). The purpose of this paper is to discuss the various methods and techniques used for predicting the risk of the P&W redesigned HPFTP and HPOTP.

Hoffman, Chad R.; Pugh, Rich; Safie, Fayssal

1998-01-01

251

Space Shuttle Status News Conference  

NASA Technical Reports Server (NTRS)

Richard Gilbech, External Tank "Tiger Team" Lead, begins this space shuttle news conference with detailing the two major objectives of the team. The objectives include: 1) Finding the root cause of the foam loss on STS-114; and 2) Near and long term improvements for the external tank. Wayne Hale, Space Shuttle Program Manager, presents a chart to explain the external tank foam loss during STS-114. He gives a possible launch date for STS-121 after there has been a repair to the foam on the External Tank. He further discusses the changes that need to be made to the surrounding areas of the plant in New Orleans, due to Hurricane Katrina. Bill Gerstemaier, NASA Associate Administrator for Space Operations, elaborates on the testing of the external tank foam loss. The discussion ends with questions from the news media about a fix for the foam, replacement of the tiles, foam loss avoidance, the root cause of foam loss and a possible date for a new external tank to be shipped to NASA Kennedy Space Center.

2005-01-01

252

NASA's commercial space program  

NASA Technical Reports Server (NTRS)

This paper will review the goals, status and progress of NASA's commercial space development program administered by the Office of Commercial Programs (OCP). The technologies and flight programs underway by NASA's Centers for Commercial Development (CCDS), NASA's field centers, and the NASA/Industry Joint Endeavor Programs will be summarized. A summary of completed and upcoming commercial payload activities on Shuttle, suborbital rockets, and orbital ELV's will be provided. The new commercial infrastructure and transportation initiatives will be discussed including the Wake Shield Facility, Consort and Joust suborbital rocket programs, the COMET orbital and recovery program, and the Commercial Middeck Accommodation Module Program with Spacehab Inc. Finally, the Commercial Space Station Freedom Program planned by OCP will be reviewed.

Ott, Richard H.

1992-01-01

253

NASA's approach to space commercialization  

NASA Technical Reports Server (NTRS)

The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

Gillam, Isaac T., IV

1986-01-01

254

Service based logistics optimization  

E-print Network

This thesis explores the use of a service based logistics optimization (SBLO) methodology for an inbound reverse logistics network. Currently, Quest Diagnostics solves the vehicle routing problem with time windows (VRPTW) ...

Price, Gregory D., Jr

2014-01-01

255

NASA: How Does This Work?  

NSDL National Science Digital Library

The videos on this website from NASA demonstrate how things developed and used at NASA work, including such things as solid rocket boosters, space shuttle main engines, and parachutes. The website is intended to "showcase the creativity and dedication that allow the challenges of space flight to become some of our greatest achievements." The videos footage and silted graphics are accompanied by narration and printed subtitles.

256

The NASA trend analysis program  

NASA Technical Reports Server (NTRS)

The four main areas of the NASA trend analysis program (problem/reliability, performance, supportability, and programmatic trending) are defined and illustrated with examples from Space Shuttle applications. Emphasis is on the programmatic-trending component of the program and several of the statistical techniques used. Also described is the NASA safety, reliability, maintainability, and quality assurance management information center, used to focus management attention on key near-term launch concerns and long-range mission trend issues.

Crawford, J. Larry; Weinstock, Robert

1990-01-01

257

Simple Logistic Regression  

NSDL National Science Digital Library

This page has two calculators. One will cacluate a simple logistic regression, while the other calculates the predicted probability and odds ratio. There is also a brief tutorial covering logistic regression using an example involving infant gestational age and breast feeding. Please note, however, that the logistic regression accomplished by this page is based on a simple, plain-vanilla empirical regression.

Lowry, Richard, 1940-

258

Understanding the Columbia Space Shuttle Accident  

SciTech Connect

On February 1, 2003, the NASA space shuttle Columbia broke apart during re-entry over East Texas at an altitude of 200,000 feet and a velocity of approximately 12,000 mph. All aboard perished. Prof. Osheroff was a member of the board that investigated the origins of this accident, both physical and organizational. In his talk he will describe how the board was able to determine with almost absolute certainty the physical cause of the accident. In addition, Prof. Osherhoff will discuss its organizational and cultural causes, which are rooted deep in the culture of the human spaceflight program. Why did NASA continue to fly the shuttle system despite the persistent failure of a vital sub-system that it should have known did indeed pose a safety risk on every flight? Finally, Prof. Osherhoff will touch on the future role humans are likely to play in the exploration of space.

Osheroff, Doug (Stanford University) [Stanford University

2004-06-16

259

Space Shuttle MMOD Threat Mitigation Techniques  

NASA Technical Reports Server (NTRS)

Prior to each shuttle mission, threat assessments are performed to determine the risk of critical penetration, payload bay door radiator tube leak and crew module window replacement from Micrometeoroid and Orbital Debris (MMOD). Mission parameters, such as vehicle attitude, exposure time and altitude are used as inputs for the analysis. Ballistic limit equations, based on hypervelocity impact testing of shuttle materials are used to estimate the critical particle diameters of the outer surfaces of the vehicle. The assessments are performed using the BUMPER computer code at the NASA/JSC Hypervelocity Impact Technology Facility (HITF). The most critical involves the calculation of Loss of Crew and Vehicle (LOCV) risk. In recent years, NASA has implemented several techniques to reduce the risk to the Shuttle from MMOD impacts. This paper will describe on-orbit inspection of the reinforced carbon-carbon (RCC) regions and the methods used discern hypervelocity impact damage. Impact damage contingency plans and on-orbit repair techniques will also be discussed. The wing leading edge impact detection system (WLEIDS) and it's role in the reduction of on-orbit risk reduction will be presented. Finally, an analysis of the effectivity of alternative shuttle flight attitudes on MMOD risk will be demonstrated.

Hyde, Justin L.; Christiansen, Eric L.; Kerr, James H.

2007-01-01

260

Post Shuttle Access to the ISS for Payloads  

Microsoft Academic Search

The Department of Defense (DoD) Space Test Program (STP) is the organization responsible for providing launch services for all of DoD's R&D space experiments and has used NASA's Manned Spaceflight capabilities (the Space Shuttle) extensively in the past for its experiments. With the Shuttle expected to retire in the 2010 timeframe a concerted effort is underway to find alternate means

P. G. Ballard

2008-01-01

261

Shuttle radar topography mission produces a wealth of data  

Microsoft Academic Search

On February 22, 2000, the Space Shuttle Endeavour landed at Kennedy Space Center, completing the highly successful 11-day flight of the Shuttle Radar Topography Mission (SRTM). Onboard were over 300 high-density tapes containing data for the highest resolution digital topographic map of Earth ever made.SRTM is a cooperative project between the National Aeronautics and Space Administration (NASA) and the National

Tom G. Farr; Mike Kobrick

2000-01-01

262

Processing near-infrared imagery of hypersonic space shuttle reentries  

Microsoft Academic Search

High-resolution, calibrated, near-infrared imagery of the Space Shuttle during reentry has been obtained by a US Navy NP-3D Orion aircraft as part of NASA's HYTHIRM (Hypersonic Thermodynamic InfraRed Measurements) project. The long-range optical sensor package is called Cast Glance. Three sets of imagery have been processed thus far: 1) STS- 119 when Shuttle Discovery was at 52 km away at

Thomas S. Spisz; Jeff C. Taylor; David M. Gibson; Kwame Osei-Wusu; Thomas J. Horvath; Joseph N. Zalameda; Deborah M. Tomek; Alan B. Tietjen; Steve Tack; Richard J. Schwartz

2010-01-01

263

An Engineering Look at Space Shuttle and ISS Operations  

NASA Technical Reports Server (NTRS)

This slide presentation, in Spanish, is an overview of NASA's Space Shuttle operations and preparations for serving the International Space Station. There is information and or views of the shuttle's design, the propulsion system, the external tanks, the foam insulation, the reusable solid rocket motors, the vehicle assembly building (VAB), the mobile launcher platform being moved from the VAB to the launch pad. There is a presentation of some of the current issues with the space shuttle: cracks in the LH2 flow lines, corrosion and pitting, the thermal protection system, and inspection of the thermal protection system while in orbit. The shuttle system has served for more than 20 years, it is still a challenge to re-certify the vehicles for flight. Materials and material science remain as chief concerns for the shuttle,

Hernandez, Jose M.

2004-01-01

264

Issues in NASA program and project management  

NASA Technical Reports Server (NTRS)

This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.

Hoban, Francis T. (editor)

1989-01-01

265

Space shuttle main engine plume radiation model  

NASA Technical Reports Server (NTRS)

The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.

Reardon, J. E.; Lee, Y. C.

1978-01-01

266

Shuttle Engine Designs Revolutionize Solar Power  

NASA Technical Reports Server (NTRS)

The Space Shuttle Main Engine was built under contract to Marshall Space Flight Center by Rocketdyne, now part of Pratt & Whitney Rocketdyne (PWR). PWR applied its NASA experience to solar power technology and licensed the technology to Santa Monica, California-based SolarReserve. The company now develops concentrating solar power projects, including a plant in Nevada that has created 4,300 jobs during construction.

2014-01-01

267

Space Shuttle S-band antenna system  

Microsoft Academic Search

The NASA Space Shuttle Orbiter presents some very challenging antenna design problems for the S-band Orbiter to ground and Orbiter to relay satellite communications links. The line of sight to the ground and\\/or relay satellite during the various mission phases dictates an almost omni-directional coverage requirement, but the circuit margins require at least a 3 dB gain over this same

M. D. Walton; H. D. Cubley

1974-01-01

268

Space shuttle entry terminal area energy management  

NASA Technical Reports Server (NTRS)

A historical account of the development for Shuttle's Terminal Area Energy Management (TAEM) is presented. A derivation and explanation of logic and equations are provided as a supplement to the well documented guidance computation requirements contained within the official Functional Subsystem Software Requirements (FSSR) published by Rockwell for NASA. The FSSR contains the full set of equations and logic, whereas this document addresses just certain areas for amplification.

Moore, Thomas E.

1991-01-01

269

Shuttle Wastewater Solution Characterization  

NASA Technical Reports Server (NTRS)

During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.

Adam, Niklas; Pham, Chau

2011-01-01

270

Shuttle communications design study  

NASA Technical Reports Server (NTRS)

The design and development of a space shuttle communication system are discussed. The subjects considered include the following: (1) Ku-band satellite relay to shuttle, (2) phased arrays, (3) PN acquisition, (4) quadriplexing of direct link ranging and telemetry, (5) communications blackout on launch and reentry, (6) acquisition after blackout on reentry, (7) wideband communications interface with the Ku-Band rendezvous radar, (8) aeroflight capabilities of the space shuttle, (9) a triple multiplexing scheme equivalent to interplex, and (10) a study of staggered quadriphase for use on the space shuttle.

Cartier, D. E.

1975-01-01

271

KSC ISS Logistics Support  

NASA Technical Reports Server (NTRS)

The presentation contains a status of KSC ISS Logistics Operations. It basically presents current top level ISS Logistics tasks being conducted at KSC, current International Partner activities, hardware processing flow focussing on late Stow operations, list of KSC Logistics POC's, and a backup list of Logistics launch site services. This presentation is being given at the annual International Space Station (ISS) Multi-lateral Logistics Maintenance Control Panel meeting to be held in Turin, Italy during the week of May 13-16. The presentatiuon content doesn't contain any potential lessons learned.

Tellado, Joseph

2014-01-01

272

Langley's Space Shuttle Technology: A bibliography  

NASA Technical Reports Server (NTRS)

This bibliography documents most of the major publications, research reports, journal articles, presentations, and contractor reports, which have been published since the inception of the Space Shuttle Technology Task Group at the NASA Langley Reseach Center on July 11, 1969. This research work was performed in house by the Center staff or under contract, monitored by the Center staff. The report is arranged according to method of publication: (1) NASA Formal Reports; (2) Contractor Reports; and (3) Articles and Conferences. Disciplines covered are in the areas of aerothermodynamics, structures, dynamics and aeroelasticity, environmental, and materials. The publications are listed without abstracts for quick reference and planning.

Champine, G. R.

1981-01-01

273

Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)  

NASA Technical Reports Server (NTRS)

Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

Foust, J. W.

1979-01-01

274

Low supersonic stability and control characteristics of .015-scale (remotely controlled elevon) model 44-0 of space shuttle orbiter tests in NASA/LaRC 4-ft UPWT (leg 1) (LA63A). [wind tunnel stability tests  

NASA Technical Reports Server (NTRS)

A Langley-built 0.015-scale Space Shuttle Orbiter model with remote independently operated left and right elevon surfaces was tested. The objective of the test was to generate a detailed aerodynamic data base for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle of attack range from -2 deg to 20 deg at angles of sideslip of 0 deg and plus or minus 2 deg. Additional tests were made over an angle of range from -6 deg to 8 deg at selected angles of attack. The test Mach numbers were 1.5 and 2.0 while the Reynolds number held at a constant two million per foot. Photographs of the test configuration are shown.

Gamble, J. D.

1975-01-01

275

Space Shuttle Solid Rocket Booster Debris Assessment  

NASA Technical Reports Server (NTRS)

The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

Kendall, Kristin; Kanner, Howard; Yu, Weiping

2006-01-01

276

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

Lights on the Fixed Service Structure give a holiday impression at Launch Pad 39A where Space Shuttle Atlantis is poised for launch. Above the yellow-orange external tank is the Gaseous Oxygen Vent Arm, with the '''beanie cap''' vent hood raised. Before cryogenic loading, the hood will be lowered into position over the external tank vent louvers to vent gaseous oxygen vapors away from the Shuttle. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11- day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

277

Space Shuttle Underside Astronaut Communications Performance Evaluation  

NASA Technical Reports Server (NTRS)

The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

2005-01-01

278

Maintaining space shuttle safety within an environment of change  

NASA Astrophysics Data System (ADS)

In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle Flight Operations Contractor (SFOC) has been chosen to operate the Shuttle. The Government role will change from direct "oversight" to "insight" gained through understanding and measuring the contractor's processes. This paper describes the program management changes underway and the NASA Safety and Mission Assurance (S&MA) organization's philosophy, role, and methodology for pursuing this new approach. It describes how audit and surveillance will replace direct oversight and how meaningful performance metrics will be implemented.

