Sample records for nasa smart surgical

  1. NASA Smart Surgical Probe Project

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Andrews, Russell J.; Jeffrey, Stefanie S.; Guerrero, Michael; Papasin, Richard; Koga, Dennis (Technical Monitor)

    2002-01-01

    Information Technologies being developed by NASA to assist astronaut-physician in responding to medical emergencies during long space flights are being employed for the improvement of women's health in the form of "smart surgical probe". This technology, initially developed for neurosurgery applications, not only has enormous potential for the diagnosis and treatment of breast cancer, but broad applicability to a wide range of medical challenges. For the breast cancer application, the smart surgical probe is being designed to "see" a suspicious lump, determine by its features if it is cancerous, and ultimately predict how the disease may progress. A revolutionary early breast cancer detection tool based on this technology has been developed by a commercial company and is being tested in human clinical trials at the University of California at Davis, School of Medicine. The smart surgical probe technology makes use of adaptive intelligent software (hybrid neural networks/fuzzy logic algorithms) with the most advanced physiologic sensors to provide real-time in vivo tissue characterization for the detection, diagnosis and treatment of tumors, including determination of tumor microenvironment and evaluation of tumor margins. The software solutions and tools from these medical applications will lead to the development of better real-time minimally-invasive smart surgical probes for emergency medical care and treatment of astronauts on long space flights.

  2. Smart surgical tool

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-02-01

    A laser-induced breakdown spectroscopy (LIBS) guided smart surgical tool using a femtosecond fiber laser is developed. This system provides real-time material identification by processing and analyzing the peak intensity and ratio of atomic emissions of LIBS signals. Algorithms to identify emissions of different tissues and metals are developed and implemented into the real-time control system. This system provides a powerful smart surgical tool for precise robotic microsurgery applications with real-time feedback and control.

  3. Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/ Northrop Grumman Smart Wing Program

    NASA Technical Reports Server (NTRS)

    Florance, Jennifer P.; Burner, Alpheus W.; Fleming, Gary A.; Martin, Christopher A.

    2003-01-01

    An overview of the contributions of the NASA Langley Research Center (LaRC) to the DARPA/AFRL/NASA/ Northrop Grumman Corporation (NGC) Smart Wing program is presented. The overall objective of the Smart Wing program was to develop smart** technologies and demonstrate near-flight-scale actuation systems to improve the aerodynamic performance of military aircraft. NASA LaRC s roles were to provide technical guidance, wind-tunnel testing time and support, and Computational Fluid Dynamics (CFD) analyses. The program was divided into two phases, with each phase having two wind-tunnel entries in the Langley Transonic Dynamics Tunnel (TDT). This paper focuses on the fourth and final wind-tunnel test: Phase 2, Test 2. During this test, a model based on the NGC Unmanned Combat Air Vehicle (UCAV) concept was tested at Mach numbers up to 0.8 and dynamic pressures up to 150 psf to determine the aerodynamic performance benefits that could be achieved using hingeless, smoothly-contoured control surfaces actuated with smart materials technologies. The UCAV-based model was a 30% geometric scale, full-span, sting-mounted model with the smart control surfaces on the starboard wing and conventional, hinged control surfaces on the port wing. Two LaRC-developed instrumentation systems were used during the test to externally measure the shapes of the smart control surface and quantify the effects of aerodynamic loading on the deflections: Videogrammetric Model Deformation (VMD) and Projection Moire Interferometry (PMI). VMD is an optical technique that uses single-camera photogrammetric tracking of discrete targets to determine deflections at specific points. PMI provides spatially continuous measurements of model deformation by computationally analyzing images of a grid projected onto the model surface. Both the VMD and PMI measurements served well to validate the use of on-board (internal) rotary potentiometers to measure the smart control surface deflection angles. Prior to the final

  4. Clinical and surgical applications of smart glasses.

    PubMed

    Mitrasinovic, Stefan; Camacho, Elvis; Trivedi, Nirali; Logan, Julia; Campbell, Colson; Zilinyi, Robert; Lieber, Bryan; Bruce, Eliza; Taylor, Blake; Martineau, David; Dumont, Emmanuel L P; Appelboom, Geoff; Connolly, E Sander

    2015-01-01

    With the increased efforts to adopt health information technology in the healthcare field, many innovative devices have emerged to improve patient care, increase efficiency, and decrease healthcare costs. A recent addition is smart glasses: web-connected glasses that can present data onto the lenses and record images or videos through a front-facing camera. In this article, we review the most salient uses of smart glasses in healthcare, while also denoting their limitations including practical capabilities and patient confidentiality. Using keywords including, but not limited to, ``smart glasses'', ``healthcare'', ``evaluation'', ``privacy'', and ``development'', we conducted a search on Ovid-MEDLINE, PubMed, and Google Scholar. A total of 71 studies were included in this review. Smart glasses have been adopted into the healthcare setting with several useful applications including, hands-free photo and video documentation, telemedicine, Electronic Health Record retrieval and input, rapid diagnostic test analysis, education, and live broadcasting. In order for the device to gain acceptance by medical professionals, smart glasses will need to be tailored to fit the needs of medical and surgical sub-specialties. Future studies will need to qualitatively assess the benefits of smart glasses as an adjunct to the current health information technology infrastructure.

  5. NASA SMART Probe: Breast Cancer Application

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Norvig, Peter (Technical Monitor)

    2000-01-01

    There is evidence in breast cancer and other malignancies that the physiologic environment within a tumor correlates with clinical outcome. We are developing a unique percutaneous Smart Probe to be used at the time of needle biopsy of the breast. The Smart Probe will simultaneously measure multiple physiologic parameters within a breast tumor. Direct and indirect measurements of tissue oxygen levels, blood flow, pH, and tissue fluid pressure will be analyzed in real-time. These parameters will be interpreted individually and collectively by innovative neural network techniques using advanced intelligent software. The goals are 1) develop a pecutaneous Smart Probe with multiple sensor modalities and applying advanced Information Technologies to provide real time diagnostic information of the tissue at tip of the probe, 2) test the percutaneous Smart Probe in women with benign and malignant breast masses who will be undergoing surgical biopsy, 3) correlate probe sensor data with benign and malignant status of breast masses, 4) determine whether the probe can detect physiologic differences within a breast tumor, and its margins, and in adjacent normal breast tissue, 5) correlate probe sensor data with known prognostic factors for breast caner, including tumor size, tumor grade, axillary lymph node metastases, estrogen receptor and progesterone receptor status.

  6. DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results

    NASA Technical Reports Server (NTRS)

    Scherer, L. B.; Martin, C. A.; West, M.; Florance, J. P.; Wieseman, C. D.; Burner, A. W.; Fleming, G. A.

    2001-01-01

    To quantify the benefits of smart materials and structures adaptive wing technology, Northrop Grumman Corp. (NGC) built and tested two 16% scale wind tunnel models (a conventional and a "smart" model) of a fighter/attack aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment (C(sub M)), increased rolling moment (C(subl)) and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist effected by SMA torque tube mechanisms, compared to conventional hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center s (LaRC) 16ft Transonic Dynamic Tunnel (TDT) in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12% increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10% increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  7. The Use of Smart Glasses for Surgical Video Streaming.

    PubMed

    Hiranaka, Takafumi; Nakanishi, Yuta; Fujishiro, Takaaki; Hida, Yuichi; Tsubosaka, Masanori; Shibata, Yosaku; Okimura, Kenjiro; Uemoto, Harunobu

    2017-04-01

    Observation of surgical procedures performed by experts is extremely important for acquisition and improvement of surgical skills. Smart glasses are small computers, which comprise a head-mounted monitor and video camera, and can be connected to the internet. They can be used for remote observation of surgeries by video streaming. Although Google Glass is the most commonly used smart glasses for medical purposes, it is still unavailable commercially and has some limitations. This article reports the use of a different type of smart glasses, InfoLinker, for surgical video streaming. InfoLinker has been commercially available in Japan for industrial purposes for more than 2 years. It is connected to a video server via wireless internet directly, and streaming video can be seen anywhere an internet connection is available. We have attempted live video streaming of knee arthroplasty operations that were viewed at several different locations, including foreign countries, on a common web browser. Although the quality of video images depended on the resolution and dynamic range of the video camera, speed of internet connection, and the wearer's attention to minimize image shaking, video streaming could be easily performed throughout the procedure. The wearer could confirm the quality of the video as the video was being shot by the head-mounted display. The time and cost for observation of surgical procedures can be reduced by InfoLinker, and further improvement of hardware as well as the wearer's video shooting technique is expected. We believe that this can be used in other medical settings.

  8. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.

    1997-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

  9. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

    1998-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption

  10. DARPA/ARFL/NASA Smart Wing second wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; West, Mark N.; Florance, Jennifer P.; Wieseman, Carol D.; Burner, Alpheus W.; Fleming, Gary A.

    1999-07-01

    To quantify the benefits of smart materials and structures adaptive wing technology. Northrop Grumman Corp. built and tested two 16 percent scale wind tunnel models of a fighter/attach aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment, increased rolling moment and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy wires and spanwise wing twist effected by SMA torque tube mechanism, compared to convention hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center's 16 ft Transonic Dynamic Tunnel in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12 percent increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10 percent increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  11. Overview of the DARPA/AFRL/NASA Smart Wing Phase II program

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Sanders, Brian P.; Pinkerton-Florance, Jennifer L.; Garcia, Ephrahim

    2001-06-01

    The DARPA/AFRL/NASA Smart Wing program, conducted by a team led by Northrop Grumman Corporation (NGC) under the DARPA Smart Materials and Structures initiative, addresses the development of smart technologies and demonstration of relevant concepts to improve the aerodynamic performance of military aircraft. This paper presents an overview of the smart wing program. The program is divided into two phases. Under Phase 1, (1995 - 1999) the NGC team developed adaptive wing structures with integrated actuation mechanisms to replace standard hinged control surfaces and provide variable, optimal aerodynamic shapes for a variety of flight regimes. Two half-span 16% scale wind tunnel models, representative of an advanced military aircraft wing, one with conventional control surfaces and the other with shape memory alloy (SMA) actuated smart control surfaces, were fabricated and tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT) wind tunnel during two series of tests, conducted in May 1996 and June 1998, respectively. Details of the Phase 1 effort are documented in several papers. The on-going Phase 2 effort discussed here was started in January 1997 and includes several significant improvements over Phase 1: 1) a much larger, full-span model; 2) both leading edge (LE) and trailing edge (TE) smart control surfaces; 3) high-band width actuation systems; and 4) wind tunnel tests at transonic Mach numbers and high dynamic pressures (up to 300 psf.) representative of operational flight regimes. Phase 2 includes two wind tunnel tests, both at the NASA LaRC TDT - the first one was completed in March 2000 and the second (and final) test is scheduled for April 2001. The first test-demonstrated roll-effectiveness over a wide range of Mach numbers achieved using a combination of hingeless, smoothly contoured, SMA actuated, LE and TE control surfaces. The second test addresses the development and demonstration of high bandwidth actuation. An overview of

  12. The NASA Smart Probe Project for real-time multiple microsensor tissue recognition

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.; Mah, Robert W.

