Note: This page contains sample records for the topic nasa shuttle logistics from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Space Shuttle operational logistics plan  

NASA Technical Reports Server (NTRS)

The Kennedy Space Center plan for logistics to support Space Shuttle Operations and to establish the related policies, requirements, and responsibilities are described. The Directorate of Shuttle Management and Operations logistics responsibilities required by the Kennedy Organizational Manual, and the self-sufficiency contracting concept are implemented. The Space Shuttle Program Level 1 and Level 2 logistics policies and requirements applicable to KSC that are presented in HQ NASA and Johnson Space Center directives are also implemented.

Botts, J. W.

1983-01-01

2

A Probabilistic Tool that Aids Logistics Engineers in the Establishment of High Confidence Repair Need-Dates at the NASA Shuttle Logistics Depot  

NASA Technical Reports Server (NTRS)

The NASA Shuttle Logistics Depot (NSLD) is tasked with the responsibility for repair and manufacture of Line Replaceable Unit (LRU) hardware and components to support the Space Shuttle Orbiter. Due to shrinking budgets, cost effective repair of LRU's becomes a primary objective. To achieve this objective, is imperative that resources be assigned to those LRU's which have the greatest expectation of being needed as a spare. Forecasting the times at which spares are needed requires consideration of many significant factors including: failure rate, flight rate, spares availability, and desired level of support, among others. This paper summarizes the results of the research and development work that has been accomplished in producing an automated tool that assists in the assignment of effective repair start-times for LRU's at the NSLD. This system, called the Repair Start-time Assessment System (RSAS), uses probabilistic modeling technology to calculate a need date for a repair that considers the current repair pipeline status, as well as, serviceable spares and projections of future demands. The output from the system is a date for beginning the repair that has significantly greater confidence (in the sense that a desired probability of support is ensured) than times produced using other techniques. Since an important output of RSAS is the longest repair turn-around time that will ensure a desired probability of support, RSAS has the potential for being applied to operations at any repair depot where spares are on-hand and repair start-times are of interest. In addition, RSAS incorporates tenants of Just-in-Time (JIT) techniques in that the latest repair start-time (i.e., the latest time at which repair resources must be committed) may be calculated for every failed unit This could reduce the spares inventory for certain items, without significantly increasing the risk of unsatisfied demand.

Bullington, J. V.; Winkler, J. C.; Linton, D. G.; Khajenoori, S.

1995-01-01

3

NASA revises shuttle schedule  

NASA Astrophysics Data System (ADS)

The new schedule for Space Shuttle missions and expendable launch vehicles (ELV's) calls for a 7-month delay in sending up the Hubble Space Telescope. NASA was forced to put off launching the telescope until February 1990 to keep the Magellan and Galileo missions within their narrow launch windows. The first post-Challenger shuttle launch is now scheduled for late this month. Discovery's most recent delays were due to a hydrogen leak discovered July 29 that has still not been corrected and an engine valve malfunction during an August 4 test fire.

Wainger, Lisa A.

4

NASA space shuttle lightweight seat  

NASA Technical Reports Server (NTRS)

The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

1996-01-01

5

NASA's Original Shuttle Carrier Departs Dryden  

NASA Video Gallery

NASA's Space Shuttle Carrier Aircraft (SCA) No. 905, departed NASA's Dryden Flight Research Center on Oct. 24, 2012 for the final time, ending a 38-year association with the NASA field center at Ed...

6

NASA Space Exploration Logistics Workshop Proceedings  

NASA Technical Reports Server (NTRS)

As NASA has embarked on a new Vision for Space Exploration, there is new energy and focus around the area of manned space exploration. These activities encompass the design of new vehicles such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV) and the identification of commercial opportunities for space transportation services, as well as continued operations of the Space Shuttle and the International Space Station. Reaching the Moon and eventually Mars with a mix of both robotic and human explorers for short term missions is a formidable challenge in itself. How to achieve this in a safe, efficient and long-term sustainable way is yet another question. The challenge is not only one of vehicle design, launch, and operations but also one of space logistics. Oftentimes, logistical issues are not given enough consideration upfront, in relation to the large share of operating budgets they consume. In this context, a group of 54 experts in space logistics met for a two-day workshop to discuss the following key questions: 1. What is the current state-of the art in space logistics, in terms of architectures, concepts, technologies as well as enabling processes? 2. What are the main challenges for space logistics for future human exploration of the Moon and Mars, at the intersection of engineering and space operations? 3. What lessons can be drawn from past successes and failures in human space flight logistics? 4. What lessons and connections do we see from terrestrial analogies as well as activities in other areas, such as U.S. military logistics? 5. What key advances are required to enable long-term success in the context of a future interplanetary supply chain? These proceedings summarize the outcomes of the workshop, reference particular presentations, panels and breakout sessions, and record specific observations that should help guide future efforts.

deWeek, Oliver; Evans, William A.; Parrish, Joe; James, Sarah

2006-01-01

7

NASA focusing beyond space shuttle era  

NASA Astrophysics Data System (ADS)

Although the NASA space shuttle Atlantis is set to close out the space shuttle era in July with the STS-135 mission, this final shuttle mission will not mark the end of America's leadership in human spaceflight, NASA administrator Charles Bolden said in a 1 July speech at the National Press Club in Washington, D. C. “When I hear people say, or listen to media reports [that indicate], that the final shuttle flight marks the end of U.S. human spaceflight, I have to say, ‘these folks must be living on another planet.’ We are not ending human spaceflight; we are recommitting ourselves to it and taking the necessary and difficult steps today to ensure America's preeminence in human space exploration for years to come.”

Showstack, Randy

2011-07-01

8

NESTA: NASA Engineering Shuttle Telemetry Agent  

NASA Technical Reports Server (NTRS)

The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed an agent based tool to monitor the Space Shuttle's ground processing telemetry stream. The application, the NASA Engineering Shuttle Telemetry Agent, increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when predefined criteria have been met. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules of this spaceport domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This paper discusses the rule-based telemetry agent used for Space Shuttle ground processing and explains the problem domain, development of the agent software, benefits of AT technology, and deployment and sustaining engineering of the product.

Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Smith, Kevin E.; Boloni, Ladislau

2005-01-01

9

Holography on the NASA Space Shuttle  

NASA Technical Reports Server (NTRS)

The SL-3 flight on the Space Shuttle will carry a 25 mW He-Ne laser holographic recorder for recording the solution growth of triglycine sulfate (TGS) crystals under low-zero gravity conditions. Three hundred holograms (two orthogonal views) will be taken (on SO-253 film) of each growth experiment. Processing and analysis (i.e., reconstructed imagery, holographic schlieren, reverse reference beam microscopy, and stored beam interferometry) of the holographic records will be done at NASA/MSFC. Other uses of the recorder on the Shuttle have been proposed.

Wuerker, R. F.; Heflinger, L. O.; Flannery, J. V.; Kassel, A.; Rollauer, A. M.

1980-01-01

10

NASA newsletters for the Weber Student Shuttle Involvement Project  

NASA Technical Reports Server (NTRS)

Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix.

Morey-Holton, E. R.; Sebesta, P. D.; Ladwig, A. M.; Jackson, J. T.; Knott, W. M., III

1988-01-01

11

Analysis of the NASA Shuttle Hypervelocity Impact Database.  

National Technical Information Service (NTIS)

A statistical analysis of the NASA Space Shuttle Hypervelocity Impact Database to find correlations between meteoroid and orbital debris (M/OD) impacts on the shuttle orbiter fleet and specific mission parameters; Inclination, Altitude, Duration and Year,...

M. S. Stucky

2003-01-01

12

NASA taps teachers' group for shuttle student project  

Microsoft Academic Search

NASA has selected the National Science Teachers Association in Washington, D.C, for negotiation for a contract to manage the Shuttle Student Involvement Project.The project is a nationwide competition to be conducted annually among secondary students for scientific and engineering experiments to be performed on a `space available' basis aboard the shuttle. The space shuttle is expected to be operational in

Peter M. Bell

1980-01-01

13

NASA Contingency Shuttle Crew Support (CSCS) Medical Operations  

NASA Technical Reports Server (NTRS)

The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

Adams, Adrien

2010-01-01

14

SILENCING NASA'S SPACE SHUTTLE CRAWLER TRANSPORTER  

Microsoft Academic Search

The crawler transporter (CT) is the world's second largest known tracked vehicle, weighing 6 million pounds with a length of 131 feet and a width of 113 feet. The Kennedy Space Center (KSC) has two CTs that were designed and built for the Apollo program in the 1960's, maintained and retrofitted for use in the Space Shuttle program. As a

R. MacDonald; R. Margasahayam

15

Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing  

NASA Technical Reports Server (NTRS)

The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.

Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau

2005-01-01

16

NASA Advanced Explorations Systems: Concepts for Logistics to Living  

NASA Technical Reports Server (NTRS)

The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project strives to enable a largely mission-independent cradle-to-grave-to-cradle approach to minimize logistics contributions to total mission architecture mass. The goals are to engineer logistics materials, common crew consumables, and container configurations to meet the following five basic goals: 1. Minimize intrinsic logistics mass and improve ground logistics flexibility. 2. Allow logistics components to be directly repurposed for on-orbit non-logistics functions (e.g., crew cabin outfitting) thereby indirectly reducing mass/volume. 3. Compact and process logistics that have not been directly repurposed to generate useful on-orbit components and/or compounds (e.g., radiation shielding, propellant, other usable chemical constituents). 4. Enable long-term stable storage and disposal of logistics end products that cannot be reused or repurposed (e.g., compaction for volume reduction, odor control, and maintenance of crew cabin hygienic conditions). 5. Allow vehicles in different mission phases to share logistics resources. This paper addresses the work being done to meet the second goal, the direct repurposing of logistics components to meet other on-orbit needs, through a strategy termed Logistics to Living (L2L). L2L has several areas but can be defined as repurposing or converting logistical items (bags, containers, foam, components, etc.) into useful crew items or life support augmentation on-orbit after they have provided their primary logistics function. The intent is that by repurposing items, dedicated crew items do not have to be launched and overall launch mass is decreased. For non-LEO missions, the vehicle interior volume will be relatively fixed so L2L will enable this volume to be used more effectively through reuse and rearrangement of logistical components. Past work in the area of L2L has already conceptually developed several potential technologies [Howe, Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

2012-01-01

17

Understanding IV & V in a safety critical and complex evolutionary environment: the NASA space shuttle program  

Microsoft Academic Search

The National Aeronautics and Space Administration is an internationally recognized leader in space science and exploration. NASA recognizes the inherent risk associated with space exploration; however, NASA makes every reasonable effort to minimize that risk. To that end for the Space Shuttle program NASA instituted a software independent verification and validation (IV&V) process in 1988 to ensure that the Shuttle

Marvin V. Zelkowitz; Ioana Rus

2001-01-01

18

Software Architecture of the NASA Shuttle Ground Operations Simulator - SGOS  

NASA Technical Reports Server (NTRS)

The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. It is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,000 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.

Cook, Robert P.; Lostroscio, Charles T.

2005-01-01

19

Simulation of Range Safety for the NASA Space Shuttle  

NASA Technical Reports Server (NTRS)

This paper describes a simulation environment that seamlessly combines a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this simulation environment represent the different systems that must interact in order to determine the Expectation of casualties (E(sub c)) resulting from the toxic effects of the gas dispersion that occurs after a disaster affecting a Space Shuttle within 120 seconds of lift-off. The utilization of the Space Shuttle reliability models, trajectory models, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system are all integrated to create this environment. This simulation environment can help safety managers estimate the population at risk in order to plan evacuation, make sheltering decisions, determine the resources required to provide aid and comfort, and mitigate damages in case of a disaster. This simulation environment may also be modified and used for the landing phase of a space vehicle but will not be discussed in this paper.

Rabelo, Luis; Sepulveda, Jose; Compton, Jeppie; Turner, Robert

2005-01-01

20

Systems Analysis in Support of the NASA Fuel Cell Upgrade Program for the Space Shuttle Orbiter  

NASA Technical Reports Server (NTRS)

In early 1996 as part of NASA's overall efforts to improve space shuttle operations, NASA undertook an internal assessment of the shuttle to identify subsystems in the greatest need of upgrading. The criteria used to rank the candidate subsystems were safety improvement, reduction in acquisition and operational costs, improvement in fleet supportability, improvement in mission effectiveness, implementation risk, and commonality with future NASA missions. On the basis of the preliminary results of the NASA assessment, the Fuel Cell Power Plant (FCP) for the shuttle orbiter was among those subsystems selected for further consideration.

Hoberecht, Mark A.

1998-01-01

21

Techniques and Tools of NASA's Space Shuttle Columbia Accident Investigation  

NASA Technical Reports Server (NTRS)

The Space Shuttle Columbia accident investigation was a fusion of many disciplines into a single effort. From the recovery and reconstruction of the debris, Figure 1, to the analysis, both destructive and nondestructive, of chemical and metallurgical samples, Figure 2, a multitude of analytical techniques and tools were employed. Destructive and non-destructive testing were utilized in tandem to determine if a breach in the left wing of the Orbiter had occurred, and if so, the path of the resultant high temperature plasma flow. Nondestructive analysis included topometric scanning, laser mapping, and real-time radiography. These techniques were useful in constructing a three dimensional virtual representation of the reconstruction project, specifically the left wing leading edge reinforced carbon/carbon heat protectant panels. Similarly, they were beneficial in determining where sampling should be performed on the debris. Analytic testing included such techniques as Energy Dispersive Electron Microprobe Analysis (EMPA), Electron Spectroscopy Chemical Analysis (ESCA), and X-Ray dot mapping; these techniques related the characteristics of intermetallics deposited on the leading edge of the left wing adjacent to the location of a suspected plasma breach during reentry. The methods and results of the various analyses, along with their implications into the accident, are discussed, along with the findings and recommendations of the Columbia Accident Investigation Board. Likewise, NASA's Return To Flight efforts are highlighted.

McDanels, Steve J.

2005-01-01

22

Space Shuttle Accident: NASA's National Aeronautics and Space Administration's) Actions to Address the Presidential Commission Report.  

National Technical Information Service (NTIS)

The report contains a review of National Aeronautics and Space Administration (NASA) actions to address the recommendations presented in the Report of the Presidential Commission on the Space Shuttle Challenger Accident, dated June 6, 1986. It presents in...

1987-01-01

23

Neutron Diffraction Characterization of Residual Strain in Welded Inconel 718 for NASA Space Shuttle Flow Liners  

Microsoft Academic Search

This work quantitatively assesses residual strains and stresses associated with the weld repair process used to repair cracks on NASA's space shuttle flow liners. The coupons used in this investigation were made of the same INCONEL 718 alloy used for the flow liners. They were subjected to identical welding and certification procedures that were carried out on the space shuttle.

C. R. Rathod; V. Livescu; B. Clausen; M. A. M. Bourke; W. U. Notardonato; M. Femminineo; R. Vaidyanathan

2004-01-01

24

The Space Shuttle Decision: NASA's Search for a Reusable Space Vehicle  

NASA Technical Reports Server (NTRS)

This significant new study of the decision to build the Space Shuttle explains the Shuttle's origins and early development. In addition to internal NASA discussions, this work details the debates in the late 1960s and early 1970s among policymakers in Congress, the Air Force, and the Office of Management and Budget over the roles and technical designs of the Shuttle. Examining the interplay of these organizations with sometimes conflicting goals, the author not only explains how the world's premier space launch vehicle came into being, but also how politics can interact with science, technology, national security, and economics in national government. The weighty policy decision to build the Shuttle represents the first component of the broader story: future NASA volumes will cover the Shuttle's development and operational histories.

Heppenheimer, T. A.

1999-01-01

25

Research Pressure Instrumentation for NASA Space Shuttle Main Engine.  

National Technical Information Service (NTIS)

The development of prototype pressure transducers which are targeted to meet the Space Shuttle Main Engine SSME performance design goals is discussed. The fabrication, testing and delivery of 10 prototype units is examined. Silicon piezoresistive strain s...

P. J. Anderson P. Nussbaum G. Gustafson

1984-01-01

26

The Space Shuttle Endeavour receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavour receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, May 1, 2001. Once servicing was complete, one of NASA's two 747 Shuttle Carrier Aircraft, No. 905, was readied to ferry Endeavour back to the Kennedy Space Center, FL.

2001-01-01

27

An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education  

NASA Astrophysics Data System (ADS)

This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

Lulla, Kamlesh

2012-07-01

28

NASA's New Approach for Evaluating Risk Reduction Due to Space Shuttle Upgrades  

NASA Technical Reports Server (NTRS)

As part of NASA's intensive effort to incorporate quantitative risk assessment (QRA) tools in the Agency's decision-making process concerning Space Shuttle risk, NASA has developed a powerful risk assessment tool called the Quantitative Risk Assessment System (QRAS). The QRAS is a tool designed to estimate Space Shuttle risk and evaluate Space Shuttle upgrades. This paper presents an overview of the QRAS with focus on its application for evaluating the risk reduction due to proposed Space Shuttle upgrades. The application includes a case study from the Space Shuttle main engine (SSME). The QRAS overview section of the paper includes the QRAS development process, the technical approach to model development, the QRA quantification methods and techniques, and observations concerning the complex modeling involved in QRAS. The application section of the paper describes a practical case study using QRAS models for evaluating critical Space Shuttle Program upgrades, specifically a proposed SSME nozzle upgrade. This paper presents the method for evaluating the proposed upgrade by comparing the current nozzle (old design with well-established probabilistic models) to the channel wall nozzle (new design at the preliminary design level).

Safie, Fayssal M.; Belyeu, Rebecca L.

2000-01-01

29

NASA payload data book: Payload analysis for space shuttle applications, volume 2  

NASA Technical Reports Server (NTRS)

Data describing the individual NASA payloads for the space shuttle are presented. The document represents a complete issue of the original payload data book. The subjects discussed are: (1) astronomy, (2) space physics, (3) planetary exploration, (4) earth observations (earth and ocean physics), (5) communications and navigation, (6) life sciences, (7) international rendezvous and docking, and (8) lunar exploration.

1972-01-01

30

Ground Support For Space Shuttle Earth Observations By The Nasa Environment Remote Sensing Analysis Facility (ersaf)  

Microsoft Academic Search

The following paper describes the functions and capabilities of the NASA Environment Remote Sensing Analysis Facility (ERSAF) located at the Johnson Space Center. ERSAF was created to provide dedicated support to Earth observation activities and Earth-looking payloads conducted aboard the Space Shuttle. This support promotes the value of merging environmental satellite imagery with high resolution film products and digital imagery

M. A. Chambers; P. A. Jaklitch; D. R. Helms

1992-01-01

31

The NASA Life Sciences experiment program for Shuttle/Spacelab  

NASA Technical Reports Server (NTRS)

The Life Sciences experiment program for the Shuttle/Spacelab has basically two scientific objectives. The first objective is related to an understanding and interpretation of the medical data from Skylab. The second objective is concerned with a utilization of the space environment, notably the very low g field, as an experimental variable in a broad range of fundamental studies. The program considered will use the pressurized module, almost exclusively, and will aim toward the greatest investigator participation in flight that is possible. Facilities must be provided to support such requirements as tissue biopses, blood, urine and tissue collections, and microbial and plant manipulations.

Winter, D.

1978-01-01

32

Research pressure instrumentation for NASA space shuttle main engine  

NASA Technical Reports Server (NTRS)

The breadboard feasibility model of a silicon piezoresistive pressure transducer suitable for space shuttle main engine (SSME) applications was demonstrated. The development of pressure instrumentation for the SSME was examined. The objective is to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. Effective utilization of the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors for reliability, accuracy and ease of manufacture is analyzed. Integration of multiple functions on a single chip is the key attribute of the technology.

Anderson, P. J.; Nussbaum, P.; Gustafson, G.

1985-01-01

33

From Ship to Shuttle: NASA Orbiter Naming Program, September 1988 - May 1989  

NASA Technical Reports Server (NTRS)

By congressional action in 1987, the National Aeronautics and Space Administration (NASA) was authorized to provide an opportunity for American school students to name the new Space Shuttle orbiter being built to replace the Challenger. The Council of Chief State School Officers (CCSSO), an education organization representing the chief education officials of the nation, was asked by NASA to assist in the development and administration of this exciting and important educational activity. A selection of interdisciplinary activities related to the Space Shuttle that were designed by students for the NASA Orbiter-Naming Program are presented. The national winner's project is first followed by other projects listed in alphabetical order by state, and a bibliography compiled from suggestions by the state-level winning teams.

1991-01-01

34

Pricing of NASA Space Shuttle transportation system cargo  

NASA Technical Reports Server (NTRS)

A two-part pricing policy is investigated as the most feasible method of pricing the transportation services to be provided by NASA's SSTS. Engineering cost estimates and a deterministic operating cost model generate a data base and develop a procedure for pricing the services of the SSTS. It is expected that the SSTS will have a monopoly on space material processing in areas of crystal growth, glass processing, metallurgical space applications, and biomedical processes using electrophoresis which will require efficient pricing. Pricing problems, the SSTS operating costs based on orbit elevation, number of launch sites, and number of flights, capital costs of the SSTS, research and development costs, allocation of joint transportation costs of the SSTS to a particular space processing activity, and rates for the SSTS are discussed. It is concluded that joint costs for commercial cargoes carried in the SSTS can be most usefully handled by making cost allocations based on proportionate capacity utilization.

Hale, C. W.

1979-01-01

35

NASA's Space Shuttle Columbia: Synopsis of the Report of the Columbia Accident Investigation Board  

NASA Technical Reports Server (NTRS)

NASA's space shuttle Columbia broke apart on February 1, 2003 as it returned to Earth from a 16-day science mission. All seven astronauts aboard were killed. NASA created the Columbia Accident Investigation Board (CAIB), chaired by Adm. (Ret.) Harold Gehman, to investigate the accident. The Board released its report (available at [http://www.caib.us]) on August 26, 2003, concluding that the tragedy was caused by technical and organizational failures. The CAIB report included 29 recommendations, 15 of which the Board specified must be completed before the shuttle returns to flight status. This report provides a brief synopsis of the Board's conclusions, recommendations, and observations. Further information on Columbia and issues for Congress are available in CRS Report RS21408. This report will not be updated.

Smith, Marcia S.

2003-01-01

36

The epistemic integrity of NASA practices in the Space Shuttle Program.  

PubMed

This article presents an account of epistemic integrity and uses it to demonstrate that the epistemic integrity of different kinds of practices in NASA's Space Shuttle Program was limited. We focus on the following kinds of practices: (1) research by working engineers, (2) review by middle-level managers, and (3) communication with the public. We argue that the epistemic integrity of these practices was undermined by production pressure at NASA, i.e., the pressure to launch an unreasonable amount of flights per year. Finally, our findings are used to develop some potential strategies to protect epistemic integrity in aerospace science. PMID:23432770

De Winter, Jan; Kosolosky, Laszlo

2013-01-01

37

NSTA-NASA Shuttle Student Involvement Project. Experiment Results: Insect Flight Observation at Zero Gravity  

NASA Technical Reports Server (NTRS)

The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.

Nelson, T. E.; Peterson, J. R.

1982-01-01

38

Neutron Diffraction Characterization of Residual Strain in Welded Inconel 718 for NASA Space Shuttle Flow Liners  

SciTech Connect

This work quantitatively assesses residual strains and stresses associated with the weld repair process used to repair cracks on NASA's space shuttle flow liners. The coupons used in this investigation were made of the same INCONEL 718 alloy used for the flow liners. They were subjected to identical welding and certification procedures that were carried out on the space shuttle. Neutron diffraction measurements at Los Alamos National Laboratory determined residual strains at selected locations in a welded coupon at 293 K and 135 K. The weld repair process introduced Mises effective residual stresses of up to 555 MPa. On comparing the measurements at 293 K and 135 K, no significant change to the residual strain profile was noted at the low temperature. This indicated minimal mismatch in the coefficients of thermal expansion between the base metal and the weld.

Rathod, C.R.; Vaidyanathan, R. [University of Central Florida, Orlando, Florida, 32816 (United States); Livescu, V.; Clausen, B.; Bourke, M. A. M. [Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (United States); Notardonato, W.U.; Femminineo, M. [NASA Kennedy Space Center, Kennedy Space Center, Florida, 32899 (United States)

2004-06-28

39

Neutron Diffraction Characterization of Residual Strain in Welded Inconel 718 for NASA Space Shuttle Flow Liners  

NASA Astrophysics Data System (ADS)

This work quantitatively assesses residual strains and stresses associated with the weld repair process used to repair cracks on NASA's space shuttle flow liners. The coupons used in this investigation were made of the same INCONEL 718 alloy used for the flow liners. They were subjected to identical welding and certification procedures that were carried out on the space shuttle. Neutron diffraction measurements at Los Alamos National Laboratory determined residual strains at selected locations in a welded coupon at 293 K and 135 K. The weld repair process introduced Mises effective residual stresses of up to 555 MPa. On comparing the measurements at 293 K and 135 K, no significant change to the residual strain profile was noted at the low temperature. This indicated minimal mismatch in the coefficients of thermal expansion between the base metal and the weld.

Rathod, C. R.; Livescu, V.; Clausen, B.; Bourke, M. A. M.; Notardonato, W. U.; Femminineo, M.; Vaidyanathan, R.

2004-06-01

40

Ventilation Loss in the NASA Space Shuttle Crew Protective Garments: Potential for Heat Stress  

NASA Technical Reports Server (NTRS)

The potential of the National Aeronautics and Space Administration (NASA) S1035 Launch/Entry suit (LES) for producing heat stress in a simulated Space Shuttle cabin environment has been studied. The testing was designed to determine if the NASA S1035 poses a greater threat of inducing heat stress than the NASA S1032. Conditions were designed to simulate an extreme prelaunch situation, with chamber temperatures maintained at dry bulb temperature 27.2 +/- 0.1 C, globe temperature - 27.3 +/- 0.1 C, and wet bulb temperature 21.1 +/- 0.3 C. Four males, aged 28-48, were employed in this study, with three subjects having exposures in all four conditions and the fourth subject exposed to 3 conditions. Test durations in the ventilated (V) and unventilated (UV) conditions were designed for 480 minutes, which all subjects achieved. No significant differences related to experimental conditions were noted in rectal temperatures, heart rates or sweat rates. The results indicate that the S1032 and S1035 garments, in either the V or UV state, poses no danger of inducing unacceptable heat stress under the conditions expected within the Shuttle cabin during launch or re-entry.

Askew, Gregory K.; Kaufman, Jonathan W.

1991-01-01

41

Fifth Report of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions  

NASA Technical Reports Server (NTRS)

The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking missions examine a number of specific issues related to the Shuttle-Mir program. Three teams composed of Task Force members and technical advisors were formed to address the follow issues: preliminary results from STS-71 and the status of preparations for STS-74; NASA's presence in Russia; and NASA's automated data processing and telecommunications (ADP/T) infrastructure in Russia. The three review team reports have been included in the fifth report of the Task Force.

1995-01-01

42

Software Architecture of the NASA Shuttle Ground Operations Simulator--SGOS  

NASA Technical Reports Server (NTRS)

The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. it is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,00 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.

Cook Robert P.; Lostroscio, Charles T.

2005-01-01

43

Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter  

NASA Technical Reports Server (NTRS)

Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

2010-01-01

44

NASA Shuttle Lightning Research: Observations of Nocturnal Thunderstorms and Lightning Displays as Seen During Recent Space Shuttle Missions  

NASA Technical Reports Server (NTRS)

A number of interesting lightning events have been observed using the low light level TV camera of the space shuttle during nighttime observations of thunderstorms near the limb of the Earth. Some of the vertical type lightning events that have been observed will be presented. Using TV cameras for observing lightning near the Earth's limb allows one to determine the location of the lightning and other characteristics by using the star field data and the shuttle's orbital position to reconstruct the geometry of the scene being viewed by the shuttle's TV cameras which are located in the payload bay of the shuttle.

Vaughan, Otha H., Jr.

1994-01-01

45

Space shuttle operations at the NASA Kennedy Space Center: the role of emergency medicine  

NASA Technical Reports Server (NTRS)

The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.

Rodenberg, H.; Myers, K. J.

1995-01-01

46

Space Shuttle: NASA's plans for repairing or replacing a damaged or destroyed orbiter. Report to the Chairman, Subcommittee on Investigations and Oversight, Committee on Science, Space, and Technology, House of Representatives  

NASA Astrophysics Data System (ADS)

This reports the result of an investigation into NASA's current plans in the event that an accident occur that destroys or seriously damages a space shuttle orbiter, NASA's plans for maintaining critical manufacturing skills in the shuttle work force, and NASA facilities that will be essential to maintain the shuttle orbiters over their expected lifetime.

1994-07-01

47

The residue-measure criterion for model reduction in the analysis of the NASA Space Shuttle's digital flight control system  

NASA Technical Reports Server (NTRS)

A residue-measure criterion model reduction technique is applied to the vehicle dynamics model used in the design and analysis of the NASA Space Shuttle's digital flight control system. As implemented in this study the residue-measure technique involved an a priori residue calculation with control system biasing. The predictions of the reduced model are compared to vehicle level dynamic stability test data. These comparisons show an excellent correlation of the dominant spectral and response features between the model and test data. In addition, the application of the reduction technique to various Shuttle mission flight phases is demonstrated.