Greenfield, Michael A.

1999-09-01

279

Results of an aerodynamic force and moment investigation of an 0.015-scale configuration 3 space shuttle orbiter in the NASA/ARC 3.5-foot hypersonic wind tunnel (OA58)  

NASA Technical Reports Server (NTRS)

The primary objective of the test was to obtain stability and control data for the basic configuration and an alternate configuration for the Space Shuttle Orbiter. Pitch runs were made with 0 deg of sideslip at Mach numbers of 5.3, 7.3 and 10.3. Six-component force data and fuselage base pressures were recorded for each run. Shadowgraph pictures were taken at selected points. Model 420 was used for the tests.

Dziubala, T. J.; Cleary, J. W.

1974-01-01

280

Analysis of Logistics in Support of a Human Lunar Outpost  

NASA Technical Reports Server (NTRS)

Strategic level analysis of the integrated behavior of lunar transportation system and lunar surface system architecture options is performed to inform NASA Constellation Program senior management on the benefit, viability, affordability, and robustness of system design choices. This paper presents an overview of the approach used to perform the campaign (strategic) analysis, with an emphasis on the logistics modeling and the impacts of logistics resupply on campaign behavior. An overview of deterministic and probabilistic analysis approaches is provided, with a discussion of the importance of each approach to understanding the integrated system behavior. The logistics required to support lunar surface habitation are analyzed from both 'macro-logistics' and 'micro-logistics' perspectives, where macro-logistics focuses on the delivery of goods to a destination and micro-logistics focuses on local handling of re-supply goods at a destination. An example campaign is provided to tie the theories of campaign analysis to results generation capabilities.

Cirillo, William; Earle, Kevin; Goodliff, Kandyce; Reeves, j. D.; Andrashko, Mark; Merrill, R. Gabe; Stromgren, Chel

2008-01-01

281

NASA Video Catalog. Supplement 12  

NASA Technical Reports Server (NTRS)

This report lists 1878 video productions from the NASA STI Database. This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged by STAR categories. A complete Table of Contents describes the scope of each category. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2002-01-01

282

NASA Video Catalog. Supplement 15  

NASA Technical Reports Server (NTRS)

This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2005-01-01

283

Report of the Space Shuttle Management Independent Review Team  

NASA Astrophysics Data System (ADS)

At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

1995-02-01

284

Report of the Space Shuttle Management Independent Review Team  

NASA Technical Reports Server (NTRS)

At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

1995-01-01

285

Logistic Regression Longitudinal Data Analysis  

E-print Network

Logistic Regression Longitudinal Data Analysis Stat 491: Biostatistics Chapter 13: Methods for Epidemiological Studies Stat 491: Biostatistics #12;Logistic Regression Longitudinal Data Analysis Simple Logistic. Chapter 13: Methods for Epidemiological Studies Stat 491: Biostatistics #12;Logistic Regression

Bardsley, John

286

Results of tests in the NASA/LaRC 31-inch CFHT on an 0.010-scale model (32-OT) of the space shuttle configuration 3 to determine the RCS jet flowfield interaction effects on aerodynamic characteristics (IA60/0A105), volume 2  

NASA Technical Reports Server (NTRS)

Tests were conducted in the NASA Langley Research Center 31-inch continuous flow hypersonic wind tunnel from 14 February to 22 February 1974, to determine RCS jet interaction effect on the hypersonic aerodynamic and stability and control characteristics prior to RTLS abort separation. The model used was an 0.010-scale replica of the space shuttle vehicle configuration 3. Hypersonic stability data were obtained from tests at Mach 10.3 and dynamic pressure of 150 psf for the intergrated orbiter and external tank and the orbiter alone. RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 7, 20, and 50 psf were investigated. The effects of speedbrake, bodyflap, elevon, and aileron deflections were also investigated.

Thornton, D. E.

1974-01-01

287

Nuclear Shuttle in Flight  

NASA Technical Reports Server (NTRS)

This 1970 artist's concept shows a Nuclear Shuttle in flight. As envisioned by Marshall Space Flight Center Program Development engineers, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

1970-01-01

288

This is NASA  

NASA Technical Reports Server (NTRS)

Highlights of NASA's first 20 years are described including the accomplishments of the National Advisory Committee for Aeronautics from its creation in 1915 until its absorption into NASA in 1958. Current and future activities are assessed in relation to the Federal R&D research plan for FY 1980 and to U.S. civil space policy. A NASA organization chart accompanies descriptions of the responsibilities of Headquarters, its various offices, and field installations. Directions are given for contacting the agency for business activities or contracting purposes; for obtaining educational publications and other media, and for tours. Manpower statistics are included with a list of career opportunities. Special emphasis is given to manned space flight, space launch vehicles, space shuttle, planetary exploration, and investigations of the stars and the solar system.

1979-01-01

289

Space Shuttle Main Engine Joint Data List Applying Today's Desktop Technologies to Facilitate Engine Processing  

NASA Technical Reports Server (NTRS)

Boeing-Rocketdyne's Space Shuttle Main Engine (SSME) is the world's first large reusable liquid rocket engine. The space shuttle propulsion system has three SSMEs, each weighing 7,400 lbs and providing 470,000 lbs of thrust at 100% rated power level. To ensure required safety and reliability levels are achieved with the reusable engines, each SSME is partially disassembled, inspected, reassembled, and retested at Kennedy Space Center between each flight. Maintenance processing must be performed very carefully to replace any suspect components, maintain proper engine configuration, and avoid introduction of contaminants that could affect performance and safety. The long service life, and number, complexity, and pedigree of SSME components makes logistics functions extremely critical. One SSME logistics challenge is documenting the assembly and disassembly of the complex joint configurations. This data (joint nomenclature, seal and fastener identification and orientation, assembly sequence, fastener torques, etc.) must be available to technicians and engineers during processing. Various assembly drawings and procedures contain this information, but in this format the required (practical) joint data can be hard to find, due to the continued use of archaic engineering drawings and microfilm for field site use. Additionally, the release system must traverse 2,500 miles between design center and field site, across three time zones, which adds communication challenges and time lags for critical engine configuration data. To aid in information accessibility, a Joint Data List (JDL) was developed that allows efficient access to practical joint data. The published JDL has been a very useful logistics product, providing illustrations and information on the latest SSME configuration. The JDL identifies over 3,350 unique parts across seven fluid systems, over 300 joints, times two distinct engine configurations. The JDL system was recently converted to a web-based, navigable electronic manual that contains all the required data and illustrations in expanded view format using standard PC products (Word, Excel, PDF, Photoshop). The logistics of accurately releasing this information to field personnel was greatly enhanced via the utilization of common office products to produce a more user-friendly format than was originally developed under contract to NASA. This was done without reinventing the system, which would be cost prohibitive on a program of this maturity. The brunt of the joint part tracking is done within the logistics organization and disseminated to all field sites, without duplicating effort at each site. The JDL is easily accessible across the country via the NASA intranet directly at the SSME workstand. The advent of this logistics data product has greatly enhanced the reliability of tracking dynamic changes to the SSME and greatly reduces engineering change turnaround time and potential for errors. Since the inception of the JDL system in 1997, no discrepant parts have propagated to engine assembly operations. This presentation focuses on the challenges overcome and the techniques used to apply today's desktop technologies to an existing logistics data source.

Jacobs, Kenneth; Drobnick, John; Krell, Don; Neuhart, Terry; McCool, A. (Technical Monitor)

2001-01-01

290

Issues in NASA program and project management  

NASA Technical Reports Server (NTRS)

This volume is the fifth in an ongoing series on aerospace project management at NASA. Articles in this volume cover: an overview of the project cycle; SE&I management for manned space flight programs; shared experiences from NASA Programs and Projects - 1975; cost control for Mariner Venus/Mercury 1973; and the Space Shuttle - a balancing of design and politics. A section on resources for NASA managers rounds out the publication.

Hoban, Francis T. (editor)

1992-01-01

291

NASA's SCAs--Birds of a Feather Flock Together - Duration: 108 seconds.  

NASA Video Gallery

NASA's two modified Boeing 747 Shuttle Carrier Aircraft briefly flew in formation for the first time ever over the Edwards Air Force Base test range on Aug. 2, 2011. NASA 911 was on a pilot profici...

292

NASA FactsNational Aeronautics and Space Administration  

E-print Network

NASA FactsNational Aeronautics and Space Administration Washington, D.C. 20546 (202) 358-1600 FACT into the solar system. NASA is working to make this transition ­ from the Space Shuttle Program to the Constellation Program ­ seamless and safe. NASA has a vast array of unique and critical resources that have

293

Planning Space Shuttle's maiden voyage  

NASA Technical Reports Server (NTRS)

NASA's first Space Shuttle, Columbia, whose technological advances include a space laboratory, navigational and communication satellites, and planetary explorers, is examined, and the first few flights, scheduled for 1980, are described. The Shuttle employs an all-digital, all-electronic, computer-operated avionics system. The onboard data processing and software subsystem, encompassing five computers (four online and one backup), a data-bus network, bus terminals, and software, is analyzed in detail. Attention is given to the basic structure of the Orbiter (37.19 m in length and 23.77 m wingspan), its main engines, and the payload and cargo capacities (29,500 kg). A two-step program that could increase the power and duration of spaceflights is presented. The first step is the creation of a power extension package, using solar arrays, generating electricity to extend the basic five-day flight to 20 days, while the second step uses the same design to create a 25-kW power model capable of providing energy for a 50-day flight. Plans for construction of a manned space construction base and a larger power platform of 250 kW are also presented.

Malkin, M. S.; Freitag, R. F.

1979-01-01

294

STS-109 Shuttle Mission Launch  

NASA Technical Reports Server (NTRS)

Carrying the STS-109 crew of seven, the Space Shuttle Orbiter Columbia blasted from its launch pad as it began its 27th flight and 108th flight overall in NASA's Space Shuttle Program. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST) which was developed, designed, and constructed by the Marshall Space Flight Center. Captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, the HST received the following upgrades: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Four of the crewmembers performed 5 space walks in the 10 days, 22 hours, and 11 minutes of the the STS-109 mission.

2002-01-01

295

Mission Possible: BioMedical Experiments on the Space Shuttle  

NASA Technical Reports Server (NTRS)

Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.

Bopp, E.; Kreutzberg, K.

2011-01-01

296

Legacy of Biomedical Research During the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

Hayes, Judith C.

2011-01-01

297

STS-79 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

Fricke, Robert W., Jr.

1996-01-01

298

Results of heat transfer tests of a 0.0175-scale space shuttle vehicle 5 model (60-OTS) in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (test IH48)  

NASA Technical Reports Server (NTRS)

Heat transfer data are presented for a .0175-scale model of the Rockwell International Space Shuttle Vehicle 5. The primary purpose of these tests was to obtain aerodynamic interference heating data on the external tank in the tank alone, second-, and first-stage configurations. Data were also obtained on the Orbiter and solid rocket boosters. Nominal Mach Nos. of 5.2 and 5.3 at nominal freestream unit Reynolds numbers of 1.5 and 5.0 million per foot, respectively, were investigated. Photographs of the tested configurations and test equipment are shown.

Dye, W. H.; Lockman, W. K.

1976-01-01

299

An investigation to determine the static pressure distribution of the 0.00548 scale shuttle solid rocket booster (MSFC model number 468) during reentry in the NASA/MSFC 14 inch trisonic wind tunnel (SA28F)  

NASA Technical Reports Server (NTRS)

The results of a pressure test of a .00548 scale 146 inch Space Shuttle Solid Rocket Booster (SRB) with and without protuberances, conducted in a 14 x 14 inch trisonic wind tunnel are presented. Static pressure distributions for the SRB at reentry attitudes and flight conditions were obtained. Local longitudinal and ring pressure distributions are presented in tabulated form. Integration of the pressure data was performed. The test was conducted at Mach numbers of 0.40 to 4.45 over an angle of attack range from 60 to 185 degrees. Roll angles of 0, 45, 90 and 315 degrees were investigated. Reynolds numbers per foot varied for selected Mach numbers.

Braddock, W. F.; Streby, G. D.

1977-01-01

300

Space Shuttle RTOS Bayesian Network  

NASA Technical Reports Server (NTRS)

With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores. Using a prioritization of measures from the decision-maker, trade-offs between the scores are used to rank order the available set of RTOS candidates.

Morris, A. Terry; Beling, Peter A.

2001-01-01

301

The Shuttle Continuum 497 The Shuttle  

E-print Network

Space Station in real time (a downlink), using the facilities of a local California city hall and a New, a New York City public school. She was the New York City Teacher of th of this book is the scientific and engineering accomplishments of the Space Shuttle Program. The end

302

Logistics Reduction Technologies for Exploration Missions  

NASA Technical Reports Server (NTRS)

Human exploration missions under study are very limited by the launch mass capacity of existing and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing five logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description and the challenges of the five technologies under development and the estimated overall mission benefits of each technology.

Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

2014-01-01

303

Behind the Scenes: Shuttle Crawls to Launch Pad - Duration: 14:37.  

NASA Video Gallery

In this episode of NASA Behind the Scenes, take a look at what's needed to roll a space shuttle out of the Vehicle Assembly Building and out to the launch pad. Astronaut Mike Massimino talks to som...

304

A Celebration of the Space Shuttle Program - Duration: 1:45.  

NASA Video Gallery

On September 23, 2011, NASA Langley hosted a Shuttle Celebration at the Virginia Air & Space Center in Hampton, Va. More than 650 guests attended, including STS-135 Commander Chris Ferguson and NAS...

305

Astronauts Train for Final Shuttle Mission - Duration: 3 minutes, 53 seconds.  

NASA Video Gallery

The crew of STS-135, the final space shuttle mission, rehearsed their launch day process at NASA's Kennedy Space Center in Florida during a Terminal Countdown Demonstration Test that took place Jun...