    2003-01-01

    BACKGROUND: Remote surgery requires automated sensors, effectors and sensor-effector communication. The NASA Smart Probe Project has focused on the sensor aspect. METHODS: The NASA Smart Probe uses neural networks and data from multiple microsensors for a unique tissue signature in real time. Animal and human trials use several probe configurations: (1) 8-microsensor probe (2.5 mm in diameter) for rodent studies (normal and subcutaneous mammary tumor tissues), and (2) 21-gauge needle probe with 3 spectroscopic fibers and an impedance microelectrode for breast cancer diagnosis in humans. Multisensor data are collected in real time (update 100 times/s) using PCs. RESULTS: Human data (collected by NASA licensee BioLuminate) from 15 women undergoing breast biopsy distinguished normal tissue from both benign tumors and breast carcinoma. Tumor margins and necrosis are rapidly detected. CONCLUSION: Real-time tissue identification is achievable. Potential applications, including probes incorporating nanoelectrode arrays, are presented. Copyright 2003 S. Karger AG, Basel.

  13. Multimodality stereotactic brain tissue identification: the NASA smart probe project

    NASA Technical Reports Server (NTRS)

    Andrews, R.; Mah, R.; Aghevli, A.; Freitas, K.; Galvagni, A.; Guerrero, M.; Papsin, R.; Reed, C.; Stassinopoulos, D.

    1999-01-01

    Real-time tissue identification can benefit procedures such as stereotactic brain biopsy, functional neurosurgery and brain tumor excision. Optical scattering spectroscopy has been shown to be effective at discriminating cancer from noncancerous conditions in the colon, bladder and breast. The NASA Smart Probe extends the concept of 'optical biopsy' by using neural network techniques to combine the output from 3 microsensors contained within a cannula 2. 7 mm in diameter (i.e. the diameter of a stereotactic brain biopsy needle). Experimental data from 5 rats show the clear differentiation between tissues such as brain, nerve, fat, artery and muscle that can be achieved with optical scattering spectroscopy alone. These data and previous findings with other modalities such as (1) analysis of the image from a fiberoptic neuroendoscope and (2) the output from a microstrain gauge suggest the Smart Probe multiple microsensor technique shows promise for real-time tissue identification in neurosurgical procedures. Copyright 2000 S. Karger AG, Basel.

  14. Surgical Management and Reconstruction Training (SMART) Course for International Orthopedic Surgeons.

    PubMed

    Wu, Hao-Hua; Patel, Kushal R; Caldwell, Amber M; Coughlin, R Richard; Hansen, Scott L; Carey, Joseph N

    The burden of complex orthopedic trauma in low- and middle-income countries (LMICs) is exacerbated by soft-tissue injuries, which can often lead to amputations. This study's purpose was to create and evaluate the Surgical Management and Reconstruction Training (SMART) course to help orthopedic surgeons from LMICs manage soft-tissue defects and reduce the rate of amputations. In this prospective observational study, orthopedic surgeons from LMICs were recruited to attend a 2-day SMART course taught by plastic surgery faculty in San Francisco. Before the course, participants were asked to assess the burden of soft-tissue injury and amputation encountered at their respective sites of practice. A survey was then given immediately and 1-year postcourse to evaluate the quality of instructional materials and the course's effect in reducing the burden of amputation, respectively. Fifty-one practicing orthopedic surgeons from 25 countries attended the course. No participant reported previously attempting a flap reconstruction procedure to treat a soft-tissue defect. Before the course, participants cumulatively reported 580-970 amputations performed annually as a result of soft-tissue defects. Immediately after the course, participants rated the quality and effectiveness of training materials to be a mean of ≥4.4 on a Likert scale of 5 (Excellent) in all 14 instructional criteria. Of the 34 (66.7%) orthopedic surgeons who completed the 1-year postcourse survey, 34 (100%, P < 0.01) reported performing flaps learned at the course to treat soft-tissue defects. Flap procedures prevented 116 patients from undergoing amputation; 554 (93.3%) of the cumulative 594 flaps performed by participants 1 year after the course were reported to be successful. Ninety-seven percent of course participants taught flap reconstruction techniques to colleagues or residents, and a self-reported estimate of 28 other surgeons undertook flap reconstruction as a result of information dissemination by

  15. Smart Aerospace eCommerce: Using Intelligent Agents in a NASA Mission Services Ordering Application

    NASA Technical Reports Server (NTRS)

    Moleski, Walt; Luczak, Ed; Morris, Kim; Clayton, Bill; Scherf, Patricia; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes how intelligent agent technology was successfully prototyped and then deployed in a smart eCommerce application for NASA. An intelligent software agent called the Intelligent Service Validation Agent (ISVA) was added to an existing web-based ordering application to validate complex orders for spacecraft mission services. This integration of intelligent agent technology with conventional web technology satisfies an immediate NASA need to reduce manual order processing costs. The ISVA agent checks orders for completeness, consistency, and correctness, and notifies users of detected problems. ISVA uses NASA business rules and a knowledge base of NASA services, and is implemented using the Java Expert System Shell (Jess), a fast rule-based inference engine. The paper discusses the design of the agent and knowledge base, and the prototyping and deployment approach. It also discusses future directions and other applications, and discusses lessons-learned that may help other projects make their aerospace eCommerce applications smarter.

  16. NASA Robotic Neurosurgery Testbed

    NASA Technical Reports Server (NTRS)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  17. NASA Robotic Neurosurgery Testbed

    NASA Technical Reports Server (NTRS)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations. In neurosurgery, the needle used in the standard stereotactic CT (Computational Tomography) or MRI (Magnetic Resonance Imaging) guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled 'Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification' is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  18. Characterization on Smart Optics Using Ellipsometry

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.

    2002-01-01

    Recently, NASA Langley Research Center developed a smart active optical concept to filter narrow band pass or to control optical intensity. To characterize developed smart optics materials, we have measured thickness and reflection properties of the materials using a WVASE32 ellipsometry. This project allowed us to: (1) prepare the smart optical materials for measurement of thickness and optical properties at NASA Langley Research Center; (2) measure thickness and optical properties of the smart optical materials; (3) evaluate the measured properties in terms of applications for narrow band-pass filters. The outcomes of this research provide optical properties and physical properties of the smart optics on a selected spectral range. The applications of this development were used for field-controlled spectral smart filters.

  19. Smart Test Machines

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Vern Wedeven, president of Wedeven Associates, developed the WAM4, a computer-aided "smart" test machine for simulating stress on equipment, based on his bearing lubrication expertise gained while working for Lewis Research Center. During his NASA years from the 1970s into the early 1980s, Wedeven initiated an "Interdisciplinary Collaboration in Tribology," an effort that involved NASA, six universities, and several university professors. The NASA-sponsored work provided foundation for Wedeven in 1983 to form his own company. Several versions of the smart test machine, the WAM1, WAM2, and WAM3, have proceeded the current version, WAM4. This computer-controlled device can provide detailed glimpses at gear and bearing points of contact. WAM4 can yield a three-dimensional view of machinery as an operator adds "what-if" thermal and lubrication conditions, contact stress, and surface motion. Along with NASA, a number of firms, including Pratt & Whitney, Caterpillar Tractor, Exxon, and Chevron have approached Wedeven for help on resolving lubrication problems.

  20. Smart Fabrics Technology Development

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  1. Smart and intelligent sensor payload project

    NASA Image and Video Library

    2009-04-01

    Engineers working on the smart and intelligent sensor payload project include (l to r): Ed Conley (NASA), Mark Mitchell (Jacobs Technology), Luke Richards (NASA), Robert Drackett (Jacobs Technology), Mark Turowski (Jacobs Technology) , Richard Franzl (seated, Jacobs Technology), Greg McVay (Jacobs Technology), Brianne Guillot (Jacobs Technology), Jon Morris (Jacobs Technology), Stephen Rawls (NASA), John Schmalzel (NASA) and Andrew Bracey (NASA).

  2. Park Smart

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Parking Garage Automation System (PGAS) is based on a technology developed by a NASA-sponsored project called Robot sensorSkin(TM). Merritt Systems, Inc., of Orlando, Florida, teamed up with NASA to improve robots working with critical flight hardware at Kennedy Space Center in Florida. The system, containing smart sensor modules and flexible printed circuit board skin, help robots to steer clear of obstacles using a proximity sensing system. Advancements in the sensor designs are being applied to various commercial applications, including the PGAS. The system includes a smartSensor(TM) network installed around and within public parking garages to autonomously guide motorists to open facilities, and once within, to free parking spaces. The sensors use non-invasive reflective-ultrasonic technology for high accuracy, high reliability, and low maintenance. The system is remotely programmable: it can be tuned to site-specific requirements, has variable range capability, and allows remote configuration, monitoring, and diagnostics. The sensors are immune to interference from metallic construction materials, such as rebar and steel beams. Inside the garage, smart routing signs mounted overhead or on poles in front of each row of parking spots guide the motorist precisely to free spaces.

  3. Deep Space Habitat Wireless Smart Plug

    NASA Technical Reports Server (NTRS)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  4. Smartphone, Smart Surgeon, what about a 'Smart Logbook'?