Gluch, D. P.

1982-01-01

48

NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)  

NASA Technical Reports Server (NTRS)

Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy.

Cockrell, Charles E., Jr.; Barnes, Robert S.; Belvin, Harry L.; Allmen, John; Otero, Angel

2005-01-01

49

A guide for space lawyers to understanding the NASA Space Shuttle and the ESA Spacelab  

NASA Technical Reports Server (NTRS)

An investigation is conducted concerning the appropriate characterization of the Space Shuttle, taking into account appearance, functions, and purpose. It is concluded that in terms of purely technological criteria, the Shuttle can best be described as an 'aerospace vehicle'. Questions related to the legal characterization of the Shuttle are considered. On the basis of the Shuttle's purpose as the most important criterion, it is suggested that the Shuttle should be considered basically as a 'spacecraft', 'space vehicle', or 'space object'. Attention is given to the Shuttle's relationship to multilateral space conventions, the possibility that the Shuttle could be legally defined as an 'aircraft' under certain circumstances, the Shuttle and the Chicago Convention, and the status of Spacelab as only one part of a U.S. flag spacecraft.

Sloup, G. P.

1977-01-01

50

The evolution of the WPI Advance Space Design Program-an evolving program of technical and social analysis using the NASA Space Shuttle for engineering education  

Microsoft Academic Search

In December of 1982, Worcester Polytechnic Institute, with the cooperation and support of the Mitre Corporation, initiated a primarily undergraduate educational program to develop experiments to be flown onboard a NASA Space Shuttle. Christened the MITRE WPI Space Shuttle Program, it sponsored the development of five educationally meritorious experiments over a period of four years. Although the experiments were ready

Fred J. Looft; Robert C. Labonte; William W. Durgin

1991-01-01

51

Shuttle Astronauts Visit NASA's X-Ray Observatory Operations Control Center in Cambridge to Coordinate Plans for Launch  

NASA Astrophysics Data System (ADS)

CAMBRIDGE, MASS.-- June 25, 1998 Eileen Collins, the first U.S. woman commanderof a Space Shuttle mission and her fellow astronauts for NASA s STS-93 mission toured the Operations Control Center (OCC) for the Advanced X-ray Astrophysics Facility (AXAF) today. AXAF is scheduled for launch on January 26, 1999 aboard the Space Shuttle Columbia. They met with the staff of the OCC and discussed how the status of the observatory will be monitored while in the shuttle bay and during deployment. "We are honored to have this historic shuttle crew visit us and familiarize themselves with the OCC," said Harvey Tananbaum, director of the AXAF Science Center, which operates the OCC for the Smithsonian Astrophysical Observatory through a contract with NASA's Marshall Space Flight Center. "It is appropriate that a pathbreaking shuttle mission will deploy the premier X-ray observatory of this century." AXAF is the third of NASA s Great Observatories along with the Hubble Space Telescope and the Compton Gamma Ray Observatory. It will observe in greater detail than ever before the hot, violent regions of the universe that cannot be seen with optical telescopes. Exploding stars, black holes and vast clouds of gas in galaxy clusters are among the fascinating objects that AXAF is designed to study. The satellite is currently in the final stages of testing at TRW Space and Electronics Group,the prime contractor, in Redondo Beach, California. In late August it will be flown aboard a specially-outfitted Air Force C-5 aircraft to Kennedy Space Center in Florida where it will be integrated with a Boeing booster and then installed in the Shuttle bay. The shuttle crew that will take AXAF into space includes Collins (Col., USAF), Jeffrey Ashby (Cmdr., USN), pilot; Steven Hawley, Ph.D., mission specialist; Catherine Cady Coleman, Ph.D. (Major, USAF), mission specialist; and Michel Tognini (Col., French Air Force), mission specialist. While visiting the OCC the crew learned how critical data (temperatures, voltages, etc.,) will be monitored while AXAF is in the bay of the shuttle. This information will be relayed to the shuttle from the OCC via Johnson Space Center. The condition of the satellite during launch and the first few orbits will determine if it can be sent on its way. Unlike the Hubble Space telescope, AXAF will not be serviceable after it is in orbit. When the satellite has been released into space from the shuttle bay, a built in propulsion system will boost it into a large elliptical orbit around Earth. The nearest the observatory will come to Earth is 6,200 miles and its furthest point will be more than a third of the way to the moon. This means that the telescope will have approximately 52 hours of observing time each orbit. AXAF images will show fifty times more detail than any previous X-ray telescope. The revolutionary telescope combines the ability to make sharp images while measuring precisely the energies of X-rays coming from cosmic sources. The impact AXAF will have on X-ray astronomy can be compared to the difference between a fuzzy black and white and a sharp color picture.

1998-06-01

52

Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center  

NASA Technical Reports Server (NTRS)

The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.

Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

1983-01-01

53

Preparing for the High Frontier: The Role and Training of NASA Astronauts in the Post- Space Shuttle Era  

NASA Technical Reports Server (NTRS)

In May 2010, the National Research Council (NRC) was asked by NASA to address several questions related to the Astronaut Corps. The NRC s Committee on Human Spaceflight Crew Operations was tasked to answer several questions: 1. How should the role and size of the activities managed by the Johnson Space Center Flight Crew Operations Directorate change after space shuttle retirement and completion of the assembly of the International Space Station (ISS)? 2. What are the requirements for crew-related ground-based facilities after the Space Shuttle program ends? 3. Is the fleet of aircraft used for training the Astronaut Corps a cost-effective means of preparing astronauts to meet the requirements of NASA s human spaceflight program? Are there more cost-effective means of meeting these training requirements? Although the future of NASA s human spaceflight program has garnered considerable discussion in recent years and there is considerable uncertainty about what the program will involve in the coming years, the committee was not tasked to address whether human spaceflight should continue or what form it should take. The committee s task restricted it to studying activities managed by the Flight Crew Operations Directorate or those closely related to its activities, such as crew-related ground-based facilities and the training aircraft.

2011-01-01

54

An analysis of Space Shuttle countdown activities: Preliminaries to a computational model of the NASA Test Director  

NASA Technical Reports Server (NTRS)

Before all systems are go just prior to the launch of a space shuttle, thousands of operations and tests have been performed to ensure that all shuttle and support subsystems are operational and ready for launch. These steps, which range from activating the orbiter's flight computers to removing the launch pad from the itinerary of the NASA tour buses, are carried out by launch team members at various locations and with highly specialized fields of expertise. The liability for coordinating these diverse activities rests with the NASA Test Director (NTD) at NASA-Kennedy. The behavior is being studied of the NTD with the goal of building a detailed computational model of that behavior; the results of that analysis to date are given. The NTD's performance is described in detail, as a team member who must coordinate a complex task through efficient audio communication, as well as an individual taking notes and consulting manuals. A model of the routine cognitive skill used by the NTD to follow the launch countdown procedure manual was implemented using the Soar cognitive architecture. Several examples are given of how such a model could aid in evaluating proposed computer support systems.

John, Bonnie E.; Remington, Roger W.; Steier, David M.

1991-01-01

55

User benefits and funding strategies. [technology assessment and economic analysis of the space shuttles and NASA Programs  

NASA Technical Reports Server (NTRS)

The justification, economic and technological benefits of NASA Space Programs (aside from pure scientific objectives), in improving the quality of life in the United States is discussed and outlined. Specifically, a three-step, systematic method is described for selecting relevant and highly beneficial payloads and instruments for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable Government and private industry cost-sharing strategies which would maximize the number of IUS payloads, and the benefits obtainable under a limited NASA budget were also determined. Charts are shown which list the payload instruments, and their relevance in contributing to such areas as earth resources management, agriculture, weather forecasting, and many others.

Archer, J. L.; Beauchamp, N. A.; Day, C. F.

1975-01-01

56

Range Systems Simulation for the NASA Shuttle: Emphasis on Disaster and Prevention Management During Lift-Off  

NASA Technical Reports Server (NTRS)

This article describes a decision-making system composed of a number of safety and environmental models for the launch phase of a NASA Space Shuttle mission. The components of this distributed simulation environment represent the different systems that must collaborate to establish the Expectation of Casualties (E(sub c)) caused by a failed Space Shuttle launch and subsequent explosion (accidental or instructed) of the spacecraft shortly after liftoff. This decision-making tool employs Space Shuttle reliability models, trajectory models, a blast model, weather dissemination systems, population models, amount and type of toxicants, gas dispersion models, human response functions to toxicants, and a geographical information system. Since one of the important features of this proposed simulation environment is to measure blast, toxic, and debris effects, the clear benefits is that it can help safety managers not only estimate the population at risk, but also to help plan evacuations, make sheltering decisions, establish the resources required to provide aid and comfort, and mitigate damages in case of a disaster.

Rabelo, Lisa; Sepulveda, Jose; Moraga, Reinaldo; Compton, Jeppie; Turner, Robert

2005-01-01

57

Design of the software development and verification system (SWDVS) for shuttle NASA study task 35  

NASA Technical Reports Server (NTRS)

An overview of the Software Development and Verification System (SWDVS) for the space shuttle is presented. The design considerations, goals, assumptions, and major features of the design are examined. A scenario that shows three persons involved in flight software development using the SWDVS in response to a program change request is developed. The SWDVS is described from the standpoint of different groups of people with different responsibilities in the shuttle program to show the functional requirements that influenced the SWDVS design. The software elements of the SWDVS that satisfy the requirements of the different groups are identified.

Drane, L. W.; Mccoy, B. J.; Silver, L. W.

1973-01-01

58

Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program  

NASA Technical Reports Server (NTRS)

As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations. The future success of NASA space programs and Rockwell hinges upon the ability to adopt new, more efficient and effective work processes. Efficiency, proficiency, cost effectiveness, and teamwork are a necessity for economic survival. Continuous improvement initiatives like the CEE are, and will continue to be, vehicles by which the road can be traveled with a vision to the future.

Bejmuk, Bohdan I.; Williams, Larry

1992-01-01

59

Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program  

NASA Astrophysics Data System (ADS)

As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations. The future success of NASA space programs and Rockwell hinges upon the ability to adopt new, more efficient and effective work processes. Efficiency, proficiency, cost effectiveness, and teamwork are a necessity for economic survival. Continuous improvement initiatives like the CEE are, and will continue to be, vehicles by which the road can be traveled with a vision to the future.

Bejmuk, Bohdan I.; Williams, Larry

60

Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5  

NASA Technical Reports Server (NTRS)

Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

Anderson, P. J.; Nussbaum, P.; Gustafson, G.

1984-01-01

61

The Role of Independent Verification and Validation in Maintaining a Safety Critical Evolutionary Software in a Complex Environment: The NASA Space Shuttle Program  

Microsoft Academic Search

The National Aeronautics and Space Administration Space (NASA) Shuttle program is a multi-billion dollar activity scheduled to span over 40 years. Maintaining such software with requirements for high reliability and mission safety taxes current development methods. In this paper we present how Independent Verification and Validation (IV&V) activities have evolved in order to provide for these requirements. We also show

Marvin V. Zelkowitz; Ioana Rus

2001-01-01

62

Texture Modification of the Shuttle Landing Facility Runway at the NASA Kennedy Space Center  

NASA Technical Reports Server (NTRS)

This paper describes the test procedures and the selection criteria used in selecting the best runway surface texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-kt crosswinds if desired. This 5-kt increase over the previous 15-kt limit drastically increases landing safety and the ability to make on-time launches to support missions where space station rendezvous is planned.

Daugherty, Robert H.; Yager, Thomas J.

1996-01-01

63

Space Shuttle Body Flap Actuator Bearing Testing For NASA Return to Flight  

NASA Technical Reports Server (NTRS)

The Space Shuttle body flap is located beneath the main engine nozzles and is required for proper aerodynamic control during orbital descent. Routine inspection of one of four body flap actuatols found one of the actuator bearings had degraded and blackened balls. A test program was initiated to demonstrate that it is acceptable to operate bearings which are degraded from operation over several flights. This test exposed the bearing to predicted flight axial loads, speeds and temperatures. Testing has been completed, and results indicate the previously flown bearings are acceptable for up to 12 additional missions.

Jett, Timothy R.; Thom, Robert L.; Moore, Lewis E.; Gibson, Howard G.; Hall, Phillip B.; Predmore, Roamer E.

2005-01-01

64

Shuttle Landing Facility  

NASA Video Gallery

The Shuttle Landing Facility at NASA's Kennedy Space Center in Florida marked the finish line for space shuttle missions since 1984. It is also staffed by a group of air traffic controllers who wor...

65

Space Shuttle Body Flap Actuator Bearing Testing for NASA Return to Flight  

NASA Technical Reports Server (NTRS)

The Space Shuttle body flap is located beneath the main engine nozzles and is required for proper aerodynamic control during orbital descent. Routine inspection of one of four body flap actuators found one of the actuator bearings had degraded and blackened balls. A test program was initiated to demonstrate that it is acceptable to operate bearings which are degraded from operation over several flights. This test exposed the bearing to predicted flight axial loads, speeds and temperatures. Testing at 140 F has been completed, and results indicate the previously flown bearings are acceptable for up to 12 additional missions. Additional testing is underway to determine the lubricant life at various temperatures and stresses and to further understand the mechanism that caused the blacken balls. Initial results of this testing indicates that bearing life is shorten at room temperature possibly due fact that higher temperature (140 F) accelerates the flow of grease and oil into the wear surface

Jett, Timothy R.; Predmore, Roamer E.; Dube, Michael J.; Jones, William R., Jr.

2006-01-01

66

Assessment of the NASA Space Shuttle Program's Problem Reporting and Corrective Action System  

NASA Technical Reports Server (NTRS)

This paper documents the general findings and recommendations of the Design for Safety Programs Study of the Space Shuttle Programs (SSP) Problem Reporting and Corrective Action (PRACA) System. The goals of this Study were: to evaluate and quantify the technical aspects of the SSP's PRACA systems, and to recommend enhancements addressing specific deficiencies in preparation for future system upgrades. The Study determined that the extant SSP PRACA systems accomplished a project level support capability through the use of a large pool of domain experts and a variety of distributed formal and informal database systems. This operational model is vulnerable to staff turnover and loss of the vast corporate knowledge that is not currently being captured by the PRACA system. A need for a Program-level PRACA system providing improved insight, unification, knowledge capture, and collaborative tools was defined in this study.

Korsmeryer, D. J.; Schreiner, J. A.; Norvig, Peter (Technical Monitor)

2001-01-01

67

Assessment of the NASA Space Shuttle Program's problem reporting and corrective action system  

NASA Astrophysics Data System (ADS)

This paper documents the general findings and recommendations of the Design for Safety Program's Study of the Space Shuttle Program's (SSP) Problem Reporting and Corrective Action (PRACA) System. The goals of this Study were; to evaluate and quantify the technical aspects of the SSP's PRACA systems, and to recommend enhancements addressing specific deficiencies in preparation for future system upgrades. The Study determined that the extant SSP PRACA systems accomplished a project level support capability through the use of a large pool of domain experts and a variety of distributed formal and informal database systems. This operational model is vulnerable to staff turnover and loss of the vast corporate knowledge that is not currently being captured by the PRACA system. A need for a Program-level PRACA system providing improved insight, unification, knowledge capture, and collaborative tools was defined is this study.

Korsmeyer, David J.; Schreiner, John A.

2001-07-01

68

Tropospheric Wind Monitoring During Day-of-Launch Operations for NASA's Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The Environments Group at the National Aeronautics and Space Administration's Marshall Space Flight Center monitors the winds aloft above Kennedy Space Center (KSC) in support of the Space Shuttle Program day-of-launch operations. Assessment of tropospheric winds is used to support the ascent phase of launch. Three systems at KSC are used to generate independent tropospheric wind profiles prior to launch; 1) high resolution jimsphere balloon system, 2) 50-MHz Doppler Radar Wind Profiler (DRWP) and 3) low resolution radiosonde system. All independent sources are compared against each other for accuracy. To assess spatial and temporal wind variability during launch countdown each jimsphere profile is compared against a design wind database to ensure wind change does not violate wind change criteria.

Decker, Ryan; Leach, Richard

2004-01-01

69

NASA  

NSDL National Science Digital Library

The National Aeronautics and Space Administration home page provides information on current events at NASA, general information about NASA, and links to a plethora of NASA web sites, educational resources, and NASA Centers.

70

Results of a space shuttle pulme impingement investigation at stage separation in the NASA-MSFC impulse base flow facility  

NASA Technical Reports Server (NTRS)

Results are presented for an experimental space shuttle stage separation plume impingement program conducted in the NASA-Marshall Space Flight Center's impulse base flow facility (IBFF). Major objectives of the investigation were to: (1)determine the degree of dual engine exhaust plume simulation obtained using the equivalent engine; (2) determine the applicability of the analytical techniques; and (3) obtain data applicable for use in full-scale studies. The IBFF tests determined the orbiter rocket motor plume impingement loads, both pressure and heating, on a 3 percent General Dynamics B-15B booster configuration in a quiescent environment simulating a nominal staging altitude of 73.2 km (240,00 ft). The data included plume surveys of two 3 percent scale orbiter nozzles, and a 4.242 percent scaled equivalent nozzle - equivalent in the sense that it was designed to have the same nozzle-throat-to-area ratio as the two 3 percent nozzles and, within the tolerances assigned for machining the hardware, this was accomplished.

Mccanna, R. W.; Sims, W. H.

1972-01-01

71

Spaceflight Effects and Molecular Responses in the Mouse Eye: Observations after NASA Shuttle Mission STS-133  

NASA Technical Reports Server (NTRS)

Background: Human space exploration implies a combination of stressors including microgravityinduced cephalad fluid shift and radiation exposure. Ocular changes in astronauts leading to visual impairment are of occupational health relevance. The effect of this complex environment on ocular morphology and function is poorly understood. Material and Methods: Mice were assigned to a Flight (FLT) group flown on shuttle mission STS133, Animal Enclosure Module (AEM), or vivarium (VIV) ground controls. Eyes were collected at 1, 5 and 7 days after landing, and were fixed for histological sectioning. The contralateral eye was used for gene expression profiling by qRT-PCR. Routine histology and immunohistochemistry using 8-hydroxy-2'-deoxyguanosine (8-OHdG), caspase-3, glial fibrillary acidic protein (GFAP) and beta-amyloid were used to study the eyes. Results and Conclusions: 8-OHdG and caspase-3 immunoreactivity was increased in the retina in FLT samples at return from flight (R+1) compared to ground controls, and decreased at day 7 (R+7), suggesting an increase in oxidative stress and cell apoptosis. FLT mice showed evidence of retinal pigment epithelium (RPE) apoptosis possibly secondary to oxidative damage. Although attenuation of RPE has been related to retinal choroidal folds in astronauts, it is yet to be determined whether or not increased RPE apoptosis may contribute to the formation of choroidal folds or may increase the risk for other retinal pathologies, such as AMD. beta-amyloid was seen in the nerve fibers at the post-laminar region of the optic nerve in the flight samples (R+7). Deposition of beta-amyloid has a strong correlation with mechanical trauma. The coexpression of GFAP in astrocytes and oligodentrocytes in these same areas supports the possible mechanical origin probably secondary to intracranial pressure that is transmitted into the nerve, as a result of an increase in venous pressure associated to microgravity-induced cephalic fluid shift. However, there is the need to further investigate the nature of the changes through additional experimental work. Gene expression of oxidative and cellular stress response genes was unregulated in the retina of FLT samples upon landing followed by lower levels by R+7. These results suggest that reversible molecular damage occurs in the retina of mice exposed to spaceflight and that protective cellular and molecular pathways are induced in the retina in response to these changes.

ProsperoPonce, Claudia Maria; Zanello, Susana B.; Theriot, Corey A.; Chevez-Barrios, Patricia

2012-01-01

72

Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 1: Observations and conclusions  

NASA Technical Reports Server (NTRS)

The NASA and contractor management systems, including policies, practices, and procedures for the development of critical systems, subsystems and integration of the program elements, were investigated. The technical development status of critical systems, subsystems, and interfaces is presented. Space shuttle elements were qualified as to potential risks and hazards. The elements included the orbiter, external tanks, main engine, solid rocket boosters, and the ground support facilities.

1975-01-01

73

Rocket Noise and Vibration Shuttle/Payload Processing and ISS: Launch Pad Vibroacoustics Research at NASA/KSC  

NASA Technical Reports Server (NTRS)

This viewgraph presentation provides information on the effects of noise of the SSME Space Shuttle Main Engine upon liftoff from Kennedy Space Center. It covers both effects experienced by astronauts within the Shuttles, and effects on the surrounding environment. The presentation then makes recommendations for design methods which take into account vibroacoustics.

Margasayam, Ravi; Voska, Ned (Technical Monitor)

2002-01-01

74

Shuttle woes  

NASA Astrophysics Data System (ADS)

Shortages of spare parts and delays caused by unexpected repairs are most likely to interfere with the National Aeronautics and Space Administration's (NASA) goal of 30 annual space shuttle launches by 1990, according to a National Research Council panel. NASA's chances of meeting the goal of 30 launches per year are “impossible or highly improbable” with four orbiters and “marginal” with a five-orbiter fleet, the panel says. Furthermore, the lack of spare parts or delays caused by unexpected repairs are more likely to limit shuttle launches than will shortages of major units such as external tanks or solid rocket boosters.Four orbiters could support between 17 and 25 annual launches by about 1990; five orbiters could support between 22 and 31, according to the Panel to Assess Constraints on Space Shuttle Launch Rates, chaired by William T. Hamilton, a consultant to the Boeing Co. and retired vice president and chief scientist of the Boeing Military Airplane Co. NASA's plans, however, call for 24 space shuttle launches per year in 1988, 30 in 1990, and 40 in 1992.

75

Proceedings of the NASA/Florida Institute of Technology Environmental Engineering Conference on Nitrogen Tetroxide. [with emphasis on space shuttle  

NASA Technical Reports Server (NTRS)

Methods of reducing the user hazards of nitrogen tetroxide, a hypergolic oxidizer are discussed. Kennedy Space Center developments in N2O4 control for the space shuttle are featured. Other areas covered are life support equipment and transportation.

Rhodes, E. L.

1978-01-01

76

Space Shuttle Endeavour Heads West  

NASA Video Gallery

NASA's Shuttle Carrier Aircraft, a modified 747, flew retired shuttle Endeavour from Kennedy Space Center in Florida to Houston on Sept. 19, 2012, to complete the first leg of Endeavour's trip to L...

77

Shuttle interaction study  

NASA Technical Reports Server (NTRS)

The role of the Space Operations Center (SOC) as it effects the missions of the space shuttle was analyzed. Graphic representation of space shuttle docking procedures with attention to the docking module was presented. Other topics included extravehicular activity options, space station evaluation, space logistics of the SOC, equipment interfacing, and SOC buildup scenarios.

1980-01-01

78

A summary of the Space Shuttle Columbia tragedy and the use of digital high-speed photography in the accident investigation and NASA's return-to-flight effort  

NASA Astrophysics Data System (ADS)

On February 1, 2003, the Space Shuttle Columbia broke apart during reentry resulting in loss of seven crewmembers and craft. For the next several months an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA concluded in August, 2003 that the cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into that mission's launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of the left wing which ultimately led to the breakup of the orbiter. Supporting the findings of the CAIB, were numerous ballistic impact testing programs conducted to investigate and quantify the physics of External Tank Foam impact on the RCC wing leading edge material. These tests ranged from fundamental material characterization tests to full-scale Orbiter Wing Leading Edge tests. Following the accident investigation, NASA turned its focus to returning the Shuttle safely to flight. Supporting this effort are many test programs to evaluate impact threats from various debris sources during ascent that must be completed for certifying the Shuttle system safe for flight. Digital high-speed cameras were used extensively to document these tests as significant advances in recent years have nearly eliminated the use of film in many areas of testing. Researchers at the NASA Glenn Ballistic Impact Laboratory have participated in several of the impact test programs supporting the Accident Investigation and Return-to-Flight efforts. This paper summarizes the Columbia Accident and the nearly seven month long investigation that followed. Highlights of the NASA Glenn contributions to the impact testing are presented with emphasis on the use of high speed digital photography to document theses tests.

Pereira, J. Michael; Melis, Matthew E.; Revilock, Duane M.

2005-03-01

79

Engineering report. Part 3: NASA lightweight wheel and brake sub-system. Lightweight brake development. [for application to space shuttle  

NASA Technical Reports Server (NTRS)

The development of light weight wheel and brake systems designed to meet the space shuttle type requirements was investigated. The study includes the use of carbon graphite composite and beryllium as heat sink materials and the compatibility of these heat sink materials with the other structural components of the wheel and brake.

Bok, L. D.

1973-01-01

80

Logistics: An integral part of cost efficient space operations  

NASA Technical Reports Server (NTRS)

The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

Montgomery, Ann D.

1996-01-01

81

NASA.  

National Technical Information Service (NTIS)

Some of the most exciting documentary footage traces the 25-year history of nasa. Emphasis is placed on the numerous challenges and accomplishments which have marked a quarter century of air and space research and exploration. Primary audience: mass audie...

1994-01-01

82

Space Shuttle management issues  

NASA Technical Reports Server (NTRS)

This paper describes the many management methods being implemented on the Space Shuttle Program. Management attention to cost reduction and the techniques being used to meet the Shuttle cost commitment are described. A detailed explanation is given for the NASA Performance Measurement System but all other major management tools being used are also discussed.

Roseman, H. M.

1975-01-01

83

A waning of technocratic faith - NASA and the politics of the Space Shuttle decision, 1967-1972  

NASA Technical Reports Server (NTRS)

This paper analyzes the decision to build the Space Shuttle as part of a broader public policy trend away from a deference to technical experts and toward greater politicization of traditionally apolitical issues. At the beginning of the 1960s U.S. leaders had a strong faith in the ability of technology to solve most problems. By 1970 this commitment to technological answers had waned and a resurgence of the right of elected officials to control technical matters was gaining currency. The lengthy and bitter Shuttle decision-making process was part of a much broader shift in the formation of public policy, played out in other arenas as well, aimed at the reemergence of direct political management of technological and scientific affairs by politicians.

Launius, R. D.

1992-01-01

84

A Model for Space Shuttle Orbiter Tire Side Forces Based on NASA Landing Systems Research Aircraft Test Results  

NASA Technical Reports Server (NTRS)

Forces generated by the Space Shuttle orbiter tire under varying vertical load, slip angle, speed, and surface conditions were measured using the Landing System Research Aircraft (LSRA). Resulting data were used to calculate a mathematical model for predicting tire forces in orbiter simulations. Tire side and drag forces experienced by an orbiter tire are cataloged as a function of vertical load and slip angle. The mathematical model is compared to existing tire force models for the Space Shuttle orbiter. This report describes the LSRA and a typical test sequence. Testing methods, data reduction, and error analysis are presented. The LSRA testing was conducted on concrete and lakebed runways at the Edwards Air Force Flight Test Center and on concrete runways at the Kennedy Space Center (KSC). Wet runway tire force tests were performed on test strips made at the KSC using different surfacing techniques. Data were corrected for ply steer forces and conicity.

Carter, John F.; Nagy, Christopher J.; Barnicki, Joseph S.

1997-01-01

85

Engineering report. Part 2: NASA wheel and brake material tradeoff study for space shuttle type environmental requirements  

NASA Technical Reports Server (NTRS)

The study included material selection and trade-off for the structural components of the wheel and brake optimizing weight vs cost and feasibility for the space shuttle type application. Analytical methods were used to determine section thickness for various materials, and a table was constructed showing weight vs. cost trade-off. The wheel and brake were further optimized by considering design philosophies that deviate from standard aircraft specifications, and designs that best utilize the materials being considered.

Bok, L. D.

1973-01-01

86

NASA.  

National Technical Information Service (NTIS)

for further information see main entry title number a10671.Some of the most exciting documentary footage traces the 25-year history of NASA. Emphasis is placed on the numerous challenges and accomplishments which have marked a quarter century of air and s...

1994-01-01

87

Space Shuttle Projects Overview to Columbia Air Forces War College  

NASA Technical Reports Server (NTRS)

This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

Singer, Jody; McCool, Alex (Technical Monitor)

2000-01-01

88

A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs  

NASA Technical Reports Server (NTRS)

The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very nature will require specialized support for new databases and analyses for wind, atmospheric parameters (pressure, temperature, and density versus altitude), and weather. It is for this reason that project managers are encouraged to collaborate with natural environment specialists early in the conceptual design phase. Such action will give the lead time necessary to meet the natural environment design and operational requirements, and thus, reduce development costs.

Smith, O. E.; Adelfang, S. I.