306

48 CFR 1852.228-72 - Cross-waiver of liability for space shuttle services.  

Code of Federal Regulations, 2012 CFR

...1266), NASA agreements involving Space Shuttle flights are required to...entities to encourage participation in space exploration, use, and investment. The...of encouraging participation in space activities. (b) As used...

2012-10-01

307

Space Shuttle Documentary (Narrated by William Shatner) - Duration: 1:20:44.  

NASA Video Gallery

This feature-length documentary looks at the history of the most complex machine ever built. For 30 years, NASA's space shuttle carried humans to and from space, launched amazing observatories, and...

308

Pressure Sensitive Paint Measurements on a Space Shuttle Model with the Luminescence Lifetime Technique  

Microsoft Academic Search

The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 3% Space Shuttle model in the NASA Ames 9x7ft Supersonic Wind Tunnel. This work was done in support of the Space Shuttle \\

J. H. Bell; M. E. Sellers

2005-01-01

309

First-ever evening public engine test of a Space Shuttle Main Engine  

NASA Technical Reports Server (NTRS)

Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

2001-01-01

310

Shuttle Safety Improvements  

NASA Technical Reports Server (NTRS)

The Space Shuttle has been flying for over 20 years and based on the Orbiter design life of 100 missions it should be capable of flying at least 20 years more if we take care of it. The Space Shuttle Development Office established in 1997 has identified those upgrades needed to keep the Shuttle flying safely and efficiently until a new reusable launch vehicle (RLV) is available to meet the agency commitments and goals for human access to space. The upgrade requirements shown in figure 1 are to meet the program goals, support HEDS and next generation space transportation goals while protecting the country 's investment in the Space Shuttle. A major review of the shuttle hardware and processes was conducted in 1999 which identified key shuttle safety improvement priorities, as well as other system upgrades needed to reliably continue to support the shuttle miss ions well into the second decade of this century. The high priority safety upgrades selected for development and study will be addressed in this paper.

Henderson, Edward

2001-01-01

311

Explicit Finite Element Techniques Used to Characterize Splashdown of the Space Shuttle Solid Rocket Booster Aft Skirt  

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.

Melis, Matthew E.

2003-01-01

312

Results of tests using a 0.030-scale model (45-0) of space shuttle vehicle orbiter in the NASA/ARC 12-foot pressure wind tunnel (OA159)  

NASA Technical Reports Server (NTRS)

An experimental investigation (test OA159) was conducted in the NASA/ARC 12-foot Pressure Wind Tunnel from June 23 through July 8, 1975. The objective was to obtain detailed strut tare and interference effects of the support system used in the NASA/ARC 40 x 80-foot wind tunnel during 0.36-scale orbiter testing (OA100). Six-component force and moment data were obtained through an angle-of-attack range from -9 through +18 degrees with 0 deg angle of sideslip and a sideslip angle range from -9 through +18 degrees at 9 deg angle of attack results are presented.

Marroquin, J.

1975-01-01

313

Shuttle mask floorplanning  

NASA Astrophysics Data System (ADS)

A shuttle mask has different chips on the same mask. The chips are not electrically connected. Alliance and foundry customers can utilize shuttle masks to share the rising cost of mask and wafer manufacturing. This paper studies the shuttle mask floorplan problem, which is formulated as a rectangle-packing problem with constraints of final die sawing strategy and die-to-die mask inspection. For our formulation, we offer a "merging" method that reduces the problem to an unconstrained slicing floorplan problem. Excellent results are obtained from the experiment with real industry data. We also study a "general" method and discuss the reason why it does not work very well.

Xu, Gang; Tian, Ruiqi; Wong, Martin D.; Reich, Alfred J.

2003-12-01

314

Significant Improvements to LOGIST.  

ERIC Educational Resources Information Center

The computer program LOGIST (Wingersky, Patrick, and Lord, 1988) estimates the item parameters and the examinee's abilities for Birnbaum's three-parameter logistic item response theory model using Newton's method for solving the joint maximum likelihood equations. In 1989, Martha Stocking discovered a problem with this procedure in that when the

Wingersky, Marilyn S.

315

NASA Quest.  

ERIC Educational Resources Information Center

Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

Ashby, Susanne

2000-01-01

316

STS-98 Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis is revealed after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room is an environmentally controlled area that provides entry for the crew into Atlantis'''s cockpit. Above the yellow-orange external tank is the Gaseous Oxygen Vent Arm, with the '''beanie cap''' vent hood raised. Before cryogenic loading, the hood will be lowered into position over the external tank vent louvers to vent gaseous oxygen vapors away from the Shuttle. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.

2001-01-01

317

The MATHEMATICA economic analysis of the Space Shuttle System  

NASA Technical Reports Server (NTRS)

Detailed economic analysis shows the Thrust Assisted Orbiter Space Shuttle System (TAOS) to be the most economic Space Shuttle configuration among the systems studied. The development of a TAOS Shuttle system is economically justified within a level of space activities between 300 and 360 Shuttle flights in the 1979-1990 period, or about 25 to 30 flights per year, well within the U.S. Space Program including NASA and DoD missions. If the NASA and DoD models are taken at face value (624 flights), the benefits of the Shuttle system are estimated to be $13.9 billion with a standard deviation of plus or minus $1.45 billion in 1970 dollars (at a 10% social rate of discount). If the expected program is modified to 514 flights (in the 1979-1990 period), the estimated benefits of the Shuttle system are $10.2 billion, with a standard deviation of $940 million (at a 10% social rate of discount).

Heiss, K. P.

1973-01-01

318

The Space Shuttle faced many vehicle control challenges during ascent, as did the Orbiter during on-orbit and descent operations.  

E-print Network

The Space Shuttle faced many vehicle control challenges during ascent, as did the Orbiter during on tools. NASA faced a major challenge in the development of instruments for the Space Shuttle Main Engines Single Event Upset Environment Patrick O'Neill Development of Space Shuttle Main Engine Instrumentation

319

Space Shuttle MMOD Threat Mitigation Techniques  

NASA Technical Reports Server (NTRS)

Prior to each shuttle mission, threat assessments are performed to determine the risk of critical penetration, payload bay door radiator tube leak and crew module window replacement from Micrometeoroid and Orbital Debris (MMOD). Mission parameters, such as vehicle attitude, exposure time and altitude are used as inputs for the analysis. Ballistic limit equations, based on hypervelocity impact testing of shuttle materials are used to estimate the critical particle diameters of the outer surfaces of the vehicle. The assessments are performed using the BUMPER computer code at the NASA/JSC Hypervelocity Impact Technology Facility (HITF). The most critical involves the calculation of Loss of Crew and Vehicle (LOCV) risk. An overview of significant MMOD impacts on the Payload Bay Door radiators, wing leading edge reinforced carbon-carbon (RCC) panels and crew module windows will be presented, along with a discussion of the techniques NASA has implemented to reduce the risk from MMOD impacts. This paper will describe on-orbit inspection of the RCC regions and the methods used discern hypervelocity impact damage. Impact damage contingency plans and on-orbit repair techniques will also be discussed. The wing leading edge impact detection system (WLEIDS) and it s role in the reduction of on-orbit risk reduction will be presented. Finally, an analysis of alternative shuttle flight attitudes on MMOD risk will be demonstrated.

Hyde, J. L.; Christiansen, E. L.; Lear, D. M.; Kerr, J. H.

2008-01-01

320

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis's cockpit. Below Atlantis, on either side of the tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

321

Space Shuttle astrodynamical constants  

NASA Technical Reports Server (NTRS)

Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.

Cockrell, B. F.; Williamson, B.

1978-01-01

322

Shuttle car loading system  

NASA Technical Reports Server (NTRS)

A system is described for loading newly mined material such as coal, into a shuttle car, at a location near the mine face where there is only a limited height available for a loading system. The system includes a storage bin having several telescoping bin sections and a shuttle car having a bottom wall that can move under the bin. With the bin in an extended position and filled with coal the bin sections can be telescoped to allow the coal to drop out of the bin sections and into the shuttle car, to quickly load the car. The bin sections can then be extended, so they can be slowly filled with more while waiting another shuttle car.

Collins, E. R., Jr. (inventor)

1985-01-01

323

Habitability study shuttle orbiter  

NASA Technical Reports Server (NTRS)

Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

1972-01-01

324

Space Shuttle Drawing  

NASA Technical Reports Server (NTRS)

The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.

2004-01-01

325

STS-9 and Spacelab 1. NASA Educational Briefs for the Classroom.  

ERIC Educational Resources Information Center

Designed for classroom use, this publication provides an overview of the first Space Shuttle/Spacelab mission, a cooperative venture between the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The main purpose of ESA's Spacelab, which will be carried aboard NASA's Space Shuttle (technically called the

National Aeronautics and Space Administration, Washington, DC.

326

NASA Celebrates Atlantis as Pioneer, Inspiration - Duration: 3:31.  

NASA Video Gallery

Astronauts and senior NASA management noted the contributions of space shuttle Atlantis as they signed the spacecraft over for a new mission of inspiration as it goes on public display at the Kenne...

327

Accidents, engineering and history at NASA: 1967-2003  

E-print Network

The manned spaceflight program of the National Aeronautics and Space Administration (NASA) has suffered three fatal accidents: one in the Apollo program and two in the Space Transportation System (the Shuttle). These were ...

Brown, Alexander F. G. (Alexander Frederic Garder), 1970-

2009-01-01

328

NASA's Increase of Awesome to Continue - Duration: 4:13.  

NASA Video Gallery

Wondering what's up post-shuttle, popular Internet vlogger Hank Green of Vlogbrothers gets the straight skinny from Charlie Bolden and others at NASA about the agency's plans for future human space...

329

Space shuttle revitalization system  

NASA Technical Reports Server (NTRS)

The Space Shuttle air revitalization system is discussed. The sequential steps in loop closure are examined and a schematic outline of the regenerative air revitalization system is presented. Carbon dioxide reduction subsystem concepts are compared. Schemes are drawn for: static feedwater electrolysis cell, solid polymer electrolyte water electrolysis cell, air revitalization system, nitrogen generation reactions, nitrogen subsystem staging, vapor compression distillation subsystem, thermoelectric integrated membrane evaporation subsystem, catalytic distillation water reclamation subsystem, and space shuttle solid waste management system.

Quattrone, P. D.

1985-01-01

330

National Aeronautics and Space Administration www.nasa.gov  

E-print Network

National Aeronautics and Space Administration www.nasa.gov STS-135: The Final Mission Dedicated to the courageous men and women who have devoted their lives to the Space Shuttle Program and the pursuit of space;1981 1989 1990 STS-1: The First Mission 1985 #12;JULY 2011 CONTENTS i CONTENTS Section Page SPACE SHUTTLE

331

Space Shuttle: The Renewed Promise  

NASA Technical Reports Server (NTRS)

NASA celebrated its 30th anniversary in 1988, two days after the Space Shuttle soared into space once more. When Congress approved the creation of the National Aeronautics and Space Administration in 1958, the United States had successfully launched only four small satellites and no American astronaut had yet flown in space. In the three decades since, four generations of manned spacecraft have been built and flown, twelve men have walked on the Moon, more than 100 Americans have flown and worked in space, and communications satellites and other Space-Age technologies have transformed life on planet Earth. When NASA's Golden Anniversary is celebrated in 2008, it is likely that men and women will be permanently living and working in space. There may be a base on the Moon, and a manned mission to Mars may only be years away. If a brief history of the first half-century of the Space Age is written for that event, it will show clearly how the exploration of space has altered the course of human history and allowed us to take a better hold of our destiny on and off planet Earth.

McAleer, Neil

1989-01-01

332

High supersonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 space shuttle orbiter tested in the NASA/LaRC 4-foot UPWT (LEG 2) (LA75), volume 1  

NASA Technical Reports Server (NTRS)

Wind tunnel tests are reported on a 0.015-scale SSV orbiter model with remote independently operated left and right elevon surfaces. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments. Six component aerodynamic force and moment and elevon position data were recorded for the space shuttle orbiter with various elevon, aileron rudder and speed brake deflection combinations over an angle of attack range from -4 deg to 32 deg at angles of sideslip of 0 deg and 3 deg. Additional tests were made over an angle of sideslip range from -6 deg to 8 deg at selected angles of attack. Test Mach numbers were 2.86, 2.90, 3.90 and 4.60 with Reynolds numbers held at a constant 2.0 x 1 million per foot.

Ball, J. W.

1976-01-01

333

Results of investigations on an 0.015-scale model (49-0) of the Rockwell International Space Shuttle orbiter in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (0A98)  

NASA Technical Reports Server (NTRS)

The results of a wind tunnel test are presented; the model used for this test was 0.015-scale 140 A/B hybrid configuration of the space shuttle orbiter. The primary test objectives were to obtain incremental data on the effects of a sting mount on base pressures and force and moment data. The increments obtained included the addition of MPS nozzles as well as the deletion of the simulated sting mount. Six-component aerodynamic force and moment data were recorded over an angle of attack range from 12 to 42 degrees at 0 and 5 degrees angles of sideslip. The testing was accomplished at Mach 5.3 and Mach 10.3. The effects of various elevon, body flap, and speed brake settings were investigated, and static pressures were measured at the fuselage base for use in force-data reduction.

Milam, M. D.; Dzuibala, T. J.

1975-01-01

334

Results of investigations on a 0.010-scale 140A/B configuration space shuttle vehicle orbiter model 72-0 in the NASA/Langley Research Center continuous flow hypersonic tunnel (OA90)  

NASA Technical Reports Server (NTRS)

Data are documented which were obtained during wind tunnel tests. The test was conducted beginning 4 March and ending 6 March 1974 for a total of 24 occupancy hours. all test runs were conducted at a Mach number of 10.3 and at Reynolds numbers of 0.65, 1.0 and 1.33 million per foot. Only the complete 140A/B was tested with various elevon, speedbrake, and bodyflap settings at angles of attack from 12 to 37 degrees at 0 and -5 degrees of beta, and from 0 to -9 degrees of beta at 20 and 30 degrees angle of attack. The purpose was to obtain hypersonic longitudinal and lateral-directional stability and control characteristics of the updated space shuttle vehicle configuration.