    PubMed

    Adam, A; Spencer, K; Moon, S; Jacub, I

    2016-06-01

    Mobile phone applications (Apps) have become a vital assistant to medical personnel in today's technologically advanced era. The utility of Apps with case logbook capabilities has not yet been explored. To assess and evaluate all currently available surgical and procedural case logbook Apps. A comprehensive search was conducted in April 2015 on the Android Play Store, iTunes (Apple App Store, iOS), and BlackBerry World for surgical and/or procedural logbooks. The search terms'surgical logbook', 'logbook', 'procedure logbook' and 'surgical log' were used. Apps which could not be utilized as a surgical/procedural logbook were excluded. Each App was individually assessed and rated using preset criteria, by the unit consultant, registrars, and medical officer. In total, 2 740 Apps were assessed. After applying our exclusion criteria, only 16 Apps were relevant, and 11 suitable for critical review. Data sizes ranged from 510Kb to 12.2Mb. Costing of the Apps ranged from ZAR 0.00 to ZAR 105.32. The overall study scores revealed the following top five rated Apps: Surgical Logbook by Surgilog ; Surgeon Logbook Pro ; Surgery Notebook , Surgical Logbook , and Universal Logbook . The current mobile Apps available are efficient in replacing traditional case logbooks. The use of the 'Smart Logbook' may become common practice in the life of the modern-day surgeon.

  5. Mars Smart Lander Simulations for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Striepe, S. A.; Way, D. W.; Balaram, J.

    2002-01-01

    Two primary simulations have been developed and are being updated for the Mars Smart Lander Entry, Descent, and Landing (EDL). The high fidelity engineering end-to-end EDL simulation that is based on NASA Langley's Program to Optimize Simulated Trajectories (POST) and the end-to-end real-time, hardware-in-the-loop simulation testbed, which is based on NASA JPL's (Jet Propulsion Laboratory) Dynamics Simulator for Entry, Descent and Surface landing (DSENDS). This paper presents the status of these Mars Smart Lander EDL end-to-end simulations at this time. Various models, capabilities, as well as validation and verification for these simulations are discussed.

  6. Combining Sense and Intelligence for Smart Structures

    NASA Technical Reports Server (NTRS)

    2002-01-01

    IFOS developed the I*Sense technology with assistance from a NASA Langley Research Center SBIR contract. NASA and IFOS collaborated to create sensing network designs that have high sensitivity, low power consumption, and significant potential for mass production. The joint- research effort led to the development of a module that is rugged, compact and light-weight, and immune to electromagnetic interference. These features make the I*Sense multisensor arrays favorable for smart structure applications, including smart buildings, bridges, highways, dams, power plants, ships, and oil tankers, as well as space vehicles, space stations, and other space structures. For instance, the system can be used as an early warning and detection device, with alarms being set to monitor the maximum allowable strain and stress values at various points of a given structure.

  7. System requirements specification for SMART structures mode

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Specified here are the functional and informational requirements for software modules which address the geometric and data modeling needs of the aerospace structural engineer. The modules are to be included as part of the Solid Modeling Aerospace Research Tool (SMART) package developed for the Vehicle Analysis Branch (VAB) at the NASA Langley Research Center (LaRC). The purpose is to precisely state what the SMART Structures modules will do, without consideration of how it will be done. Each requirement is numbered for reference in development and testing.

  8. SMART Rotor Development and Wind-Tunnel Test

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  9. NASA programs in advanced sensors and measurement technology for aeronautical applications

    NASA Astrophysics Data System (ADS)

    Conway, Bruce A.

    NASA involvement in the development, implementation, and experimental use of advanced aeronautical sensors and measurement technologies is presently discussed within the framework of specific NASA research centers' activities. The technology thrusts are in the fields of high temperature strain gages and microphones, laser light-sheet flow visualization, LTA, LDV, and LDA, tunable laser-based aviation meteorology, and fiber-optic CARS measurements. IR thermography and close-range photogrammetry are undergoing substantial updating and application. It is expected that 'smart' sensors will be increasingly widely used, especially in conjunction with smart structures in aircraft and spacecraft.

  10. Smart wing wind tunnel model design

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Jasmin, Larry; Flanagan, John S.; Appa, Kari; Kudva, Jayanth N.

    1997-05-01

    To verify the predicted benefits of the smart wing concept, two 16% scale wind tunnel models, one conventional and the other incorporating smart wing design features, were designed, fabricated and tested. Meticulous design of the two models was essential to: (1) ensure the required factor of safety of four for operation in the NASA Langley TDT wind tunnel, (2) efficiently integrate the smart actuation systems, (3) quantify the performance improvements, and (4) facilitate eventual scale-up to operational aircraft. Significant challenges were encountered in designing the attachment of the shape memory alloy control surfaces to the wing box, integration of the SMA torque tube in the wing structure, and development of control mechanisms to protect the model and the tunnel in the event of failure of the smart systems. In this paper, detailed design of the two models are presented. First, dynamic scaling of the models based on the geometry and structural details of the full- scale aircraft is presented. Next, results of the stress, divergence and flutter analyses are summarized. Finally some of the challenges of integrating the smart actuators with the model are highlighted.

  11. Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.

  12. SmartSIM - a virtual reality simulator for laparoscopy training using a generic physics engine.

    PubMed

    Khan, Zohaib Amjad; Kamal, Nabeel; Hameed, Asad; Mahmood, Amama; Zainab, Rida; Sadia, Bushra; Mansoor, Shamyl Bin; Hasan, Osman

    2017-09-01

    Virtual reality (VR) training simulators have started playing a vital role in enhancing surgical skills, such as hand-eye coordination in laparoscopy, and practicing surgical scenarios that cannot be easily created using physical models. We describe a new VR simulator for basic training in laparoscopy, i.e. SmartSIM, which has been developed using a generic open-source physics engine called the simulation open framework architecture (SOFA). This paper describes the systems perspective of SmartSIM including design details of both hardware and software components, while highlighting the critical design decisions. Some of the distinguishing features of SmartSIM include: (i) an easy-to-fabricate custom-built hardware interface; (ii) use of a generic physics engine to facilitate wider accessibility of our work and flexibility in terms of using various graphical modelling algorithms and their implementations; and (iii) an intelligent and smart evaluation mechanism that facilitates unsupervised and independent learning. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Tissue modification with feedback: the smart scalpel

    NASA Astrophysics Data System (ADS)

    Sebern, Elizabeth L.; Brenan, Colin J. H.; Anderson, R. Rox; Hunter, Ian W.

    1998-10-01

    While feedback control is widespread throughout many engineering fields, there are almost no examples of surgical instruments that utilize a real-time detection and intervention strategy. This concept of closed loop feedback can be applied to the development of autonomous or semi- autonomous minimally invasive robotic surgical systems for efficient excision or modification of diseased tissue. Spatially localized regions of the tissue are first probed to distinguish pathological from healthy tissue based on differences in histochemical and morphological properties. Energy is directed to only the diseased tissue, minimizing collateral damage by leaving the adjacent healthy tissue intact. Continuous monitoring determines treatment effectiveness and, if needed, enables real-time treatment modifications to produce optimal therapeutic outcomes. The present embodiment of this general concept is a microsurgical instrument we call the Smart Scalpel, designed to treat skin angiodysplasias such as port wine stains. Other potential Smart Scalpel applications include psoriasis treatment and early skin cancer detection and intervention.

  14. Development, in vitro and in vivo evaluation of novel injectable smart gels of azithromycin for chronic periodontitis.

    PubMed

    Venkatesh, M P; Kumar, T M Pramod; Avinash, B S; Kumar, G Sheela

    2013-04-01

    Periodontitis is an inflammatory condition affecting teeth resulting in progressive destruction of periodontal ligaments, resorption of alveolar bone and loss of teeth. Treatment of periodontitis includes surgical and non surgical management. Systemic antibiotics are also used for the treatment of periodontitis. The aim of this research was to formulate smart gel system of azithromycin (AZT) and to evaluate in vitro and in vivo for non-surgical treatment of chronic periodontitis. Azithromycin dihydrate, used systemically in the treatment of periodontitis, was formulated into smart gels using biodegradable, thermosensitive polymer Pluronic® F-127 (PF-127) and Hydroxy Ethyl Cellulose (HEC) as copolymer. The prepared smart gels were evaluated for sterility, content uniformity, gelation temperature and time, syringeability, rheological behavior, in vitro diffusion and in vivo efficacy in human patients. The prepared smart gels were clear and transparent, sterile, thermoresponsive and injectable. Viscosity of gels increased with increase in concentration of polymer/co-polymer and also with temperature. They gelled in short response time below the body temperature. In vitro release studies showed controlled drug release which was influenced significantly by the properties and concentration of PF-127 and HEC. In vivo efficacy studies showed a significant improvement (p <0.001) in clinical parameters such as gingival index, probing pocket depth, clinical attachment level, bleeding index and plaque index. The developed azithromycin smart gel system is a novel approach for the treatment of chronic periodontitis since it reduces the dose and side effects, bypasses the usual surgical procedures and improves patient compliance.

  15. Deformation Measurements of Smart Aerodynamic Surfaces

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Burner, Alpheus

    2005-01-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  16. Information adaptive system of NEEDS. [of NASA End to End Data System

    NASA Technical Reports Server (NTRS)

    Howle, W. M., Jr.; Kelly, W. L.

    1979-01-01

    The NASA End-to-End Data System (NEEDS) program was initiated by NASA to improve significantly the state of the art in acquisition, processing, and distribution of space-acquired data for the mid-1980s and beyond. The information adaptive system (IAS) is a program element under NEEDS Phase II which addresses sensor specific processing on board the spacecraft. The IAS program is a logical first step toward smart sensors, and IAS developments - particularly the system components and key technology improvements - are applicable to future smart efforts. The paper describes the design goals and functional elements of the IAS. In addition, the schedule for IAS development and demonstration is discussed.

  17. Small Rocket/Spacecraft Technology (SMART) Platform

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  18. MAC/GMC Code Enhanced for Coupled Electromagnetothermoelastic Analysis of Smart Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.; Aboudi, Jacob

    2002-01-01

    Intelligent materials are those that exhibit coupling between their electromagnetic response and their thermomechanical response. This coupling allows smart materials to react mechanically (e.g., an induced displacement) to applied electrical or magnetic fields (for instance). These materials find many important applications in sensors, actuators, and transducers. Recently interest has arisen in the development of smart composites that are formed via the combination of two or more phases, one or more of which is a smart material. To design with and utilize smart composites, designers need theories that predict the coupled smart behavior of these materials from the electromagnetothermoelastic properties of the individual phases. The micromechanics model known as the generalized method of cells (GMC) has recently been extended to provide this important capability. This coupled electromagnetothermoelastic theory has recently been incorporated within NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). This software package is user friendly and has many additional features that render it useful as a design and analysis tool for composite materials in general, and with its new capabilities, for smart composites as well.