1998-01-01

89

Air cargo market outlook and impact via the NASA CLASS project. [Cargo/Logistics Airlift Systems Study  

NASA Technical Reports Server (NTRS)

An overview is given of the Cargo/Logistics Airlift Systems Study (CLASS) project which was a 10 man-year effort carried out by two contractor teams, aimed at defining factors impacting future system growth and obtaining market requirements and design guidelines for future air freighters. Growth projection was estimated by two approaches: one, an optimal systems approach with a more efficient and cost effective system considered as being available in 1990; and the other, an evolutionary approach with an econometric behavior model used to predict long term evolution from the present system. Both approaches predict significant growth in demand for international air freighter services and less growth for U.S. domestic services. Economic analysis of air freighter fleet options indicate very strong market appeal of derivative widebody transports in 1990 with little incentive to develop all new dedicated air freighters utilizing the 1990's technology until sometime beyond the year 2000. Advanced air freighters would be economically attractive for a wide range of payload sizes (to 500 metric tons), however, if a government would share in the RD and T costs by virtue of its needs for a slightly modified version of a civil air freighter design (a.g. military airlifter).

Winston, M. M.; Conner, D. W.

1980-01-01

90

Shuttle Case Study Collection Website Development.  

National Technical Information Service (NTIS)

As a continuation from summer 2012, the Shuttle Case Study Collection has been developed using lessons learned documented by NASA engineers, analysts, and contractors. Decades of information related to processing and launching the Space Shuttle is gathere...

G. K. Johnson K. S. Ransom

2012-01-01

91

Shuttle Endeavour Flyover of Los Angeles Landmarks  

NASA Video Gallery

Space shuttle Endeavour atop NASA's Shuttle Carrier Aircraft flew over many Los Angeles area landmarks on its final ferry flight Sept. 21, 2012, including the Coliseum, the Hollywood Sign, Griffith...

92

Post-Shuttle EVA Operations on ISS  

NASA Technical Reports Server (NTRS)

The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1

West, William; Witt, Vincent; Chullen, Cinda

2010-01-01

93

Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5 foot hypersonic wind tunnel (IH3), volume 1  

NASA Technical Reports Server (NTRS)

Heat transfer data for the 0.0175-scale space shuttle vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-foot hypersonic wind tunnel at Mach 5.3 for nominal free stream Reynolds number per foot values of 1.5, and 5.0 million.

Foster, T. F.; Lockman, W. K.

1975-01-01

94

Shuttle mission plans  

NASA Technical Reports Server (NTRS)

Shuttle mission plans recently developed by NASA for the time period 1980-1991 are presented. Standard and optional services, which will be available to users of the Space Transportation System (STS) when it becomes operational in the 1980's, are described. Pricing policies established by NASA to encourage use of the STS by commercial, foreign and other U.S. Government users are explained. The small Self-Contained Payload Program, which will make space flight opportunities available to private citizens and individual experimenters who wish to use the Space Shuttle for investigative research, is discussed.

Visentine, J. T.; Lee, C. M.

1978-01-01

95

STS-114 Space Shuttle Discovery Performs Back Flip For Photography  

NASA Technical Reports Server (NTRS)

Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. Discovery was over Switzerland, about 600 feet from the ISS, when Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft as it performed a back flip to allow photography of its heat shield. Astronaut Eileen M. Collins, STS-114 Commander, guided the shuttle through the flip. The photographs were analyzed by engineers on the ground to evaluate the condition of Discovery's heat shield. The crew safely returned to Earth on August 9, 2005. The mission historically marked the Return to Flight after nearly a two and one half year delay in flight after the Space Shuttle Columbia tragedy in February 2003.

2005-01-01

96

Space shuttle operational risk assessment  

NASA Astrophysics Data System (ADS)

A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated quantitative assessment of the risk of the loss of the shuttle vehicle from 3 seconds prior to liftoff to wheel-stop at mission end. The study which was conducted under the direction of NASA's Shuttle Safety and Mission Assurance office at Johnson Spaceflight Center focused on shuttle operational risk but included consideration of all the shuttle flight and test history since the beginning of the program through Mission 67 in July of 1994.

Fragola, Joseph R.; Maggio, Gaspare

1996-03-01

97

Space Shuttle: The Renewed Promise.  

National Technical Information Service (NTIS)

NASA celebrated its 30th anniversary in 1988, two days after the Space Shuttle soared into space once more. When Congress approved the creation of the National Aeronautics and Space Administration in 1958, the United States had successfully launched only ...

N. McAleer

1989-01-01

98

Space shuttle operational risk assessment  

Microsoft Academic Search

A Probabilistic Risk Assessment (PRA) of the Space Shuttle system has recently been completed. This year-long effort represents a development resulting from seven years of application of risk technology to the Space Shuttle. These applications were initiated by NASA shortly after the Challenger accident as recommended by the Rogers and Slay Commission reports. The current effort is the first integrated

Joseph R. Fragola; Gaspare Maggio

1996-01-01

99

Space Shuttle program risk management  

Microsoft Academic Search

The authors describe how NASA appears to be undergoing a paradigm shift in its approach to Space Shuttle risk management. At least in some quarters, there appears to be a recognition that advances in the state-of-the-art have now made quantitative risk assessments powerful risk management tools, especially for programs such as the Shuttle with its ever increasing flight and test

J. R. Fragola

1996-01-01

100

America's shuttle returns to space  

NASA Technical Reports Server (NTRS)

The Shuttle management structure, streamlined since the Challenger accident, is outlined. The associate administrators for space flight are identified and their responsibilities clearly spelled out. The NASA policy of assigning astronauts to management positions is described. A spaceflight safety panel is described. Non-managerial safety enhancement programs are outlined. These include: solid rocker booster changes, shuttle crew escape systems, and landing improvements.

Moorehead, Robert W.

1989-01-01

101

Space Shuttle Familiarization  

NASA Technical Reports Server (NTRS)

This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.

Mellett, Kevin

2006-01-01

102

STS-102 Space Shuttle Discovery Liftoff  

NASA Technical Reports Server (NTRS)

The STS-102 mission blasts off from launch pad 39B at Kennedy Space Center at dawn on March 8, 2001 aboard the Space Shuttle Discovery. STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

2001-01-01

103

STS-102 Space Shuttle Discovery Liftoff  

NASA Technical Reports Server (NTRS)

The Space Shuttle Discovery, STS-102 mission, clears launch pad 39B at the Kennedy Space Center as the sun peers over the Atlantic Ocean on March 8, 2001. STS-102's primary cargo was the Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall flight and the eighth assembly flight, STS-102 was also the first flight involved with Expedition Crew rotation. The Expedition Two crew was delivered to the station while Expedition One was returned home to Earth.

2003-01-01

104

NASA Vision  

NASA Technical Reports Server (NTRS)

This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

Fenton, Mary (Editor); Wood, Jennifer (Editor)

2003-01-01

105

Space Shuttle mission: STS-67  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavor, scheduled to launch March 2, 1995 from NASA's Kennedy Space Center, will conduct NASA's longest Shuttle flight prior to date. The mission, designated STS-67, has a number of experiments and payloads, which the crew, commanded by Stephen S. Oswald, will have to oversee. This NASA press kit for the mission contains a general background (general press release, media services information, quick-look facts page, shuttle abort modes, summary timeline, payload and vehicle weights, orbital summary, and crew responsibilities); cargo bay payloads and activities (Astro 2, Get Away Special Experiments); in-cabin payloads (Commercial Minimum Descent Altitude Instrumentation Technology Associates Experiments, protein crystal growth experiments, Middeck Active Control Experiment, and Shuttle Amateur Radio Experiment); and the STS-67 crew biographies. The payloads and experiments are described and summarized to give an overview of the goals, objectives, apparatuses, procedures, sponsoring parties, and the assigned crew members to carry out the tasks.

1995-01-01

106

Space Shuttle.  

National Technical Information Service (NTIS)

The space shuttle is discussed as a reusable space vehicle operated as a transportation system for space missions in low earth orbit. Space shuttle studies and operational capabilities are reported for potential missions indicating that about 38 percent a...

1974-01-01

107

Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 4  

NASA Technical Reports Server (NTRS)

Heat-transfer data for the 0.0175-scale Space Shuttle Vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of Orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-Foot Hypersonic Wind Tunnel at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1.5 x 1,000,000 and 5.0 x 1,000,000.

Foster, T. F.; Lockman, W. K.

1975-01-01

108

Pitch control of the space shuttle training aircraft  

Microsoft Academic Search

A set of shuttle training aircrafts (STAs) are used by NASA to train astronaut pilots to land the space shuttle after returning from orbit. The STA simulates the dynamics of the much larger and heavier space shuttle with the help of some hardware and software modifications. We present a STA controller that tracks the shuttle pitch trajectory. Our control system

Hamid R. Berenji; Sujit Saraf; Ping-Wei Chang; Steven R. Swanson

2001-01-01

109

NASA replanning efforts continue  

NASA Astrophysics Data System (ADS)

A task force of the National Aeronautics and Space Administration (NASA) is producing new launch schedules for NASA's three remaining space shuttle orbiters, possibly supplemented by expendable launch vehicles. In the wake of the explosion of the space shuttle Challenger on January 28, 1986, the task force is assuming a delay of 12-18 months before resumption of shuttle flights.NASA's Headquarters Replanning Task Force, which meets daily, is separate from the agency's Data and Design Analysis Task Force, which collects and analyzes information about the accident for the use of the investigative commission appointed by President Ronald Reagan.

Katzoff, Judith A.

110

The Shuttle Cost and Price model  

NASA Technical Reports Server (NTRS)

The Shuttle Cost and Price (SCP) model was developed as a tool to assist in evaluating major aspects of Shuttle operations that have direct and indirect economic consequences. It incorporates the major aspects of NASA Pricing Policy and corresponds to the NASA definition of STS operating costs. An overview of the SCP model is presented and the cost model portion of SCP is described in detail. Selected recent applications of the SCP model to NASA Pricing Policy issues are presented.

Leary, Katherine; Stone, Barbara

1983-01-01

111

Space Shuttle Main Engine Public Test Firing  

NASA Technical Reports Server (NTRS)

A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

2000-01-01

112

Buying a Shuttle ticket  

NASA Technical Reports Server (NTRS)

A preliminary draft policy for reimbursement for Space Shuttle flights has been developed by NASA in the form of pricing criteria for Space Transportation System (STS) users in domestic and foreign government and industry. The reimbursement policy, the transition from expendable launch vehicles to STS, the new user services, and the interaction of the economics of new user services and STS cost to fly are discussed in the present paper. Current efforts to develop new users are noted.

Moore, W. F.; Forsythe, C.

1977-01-01

113

Mobile Christian - shuttle flight  

NASA Technical Reports Server (NTRS)

Louis Stork, 13, and Erin Whittle, 14, look on as Brianna Johnson, 14, conducts a 'test' of a space shuttle main engine in the Test Control Center exhibit in StenniSphere, the visitor center at NASA's John C. Stennis Space Center near Bay St. Louis, Miss. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.

2009-01-01

114

Distribution Logistics  

Microsoft Academic Search

\\u000a Distribution logistics refers to the business process of selling goods, including delivery, transport to the customer and\\u000a subsequent invoicing. It links production logistics of a company (and\\/or its external procurement department in the case of\\u000a externally produced goods) with the demands (orders) of customers. The primary objective of distribution logistics is the\\u000a efficient provision of goods for customers under set

Jens Kappauf; Bernd Lauterbach; Matthias Koch

115

Status report on shuttle program.  

NASA Technical Reports Server (NTRS)

Following a brief summary of previous work, major attention is given to Phase-B extension, the Request for Proposal (RFP), the selected configuration and associated activities, and the future. NASA extended Phase-B contracts to examine other options that might lower peak annual funding and decrease program risk. Most of the discussion deals with the shuttle and orbiter systems. The efforts of the shuttle program in the past year have seen the completion of numerous trade studies and the selection of a prime shuttle contractor.

Swigert, J. L., Jr.

1973-01-01

116

Space Shuttle Strategic Planning Status  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program is aggressively flying the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Completing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA's Crew Exploration Vehicle (Orion) and Crew and Cargo Launch Vehicles (Ares I). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the Vision for Space Exploration, and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

Norbraten, Gordon L.; Henderson, Edward M.

2007-01-01

117

Space Shuttle Strategic Planning Status  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program is aggressively planning the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Implementing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA s Crew Exploration Vehicle (CEV) and Crew and Cargo Launch Vehicles (CLV). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the President s "Vision for Space Exploration," and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.

Henderson, Edward M.; Norbraten, Gordon L.

2006-01-01

118

Flight test of an automatic approach and landing concept for a simulated space shuttle represented by the NASA Convair 990 aircraft  

NASA Technical Reports Server (NTRS)

Unpowered automatic approaches and landings were conducted to study navigation, guidance, and control problems associated with terminal area, approach, and landing operation for the space shuttle. A Convair 990 aircraft was equipped with a digital flight-control computer connected to the aircraft control systems and displays. The flight tests evaluated, from 11,300 m to touchdown, the performance of a navigation and guidance concept that utilized blended radio/inertial navigation with VOR, DME, and ILS as the ground radio navigation aids. The results from 36 automatic approaches and landings are analyzed. Preliminary results indicate that this concept may provide sufficient accuracy that automatic landing of the unpowered shuttle orbiter can be accomplished on a conventional size runway.

Smith, D. W.; Edwards, F. G.; Foster, J. D.; Drinkwater, F. J., III

1974-01-01

119

The Space Shuttle in perspective  

NASA Technical Reports Server (NTRS)

Commercial aspects of the Space Shuttle are examined, with attention given to charges to users, schedule of launches and reimbursement, kinds of payload and their selection, NASA authority, space allocation, and risk, liability, and insurance. It is concluded that insurance to reduce the risk, incentives that NASA is willing to make available to U.S. industry, and the demonstrated willingness of industry and the financial community to invest their funds in space ventures indicate that the new Shuttle capabilities will exponentially increase commercial activities in space during the 1980s.

Hosenball, S. N.

1981-01-01

120

Reverse Logistics  

Microsoft Academic Search

Environmental concerns and rapid development of e-commerce bring a new focused field in reverse logistics. In order to avoid return losses and add customerspsila value, there is a need for companies to find proper ways to reduce wastes and recover the value from used products for further utilities. All these challenges make reverse logistics a contemporary area of interest among

Chaihou Zhao; Weiming Liu; Bei Wang

2008-01-01

121

Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1  

NASA Technical Reports Server (NTRS)

The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

Nichols, M. E.

1976-01-01

122

Results of investigations on the 0.004-scale model 74-0 of the configuration 4 (modified) space shuttle vehicle orbiter in the NASA/MSFC 14-by-14-inch trisonic wind tunnel (oa131)  

NASA Technical Reports Server (NTRS)

The results of an oil flow boundary-layer visualization wind tunnel test of an 0.004-scale model of the Space Shuttle Vehicle Orbiter in the NASA/Marshall Space Flight Center 14-by-14-inch Trisonic Wind Tunnel are presented. The model was tested at Mach numbers from 0.60 through 2.75, at angles-of-attack from 0 through 25 degrees, and at unit Reynolds numbers from 5.0 to 7.0 million per foot. The test program involved still and motion picture photography of oil-paint flow patterns on the orbiter, during and immediately after tunnel flow, to determine areas of boundary layer separation and regions of potential auxiliary power unit exhaust recirculation during transonic and low supersonic re-entry flight.

Nichols, M. E.

1975-01-01

123

Multipurpose Logistics Module, Leonardo, Rests in Discovery's Payload Bay  

NASA Technical Reports Server (NTRS)

This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.

2001-01-01

124

Inhibition in a microgravity environment of the recovery of Escherichia coli cells damaged by heavy ion beams during the NASDA ISS phase I program of NASA Shuttle/Mir mission no. 6.  

PubMed

We participated in a space experiment, part of the National Space Development Agency of Japan (NASDA) Phase I Space Radiation Environment Measurement Program, conducted during the National Aeronautics and Space Administration (NASA) Shuttle/Mir Mission No. 6 (S/MM-6) project. The aim of our study was to investigate the effects of microgravity on the DNA repair processes of living organisms in the in orbit. Heavy ion beam radiation- or ç-irradiation-damaged biological samples of Escherichia coli and the radioresistant bacterium Deinococcus radiodurans were prepared and placed in a biospecimen box, which was loaded into the RRMD III sensor unit of the Space Shuttle. Two identical sets of samples were left in the Spacehab's Payload Processing Facility (SPPF) in Florida, USA, as a control. (flight No. STS-84) was launched from NASA John F. Kennedy Space Center (KSC) in Florida, USA, on May 15, 1997. The mission duration was 9.22 days. An astronaut activated the biological samples in the biospecimen box in the Spacehab during orbit in order to start repair of the DNA damaged by heavy ion beams or ç-irradiation and the samples were incubated for 19 h 35 min at about 22ûC, the cabin temperature. The control specimens in the SPPF were subjected to the same treatment under terrestrial gravity. After returned to earth, we investigated cell recovery by comparing the repair of the radiation-damaged DNA of E. coli and D. radiodurans in the microgravity environment in space with that on Earth. The results indicated that the DNA repair process of E. coli, but not of D. radiodurans, cells was inhibited in a microgravity environment. PMID:9852301

Harada, K; Sugahara, T; Ohnishi, T; Ozaki, Y; Obiya, Y; Miki, S; Miki, T; Imamura, M; Kobayashi, Y; Watanabe, H; Akashi, M; Furusawa, Y; Mizuma, N; Yamanaka, H; Ohashi, E; Yamaoka, C; Yajima, M; Fukui, M; Nakano, T; Takahashi, S; Amano, T; Sekikawa, K; Yanagawa, K; Nagaoka, S

1998-05-01

125

Space Shuttle Documentary (Narrated by William Shatner)  

NASA Video Gallery

This feature-length documentary looks at the history of the most complex machine ever built. For 30 years, NASA's space shuttle carried humans to and from space, launched amazing observatories, and...

126

A Celebration of the Space Shuttle Program  

NASA Video Gallery

On September 23, 2011, NASA Langley hosted a Shuttle Celebration at the Virginia Air & Space Center in Hampton, Va. More than 650 guests attended, including STS-135 Commander Chris Ferguson and NAS...

127

Student Experiments Fly with the Shuttle.  

ERIC Educational Resources Information Center

Describes various experiments which high school students are preparing, to be carried on NASA's 500 or more Space Shuttle flights in the 1980s. The project is intended to stimulate superior secondary school students. (SA)

Saunders, Walter; And Others

1979-01-01

128

Hypersonic aeroheating test of space shuttle vehicle: Configuration 3 (model 22 OTS) in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH20), volume 2  

NASA Technical Reports Server (NTRS)

The model tested was an 0.0175-scale version of the vehicle 3 space shuttle configuration. Temperature measurements were made on the launch configuration, orbiter plus tank, orbiter alone, tank alone, and solid rocket booster (SRB) alone to provide heat transfer data. The test was conducted at free stream Mach numbers of 5.3 and 7.3 and at free stream Reynolds numbers of 1.5, 3.7, 5.0, and 7.0 million per foot. The model was tested at angles of attack from -5 deg to 20 deg and side slip angles of -5 deg and 0 deg.

Kingsland, R. B.; Lockman, W. K.

1975-01-01

129

Shuttle Rocket Motor Program: NASA should delay awarding some construction contracts. Report to the Chair, Subcommittee on Government Activities and Transportation, Committee on Government Operations, House of Representatives  

NASA Technical Reports Server (NTRS)

Even though the executive branch has proposed terminating the Advanced Solid Rocket Motor (ASRM) program, NASA is proceeding with all construction activity planned for FY 1992 to avoid schedule slippage if the program is reinstated by Congress. However, NASA could delay some construction activities for at least a few months without affecting the current launch data schedule. For example, NASA could delay Yellow Creek's motor storage and dock projects, Stennis' dock project, and Kennedy's rotation processing and surge facility and dock projects. Starting all construction activities as originally planned could result in unnecessarily incurring additional costs and termination liability if the funding for FY 1993 is not provided. If Congress decides to continue the program, construction could still be completed in time to avoid schedule slippage.

1992-01-01

130

NASA Information Summaries.  

ERIC Educational Resources Information Center

This document consists of 11 "NASA Information Summaries" grouped together: (1) "Our Planets at a Glance" (PMS-010); (2) "Space Shuttle Mission Summary: 1985-1986" (PMS-005); (3) "Astronaut Selection and Training" (PMS-019); (4) "Space Station" (PMS-008); (5) "Materials Processing in Space" (PMS-026); (6) "Countdown!: NASA Launch Vehicles and…

Mar, May 1987, 1988

1988-01-01

131

NASA's Getaway Special.  

ERIC Educational Resources Information Center

The "Getaway Special" is NASA's semiofficial program for low-budget researchers, who can arrange bookings for their own space experiments on regular flights of the space shuttle. Information about arranging for NASA to take individual experiment packages is presented. (LBH)

Randal, Judith

1978-01-01

132

]Space Shuttle Independent Assessment Team  

NASA Technical Reports Server (NTRS)

The Shuttle program is one of the most complex engineering activities undertaken anywhere in the world at the present time. The Space Shuttle Independent Assessment Team (SIAT) was chartered in September 1999 by NASA to provide an independent review of the Space Shuttle sub-systems and maintenance practices. During the period from October through December 1999, the team led by Dr. McDonald and comprised of NASA, contractor, and DOD experts reviewed NASA practices, Space Shuffle anomalies, as well as civilian and military aerospace experience. In performing the review, much of a very positive nature was observed by the SIAT, not the least of which was the skill and dedication of the workforce. It is in the unfortunate nature of this type of review that the very positive elements are either not mentioned or dwelt upon. This very complex program has undergone a massive change in structure in the last few years with the transition to a slimmed down, contractor-run operation, the Shuttle Flight Operations Contract (SFOC). This has been accomplished with significant cost savings and without a major incident. This report has identified significant problems that must be addressed to maintain an effective program. These problems are described in each of the Issues, Findings or Observations summarized, and unless noted, appear to be systemic in nature and not confined to any one Shuttle sub-system or element. Specifics are given in the body of the report, along with recommendations to improve the present systems.

2000-01-01

133

NASA Human Spaceflight  

NSDL National Science Digital Library

The NASA Human Spaceflight site provides information on all crewed NASA missions, especially the Space Shuttle and International Space Station. Materials include realtime data and tracking information, updates for ongoing missions, press releases, videos and photos, and daily news and events from the various NASA centers. There is also information on historic crewed missions, and fact sheets on astronauts, shuttle missions, first flights, and scientific research facilities. Users may also subscribe to an e-mail service to receive status reports, news releases, and other current information.

2002-01-01

134

Shuttle accident stalls science plans  

NASA Astrophysics Data System (ADS)

Plans to make 1986 a uniquely productive year for U.S. space science activities ended in one horrible moment with the January 28, 1986, explosion of the space shuttle Challenger. The joyless scene at Cape Canaveral, Fla., stood in sharp contrast to the overwhelming success of Voyager 2 in its encounter with Uranus 4 days earlier. (Scientific details of that encounter will follow in upcoming issues of Eos.)Of the 15 space shuttle flights planned for fiscal year 1986, beginning October 1, 1985, a total of seven were to have carried scientific payloads for the National Aeronautics and Space Administration (NASA). The remaining eight flights were evenly divided between missions for the U.S. Department of Defense and commercial missions for NASA's paying customers. The explosion caused NASA to put its entire space shuttle program on hold to allow time for engineers to find the cause of the accident and for NASA to implement corrective measures. As Eos went to press, NASA acting administrator William R. Graham had not yet released the names of those who would serve on the formal investigative panel. “I think everybody's agreed that it will take weeks to months to unravel,” said Alexander Dessler, director of the space science laboratory at NASA's Marshall Space Flight Center near Huntsville, Ala. Dessler speculated that investigators would begin with a list of hundreds of possible causes for the explosion.

Katzoff, Judith A.

135

Shuttle Reference Data  

NASA Technical Reports Server (NTRS)

This collection of shuttle reference data contains the following information: shuttle abort history, shuttle abort modes, abort decisions, space shuttle rendezvous maneuvers, space shuttle main engines, space shuttle solid rocket boosters, hold-down posts, SRB (solid rocket boosters) ignition, electrical power distribution, hydraulic power units, thrust vector control, SBR rate gyro assemblies, SBR separation and Space Shuttle Super Super Light Weight Tank (SLWT).

2002-01-01

136

Shuttle Reference Data  

NASA Astrophysics Data System (ADS)

This collection of shuttle reference data contains the following information: shuttle abort history, shuttle abort modes, abort decisions, space shuttle rendezvous maneuvers, space shuttle main engines, space shuttle solid rocket boosters, hold-down posts, SRB (solid rocket boosters) ignition, electrical power distribution, hydraulic power units, thrust vector control, SBR rate gyro assemblies, SBR separation and Space Shuttle Super Super Light Weight Tank (SLWT).

2002-12-01

137

Space Shuttle Launch: STS-129  

NASA Video Gallery

STS-129. Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday, Nov 16, 2009, with a 2:28 p.m. EST launch from NASA's Kennedy S...

138

Shuttle Net, Tuna Net  

NASA Technical Reports Server (NTRS)

Rockwell International, NASA's prime contractor for the Space Shuttle, asked West Coast Netting (WCN) to develop a safety net for personnel working on the Shuttle Orbiter. This could not be an ordinary net, it had to be relatively small, yet have extraordinary tensile strength. It also had to be fire resistant and resistant to ultraviolet (UV) light. After six months, WCN found the requisite fiber, a polyester-like material called NOMEX. The company was forced to invent a more sophisticated twisting process since conventional methods did not approach specified breaking strength. The resulting product, the Hyperester net, sinks faster and fishes deeper, making it attractive to fishing fleets. A patented treatment for UV protection and greater abrasion resistance make Hyperester nets last longer, and the no-shrink feature is an economic bonus.

1983-01-01

139

Hypersonic aeroheating test of space shuttle vehicle configuration 3 (model 22-OTS) in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH20), volume 1  

NASA Technical Reports Server (NTRS)

The results of hypersonic wind tunnel testing of an 0.0175 scale version of the vehicle 3 space shuttle configuration are presented. Temperature measurements were made on the launch configuration, orbiter plus tank, orbiter alone, tank alone, and solid rocket booster alone to provide heat transfer data. The test was conducted at free-stream Mach numbers of 5.3 and 7.3 and at free-stream Reynolds numbers of 1.5 million, 3.7 million, 5.0 million, and 7.0 million per foot. The model was tested at angles of attack from -5 deg to 20 deg and side slip angles of -5 deg and 0 deg.

Kingsland, R. B.; Lockman, W. K.

1975-01-01

140

Results of the 0.015 scale space shuttle vehicle orbiter test (OA17) in the NASA low turbulence pressure tunnel  

NASA Technical Reports Server (NTRS)

Experimental aerodynamic investigations were conducted on a 0.015 scale model of the Space Shuttle Orbiter in a low turbulence pressure tunnel. Six component static aerodynamic force and moment data were recorded while the model was pitched from -2 deg to +26 deg angle of attack. The yaw angles during these pitch sweeps were 0 deg, -5 deg, and 7 1/2 deg. Base, sting cavity, vertical tail, wing trailing edge, and elevon pressures, as well as elevon and rudder hinge moment data were also obtained. The tests were conducted at a nominal Mach number of 0.25. The Reynolds number was varied throughout the test program from 2.5 million to 4.7 million to 10.0 million to 12.5 million.

Milam, M. D.; Petrozzi, M. T.

1974-01-01

141

Advanced Health Management System for the Space Shuttle Main Engine.  

National Technical Information Service (NTIS)

Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrop...

M. Davidson J. Stephens

2004-01-01

142

First Shuttle/747 Captive Flight  

NASA Technical Reports Server (NTRS)

The Space Shuttle prototype Enterprise rides smoothly atop NASA's first Shuttle Carrier Aircraft (SCA), NASA 905, during the first of the shuttle program's Approach and Landing Tests (ALT) at the Dryden Flight Research Center, Edwards, California, in 1977. During the nearly one year-long series of tests, Enterprise was taken aloft on the SCA to study the aerodynamics of the mated vehicles and, in a series of five free flights, tested the glide and landing characteristics of the orbiter prototype. In this photo, the main engine area on the aft end of Enterprise is covered with a tail cone to reduce aerodynamic drag that affects the horizontal tail of the SCA, on which tip fins have been installed to increase stability when the aircraft carries an orbiter. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.

1977-01-01

143

NASA Manned Launch Vehicle Lightning Protection Development.  

National Technical Information Service (NTIS)

Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch v...

J. D. Mack M. B. McCollum S. R. Jones

2009-01-01

144

Logistics service quality evaluation on logistics park  

Microsoft Academic Search

Logistics parks as infrastructures promoting modern logistics, have an extremely important role in the modern logistics system. This article firstly analyses the logistics services process of logistics parks, and finds out the elements of logistics services quality. Then, the paper designs a service quality evaluation model through analytic hierarchy process and fuzzy comprehensive evaluation methods. The evaluation model could help

Feng Ning; Zhang Mingli; Tang Saili

2011-01-01

145

Space Shuttle  

NASA Technical Reports Server (NTRS)

A general description of the space shuttle program is presented, with emphasis on its application to the use of space for commercial, scientific, and defense needs. The following aspects of the program are discussed: description of the flight system (orbiter, external tank, solid rocket boosters) and mission profile, direct benefits related to life on earth (both present and expected), description of the space shuttle vehicle and its associated supporting systems, economic impacts (including indirect benefits such as lower inflation rates), listing of participating organizations.