Hawthorne, P. J.

1975-01-01

335

Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle  

NASA Technical Reports Server (NTRS)

Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.

Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

1999-01-01

336

Space Shuttle Atlantis rolls back to Launch Pad 39A  

NASA Technical Reports Server (NTRS)

Photographed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis creeps along the crawlerway for the 3.4-mile trek to Launch Pad 39A (upper left). In the background is the Atlantic Ocean; on either side is water from the Banana Creek (left) and Banana River (right). The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA's SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. Launch of Atlantis on STS-98 has been rescheduled to Feb. 7 at 6:11 p.m. EST.

2001-01-01

337

Space Shuttle Atlantis rolls back to Launch Pad 39A  

NASA Technical Reports Server (NTRS)

As the early morning light casts a glow over the landscape, Space Shuttle Atlantis moves slowly along the crawlerway for the 3.4- mile trek to Launch Pad 39A (upper left). The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA's SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. Launch of Atlantis on STS-98 has been rescheduled to Feb. 7 at 6:11 p.m. EST.

2001-01-01

338

Liftoff of Space Shuttle Atlantis on mission STS-98  

NASA Technical Reports Server (NTRS)

Like 10,000 fireworks going off at once, Space Shuttle Atlantis roars into the moonlit sky while clouds of steam and smoke cascade behind. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.

2001-01-01

339

Space Shuttle Orbiter waste collection system conceptual study  

NASA Technical Reports Server (NTRS)

The analyses and studies conducted to develop a recommended design concept for a new fecal collection system that can be retrofited into the space shuttle vehicle to replace the existing troublesome system which has had limited success in use are summarized. The concept selected is a cartridge compactor fecal collection subsystem which utilizes an airflow collection mode combined with a mechanical compaction and vacuum drying mode that satisfies the shuttle requirements with respect to size, weight, interfaces, and crew comments. A follow-on development program is recommended which is to result in flight test hardware retrofitable on a shuttle vehicle. This permits NASA to evaluate the system which has space station applicablity before committing production funds for the shuttle fleet and space station development.

Abbate, M.

1985-01-01

340

Architectural advances of the space shuttle orbiter avionics computer system  

Microsoft Academic Search

The Space Shuttle Orbiter manned reusable craft is being developed by NASA for applications in the 1980' and beyond. Navigation, guidance flight control, systems management and control, and payload checkout are but a few of the functions of the Orbiter which are being mechanized in the avionics computer complex.The development of the system is traced through three distinct architectures to

James M. Satterfield; Lyndon B. Johnson

1974-01-01

341

Space Shuttle Launch: STS-129 - Duration: 11:32.  

NASA Video Gallery

STS-129. Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday, Nov 16, 2009, with a 2:28 p.m. EST launch from NASA's Kennedy S...

342

NASA RFID Applications  

NASA Technical Reports Server (NTRS)

This viewgraph document reviews some potential uses for Radio Frequency Identification in space missions. One of these is inventory management in space, including the methods used in Apollo, the Space Shuttle, and Space Station. The potential RFID uses in a remote human outpost are reviewed. The use of Ultra-Wideband RFID for tracking are examined such as that used in Sapphire DART The advantages of RFID in passive, wireless sensors in NASA applications are shown such as: Micrometeoroid impact detection and Sensor measurements in environmental facilities The potential for E-textiles for wireless and RFID are also examined.

Fink, Patrick, Ph.D.; Kennedy, Timothy, Ph.D; Powers, Anne; Haridi, Yasser; Chu, Andrew; Lin, Greg; Yim, Hester; Byerly, Kent, Ph.D.; Barton, Richard, Ph.D.; Khayat, Michael, Ph.D.; Studor, George; Brocato, Robert; Ngo, Phong; Arndt, G. D., Ph.D.; Gross, Julia; Phan, Chau; Ni, David, Ph.D.; Dusl, John; Dekome, Kent

2007-01-01

343

NASA program plan  

NASA Technical Reports Server (NTRS)

Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

1980-01-01

344

NASA World Wind  

NSDL National Science Digital Library

This open-source application lets users experience Earth terrain in three dimensions, visiting any location by zooming in from satellite altitude. Fly-ins begin with a true-color image of the entire Earth (the "Blue Marble"), then employ Landsat 7 satellite imagery and Shuttle Radar Topography Mission data to display landmarks, geographic and cultural features, eye-level views and fly-throughs. The website includes instructions for downloading the software, a description of its features, screenshots, and a users' forum. There are also example applications, data add-on packs for use while the NASA server is offline, a frequently-asked-questions feature, and an instruction manual.

345

NASA Enterprise Visual Analysis  

NASA Technical Reports Server (NTRS)

NASA Enterprise Visual Analysis (NEVA) is a computer program undergoing development as a successor to Launch Services Analysis Tool (LSAT), formerly known as Payload Carrier Analysis Tool (PCAT). NEVA facilitates analyses of proposed configurations of payloads and packing fixtures (e.g. pallets) in a space shuttle payload bay for transport to the International Space Station. NEVA reduces the need to use physical models, mockups, and full-scale ground support equipment in performing such analyses. Using NEVA, one can take account of such diverse considerations as those of weight distribution, geometry, collision avoidance, power requirements, thermal loads, and mechanical loads.

Lopez-Tellado, Maria; DiSanto, Brenda; Humeniuk, Robert; Bard, Richard, Jr.; Little, Mia; Edwards, Robert; Ma, Tien-Chi; Hollifield, Kenneith; White, Chuck

2007-01-01

346

Space Shuttle security policies and programs  

NASA Technical Reports Server (NTRS)

The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

Keith, E. L.

1985-01-01

347

Asymmetrical booster ascent guidance and control system design study. Volume 1: Summary. [space shuttle development  

NASA Technical Reports Server (NTRS)

Dynamics and control, stability, and guidance analyses are summarized for the asymmetrical booster ascent guidance and control system design studies, performed in conjunction with space shuttle planning. The mathematical models developed for use in rigid body and flexible body versions of the NASA JSC space shuttle functional simulator are briefly discussed, along with information on the following: (1) space shuttle stability analysis using equations of motion for both pitch and lateral axes; (2) the computer program used to obtain stability margin; and (3) the guidance equations developed for the space shuttle powered flight phases.

Williams, F. E.; Lemon, R. S.; Jaggers, R. F.; Wilson, J. L.

1974-01-01

348

Application of Terahertz Radiation to the Detection of Corrosion under the Shuttle's Thermal Protection System  

NASA Technical Reports Server (NTRS)

There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

2007-01-01

349

December 2009 ARMY MEDICAL LOGISTICS  

E-print Network

FM 4-02.1 December 2009 ARMY MEDICAL LOGISTICS DISTRIBUTION RESTRICTION: Approved for public Medical Logistics Contents Page PREFACE...................................................................................................ix Chapter 1 OVERVIEW OF ARMY MEDICAL LOGISTICS................................................. 1-1 Section

US Army Corps of Engineers

350

Logistic Curve Demo  

NSDL National Science Digital Library

This interactive demo illustrates the generation of a logistic curve. This demo is appropriate for a pre-calculus course, but is quite effective in a calculus class immediately after a discussion of inflection points.

Roberts, Lila F.

2002-02-03

351

NASA and the practice of space law  

NASA Technical Reports Server (NTRS)

The paper discusses the need for increased awareness in space law due to advances in space technology and a trend toward commercialization of space. A list of national and international treaties, conventions, agreements, laws, and regulations relevant to space activities is presented. NASA lawyers specialize in international and municipal laws that affect the NASA space mission; an example of the lawyers working with insurance companies in negotiating the first Space Shuttle liability policy is provided. The increased participation of the public sector in space activities, for example, the commercialization of the Space Shuttle transportation system, is examined.

Hosenball, S. N.

1985-01-01

352

An Overview of Quantitative Risk Assessment of Space Shuttle Propulsion Elements  

NASA Technical Reports Server (NTRS)

Since the Space Shuttle Challenger accident in 1986, NASA has been working to incorporate quantitative risk assessment (QRA) in decisions concerning the Space Shuttle and other NASA projects. One current major NASA QRA study is the creation of a risk model for the overall Space Shuttle system. The model is intended to provide a tool to estimate Space Shuttle risk and to perform sensitivity analyses/trade studies, including the evaluation of upgrades. Marshall Space Flight Center (MSFC) is a part of the NASA team conducting the QRA study; MSFC responsibility involves modeling the propulsion elements of the Space Shuttle, namely: the External Tank (ET), the Solid Rocket Booster (SRB), the Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME). This paper discusses the approach that MSFC has used to model its Space Shuttle elements, including insights obtained from this experience in modeling large scale, highly complex systems with a varying availability of success/failure data. Insights, which are applicable to any QRA study, pertain to organizing the modeling effort, obtaining customer buy-in, preparing documentation, and using varied modeling methods and data sources. Also provided is an overall evaluation of the study results, including the strengths and the limitations of the MSFC QRA approach and of qRA technology in general.

Safie, Fayssal M.

1998-01-01

353

STS-98 Space Shuttle Atlantis rolls back to Launch Pad 39A  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- Dozens of storks are roused from the ground near the Vehicle Assembly Building after the Space Shuttle Atlantis has moved out. The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. The Shuttle rolled back to Launch Pad 39A to get ready for launch on Feb. 7 at 6:11 p.m. EST.

2001-01-01

354

Who heard the whispers that were coming from the shuttle's Solid Rocket Boosters (SRBs) on a cold January morning in 1986? Who thought the mighty  

E-print Network

and January 1986, the dedicated and talented people at the NASA Human Spaceflight Centers focused on readying impact the accident had on the close-knit NASA team. The loss of Challenger and her crew devastated NASA. Three NASA teams were primarily responsible for shuttle safety--JSC for on-orbit operation and crew

355

Launch Vehicle Demonstrator Using Shuttle Assets  

NASA Technical Reports Server (NTRS)

The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center undertook a study to define candidate early heavy lift demonstration launch vehicle concepts derived from existing space shuttle assets. The objective was to determine the performance capabilities of these vehicles and characterize potential early demonstration test flights. Given the anticipated budgetary constraints that may affect America's civil space program, and a lapse in U.S. heavy launch capability with the retirement of the space shuttle, an early heavy lift launch vehicle demonstration flight would not only demonstrate capabilities that could be utilized for future space exploration missions, but also serve as a building block for the development of our nation s next heavy lift launch system. An early heavy lift demonstration could be utilized as a test platform, demonstrating capabilities of future space exploration systems such as the Multi Purpose Crew Vehicle. By using existing shuttle assets, including the RS-25D engine inventory, the shuttle equipment manufacturing and tooling base, and the segmented solid rocket booster industry, a demonstrator concept could expedite the design-to-flight schedule while retaining critical human skills and capital. In this study two types of vehicle designs are examined. The first utilizes a high margin/safety factor battleship structural design in order to minimize development time as well as monetary investment. Structural design optimization is performed on the second, as if an operational vehicle. Results indicate low earth orbit payload capability is more than sufficient to support various vehicle and vehicle systems test programs including Multi-Purpose Crew Vehicle articles. Furthermore, a shuttle-derived, hydrogen core vehicle configuration offers performance benefits when trading evolutionary paths to maximum capability.

Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.

2011-01-01

356

7. YOSEMITE VALLEY SHUTTLE BUS AT SENTINEL BRIDGE SHUTTLE BUS ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

7. YOSEMITE VALLEY SHUTTLE BUS AT SENTINEL BRIDGE SHUTTLE BUS AND PARKING LOT AREA. LOOKING WNW. GIS: N-37 40 36.2 / W-119 44 45.0 - Yosemite National Park Roads & Bridges, Yosemite Village, Mariposa County, CA

357

Marshall's George Hopson Recieves NASA's Highest Honors  

NASA Technical Reports Server (NTRS)

After four decades of contribution to America's space program, George Hopson, manager of the Space Shuttle Main Engine Project at Marshall Space Flight Center, accepted NASA's Distinguished Service Medal. Awarded to those who, by distinguished ability or courage, have made a personal contribution to the NASA mission, NASA's Distinguished Service Medal is the highest honor NASA confers. Hopson's contributions to America's space program include work on the country's first space station, Skylab; the world's first reusable space vehicle, the Space Shuttle; and the International Space Station. Hopson joined NASA's Marshall team as chief of the Fluid and Thermal Systems Branch in the Propulsion Division in 1962, and later served as chief of the Engineering Analysis Division of the Structures and Propulsion Laboratory. In 1979, he was named director of Marshall's Systems Dynamics Laboratory. In 1981, he was chosen to head the Center's Systems Analysis and Integration. Seven years later, in 1988, Hopson was appointed associate director for Space Transportation Systems and one year later became the manager of the Space Station Projects Office at Marshall. In 1994, Hopson was selected as deputy director for Space Systems in the Science and Engineering Directorate at Marshall where he supervised the Chief Engineering Offices of both marned and unmanned space systems. He was named manager of the Space Shuttle Main Engine Project in 1997. In addition to the Distinguished Service Medal, Hopson has also been recognized with the NASA Outstanding Leadership Medal and NASA's Exceptional Service Medal.

2003-01-01

358

Shuttle Upgrade Using 5-Segment Booster (FSB)  

NASA Technical Reports Server (NTRS)

In support of NASA's continuing effort to improve the over-all safety and reliability of the Shuttle system- a 5-segment booster (FSB) has been identified as an approach to satisfy that overall objective. To assess the feasibility of a 5-segment booster approach, NASA issued a feasibility study contract to evaluate the potential of a 5-segment booster to improve the overall capability of the Shuttle system, especially evaluating the potential to increase the system reliability and safety. In order to effectively evaluate the feasibility of the 5-segment concept, a four-member contractor team was established under the direction of NASA Marshall Space Flight Center (MSFC). MSFC provided the overall program oversight and integration as well as program contractual management. The contractor team consisted of Thiokol, Boeing North American Huntington Beach (BNA), Lockheed Martin Michoud Space Systems (LMMSS) and United Space Alliance (USA) and their subcontractor bd Systems (Control Dynamics Division, Huntsville, AL). United Space Alliance included the former members of United Space Booster Incorporated (USBI) who managed the booster element portion of the current Shuttle solid rocket boosters. Thiokol was responsible for the overall integration and coordination of the contractor team across all of the booster elements. They were also responsible for all of the motor modification evaluations. Boeing North American (BNA) was responsible for all systems integration analyses, generation of loads and environments. and performance and abort mode capabilities. Lockheed Martin Michoud Space Systems (LMMSS) was responsible for evaluating the impacts of any changes to the booster on the external tank (ET), and evaluating any design changes on the external tank necessary to accommodate the FSB. USA. including the former USBI contingent. was responsible for evaluating any modifications to facilities at the launch site as well as any booster component design modifications.