  19. Space Missions for Automation and Robotics Technologies (SMART) Program

    NASA Technical Reports Server (NTRS)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  20. Street Smarts and a Scalpel: Emotional Intelligence in Surgical Education.

    PubMed

    Erdman, Mary Kate; Bonaroti, Alisha; Provenzano, Gina; Appelbaum, Rachel; Browne, Marybeth

    To evaluate trends of emotional intelligence (EI) in surgical education and to compare the incorporation of EI in surgical education to other fields of graduate medical education. A MEDLINE search was performed for publications containing both "surgery" and "emotional intelligence" with at least one term present in the title. Articles were included if the authors deemed EI in surgical education to be a significant focus. A separate series of MEDLINE searches were performed with the phrase "emotional intelligence" in any field and either "surg*," "internal medicine," "pediatric," "neurology," "obstetric," "gynecology," "OBGYN," "emergency," or "psychiat*" in the title. Articles were included if they discussed resident education as the primary subject. Next, a qualitative analysis of the articles was performed, with important themes from each article noted. Lehigh Valley Health Network in Allentown, PA. Eight articles addressed surgical resident education and satisfied inclusion criteria with 0, 1, and 7 articles published between 2001 and 2005, 2005 and 2010, and 2010 and 2015, respectively. The comparative data for articles on EI and resident education showed the following : 8 in surgery, 2 in internal medicine, 2 in pediatrics, 0 in neurology, 0 in OBGYN, 1 in emergency medicine, and 3 in psychiatry. Integration of EI principles is a growing trend within surgical education. A prominent theme is quantitative assessment of EI in residents and residency applicants. Further study is warranted on the integration process of EI in surgical education and its effect on patient outcomes and long-term job satisfaction. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. Smart wing wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; Appa, Kari; Kudva, Jayanth N.; West, Mark N.

    1997-05-01

    The use of smart materials technologies can provide unique capabilities in improving aircraft aerodynamic performance. Northrop Grumman built and tested a 16% scale semi-span wind tunnel model of the F/A-18 E/F for the on-going DARPA/WL Smart Materials and Structures-Smart Wing Program. Aerodynamic performance gains to be validated included increase in the lift to drag ratio, increased pitching moment (Cm), increased rolling moment (Cl) and improved pressure distribution. These performance gains were obtained using hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist via a SMA torque tube and are compared to a conventional wind tunnel model with hinged control surfaces. This paper presents an overview of the results from the first wind tunnel test performed at the NASA Langley's 16 ft Transonic Dynamic Tunnel. Among the benefits demonstrated are 8 - 12% increase in rolling moment due to wing twist, a 10 - 15% increase in rolling moment due to contoured aileron, and approximately 8% increase in lift due to contoured flap, and improved pressure distribution due to trailing edge control surface contouring.

  2. Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery.

    PubMed

    Sun, Xinyao; Byrns, Simon; Cheng, Irene; Zheng, Bin; Basu, Anup

    2017-02-01

    We introduce a smart sensor-based motion detection technique for objective measurement and assessment of surgical dexterity among users at different experience levels. The goal is to allow trainees to evaluate their performance based on a reference model shared through communication technology, e.g., the Internet, without the physical presence of an evaluating surgeon. While in the current implementation we used a Leap Motion Controller to obtain motion data for analysis, our technique can be applied to motion data captured by other smart sensors, e.g., OptiTrack. To differentiate motions captured from different participants, measurement and assessment in our approach are achieved using two strategies: (1) low level descriptive statistical analysis, and (2) Hidden Markov Model (HMM) classification. Based on our surgical knot tying task experiment, we can conclude that finger motions generated from users with different surgical dexterity, e.g., expert and novice performers, display differences in path length, number of movements and task completion time. In order to validate the discriminatory ability of HMM for classifying different movement patterns, a non-surgical task was included in our analysis. Experimental results demonstrate that our approach had 100 % accuracy in discriminating between expert and novice performances. Our proposed motion analysis technique applied to open surgical procedures is a promising step towards the development of objective computer-assisted assessment and training systems.

  3. Smart Grid Development Issues for Terrestrial and Space Applications

    NASA Technical Reports Server (NTRS)

    Soeder, James F.

    2011-01-01

    The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.

  4. Smart Grid Development Issues for Terrestrial and Space Applications

    NASA Technical Reports Server (NTRS)

    Soeder, James F.

    2014-01-01

    The development of the so called Smart Grid has as many definitions as individuals working in the area. Based on the technology or technologies that are of interest, be it high speed communication, renewable generation, smart meters, energy storage, advanced sensors, etc. they can become the individual defining characteristic of the Smart Grid. In reality the smart grid encompasses all of these items and quite at bit more. This discussion attempts to look at what the needs are for the grid of the future, such as the issues of increased power flow capability, use of renewable energy, increased security and efficiency and common power and data standards. It also shows how many of these issues are common with the needs of NASA for future exploration programs. A common theme to address both terrestrial and space exploration issues is to develop micro-grids that advertise the ability to enable the load leveling of large power generation facilities. However, for microgrids to realize their promise there needs to a holistic systems approach to their development and integration. The overall system integration issues are presented along with potential solution methodologies.

  5. Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Corrosion is a serious problem that has enormous costs and serious safety implications. Localized corrosion, such as pitting, is very dangerous and can cause catastrophic failures. The NASA Corrosion Technology Laboratory at Kennedy Space Center is developing a smart coating based on pH-sensitive microcapsules for corrosion applications. These versatile microcapsules are designed to be incorporated into a smart coating and deliver their core content when corrosion starts. Corrosion indication was the first function incorporated into the microcapsules. Current efforts are focused on incorporating the corrosion inhibition function through the encapsulation of corrosion inhibitors into water core and oil core microcapsules. Scanning electron microscopy (SEM) images of encapsulated corrosion inhibitors are shown.

  6. An Overview-NASA LeRC Structures Program

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1997-01-01

    The Structures and Acoustics Division of the NASA Lewis Research Center has its genesis dating back to 1943. It has been an independent Division at Lewis since 1979. Its two primary capabilities are performance and life analysis of static and dynamic systems such as those found in aircraft and spacecraft propulsion systems and experimental verification of these analyses. Research is conducted in-house, through university grants and contracts, and through cooperative programs with industry. Our work directly supports NASA's Advanced Subsonic Technology (AST), Smart Green Engine, Fast Quiet Engine, High-Temperature Materials and Processing (HiTEMP), Hybrid Hyperspeed Propulsion, Rotorcraft, High-Speed Research (HSR), and Aviation Safety Program (AvSP). A general overview is given discussing these programs and other technologies that are being developed at NASA LeRC.

  7. Buckets: A New Digital Library Technology for Preserving NASA Research.

    ERIC Educational Resources Information Center

    Nelson, Michael L.

    2001-01-01

    Discusses the need for preserving and disseminating scientific and technical information through digital libraries and describes buckets, an intelligent construct for publishing that contains data and metadata and methods for accessing them. Explains SODA (Smart Object, Dumb Archive) and discusses experiences using these technologies in NASA and…

  8. Crowdsourced Smart Cities versus Corporate Smart Cities

    NASA Astrophysics Data System (ADS)

    Alizadeh, Tooran

    2018-05-01

    Considering the speedy growth of smart-city promises and practices, there is an urgent need to take a critical approach and offer an integrated vision for an otherwise fragmented and sectoral concept. In particular, the literature warns about a critical deficit around the theorization of the smart city because discussions of relevant smart city theories or frameworks are few and fall short of offering alternative practical resolutions to the dominant discourse. In developing a response to such a deficit, this paper takes up the challenge to broaden theoretical insights into smart cities, by offering a bottom-up understanding of the ‘smart city’ concept with special attention to the potential of passive crowdsourcing based on the ocean of mostly untapped and unutilized available data in the public domain. Crowdsourced smart cities are proposed as an alternative to enable public engagement in smart city debates and decision-making – especially when dealing with global digital corporations.

  9. SMART (Shop floor Modeling, Analysis and Reporting Tool Project

    NASA Technical Reports Server (NTRS)

    Centeno, Martha A.; Garcia, Maretys L.; Mendoza, Alicia C.; Molina, Louis A.; Correa, Daisy; Wint, Steve; Doice, Gregorie; Reyes, M. Florencia

    1999-01-01

    This document presents summarizes the design and prototype of the Shop floor Modeling, Analysis, and Reporting Tool (S.M.A.R.T.) A detailed description of it is found on the full documentation given to the NASA liaison. This documentation is also found on the A.R.I.S.E. Center web site, under a projected directory. Only authorized users can gain access to this site.

  10. Smart learning services based on smart cloud computing.

    PubMed

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  11. Smart Learning Services Based on Smart Cloud Computing

    PubMed Central

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users. PMID:22164048

  12. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.

  13. Smart RISUG: a potential new contraceptive and its magnetic field-mediated sperm interaction.

    PubMed

    Jha, Rakhi K; Jha, Pradeep K; Guha, Sujoy K

    2009-01-01

    The rationale and technique underlying a novel concept of noninvasive fertility control by a new Cuproferrogel contraceptive drug, iron oxide-copper-styrene maleic anhydride-dimethyl sulphoxide (Fe3O4-Cu-SMA-DMSO) composite named 'Smart RISUG' (smart reversible inhibition of sperm under guidance) in presence of pulsed magnetic field (PMF; 1 mT to 800 mT) is explained. It was synthesized by dispersing iron oxide particles and copper particles into SMA-DMSO (male contraceptive RISUG) and characterized for particle distribution, particle size measurement and transmittance peaks, etc. Interaction of the RISUG particles as well as Smart RISUG particles with Albino rat sperm cell was studied in presence as well as absence of PMF. To find an explanation to increased reaching of the Smart RISUG drug into sperm under influence of magnetic field, the transport properties were characterized by high resolution transmission electron microscopy and atomic force microscopy. Smart RISUG could be mobilized into sperm cell membrane at the PMF, 760 mT in about 50 seconds. Adoption of novel drug Smart RISUG involving new technique may open the pathway for non surgical control of drug distribution, detection and restoration of the normal fertility after removal of the contraceptive from the male/female reproductive tube in presence of electromagnetic field.

  14. The role of smart systems in rendezvous, close proximity operations and docking maneuvers

    NASA Astrophysics Data System (ADS)

    Szatkowski, Gerard P.