1975-01-01

146

Success Legacy of the Space Shuttle Program: Changes in Shuttle Post Challenger and Columbia  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the legacy of successes in the space shuttle program particularly with regards to the changes in the culture of NASA's organization after the Challenger and Columbia accidents and some of the changes to the shuttles that were made manifest as a result of the accidents..

Jarrell, George

2010-01-01

147

Payload Flight Assignments: NASA Mixed Fleet  

NASA Technical Reports Server (NTRS)

This manifest summarizes the missions planned by NASA for the Space Shuttle and Expendable Launch Vehicles (ELV's) as of the date of publication. Space Shuttle and ELV missions are shown through calendar year 2003. Space Shuttle missions for calendar years 2002-2003 are under review pending the resolution of details in the assembly sequence of the International Space Station (ISS).

Parker, Robert A. R.

1997-01-01

148

Multi-Purpose Logistics Module (MPLM) Cargo Heat Exchanger  

NASA Technical Reports Server (NTRS)

This paper describes the New Shuttle Orbiter's Multi- Purpose Logistics Modulo (MPLM) Cargo Heat Exchanger (HX) and associated MPLM cooling system. This paper presents Heat Exchanger (HX) design and performance characteristics of the system.

Zampiceni, John J.; Harper, Lon T.

2002-01-01

149

Space shuttle  

NASA Technical Reports Server (NTRS)

The transportation cost associated with space materials processing were studied to determine the feasibility of space manufacturing. The assumptions use to determining the cost estimates for a 12 year planning period are listed, and the orbitor is described in terms of payloads. Shuttle operational costs, ground operational costs, and nonrecurring investment and development costs were analyzed.

1975-01-01

150

Space Shuttle Program Update  

NASA Technical Reports Server (NTRS)

Bruce Buckingham, from NASA Public Affairs, introduces Wayne Hale, Space Shuttle Program Manager, and Mike Leinbach, NASA launch Director. Wayne Hale begins discussing the Flight Readiness Review (FRR) that has just occurred to see if they were ready to fly. He points out that the review was a debris verification review (DVR). This review was done to ascertain how well they have done to eliminate the potential for debris to come off of the External Tank (ET), or any other part of the launch vehicle. He expresses that they have made significant improvements to the ET. He gives a description of the ET that is presently on the launch pad. Mike Leinbach discusses hardware processing and the condition of the launch vehicle. Questions from the news media about possible modifications to the ice frost ramp, Solid Rocket Booster (SRB) electrical problems, ET foam loss, amount of debris loss expectation during ascent, and return to flight costs are all addressed.

2006-01-01

151

Diary of an astronaut: examination of the remains of the late Israeli astronaut Colonel Ilan Ramon's Crew Notebook recovered after the loss of NASA's space shuttle Columbia.  

PubMed

Two months after the fatal re-entering into the Earth's atmosphere of Columbia flight STS-107, the remains of Israeli astronaut Colonel Ilan Ramon's Crew Notebook were found strewn in a field in San Augustine County, TX. The random pile of papers was found to have survived the calamity of the Shuttle's disintegration remarkably well. Most of the papers recovered were torn and/or washed out to varying degrees but only mildly charred around the edges. The sheets of paper could be categorized into four groups: Group I: eight sides of paper written while in space in black ink and in pencil--Ramon's personal diary; the writing on these eight sides of paper survived well and is only missing where the pages were torn. Small fragments found in the field were physically matched to holes in the pages thus locating their original positions in the text. Group II: six sides of technical preparation notes written by Ramon before the mission. The writing on these pages was washed out entirely, but much of it was visualized using infrared luminescence. Group III: eight sides of personal notes prepared by Ramon before the mission written in blue ink. The writing on these pages was barely visible to the naked eye and not visualized by infrared luminescence, but was made largely legible by digital enhancement imaging. Group IV: a few sides of printed technical information. These pages were mostly intact and were not examined at length as they contained standard printed material. After completion of examinations at the Questioned Document Laboratory of the Israel Police, the diary was transferred to the Paper Conservation Department of the Israel Museum for preservation and strengthening treatments. PMID:17456105

Brown, Sharon; Sin-David, Laser

2007-05-01

152

Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 2: Summary of information developed in the Panel's fact-finding activities  

NASA Technical Reports Server (NTRS)

The management areas and the individual elements of the shuttle system were investigated. The basic management or design approach including the most obvious limits or hazards that are significant to crew safety was reviewed. Shuttle program elements that were studied included the orbiter, the space shuttle main engine, the external tank project, solid rocket boosters, and the launch and landing elements.

1975-01-01

153

NASA Crew Launch Vehicle Overview.  

National Technical Information Service (NTIS)

The US Vision for Space Exploration, announced January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives. These include: (1) Flying the Shuttle as safely as possible until its retirement, not later th...

D. L. Dumbacher

2006-01-01

154

NASA Pocket Statistics: 1997 Edition  

NASA Technical Reports Server (NTRS)

POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, Aeronautics and Space Transportation and NASA Procurement, Financial and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. All Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

1997-01-01

155

Results of tests to determine the aerodynamic characteristics of two potential aeromaneuvering orbit-to-orbit shuttle (AMOOS) vehicle configurations in the NASA-Ames 3.5 foot hypersonic wind tunnel  

NASA Technical Reports Server (NTRS)

An aerodynamic wind tunnel investigation was conducted in the NASA-Ames Research Center (ARC) 3.5-foot hypersonic facility to provide data for use in obtaining experimental force and static stability characteristics of two potential aeromaneuvering orbit-to-orbit shuttle (AMOOS) vehicle configurations. The experimental data were compared with the aerodynamic characteristics estimated using Newtonian theory, thus establishing the usefulness of these predictions. The candidate AMOOS configurations selected for the wind tunnel tests were the AMOOS 5B and HB configurations. Two flap configurations were tested for each candidate - a forward or compression surface flap and an aft or expansion flap. Photographs and sketches of the two configurations with different control surfaces are shown. It was determined that Newtonian theory generally predicted the aerodynamics of the 5B configuration with acceptable accuracy for all expansion flap deflections and for compression flap deflections less than or equal to 10 degrees. Flow separation upstream of large compression flap deflections was detected from the experimental data.

Ketter, F. C., Jr.

1974-01-01

156

Subsonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 of the space shuttle orbiter tested in the NASA/ARC 12-foot pressure tunnel (LA66)  

NASA Technical Reports Server (NTRS)

The investigation was conducted in the NASA/Ames Research Center 12-foot Pressure Tunnel. The model was a Langley-built 0.015-scale SSV orbiter model with remote independently operated left and right elevon surfaces. The objective of the test was to generate a detailed aerodynamic data base for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle of attack range from -4 deg to 24 deg at angles of sideslip of 0 deg and + or - 4 deg. Additional tests were made over an angle of sideslip range from -6 deg to 6 deg at selected angles of attack. The test Mach numbers were 0.22 and 0.29 and the Reynolds number was varied from 2.0 to 8.5 million per foot.

Underwood, J. M.; Parrell, H.

1976-01-01

157

Wind tunnel tests of the 0.010-scale space shuttle integrated vehicle (model 52-QT) in the NASA/Ames 3.5-foot hypersonic wind tunnel (IA18)  

NASA Technical Reports Server (NTRS)

Experimental aerodynamic investigations were conducted in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel on an 0.010-scale model of the space shuttle integrated vehicle consisting of an orbiter and external tank. The basic hypersonic stability characteristics of the orbiter attached rigidly to the external tank and the basic hypersonic stability characteristics of external tank alone simulating RTLS abort conditions were evaluated. The integrated vehicle was tested at angles of attack from- 8 deg through +30 deg and angles of sideslip of- 8 deg through +8 deg at fixed angles of attack of -4 deg, 0 deg, and +4 deg. A maximum angle of attack range of +15 deg through +40 deg was obtained for this configuration, at Mach number 7.3, for one run only. External tank alone testing was conducted at angles of attack from +8 deg through -30 deg and angles of sideslip of -8 deg at fixed angles of attack of -4 deg, 0 deg and +4 deg. Six-component force data and static base pressures were recorded during the test.

Esparza, V.; Chee, E.; Stone, J.; Mellenthin, J. A.

1975-01-01

158

Results of investigations of an 0.010-scale 140A/B configuration (model 72-OTS) of the Rockwell International space shuttle orbiter in the NASA/Langley Research Center unitary plan wind tunnel  

NASA Technical Reports Server (NTRS)

Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.

Petrozzi, M. T.; Milam, M. D.

1975-01-01

159

Future NASA spaceborne SAR missions  

Microsoft Academic Search

Two Earth-orbiting radar missions are planned for the near future by NASA-Shuttle Radar Topography Mission (SRTM) and LightSAR. The SRTM will fly aboard the Shuttle using interferometric synthetic aperture radar (IFSAR) to provide a global digital elevation map. SRTM is jointly sponsored by NASA and the National Imagery and Mapping Agency (NIMA). The LightSAR will utilize emerging technology to reduce

Jeffrey E. Hilland; Frederick V. Stuhr; Anthony Freeman; David Imel; Yuhsyen Shen; R. L. Jordan; E. R. Caro

1998-01-01

160

NASA Microgravity Outreach Activity  

NASA Technical Reports Server (NTRS)

NASA representatives prepare for another day's work answering questions and handing out posters at AirVenture 2000. Part of their demonstrations included a training model of the Middeck Glovebox used aboard the Space Shuttle and Russian Mir Space Station. This and several other devices were used to explain to the public the kinds of research that have been conducted aboard the Space Shuttle and that will continue aboard the International Space Station (ISS). The exhibit was part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

2000-01-01

161

Space Shuttle.  

ERIC Educational Resources Information Center

Presents an elementary teaching unit on NASA's space program, including teacher background information, suggested student activities, and a list of resources. Appended is a transcript of an interview conducted by elementary children with astronaut candidate Sherwood (Woody) Spring. (SJL)

Bierly, Ken; Dalheim, Mary

1981-01-01

162

Liquid lift for the Shuttle  

NASA Astrophysics Data System (ADS)

After the operational failure of a Solid Rocket Booster (SRB) led to the Space Shuttle Challenger accident, NASA reexamined the use of liquid-fueled units in place of the SRBs in order to ascertain whether they could improve safety and payload. In view of favorable study results obtained, the posibility has arisen of employing a common liquid rocket booster for the Space Shuttle, its cargo version ('Shuttle-C'), and the next-generation Advanced Launch System. The system envisioned would involve two booster units, whose four engines/unit would be fed by integral LOX and kerosene tanks. Mission aborts with one-booster unit and two-unit failures would not be catastrophic, and would respectively allow LEO or an emergency landing in Africa.

Demeis, Richard

1989-02-01

163

Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights  

NASA Technical Reports Server (NTRS)

Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.

Wedge, T. E.; Williamson, R. P.

1973-01-01

164

NASA plans to buy unmanned rockets  

NASA Astrophysics Data System (ADS)

The National Aeronautics and Space Administration (NASA) announced on May 15, 1987, that it plans to purchase the services of expendable launch vehicles (ELVs) for NASA missions. According to NASA administrator James C. Fletcher, “a major objective of this plan is to accelerate the deployment of the nation's backlog of space science missions.”“NASA's purpose in seeking expendable launch services is to lessen dependence on a single launch system, the space shuttle,” Fletcher said. “Expendable launch vehicles will help assure access to space, add flexibility to the space program, and free the shuttle for manned scientific, shuttle-unique, and important national security missions.”

165

Structural Health Monitoring of the Space Shuttle's Wing Leading Edge  

NASA Astrophysics Data System (ADS)

In a response to the Columbia Accident Investigation Board's recommendations following the loss of the Space Shuttle Columbia in 2003, NASA developed methods to monitor the orbiters while in flight so that on-orbit repairs could be made before reentry if required. One method that NASA investigated was an acoustic based impact detection system. A large array of ground tests successfully demonstrated the capability to detect and localize impact events on the Shuttle's wing structure. Subsequently, a first generation impact sensing system was developed and deployed on the Shuttle Discovery, the first Shuttle scheduled for return to flight.

Madaras, Eric I.; Prosser, William H.; Studor, George; Gorman, Michael R.; Ziola, Steven M.

2006-03-01

166

Shuttle Hitchhiker Experiment Launcher System (SHELS)  

NASA Technical Reports Server (NTRS)

NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.

Daelemans, Gerry

1999-01-01

167

SESAC statement on shuttle accident  

NASA Astrophysics Data System (ADS)

The Space and Earth Science Advisory Committee (SESAC) of the NASA Advisory Council (NAC) shares NASA's and the nation's grief in the loss of the Challenger crew—seven exceptional individuals whose lives were dedicated to some of our country's loftiest goals. Over the years, these dedicated individuals and their fellow astronauts have worked closely with the scientific community to ensure that the scientific aspects of the United States space program would be productive in the era of the space shuttle. Through their efforts, the value of manned space flight for accomplishing important research in several areas of space science has been unambiguously demonstrated. Further, as space science has become increasingly an international enterprise, the capabilities of the space shuttle have become central to much scientific planning worldwide.

168

Structural Health Monitoring of the Space Shuttle’s Wing Leading Edge  

Microsoft Academic Search

In a response to the Columbia Accident Investigation Board’s recommendations following the loss of the Space Shuttle Columbia in 2003, NASA developed methods to monitor the orbiters while in flight so that on-orbit repairs could be made before reentry if required. One method that NASA investigated was an acoustic based impact detection system. A large array of ground tests successfully

Eric I. Madaras; William H. Prosser; George Studor; Michael R. Gorman; Steven M. Ziola

2006-01-01

169

NASA Planetary Visualization Tool  

Microsoft Academic Search

NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view

P. Hogan; R. Kim

2004-01-01

170

Boeing 747 jet aircraft modified for use during Space Shuttle ALT  

NASA Technical Reports Server (NTRS)

A Boeing 747 jet aircraft, modified for use by NASA for the Space Shuttle Orbiter Approach and Landing Tests (ALT), is seen in flight. Note the added structural supports atop the huge aircraft. The Shuttle Orbiter will ride 'piggy-back' atop the NASA 747 for the ALTs. Also, the NASA 747 will be used to transport Orbiters to the Space Shuttle Launch sites. Three much smaller T-38 jet trainer planes follow behind the big plane.

1977-01-01

171

The Shuttle Era  

NASA Technical Reports Server (NTRS)

An overview of the Space Shuttle Program is presented. The missions of the space shuttle orbiters, the boosters and main engine, and experimental equipment are described. Crew and passenger accommodations are discussed as well as the shuttle management teams.

1981-01-01

172

Results of Experimental Investigations to Determine External Tank Protuberance Loads Using a 0.03-Scale Model of the Space Shuttle Launch Configuration (Model 47-OTS) in the NASA/ARC Unitary Plan Wind Tunnel, Volume 2  

NASA Technical Reports Server (NTRS)

Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA19OA/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA19OA) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA19OB). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline; (2) GO2 pressure line; (3) LO2 antigeyser line; (4) GH2 pressure line; (5) LH2 tank cable tray; (6) LO2 tank cable tray; (7) Bipod; (8) ET/SRB cable tray; and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above; 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements; Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures; and Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

Houlihan, S. R.

1992-01-01

173

Results of experimental investigations to determine external tank protuberance loads using a 0.03-scale model of the Space Shuttle launch configuration (model 47-OTS) in the NASA/ARC unitary plan wind tunnel, volume 1  

NASA Technical Reports Server (NTRS)

Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA190A/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA190A) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA190B). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline, (2) GO2 pressure line, (3) LO2 antigeyser line, (4) GH2 pressure line, (5) LH2 tank cable tray, (6) LO2 tank cable tray, (7) Bipod, (8) ET/SRB cable tray, and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: (1) Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above. (2) 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements. (3) Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures. (4) Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.

Houlihan, S. R.

1992-01-01

174

NASA highlights, 1986 - 1988  

NASA Technical Reports Server (NTRS)

Highlights of NASA research from 1986 to 1988 are discussed. Topics covered include Space Shuttle flights, understanding the Universe and its origins, understanding the Earth and its environment, air and space transportation, using space to make America more competitive, using space technology an Earth, strengthening America's education in science and technology, the space station, and human exploration of the solar system.

1990-01-01

175

A Brief History of NASA  

NSDL National Science Digital Library

This brief history of the National Aeronautics and Space Administration (NASA) begins with the agency's origins during the Cold War and recounts the early manned and unmanned missions (Mercury, Gemini, Pioneer, Voyager, and others), the landmark Apollo Moon missions, and NASA's later projects, such as the Space Shuttle, the Hubble telecope, and the International Space Station.

176

NASA Video Catalog  

NASA Technical Reports Server (NTRS)

This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2006-01-01

177

Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel on the space shuttle program. Part 2: Summary of information developed in the panel's fact-finding activities  

NASA Technical Reports Server (NTRS)

Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.

1976-01-01

178

Shuttle Atlantis Landing at Edwards  

NASA Technical Reports Server (NTRS)

The Space Shuttle Atlantis touches down at 3:35 p.m. PST on 6 December 1988 at NASA's then Ames-Dryden Flight Research Facility at the conclusion of the STS-27 Department of Defense mission. Landing took place on runway 17 of the Rogers Dry Lake, concluding the 4-day, 9-hour, 6-minute mission. The five-man crew was led by Commander Robert L. Gibson and included Pilot Guy S. Gardner; Mission Specialists Jerry L. Ross, William M. Sheperd, and Richard M. Mullane. Atlantis was launched on December 2 from NASA's Kennedy Space Center. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

1988-01-01

179

Shuttle Discovery Mated to 747 SCA  

NASA Technical Reports Server (NTRS)

The Space Shuttle Discovery rides atop '905,' NASA's 747 Shuttle Carrier Aircraft, on its delivery flight from California to the Kennedy Space Center, Florida, where it was prepared for its first orbital mission for 30 August to 5 September 1984. The NASA 747, obtained in 1974, has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. A second modified 747, no. 911, went in to service in November 1990 and is also used to ferry orbiters to destinations where ground transportation is not practical. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, Cali

1983-01-01

180

Direct Visualization of Shock Waves in Supersonic Space Shuttle Flight  

NASA Technical Reports Server (NTRS)

Direct observation of shock boundaries is rare. This Technical Memorandum describes direct observation of shock waves produced by the space shuttle vehicle during STS-114 and STS-110 in imagery provided by NASA s tracking cameras.

OFarrell, J. M.; Rieckhoff, T. J.

2011-01-01

181

Behind the Scenes: Shuttle Crawls to Launch Pad  

NASA Video Gallery

In this episode of NASA Behind the Scenes, take a look at what's needed to roll a space shuttle out of the Vehicle Assembly Building and out to the launch pad. Astronaut Mike Massimino talks to som...

182

Stennis Holds Last Planned Space Shuttle Engine Test  

NASA Technical Reports Server (NTRS)

With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

2009-01-01

183

Report of the Presidential Commission on the Space Shuttle Challenger Accident. Volume 2 and 3.  

National Technical Information Service (NTIS)

Table of Contents(Appendices): Independent Test Team Report to the Commission; Personal Observations on Reliability of Shuttle; Human Factors Analysis; Flight Readiness Review Treatment of O-ring Problems; NASA Pre-Launch Activities Team Report; NASA Miss...

1986-01-01

184

ISS Logistics Hardware Disposition and Metrics Validation  

NASA Technical Reports Server (NTRS)

I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

Rogers, Toneka R.

2010-01-01

185

NASA policy on pricing shuttle launch services  

NASA Technical Reports Server (NTRS)

The paper explains the rationale behind key elements of the pricing policy for STS, the major features of the non-government user policy, and some of the stimulating features of the policy which will open space to a wide range of new users. Attention is given to such major policy features as payment schedule, cost and standard services, the two phase pricing structure, optional services, shared flights, cancellation and postponement, and earnest money.

Smith, J. M.

1977-01-01

186

STS-105 Shuttle Orbiter Discovery  

NASA Technical Reports Server (NTRS)

This is a view of the Space Shuttle Discovery as it approaches the International Space Station (ISS) during the STS-105 mission. Visible in the payload bay of Discovery are the Multipurpose Logistics Module (MPLM) Leonardo at right, which stores various supplies and experiments to be transferred into the ISS; at center, the Integrated Cargo Carrier (ICC) which carries the Early Ammonia Servicer (EAS); and two Materials International Space Station Experiment (MISSE) containers at left. Aboard Discovery were the ISS Expedition Three crew, who were to replace the Expedition Two crew that had been living on the ISS for the past five months.

2001-01-01

187

Shuttle bioresearch laboratory breadboard simulations  

NASA Technical Reports Server (NTRS)

Laboratory breadboard simulations (Tests I and II) were conducted to test concepts and assess problems associated with bioresearch support equipment, facilities, and operational integration for conducting manned earth orbital Shuttle missions. This paper describes Test I and discusses the major observations made in Test II. The tests emphasized candidate experiment protocols and requirements: Test I for biological research and Test II for crew members (simulated), subhuman primates, and radioisotope tracer studies on lower organisms. The procedures and approaches developed for these simulation activities could form the basis for Spacelab simulations and developing preflight integration, testing, and logistics of flight payloads.

Taketa, S. T.

1975-01-01

188

Remote observations of reentering spacecraft including the space shuttle orbiter  

NASA Astrophysics Data System (ADS)

Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.

Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, Jay H.; Gibson, David M.

189

NASA Human Spaceflight Conjunction Assessment: Recent Conjunctions of Interest.  

National Technical Information Service (NTIS)

This viewgraph presentation discusses a brief history of NASA Human Spaceflight Conjunction Assessment (CA) activities, an overview of NASA CA process for ISS and Shuttle, and recent examples from Human Spaceflight conjunctions.

A. C. Browns

2010-01-01

190

NASA Human Spaceflight Conjunction Assessment: Recent Conjunctions of Interest  

NASA Technical Reports Server (NTRS)

This viewgraph presentation discusses a brief history of NASA Human Spaceflight Conjunction Assessment (CA) activities, an overview of NASA CA process for ISS and Shuttle, and recent examples from Human Spaceflight conjunctions.

Browns, Ansley C.

2010-01-01

191

Managing Reverse Logistics or Reversing Logistics Management?  

Microsoft Academic Search

In the past, supply chains were busy fine-tuning the logistics from raw material to the end customer. Today an increasing flow of products is going back in the chain. Thus, companies have to manage reverse logistics as well.This thesis contributes to a better understanding of reverse logistics. The thesis brings insights on reverse logistics decision-making and it lays down theoretical

Brito de M. P

2004-01-01

192

Protecting proprietary rights - A potential Shuttle user's view  

NASA Technical Reports Server (NTRS)

Maintaining a high degree of industrial security in the multiple-payload Shuttle environment poses a number of problems for NASA. As a part of Battelle-Columbus' support of NASA's User Development Program, this paper presents a potential user's perspective on this situation. The need for security, the nature of the problem, and precedents for NASA security measures are discussed. Eleven policy guidelines representing desirable features from a potential user's viewpoint are presented for NASA consideration.

Day, J. B.

1977-01-01

193

STS-102 Astronaut Thomas Views International Space Station Through Shuttle Window  

NASA Technical Reports Server (NTRS)

STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

2001-01-01

194

Applied Logistics Research.  

National Technical Information Service (NTIS)

The Applied Logistics Research program was initiated by the Air Force Research Laboratory's Logistics Readiness Branch (AFRL/HEAL) to provide specialized research support to develop, demonstrate, and evaluate logistics technologies. Specific research task...

P. J. Vincent

2006-01-01

195

Exploiting operational vehicles for in-flight research - Space Shuttle and Space Station Freedom  

NASA Technical Reports Server (NTRS)

Five Orbiter Experiments in which NASA's Langley Research Center has had significant involvement are described. These experiments are the Shuttle Infrared Leeside Temperature Sensing experiment, the Shuttle Upper Atmosphere Mass Spectrometer experiment, the High Resolution Accelerometer Package experiment, the Orbital Acceleration Research experiment, and the Space Station structural characterization experiment. The Shuttle Entry Air Data System is also described.

Holloway, Paul F.; Breckenridge, Roger A.

1989-01-01

196

Infrared spectral measurement of Space Shuttle glow  

NASA Technical Reports Server (NTRS)

The USAF and NASA successfully conducted infrared spectral measurements of the Space Shuttle glow during STS-39. Preliminary analysis indicates that NO, NO(+), OH, and CO produce infrared glow during quiescent orbiter conditions. During orbiter thruster firings the glow intensities in the infrared are enhanced by factors of 10X and 100X with significant changes in spectral distribution. These measurements were obtained with the Spacecraft Kinetic Infrared Test payload which included a cryogenic infrared circular variable filter infrared spectrometer covering the 0.7 to 5.4 microns wavelength region. Approximately 14,000 spectra of Shuttle glow, airglow, aurora, and the orbiter environment were obtained during the eight day mission. The STS-39 Space Shuttle Discovery was launched from the NASA Kennedy Space Center on 28 April, 1991 into a 57-deg inclination circular orbit at an altitude of 260 km.

Ahmadjian, Mark; Jennings, D. E.; Mumma, M. J.; Espenak, F.; Rice, C. J.; Russell, R. W.; Green, B. D.

1992-01-01

197

Results of test 0A82 in the NASA/LRC 31 inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction and to investigate RT real gas effects  

NASA Technical Reports Server (NTRS)

Tests were conducted in the NASA Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel to determine RCS jet interaction effects on hypersonic aerodynamic characteristics and to investigate RT (gas constant times temperature) scaling effects on the RCS similitude. The model was an 0.010-scale replica of the Space Shuttle Orbiter Configuration 3. Hypersonic aerodynamic data were obtained from tests at Mach 10.3 and dynamic pressures of 200, 150, 125, and 100 psf. The RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 20 psf were investigated.

Thornton, D. E.

1975-01-01

198

Shuttle Discovery Landing at Edwards  

NASA Technical Reports Server (NTRS)

The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the

1989-01-01

199

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

On Launch Pad 39A, the Rotating Service Structure has rolled back to reveal Space Shuttle Atlantis poised for launch. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

200

The Shuttle Radar Topography Mission  

NASA Technical Reports Server (NTRS)

On February 22, 2000 Space Shuttle Endeavour landed at Kennedy Space Center, completing the highly successful 11-day flight of the Shuttle Radar Topography Mission (SRTM). Onboard were over 300 high-density tapes containing data for the highest resolution, most complete digital topographic map of Earth ever made. SRTM is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission was designed to use a single-pass radar interferometer to produce a digital elevation model (DEM) of the Earth's land surface between about 60 deg north and 56 deg south latitude. When completed, the DEM will have 30 m pixel spacing and about 15 m vertical accuracy. Two orthorectified image mosaics (one from the ascending passes with illumination from the southeast and one from descending passes with illumination from the southwest) will also be produced.

Farr, Tom G.; Kobrick, Mike

2000-01-01

201

Shuttle seated extraction feasibility study  

NASA Astrophysics Data System (ADS)

Following the Space Shuttle Challenger accident, serious attention has turned to in-flight escape. Prior to the resumption of flight, a manual bailout system was qualified and installed. For the long term, a seated extraction system to expand the escape envelope is being investigated. This paper describes a 1987 study, conducted jointly by NASA/Johnson Space Center and Langley Research Center, to determine the feasibility of modifying the Space Shuttle Orbiters to incorporate the seated extraction system. Results of the study are positive, indicating retrofit opportunity and high probability of escape for early ascent, late entry, and even for uncontrolled flight such as the Challenger breakup. The system, as envisioned, can extract seven crewmembers within two seconds.

Onagel, Steven R.; Bement, Laurence J.

202

An Analysis of Shuttle Crew Scheduling Violations  

NASA Technical Reports Server (NTRS)

From the early years of the Space Shuttle program, National Aeronautics and Space Administration (NASA) Shuttle crews have had a timeline of activities to guide them through their time on-orbit. Planners used scheduling constraints to build timelines that ensured the health and safety of the crews. If a constraint could not be met it resulted in a violation. Other agencies of the federal government also have scheduling constraints to ensure the safety of personnel and the public. This project examined the history of Space Shuttle scheduling constraints, constraints from Federal agencies and branches of the military and how these constraints may be used as a guide for future NASA and private spacecraft. This was conducted by reviewing rules and violations with regard to human aerospace scheduling constraints, environmental, political, social and technological factors, operating environment and relevant human factors. This study includes a statistical analysis of Shuttle Extra Vehicular Activity (EVA) related violations to determine if these were a significant producer of constraint violations. It was hypothesized that the number of SCSC violations caused by EVA activities were a significant contributor to the total number of violations for Shuttle/ISS missions. Data was taken from NASA data archives at the Johnson Space Center from Space Shuttle/ISS missions prior to the STS-107 accident. The results of the analysis rejected the null hypothesis and found that EVA violations were a significant contributor to the total number of violations. This analysis could help NASA and commercial space companies understand the main source of constraint violations and allow them to create constraint rules that ensure the safe operation of future human private and exploration missions. Additional studies could be performed to evaluate other variables that could have influenced the scheduling violations that were analyzed.