Sauvageau, Donald R.; Huppi, Hal D.; McCool, A. A. (Technical Monitor)

2000-01-01

359

Results of investigations on an 0.015-scale configuration 140A/B space shuttle vehicle orbiter model (49-0) in the NASA/Langley Research Center 8-foot transonic pressure tunnel (OA25)  

NASA Technical Reports Server (NTRS)

Aerodynamic force and moment tests were conducted on an 0.015-scale space shuttle vehicle configuration 140A/B model (49-0) in a transonic pressure tunnel. The test was carried out at Mach numbers 0.35, 0.60, 0.80, 0.90, 0.98, and 1.20, and at Reynolds numbers ranging from 1.90 million per foot to 3.97 million per foot, depending on tunnel total pressure capability and model structural limits. The model attitude was varied in angle-of-attack from minus 2 deg to +22 deg at 0 deg and 5 deg angles of yaw, and in angle-of-sidelip from minus 5 to +10 deg at 0 deg, 7.5 deg, and 15 deg angles of pitch. The purpose of this test was to establish and verify longitudinal and lateral-directional characteristics of the 140A/B Configuration Orbiter and to determine the effects of surface deflections on vehicle performance, stability, and control.

Nichols, M. E.

1974-01-01

360

Heat-transfer test results for a .0275-scale space shuttle external tank with a 10 deg/40 deg double cone-ogive nose in the NASA/AMES 3.5-foot hypersonic wind tunnel (FH14), volume 2  

NASA Technical Reports Server (NTRS)

A .0275 scale forebody model of the new baseline configuration of the space shuttle external tank vent cap configuration was tested to determine the flow field due to the double cone configuration. The tests were conducted in a 3.5 foot hypersonic wind tunnel at alpha = -5 deg, -4.59 deg, 0 deg, 5 deg, and 10 deg; beta = 0 deg, -3 deg, -5.51 deg, -6 deg, -9 deg, and +6 deg; nominal freestream Reynolds numbers per foot of 1.5 x 1 million, 3.0 x 1 million, and 5.0 x 1 million; and a nominal Mach number of 5. Separation and reattached flow from thermocouple data, shadowgraphs, and oil flows indicate that separation begins about 80% from the tip of the 10 deg cone, then reattaches on the vent cap and produces fully turbulent flow over most of the model forebody. The hardware disturbs the flow over a much larger area than present TPS application has assumed. A correction to the flow disturbance was experimentally suggested from the results of an additional test run.

Carroll, H. R.

1977-01-01

361

Transonic stability and control characteristics of a 0.015 scale model 69-0 of the space shuttle orbiter with forebody RSI modification in the NASA/LaRC 8 foot TPT (LA72)  

NASA Technical Reports Server (NTRS)

Tests were conducted in the NASA/LaRC 8 foot transonic wind tunnel from March 26 through 31, 1976. The model was a 0.015 scale SSV Orbiter with forebody modifications to simulate slight reductions in the reusable surface insulation (RSI) thickness. Six component aerodynamic force and moment data were obtained at Mach numbers from 0.35 to 1.20 over an angle of attack range from -2 deg to 20 deg at sideslip angles of 0 deg and 5 deg.

Ball, J. W.; Edwards, C. R.

1976-01-01

362

An assessment of space shuttle flight software development processes  

NASA Technical Reports Server (NTRS)

In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

1993-01-01

363

Independent verification and validation for Space Shuttle flight software  

NASA Technical Reports Server (NTRS)

The Committee for Review of Oversight Mechanisms for Space Shuttle Software was asked by the National Aeronautics and Space Administration's (NASA) Office of Space Flight to determine the need to continue independent verification and validation (IV&V) for Space Shuttle flight software. The Committee found that the current IV&V process is necessary to maintain NASA's stringent safety and quality requirements for man-rated vehicles. Therefore, the Committee does not support NASA's plan to eliminate funding for the IV&V effort in fiscal year 1993. The Committee believes that the Space Shuttle software development process is not adequate without IV&V and that elimination of IV&V as currently practiced will adversely affect the overall quality and safety of the software, both now and in the future. Furthermore, the Committee was told that no organization within NASA has the expertise or the manpower to replace the current IV&V function in a timely fashion, nor will building this expertise elsewhere necessarily reduce cost. Thus, the Committee does not recommend moving IV&V functions to other organizations within NASA unless the current IV&V is maintained for as long as it takes to build comparable expertise in the replacing organization.

1992-01-01

364

Work continues on Leonardo, the Multi-Purpose Logistics Module, in the Space Station Processing Faci  

NASA Technical Reports Server (NTRS)

Workers in the Space Station Processing Facility work on Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-102, targeted for June 2000. Leonardo shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM), targeted for launch in September 1999, and Destiny, the U.S. Lab module, targeted for mission STS-98 in late April 2000.

1999-01-01

365

Space Shuttle Orbiter windshield bird impact analysis  

NASA Technical Reports Server (NTRS)

The NASA Space Shuttle Orbiter's windshield employs three glass panes separated by air gaps. The brittleness of the glass offers much less birdstrike energy-absorption capability than the laminated polycarbonate windshields of more conventional aircraft; attention must accordingly be given to the risk of catastrophic bird impact, and to methods of strike prevention that address bird populations around landing sites rather than the modification of the window's design. Bird populations' direct reduction, as well as careful scheduling of Orbiter landing times, are suggested as viable alternatives. The question of birdstrike-resistant glass windshield design for hypersonic aerospacecraft is discussed.

Edelstein, Karen S.; Mccarty, Robert E.

1988-01-01

366

Space Shuttle Discovery rolls out to the launch pad  

NASA Technical Reports Server (NTRS)

The Space Shuttle Discovery, atop the mobile launcher platform and crawler-transporter, begins the climb up the ramp to Launch Pad 39B. Traveling at 1 mph, the crawler-transporter takes about five hours to cover the 4.2 miles from the Vehicle Assembly Building to the launch pad. Special levelers on the crawler- transporter keep the Space Shuttle vertical within plus or minus 10 minutes of arc about the dimensions of a basketball. Liftoff of Discovery on mission STS-96 is targeted for May 20 at 9:32 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.

1999-01-01

367

NASA: Year in Review 2004  

NSDL National Science Digital Library

Through the use of Macromedia Flash Player, this NASA website revisits the key NASA space exploration events and missions of 2004. Users can view videos illustrating the Vision for Space Exploration and articles describing the advances to help make the vision a reality. The website discusses the redesigning of the Shuttle External Fuel Tank and its significance in flight missions. Visitors can find out about the newest NASA research, watch a photo essay of the Cassini mission to Saturn, drive a Mars rover to explore the geology of that planet, learn about the next generation of NASA astronauts, and much more. Individuals can view photos, hear accounts, and read articles about the three crews that lived on the International Space Station in 2004.

368

Nondestructive Evaluation for the Space Shuttle's Wing Leading Edge  

NASA Technical Reports Server (NTRS)

The loss of the Space Shuttle Columbia highlighted concerns about the integrity of the Shuttle's thermal protection system, which includes Reinforced Carbon-Carbon (RCC) on the leading edge. This led NASA to investigate nondestructive evaluation (NDE) methods for certifying the integrity of the Shuttle's wing leading edge. That investigation was performed simultaneously with a large study conducted to understand the impact damage caused by errant debris. Among the many advanced NDE methods investigated for applicability to the RCC material, advanced digital radiography, high resolution computed tomography, thermography, ultrasound, acoustic emission and eddy current systems have demonstrated the maturity and success for application to the Shuttle RCC panels. For the purposes of evaluating the RCC panels while they are installed on the orbiters, thermographic detection incorporating principal component analysis (PCA) and eddy current array scanning systems demonstrated the ability to measure the RCC panels from one side only and to detect several flaw types of concern. These systems were field tested at Kennedy Space Center (KSC) and at several locations where impact testing was being conducted. Another advanced method that NASA has been investigating is an automated acoustic based detection system. Such a system would be based in part on methods developed over the years for acoustic emission testing. Impact sensing has been demonstrated through numerous impact tests on both reinforced carbon-carbon (RCC) leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. A variety of impact materials and conditions have been evaluated including foam, ice, and ablator materials at ascent velocities as well as simulated hypervelocity micrometeoroid and orbital debris impacts. These tests have successfully demonstrated the capability to detect and localize impact events on Shuttle's wing structures. A first generation impact sensing system has been designed for the next Shuttle flight and is undergoing final evaluation for deployment on the Shuttle's first return to flight. This system will employ wireless accelerometer sensors that were qualified for other applications on previous Shuttle flights. These sensors will be deployed on the wing's leading edge to detect impacts on the RCC leading edge panels. The application of these methods will help to insure the continued integrity of the Shuttle wing's leading edge system as the Shuttle flights resume and until their retirement.

Madaras, Eric I.; Winfree, William P.; Prosser, William H.; Wincheski, Russell A.; Cramer, K. Elliot

2005-01-01

369

NASA's Myriad Uses of Digital Video  

NASA Technical Reports Server (NTRS)

Since it's inception, NASA has created many of the most memorable images seen this Century. From the fuzzy video of Neil Armstrong taking that first step on the moon, to images of the Mars surface available to all on the internet, NASA has provided images to inspire a generation, all because a scientist or researcher had a requirement to see something unusual. Digital Television technology will give NASA unprecedented new tools for acquiring, analyzing, and distributing video. This paper will explore NASA's DTV future. The agency has a requirement to move video from one NASA Center to another, in real time. Specifics will be provided relating to the NASA video infrastructure, including video from the Space Shuttle and from the various Centers. A comparison of the pros and cons of interlace and progressive scanned images will be presented. Film is a major component of NASA's image acquisition for analysis usage. The future of film within the context of DTV will be explored.

Grubbs, Rodney; Lindblom, Walt; George, Sandy

1999-01-01

370

EA Shuttle Document Retention Effort  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the effort of code EA at Johnson Space Center (JSC) to identify and acquire databases and documents from the space shuttle program that are adjudged important for retention after the retirement of the space shuttle.

Wagner, Howard A.

2010-01-01

371

Refining, revising, augmenting, compiling and developing computer assisted instruction K-12 aerospace materials for implementation in NASA spacelink electronic information system  

NASA Technical Reports Server (NTRS)

The NASA Spacelink is an electronic information service operated by the Marshall Space Flight Center. The Spacelink contains extensive NASA news and educational resources that can be accessed by a computer and modem. Updates and information are provided on: current NASA news; aeronautics; space exploration: before the Shuttle; space exploration: the Shuttle and beyond; NASA installations; NASA educational services; materials for classroom use; and space program spinoffs.

Blake, Jean A.

1988-01-01

372

Space Shuttle Aging Elastomers  

NASA Technical Reports Server (NTRS)

The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The Space Shuttle's uses various types of elastomers and they play a vital role in mission success. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the elastomers are performing. This paper will outline a strategic assessment plan, how identified problems were resolved and the integration activities between subsystems and Aging Orbiter Working Group.

Curtis, Cris E.

2007-01-01

373

Nanoparticle shuttle memory  

DOEpatents

A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

Zettl, Alex Karlwalter (Kensington, CA)

2012-03-06

374

Shuttle infrared imaging experiment  

NASA Astrophysics Data System (ADS)

The Infrared Imaging Experiment (IRIE) flown on Shuttle Mission 6 lC is reported. The infrared camera, which was operated in the 3.5- to 5-micron spectral band, replaced one of the visible CCTV cameras on the Shuttle. The camera employed a 160 x 244-element monolithic platinum-silicide area focal-plane array; array characteristics, camera electronics, optics, and focal plane cooling are summarized. The preplanned scenes for the IRIE are listed. A total of about 2.5 hours of data, including some preplanned scenes and unscheduled operation, were recorded. Several of the recorded scenes are mentioned specifically.

Aronson, A.; Cenker, R.; Gilmartin, H.

1986-01-01

375

Space Shuttle ascent aborts  

NASA Astrophysics Data System (ADS)

Specific guidance functions and trajectory design of return to launch site (RTLS) and transoceanic abort landing (TAL) intact abort profiles, as well as the increasing emphasis on contingency aborts, are presented. Various systems failures including Space Shuttle main engine failures and detailed technical analyses, including the design of powered flight abort trajectories, are considered. The most critical of flight abort situations is the RTLS, while TAL is the preferred abort when uphill capability is no longer available. It is concluded that one principle must remain to ensure continuing success of Space Shuttle flights: namely that intact and contingency aborts necessitate development to ensure safe return of the vehicle, payload, and crew whenever possible.

Schmidgall, Richard A.

1989-09-01

376

Logistics Reduction and Repurposing Beyond Low Earth Orbit  

NASA Technical Reports Server (NTRS)

All human space missions, regardless of destination, require significant logistical mass and volume that is strongly proportional to mission duration. Anything that can be done to reduce initial mass and volume of supplies or reuse items that have been launched will be very valuable. Often, the logistical items require disposal and represent a trash burden. Utilizing systems engineering to analyze logistics from cradle-to-grave and then to potential reuse, can minimize logistics contributions to total mission architecture mass. In NASA's Advanced Exploration Systems Logistics Reduction and Repurposing Project , various tasks will reduce the intrinsic mass of logistical packaging, enable reuse and repurposing of logistical packaging and carriers for other habitation, life support, crew health, and propulsion functions, and reduce or eliminate the nuisances aspects of trash at the same time. Repurposing reduces the trash burden and eliminates the need for hardware whose function can be provided by use of spent logistic items. However, these reuse functions need to be identified and built into future logical systems to enable them to effectively have a secondary function. These technologies and innovations will help future logistic systems to support multiple exploration missions much more efficiently.