    Various missions scenarios (Space Station logistics, LEO and GEO services, and SEI operation) will involve flexibility in mission management. This means operations will be one or a combination of the following: autonomous, supervised autonomous, and machine aided manual control. Smart Systems will likely play a significant role in making these missions successful from a safety/reliability perspective and less costly from an operations perspective. This does not imply that Smart Systems need to be super sophisticated. On the contrary, Smart Systems have been described as automated intelligence that if a person had done it wrong, it would be considered stupid. The first part of this paper will describe the types of Smart System techniques involved in AR and CC, their specifications, duties, and interactions. Next will be a discussion of the work performed under the auspice of the ALS Program to further Expert Systems applications imbedded in the control process, NASA/JSC CRAD, and other related IRAD projects. This will include issues pertaining to the following: integration, speed, knowledge encapsulation, and cooperative systems. Finally, a brief description will be offered to outline the major obstacles for the acceptance of Smart Systems in critical applications.

  15. Space missions for automation and robotics technologies (SMART) program

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Lum, H., Jr.

    1985-01-01

    The motivations, features and expected benefits and applications of the NASA SMART program are summarized. SMART is intended to push the state of the art in automation and robotics, a goal that Public Law 98-371 mandated be an inherent part of the Space Station program. The effort would first require tests of sensors, manipulators, computers and other subsystems as seeds for the evolution of flight-qualified subsystems. Consideration is currently being given to robotics systems as add-ons to the RMS, MMU and OMV and a self-contained automation and robotics module which would be tended by astronaut visits. Probable experimentation and development paths that would be pursued with the equipment are discussed, along with the management structure and procedures for the program. The first hardware flight is projected for 1989.

  16. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  17. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  18. Smart Meter Rollout: Intelligente Messsysteme als Schnittstelle zum Kunden im Smart Grid und Smart Market

    NASA Astrophysics Data System (ADS)

    Vortanz, Karsten; Zayer, Peter

    Das Gesetz zur Digitalisierung der Energiewende ist verabschiedet. Ab 2017 sind moderne Messeinrichtungen (mME) und intelligente Messsysteme (iMSys) zu verbauen und zu betreiben. Der "deutsche Weg" für die Einführung von Smart Metern sieht einen stufenweisen Rollout sowie ein Höchstmaß an Informations- und Datensicherheit vor. Dabei spielen iMSys und mME eine wichtige Rolle bei der Neugestaltung der intelligenten Netze (Smart Grids) und des neuen Marktmodells (Smart Market). Dieser Beitrag beschäftigt sich mit den neuen Gesetzen, den Marktrollen und ihren Aufgaben, Datenschutz und Datensicherheit, dem iMSys als sichere Lösung, dem sicheren Betrieb von Smart Meter Gateways, Smart Grid - Smart Market, dem Zusammenspiel zwischen reguliertem Bereich und Markt, den Einsatzbereichen der iMSys sowie den Auswirkungen auf Prozesse und Systeme und gibt Handlungsempfehlungen.

  19. Smart Sensors Assess Structural Health

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA frequently inspects launch vehicles, fuel tanks, and other components for structural damage. To perform quick evaluation and monitoring, the Agency pursues the development of structural health monitoring systems. In 2001, Acellent Technologies Inc., of Sunnyvale, California, received Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center to develop a hybrid Stanford Multi-Actuator Receiver Transduction (SMART) Layer for aerospace vehicles and structures. As a result, Acellent expanded the technology's capability and now sells it to aerospace and automotive companies; construction, energy, and utility companies; and the defense, space, transportation, and energy industries for structural condition monitoring, damage detection, crack growth monitoring, and other applications.

  20. A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2012-01-01

    Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.

  1. SMART micro-scissors with dual motors and OCT sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yeo, Chaebeom; Jang, Seonjin; Park, Hyun-cheol; Gehlbach, Peter L.; Song, Cheol

    2017-02-01

    Various end-effectors of microsurgical instruments have been developed and studied. Also, many approaches to stabilize the tool-tip using robotics have been studied such as the steady hand robot system, Micron, and SMART system. In our previous study, the horizontal SMART micro-scissors with a common path swept source OCT distance and one linear piezoelectric (PZT) motor was demonstrated as a microsurgical system. Because the outer needle is connected with a mechanical handle and moved to engage the tool tip manually, the tool tip position is instantaneously changed during the engaging. The undesirable motion can make unexpected tissue damages and low surgical accuracy. In this study, we suggest a prototype horizontal SMART micro-scissors which has dual OCT sensors and two motors to improve the tremor cancellation. Dual OCT sensors provide two distance information. Front OCT sensor detects a distance from the sample surface to the tool tip. Rear OCT sensors gives current PZT motor movement, acting like a motor encoder. The PZT motor can compensate the hand tremor with a feedback loop control. The manual engaging of tool tip in previous SMART system is replaced by electrical engaging using a squiggle motor. Compared with previous study, this study showed better performance in the hand tremor reduction. From the result, the SMART with automatic engaging may become increasingly valuable in microsurgical instruments.

  2. NASA Records Database

    NASA Technical Reports Server (NTRS)

    Callac, Christopher; Lunsford, Michelle

    2005-01-01

    The NASA Records Database, comprising a Web-based application program and a database, is used to administer an archive of paper records at Stennis Space Center. The system begins with an electronic form, into which a user enters information about records that the user is sending to the archive. The form is smart : it provides instructions for entering information correctly and prompts the user to enter all required information. Once complete, the form is digitally signed and submitted to the database. The system determines which storage locations are not in use, assigns the user s boxes of records to some of them, and enters these assignments in the database. Thereafter, the software tracks the boxes and can be used to locate them. By use of search capabilities of the software, specific records can be sought by box storage locations, accession numbers, record dates, submitting organizations, or details of the records themselves. Boxes can be marked with such statuses as checked out, lost, transferred, and destroyed. The system can generate reports showing boxes awaiting destruction or transfer. When boxes are transferred to the National Archives and Records Administration (NARA), the system can automatically fill out NARA records-transfer forms. Currently, several other NASA Centers are considering deploying the NASA Records Database to help automate their records archives.

  3. Surgical Capabilities for Exploration and Colonization Space Flight - An Exploratory Symposium

    NASA Technical Reports Server (NTRS)

    Pantalos, George; Strangman, Gary; Doarn, Charles R.; Broderick, Timothy; Antonsen, Erik

    2015-01-01

    Identify realistic and achievable pathways for surgical capabilities during exploration and colonization space operations and develop a list of recommendations to the NASA Human Research Program to address challenges to developing surgical capabilities.

  4. Lesson plans in surgical training.

    PubMed

    Lester, S E; Robson, A K R

    2007-06-01

    Lesson plans in surgery enable trainers and trainees to agree on goals that balance training needs with service commitments. Lesson plans are individualised to the trainee and encourage ownership of learning. They are based on SMART criteria and therefore have a sound educational footing. Most of the work in creating a lesson plan falls to the trainee. The total time for creation of each plan is approximately 20 min. Our use of lesson plans for surgical training has been met with favourable response from both trainer and trainees.

  5. Recent Results from NASA's Morphing Project

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Washburn, Anthony E.; Horta, Lucas G.; Bryant, Robert G.; Cox, David E.; Siochi, Emilie J.; Padula, Sharon L.; Holloway, Nancy M.

    2002-01-01

    The NASA Morphing Project seeks to develop and assess advanced technologies and integrated component concepts to enable efficient, multi-point adaptability in air and space vehicles. In the context of the project, the word "morphing" is defined as "efficient, multi-point adaptability" and may include macro, micro, structural and/or fluidic approaches. The project includes research on smart materials, adaptive structures, micro flow control, biomimetic concepts, optimization and controls. This paper presents an updated overview of the content of the Morphing Project including highlights of recent research results.

  6. Smart governance for smart city

    NASA Astrophysics Data System (ADS)

    Mutiara, Dewi; Yuniarti, Siti; Pratama, Bambang

    2018-03-01

    Some of the local government in Indonesia claimed they already created a smart city. Mostly the claim based of IT utilization for their governance. In general, a smart city definition is to describe a developed urban area that creates sustainable economic development and high quality of life by excelling in multiple key; economy, mobility, environment, people, living, and government. For public services, the law guarantees good governance by setting the standard for e-government implicitly including for local government or a city. Based on the arguments, this research tries to test the condition of e-government of the Indonesian city in 34 provinces. The purpose is to map e-government condition by measuring indicators of smart government, which are: transparent governance and open data for the public. This research is departing from public information disclosure law and to correspond with the existence law. By examining government transparency, the output of the research can be used to measure the effectiveness of public information disclosure law and to determine the condition of e-government in local government in which as part of a smart city.

  7. Ethernet-based smart networked elements (sensors and actuators)

    NASA Astrophysics Data System (ADS)

    Mata, Carlos T.; Perotti, José M.; Oostdyk, Rebecca L.; Lucena, Angel

    2006-05-01

    This paper outlines the present design approach for the Ethernet-Based Smart Networked Elements (SNE) being developed by NASA's Instrumentation Branch and the Advanced Electronics and Technology Development Laboratory of ASRC Aerospace Corporation at Kennedy Space Center (KSC). The SNEs are being developed as part of the Integrated Intelligent Health Management System (IIHMS), jointly developed by Stennis Space Center (SSC), KSC, and Marshall Space Flight Center (MSFC). SNEs are sensors/actuators with embedded intelligence, capable of networking among themselves and with higher-level systems (external processors and controllers) to provide not only instrumentation data but also associated data validity qualifiers. NASA KSC has successfully developed and preliminarily demonstrated this new generation of SNEs. SNEs that collect pressure, strain, and temperature measurements (including cryogenic temperature ranges) have been developed and tested in the laboratory and are ready for demonstration in the field.

  8. Smart and Intelligent Sensors

    NASA Technical Reports Server (NTRS)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  9. Electricity Markets, Smart Grids and Smart Buildings

    NASA Astrophysics Data System (ADS)

    Falcey, Jonathan M.