Bristol, Douglas

2012-01-01

203

NASA solar array flight experiment  

NASA Astrophysics Data System (ADS)

The NASA large flexible solar array space shuttle flight experiment is described. The 32 x 4 m wing is deployed from the shuttle bay, and experiments in electrical output, multiple deployment, and structural dynamics are planned. Both 2 x 4 cm and 5.9 x 5.9 cm cell assemblies on the array blanket are evaluated. Safety/hazards provisions are described, including emergency jettison provisions. Ground testing and hardware fabrication are summarized.

Turner, G.; Hill, H.

1982-06-01

204

NASA solar array flight experiment  

NASA Technical Reports Server (NTRS)

The NASA large flexible solar array space shuttle flight experiment is described. The 32 x 4 m wing is deployed from the shuttle bay, and experiments in electrical output, multiple deployment, and structural dynamics are planned. Both 2 x 4 cm and 5.9 x 5.9 cm cell assemblies on the array blanket are evaluated. Safety/hazards provisions are described, including emergency jettison provisions. Ground testing and hardware fabrication are summarized.

Turner, G.; Hill, H.

1982-01-01

205

Shuttle Entry Imaging Using Infrared Thermography  

NASA Technical Reports Server (NTRS)

During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne imaging platforms used within DoD along with agency assets developed and optimized for use during Shuttle ascent to demonstrate capability (i.e., tracking, acquisition of multispectral data, spatial resolution) and identify system limitations (i.e., radiance modeling, saturation) using state-of-the-art imaging instrumentation and communication systems. Global infrared intensity data have been transformed to temperature by comparison to Shuttle flight thermocouple data. Reasonable agreement is found between the flight thermography images and numerical prediction. A discussion of lessons learned and potential application to a potential Shuttle boundary layer transition flight test is presented.

Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

2007-01-01

206

Shuttle bay telerobotics demonstration  

NASA Technical Reports Server (NTRS)

A demonstration of NASA's robotics capabilities should be a balanced agenda of servicing and assembly tasks combined with selected key technical experiments. The servicing tasks include refueling and module replacement. Refueling involves the mating of special fluid connectors while module replacement requires an array of robotic technologies such as special tools, the arm of a logistics tool, and the precision mating of orbital replacement units to guides. The assembly task involves the construction of a space station node and truss structure. The technological experiments will focus on a few important issues: the precision manipulation of the arms by a teleoperator, the additional use of several mono camera views in conjunction with the stereo system, the use of a general purpose end effector versus a caddy of tools, and the dynamics involved with using a robot with a stabilizer.

Chun, W.; Cogeos, P.

1987-01-01

207

NASA Celebrates Atlantis as Pioneer, Inspiration  

NASA Video Gallery

Astronauts and senior NASA management noted the contributions of space shuttle Atlantis as they signed the spacecraft over for a new mission of inspiration as it goes on public display at the Kenne...

208

NASA's Increase of Awesome to Continue  

NASA Video Gallery

Wondering what's up post-shuttle, popular Internet vlogger Hank Green of Vlogbrothers gets the straight skinny from Charlie Bolden and others at NASA about the agency's plans for future human space...

209

Liftoff of Space Shuttle Atlantis on mission STS-98  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis erupts from Launch Pad 39A amid billows of smoke and steam as it climbs into the early evening sky. Nearby, pelicans also launch from their perches at the roar of the liftoff. Launch occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:00 p.m. EST.

2001-01-01

210

Third Party Logistics Choice  

Microsoft Academic Search

Logistics managers were surveyed regarding decisions (1) to use third party logistics services and (2) practices regarding the selection of third party providers. Responses suggest that decisions to use third party logistics services are not driven by strong preconceptions, pro or con, regarding the attractiveness of the third party option. Further, attitudes toward the use of third party logistics services

Michael A. McGinnis; C. M. Kochunny; Kenneth B. Ackerman

1995-01-01

211

The Shuttle electrodynamic tether mission  

NASA Technical Reports Server (NTRS)

The Tethered Satellite System (TSS) is a Shuttle-based facility being developed by NASA and the Italian Space Agency under a cooperative agreement. The joint development work began in 1984, and the first TSS mission is currently manifested in the fall of 1991. Its main objective is to verify the capability of the facility to deploy, control, and retrieve a tethered satellite. Additionally, the mission will demonstrate the electrodynamic science capability of the system and perform various scientific experiments. The instrumentation, the scientific objectives, and the planned investigations are summarized; references are given to more detailed accounts.

Storey, L. R. O.

1991-01-01

212

Shuttle Showcase: Firsts  

NASA Video Gallery

The space shuttle has defined an era and broken boundaries both in space and on Earth. Among the hundreds of people who have flown on the shuttle, many have been firsts -- for their race, their cou...

213

Shuttle Derived Atmosphere.  

National Technical Information Service (NTIS)

The shuttle descends along a rather shallow path, thus providing some information on the horizontal structure of the atmosphere. Small scale structures were suggested (shears, potholes). The best estimates of the shuttle drag coefficient and projected are...

J. Findlay

1987-01-01

214

Space Shuttle Debris Transport  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the assessment of debris damage to the Space Shuttle, and the use of computation to assist in the space shuttle applications. The presentation reviews the sources of debris, a mechanism for determining the probability of damaging debris impacting the shuttle, tools used, eliminating potential damaging debris sources, the use of computation to assess while inflight damage, and a chart showing the applications that have been used on increasingly powerful computers simulate the shuttle and the debris transport.

Gomez, Reynaldo J., III

2010-01-01

215

Structural Health Monitoring of the Space Shuttle's Wing Leading Edge  

Microsoft Academic Search

In a response to the Columbia Accident Investigation Board's recommendations following the loss of the Space Shuttle Columbia in 2003, NASA developed methods to monitor the orbiters while in flight so that on-orbit repairs could be made before reentry if required. One method that NASA investigated was an acoustic based impact detection system. A large array of ground tests successfully

Eric I. Madaras; William H. Prosser; George Studor; Michael R. Gorman; Steven M. Ziola

2006-01-01

216

Space Shuttle Propulsion Finishing Strong  

NASA Technical Reports Server (NTRS)

Numerous lessons have been documented from the Space Shuttle Propulsion elements. Major events include loss of the SRB's on STS-4 and shutdown of an SSME during ascent on STS- 51F. On STS-112 only half the pyrotechnics fired to release the vehicle from the launch pad, a testament for redundancy. STS-91 exhibited freezing of a main combustion chamber pressure measurement and on STS-93 nozzle tube ruptures necessitated a low liquid level oxygen cut off of the main engines. A number of on pad aborts were experienced during the early program resulting in delays. And the two accidents, STS-51L and STS-107, had unique heritage in history from early Program decisions and vehicle configuration. Following STS-51L significant resources were invested in developing fundamental physical understanding of solid rocket motor environments and material system behavior. Human rating of solid rocket motors was truly achieved. And following STS-107, the risk of ascent debris was better characterized and controlled. Situational awareness during all mission phases improved, and the management team instituted effective risk assessment practices. These major events and lessons for the future are discussed. The last 22 flights of the Space Shuttle, following the Columbia accident, were characterized by remarkable improvement in safety and reliability. Numerous problems were solved in addition to reduction of the ascent debris hazard. The propulsion system elements evolved to high reliability and heavy lift capability. The Shuttle system, though not a operable as envisioned in the 1970's, successfully assembled the International Space Station (ISS) and provided significant logistics and down mass for ISS operations. By the end of the Program, the remarkable Space Shuttle Propulsion system achieved very high performance, was largely reusable, exhibited high reliability, and is a heavy lift earth to orbit propulsion system. The story of this amazing system is discussed in detail in the paper.

Owen, James W.; Singer, Jody

2011-01-01

217

Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 3  

NASA Technical Reports Server (NTRS)

Heat-transfer data for the 0.0175-scale space shuttle vehicle 3 are presented, and interference heating effects were investigated by a model build-up technique of the orbiter. The test program was conducted at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1,500,000 and 5,000,000.

Foster, T. F.; Lockman, W. K.

1975-01-01

218

Space Shuttle aft propulsion system enhancements  

NASA Technical Reports Server (NTRS)

The characteristics of an aft propulsion system for the Space Shuttle Orbiter that would combine the propellant storage and pressurization systems of the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS) are discussed. The paper describes the current OMS and RCS design development, the operation and flight experience, and the status of the aft propulsion system study (which is a part of the NASA Assured Shuttle Availability Program). Diagrams of the OMS, the RCS, and the integrated aft propulsion system are presented.

Hooper, John C., III; Riccio, Joseph R., III

1990-01-01

219

STS-129 shuttle crew visits Stennis  

NASA Technical Reports Server (NTRS)

Members of the STS-129 space shuttle crew visited NASA's John C. Stennis Space Center on Jan. 19 to share details of their November visit to the International Space Station. During their 11-day mission aboard shuttle Atlantis, crew members delivered equipment, supplies and spare parts to the ISS. Following their mission report, the astronauts traded commemorative plaques with Stennis Space Center Director Gene Goldman (center). Astronauts visiting Stennis were (l to r) Pilot Barry Wilmore, Mission Specialist Randy Bresnik, Commander Charles Hobaugh and Mission Specialists Mike Foreman and Robert Satcher.

2010-01-01

220

STS-129 shuttle crew visits Stennis  

NASA Technical Reports Server (NTRS)

Members of the STS-129 space shuttle crew visited NASA's John C. Stennis Space Center on Jan. 19 to share details of their November visit to the International Space Station. During their 11-day mission aboard shuttle Atlantis, crew members delivered equipment, supplies and spare parts to the ISS. Following their mission report, astronauts visited with Stennis employees during a brief reception. Astronauts visiting Stennis were Pilot Barry Wilmore, Mission Specialist Randy Bresnik, Commander Charles Hobaugh and Mission Specialists Mike Foreman and Robert Satcher.

2010-01-01

221

Shuttle Student Involvement Project for Secondary Schools  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) has initiated the Shuttle Student Involvement Project for Secondary Schools (SSIP-S), an annual nationwide competition to select student proposals for experiments suitable for flight aboard the Space Shuttle. The objective of the project is to stimulate the study of science and technology in grades 9 through 12 by directly relating students to a space research program. This paper will analyze the first year of the project from a standpoint of how the competition was administered; the number and types of proposals that were submitted; and will discuss the process involved in preparing the winning experiments for eventual flight.

Wilson, G. P.; Ladwig, A.

1981-01-01

222

Simulating Avionics Upgrades to the Space Shuttles  

NASA Technical Reports Server (NTRS)

Cockpit Avionics Prototyping Environment (CAPE) is a computer program that simulates the functions of proposed upgraded avionics for a space shuttle. In CAPE, pre-existing space-shuttle-simulation programs are merged with a commercial-off-the-shelf (COTS) display-development program, yielding a package of software that enables high-fi46 NASA Tech Briefs, September 2008 delity simulation while making it possible to rapidly change avionic displays and the underlying model algorithms. The pre-existing simulation programs are Shuttle Engineering Simulation, Shuttle Engineering Simulation II, Interactive Control and Docking Simulation, and Shuttle Mission Simulator playback. The COTS program Virtual Application Prototyping System (VAPS) not only enables the development of displays but also makes it possible to move data about, capture and process events, and connect to a simulation. VAPS also enables the user to write code in the C or C++ programming language and compile that code into the end-product simulation software. As many as ten different avionic-upgrade ideas can be incorporated in a single compilation and, thus, tested in a single simulation run. CAPE can be run in conjunction with any or all of four simulations, each representing a different phase of a space-shuttle flight.

Deger, Daniel; Hill, Kenneth; Braaten, Karsten E.

2008-01-01

223

NASA's approach to space commercialization  

NASA Technical Reports Server (NTRS)

The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

Gillam, Isaac T., IV

1986-01-01

224

Shuttle plate braiding machine  

NASA Technical Reports Server (NTRS)

A method and apparatus for moving yarn in a selected pattern to form a braided article. The apparatus includes a segmented grid of stationary support elements and a plurality of shuttles configured to carry yarn. The shuttles are supported for movement on the grid assembly and each shuttle includes a retractable plunger for engaging a reciprocating shuttle plate that moves below the grid assembly. Such engagement at selected times causes the shuttles to move about the grid assembly in a selected pattern to form a braided article of a particular geometry.

Huey, Jr., Cecil O. (Inventor)

1994-01-01

225

STS-92 - Towing of Shuttle Discovery and Boeing 747 Shuttle Carrier Aircraft (SCA)  

NASA Technical Reports Server (NTRS)

The Space Shuttle Discovery sits atop one of NASA's modified Boeing 747 Shuttle Carrier Aircraft as the unusual piggyback duo is towed along a taxiway at NASA's Dryden Flight Research Center at Edwards, California. The Discovery was ferried from NASA Dryden to NASA's Kennedy Space Center in Florida on November 2, 2000, after extensive pre-ferry servicing and preparations. STS-92 was the 100th mission since the fleet of four Space Shuttles began flying in 1981. (Due to schedule changes, missions are not always launched in the order that was originally planned.) The almost 13-day mission, the 46th Shuttle mission to land at Edwards, was the last construction mission for the International Space Station prior to the first scientists taking up residency in the orbiting space laboratory the following month. The seven-member crew on STS-92 included mission specialists Koichi Wakata, Michael Lopez-Alegria, Jeff Wisoff, Bill McArthur and Leroy Chiao, pilot Pam Melroy and mission commander Brian Duffy.

2000-01-01

226

Shuttle environment database  

NASA Technical Reports Server (NTRS)

The proceedings of a workshop on the development of a data base for the Space Shuttle environment are summarized. The data base is intended for use by experimenters in designing scientific payloads for Shuttle missions. The status of currently available data on the Shuttle environment is reviewed, with emphasis given to ten specific topics which are believed to be of concern to Shuttle experiment designers. These topics include: flight dynamics, vibration and acoustics, orbiter motion effects, EMI, and thermal and humidity effects. Attention is also given to: the Shuttle particulate environment; surface interactions inside and on the exterior of the spacecraft, and the natural Shuttle environment. Recent experimental results concerning Vehicle Glow on the spacecraft surface material are discussed in detail. A schematic diagram describing the functional organization of computer hardware for the Shuttle environment data base is provided.

Lauriente, M.; Sharp, G. W.

1985-01-01

227

Space Shuttle Status News Conference  

NASA Technical Reports Server (NTRS)

Richard Gilbech, External Tank "Tiger Team" Lead, begins this space shuttle news conference with detailing the two major objectives of the team. The objectives include: 1) Finding the root cause of the foam loss on STS-114; and 2) Near and long term improvements for the external tank. Wayne Hale, Space Shuttle Program Manager, presents a chart to explain the external tank foam loss during STS-114. He gives a possible launch date for STS-121 after there has been a repair to the foam on the External Tank. He further discusses the changes that need to be made to the surrounding areas of the plant in New Orleans, due to Hurricane Katrina. Bill Gerstemaier, NASA Associate Administrator for Space Operations, elaborates on the testing of the external tank foam loss. The discussion ends with questions from the news media about a fix for the foam, replacement of the tiles, foam loss avoidance, the root cause of foam loss and a possible date for a new external tank to be shipped to NASA Kennedy Space Center.

2005-01-01

228

Methods and Techniques for Risk Prediction of Space Shuttle Upgrades  

NASA Technical Reports Server (NTRS)

Since the Space Shuttle Accident in 1986, NASA has been trying to incorporate probabilistic risk assessment (PRA) in decisions concerning the Space Shuttle and other NASA projects. One major study NASA is currently conducting is in the PRA area in establishing an overall risk model for the Space Shuttle System. The model is intended to provide a tool to predict the Shuttle risk and to perform sensitivity analyses and trade studies including evaluation of upgrades. Marshall Space Flight Center (MSFC) and its prime contractors including Pratt and Whitney (P&W) are part of the NASA team conducting the PRA study. MSFC responsibility involves modeling the External Tank (ET), the Solid Rocket Booster (SRB), the Reusable Solid Rocket Motor (RSRM), and the Space Shuttle Main Engine (SSME). A major challenge that faced the PRA team is modeling the shuttle upgrades. This mainly includes the P&W High Pressure Fuel Turbopump (HPFTP) and the High Pressure Oxidizer Turbopump (HPOTP). The purpose of this paper is to discuss the various methods and techniques used for predicting the risk of the P&W redesigned HPFTP and HPOTP.

Hoffman, Chad R.; Pugh, Rich; Safie, Fayssal

1998-01-01

229

The October 1973 space shuttle traffic model, revision 2  

NASA Technical Reports Server (NTRS)

Traffic model data for the space shuttle for calendar years 1980 through 1991 are presented along with some supporting and summary data. This model was developed from the 1973 NASA Payload Model, dated October 1973, and the NASA estimate of the 1973 Non-NASA/Non-DoD Payload Model. The estimates for the DoD flights included are based on the 1971 DoD Mission Model.

1974-01-01

230

Indonesian Navy Logistic System.  

National Technical Information Service (NTIS)

The Indonesian Navy logistic system as it exists today is a network of people, resources, organizations, and processes, regularly interacting to carry out the vital function of providing adequate logistic support of all kinds to the Naval Operating Forces...

L. T. Koesnandar

1974-01-01

231

Simple Logistic Regression  

NSDL National Science Digital Library

This page has two calculators. One will cacluate a simple logistic regression, while the other calculates the predicted probability and odds ratio. There is also a brief tutorial covering logistic regression using an example involving infant gestational age and breast feeding. Please note, however, that the logistic regression accomplished by this page is based on a simple, plain-vanilla empirical regression.

Lowry, Richard, 1940-

2008-09-05

232

Low supersonic stability and control characteristics of .015-scale (remotely controlled elevon) model 44-0 of space shuttle orbiter tests in NASA/LaRC 4-ft UPWT (leg 1) (LA63A). [wind tunnel stability tests  

NASA Technical Reports Server (NTRS)

A Langley-built 0.015-scale Space Shuttle Orbiter model with remote independently operated left and right elevon surfaces was tested. The objective of the test was to generate a detailed aerodynamic data base for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle of attack range from -2 deg to 20 deg at angles of sideslip of 0 deg and plus or minus 2 deg. Additional tests were made over an angle of range from -6 deg to 8 deg at selected angles of attack. The test Mach numbers were 1.5 and 2.0 while the Reynolds number held at a constant two million per foot. Photographs of the test configuration are shown.

Gamble, J. D.

1975-01-01

233

Results of an aerodynamic force and moment investigation of an 0.015-scale configuration 3 space shuttle orbiter in the NASA/ARC 3.5-foot hypersonic wind tunnel (OA58)  

NASA Technical Reports Server (NTRS)

The primary objective of the test was to obtain stability and control data for the basic configuration and an alternate configuration for the Space Shuttle Orbiter. Pitch runs were made with 0 deg of sideslip at Mach numbers of 5.3, 7.3 and 10.3. Six-component force data and fuselage base pressures were recorded for each run. Shadowgraph pictures were taken at selected points. Model 420 was used for the tests.

Dziubala, T. J.; Cleary, J. W.

1974-01-01

234

Orbital impacts and the Space Shuttle windshield  

NASA Technical Reports Server (NTRS)

The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have changes over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

Edelstein, Karen S.

1995-01-01

235

Orbital impacts and the space shuttle windshield  

NASA Astrophysics Data System (ADS)

The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have chnaged over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures, and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

Edelstein, Karen S.

1995-06-01

236

Orbital impacts and the Space Shuttle windshield  

NASA Astrophysics Data System (ADS)

The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have changes over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

Edelstein, Karen S.

1995-03-01

237

Issues in NASA program and project management  

NASA Technical Reports Server (NTRS)

This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.

Hoban, Francis T. (editor)

1989-01-01

238

NASA Video Catalog. Supplement 14  

NASA Technical Reports Server (NTRS)

This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2004-01-01

239

NASA Video Catalog. Supplement 15  

NASA Technical Reports Server (NTRS)

This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2005-01-01

240

NASA Video Catalog. Supplement 13  

NASA Technical Reports Server (NTRS)

This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2003-01-01

241

NASA Video Catalog. Supplement 12  

NASA Technical Reports Server (NTRS)

This report lists 1878 video productions from the NASA STI Database. This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged by STAR categories. A complete Table of Contents describes the scope of each category. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2002-01-01

242

KSC ISS Logistics Support  

NASA Technical Reports Server (NTRS)

The presentation contains a status of KSC ISS Logistics Operations. It basically presents current top level ISS Logistics tasks being conducted at KSC, current International Partner activities, hardware processing flow focussing on late Stow operations, list of KSC Logistics POC's, and a backup list of Logistics launch site services. This presentation is being given at the annual International Space Station (ISS) Multi-lateral Logistics Maintenance Control Panel meeting to be held in Turin, Italy during the week of May 13-16. The presentatiuon content doesn't contain any potential lessons learned.

Tellado, Joseph

2014-01-01

243

This is NASA  

NASA Technical Reports Server (NTRS)

Highlights of NASA's first 20 years are described including the accomplishments of the National Advisory Committee for Aeronautics from its creation in 1915 until its absorption into NASA in 1958. Current and future activities are assessed in relation to the Federal R&D research plan for FY 1980 and to U.S. civil space policy. A NASA organization chart accompanies descriptions of the responsibilities of Headquarters, its various offices, and field installations. Directions are given for contacting the agency for business activities or contracting purposes; for obtaining educational publications and other media, and for tours. Manpower statistics are included with a list of career opportunities. Special emphasis is given to manned space flight, space launch vehicles, space shuttle, planetary exploration, and investigations of the stars and the solar system.

1979-01-01

244

Shuttle communications design study  

NASA Technical Reports Server (NTRS)

The design and development of a space shuttle communication system are discussed. The subjects considered include the following: (1) Ku-band satellite relay to shuttle, (2) phased arrays, (3) PN acquisition, (4) quadriplexing of direct link ranging and telemetry, (5) communications blackout on launch and reentry, (6) acquisition after blackout on reentry, (7) wideband communications interface with the Ku-Band rendezvous radar, (8) aeroflight capabilities of the space shuttle, (9) a triple multiplexing scheme equivalent to interplex, and (10) a study of staggered quadriphase for use on the space shuttle.

Cartier, D. E.

1975-01-01

245

Shuttle Wastewater Solution Characterization  

NASA Technical Reports Server (NTRS)

During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.

Adam, Niklas; Pham, Chau

2011-01-01

246

Results of tests in the NASA/LARC 31-inch CFHT on an 0.010-scale model (32-OT) of the space shuttle configuration 3 to determine the RCS jet flowfield interaction effects on aerodynamic characteristics (IA60/OA105), volume 1  

NASA Technical Reports Server (NTRS)

Tests were conducted in the NASA Langley Research Center 31-inch continuous Flow Hypersonic Wind Tunnel to determine RCS jet interaction effect on the hypersonic aerodynamic and stability and control characteristics prior to return to launch site (RTLS) abort separation. The model used was an 0.010-scale replica of the Space Shuttle Vehicle Configuration 3. Hypersonic stability data were obtained from tests at Mach 10.3 and dynamic pressure of 150 psf for the integrated Orbiter and external tank and the Orbiter alone. RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 7, 20, and 50 psf were investigated. The effects of speedbrake, bodyflap, elevon, and aileron deflections were also investigated.

Thornton, D. E.

1974-01-01

247

Space shuttle main engine plume radiation model  

NASA Technical Reports Server (NTRS)

The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.

Reardon, J. E.; Lee, Y. C.

1978-01-01

248

An Engineering Look at Space Shuttle and ISS Operations  

NASA Technical Reports Server (NTRS)

This slide presentation, in Spanish, is an overview of NASA's Space Shuttle operations and preparations for serving the International Space Station. There is information and or views of the shuttle's design, the propulsion system, the external tanks, the foam insulation, the reusable solid rocket motors, the vehicle assembly building (VAB), the mobile launcher platform being moved from the VAB to the launch pad. There is a presentation of some of the current issues with the space shuttle: cracks in the LH2 flow lines, corrosion and pitting, the thermal protection system, and inspection of the thermal protection system while in orbit. The shuttle system has served for more than 20 years, it is still a challenge to re-certify the vehicles for flight. Materials and material science remain as chief concerns for the shuttle,

Hernandez, Jose M.

2004-01-01

249

Space Shuttle Underside Astronaut Communications Performance Evaluation  

NASA Technical Reports Server (NTRS)

The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

2005-01-01

250

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

Lights on the Fixed Service Structure give a holiday impression at Launch Pad 39A where Space Shuttle Atlantis is poised for launch. Above the yellow-orange external tank is the Gaseous Oxygen Vent Arm, with the '''beanie cap''' vent hood raised. Before cryogenic loading, the hood will be lowered into position over the external tank vent louvers to vent gaseous oxygen vapors away from the Shuttle. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11- day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

251

Space Shuttle Solid Rocket Booster Debris Assessment  

NASA Technical Reports Server (NTRS)

The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

Kendall, Kristin; Kanner, Howard; Yu, Weiping

2006-01-01

252

Maintaining space shuttle safety within an environment of change  

NASA Astrophysics Data System (ADS)

In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle Flight Operations Contractor (SFOC) has been chosen to operate the Shuttle. The Government role will change from direct "oversight" to "insight" gained through understanding and measuring the contractor's processes. This paper describes the program management changes underway and the NASA Safety and Mission Assurance (S&MA) organization's philosophy, role, and methodology for pursuing this new approach. It describes how audit and surveillance will replace direct oversight and how meaningful performance metrics will be implemented.

Greenfield, Michael A.

1999-09-01

253

Analysis of Logistics in Support of a Human Lunar Outpost  

NASA Technical Reports Server (NTRS)

Strategic level analysis of the integrated behavior of lunar transportation system and lunar surface system architecture options is performed to inform NASA Constellation Program senior management on the benefit, viability, affordability, and robustness of system design choices. This paper presents an overview of the approach used to perform the campaign (strategic) analysis, with an emphasis on the logistics modeling and the impacts of logistics resupply on campaign behavior. An overview of deterministic and probabilistic analysis approaches is provided, with a discussion of the importance of each approach to understanding the integrated system behavior. The logistics required to support lunar surface habitation are analyzed from both 'macro-logistics' and 'micro-logistics' perspectives, where macro-logistics focuses on the delivery of goods to a destination and micro-logistics focuses on local handling of re-supply goods at a destination. An example campaign is provided to tie the theories of campaign analysis to results generation capabilities.

Cirillo, William; Earle, Kevin; Goodliff, Kandyce; Reeves, j. D.; Andrashko, Mark; Merrill, R. Gabe; Stromgren, Chel

2008-01-01

254

NASA Quest.  

ERIC Educational Resources Information Center

Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

Ashby, Susanne

2000-01-01

255

Results from investigations in the NASA/MSFC TWT on a .004 scale model space shuttle launch vehicle (model 13P-OTS) to determine gas supply strut effects on model pressure environment (IA53)  

NASA Technical Reports Server (NTRS)

The Rockwell Space Shuttle Launch Vehicle components were tested in a Trisonic Wind Tunnel. Pressure measurements were made on the aft portion, in the base regions, and on the wing surfaces. Axial force determination were made from the pressure data. Data were recorded with the model at zero degrees angle of attack and sideslip through a Mach number from 0.9 to 3.0. The only configuration changes investigated were strut mounting techniques and gas line fairing location between the external tank and the orbiter.

Garton, W. P.

1975-01-01

256

Results of heat transfer tests of a 0.0175-scale space shuttle vehicle 5 model (60-OTS) in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (test IH48)  

NASA Technical Reports Server (NTRS)

Heat transfer data are presented for a .0175-scale model of the Rockwell International Space Shuttle Vehicle 5. The primary purpose of these tests was to obtain aerodynamic interference heating data on the external tank in the tank alone, second-, and first-stage configurations. Data were also obtained on the Orbiter and solid rocket boosters. Nominal Mach Nos. of 5.2 and 5.3 at nominal freestream unit Reynolds numbers of 1.5 and 5.0 million per foot, respectively, were investigated. Photographs of the tested configurations and test equipment are shown.

Dye, W. H.; Lockman, W. K.

1976-01-01

257

Investigations to the space shuttle orbiter 2A configuration 0.015-scale model in the NASA Ames Research Center 3.5-foot hypersonic wind tunnel at Mach numbers 5, 7 and 10 (OA11B)  

NASA Technical Reports Server (NTRS)

The results of a wind tunnel test to determine the force, moment, and hinge-moment characteristics of the Configuration 2A Space Shuttle Vehicle Orbiter at Mach numbers 5, 7 and 10 are presented. The model was an 0.015-scale representation of the Orbiter Configuration 2A used in test 0A11A and later tests. Six-component aerodynamic force and moment data were recorded from a 1.50-inch internal strain-gage balance, and base pressures were taken for axial and drag force corrections. Hinge-moment data were obtained for the rudder and the inboard and outboard elevon panels of the starboard wing.

Mellenthin, J. A.; Cleary, J. W.; Nichols, M. E.; Milam, M. D.