Broyan, James Lee, Jr.; Ewert, Michael K.

2011-01-01

377

STS-98 Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis'''s cockpit. Below Atlantis, on either side of the tail, are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter'''s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.

2001-01-01

378

Shielding measurements of the space shuttle (part I - meeting the test challenge)  

Microsoft Academic Search

The Naval Air Warfare Center (NAWC) at Pax River teamed with the National Institute of Standards and Technology (NIST) to perform a shielding test of the NASA Space Shuttle Orbiter Endeavour. Pax River was responsible for testing in the high frequency range up to 18 GHz. NASA imposed some very tight limitations on the time allotted to perform the test

Buzz Brezinski; D. Kempf; R. Scully

2006-01-01

379

Space shuttle auxiliary propulsion system design study. Executive summary  

NASA Technical Reports Server (NTRS)

The development and characteristics of an auxiliary propulsion system for space shuttle applications are presented. The system design data necessary for selection of preferred system concepts and the requirements for complementing component design and test programs are analyzed. The use of cryogenic oxygen and hydrogen as a propellant combination is explained on the basis of high vehicle impulse requirements, safety factors, reuse, and logistics considerations. The final configurations for the alternate propellant system, with primary emphasis on earth storable propellants is described.

Kelly, P. J.; Schweickert, T. F.

1972-01-01

380

Space shuttle food system study. Volume 1: System design report  

NASA Technical Reports Server (NTRS)

Data were assembled which define the optimum food system to support the space shuttle program, and which provide sufficient engineering data to support necessary requests for proposals towards final development and installment of the system. The study approach used is outlined, along with technical data and sketches for each functional area. Logistic support analysis, system assurance, and recommendations and conclusions based on the study results are also presented.

1974-01-01

381

STS-71, Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

Frike, Robert W., Jr.

1995-01-01

382

Space shuttles: A pyrotechnic overview  

NASA Technical Reports Server (NTRS)

Pyrotechnic components specified in Shuttle system designs to accomplish varied tasks during all mission phases are described. The function of these pyrotechnics in the operation of the space shuttle vehicle is discussed. Designs are presented for pyrotechnics with innovative features of those meeting unique shuttle requirements for safety and reliability. A rationale for the qualification and certification of these devices is developed. Maintenance of this qualified system in production hardware is explained through a description of shuttle flight certification review process.

Graves, T. J.

1980-01-01

383

Logistic regression Weakly informative priors  

E-print Network

Logistic regression Weakly informative priors Conclusions Bayesian generalized linear models default p #12;Logistic regression Weakly informative priors Conclusions Classical logistic regression The problem of separation Bayesian solution Logistic regression -6 -4 -2 0 2 4 6 0.00.20.40.60.81.0 y = logit

Gelman, Andrew

384

Material Issues in Space Shuttle Composite Overwrapped Pressure Vessels  

NASA Technical Reports Server (NTRS)

Composite Overwrapped Pressure Vessels (COPV) store gases used in four subsystems for NASA's Space Shuttle Fleet. While there are 24 COPV on each Orbiter ranging in size from 19-40", stress rupture failure of a pressurized Orbiter COPV on the ground or in flight is a catastrophic hazard and would likely lead to significant damage/loss of vehicle and/or life and is categorized as a Crit 1 failure. These vessels were manufactured during the late 1970's and into the early 1980's using Titanium liners, Kevlar 49 fiber, epoxy matrix resin, and polyurethane coating. The COPVs are pressurized periodically to 3-5ksi and therefore experience significant strain in the composite overwrap. Similar composite vessels were developed in a variety of DOE Programs (primarily at Lawrence Livermore National Laboratories or LLNL), as well as for NASA Space Shuttle Fleet Leader COPV program. The NASA Engineering Safety Center (NESC) formed an Independent Technical Assessment (ITA) team whose primary focus was to investigate whether or not enough composite life remained in the Shuttle COPV in order to provide a strategic rationale for continued COPV use aboard the Space Shuttle Fleet with the existing 25-year-old vessels. Several material science issues were examined and will be discussed in this presentation including morphological changes to Kevlar 49 fiber under stress, manufacturing changes in Kevlar 49 and their effect on morphology and tensile strength, epoxy resin strain, composite creep, degradation of polyurethane coatings, and Titanium yield characteristics.

Sutter, James K.; Jensen, Brian J.; Gates, Thomas S.; Morgan, Roger J.; Thesken, John C.; Phoenix, S. Leigh

2006-01-01

385

Toward a History Space Shuttle  

E-print Network

Shuttle in building and servicing the Hubble Space Telescope and the International Space Station; science CHAPTER 7--THE SPACE SHUTTLE AND THE HUBBLE SPACE TELESCOPE ............. 34 CHAPTER 8--SCIENCEToward a History of the Space Shuttle An Annotated Bibliography Part 2, 19922011 Monographs

386

Shuttle model tailcone pressure distribution at low subsonic speeds of a 0.03614-scale model in the NASA/LaRC low-turbulence pressure tunnel (LA81), volume 1  

NASA Technical Reports Server (NTRS)

An investigation was conducted in the NASA/LaRC Low-Turbulence Pressure Tunnel on a 0.03614-scale orbiter model of a 089B configuration with a 139B configuration nose forward of F.S. 500. The tailcone was the TC sub 4 design and was instrumented with eighty-nine pressure orifices. Control surfaces were deflected and three wind tunnel mounting techniques were investigated over an angle-of-attack range from -2 deg to a maximum of 18 deg. In order to determine the sensitivity of the tailcone to changes in Reynolds number, most of the test was made at a Mach number of 0.20 over a Reynolds number range of 2.0 to 10 million per foot. A few runs were made at a Mach number of 0.30 at Reynolds numbers of 4.0, 6.0, and 8 million per foot.

Ball, J. W.; Lindahl, R. H.

1976-01-01

387

Advanced Health Management System for the Space Shuttle Main Engine  

NASA Technical Reports Server (NTRS)

Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

Davidson, Matt; Stephens, John

2004-01-01

388

Columbia and Challenger: organizational failure at NASA  

Microsoft Academic Search

The National Aeronautics and Space Administration (NASA)as the global leader in all areas of spaceflight and space scienceis a unique organization in terms of size, mission, constraints, complexity and motivations. NASA's flagship endeavorhuman spaceflightis extremely risky and one of the most complicated tasks undertaken by man. It is well accepted that the tragic destruction of the Space Shuttle Challenger on

Joseph Lorenzo Hall

2003-01-01

389

The Shuttle Imaging Spectrometer Experiment (SISEX)  

NASA Astrophysics Data System (ADS)

The concept of the imaging spectrometer is becoming established as a major new thrust in remote sensing of the Earth. For several years, JPL has operated the Airborne Imaging Spectrometer on a NASA C-130; this instrument has demonstrated the direct identification of surface materials using imaging spectrometry. An advanced aircraft instrument, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), began operation on a NASA U-2 in 1987. The Shuttle Imaging Spectrometer Experiment (SISEX) was conceived as the next step in the sequence, and would provide a relatively inexpensive demonstration of the concept in Earth orbit. This paper will describe the design and development status of SISEX, and the status of the enabling technology.

Herring, Mark

1987-01-01

390

The Shuttle Imaging Spectrometer Experiment (SISEX)  

NASA Astrophysics Data System (ADS)

The concept of the imaging spectrometer is becoming established as a major new thrust in remote sensing of the earth. For several years, JPL has operated the airborne imaging spectrometer on a NASA C-130; this instrument has demonstrated the direct identification of surface materials using imaging spectrometry. An advanced aircraft instrument, the airborne visible/infrared imaging spectrometer (AVIRIS), began operation on a NASA U-2 in 1987. The Shuttle Imaging Spectrometer Experiment (SISEX) was conceived as the next step in the sequence, and would provide a relatively inexpensive demonstration of the concept in earth orbit. This paper describes the design and development status of SISEX and the status of the enabling technology.

Herring, Mark

391

Practical Session: Logistic Regression  

NASA Astrophysics Data System (ADS)

An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr341.pdf). This example is based on data given in the file evans.txt coming from http://www.sph.emory.edu/dkleinb/logreg3.htm#data.

Clausel, M.; Grgoire, G.

2014-01-01

392

Preliminary design of the Shuttle-C avionics recovery system  

NASA Technical Reports Server (NTRS)

The analysis done in developing a recovery system for the Shuttle-C cargo vehicle is presented. This recovery system is comprised of a reentry capsule which houses the vehicles avionics. The avionics are contained in a single package which is extracted from the capsule by the parachute recovery system. The Shuttle-C will be able to satisfy NASA's design and mission requirements. Included, is an analysis of the structural, thermal protection, and parachute recovery systems. A discussion of the merits of the proposed system is also included.

Brookfield, Morgan; Decker, Deron; Gilbert, Harold; Moore, David; Rist, Mark

1989-01-01

393

STS-113 visitors watch the Space Shuttle Endeavour launch  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, FLA. - Watching the launch of Space Shuttle Endeavour on mission STS-113 are NASA Administrator Sean O'Keefe (left) and Associate Administrator of Public Affairs Glen Mahone. Liftoff occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey.

2002-01-01

394

RF coverage analysis and performance for Shuttle communication links  

NASA Technical Reports Server (NTRS)

This paper describes the current work at NASA/Johnson Space Center in the area of RF coverage analysis and performance-assessment for the Space Shuttle Program communication and tracking radio links. Trajectories, antenna data, ground station and Shuttle hardware performance characteristics and RF link math models were assimilated to generate RF link performance predictions for the three basic mission phases - ascent, on-orbit, and descent. Results identify some earlier deficiencies that required re-configuration of the ground station. Overall performance is currently satisfactory.

Loh, Y.-C.; Porter, J. A.

1978-01-01

395

Closeup View of the Space Shuttle Main Engine (SSME) 2044 ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Close-up View of the Space Shuttle Main Engine (SSME) 2044 mounted in a SSME Engine Handler in the SSME processing Facility at Kennedy Space Center. This view shows SSME 2044 with its expansion nozzle removed and an Engine Leak-Test Plug is set in the throat of the Main Combustion Chamber in the approximate center of the image, the insulated, High-Pressure Fuel Turbopump sits below that and the Low Pressure Oxidizer Turbopump Discharge Duct sits towards the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

396

Space Shuttle news reference  

NASA Technical Reports Server (NTRS)

A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.

1981-01-01

397

The Shuttle Environment Workshop  

NASA Technical Reports Server (NTRS)

Results of shuttle environmental measurement programs were presented. The implications for plasma, infrared and ultraviolet experiments were discussed. The prelaunch environmental conditions, results of key environmental measurements made during the flights of STS 1, 2, 3, 4, and postlanding environmental conditions were covered.

Lehmann, J.; Tanner, S. G. (editor); Wilkerson, T. (editor)

1983-01-01

398

Mobile Christian - shuttle flight  

NASA Technical Reports Server (NTRS)

Erin Whittle, 14, (seated) and Brianna Johnson, 14, look on as Louis Stork, 13, attempts a simulated landing of a space shuttle at StenniSphere. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.

2009-01-01

399

Shuttle Blast-Off!  

ERIC Educational Resources Information Center

Two articles describe ideas for school library media centers interested in promoting space education. The first article explains how to construct an inexpensive simulation of a space shuttle and suggests associated activities. The second presents steps for identifying resources and organizing them into a resources file; relevant information

Gage, Marilyn Kay; And Others

1993-01-01

400

Aboard the Space Shuttle.  

ERIC Educational Resources Information Center

This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),

Steinberg, Florence S.

401

Shuttle S-band communications technical concepts  

NASA Astrophysics Data System (ADS)

Using the S-band communications system, shuttle orbiter can communicate directly with the Earth via the Ground Spaceflight Tracking and Data Network (GSTDN) or via the Tracking and Data Relay Satellite System (TDRSS). The S-band frequencies provide the primary links for direct Earth and TDRSS communications during all launch and entry/landing phases of shuttle missions. On orbit, S-band links are used when TDRSS Ku-band is not available, when conditions require orbiter attitudes unfavorable to Ku-band communications, or when the payload bay doors are closed. the S-band communications functional requirements, the orbiter hardware configuration, and the NASA S-band communications network are described. The requirements and implementation concepts which resulted in techniques for shuttle S-band hardware development discussed include: (1) digital voice delta modulation; (2) convolutional coding/Viterbi decoding; (3) critical modulation index for phase modulation using a Costas loop (phase-shift keying) receiver; (4) optimum digital data modulation parameters for continuous-wave frequency modulation; (5) intermodulation effects of subcarrier ranging and time-division multiplexing data channels; (6) radiofrequency coverage; and (7) despreading techniques under poor signal-to-noise conditions. Channel performance is reviewed.

Seyl, J. W.; Seibert, W. W.; Porter, J. A.; Eggers, D. S.; Novosad, S. W.; Vang, H. A.; Lenett, S. D.; Lewton, W. A.; Pawlowski, J. F.

1985-01-01

402

Integration and Test of Shuttle Small Payloads  

NASA Technical Reports Server (NTRS)

Recommended approaches for space shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of shuttle small payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration and interface testing; (7) Postflight operations. This paper is of special interest to those payload projects that have small budgets and few resources: that is, the truly faster, cheaper, better projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.

Wright, Michael R.

2003-01-01

403

Integration and Test for Small Shuttle Payloads  

NASA Technical Reports Server (NTRS)

Recommended approaches for shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of small shuttle payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of the NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration, and interface testing; and (7) Postflight operations. This paper is of special interest to those payload projects which have small budgets and few resources: That is, the truly 'faster, cheaper, better' projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.