    A smart grid is an electricity network that accommodates two-way power flows, and utilizes two-way communications and increased measurement, in order to provide more information to customers and aid in the development of a more efficient electricity market. The current electrical network is outdated and has many shortcomings relating to power flows, inefficient electricity markets, generation/supply balance, a lack of information for the consumer and insufficient consumer interaction with electricity markets. Many of these challenges can be addressed with a smart grid, but there remain significant barriers to the implementation of a smart grid. This paper proposes a novel method for the development of a smart grid utilizing a bottom up approach (starting with smart buildings/campuses) with the goal of providing the framework and infrastructure necessary for a smart grid instead of the more traditional approach (installing many smart meters and hoping a smart grid emerges). This novel approach involves combining deterministic and statistical methods in order to accurately estimate building electricity use down to the device level. It provides model users with a cheaper alternative to energy audits and extensive sensor networks (the current methods of quantifying electrical use at this level) which increases their ability to modify energy consumption and respond to price signals The results of this method are promising, but they are still preliminary. As a result, there is still room for improvement. On days when there were no missing or inaccurate data, this approach has R2 of about 0.84, sometimes as high as 0.94 when compared to measured results. However, there were many days where missing data brought overall accuracy down significantly. In addition, the development and implementation of the calibration process is still underway and some functional additions must be made in order to maximize accuracy. The calibration process must be completed before a reliable

  10. Simple, heart-smart substitutions

    MedlinePlus

    Coronary artery disease - heart smart substitutions; Atherosclerosis - heart smart substitutions; Cholesterol - heart smart substitutions; Coronary heart disease - heart smart substitutions; Healthy diet - heart ...

  11. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  12. Electricity usage scheduling in smart building environments using smart devices.

    PubMed

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%.

  13. Towards smart environments using smart objects.

    PubMed

    Sedlmayr, Martin; Prokosch, Hans-Ulrich; Münch, Ulli

    2011-01-01

    Barcodes, RFID, WLAN, Bluetooth and many more technologies are used in hospitals. They are the technological bases for different applications such as patient monitoring, asset management and facility management. However, most of these applications exist side by side with hardly any integration and even interoperability is not guaranteed. Introducing the concept of smart objects inspired by the Internet of Things can improve the situation by separating the capabilities and functions of an object from the implementing technology such as RFID or WLAN. By aligning technological and business developments smart objects have the power to transform a hospital from an agglomeration of technologies into a smart environment.

  14. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  15. High-Speed Edge-Detecting Line Scan Smart Camera

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  16. Electricity Usage Scheduling in Smart Building Environments Using Smart Devices

    PubMed Central

    Lee, Eunji; Bahn, Hyokyung

    2013-01-01

    With the recent advances in smart grid technologies as well as the increasing dissemination of smart meters, the electricity usage of every moment can be detected in modern smart building environments. Thus, the utility company adopts different price of electricity at each time slot considering the peak time. This paper presents a new electricity usage scheduling algorithm for smart buildings that adopts real-time pricing of electricity. The proposed algorithm detects the change of electricity prices by making use of a smart device and changes the power mode of each electric device dynamically. Specifically, we formulate the electricity usage scheduling problem as a real-time task scheduling problem and show that it is a complex search problem that has an exponential time complexity. An efficient heuristic based on genetic algorithms is performed on a smart device to cut down the huge searching space and find a reasonable schedule within a feasible time budget. Experimental results with various building conditions show that the proposed algorithm reduces the electricity charge of a smart building by 25.6% on average and up to 33.4%. PMID:24453860

  17. Reliability Testing of NASA Piezocomposite Actuators

    NASA Technical Reports Server (NTRS)

    Wilkie, W.; High, J.; Bockman, J.

    2002-01-01

    NASA Langley Research Center has developed a low-cost piezocomposite actuator which has application for controlling vibrations in large inflatable smart space structures, space telescopes, and high performance aircraft. Tests show the NASA piezocomposite device is capable of producing large, directional, in-plane strains on the order of 2000 parts-per-million peak-to-peak, with no reduction in free-strain performance to 100 million electrical cycles. This paper describes methods, measurements, and preliminary results from our reliability evaluation of the device under externally applied mechanical loads and at various operational temperatures. Tests performed to date show no net reductions in actuation amplitude while the device was moderately loaded through 10 million electrical cycles. Tests were performed at both room temperature and at the maximum operational temperature of the epoxy resin system used in manufacture of the device. Initial indications are that actuator reliability is excellent, with no actuator failures or large net reduction in actuator performance.

  18. Smart textiles.

    PubMed

    Van Langenhove, Lieva; Hertleer, Carla; Catrysse, Michael; Puers, Robert; Van Egmond, Harko; Matthijs, Dirk

    2004-01-01

    After technical textiles and functional textiles, also smart textiles came into force a few years ago. The term 'smart textiles' covers a broad range. The application possibilities are only limited by our imagination and creativity. In this presentation, it is further explored what smart textiles precisely mean. In a second part, an analysis is made of the possibilities, the state of affairs and the needs for further research.

  19. SMART Layer and SMART Suitcase for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.

    2001-06-01

    Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.

  20. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    . Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.

  1. Smart material screening machines using smart materials and controls

    NASA Astrophysics Data System (ADS)

    Allaei, Daryoush; Corradi, Gary; Waigand, Al

    2002-07-01

    The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.

  2. Active Control Technology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Antcliff, Richard R.; McGowan, Anna-Marie R.

    2000-01-01

    NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.

  3. SmartWay

    EPA Pesticide Factsheets

    SmartWay is an EPA program that helps the freight transportation sector improve supply chain efficiency. SmartWay reduces transportation-related emissions, environmental risks for companies and increases global energy security.

  4. Smart Cities and the Idea of Smartness in Urban Development - A Critical Review

    NASA Astrophysics Data System (ADS)

    Husár, Milan; Ondrejička, Vladimír; Ceren Varış, Sıla

    2017-10-01

    The concept of smart cities is becoming another mantra for both developing and developed cities. For instance, Indian government in 2015 announced its objective to build one hundred smart cities all over the country. They clearly stated that they are choosing smart development as the underlying concept for their future growth as a way to foster economic development in smart way to avoid the paths of rapid industrialization and pollution of cities as it took place in Europe and United States. The first of these smart cities, Dholera, is already under construction and it attracts journalists and urban planners from all over the world. The aim of this paper is to critically discuss the theoretical backgrounds and the practices of smart cities and examine the ways the concept is implemented. The paper is based on thorough study of literature and examining the two case studies of Dholera (India) and Songdo (South Korea). Smart city is a contested concept without a unified definition. It stems from the idea of digital and information city promoted using information and communication technologies (ICT) to develop cities. By installation of ICT municipalities obtain large sets of data which are then transformed into effective urban policies. One of the pilot projects of this kind was Rio de Janeiro and building the Center of Operations by IBM Company. City made a great investment into the smart information system before two huge events took place - FIFA World Cup in 2014 and Olympic Games in 2016. The project raised many questions including whether and how it improved the life of its citizens and in what way it made the city smart. The other definition of smart city is the idea of smartness in city development in broader sense. It focuses on smart use of resources, smart and effective management and smart social inclusion. Within this view, the ICTs are one component of the concept, by no means its bread and butter. Technologies can be used in a variety of ways. Problem

  5. Utilization of the NASA Robonaut as a Surgical Avatar in Telemedicine

    NASA Technical Reports Server (NTRS)

    Dean, Marc; Diftler, Myron

    2015-01-01

    The concept of teleoperated robotic surgery is not new; however, most of the work to date has utilized specialized robots designed for specific set of surgeries. This activity explores the use of a humanoid robot to perform surgical procedures using the same hand held instruments that a human surgeon employs. For this effort, the tele-operated Robonaut (R2) was selected due to its dexterity, its ability to perform a wide range of tasks, and its adaptability to changing environments. To evaluate this concept, a series of challenges was designed with the goal of assessing the feasibility of utilizing Robonaut as a telemedicine based surgical avatar.

  6. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision.

    PubMed

    Lynggaard, Per; Skouby, Knud Erik

    2016-11-02

    The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world's population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the "smart" vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the "big challenges" and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants.

  7. An Overview of the Smart Sensor Inter-Agency Reference Testbench (SSIART)

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond S.; Braham, Stephen P.; Dufour, Jean-Francois; Barton, Richard J.

    2012-01-01

    In this paper, we present an overview of a proposed collaboration between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA), which is designed to facilitate the introduction of commercial-off-the-shelf (COTS) radios for smart-sensing applications into international spaceflight programs and projects. The proposed work will produce test hardware reference designs, test software reference architectures and example implementations, test plans in reference test environments, and test results, all of which will be shared between the agencies and documented for future use by mission planners. The proposed collaborative structure together with all of the anticipated tools and results produced under the effort is collectively referred to as the Smart Sensor Inter-agency Reference Testbench or SSIART. It is intended to provide guidance in technology selection and in increasing the related readiness levels of projects and missions as well as the space industry.

  8. Evaluation of teleoperated surgical robots in an enclosed undersea environment.

    PubMed

    Doarn, Charles R; Anvari, Mehran; Low, Thomas; Broderick, Timothy J

    2009-05-01

    The ability to support surgical care in an extreme environment is a significant issue for both military medicine and space medicine. Telemanipulation systems, those that can be remotely operated from a distant site, have been used extensively by the National Aeronautics and Space Administration (NASA) for a number of years. These systems, often called telerobots, have successfully been applied to surgical interventions. A further extension is to operate these robotic systems over data communication networks where robotic slave and master are separated by a great distance. NASA utilizes the National Oceanographic and Atmospheric Administration (NOAA) Aquarius underwater habitat as an analog environment for research and technology evaluation missions, known as NASA Extreme Environment Mission Operations (NEEMO). Three NEEMO missions have provided an opportunity to evaluate teleoperated surgical robotics by astronauts and surgeons. Three robotic systems were deployed to the habitat for evaluation during NEEMO 7, 9, and 12. These systems were linked via a telecommunications link to various sites for remote manipulation. Researchers in the habitat conducted a variety of tests to evaluate performance and applicability in extreme environments. Over three different NEEMO missions, components of the Automated Endoscopic System for Optimal Positioning (AESOP), the M7 Surgical System, and the RAVEN were deployed and evaluated. A number of factors were evaluated, including communication latency and semiautonomous functions. The M7 was modified to permit a remote surgeon the ability to insert a needle into simulated tissue with ultrasound guidance, resulting in the world's first semi-autonomous supervisory-controlled medical task. The deployment and operation of teleoperated surgical systems and semi-autonomous, supervisory-controlled tasks were successfully conducted.

  9. SMARTe 2008

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains resources and analysis tools for all asp...