1974-01-01

258

Report of the Space Shuttle Management Independent Review Team  

NASA Technical Reports Server (NTRS)

At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

1995-01-01

259

Report of the Space Shuttle Management Independent Review Team  

NASA Astrophysics Data System (ADS)

At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

1995-02-01

260

Packaging for logistical support  

NASA Astrophysics Data System (ADS)

Logistical packaging is conducted to furnish protection, utility, and communication for elements of a logistical system. Once the functional requirements of space logistical support packaging have been identified, decision-makers have a reasonable basis on which to compare package alternatives. Flexible packages may be found, for example, to provide adequate protection and superior utility to that of rigid packages requiring greater storage and postuse waste volumes.

Twede, Diana; Hughes, Harold

261

Lightning observations from space shuttle  

NASA Technical Reports Server (NTRS)

The experimental program of the Earth Sciences and Applications Division at NASA/MSFC includes development of the Lightning Imaging Sensor (LIS) for the NOAA Earth Observing System (EOS) Polar Platform. The research plan is to use existing lightning information to generate simulated data for the LIS experiment. Navigation algorithms were used to transform pixel locations to latitude and longitude values. The simulated data would then be used to test and develop algorithms for the analysis of LIS data. Individual frames of video imagery obtained from Space Shuttle Missions provide the raw data for the simulation. Individual video frames were digitized to get the pixel locations of lightning flashes. The pixel locations will be used to locate the geographical position of the event. Because of a lack of detailed knowledge of camera orientation with respect to the Space Shuttle, video scenes that contain identifiable city lights were chosen for analysis. A method for locating the payload bay camera axis was developed and tested. Two measurements are needed: the pixel location of the apparent horizon and a timed siting of a known location passing the principal line of the image. Individual video frames were navigated and lightning illuminated clouds were located on the map. Satisfactory agreement in location was achieved for cities and LLP lightning locations. Ground truth measurements were compared to satellite observations. A vertical lightning event was identified on the horizon. Very low frequency (VLF) transmission on this particular occassion shows a strong response to negative cloud to cloud flashes.

Boeck, William L.

1990-01-01

262

Space Shuttle RTOS Bayesian Network  

NASA Technical Reports Server (NTRS)

With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores. Using a prioritization of measures from the decision-maker, trade-offs between the scores are used to rank order the available set of RTOS candidates.

Morris, A. Terry; Beling, Peter A.

2001-01-01

263

Computer graphics aid mission operations. [NASA missions  

NASA Technical Reports Server (NTRS)

The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

Jeletic, James F.

1990-01-01

264

Logistics Reduction Technologies for Exploration Missions  

NASA Technical Reports Server (NTRS)

Human exploration missions under study are very limited by the launch mass capacity of existing and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing five logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description and the challenges of the five technologies under development and the estimated overall mission benefits of each technology.

Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

2014-01-01

265

STS-79 Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

Fricke, Robert W., Jr.

1996-01-01

266

Space Shuttle Main Engine Joint Data List Applying Today's Desktop Technologies to Facilitate Engine Processing  

NASA Technical Reports Server (NTRS)

Boeing-Rocketdyne's Space Shuttle Main Engine (SSME) is the world's first large reusable liquid rocket engine. The space shuttle propulsion system has three SSMEs, each weighing 7,400 lbs and providing 470,000 lbs of thrust at 100% rated power level. To ensure required safety and reliability levels are achieved with the reusable engines, each SSME is partially disassembled, inspected, reassembled, and retested at Kennedy Space Center between each flight. Maintenance processing must be performed very carefully to replace any suspect components, maintain proper engine configuration, and avoid introduction of contaminants that could affect performance and safety. The long service life, and number, complexity, and pedigree of SSME components makes logistics functions extremely critical. One SSME logistics challenge is documenting the assembly and disassembly of the complex joint configurations. This data (joint nomenclature, seal and fastener identification and orientation, assembly sequence, fastener torques, etc.) must be available to technicians and engineers during processing. Various assembly drawings and procedures contain this information, but in this format the required (practical) joint data can be hard to find, due to the continued use of archaic engineering drawings and microfilm for field site use. Additionally, the release system must traverse 2,500 miles between design center and field site, across three time zones, which adds communication challenges and time lags for critical engine configuration data. To aid in information accessibility, a Joint Data List (JDL) was developed that allows efficient access to practical joint data. The published JDL has been a very useful logistics product, providing illustrations and information on the latest SSME configuration. The JDL identifies over 3,350 unique parts across seven fluid systems, over 300 joints, times two distinct engine configurations. The JDL system was recently converted to a web-based, navigable electronic manual that contains all the required data and illustrations in expanded view format using standard PC products (Word, Excel, PDF, Photoshop). The logistics of accurately releasing this information to field personnel was greatly enhanced via the utilization of common office products to produce a more user-friendly format than was originally developed under contract to NASA. This was done without reinventing the system, which would be cost prohibitive on a program of this maturity. The brunt of the joint part tracking is done within the logistics organization and disseminated to all field sites, without duplicating effort at each site. The JDL is easily accessible across the country via the NASA intranet directly at the SSME workstand. The advent of this logistics data product has greatly enhanced the reliability of tracking dynamic changes to the SSME and greatly reduces engineering change turnaround time and potential for errors. Since the inception of the JDL system in 1997, no discrepant parts have propagated to engine assembly operations. This presentation focuses on the challenges overcome and the techniques used to apply today's desktop technologies to an existing logistics data source.

Jacobs, Kenneth; Drobnick, John; Krell, Don; Neuhart, Terry; McCool, A. (Technical Monitor)

2001-01-01

267

Shuttle Safety Improvements  

NASA Technical Reports Server (NTRS)

The Space Shuttle has been flying for over 20 years and based on the Orbiter design life of 100 missions it should be capable of flying at least 20 years more if we take care of it. The Space Shuttle Development Office established in 1997 has identified those upgrades needed to keep the Shuttle flying safely and efficiently until a new reusable launch vehicle (RLV) is available to meet the agency commitments and goals for human access to space. The upgrade requirements shown in figure 1 are to meet the program goals, support HEDS and next generation space transportation goals while protecting the country 's investment in the Space Shuttle. A major review of the shuttle hardware and processes was conducted in 1999 which identified key shuttle safety improvement priorities, as well as other system upgrades needed to reliably continue to support the shuttle miss ions well into the second decade of this century. The high priority safety upgrades selected for development and study will be addressed in this paper.

Henderson, Edward

2001-01-01

268

Space Shuttle-Illustration  

NASA Technical Reports Server (NTRS)

The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

2001-01-01

269

Space Shuttle Vehicle Illustration  

NASA Technical Reports Server (NTRS)

The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

1975-01-01

270

Mission Possible: BioMedical Experiments on the Space Shuttle  

NASA Technical Reports Server (NTRS)

Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.

Bopp, E.; Kreutzberg, K.

2011-01-01

271

Legacy of Biomedical Research During the Space Shuttle Program  

NASA Technical Reports Server (NTRS)

The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

Hayes, Judith C.

2011-01-01

272

Significant Improvements to LOGIST.  

ERIC Educational Resources Information Center

The computer program LOGIST (Wingersky, Patrick, and Lord, 1988) estimates the item parameters and the examinee's abilities for Birnbaum's three-parameter logistic item response theory model using Newton's method for solving the joint maximum likelihood equations. In 1989, Martha Stocking discovered a problem with this procedure in that when the…

Wingersky, Marilyn S.

273

European logistics beyond 2000  

Microsoft Academic Search

European companies are facing new challenges in the next millennium. Seven trends in international logistics are outlined. These are supply chain management, globalisation of the supply chain, virtual enterprises, e-business, green logistics, strategic partnerships and new management principles. The implications for European companies are discussed and illustrated by examples from advanced companies. Asserts that it is employees and not the

Tage Skjoett-Larsen

2000-01-01

274

Results of investigations on a 0.010-scale 140A/B configuration space shuttle vehicle orbiter model 72-0 in the NASA/Langley Research Center continuous flow hypersonic tunnel (OA90)  

NASA Technical Reports Server (NTRS)

Data are documented which were obtained during wind tunnel tests. The test was conducted beginning 4 March and ending 6 March 1974 for a total of 24 occupancy hours. all test runs were conducted at a Mach number of 10.3 and at Reynolds numbers of 0.65, 1.0 and 1.33 million per foot. Only the complete 140A/B was tested with various elevon, speedbrake, and bodyflap settings at angles of attack from 12 to 37 degrees at 0 and -5 degrees of beta, and from 0 to -9 degrees of beta at 20 and 30 degrees angle of attack. The purpose was to obtain hypersonic longitudinal and lateral-directional stability and control characteristics of the updated space shuttle vehicle configuration.

Hawthorne, P. J.

1975-01-01

275

High supersonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 49-0 of the space shuttle orbiter tested in the NASA/LaRC 4-foot UPWT (LEG 2) (LA63B)  

NASA Technical Reports Server (NTRS)

The model tested was a Langley-built 0.015-scale SSV Orbiter model with remote independently operated left and right elevon surfaces. The objective of the test was to generate a detailed aerodynamic data base for the current Shuttle Orbiter Configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments, angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle-of-attack range from -4 deg to 45 deg, at angles of sideslip of 0 deg, + or - 2 deg, and + or - 4 deg. Additional tests were made over an angle of sideslip range from -6 deg to 8 deg at selected angles of attack. The test Mach numbers were 2.86, 3.90, and 4.60 with Reynolds number held at a constant two million per foot.

Gamble, J. D.

1976-01-01

276

A low speed wind tunnel test of the 0.050 scale NASA-JSC shuttle orbiter 089B to determine the longitudinal and lateral directional effects of control surface modifications  

NASA Technical Reports Server (NTRS)

Wind tunnel tests to determine the longitudinal and lateral-directional effects of control surface modifications on the space shuttle orbiter aerodynamic characteristics are discussed. A total of 103 data runs were made which consisted of pitch runs through a range of zero to 28 degrees at a zero yaw angle and yaw runs from minus 6 to plus 6 degrees at various fixed pitch angles. At each data point, data from an internal strain gage balance was sampled with the digital data system. Also recorded were the model angles of pitch and yaw and the test section static pressure. Results are presented in the form of tabulated aerodynamic coefficient data about the model reference center.

Oldenbuttel, R. H.

1973-01-01

277

Reentry aerodynamic characteristics of a space shuttle solid rocket booster (MSFC model 454) at high angles of attack and high Mach number in the NASA/Langley four-foot unitary plan wind tunnel (SA25F)  

NASA Technical Reports Server (NTRS)

A force test of a 2.112 percent scale Space Shuttle Solid Rocket Booster (SRB), MSFC Model 454, was conducted in test section no. 2 of the Unitary Plan Wind Tunnel. Sixteen (16) runs (pitch polars) were performed over an angle of attack range from 144 through 179 degrees. Test Mach numbers were 2.30, 2.70, 2.96, 3.48, 4.00 and 4.63. The first three Mach numbers had a test Reynolds number of 1.5 million per foot. The remaining three were at 2.0 million per foot. The model was tested in the following configurations: (1) SRB without external protuberances, and (2) SRB with an electrical tunnel and a SRB/ET thrust attachment structure. Schlieren photographs were taken during the testing of the first configuration. The second configuration was tested at roll angles of 45, 90, and 135 degrees.

Johnson, J. D.; Braddock, W. F.

1975-01-01

278

Results of investigations on an 0.015-scale model (49-0) of the Rockwell International Space Shuttle orbiter in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (0A98)  

NASA Technical Reports Server (NTRS)

The results of a wind tunnel test are presented; the model used for this test was 0.015-scale 140 A/B hybrid configuration of the space shuttle orbiter. The primary test objectives were to obtain incremental data on the effects of a sting mount on base pressures and force and moment data. The increments obtained included the addition of MPS nozzles as well as the deletion of the simulated sting mount. Six-component aerodynamic force and moment data were recorded over an angle of attack range from 12 to 42 degrees at 0 and 5 degrees angles of sideslip. The testing was accomplished at Mach 5.3 and Mach 10.3. The effects of various elevon, body flap, and speed brake settings were investigated, and static pressures were measured at the fuselage base for use in force-data reduction.

Milam, M. D.; Dzuibala, T. J.

1975-01-01

279

NASA program plan  

NASA Technical Reports Server (NTRS)

Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

1980-01-01

280

NASA Enterprise Visual Analysis  

NASA Technical Reports Server (NTRS)

NASA Enterprise Visual Analysis (NEVA) is a computer program undergoing development as a successor to Launch Services Analysis Tool (LSAT), formerly known as Payload Carrier Analysis Tool (PCAT). NEVA facilitates analyses of proposed configurations of payloads and packing fixtures (e.g. pallets) in a space shuttle payload bay for transport to the International Space Station. NEVA reduces the need to use physical models, mockups, and full-scale ground support equipment in performing such analyses. Using NEVA, one can take account of such diverse considerations as those of weight distribution, geometry, collision avoidance, power requirements, thermal loads, and mechanical loads.

Lopez-Tellado, Maria; DiSanto, Brenda; Humeniuk, Robert; Bard, Richard, Jr.; Little, Mia; Edwards, Robert; Ma, Tien-Chi; Hollifield, Kenneith; White, Chuck

2007-01-01

281

NASA RFID Applications  

NASA Technical Reports Server (NTRS)

This viewgraph document reviews some potential uses for Radio Frequency Identification in space missions. One of these is inventory management in space, including the methods used in Apollo, the Space Shuttle, and Space Station. The potential RFID uses in a remote human outpost are reviewed. The use of Ultra-Wideband RFID for tracking are examined such as that used in Sapphire DART The advantages of RFID in passive, wireless sensors in NASA applications are shown such as: Micrometeoroid impact detection and Sensor measurements in environmental facilities The potential for E-textiles for wireless and RFID are also examined.

Fink, Patrick, Ph.D.; Kennedy, Timothy, Ph.D; Powers, Anne; Haridi, Yasser; Chu, Andrew; Lin, Greg; Yim, Hester; Byerly, Kent, Ph.D.; Barton, Richard, Ph.D.; Khayat, Michael, Ph.D.; Studor, George; Brocato, Robert; Ngo, Phong; Arndt, G. D., Ph.D.; Gross, Julia; Phan, Chau; Ni, David, Ph.D.; Dusl, John; Dekome, Kent

2007-01-01

282

The Space Shuttle  

NASA Technical Reports Server (NTRS)

As missions have become increasingly more challenging over the years, the most adaptable and capable element of space shuttle operations has proven time and again to be human beings. Human space flight provides unique aspects of observation. interaction and intervention that can reduce risk and improve mission success. No other launch vehicle - in development or in operation today - can match the space shuttle's human space flight capabilities. Preserving U.S. leadership in human space flight requires a strategy to meet those challenges. The ongoing development of next generation vehicles, along with upgrades to the space shuttle, is the most effective means for assuring our access to space.

Moffitt, William L.

2003-01-01

283

Shuttle mask floorplanning  

NASA Astrophysics Data System (ADS)

A shuttle mask has different chips on the same mask. The chips are not electrically connected. Alliance and foundry customers can utilize shuttle masks to share the rising cost of mask and wafer manufacturing. This paper studies the shuttle mask floorplan problem, which is formulated as a rectangle-packing problem with constraints of final die sawing strategy and die-to-die mask inspection. For our formulation, we offer a "merging" method that reduces the problem to an unconstrained slicing floorplan problem. Excellent results are obtained from the experiment with real industry data. We also study a "general" method and discuss the reason why it does not work very well.

Xu, Gang; Tian, Ruiqi; Wong, Martin D.; Reich, Alfred J.

2003-12-01

284

Space Shuttle Abort Evolution  

NASA Technical Reports Server (NTRS)

This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.

Henderson, Edward M.; Nguyen, Tri X.

2011-01-01

285

MSFC shuttle lightning research  

NASA Technical Reports Server (NTRS)

The shuttle mesoscale lightning experiment (MLE), flown on earlier shuttle flights, and most recently flown on the following space transportation systems (STS's), STS-31, -32, -35, -37, -38, -40, -41, and -48, has continued to focus on obtaining additional quantitative measurements of lightning characteristics and to create a data base for use in demonstrating observation simulations for future spaceborne lightning mapping systems. These flights are also providing design criteria data for the design of a proposed shuttle MLE-type lightning research instrument called mesoscale lightning observational sensors (MELOS), which are currently under development here at MSFC.

Vaughan, Otha H., Jr.

1993-01-01

286

48 CFR 1852.228-72 - Cross-waiver of liability for space shuttle services.  

Code of Federal Regulations, 2010 CFR

...1266), NASA agreements involving Space Shuttle flights are required to...entities to encourage participation in space exploration, use, and investment. The...of encouraging participation in space activities. (b) As used...

2010-10-01

287

48 CFR 1852.228-72 - Cross-waiver of liability for space shuttle services.  

Code of Federal Regulations, 2010 CFR

...1266), NASA agreements involving Space Shuttle flights are required to...entities to encourage participation in space exploration, use, and investment. The...of encouraging participation in space activities. (b) As used...

2009-10-01

288

NASA Administrator Dan Goldin talks with STS-78 crew  

NASA Technical Reports Server (NTRS)

NASA Administrator Dan Goldin (left) chats with STS-78 Mission Commander Terence 'Tom' Henricks (center) and KSC Director Jay Honeycutt underneath the orbiter Columbia. Columbia and her seven-member crew touched down on Runway 33 of KSC's Shuttle Landing Facility at 8:36 a.m. EDT, July 7, bringing to a close the longest Shuttle flight to date. STS-78, which also was the 78th Shuttle flight, lasted 16 days, 21 minutes and 47 seconds.

1996-01-01

289

A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California  

NASA Technical Reports Server (NTRS)

A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California, on May 1, 2001. NASA's Dryden Flight Research Center at Edwards would subsequently service the shuttle and mount it on a 747 for the ferry flight to the Kennedy Space Center in Florida.

2001-01-01

290

Explicit Finite Element Techniques Used to Characterize Splashdown of the Space Shuttle Solid Rocket Booster Aft Skirt  

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.

Melis, Matthew E.

2003-01-01

291

NASA Dryden: Writing Stories of the Future Today  

NASA Video Gallery

Prefaced by NASA Dryden Flight Research Center director David McBride's comments at the California Science Center's Space Shuttle Endeavour exhibit grand opening, this fast-paced video highlights s...

292

A study of the radiation environment on board the Space Shuttle flight STS57  

Microsoft Academic Search

A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on Space Shuttle flight STS-57 was conducted. The Shuttle flew in a nearly circular orbit of 28.5° inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track

G. D. Badhwar; W. Atwell; E. V. Benton; A. L. Frank; R. P. Keegan; V. E. Dudkin; O. N. Karpov; Yu. V. Potapov; A. B. Akopova; N. V. Magradze; L. V. Melkumyan; Sh. B. Rshtuni

1995-01-01

293

Shuttle Inventory Management  

NASA Technical Reports Server (NTRS)

Inventory Management System (SIMS) consists of series of integrated support programs providing supply support for both Shuttle program and Kennedy Space Center base opeations SIMS controls all supply activities and requirements from single point. Programs written in COBOL.

1983-01-01

294

Space Shuttle astrodynamical constants  

NASA Technical Reports Server (NTRS)

Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.

Cockrell, B. F.; Williamson, B.

1978-01-01

295

Space Shuttle Avionics System.  

National Technical Information Service (NTIS)

The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technolo...

J. F. Hanaway R. W. Moorehead

1989-01-01

296

Shuttle Showcase: STS-125  

NASA Video Gallery

After four previous trips to repair and upgrade the Hubble Space Telescope, it was time for the Shuttle to make one final service call to install new, advanced instruments, batteries, gyros and ins...

297

Shuttle Showcase: STS-30  

NASA Video Gallery

May 4, 1989... the five-person crew of Atlantis prepares for the first deployment of a planetary spacecraft from the shuttle. A little over six hours after launch, Magellan and its mammoth Inertial...

298

Habitability study shuttle orbiter  

NASA Technical Reports Server (NTRS)

Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

1972-01-01

299

Shuttle Astronauts Play Chess  

NASA Video Gallery

STS-134 astronauts Greg Johnson and Greg Chamitoff ponder their next move for the Earth vs. Space chess match. The shuttle crew members also discuss their activities aboard the International Space ...

300

US Space Shuttle evolution  

NASA Technical Reports Server (NTRS)

The long term systematic series of upgrades and enhancements needed to insure that the Space Shuttle remains a viable, cost-effective transportation system are discussed. A candidate Space Shuttle evolution strategy is presented. It emphasizes enhanced reliability, crew safety, reduced operations costs and enhanced capabilities required to meet projected long-range requirements. The strategy includes definition of long-term goals and requirements, potential hardware and operation enhancements, and addresses the issues of fleet size and utilization.

Teixeira, Charles

1989-01-01

301

Space Shuttle Endeavour launch  

NASA Technical Reports Server (NTRS)

A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

1992-01-01

302

Space shuttle revitalization system  

NASA Technical Reports Server (NTRS)

The Space Shuttle air revitalization system is discussed. The sequential steps in loop closure are examined and a schematic outline of the regenerative air revitalization system is presented. Carbon dioxide reduction subsystem concepts are compared. Schemes are drawn for: static feedwater electrolysis cell, solid polymer electrolyte water electrolysis cell, air revitalization system, nitrogen generation reactions, nitrogen subsystem staging, vapor compression distillation subsystem, thermoelectric integrated membrane evaporation subsystem, catalytic distillation water reclamation subsystem, and space shuttle solid waste management system.

Quattrone, P. D.

1985-01-01

303

The MATHEMATICA economic analysis of the Space Shuttle System  

NASA Technical Reports Server (NTRS)

Detailed economic analysis shows the Thrust Assisted Orbiter Space Shuttle System (TAOS) to be the most economic Space Shuttle configuration among the systems studied. The development of a TAOS Shuttle system is economically justified within a level of space activities between 300 and 360 Shuttle flights in the 1979-1990 period, or about 25 to 30 flights per year, well within the U.S. Space Program including NASA and DoD missions. If the NASA and DoD models are taken at face value (624 flights), the benefits of the Shuttle system are estimated to be $13.9 billion with a standard deviation of plus or minus $1.45 billion in 1970 dollars (at a 10% social rate of discount). If the expected program is modified to 514 flights (in the 1979-1990 period), the estimated benefits of the Shuttle system are $10.2 billion, with a standard deviation of $940 million (at a 10% social rate of discount).

Heiss, K. P.

1973-01-01

304

STS-98 Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis is revealed after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room is an environmentally controlled area that provides entry for the crew into Atlantis'''s cockpit. Above the yellow-orange external tank is the Gaseous Oxygen Vent Arm, with the '''beanie cap''' vent hood raised. Before cryogenic loading, the hood will be lowered into position over the external tank vent louvers to vent gaseous oxygen vapors away from the Shuttle. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.

2001-01-01

305

Space Shuttle: The Renewed Promise  

NASA Technical Reports Server (NTRS)

NASA celebrated its 30th anniversary in 1988, two days after the Space Shuttle soared into space once more. When Congress approved the creation of the National Aeronautics and Space Administration in 1958, the United States had successfully launched only four small satellites and no American astronaut had yet flown in space. In the three decades since, four generations of manned spacecraft have been built and flown, twelve men have walked on the Moon, more than 100 Americans have flown and worked in space, and communications satellites and other Space-Age technologies have transformed life on planet Earth. When NASA's Golden Anniversary is celebrated in 2008, it is likely that men and women will be permanently living and working in space. There may be a base on the Moon, and a manned mission to Mars may only be years away. If a brief history of the first half-century of the Space Age is written for that event, it will show clearly how the exploration of space has altered the course of human history and allowed us to take a better hold of our destiny on and off planet Earth.

McAleer, Neil

1989-01-01

306

Analysis of Third Party Logistics and Implications for USAF Logistics.  

National Technical Information Service (NTIS)

This study was undertaken to determine the current trends in third party logistics. The Air Force Material Command Lean Logistics office sought information for improving USAF logistics support. The purposes of this study were to report results of third pa...

T. J. Thompson

1996-01-01

307

Origin of the Shuttle glow  

NASA Technical Reports Server (NTRS)

On a recent Shuttle mission four gases, NO, CO2, Xe, and Ne were released for a plasma experiment. Unintentionally, enough gas was scattered onto the surfaces of the Shuttle tail that when NO was released a much more intense version of Shuttle glow was observed. The other gases did not affect the normal Shuttle glow. Under normal conditions the adsorbed NO that causes the glow probably come either from the ambient atmosphere or from reactions in exhaust gases from the Shuttle thrusters.

Viereck, R. A.; Murad, Edmond; Pike, C. P.; Green, B. D.; Joshi, P.; Hieb, R.; Harbaugh, G.

1991-01-01

308

Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis's cockpit. Below Atlantis, on either side of the tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

2001-01-01

309

NASA and the practice of space law  

NASA Technical Reports Server (NTRS)

The paper discusses the need for increased awareness in space law due to advances in space technology and a trend toward commercialization of space. A list of national and international treaties, conventions, agreements, laws, and regulations relevant to space activities is presented. NASA lawyers specialize in international and municipal laws that affect the NASA space mission; an example of the lawyers working with insurance companies in negotiating the first Space Shuttle liability policy is provided. The increased participation of the public sector in space activities, for example, the commercialization of the Space Shuttle transportation system, is examined.

Hosenball, S. N.

1985-01-01

310

Heat-transfer test results for a .0275-scale space shuttle external tank with a 10 deg/40 deg double cone-ogive nose in the NASA/AMES 3.5-foot hypersonic wind tunnel (FH14), volume 2  

NASA Technical Reports Server (NTRS)

A .0275 scale forebody model of the new baseline configuration of the space shuttle external tank vent cap configuration was tested to determine the flow field due to the double cone configuration. The tests were conducted in a 3.5 foot hypersonic wind tunnel at alpha = -5 deg, -4.59 deg, 0 deg, 5 deg, and 10 deg; beta = 0 deg, -3 deg, -5.51 deg, -6 deg, -9 deg, and +6 deg; nominal freestream Reynolds numbers per foot of 1.5 x 1 million, 3.0 x 1 million, and 5.0 x 1 million; and a nominal Mach number of 5. Separation and reattached flow from thermocouple data, shadowgraphs, and oil flows indicate that separation begins about 80% from the tip of the 10 deg cone, then reattaches on the vent cap and produces fully turbulent flow over most of the model forebody. The hardware disturbs the flow over a much larger area than present TPS application has assumed. A correction to the flow disturbance was experimentally suggested from the results of an additional test run.

Carroll, H. R.

1977-01-01

311

Results of investigations on an 0.015-scale configuration 140A/B space shuttle vehicle orbiter model (49-0) in the NASA/Langley Research Center 8-foot transonic pressure tunnel (OA25)  

NASA Technical Reports Server (NTRS)

Aerodynamic force and moment tests were conducted on an 0.015-scale space shuttle vehicle configuration 140A/B model (49-0) in a transonic pressure tunnel. The test was carried out at Mach numbers 0.35, 0.60, 0.80, 0.90, 0.98, and 1.20, and at Reynolds numbers ranging from 1.90 million per foot to 3.97 million per foot, depending on tunnel total pressure capability and model structural limits. The model attitude was varied in angle-of-attack from minus 2 deg to +22 deg at 0 deg and 5 deg angles of yaw, and in angle-of-sidelip from minus 5 to +10 deg at 0 deg, 7.5 deg, and 15 deg angles of pitch. The purpose of this test was to establish and verify longitudinal and lateral-directional characteristics of the 140A/B Configuration Orbiter and to determine the effects of surface deflections on vehicle performance, stability, and control.

Nichols, M. E.

1974-01-01

312

Green Logistics Management  

NASA Astrophysics Data System (ADS)

Nowadays, environmental management becomes a critical business consideration for companies to survive from many regulations and tough business requirements. Most of world-leading companies are now aware that environment friendly technology and management are critical to the sustainable growth of the company. The environment market has seen continuous growth marking 532B in 2000, and 590B in 2004. This growth rate is expected to grow to 700B in 2010. It is not hard to see the environment-friendly efforts in almost all aspects of business operations. Such trends can be easily found in logistics area. Green logistics aims to make environmental friendly decisions throughout a product lifecycle. Therefore for the success of green logistics, it is critical to have real time tracking capability on the product throughout the product lifecycle and smart solution service architecture. In this chapter, we introduce an RFID based green logistics solution and service.

Chang, Yoon S.; Oh, Chang H.

313

Logistic Curve Demo  

NSDL National Science Digital Library

This interactive demo illustrates the generation of a logistic curve. This demo is appropriate for a pre-calculus course, but is quite effective in a calculus class immediately after a discussion of inflection points.

Roberts, Lila F.; Hill, David R.

2002-02-03

314

Launch of Space Shuttle Endeavour on mission STS-61  

NASA Technical Reports Server (NTRS)

The Space Shuttle Endeavour lifts off from Launch Pad 39B with a crew of six NASA astronauts, a Swiss mission specialist and a variety of special tools aboard. Launch occured at 4:27:00 a.m., December 2, 1993. The launch is reflected in a pool of water in the marsh nearby.