Wright, Michael R.; Day, John H. (Technical Monitor)

2001-01-01

404

Lightning protection for shuttle propulsion elements  

NASA Technical Reports Server (NTRS)

The results of lightning protection analyses and tests are weighed against the present set of waivers to the NASA lightning protection specification. The significant analyses and tests are contrasted with the release of a new and more realistic lightning protection specification, in September 1990, that resulted in an inordinate number of waivers. A variety of lightning protection analyses and tests of the Shuttle propulsion elements, the Solid Rocket Booster, the External Tank, and the Space Shuttle Main Engine, were conducted. These tests range from the sensitivity of solid propellant during shipping to penetration of cryogenic tanks during flight. The Shuttle propulsion elements have the capability to survive certain levels of lightning strikes at certain times during transportation, launch site operations, and flight. Changes are being evaluated that may improve the odds of withstanding a major lightning strike. The Solid Rocket Booster is the most likely propulsion element to survive if systems tunnel bond straps are improved. Wiring improvements were already incorporated and major protection tests were conducted. The External Tank remains vulnerable to burn-through penetration of its skin. Proposed design improvements include the use of a composite nose cone and conductive or laminated thermal protection system coatings.

Goodloe, Carolyn C.; Giudici, Robert J.

1991-01-01

405

Maturing monitoring agents into model based diagnostic agents for ground processing of the Space Shuttle and future exploration  

Microsoft Academic Search

NASA Kennedy Space Center deploys rule-based software agents to help monitor the Space Shuttle ground telemetry data. The agents recognize predefined measurement patterns and issue notifications to Shuttle Engineers when various events occur. Hundreds of rules for thousands of measurements have been written. Currently, these agents possess only shallow knowledge. They do not lend themselves to more complex tasks, such

G. S. Semmel; L. Boloni

2006-01-01

406

Characterization of an Ice Adhesion Reduction Coating for the Space Shuttle Liquid Hydrogen and Liquid Oxygen Umbilical Systems  

Microsoft Academic Search

NASA has recently developed an ice adhesion reduction coating given the designation Shuttle Ice Liberation Coating (SILC). SILC provides reduced adhesion of ice to a variety of substrate materials commonly found on the Space Shuttle External Tank (ET) and Orbiter. ET thermal protection system (TPS) material substrates, Stepanfoam BX-265, North Carolina Foam Industries (NCFI) 24-124, and Polymer Development Laboratory (PDL)-1034,

Roberto J. Cano; Erik S. Weiser; Trent M. Smith; Steven Trigwell; Leslie A. Curtis; Douglas Drewry

2012-01-01

407

Mission Benefits Analysis of Logistics Reduction Technologies  

NASA Technical Reports Server (NTRS)

Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

Ewert, Michael K.; Broyan, James L.

2012-01-01

408

Mission Benefits Analysis of Logistics Reduction Technologies  

NASA Technical Reports Server (NTRS)

Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

Ewert, Michael K.; Broyan, James Lee, Jr.

2013-01-01

409

Logistics support economy and efficiency through consolidation and automation  

NASA Technical Reports Server (NTRS)

An integrated logistics support system, which would provide routine access to space and be cost-competitive as an operational space transportation system, was planned and implemented to support the NSTS program launch-on-time goal of 95 percent. A decision was made to centralize the Shuttle logistics functions in a modern facility that would provide office and training space and an efficient warehouse area. In this warehouse, the emphasis is on automation of the storage and retrieval function, while utilizing state-of-the-art warehousing and inventory management technology. This consolidation, together with the automation capabilities being provided, will allow for more effective utilization of personnel and improved responsiveness. In addition, this facility will be the prime support for the fully integrated logistics support of the operations era NSTS and reduce the program's management, procurement, transportation, and supply costs in the operations era.

Savage, G. R.; Fontana, C. J.; Custer, J. D.

1985-01-01

410

Launch Vehicle Demonstrator Using Shuttle Assets  

NASA Technical Reports Server (NTRS)

The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration and test platform for the Orion Program. Critical spacecraft systems, re-entry and recovery systems, and launch abort systems of Orion could also be demonstrated in early test flights of the launch vehicle demo. Furthermore, an early demonstrator of this type would provide a stop-gap for retaining critical human capital and infrastructure while affording the current emerging generation of young engineers opportunity to work with and capture lessons learned from existing STS program offices and personnel, who were integral in the design and development of the Space Shuttle before these resources are no longer available. The objective of this study is to define candidate launch vehicle demonstration concepts that are based on Space Shuttle assets and determine their performance capabilities and how these demonstration vehicles could evolve to a heavy lift capability to low earth orbit.

Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

2011-01-01

411

NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles  

NASA Technical Reports Server (NTRS)

With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better understanding of the mission assurance that MOD brings to commercial ventures to the ISS

Shull, Sarah A.; Peek, Kenneth E.

2011-01-01

412

NASA Ares I Crew Launch Vehicle Upper Stage Overview  

NASA Technical Reports Server (NTRS)

By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares I-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.

McArthur, J. Craig

2008-01-01

413

NASA applications and lessons learned in reliability engineering  

Microsoft Academic Search

Since the Shuttle Challenger accident in 1986, communities across National Aeronautic and Space Administration (NASA) have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the years to support the design, development, and operation of critical space flight hardware. Specifically, the

Fayssal M. Safie; Raymond P. Fuller

2012-01-01

414

NASA NewsNational Aeronautics and Space Administration  

E-print Network

Suit and Seat Space Shuttle program has replaced outdated inertial reels with new MA-16 reels whichNASA NewsNational Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 281/483-5111 NASA Johnson Space Center news releases and other information are available

415

National Aeronautics and Space Administration www.nasa.gov  

E-print Network

24, 1990, the space shuttle Discovery lifted off from Earth with the Hubble Space Telescope nestled of space. NASA's Hubble Space Telescope recently marked its 24th year in space and to celebrate its 25th of a large school bus. The Hubble Space Telescope is a project of international cooperation between NASA

416

Logistic Regression Diagnostics  

Microsoft Academic Search

A maximum likelihood fit of a logistic regression model (and other similar models) is extremely sensitive to outlying responses and extreme points in the design space. We develop diagnostic measures to aid the analyst in detecting such observations and in quantifying their effect on various aspects of the maximum likelihood fit. The elements of the fitting process which constitute the

Daryl Pregibon

1981-01-01

417

www.nasa.gov Fiscal Year  

E-print Network

achieving the challenging mission of space exploration, scientific discovery, and aeronautics research like to mention a few of our specific accomplishments. We had four successful Space Shuttle launches and Space Administration #12;i Message from the Administrator November 15, 2010 I am pleased to present NASA

418

www.nasa.gov Fiscal Year  

E-print Network

achieving the challenging mission of space exploration, scientific discovery, and aeronautics research like to mention a few of our specific accomplishments. We had four successful Space Shuttle launcheswww.nasa.gov Fiscal Year PERFORMANCE AND ACCOUNTABILITY REPORT 2010 National Aeronautics and Space

419

www.nasa.gov Fiscal Year  

E-print Network

toward achieving the challenging mission of space exploration, scientific discovery, and aeronautics Space Shuttle launches to the International Space Station (ISS) since last November, to complete itswww.nasa.gov Fiscal Year PERFORMANCE AND ACCOUNTABILITY REPORT 2010 National Aeronautics and Space

420

NASA Visualization of Remote Sensing Data  

NSDL National Science Digital Library

This collection of visualizations produced by the NASA Laboratory for Atmospheres includes still images, movies, and 3D/VR images. Viewers can select images of hurricanes and other weather phenomena, the Earth from space, fires, ash clouds, and a space shuttle launch. Links to other sources of imagery are also provided.

421

Silicone Contamination Camera for Developed for Shuttle Payloads  

NASA Technical Reports Server (NTRS)

On many shuttle missions, silicone contamination from unknown sources from within or external to the shuttle payload bay has been a chronic problem plaguing experiment payloads. There is currently a wide range of silicone usage on the shuttle. Silicones are used to coat the shuttle tiles to enhance their ability to shed rain, and over 100 kg of RTV 560 silicone is used to seal white tiles to the shuttle surfaces. Silicones are also used in electronic components, potting compounds, and thermal control blankets. Efforts to date to identify and eliminate the sources of silicone contamination have not been highly successful and have created much controversy. To identify the sources of silicone contamination on the space shuttle, the NASA Lewis Research Center developed a contamination camera. This specially designed pinhole camera utilizes low-Earth-orbit atomic oxygen to develop a picture that identifies sources of silicone contamination on shuttle-launched payloads. The volatile silicone species travel through the aperture of the pinhole camera, and since volatile silicone species lose their hydrocarbon functionalities under atomic oxygen attack, the silicone adheres to the substrate as SiO_x. This glassy deposit should be spatially arranged in the image of the sources of silicone contamination. To view the contamination image, one can use ultrasensitive thickness measurement techniques, such as scanning variable-angle ellipsometry, to map the surface topography of the camera's substrate. The demonstration of a functional contamination camera would resolve the controversial debate concerning the amount and location of contamination sources, would allow corrective actions to be taken, and would demonstrate a useful tool for contamination documentation on future shuttle payloads, with near negligible effect on cost and weight.

1996-01-01

422

Logistics Reduction and Repurposing Beyond Low Earth Orbit  

NASA Technical Reports Server (NTRS)

All human space missions, regardless of destination, require significant logistical mass and volume that is strongly proportional to mission duration. Anything that can be done to reduce initial mass and volume of supplies or reuse items that have been launched will be very valuable. Often, the logistical items require disposal and represent a trash burden. Logistics contributions to total mission architecture mass can be minimized by considering potential reuse using systems engineering analysis. In NASA's Advanced Exploration Systems "Logistics Reduction and Repurposing Project," various tasks will reduce the intrinsic mass of logistical packaging, enable reuse and repurposing of logistical packaging and carriers for other habitation, life support, crew health, and propulsion functions, and reduce or eliminate the nuisance aspects of trash at the same time. Repurposing reduces the trash burden and eliminates the need for hardware whose function can be provided by use of spent logistical items. However, these reuse functions need to be identified and built into future logical systems to enable them to effectively have a secondary function. These technologies and innovations will help future logistics systems to support multiple exploration missions much more efficiently.

Ewert, Michael K.; Broyan, James L., Jr.

2012-01-01

423

A Mathematical Model for Interplanetary Logistics Ms. Christine Taylor  

E-print Network

to sustain the exploration initiative. Using terrestrial logistics modeling tools that have been extended exploration of Mars thereafter.[1] The President has tasked NASA with the development of a sustainable space to mission cost. In order to develop a sustainable space transportation architecture it is critical

de Weck, Olivier L.

424

Modeling Interplanetary Logistics: A Mathematical Model for Mission Planning  

E-print Network

The President has tasked NASA with the development of a sustainable space transportation system that will enable to develop a sustainable space transportation architecture it is critical that interplanetary supply chainModeling Interplanetary Logistics: A Mathematical Model for Mission Planning Christine Taylor, Miao

de Weck, Olivier L.

425

Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Rear View  

NASA Technical Reports Server (NTRS)

Evening light begins to fade at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, as technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA 911) for the ferry flight back to the Kennedy Space Center, Fla., following its STS-44 flight 24 November-1 December 1991. Post-flight servicing of the orbiters, and the mating operation is carried out at Dryden at the Mate-Demate Device, the large gantry-like structure that hoists the spacecraft to various levels during post-spaceflight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary

1991-01-01

426

Shuttle in Mate-Demate Device being Loaded onto SCA-747  

NASA Technical Reports Server (NTRS)

At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with

1991-01-01

427

Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Side View  

NASA Technical Reports Server (NTRS)

Evening light begins to fade at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, as technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Fla., following its STS-44 flight 24 November-1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the

1991-01-01

428

Shuttle entry guidance revisited  

NASA Technical Reports Server (NTRS)

The Shuttle entry guidance concept is reviewed which is aimed at tracking a reference drag trajectory that leads to the specified range and velocity for the initiation of the terminal energy management phase. An approximate method of constructing the domain of attraction is proposed, and its validity is ascertained by simulation. An alternative guidance law yielding global exponential tracking in the absence of control saturation is derived using a feedback linearization method. It is noted that the alternative guidance law does not improve on the stability and performance of the current guidance law, for the operating domain and control capability of the Shuttle. It is suggested that the new guidance law with a larger operating domain and increased lift-to-drag capability would be superior.

Mease, Kenneth D.; Kremer, Jean-Paul

1992-01-01

429

Electron shuttles in biotechnology.  

PubMed

Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes. PMID:19833503

Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

2009-12-01

430

Aboard the Space Shuttle  

NASA Technical Reports Server (NTRS)

Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

Steinberg, F. S.

1980-01-01

431

Shuttle freezer conceptual design  

NASA Technical Reports Server (NTRS)

A conceptual design for a kit freezer for operation onboard shuttle was developed. The freezer features a self-contained unit which can be mounted in the orbiter crew compartment and is capable of storing food at launch and returning with medical samples. Packaging schemes were investigated to provide the optimum storage capacity with a minimum weight and volume penalty. Several types of refrigeration systems were evaluated to select one which would offer the most efficient performance and lowest hazard of safety to the crew. Detailed performance data on the selected, Stirling cycle principled refrigeration unit were developed to validate the feasibility of its application to this freezer. Thermal analyses were performed to determine the adequacy of the thermal insulation to maintain the desired storage temperature with the design cooling capacity. Stress analyses were made to insure the design structure integrity could be maintained over the shuttle flight regime. A proposed prototype freezer development plan is presented.

Proctor, B. W.; Russell, D. J.

1975-01-01

432

President and Mrs. Clinton watch launch of Space Shuttle Discovery  

NASA Technical Reports Server (NTRS)

Watching a successful launch of Space Shuttle Discovery from the roof of the Launch Control Center are (left to right) Astronaut Eileen Collins (in flight suit) with unidentified companions, NASA Administrator Daniel Goldin, Astronaut Robert Cabana, First Lady Hillary Rodham Clinton, and U.S. President Bill Clinton. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on mission STS-95. Collins will command the crew of STS-93, the first woman to hold that position. Cabana will command the crew of STS-88, the first Space Shuttle mission to carry hardware to space for the assembly of the International Space Station, targeted for liftoff on Dec. 3.