  10. SMARTe 2011

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decisions support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains resources and analysis tools for all a...

  11. SMARTE 2007

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools-electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains guidance and analysis tools for all aspect...

  12. Managing Emergency Situations in the Smart City: The Smart Signal

    PubMed Central

    Asensio, Ángel; Blanco, Teresa; Blasco, Rubén; Marco, Álvaro; Casas, Roberto

    2015-01-01

    In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City. PMID:26094626

  13. Managing Emergency Situations in the Smart City: The Smart Signal.

    PubMed

    Asensio, Ángel; Blanco, Teresa; Blasco, Rubén; Marco, Álvaro; Casas, Roberto

    2015-06-18

    In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City.

  14. Smart Electronic Textiles.

    PubMed

    Weng, Wei; Chen, Peining; He, Sisi; Sun, Xuemei; Peng, Huisheng

    2016-05-17

    This Review describes the state-of-the-art of wearable electronics (smart textiles). The unique and promising advantages of smart electronic textiles are highlighted by comparing them with the conventional planar counterparts. The main kinds of smart electronic textiles based on different functionalities, namely the generation, storage, and utilization of electricity, are then discussed with an emphasis on the use of functional materials. The remaining challenges are summarized together with important new directions to provide some useful clues for the future development of smart electronic textiles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Smart Home, Smart Grid, Smart Meter - digitale Konzepte und das Recht an Daten

    NASA Astrophysics Data System (ADS)

    Spiecker genannt Döhmann, Indra

    Modernes Energiemanagement setzt auf ein intelligent gesteuertes Energieinformationsnetz, das Smart Grid. In diesem ist der Smart Meter, die intelligente Messstelle beim Nutzer, ein zentrales Instrument für den wechselseitigen Austausch von Informationen. Allerdings werfen die über diverse Gesetze forcierten Informationsströme erhebliche datenschutzrechtliche Fragen auf. Der Beitrag stellt zentrale datenschutzrechtliche Leitlinien und Probleme vor und behandelt auch offene Fragestellungen.

  16. 'NASA Invention of the Year' Controls Noise and Vibration

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Developed at NASA's Langley Research Center, the Macro-Fiber Composite (MFC) is designed to control vibration, noise, and deflections in composite structural beams and panels. Smart Material Corporation specializes in the development of piezocomposite components, and licensed the MFC technology from Langley in 2002. To date, Smart Material Corporation has sold MFCs to over 120 customers, including such industry giants as Volkswagen, Toyota, Honda, BMW, General Electric, and the tennis company, HEAD. The company estimates that its customers have filed at least 100 patents for their various unique uses of the technology. In addition, the company's product portfolio has grown to include piezoceramic fibers and fiber composites, piezoceramic actuators and sensors, and test equipment for these products. It also offers a compact, lightweight power system for MFC testing and validation. Consumer applications already on the market include piezoelectric systems as part of audio speakers, phonograph cartridges and microphones, and recreational products requiring vibration control, such as skis, snowboards, baseball bats, hockey sticks, and tennis racquets.

  17. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  18. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision

    PubMed Central

    Lynggaard, Per; Skouby, Knud Erik

    2016-01-01

    The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world’s population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the “smart” vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the “big challenges” and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants. PMID:27827851

  19. Gerontechnology for demented patients: smart homes for smart aging.

    PubMed

    Frisardi, Vincenza; Imbimbo, Bruno P

    2011-01-01

    In an aging world, maintaining good health and independence for as long as possible is essential. Instead of hospitalization or institutionalization, the elderly with chronic conditions, especially those with cognitive impairment, can be assisted in their own environment with numerous 'smart' devices that support them in their activity of daily living. A "smart home" is a residence equipped with technology that facilitates monitoring of residents to improve quality of life and promote physical independence, as well as to reduce caregiver burden. Several projects worldwide have been conducted, but some ethical and legal issues are still unresolved and, at present, there is no evidence of the effects of smart homes on health outcomes. Randomized controlled trials are needed to understand the plus and minuses of these projects, but this will only be possible with a widespread proliferation and penetration of smart homes in the social network.

  20. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Human primary breast tumor cells after 56 days of culture in a NASA Bioreactor. A cross-section of a construct, grown from surgical specimens of brease cancer, stained for microscopic examination, reveals areas of tumor cells dispersed throughout the non-epithelial cell background. The arrow denotes the foci of breast cancer cells. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida

  1. Benefit from NASA

    NASA Image and Video Library

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  2. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  3. Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.

  4. Smart Nacre-inspired Nanocomposites.

    PubMed

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Making a Smart Campus in Saudi Arabia

    ERIC Educational Resources Information Center

    Abuelyaman, Eltayab Salih

    2008-01-01

    Prince Sultan University (PSU) in Riyadh, Saudi Arabia, has conceptualized what it means to be a smart campus after surveying similar notions worldwide. A "smart" campus requires smart teachers, smart technology, and smart pedagogical centers. It deploys smart teachers and gives them smart tools and ongoing support to do their jobs…

  6. Smart dental practice: capitalising on smart mobile technology.

    PubMed

    Plangger, K; Bredican, J; Mills, A J; Armstrong, J

    2015-08-14

    To keep pace with consumer adoption of smart mobile devices, such as smartphones and tablets, and the applications ('apps') developed for these devices, dental professionals should consider how this technology could be used to simultaneously improve both patient service experiences and dental practice management. Using U-Commerce as a theoretical lens, this article discusses the potential value of smart mobile technology to the dental practice context, with a particular focus on the unique and customisable capabilities of apps. To take full advantage of this technology, a process is outlined for identifying and designing bespoke dental apps that takes into account the unique advantages of these devices. Dental practices, with increasing financial and competitive pressures, may improve the efficiency and profitability of operations and better manage patients, employees and stakeholders by integrating smart mobile technology.

  7. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses.

  8. Smart hybrid rotary damper

    NASA Astrophysics Data System (ADS)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  9. Schodack Smart Roadside Inspection System.

    DOT National Transportation Integrated Search

    2013-02-01

    Under an earlier NYSERDA Agreement (17420) Intelligent Imaging Systems (IIS) supplied and installed Smart Roadside network software and integrated new connected vehicle roadside devices into the Schodack Smart Roadside system. The Smart Roadsid...

  10. Smart Sustainable Islands VS Smart Sustainable Cities

    NASA Astrophysics Data System (ADS)

    Pantazis, D. N.; Moussas, V. C.; Murgante, B.; Daverona, A. C.; Stratakis, P.; Vlissidis, N.; Kavadias, A.; Economou, D.; Santimpantakis, K.; Karathanasis, B.; Kyriakopoulou, V.; Gadolou, E.

    2017-09-01

    This paper has several aims: a) the presentation of a critical analysis of the terms "smart sustainable cities" and "smart sustainable islands" b) the presentation of a number of principles towards to the development methodological framework of concepts and actions, in a form of a manual and actions guide, for the smartification and sustainability of islands. This kind of master plan is divided in thematic sectors (key factors) which concern the insular municipalities c) the creation of an island's smartification and sustainability index d) the first steps towards the creation of a portal for the presentation of our smartification actions manual, together with relative resources, smart applications examples, and, in the near future the first results of our index application in a number of Greek islands and e) the presentation of some proposals of possible actions towards their sustainable development and smartification for the municipalities - islands of Paros and Antiparos in Greece, as case studies.

  11. SMART Solar Sail

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2005-01-01

    A report summarizes the design concept of a super miniaturized autonomous reconfigurable technology (SMART) solar sail a proposed deployable, fully autonomous solar sail for use in very fine station keeping of a spacecraft. The SMART solar sail would include a reflective film stretched among nodes of a SMART space frame made partly of nanotubule struts. A microelectromechanical system (MEMS) at each vertex of the frame would spool and unspool nanotubule struts between itself and neighboring nodes to vary the shape of the frame. The MEMSs would be linked, either wirelessly or by thin wires within the struts, to an evolvable neural software system (ENSS) that would control the MEMSs to reconfigure the sail as needed. The solar sail would be highly deformable from an initially highly compressed configuration, yet also capable of enabling very fine maneuvering of the spacecraft by means of small sail-surface deformations. The SMART Solar Sail would be connected to the main body of the spacecraft by a SMART multi-tether structure, which would include MEMS actuators like those of the frame plus tethers in the form of longer versions of the struts in the frame.

  12. Choosing front-of-package food labelling nutritional criteria: how smart were 'Smart Choices'?

    PubMed

    Roberto, Christina A; Bragg, Marie A; Livingston, Kara A; Harris, Jennifer L; Thompson, Jackie M; Seamans, Marissa J; Brownell, Kelly D

    2012-02-01

    The 'Smart Choices' programme was an industry-driven, front-of-package (FOP) nutritional labelling system introduced in the USA in August 2009, ostensibly to help consumers select healthier options during food shopping. Its nutritional criteria were developed by members of the food industry in collaboration with nutrition and public health experts and government officials. The aim of the present study was to test the extent to which products labelled as 'Smart Choices' could be classified as healthy choices on the basis of the Nutrient Profile Model (NPM), a non-industry-developed, validated nutritional standard. A total of 100 packaged products that qualified for a 'Smart Choices' designation were sampled from eight food and beverage categories. All products were evaluated using the NPM method. In all, 64 % of the products deemed 'Smart Choices' did not meet the NPM standard for a healthy product. Within each 'Smart Choices' category, 0 % of condiments, 8·70 % of fats and oils, 15·63 % of cereals and 31·58 % of snacks and sweets met NPM thresholds. All sampled soups, beverages, desserts and grains deemed 'Smart Choices' were considered healthy according to the NPM standard. The 'Smart Choices' programme is an example of industries' attempts at self-regulation. More than 60 % of foods that received the 'Smart Choices' label did not meet standard nutritional criteria for a 'healthy' food choice, suggesting that industries' involvement in designing labelling systems should be scrutinized. The NPM system may be a good option as the basis for establishing FOP labelling criteria, although more comparisons with other systems are needed.

  13. 75 FR 63462 - Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid Interoperability Standards; Notice of Docket Designation for Smart Grid Interoperability Standards October 7, 2010... directs the development of a framework to achieve interoperability of smart grid devices and systems...

  14. NASA Langley Research Center's Contributions to International Active Buffeting Alleviation Programs

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2000-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.