1993-01-01

315

Development and implementation of a shuttle modal inspection system  

NASA Technical Reports Server (NTRS)

One of the major tasks between Space Shuttle flights is inspection of the orbiter subsystems such as control surfaces, vertical tail, and wings. To date, inspection techniques have consisted primarily of visual and X-ray methods, which are not only time consuming but not as comprehensive as desired. Previous shuttle component and orbiter ground modal testing revealed that orbiter component damage could be identified using standard modal test methods. As a result, NASA has procured a dedicated shuttle modal inspection system (SMIS) that will be used for subsystem inspection. This paper presents a background on the use of modal testing to detect shuttle component damage, details on this new implementation, and an early use of the SMIS capability to investigate a potential orbiter vibration problem.

Hunt, David L.; Weiss, Stanley P.; West, Walter M.; Dunlap, Terry A.; Freesmeyer, Sam

1990-01-01

316

Results from a GPS Shuttle Training Aircraft flight test  

NASA Technical Reports Server (NTRS)

A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.

Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.

1991-01-01

317

The Space Shuttle as an educational tool  

NASA Technical Reports Server (NTRS)

The paper discusses the impact of the Space Transportation System (STS) and the Space Shuttle on the science educational community and gives an overview of past space education programs. Construction of four flight 'Orbiters' (Columbia, Challenger, Discovery, and Atlantis) is being planned, with each Orbiter containing an External Tank (ET) to power the Orbiter's main engines, and two solid rocket boosters (SRB). Each Orbiter can carry a crew of seven, has a cargo bay for 65,000 lb of satellites and scientific equipment, and has an average flight duration of up to 7 days. NASA educational programs reviewed are the Skylab Student Program, the 'Getaway Special' Program, and the Shuttle Student Involvement Project for Secondary Schools (SSIP-S), as well as ESA programs including the Educational Physics Experiments in Spacelab and the Access to Spacelab for Young Europeans Program. A 'Classroom in Space' and 'Space University' have been proposed for the future.

David, L. W.; Irons, J. J.; Wilson, G. P.

1980-01-01

318

One Idea for a Next Generation Shuttle  

NASA Technical Reports Server (NTRS)

In this configuration, the current Shuttle External Tank serves as core structure for a fully reusable second stage. This stage is equipped with wings, vertical fin, landing gear, and thermal protection. The stage is geometrically identical to (but smaller than) a single stage that has been tested hyper-sonically, super-sonically, and sub-sonically in the NASA Langley Research Center wind tunnels. The three LOX/LH engines that currently serve as main propulsion for the Shuttle Orbiter, serve as main propulsion on the new stage. The new stage is unmanned but is equipped with the avionics needed for automatic maneuvering on orbit and for landing on a runway. Three rails are installed along the top surface of the vehicle for attachment of various payloads. Pay- loads might include third stages with satellites attached, personnel pods, propellants, or other items.

MacConochie, Ian O.; Cerro, Jeffrey A.

2004-01-01

319

Space Shuttle security policies and programs  

NASA Astrophysics Data System (ADS)

The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

Keith, E. L.

320

Space Station fluid management logistics  

NASA Astrophysics Data System (ADS)

Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

Dominick, Sam M.

321

NASA: Year in Review 2004  

NSDL National Science Digital Library

Through the use of Macromedia Flash Player, this NASA website revisits the key NASA space exploration events and missions of 2004. Users can view videos illustrating the Vision for Space Exploration and articles describing the advances to help make the vision a reality. The website discusses the redesigning of the Shuttle External Fuel Tank and its significance in flight missions. Visitors can find out about the newest NASA research, watch a photo essay of the Cassini mission to Saturn, drive a Mars rover to explore the geology of that planet, learn about the next generation of NASA astronauts, and much more. Individuals can view photos, hear accounts, and read articles about the three crews that lived on the International Space Station in 2004.

322

Application of Terahertz Radiation to the Detection of Corrosion under the Shuttle's Thermal Protection System  

NASA Technical Reports Server (NTRS)

There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

2007-01-01

323

Photographer: KSC The Space Shuttle Orbiter Enterprise is lowered to the floor of the transfer aisle  

NASA Technical Reports Server (NTRS)

Photographer: KSC The Space Shuttle Orbiter Enterprise is lowered to the floor of the transfer aisle in the Vehicle Assembly Building during destacking operations. The Enterprise, mated to an external tank and twin inert solid rocket boosters, formed a nonlaunchable Space Shuttle which was used for fit and fuction checks of assembly, test and launch facilities at the nation's Spaceport. Enterprise will be transported to the Shuttle Landing Facility, mounted piggyback on its 747 Shuttle Carrier Aircraft, and flown to NASA's Dryden Flight Research Center, CA.

1980-01-01

324

Photographer: KSC Space Shuttle Orbiter Enterprise is lowered to the floor of the transfer aisle in  

NASA Technical Reports Server (NTRS)

Photographer: KSC Space Shuttle Orbiter Enterprise is lowered to the floor of the transfer aisle in the Vehicle Assembly Building during destacking operations. The Enterprise, mated to an external tank and twin inert solid rocket boosters, formed a nonlaunchable Space Shuttle which was used for fit and function checks of assembly, test and launch facilities at the nation's Spaceport. Enterprise will be tansported to the Shuttle Landing Facility, mounted piggyback on its 747 Shuttle Carrier Aircraft, and flown to NASA's Dryden Flight Research Center, California.

1980-01-01

325

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

1998-01-01

326

Flight Planning Branch Space Shuttle Lessons Learned  

NASA Technical Reports Server (NTRS)

Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.

Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.

2011-01-01

327

Considering third-party logistics providers in reverse logistics  

Microsoft Academic Search

Enterprises have difficulty in completing all the required operations when facing market competition and environmental changes. In such situations, enterprises begin to explore their capacity to outsource logistics from external support, hence giving the existence of a third-party logistics. But in recent years, few scholars have inducted the third-party logistics to reverse logistics. This study thus explores the relationships among

Yufang Chiu; Po-Chao Lin; He-Hsuan Hsu

2011-01-01

328

British super-shuttle  

NASA Astrophysics Data System (ADS)

British Aerospace, the nationalized aerospace manufacturer, confirmed that a space shuttle of new design is indeed being studied, and that a model of the craft will be displayed. The British television network ITN had announced that secret plans were being prepared for the construction of a reusable horizontal takeoff super-shuttle, which could breathe atmospheric oxygen to supply its propulsion system. Retracting a first denial according to which the project existed merely as scribbles on the back of an envelope, a British Aerospace spokesperson declared that it was in fact a very serious study. The super-shuttle, called HOTOL (horizontal takeoff and landing), would be placed in orbit as a platform for satellite launching. The spokesperson further indicated that with a certain resemblance to the Concorde, it would be pilotless, remote controlled, and would allow frequent operations at short time intervals.

1984-10-01

329

An assessment of space shuttle flight software development processes  

NASA Technical Reports Server (NTRS)

In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

1993-01-01

330

Independent verification and validation for Space Shuttle flight software  

NASA Technical Reports Server (NTRS)

The Committee for Review of Oversight Mechanisms for Space Shuttle Software was asked by the National Aeronautics and Space Administration's (NASA) Office of Space Flight to determine the need to continue independent verification and validation (IV&V) for Space Shuttle flight software. The Committee found that the current IV&V process is necessary to maintain NASA's stringent safety and quality requirements for man-rated vehicles. Therefore, the Committee does not support NASA's plan to eliminate funding for the IV&V effort in fiscal year 1993. The Committee believes that the Space Shuttle software development process is not adequate without IV&V and that elimination of IV&V as currently practiced will adversely affect the overall quality and safety of the software, both now and in the future. Furthermore, the Committee was told that no organization within NASA has the expertise or the manpower to replace the current IV&V function in a timely fashion, nor will building this expertise elsewhere necessarily reduce cost. Thus, the Committee does not recommend moving IV&V functions to other organizations within NASA unless the current IV&V is maintained for as long as it takes to build comparable expertise in the replacing organization.

1992-01-01

331

Space Shuttle Orbiter windshield bird impact analysis  

NASA Technical Reports Server (NTRS)

The NASA Space Shuttle Orbiter's windshield employs three glass panes separated by air gaps. The brittleness of the glass offers much less birdstrike energy-absorption capability than the laminated polycarbonate windshields of more conventional aircraft; attention must accordingly be given to the risk of catastrophic bird impact, and to methods of strike prevention that address bird populations around landing sites rather than the modification of the window's design. Bird populations' direct reduction, as well as careful scheduling of Orbiter landing times, are suggested as viable alternatives. The question of birdstrike-resistant glass windshield design for hypersonic aerospacecraft is discussed.

Edelstein, Karen S.; Mccarty, Robert E.

1988-01-01

332

Space Shuttle ascent aborts  

NASA Astrophysics Data System (ADS)

Specific guidance functions and trajectory design of return to launch site (RTLS) and transoceanic abort landing (TAL) intact abort profiles, as well as the increasing emphasis on contingency aborts, are presented. Various systems failures including Space Shuttle main engine failures and detailed technical analyses, including the design of powered flight abort trajectories, are considered. The most critical of flight abort situations is the RTLS, while TAL is the preferred abort when uphill capability is no longer available. It is concluded that one principle must remain to ensure continuing success of Space Shuttle flights: namely that intact and contingency aborts necessitate development to ensure safe return of the vehicle, payload, and crew whenever possible.

Schmidgall, Richard A.

1989-09-01

333

Space Shuttle Aging Elastomers  

NASA Technical Reports Server (NTRS)

The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The Space Shuttle's uses various types of elastomers and they play a vital role in mission success. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the elastomers are performing. This paper will outline a strategic assessment plan, how identified problems were resolved and the integration activities between subsystems and Aging Orbiter Working Group.

Curtis, Cris E.

2007-01-01

334

Nanoparticle shuttle memory  

DOEpatents

A device for storing data using nanoparticle shuttle memory having a nanotube. The nanotube has a first end and a second end. A first electrode is electrically connected to the first end of the nanotube. A second electrode is electrically connected to the second end of the nanotube. The nanotube has an enclosed nanoparticle shuttle. A switched voltage source is electrically connected to the first electrode and the second electrode, whereby a voltage may be controllably applied across the nanotube. A resistance meter is also connected to the first electrode and the second electrode, whereby the electrical resistance across the nanotube can be determined.

Zettl, Alex Karlwalter (Kensington, CA)

2012-03-06

335

Space Shuttle Orbiter  

NSDL National Science Digital Library

Students learn how orbits are created by a force pulling toward the center in this Moveable Museum unit, in which they build a paper model of a Space Shuttle. This activity simulates an object in orbit. A paper Space Shuttle is swung in a circle on a string. The string provides a pull toward the center of the orbit, simulating the force of gravity. The four-page PDF guide includes suggested background readings for educators, activity notes, and step-by-step directions with suggested discussion questions for older students.

336

Shuttle Atlantis: From the Inside  

NASA Video Gallery

An unprecedented up close, inside look at space shuttle Atlantis as it was readied for "towback"" from Kennedy's Shuttle Landing Facility runway to Orbiter Processing Facility-1 following its May 2...

337

EA Shuttle Document Retention Effort  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the effort of code EA at Johnson Space Center (JSC) to identify and acquire databases and documents from the space shuttle program that are adjudged important for retention after the retirement of the space shuttle.

Wagner, Howard A.

2010-01-01

338

Space Shuttle Era: Main Engines  

NASA Video Gallery

Producing 500,000 pounds of thrust from a package weighing only 7,500 pounds, the Space Shuttle Main Engines are one of the shining accomplishments of the shuttle program. The success did not come ...

339

Understanding logistic regression analysis.  

PubMed

Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed. PMID:24627710

Sperandei, Sandro

2014-01-01

340

Bayesian logistic regression analysis  

NASA Astrophysics Data System (ADS)

In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an essential added ingredient. The application of the product rule gives the posterior of the unknown logistic regression coefficients. The Jacobian transformation then maps the posterior of these regression coefficients to the posterior of the corresponding probability of some event and some nuisance parameters. Finally, by way of the sumrule the nuissance parameters are integrated out.

van Erp, N.; van Gelder, P.

2013-08-01

341

STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B  

NASA Technical Reports Server (NTRS)

Both Space Shuttle Discovery (left) and Launch Pad 39B (right) are reflected in nearby water as the Shuttle makes its slow crawl to the pad aboard a crawler transporter. Earlier in the week, the Shuttle was rolled back from the pad to the Vehicle Assembly Building to repair hail damage on the the external tank's foam insulation. The 4.2-mile trek takes about five hours at the 1-mph speed of the crawler. Mission STS-96, the 94th launch in the Space Shuttle Program, is scheduled for liftoff May 27 at 6:48 a.m. EDT. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

1999-01-01

342

STS-96 Space Shuttle Discovery rolls back to Launch Pad 39B  

NASA Technical Reports Server (NTRS)

Viewed from the top of the rotating service structure, Space Shuttle Discovery rests on the mobile launcher platform and towers over the landscape after rollout to Launch Pad 39B. In the background are portions of the Banana River and the Atlantic Ocean. The lighter spots on the top of the external tank are areas of hail damage that was recently repaired. The Shuttle had to be returned to the VAB for the repairs, making this the second rollout for the Shuttle. Discovery is scheduled for liftoff May 27 at 6:48 a.m. EDT on mission STS-96, the 94th launch in the Space Shuttle Program. A logistics and resupply mission for the International Space Station, STS-96 is carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

1999-01-01

343

Space shuttles: A pyrotechnic overview  

NASA Technical Reports Server (NTRS)

Pyrotechnic components specified in Shuttle system designs to accomplish varied tasks during all mission phases are described. The function of these pyrotechnics in the operation of the space shuttle vehicle is discussed. Designs are presented for pyrotechnics with innovative features of those meeting unique shuttle requirements for safety and reliability. A rationale for the qualification and certification of these devices is developed. Maintenance of this qualified system in production hardware is explained through a description of shuttle flight certification review process.

Graves, T. J.

1980-01-01

344

STS-98 Space Shuttle Atlantis after RSS rollback  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. -- This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis'''s cockpit. Below Atlantis, on either side of the tail, are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter'''s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.

2001-01-01

345

Space Shuttle System progress report  

Microsoft Academic Search

The Shuttle System is being designed to routinely carry payloads of up to 29 510 kilograms into earth orbit. Manned orbital test flights are scheduled to start in 1979. The Shuttle System is to be operational in 1980. The Space Shuttle flight system and mission profile is discussed along with questions of current system configuration and the development status. Attention

R. F. Thompson

1975-01-01

346

STS-71, Space Shuttle Mission Report  

NASA Technical Reports Server (NTRS)

The STS-71 Space Shuttle Program Mission Report summarizes the Payload activities and provides detailed data on the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance. STS-71 is the 100th United States manned space flight, the sixty-ninth Space Shuttle flight, the forty-fourth flight since the return-to-flight, the fourteenth flight of the OV-104 Orbiter vehicle Atlantis, and the first joint United States (U.S.)-Russian docking mission since 1975. In addition to the OV-104 Orbiter vehicle, the flight vehicle consisted of an ET that was designated ET-70; three SSMEs that were designated 2028, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRBs that were designated Bl-072. The RSRMs that were an integral part of the SRBs were designated 360L045A for the left SRB and 360W045B for the right SRB. The STS-71 mission was planned as a 1 0-day plus 1-day-extension mission plus 2 additional days for contingency operations and weather avoidance. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform on-orbit joint U.S.-Russian life sciences investigations, logistical resupply of the Mir Space Station, return of the United States astronaut flying on the Mir, the replacement of the Mir-18 crew with the two-cosmonaut Mir-19 crew, and the return of the Mir-18 crew to Earth. The secondary objectives were to perform the requirements of the IMAX Camera and the Shuttle Amateur Radio experiment-2 (SAREX-2).

Frike, Robert W., Jr.

1995-01-01

347

Material Issues in Space Shuttle Composite Overwrapped Pressure Vessels  

NASA Technical Reports Server (NTRS)

Composite Overwrapped Pressure Vessels (COPV) store gases used in four subsystems for NASA's Space Shuttle Fleet. While there are 24 COPV on each Orbiter ranging in size from 19-40", stress rupture failure of a pressurized Orbiter COPV on the ground or in flight is a catastrophic hazard and would likely lead to significant damage/loss of vehicle and/or life and is categorized as a Crit 1 failure. These vessels were manufactured during the late 1970's and into the early 1980's using Titanium liners, Kevlar 49 fiber, epoxy matrix resin, and polyurethane coating. The COPVs are pressurized periodically to 3-5ksi and therefore experience significant strain in the composite overwrap. Similar composite vessels were developed in a variety of DOE Programs (primarily at Lawrence Livermore National Laboratories or LLNL), as well as for NASA Space Shuttle Fleet Leader COPV program. The NASA Engineering Safety Center (NESC) formed an Independent Technical Assessment (ITA) team whose primary focus was to investigate whether or not enough composite life remained in the Shuttle COPV in order to provide a strategic rationale for continued COPV use aboard the Space Shuttle Fleet with the existing 25-year-old vessels. Several material science issues were examined and will be discussed in this presentation including morphological changes to Kevlar 49 fiber under stress, manufacturing changes in Kevlar 49 and their effect on morphology and tensile strength, epoxy resin strain, composite creep, degradation of polyurethane coatings, and Titanium yield characteristics.

Sutter, James K.; Jensen, Brian J.; Gates, Thomas S.; Morgan, Roger J.; Thesken, John C.; Phoenix, S. Leigh

2006-01-01

348

Shuttle Imaging Radar Experiment  

Microsoft Academic Search

The shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean

C. Elachi; J. B. Cimino; T. Dixon; D. L. Evans; J. P. Ford; R. S. Saunders; C. Breed; H. Masursky; J. F. McCauley; G. Schaber; L. Dellwig; A. England; H. MacDonald; P. Martin-Kaye; F. Sabins

1982-01-01

349

Aboard the Space Shuttle.  

ERIC Educational Resources Information Center

This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

Steinberg, Florence S.

350

Space Shuttle separation mechanisms  

NASA Technical Reports Server (NTRS)

The development of space shuttle separation devices is reviewed to illustrate the mechanisms involved in separating the orbiter from the Boeing 747 carrier aircraft and from the externally mounted propellant tank. Other aspects of the separation device development discussed include design evolution, operational experience during the orbiter approach and landing tests, and the work to be accomplished before an operational system becomes a reality.

Rogers, W. F.

1979-01-01

351

Space shuttle separation mechanisms  

NASA Technical Reports Server (NTRS)

The development of space shuttle separation devices is reviewed to illustrate the mechanisms involved in separating the Orbiter from the Boeing 747 carrier aircraft and from the externally mounted propellant tank. Other aspects of the separation device development discussed include design evolution, operational experience during the orbiter approach and landing tests, and the work required to produce an operational system.

Rogers, W. F.

1978-01-01

352

Shuttle Upgrade Plan  

NASA Technical Reports Server (NTRS)

This viewgraph presentation gives an overview of the Space Shuttle upgrade plan, including details on safety enhancements, reliability and maintainability improvements, investment protection (mission life remaining), Next Generation Reusable Launch Vehicle technologies, HEDS exploration strategic goals, and upgrades for safety and supportability.

2000-01-01

353

Mobile Christian - shuttle flight  

NASA Technical Reports Server (NTRS)

Erin Whittle, 14, (seated) and Brianna Johnson, 14, look on as Louis Stork, 13, attempts a simulated landing of a space shuttle at StenniSphere. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.

2009-01-01

354

Space Shuttle news reference  

NASA Technical Reports Server (NTRS)

A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.

1981-01-01

355

The Shuttle Environment Workshop  

NASA Technical Reports Server (NTRS)

Results of shuttle environmental measurement programs were presented. The implications for plasma, infrared and ultraviolet experiments were discussed. The prelaunch environmental conditions, results of key environmental measurements made during the flights of STS 1, 2, 3, 4, and postlanding environmental conditions were covered.

Lehmann, J.; Tanner, S. G. (editor); Wilkerson, T. (editor)

1983-01-01

356

Future plans for the NASA suborbital program  

NASA Technical Reports Server (NTRS)

The development of more reliable heavy-lift balloons and a fine pointed gondola; the development of the Black Brant-12 rocket for auroral research; and the development of a collaborative Orbiting Payload Using Scout program are outlined. Through 1989 NASA will conduct a comprehensive program of aircraft, balloon, and rocket campaigns in conjunction with Shuttle and satellite measurements on the Supernovae 1987a.

Shawhan, S. D.; Holtz, J. R.

1987-01-01

357

NASA Administrator Visits Rensselaer Polytechnic Institute (RPI)  

NASA Technical Reports Server (NTRS)

NASA Administrator Daniel Goldin (second from right) visits the control room of the Isothermal Dendritic Growth Experiment (IDGE) in Remote Operations Control Center (ROCC) at Rensselaer Polytechnic Institute (RPI)in Troy, NY, during RPI's 175th arniversary. IDGE, flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. Photo credit: RPI

1999-01-01

358

Modeling Green Logistics  

Microsoft Academic Search

This paper propose an innovative simulation model based on Web technologies devoted to analyze environmental impact of the whole supply chain. The authors developed a whole framework for collecting data from different users including good producers, logistics operators and retailers by a Web questionnaire; this service is automatically integrated with a simulator that evaluate the green aspects of each case

Agostino G. Bruzzone; Alberto Tremori; Marina Massei; Federico Tarone

2009-01-01

359

Logistic Regression Diagnostics  

Microsoft Academic Search

A maximum likelihood fit of a logistic regression model (and other similar models) is extremely sensitive to outlying responses and extreme points in the design space. We develop diagnostic measures to aid the analyst in detecting such observations and in quantifying their effect on various aspects of the maximum likelihood fit. The elements of the fitting process which constitute the

Daryl Pregibon

1981-01-01

360

Space shuttle food system study. Volume 1: System design report  

NASA Technical Reports Server (NTRS)

Data were assembled which define the optimum food system to support the space shuttle program, and which provide sufficient engineering data to support necessary requests for proposals towards final development and installment of the system. The study approach used is outlined, along with technical data and sketches for each functional area. Logistic support analysis, system assurance, and recommendations and conclusions based on the study results are also presented.

1974-01-01

361

Space shuttle auxiliary propulsion system design study. Executive summary  

NASA Technical Reports Server (NTRS)

The development and characteristics of an auxiliary propulsion system for space shuttle applications are presented. The system design data necessary for selection of preferred system concepts and the requirements for complementing component design and test programs are analyzed. The use of cryogenic oxygen and hydrogen as a propellant combination is explained on the basis of high vehicle impulse requirements, safety factors, reuse, and logistics considerations. The final configurations for the alternate propellant system, with primary emphasis on earth storable propellants is described.

Kelly, P. J.; Schweickert, T. F.

1972-01-01

362

Advanced Health Management System for the Space Shuttle Main Engine  

NASA Technical Reports Server (NTRS)

Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

Davidson, Matt; Stephens, John

2004-01-01

363

NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles  

NASA Technical Reports Server (NTRS)

With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better understanding of the mission assurance that MOD brings to commercial ventures to the ISS

Shull, Sarah A.; Peek, Kenneth E.

2011-01-01

364

NASA Ares I Crew Launch Vehicle Upper Stage Overview  

NASA Technical Reports Server (NTRS)

By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares I-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.

McArthur, J. Craig

2008-01-01

365

Mission Benefits Analysis of Logistics Reduction Technologies  

NASA Technical Reports Server (NTRS)

Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

Ewert, Michael K.; Broyan, James L.

2012-01-01

366

Mission Benefits Analysis of Logistics Reduction Technologies  

NASA Technical Reports Server (NTRS)

Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

Ewert, Michael K.; Broyan, James Lee, Jr.

2013-01-01

367

STS-113 visitors watch the Space Shuttle Endeavour launch  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, FLA. - Watching the launch of Space Shuttle Endeavour on mission STS-113 are NASA Administrator Sean O'Keefe (left) and Associate Administrator of Public Affairs Glen Mahone. Liftoff occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey.

2002-01-01

368

RF coverage analysis and performance for Shuttle communication links  

NASA Technical Reports Server (NTRS)

This paper describes the current work at NASA/Johnson Space Center in the area of RF coverage analysis and performance-assessment for the Space Shuttle Program communication and tracking radio links. Trajectories, antenna data, ground station and Shuttle hardware performance characteristics and RF link math models were assimilated to generate RF link performance predictions for the three basic mission phases - ascent, on-orbit, and descent. Results identify some earlier deficiencies that required re-configuration of the ground station. Overall performance is currently satisfactory.

Loh, Y.-C.; Porter, J. A.

1978-01-01

369

NASA Network  

NASA Technical Reports Server (NTRS)

The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

Carter, David; Wetzel, Scott

2000-01-01

370

Lightning protection for shuttle propulsion elements  

NASA Technical Reports Server (NTRS)

The results of lightning protection analyses and tests are weighed against the present set of waivers to the NASA lightning protection specification. The significant analyses and tests are contrasted with the release of a new and more realistic lightning protection specification, in September 1990, that resulted in an inordinate number of waivers. A variety of lightning protection analyses and tests of the Shuttle propulsion elements, the Solid Rocket Booster, the External Tank, and the Space Shuttle Main Engine, were conducted. These tests range from the sensitivity of solid propellant during shipping to penetration of cryogenic tanks during flight. The Shuttle propulsion elements have the capability to survive certain levels of lightning strikes at certain times during transportation, launch site operations, and flight. Changes are being evaluated that may improve the odds of withstanding a major lightning strike. The Solid Rocket Booster is the most likely propulsion element to survive if systems tunnel bond straps are improved. Wiring improvements were already incorporated and major protection tests were conducted. The External Tank remains vulnerable to burn-through penetration of its skin. Proposed design improvements include the use of a composite nose cone and conductive or laminated thermal protection system coatings.

Goodloe, Carolyn C.; Giudici, Robert J.

1991-01-01

371

Integration and Test for Small Shuttle Payloads  

NASA Technical Reports Server (NTRS)

Recommended approaches for shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of small shuttle payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of the NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration, and interface testing; and (7) Postflight operations. This paper is of special interest to those payload projects which have small budgets and few resources: That is, the truly 'faster, cheaper, better' projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.

Wright, Michael R.; Day, John H. (Technical Monitor)

2001-01-01

372

Integration and Test of Shuttle Small Payloads  

NASA Technical Reports Server (NTRS)

Recommended approaches for space shuttle small payload integration and test (I&T) are presented. The paper is intended for consideration by developers of shuttle small payloads, including I&T managers, project managers, and system engineers. Examples and lessons learned are presented based on the extensive history of NASA's Hitchhiker project. All aspects of I&T are presented, including: (1) I&T team responsibilities, coordination, and communication; (2) Flight hardware handling practices; (3) Documentation and configuration management; (4) I&T considerations for payload development; (5) I&T at the development facility; (6) Prelaunch operations, transfer, orbiter integration and interface testing; (7) Postflight operations. This paper is of special interest to those payload projects that have small budgets and few resources: that is, the truly faster, cheaper, better projects. All shuttle small payload developers are strongly encouraged to apply these guidelines during I&T planning and ground operations to take full advantage of today's limited resources and to help ensure mission success.

Wright, Michael R.

2003-01-01

373

ITOS/space shuttle study  

NASA Technical Reports Server (NTRS)

The results are reported of a study to explore the potential cost reductions in the operational ITOS weather satellite program as a consequence of shuttle/bug availability for satellite placement and retrieval, and satellite servicing and maintenance. The study program was divided into shuttle impact on equipment and testing costs, and shuttle impact on overall future ITOS operational program costs, and shuttle impact on configuration. It is concluded that savings in recurring spacecraft costs can be realized in the 1978 ITOS program, if a space shuttle is utilized.

1971-01-01

374

NASA trend analysis procedures  

NASA Technical Reports Server (NTRS)

This publication is primarily intended for use by NASA personnel engaged in managing or implementing trend analysis programs. 'Trend analysis' refers to the observation of current activity in the context of the past in order to infer the expected level of future activity. NASA trend analysis was divided into 5 categories: problem, performance, supportability, programmatic, and reliability. Problem trend analysis uncovers multiple occurrences of historical hardware or software problems or failures in order to focus future corrective action. Performance trend analysis observes changing levels of real-time or historical flight vehicle performance parameters such as temperatures, pressures, and flow rates as compared to specification or 'safe' limits. Supportability trend analysis assesses the adequacy of the spaceflight logistics system; example indicators are repair-turn-around time and parts stockage levels. Programmatic trend analysis uses quantitative indicators to evaluate the 'health' of NASA programs of all types. Finally, reliability trend analysis attempts to evaluate the growth of system reliability based on a decreasing rate of occurrence of hardware problems over time. Procedures for conducting all five types of trend analysis are provided in this publication, prepared through the joint efforts of the NASA Trend Analysis Working Group.

1993-01-01

375

Logistics support economy and efficiency through consolidation and automation  

NASA Technical Reports Server (NTRS)

An integrated logistics support system, which would provide routine access to space and be cost-competitive as an operational space transportation system, was planned and implemented to support the NSTS program launch-on-time goal of 95 percent. A decision was made to centralize the Shuttle logistics functions in a modern facility that would provide office and training space and an efficient warehouse area. In this warehouse, the emphasis is on automation of the storage and retrieval function, while utilizing state-of-the-art warehousing and inventory management technology. This consolidation, together with the automation capabilities being provided, will allow for more effective utilization of personnel and improved responsiveness. In addition, this facility will be the prime support for the fully integrated logistics support of the operations era NSTS and reduce the program's management, procurement, transportation, and supply costs in the operations era.