1998-01-01

433

President and Mrs. Clinton watch launch of Space Shuttle Discovery  

NASA Technical Reports Server (NTRS)

Watching a successful launch of Space Shuttle Discovery from the roof of the Launch Control Center are (left to right) U.S. President Bill Clinton, First Lady Hillary Rodham Clinton, Astronaut Robert Cabana and NASA Administrator Daniel Goldin. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on mission STS-95. Cabana will command the crew of STS-88, the first Space Shuttle mission to carry hardware to space for the assembly of the International Space Station, targeted for liftoff on Dec. 3.

1998-01-01

434

Space Shuttle Probabilistic Risk Assessment (SPRA) Iteration 3.2  

NASA Technical Reports Server (NTRS)

The Shuttle is a very reliable vehicle in comparison with other launch systems. Much of the risk posed by Shuttle operations is related to fundamental aspects of the spacecraft design and the environments in which it operates. It is unlikely that significant design improvements can be implemented to address these risks prior to the end of the Shuttle program. The model will continue to be used to identify possible emerging risk drivers and allow management to make risk-informed decisions on future missions. Potential uses of the SPRA in the future include: - Calculate risk impact of various mission contingencies (e.g. late inspection, crew rescue, etc.). - Assessing the risk impact of various trade studies (e.g. flow control valves). - Support risk analysis on mission specific events, such as in flight anomalies. - Serve as a guiding star and data source for future NASA programs.

Boyer, Roger L.

2010-01-01

435

Space shuttle lightning protection  

NASA Technical Reports Server (NTRS)

The technology for lightning protection of even the most advanced spacecraft is available and can be applied through cost-effective hardware designs and design-verification techniques. In this paper, the evolution of the Space Shuttle Lightning Protection Program is discussed, including the general types of protection, testing, and anlayses being performed to assess the lightning-transient-damage susceptibility of solid-state electronics.

Suiter, D. L.; Gadbois, R. D.; Blount, R. L.

1979-01-01

436

An empirical study of the relationship between logistics network level and logistics effect  

Microsoft Academic Search

Repeated infrastructure construction and decentralized logistics resources problems nowadays in domestic logistics industry had severe influences on social logistics efficiency, thus hindered the development of modern logistics industry. According to the theory of logistics network, logistics network is the best way for improving logistics efficiency. This paper first puts forward a new concept, logistics effect which is similar to logistics

Yin Jing; Ding Jingzhi; Ju Songdong; Xu Jie; Hui Kai

2010-01-01

437

Operations analysis (study 2.6). Volume 4: Computer specification; logistics of orbiting vehicle servicing (LOVES)  

NASA Technical Reports Server (NTRS)

The logistics of orbital vehicle servicing computer specifications was developed and a number of alternatives to improve utilization of the space shuttle and the tug were investigated. Preliminary results indicate that space servicing offers a potential for reducing future operational and program costs over ground refurbishment of satellites. A computer code which could be developed to simulate space servicing is presented.

1973-01-01

438

Space Shuttle Operations and Infrastructure: A Systems Analysis of Design Root Causes and Effects  

NASA Technical Reports Server (NTRS)

This NASA Technical Publication explores and documents the nature of Space Shuttle operations and its supporting infrastructure and addresses fundamental questions often asked of the Space Shuttle program why does it take so long to turnaround the Space Shuttle for flight and why does it cost so much? Further, the report provides an overview of the cause-and effect relationships between generic flight and ground system design characteristics and resulting operations by using actual cumulative maintenance task times as a relative measure of direct work content. In addition, this NASA TP provides an overview of how the Space Shuttle program's operational infrastructure extends and accumulates from these design characteristics. Finally, and most important, the report derives a set of generic needs from which designers can revolutionize space travel from the inside out by developing and maturing more operable and supportable systems.

McCleskey, Carey M.

2005-01-01

439

NASA trend analysis procedures  

NASA Technical Reports Server (NTRS)

This publication is primarily intended for use by NASA personnel engaged in managing or implementing trend analysis programs. 'Trend analysis' refers to the observation of current activity in the context of the past in order to infer the expected level of future activity. NASA trend analysis was divided into 5 categories: problem, performance, supportability, programmatic, and reliability. Problem trend analysis uncovers multiple occurrences of historical hardware or software problems or failures in order to focus future corrective action. Performance trend analysis observes changing levels of real-time or historical flight vehicle performance parameters such as temperatures, pressures, and flow rates as compared to specification or 'safe' limits. Supportability trend analysis assesses the adequacy of the spaceflight logistics system; example indicators are repair-turn-around time and parts stockage levels. Programmatic trend analysis uses quantitative indicators to evaluate the 'health' of NASA programs of all types. Finally, reliability trend analysis attempts to evaluate the growth of system reliability based on a decreasing rate of occurrence of hardware problems over time. Procedures for conducting all five types of trend analysis are provided in this publication, prepared through the joint efforts of the NASA Trend Analysis Working Group.

1993-01-01

440

Launching a dream: A teachers guide to a simulated space shuttle mission  

NASA Technical Reports Server (NTRS)

Two simulated shuttle missions cosponsored by the NASA Lewis Research Center and Cleveland, Ohio, area schools are highlighted in this manual for teachers. A simulated space shuttle mission is an opportunity for students of all ages to plan, train for, and conduct a shuttle mission. Some students are selected to be astronauts, flight planners, and flight controllers. Other students build and test the experiments that the astronauts will conduct. Some set up mission control, while others design the mission patch. Students also serve as security officers or carry out public relations activities. For the simulated shuttle mission, school buses or recreation vehicles are converted to represent shuttle orbiters. All aspects of a shuttle mission are included. During preflight activities the shuttle is prepared, and experiments and a flight plan are made ready for launch day. The flight itself includes lifting off, conducting experiments on orbit, and rendezvousing with the crew from the sister school. After landing back at the home school, the student astronauts are debriefed and hold press conferences. The astronauts celebrate their successful missions with their fellow students at school and with the community at an evening postflight recognition program. To date, approximately 6,000 students have been involved in simulated shuttle missions with the Lewis Research Center. A list of participating schools, along with the names of their space shuttles, is included. Educations outcomes and other positive effects for the students are described.

1989-01-01

441

Using telemetry to measure equipment usable life on the NASA Orion spacecraft  

Microsoft Academic Search

The NASA Orion manned spacecraft will replace the NASA Space Shuttle for getting astronauts to low earth orbit, moon and Mars and returned to the earth safely. It also serves as a crew escape vehicle at the ISS to increase astronaut safety The NASA integrated, vehicle health management (IVHM) program has been adopted by many segments of the aerospace industry.

Len Losik

2012-01-01

442

NASA marked a historic moment in the life of the nation's largest  

E-print Network

NASA marked a historic moment in the life of the nation's largest rocket engine test complex the end of the Space Shuttle Program in 2010. Volume 1 Issue 10 www.nasa.gov/centers/stennis October 2006), Stephanie Wilson, Lisa Nowak and Piers Sellers meet with employees at NASA Stennis Space Center on Sept. 25

443

Maintaining space shuttle safety within an environment of change 1 1 Paper IAA 96-6.1.01 presented at the 47th International Astronautical Congress, October 711, 1996, Beijing, China  

Microsoft Academic Search

In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle

Michael A Greenfield

1999-01-01

444

STS-113 visitors watch the Space Shuttle Endeavour launch  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, FLA. - Among the visitors watching the launch of Space Shuttle Endeavour on mission STS-113 are NASA Administrator Sean O'Keefe (top, center) and Glen Mahone, associate administrator for public affairs, NASA (left of O'Keefe). Liftoff occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey.

2002-01-01

445

Close-up of Shuttle tire after LSRA test  

NASA Technical Reports Server (NTRS)

One of the final tests of the CV-990 Landing Systems Research Aircraft (LSRA) in August, 1995 at NASA's Dryden Flight Research Center, Edwards, California, resulted in the destruction of the wheel, following a fire caused by a mixture of heat, aluminum particles, and rubber. Following successful tests of tire wear at Edwards and the Kennedy Space Center, Fla., this series of roll-on-rim tests determined the failure modes of wheels for the space shuttle. In one test, the aluminum wheel locked in position and was ground to within four inches of the axle before the test concluded. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy. Project engineer Christopher J. Nagy said, 'NASA pilots Gordon Fullerton and Terry Rager did a superb job of flying the aircraft in many difficult test situations, at speeds higher than the aircraft was intended to land, without once losing a single test flight.'

1995-01-01

446

Close-up of Shuttle tire after LSRA test  

NASA Technical Reports Server (NTRS)

One of the final tests of the CV-990 Landing Systems Research Aircraft (LSRA) in August, 1995 at NASA's Dryden Flight Research Center, Edwards, California, resulted in the destruction of the wheel, following a fire caused by a mixture of heat, aluminum particles, and rubber. Following successful tests of tire wear at Edwards and the Kennedy Space Center, Fl., this series of roll-on-rim tests determined the failure modes ofwheels for the space shuttle. The aluminum wheel locked in postion and was ground to within four inches of the axle before the test concluded. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy. Project engineer Christopher J. Nagy said, 'NASA pilots Gordon Fullerton and Terry Rager did a superb job of flying the aircraft in many difficult test situations, at speeds higher than the aircraft was intended to land, without once losing a single flight.'

1995-01-01

447

Logistic Model Trees + Niels Landwehr  

E-print Network

Logistic Model Trees + Niels Landwehr Institute for Computer Science, University of Freiburg for classification problems, using logistic regression instead of linear regression. We use a stagewise fitting process to construct the logistic regression models that can select relevant attributes in the data

Frank, Eibe

448

Logistic Model Trees Niels Landwehr  

E-print Network

Logistic Model Trees Niels Landwehr Institute for Computer Science, University of Freiburg for classification problems, using logistic regression instead of linear regression. We use a stagewise fitting process to construct the logistic regression models that can select relevant attributes in the data

Frank, Eibe

449

Penalized Logistic Regression Stefanie Scheid  

E-print Network

Penalized Logistic Regression Stefanie Scheid Max-Planck-Institute for Molecular Genetics, HC (2001): Classification of Microarray Data with Penalized Logistic Regression, Proceedings of SPIE volume 4266: progress in biomedical optics and imaging, 2, 187-198. Stefanie Scheid - Penalized Logistic

Spang, Rainer

450

STS-76 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-76 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-sixth flight of the Space Shuttle Program, the fifty-first flight since the return-to-flight, and the sixteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-77; three SSME's that were designated as serial numbers 2035, 2109, and 2019 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-079. The RSRM's, designated RSRM-46, were installed in each SRB and the individual RSRM's were designated as 360TO46A for the left SRB, and 360TO46B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and transfer one U.S. Astronaut to the Mir. A single Spacehab module carried science equipment and hardware, Risk Mitigation Experiments (RME's), and Russian Logistics in support of the Phase 1 Program requirements. In addition, the European Space Agency (ESA) Biorack operations were performed. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT) and mission elapsed time (MET).

Fricke, Robert W., Jr.

1996-01-01

451

Representative shuttle evaporative heat sink  

NASA Technical Reports Server (NTRS)

The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

Hixon, C. W.

1978-01-01

452

NASA Network  

NASA Technical Reports Server (NTRS)

The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

Carter, David; Wetzel, Scott

2000-01-01

453

Shuttle Discovery Landing at Palmdale, California, Maintenance Facility  

NASA Technical Reports Server (NTRS)

NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dr

1995-01-01

454

NASA Images  

NSDL National Science Digital Library

NASA Images was created through a partnership between NASA and the Internet Archive, a non-profit digital library based in San Francisco, to bring public access to NASA's image, video, and audio collections in a single, searchable resource. The site contains everything from classic photos to educational programming and HD video, and is growing all the time as its creators continue to gain both new and archived media from all of NASA's centers. This effort aimes to promote education and facilitate scholarship in math and the sciences at all levels, and to build general interest and excitement around space exploration, aeronautics, and astronomy.

2009-01-01

455

Innovation @ NASA  

NASA Technical Reports Server (NTRS)

This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

Roman, Juan A.

2014-01-01

456

On the wings of a dream: The Space Shuttle  

NASA Technical Reports Server (NTRS)

Described are the organization and some of the interests and missions of NASA, the Space Transportation System, the Space Shuttle orbiter Enterprise, astronaut training and clothing, being launched into space, living and working in weightlessness, extravehicular activity, and the return from space to Earth. The various aspects of living in space are treated in considerable detail. This includes how the astronauts prepare food, how they eat and drink, how they sleep, exercise, change clothes and handle personal hygiene when in space.

1988-01-01

457

TVC actuator model. [for the space shuttle main engine  

NASA Technical Reports Server (NTRS)

A prototype Space Shuttle Main Engine (SSME) Thrust Vector Control (TVC) Actuator analog model was successfully completed. The prototype, mounted on five printed circuit (PC) boards, was delivered to NASA, checked out and tested using a modular replacement technique on an analog computer. In all cases, the prototype model performed within the recording techniques of the analog computer which is well within the tolerances of the specifications.

Baslock, R. W.

1977-01-01

458

Closeup view of a Space Shuttle Main Engine (SSME) installed ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Close-up view of a Space Shuttle Main Engine (SSME) installed in position number one on the Orbiter Discovery. A ground-support mobile platform is in place below the engine to assist in technicians with the installation of the engine. This Photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

459

The Shuttle Potential and return electron experiment (SPREE)  

Microsoft Academic Search

SummaryThe Shuttle Potential and Return Electron Experiment (SPREE) was designed and fabricated for flight as part of the joint NASA\\/Agenzia\\u000a Spaziale Italiana Tethered Satellite System (TSS-1) mission. The SPREE is a complex instrument package designed to measure\\u000a ion and electron particle flux and wave-particle interactions. The SPREE flight hardware consists of two multiangular electrostatic\\u000a analyzer units, two rotary tables, a

M. R. Oberhardt; D. A. Hardy; W. E. Slutter; J. O. McGarity; D. J. Sperry; A. W. Everest; A. C. Huber; J. A. Pantazis; M. P. Gough

1994-01-01

460

The SPAce Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission  

NASA Technical Reports Server (NTRS)

For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

Kavaya, Michael J.; Emmitt, G. David

1998-01-01