Savage, G. R.; Fontana, C. J.; Custer, J. D.

1985-01-01

376

A perfect liftoff of Space Shuttle Endeavour on mission STS-100  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, Fla. - Flames from Space Shuttle Endeavour light up the clouds as the Shuttle races into space on mission STS-100. Liftoff of Endeavour on the ninth flight to the International Space Station occurred at 2:40:42 p.m. EDT. The 11- day mission will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator System and the UHF Antenna. The mission includes two planned spacewalks for installation of the SSRMS on the Station. Also onboard is the Multi-Purpose Logistics Module Raffaello, carrying resupply stowage racks and resupply/return stowage platforms.

2001-01-01

377

Silicone Contamination Camera for Developed for Shuttle Payloads  

NASA Technical Reports Server (NTRS)

On many shuttle missions, silicone contamination from unknown sources from within or external to the shuttle payload bay has been a chronic problem plaguing experiment payloads. There is currently a wide range of silicone usage on the shuttle. Silicones are used to coat the shuttle tiles to enhance their ability to shed rain, and over 100 kg of RTV 560 silicone is used to seal white tiles to the shuttle surfaces. Silicones are also used in electronic components, potting compounds, and thermal control blankets. Efforts to date to identify and eliminate the sources of silicone contamination have not been highly successful and have created much controversy. To identify the sources of silicone contamination on the space shuttle, the NASA Lewis Research Center developed a contamination camera. This specially designed pinhole camera utilizes low-Earth-orbit atomic oxygen to develop a picture that identifies sources of silicone contamination on shuttle-launched payloads. The volatile silicone species travel through the aperture of the pinhole camera, and since volatile silicone species lose their hydrocarbon functionalities under atomic oxygen attack, the silicone adheres to the substrate as SiO_x. This glassy deposit should be spatially arranged in the image of the sources of silicone contamination. To view the contamination image, one can use ultrasensitive thickness measurement techniques, such as scanning variable-angle ellipsometry, to map the surface topography of the camera's substrate. The demonstration of a functional contamination camera would resolve the controversial debate concerning the amount and location of contamination sources, would allow corrective actions to be taken, and would demonstrate a useful tool for contamination documentation on future shuttle payloads, with near negligible effect on cost and weight.

1996-01-01

378

NASA Education  

NSDL National Science Digital Library

Educators and students can find a variety of materials designed for support in the areas of science, mathematics, and technology on the NASA Education website. Resources are available on NASA education programs including specific areas for kids, students and educators in the elementary, secondary, higher and informal education arenas.

Canright, Shelley

2011-06-30

379

Developing logistics competencies through third party logistics relationships  

Microsoft Academic Search

This paper considers third party logistics (TPL) from a resource and competence perspective. New competencies are developed in the relationship between the shipper and the TPL provider. A typology of TPL relationships is developed going from market exchanges to joint logistics solutions. Here, the article will concentrate on the highest level – joint logistics solutions. The theoretical grounding of competence

Árni Halldórsson; Tage Skjøtt-Larsen

2004-01-01

380

Aboard the Space Shuttle  

NASA Technical Reports Server (NTRS)

Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

Steinberg, F. S.

1980-01-01

381

NASA'S Great Observatories  

NASA Technical Reports Server (NTRS)

Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

1998-01-01

382

Shuttle imaging radar experiment  

NASA Technical Reports Server (NTRS)

The Shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean features were also observed, including large internal waves in the Andaman Sea.

Elachi, C.; Brown, W. E.; Cimino, J. B.; Dixon, T.; Evans, D. L.; Ford, J. P.; Saunders, R. S.; Breed, C.; Masursky, H.; England, A.

1982-01-01

383

INCO shuttle communication system  

NASA Technical Reports Server (NTRS)

In a previous work we have defined a general architectural model for autonomous systems, which can be mapped easily to describe the functions of any automated system (SDAG-86-01). In this note, we use the model to describe the Shuttle communication system. First we briefly review the architecture, then we present the environment of our application, and finally we detail the specific function for each functional block of the architecture for that environment.

Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok K.; Larsen, Ronald L.

1989-01-01

384

Advanced Microbial Check Valve development. [for Space Shuttle  

NASA Technical Reports Server (NTRS)

The Microbial Check Valve (MCV) is a flight qualified assembly that provides bacteriologically safe drinking water for the Space Shuttle. The 1-lb unit is basically a canister packed with an iodinated ion-exchange resin. The device is used to destroy organisms in a water stream as the water passes through it. It is equally effective for fluid flow in either direction and its primary method of disinfection is killing rather than filtering. The MCV was developed to disinfect the fuel cell water and to prevent back contamination of stored potable water on the Space Shuttle. This paper reports its potential for space applications beyond the basic Shuttle mission. Data are presented that indicate the MCV is suitable for use in advanced systems that NASA has under development for the reclamation of humidity condensate, wash water and human urine.

Colombo, G. V.; Greenley, D. R.; Putnam, D. F.; Sauer, R. L.

1981-01-01

385

Space Shuttle Probabilistic Risk Assessment (SPRA) Iteration 3.2  

NASA Technical Reports Server (NTRS)

The Shuttle is a very reliable vehicle in comparison with other launch systems. Much of the risk posed by Shuttle operations is related to fundamental aspects of the spacecraft design and the environments in which it operates. It is unlikely that significant design improvements can be implemented to address these risks prior to the end of the Shuttle program. The model will continue to be used to identify possible emerging risk drivers and allow management to make risk-informed decisions on future missions. Potential uses of the SPRA in the future include: - Calculate risk impact of various mission contingencies (e.g. late inspection, crew rescue, etc.). - Assessing the risk impact of various trade studies (e.g. flow control valves). - Support risk analysis on mission specific events, such as in flight anomalies. - Serve as a guiding star and data source for future NASA programs.

Boyer, Roger L.

2010-01-01

386

NASDA aquatic animal experiment facilities for Space Shuttle and ISS.  

PubMed

National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS). PMID:12530375

Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki

2002-01-01

387

Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Rear View  

NASA Technical Reports Server (NTRS)

Evening light begins to fade at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, as technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA 911) for the ferry flight back to the Kennedy Space Center, Fla., following its STS-44 flight 24 November-1 December 1991. Post-flight servicing of the orbiters, and the mating operation is carried out at Dryden at the Mate-Demate Device, the large gantry-like structure that hoists the spacecraft to various levels during post-spaceflight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary

1991-01-01

388

Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Side View  

NASA Technical Reports Server (NTRS)

Evening light begins to fade at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, as technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Fla., following its STS-44 flight 24 November-1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the

1991-01-01

389

Shuttle in Mate-Demate Device being Loaded onto SCA-747  

NASA Technical Reports Server (NTRS)

At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with

1991-01-01

390

Shuttle Endeavour Mated to 747 SCA Takeoff for Delivery to Kennedy Space Center, Florida  

NASA Technical Reports Server (NTRS)

NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, begins the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now

1991-01-01

391

NASA's Software Safety Standard  

NASA Technical Reports Server (NTRS)

NASA relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft launched that does not have a computer on board that will provide command and control services. There have been recent incidents where software has played a role in high-profile mission failures and hazardous incidents. For example, the Mars Orbiter, Mars Polar Lander, the DART (Demonstration of Autonomous Rendezvous Technology), and MER (Mars Exploration Rover) Spirit anomalies were all caused or contributed to by software. The Mission Control Centers for the Shuttle, ISS, and unmanned programs are highly dependant on software for data displays, analysis, and mission planning. Despite this growing dependence on software control and monitoring, there has been little to no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Meanwhile, academia and private industry have been stepping forward with procedures and standards for safety critical systems and software, for example Dr. Nancy Leveson's book Safeware: System Safety and Computers. The NASA Software Safety Standard, originally published in 1997, was widely ignored due to its complexity and poor organization. It also focused on concepts rather than definite procedural requirements organized around a software project lifecycle. Led by NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard has recently undergone a significant update. This new standard provides the procedures and guidelines for evaluating a project for safety criticality and then lays out the minimum project lifecycle requirements to assure the software is created, operated, and maintained in the safest possible manner. This update of the standard clearly delineates the minimum set of software safety requirements for a project without detailing the implementation for those requirements. This allows the projects leeway to meet these requirements in many forms that best suit a particular project's needs and safety risk. In other words, it tells the project what to do, not how to do it. This update also incorporated advances in the state of the practice of software safety from academia and private industry. It addresses some of the more common issues now facing software developers in the NASA environment such as the use of Commercial-Off-the-Shelf Software (COTS), Modified OTS (MOTS), Government OTS (GOTS), and reused software. A team from across NASA developed the update and it has had both NASA-wide internal reviews by software engineering, quality, safety, and project management. It has also had expert external review. This presentation and paper will discuss the new NASA Software Safety Standard, its organization, and key features. It will start with a brief discussion of some NASA mission failures and incidents that had software as one of their root causes. It will then give a brief overview of the NASA Software Safety Process. This will include an overview of the key personnel responsibilities and functions that must be performed for safety-critical software.

Ramsay, Christopher M.

2007-01-01

392

NASA Wavelength  

NSDL National Science Digital Library

NASA Wavelength is your pathway into a digital collection of Earth and space science resources for educators of all levels - from elementary to college, to out-of-school programs. These resources, developed through funding of the NASA Science Mission Directorate (SMD), have undergone a peer-review process through which educators and scientists ensure the content is accurate and useful in an educational setting. Use NASA Wavelength to quickly and easily locate resources, connect them to other websites using atom feeds, and even share the resources you discover with others through social media and email.

2014-04-07

393

NASA-Ames vertical gun  

NASA Technical Reports Server (NTRS)

A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

Schultz, P. H.

1984-01-01

394

Operations analysis (study 2.6). Volume 4: Computer specification; logistics of orbiting vehicle servicing (LOVES)  

NASA Technical Reports Server (NTRS)

The logistics of orbital vehicle servicing computer specifications was developed and a number of alternatives to improve utilization of the space shuttle and the tug were investigated. Preliminary results indicate that space servicing offers a potential for reducing future operational and program costs over ground refurbishment of satellites. A computer code which could be developed to simulate space servicing is presented.

1973-01-01

395

NASA Strategic Roadmap Summary Report  

NASA Technical Reports Server (NTRS)

In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees.

Wilson, Scott; Bauer, Frank; Stetson, Doug; Robey, Judee; Smith, Eric P.; Capps, Rich; Gould, Dana; Tanner, Mike; Guerra, Lisa; Johnston, Gordon

2005-01-01

396

CV-990 Landing Systems Research Aircraft (LSRA) during final Space Shuttle tire test  

NASA Technical Reports Server (NTRS)

A Convair 990 (CV-990) was used as a Landing Systems Research Aircraft (LSRA) at NASA's Dryden Flight Research Center, Edwards, California, to test space shuttle landing gear and braking systems as part of NASA's effort to upgrade and improve space shuttle capabilities. The first flight at Dryden of the CV-990 with shuttle test components occurred in April 1993, and tests continued into August 1995, when this photo shows a test of the shuttle tires. The purpose of this series of tests was to determine the performance parameters and failure limits of the tires. This particular landing was on the dry lakebed at Edwards, but other tests occurred on the main runway there. The CV-990, built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.

1995-01-01

397

STS-113 visitors watch the Space Shuttle Endeavour launch  

NASA Technical Reports Server (NTRS)

KENNEDY SPACE CENTER, FLA. - Among the visitors watching the launch of Space Shuttle Endeavour on mission STS-113 are NASA Administrator Sean O'Keefe (top, center) and Glen Mahone, associate administrator for public affairs, NASA (left of O'Keefe). Liftoff occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey.

2002-01-01

398

Space Shuttle Wireless Crew Communications  

NASA Technical Reports Server (NTRS)

The design, development, and performance characteristics of the Space Shuttle's Wireless Crew Communications System are discussed. This system allows Space Shuttle crews to interface with the onboard audio distribution system without the need for communications umbilicals, and has been designed through the adaptation of commercially available hardware in order to minimize development time. Testing aboard the Space Shuttle Orbiter Columbia has revealed no failures or design deficiencies.

Armstrong, R. W.; Doe, R. A.

1982-01-01

399

Logistic map potentials  

NASA Astrophysics Data System (ADS)

We develop and illustrate methods to compute all single particle potentials that underlie the logistic map, x?sx(1-x) for 02. We illustrate the methods numerically for the cases s=5/2 and s=10/3.

Curtright, Thomas; Veitia, Andrzej

2011-01-01

400

Steganalysis using logistic regression  

NASA Astrophysics Data System (ADS)

We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

Lubenko, Ivans; Ker, Andrew D.

2011-02-01

401

Close-up of Shuttle tire after LSRA test  

NASA Technical Reports Server (NTRS)

One of the final tests of the CV-990 Landing Systems Research Aircraft (LSRA) in August, 1995 at NASA's Dryden Flight Research Center, Edwards, California, resulted in the destruction of the wheel, following a fire caused by a mixture of heat, aluminum particles, and rubber. Following successful tests of tire wear at Edwards and the Kennedy Space Center, Fla., this series of roll-on-rim tests determined the failure modes of wheels for the space shuttle. In one test, the aluminum wheel locked in position and was ground to within four inches of the axle before the test concluded. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy. Project engineer Christopher J. Nagy said, 'NASA pilots Gordon Fullerton and Terry Rager did a superb job of flying the aircraft in many difficult test situations, at speeds higher than the aircraft was intended to land, without once losing a single test flight.'

1995-01-01

402

Close-up of Shuttle tire after LSRA test  

NASA Technical Reports Server (NTRS)

One of the final tests of the CV-990 Landing Systems Research Aircraft (LSRA) in August, 1995 at NASA's Dryden Flight Research Center, Edwards, California, resulted in the destruction of the wheel, following a fire caused by a mixture of heat, aluminum particles, and rubber. Following successful tests of tire wear at Edwards and the Kennedy Space Center, Fl., this series of roll-on-rim tests determined the failure modes ofwheels for the space shuttle. The aluminum wheel locked in postion and was ground to within four inches of the axle before the test concluded. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy. Project engineer Christopher J. Nagy said, 'NASA pilots Gordon Fullerton and Terry Rager did a superb job of flying the aircraft in many difficult test situations, at speeds higher than the aircraft was intended to land, without once losing a single flight.'

1995-01-01

403

NASA reports  

NASA Astrophysics Data System (ADS)

Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

404

NASA - Educators  

NSDL National Science Digital Library

The NASA Educators website provides teachers and others with access to high-quality classroom materials such as podcasts, lesson plans, interactive web features, and photos. Visitors can dive right in via the For Educators area, which includes topical headings like Higher Education, Informal Education, and Current Opportunities. Clicking on the Higher Education tab will take visitors to the Have You Seen? area which features resources like the "What is a Planet?" lithograph and a special website about the 50th anniversary of solar system exploration. Moving on, visitors can click on NASA Television to watch excerpts from NASA's informational station. Another fun feature is the Do-It-Yourself Podcasts area. Here, interested parties can work with existing NASA audio and video clips to create their own unique media product. Finally, visitors can use the Read It section to learn about new grant opportunities, campus science activities, and so on.

2012-06-29

405

A Perspective on Computational Aerothermodynamics at NASA  

NASA Technical Reports Server (NTRS)

The evolving role of computational aerothermodynamics (CA) within NASA over the past 20 years is reviewed. The presentation highlights contributions to understanding the Space Shuttle pitching moment anomaly observed in the first shuttle flight, prediction of a static instability for Mars Pathfinder, and the use of CA for damage assessment in post-Columbia mission support. In the view forward, several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified.

Gnoffo, Peter A.

2007-01-01

406

NASA Goddard Space Flight Center  

NASA Technical Reports Server (NTRS)

The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.

Carter, David; Wetzel, Scott

2000-01-01

407

Food packages for Space Shuttle  

NASA Technical Reports Server (NTRS)

The paper reviews food packaging techniques used in space flight missions and describes the system developed for the Space Shuttle. Attention is directed to bite-size food cubes used in Gemini, Gemini rehydratable food packages, Apollo spoon-bowl rehydratable packages, thermostabilized flex pouch for Apollo, tear-top commercial food cans used in Skylab, polyethylene beverage containers, Skylab rehydratable food package, Space Shuttle food package configuration, duck-bill septum rehydration device, and a drinking/dispensing nozzle for Space Shuttle liquids. Constraints and testing of packaging is considered, a comparison of food package materials is presented, and typical Shuttle foods and beverages are listed.

Fohey, M. F.; Sauer, R. L.; Westover, J. B.; Rockafeller, E. F.

1978-01-01

408

Stennis certifies final shuttle engine  

NASA Technical Reports Server (NTRS)

Steam blasts out of the A-2 Test Stand at Stennis Space Center on Oct. 22 as engineers begin a certification test on engine 2061, the last space shuttle main flight engine scheduled to be built. Since 1975, Stennis has tested every space shuttle main engine used in the program - about 50 engines in all. Those engines have powered more than 120 shuttle missions - and no mission has failed as a result of engine malfunction. For the remainder of 2008 and throughout 2009, Stennis will continue testing of various space shuttle main engine components.

2008-01-01

409

History of Space Shuttle Rendezvous  

NASA Technical Reports Server (NTRS)

This technical history is intended to provide a technical audience with an introduction to the rendezvous and proximity operations history of the Space Shuttle Program. It details the programmatic constraints and technical challenges encountered during shuttle development in the 1970s and over thirty years of shuttle missions. An overview of rendezvous and proximity operations on many shuttle missions is provided, as well as how some shuttle rendezvous and proximity operations systems and flight techniques evolved to meet new programmatic objectives. This revised edition provides additional information on Mercury, Gemini, Apollo, Skylab, and Apollo/Soyuz. Some chapters on the Space Shuttle have been updated and expanded. Four special focus chapters have been added to provide more detailed information on shuttle rendezvous. A chapter on the STS-39 mission of April/May 1991 describes the most complex deploy/retrieve mission flown by the shuttle. Another chapter focuses on the Hubble Space Telescope servicing missions. A third chapter gives the reader a detailed look at the February 2010 STS-130 mission to the International Space Station. The fourth chapter answers the question why rendezvous was not completely automated on the Gemini, Apollo, and Space Shuttle vehicles.

Goodman, John L.

2011-01-01

410

Shuttle Endeavour Mated to 747 SCA Taxi to Runway for Delivery to Kennedy Space Center, Florida  

NASA Technical Reports Server (NTRS)

NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, taxies to the runway to begin the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site

1991-01-01

411

The NASA CELSS program  

NASA Technical Reports Server (NTRS)

The NASA Controlled Ecological Life Support System (CELSS) program was initiated with the premise that NASA's goal would eventually include extended duration missions with sizable crews requiring capabilities beyond the ability of conventional life support technology. Currently, as mission duration and crew size increase, the mass and volume required for consumable life support supplies also increase linearly. Under these circumstances the logistics arrangements and associated costs for life support resupply will adversely affect the ability of NASA to conduct long duration missions. A solution to the problem is to develop technology for the recycling of life support supplies from wastes. The CELSS concept is based upon the integration of biological and physico-chemical processes to construct a system which will produce food, potable water, and a breathable atmosphere from metabolic and other wastes, in a stable and reliable manner. A central feature of a CELSS is the use of green plant photosynthesis to produce food, with the resulting production of oxygen and potable water, and the removal of carbon dioxide.

Averner, Maurice M.

1990-01-01

412

Formal Verification for a Next-Generation Space Shuttle  

NASA Technical Reports Server (NTRS)

This paper discusses the verification and validation (V&2) of advanced software used for integrated vehicle health monitoring (IVHM), in the context of NASA's next-generation space shuttle. We survey the current VBCV practice and standards used in selected NASA projects, review applicable formal verification techniques, and discuss their integration info existing development practice and standards. We also describe two verification tools, JMPL2SMV and Livingstone PathFinder, that can be used to thoroughly verify diagnosis applications that use model-based reasoning, such as the Livingstone system.

Nelson, Stacy D.; Pecheur, Charles; Koga, Dennis (Technical Monitor)

2002-01-01

413

On the wings of a dream: The Space Shuttle  

NASA Technical Reports Server (NTRS)

Described are the organization and some of the interests and missions of NASA, the Space Transportation System, the Space Shuttle orbiter Enterprise, astronaut training and clothing, being launched into space, living and working in weightlessness, extravehicular activity, and the return from space to Earth. The various aspects of living in space are treated in considerable detail. This includes how the astronauts prepare food, how they eat and drink, how they sleep, exercise, change clothes and handle personal hygiene when in space.

1988-01-01

414

The SPAce Readiness Coherent Lidar Experiment (SPARCLE) Space Shuttle Mission  

NASA Technical Reports Server (NTRS)

For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

Kavaya, Michael J.; Emmitt, G. David

1998-01-01

415

TVC actuator model. [for the space shuttle main engine  

NASA Technical Reports Server (NTRS)

A prototype Space Shuttle Main Engine (SSME) Thrust Vector Control (TVC) Actuator analog model was successfully completed. The prototype, mounted on five printed circuit (PC) boards, was delivered to NASA, checked out and tested using a modular replacement technique on an analog computer. In all cases, the prototype model performed within the recording techniques of the analog computer which is well within the tolerances of the specifications.

Baslock, R. W.

1977-01-01

416

Analysis of microgravity space experiments Space Shuttle programmatic safety requirements  

NASA Technical Reports Server (NTRS)

This report documents the results of an analysis of microgravity space experiments space shuttle programmatic safety requirements and recommends the creation of a Safety Compliance Data Package (SCDP) Template for both flight and ground processes. These templates detail the programmatic requirements necessary to produce a complete SCDP. The templates were developed from various NASA centers' requirement documents, previously written guidelines on safety data packages, and from personal experiences. The templates are included in the back as part of this report.

Terlep, Judith A.

1996-01-01

417

Aileron roll hysteresis effects on entry of space shuttle orbiter  

NASA Technical Reports Server (NTRS)

Six-degree-of-freedom simulations of the space shuttle orbiter entry with control hysteresis were conducted on the NASA Langley Research Center interactive simulator known as the automatic reentry flight dynamics simulator. These simulations revealed that the vehicle can tolerate control hysteresis producing a + or - 50 percent change in the nominal aileron roll characteristics and an offset in the nominal characteristics equivalent to a + or - 5 deg aileron deflection with little increase in the reaction control system's fuel consumption.

Powell, R. W.

1977-01-01

418

Maintaining space shuttle safety within an environment of change 1 1 Paper IAA 96-6.1.01 presented at the 47th International Astronautical Congress, October 7–11, 1996, Beijing, China  

Microsoft Academic Search

In the 10 years since the Challenger accident, NASA has developed a set of stable and capable processes to prepare the Space Shuttle for safe launch and return. Capitalizing on the extensive experience gained from a string of over 50 successful flights, NASA today is changing the way it does business in an effort to reduce cost. A single Shuttle

Michael A Greenfield

1999-01-01

419

Shuttle Discovery Landing at Palmdale, California, Maintenance Facility  

NASA Technical Reports Server (NTRS)

NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dr

1995-01-01

420

Shuttle operational expectations  

NASA Technical Reports Server (NTRS)

The results of orbital flight tests (OFT) of the Space Shuttle are reviewed, and modifications planned for upcoming operational flights are discussed. The performance of the solid rocket boosters, external tank, main engines, structural system, propulsion system, reaction control system, electric power system, heat rejection system, hydraulic system, avionics, and other systems is described and evaluated as generally highly satisfactory. Payload servicing and deployment were also successfully demonstrated by OFT. Additional facilities planned for the operational flights are briefly described, and improvements that will make the Challenger spacecraft lighter than Columbia, provide it with more thrust, and give it a larger payload are summarized. Some software modifications being introduced are also mentioned.

Abrahamson, J. A.

1982-01-01

421

MICROBIOLOGY: Malaria's Stealth Shuttle  

NSDL National Science Digital Library

Access to the article is free, however registration and sign-in are required. Sturm et al. report a major twist to this story during the liver stage of malaria infection. Using Plasmodium berghei, a mouse model of malaria, they show that the liver-stage parasite keeps its host hepatocyte alive long enough to complete development but allows it to then commit an unusual form of suicide that helps the parasite evade host defenses and deposit new invasive forms into the bloodstream. Membranous vesicles shuttle malaria parasites from liver to blood cells during infection, ensuring protection against the host's defenses.

Alan F. Cowman (The Walter and Eliza Hall Institute of Medical Research;); Stefan H. I. Kappe (Seattle Biomedical Research Institute;)

2006-09-01

422

Space Shuttle Missions Summary  

NASA Technical Reports Server (NTRS)

This document has been produced and updated over a 21-year period. It is intended to be a handy reference document, basically one page per flight, and care has been exercised to make it as error-free as possible. This document is basically "as flown" data and has been compiled from many sources including flight logs, flight rules, flight anomaly logs, mod flight descent summary, post flight analysis of mps propellants, FDRD, FRD, SODB, and the MER shuttle flight data and inflight anomaly list. Orbit distance traveled is taken from the PAO mission statistics.

Bennett, Floyd V.; Legler, Robert D.

2011-01-01

423

Shuttle autoland support program  

NASA Technical Reports Server (NTRS)

The results of the space shuttle automatic landing support program studies performed from November 1, 1975 to March 31, 1976 were summarized. The following subjects were discussed: (1) software definition review (TAEM pre-final and Autoland only), (2) software definition review (KPIT scheduling), (3) deletion of air data, (4) June 1975 aero data update and check runs, (5) flat turn study, (6) guidance mode switching study, (7) flat turn study-additional data, (8) trajectory shaping study, (9) aero data tolerances, and (10) turbulence model study.

1976-01-01

424

Space shuttle navigation analysis  

NASA Technical Reports Server (NTRS)

A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.

Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.

1976-01-01

425

Space Shuttle Cockpit  

NASA Technical Reports Server (NTRS)

Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. Stennisphere is open free of charge from 9 a.m. to 5 p.m. daily.

2000-01-01

426

Space Shuttle Cockpit exhibit  

NASA Technical Reports Server (NTRS)

Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis Space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

2000-01-01

427

Acoustic Emission Detection of Impact Damage on Space Shuttle Structures  

NASA Technical Reports Server (NTRS)

The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.

Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.

2004-01-01

428

Microbiological Lessons Learned from the Space Shuttle  

NASA Technical Reports Server (NTRS)

After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date.

Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.

2011-01-01

429

NASA Administrator Daniel Goldin greets Mme. Aline Chretien at launch of mission STS-96  

NASA Technical Reports Server (NTRS)

NASA Administrator Daniel Goldin (left) greets Mme. Aline Chretien, wife of the Canadian Prime Minister, at the launch of STS-96. Looking on in the background (between them) is former astronaut Jean-Loup Chretien (no relation), who flew on STS-86. Mme. Chretien attended the launch because one of the STs-96 crew is Mission Specialist Julie Payette, who represents the Canadian Space Agency. Space Shuttle Discovery launched on time at 6:49:42 a.m. EDT to begin a 10-day logistics and resupply mission for the International Space Station. Along with such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment, Discovery carries about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission includes a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

1999-01-01

430

Construction continues on the RLV complex at the Shuttle Landing Facility  

NASA Technical Reports Server (NTRS)

A worker takes a measurement for construction of the Reusable Launch Vehicle (RLV) complex at KSC. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

1999-01-01

431

Planned development of the space shuttle vehicle  

NASA Technical Reports Server (NTRS)

Information pertaining to the planned development of the space shuttle vehicle is presented. The package contains: (1) President's statement; (2) Dr. Fletcher's statement; (3) space shuttle fact sheet; (4) important reasons for the space shuttle.

1972-01-01

432

Study of solid rocket motor for space shuttle booster, volume 2, book 3, appendix A  

NASA Technical Reports Server (NTRS)

A systems requirements analysis for the solid propellant rocket engine to be used with the space shuttle was conducted. The systems analysis was developed to define the physical and functional requirements for the systems and subsystems. The operations analysis was performed to identify the requirements of the various launch operations, mission operations, ground operations, and logistic and flight support concepts.

1972-01-01

433

Expendable second stage reusable space shuttle booster. Volume 5: Operations and resources  

NASA Technical Reports Server (NTRS)

The operations and resources required to support the expendable second stage reusable space shuttle booster are analyzed. The subjects discussed are: (1) operations plan, (2) facilities utilization and manufacturing plan, (3) engineering and development plan, (4) test plan, (5) logistics and maintenance plan, and (6) program management plan.

1971-01-01

434

Type Selection & Quantity Optimization of Logistics Equipment in Logistics Park  

Microsoft Academic Search

In order to select and allocate correct equipment for the logistics park, firstly the goods information matter-elements and equipment matter-elements were established by the matter-elements theory, the matching rule and the model between goods & logistics equipment were built. Secondly the formula to compute the quantity of logistics equipment was given out. Thirdly according the theory of life cycle cost

Cheng Yao-rong; Zhang Ming; Liang Bo

2009-01-01

435

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

436

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

437

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

438

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

439

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

440

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

441

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic isl