  15. NREL: SMARTS - About SMARTS

    Science.gov Websites

    its references list. To use SMARTS, users construct text files of 20-30 lines of simple text and ' output consists of spreadsheet-compatible American Standard Code for Information Interchange (ASCII) text

  16. This Is Smart Growth - Publication

    EPA Pesticide Factsheets

    This Is Smart Growth illustrates how communities can turn their visions into reality, using smart growth techniques to improve development. The report features 40 places around the country that have found success by implementing smart growth principles.

  17. SMART GUIDANCE AND SMARTE - TOOLS FOR DEVELOPING SITE SPECIFIC REDEVELOPMENT PLANS

    EPA Science Inventory

    Site-specific Management Approaches and Redevelopment Tools (SMART) Guidance and its electronic counterpart, SMARTe are being developed jointly with the German Federal Ministry of Education and Research and the Interstate Technology Regulatory Council. These products will assist ...

  18. SMART INIT GRAPHICS

    Science.gov Websites

    NAM Smart Init Graphics This page displays 5km NAM forecast output made from the "smartinit DISCLAIMER: The Smart Init tool is in its developmental stage, and there is much work to be done. Feedback is

  19. Smart Cards and remote entrusting

    NASA Astrophysics Data System (ADS)

    Aussel, Jean-Daniel; D'Annoville, Jerome; Castillo, Laurent; Durand, Stephane; Fabre, Thierry; Lu, Karen; Ali, Asad

    Smart cards are widely used to provide security in end-to-end communication involving servers and a variety of terminals, including mobile handsets or payment terminals. Sometime, end-to-end server to smart card security is not applicable, and smart cards must communicate directly with an application executing on a terminal, like a personal computer, without communicating with a server. In this case, the smart card must somehow trust the terminal application before performing some secure operation it was designed for. This paper presents a novel method to remotely trust a terminal application from the smart card. For terminals such as personal computers, this method is based on an advanced secure device connected through the USB and consisting of a smart card bundled with flash memory. This device, or USB dongle, can be used in the context of remote untrusting to secure portable applications conveyed in the dongle flash memory. White-box cryptography is used to set the secure channel and a mechanism based on thumbprint is described to provide external authentication when session keys need to be renewed. Although not as secure as end-to-end server to smart card security, remote entrusting with smart cards is easy to deploy for mass-market applications and can provide a reasonable level of security.

  20. Concept of Smart Cyberspace for Smart Grid Implementation

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Y.; Malov, D.

    2018-05-01

    The concept of Smart Cyberspace for Smart Grid (SG) implementation is presented in the paper. The classification of electromechanical units, based on the amount of analysing data, the classification of electromechanical units, based on the data processing speed; and the classification of computational network organization, based on required resources, are proposed in this paper. The combination of the considered classifications is formalized, which can be further used in organizing and planning of SG.

  1. SMARTE: IMPROVING REVITALIZATION DECISIONS (BERLIN, GERMANY)

    EPA Science Inventory

    The U.S.-German Bilateral Working Group is developing Site-specific Management Approaches and Redevelopment Tools (SMART). In the U.S., the SMART compilation is housed in a web-based, decision support tool called SMARTe. All tools within SMARTe that are developed specifically for...

  2. Long Island Smart Energy Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mui, Ming

    The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced meteringmore » infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and

  3. SMARTE TUTORIAL CD

    EPA Science Inventory

    SMARTe is a web-based decision support tool intended to help revitalization practitioners find information, perform data analysis, communicate, and evaluate future reuse options for a site or area. A tutorial was developed to help users navigate SMARTe. This tutorial is approxima...

  4. Overview of NASA Glenn Research Center Programs in Aero-Heat Transfer and Future Needs

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    2002-01-01

    This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.

  5. Novel Multidisciplinary Models Assess the Capabilities of Smart Structures to Manage Vibration, Sound, and Thermal Distortion in Aeropropulsion Components

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1997-01-01

    The development of aeropropulsion components that incorporate "smart" composite laminates with embedded piezoelectric actuators and sensors is expected to ameliorate critical problems in advanced aircraft engines related to vibration, noise emission, and thermal stability. To facilitate the analytical needs of this effort, the NASA Lewis Research Center has developed mechanics and multidisciplinary computational models to analyze the complicated electromechanical behavior of realistic smart-structure configurations operating in combined mechanical, thermal, and acoustic environments. The models have been developed to accommodate the particular geometries, environments, and technical challenges encountered in advanced aircraft engines, yet their unique analytical features are expected to facilitate application of this new technology in a variety of commercial applications.

  6. Smart Growth and Transportation

    EPA Pesticide Factsheets

    Describes the relationship between smart growth and transportation, focusing smart and sustainable street design, transit-oriented development, parking management, sustainable transportation planning, and related resources.

  7. WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings

    PubMed Central

    Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender

    2015-01-01

    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance. PMID:25946630

  8. WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings.

    PubMed

    Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender

    2015-05-04

    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.

  9. Green Technology for Smart Cities

    NASA Astrophysics Data System (ADS)

    Casini, M.

    2017-08-01

    In view of the enormous social and environmental changes at the global level, more and more cities worldwide have directed their development strategies towards smart policies aimed at sustainable mobility, energy upgrading of the building stock, increase of energy production from renewable sources, improvement of waste management and implementation of ICT infrastructures. The goal is to turn into Smart Cities, able to improve the quality of life of their inhabitants by offering a lasting opportunity for cultural, economic and social growth within a healthy, safe, stimulating and dynamic environment. After an overview of the role of cities in climate changes and environmental pollution worldwide, the article provides an up to date definition of Smart City and of its main expected features, focussing on technology innovation, smart governance and main financing and support programs. An analysis of the most interesting initiatives at the international level pursued by cities investigating the three main areas of Green Buildings, Smart grid-Smart lighting, and Smart mobility is given, with the objective to offer a broad reference for the identification of development sustainable plans and programs at the urban level within the current legislative framework.

  10. Start Smart, Stay Smart, Milwaukee: State of Milwaukee's Children, 2002.

    ERIC Educational Resources Information Center

    Mallory, Joyce

    As part of the mission of the Start Smart, Stay Smart Milwaukee program to ensure that all Milwaukee area children enter school with the skills necessary for academic achievement and a lifetime of growth and development, the organization is tracking key indicators across the years of growth and development to young adulthood to better assess the…

  11. Cultural Heritage in Smart City Environments

    NASA Astrophysics Data System (ADS)

    Angelidou, M.; Karachaliou, E.; Angelidou, T.; Stylianidis, E.

    2017-08-01

    This paper investigates how the historical and cultural heritage of cities is and can be underpinned by means of smart city tools, solutions and applications. Smart cities stand for a conceptual technology-and-innovation driven urban development model. By becoming `smart', cities seek to achieve prosperity, effectiveness and competitiveness on multiple socio-economic levels. Although cultural heritage is one of the many issues addressed by existing smart city strategies, and despite the documented bilateral benefits, our research about the positioning of urban cultural heritage within three smart city strategies (Barcelona, Amsterdam, and London) reveals fragmented approaches. Our findings suggest that the objective of cultural heritage promotion is not substantially addressed in the investigated smart city strategies. Nevertheless, we observe that cultural heritage management can be incorporated in several different strategic areas of the smart city, reflecting different lines of thinking and serving an array of goals, depending on the case. We conclude that although potential applications and approaches abound, cultural heritage currently stands for a mostly unexploited asset, presenting multiple integration opportunities within smart city contexts. We prompt for further research into bridging the two disciplines and exploiting a variety of use cases with the purpose of enriching the current knowledge base at the intersection of cultural heritage and smart cities.

  12. Integration of Smart Boards in EFL Classrooms

    ERIC Educational Resources Information Center

    Jelyani, Saghar Javidi; Janfaza, Abusaied; Soori, Afshin

    2014-01-01

    The current study described the uses of smart boards in English as foreign language (EFL) classrooms. This study also investigated the role of smart boards in promoting student engagement, the benefits of smart boards for teachers, using smart boards for improving motivation, and smart boards in the service of linguistic and cultural elements. The…

  13. Contributions to Active Buffeting Alleviation Programs by the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    1999-01-01

    Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.

  14. Smart Icon Cards

    ERIC Educational Resources Information Center

    Dunbar, Laura

    2015-01-01

    Icons are frequently used in the music classroom to depict concepts in a developmentally appropriate way for students. SmartBoards provide music educators yet another way to share these manipulatives with students. This article provides a step-by-step tutorial to create Smart Icon Cards using the folk song "Lucy Locket."

  15. Supersonic Aerodynamic Characteristics of Proposed Mars '07 Smart Lander Configurations

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Horvath, Thomas J.; Erickson, Gary E.; Green, Joseph M.

    2002-01-01

    Supersonic aerodynamic data were obtained for proposed Mars '07 Smart Lander configurations in NASA Langley Research Center's Unitary Plan Wind Tunnel. The primary objective of this test program was to assess the supersonic aerodynamic characteristics of the baseline Smart Lander configuration with and without fixed shelf/tab control surfaces. Data were obtained over a Mach number range of 2.3 to 4.5, at a free stream Reynolds Number of 1 x 10(exp 6) based on body diameter. All configurations were run at angles of attack from -5 to 20 degrees and angles of sideslip of -5 to 5 degrees. These results were complemented with computational fluid dynamic (CFD) predictions to enhance the understanding of experimentally observed aerodynamic trends. Inviscid and viscous full model CFD solutions compared well with experimental results for the baseline and 3 shelf/tab configurations. Over the range tested, Mach number effects were shown to be small on vehicle aerodynamic characteristics. Based on the results from 3 different shelf/tab configurations, a fixed control surface appears to be a feasible concept for meeting aerodynamic performance metrics necessary to satisfy mission requirements.

  16. Design of an Open Smart Energy Gateway for Smart Meter Data Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Janie; McParland, Chuck; Piette, Mary Ann

    With the widespread deployment of electronic interval meters, commonly known as smart meters, came the promise of real-time data on electric energy consumption. Recognizing an opportunity to provide consumers access to their near real-time energy consumption data directly from their installed smart meter, we designed a mechanism for capturing those data for consumer use via an open smart energy gateway (OpenSEG). By design, OpenSEG provides a clearly defined boundary for equipment and data ownership. OpenSEG is an open-source data management platform to enable better data management of smart meter data. Effectively, it is an information architecture designed to work withmore » the ZigBee Smart Energy Profile 1.x (SEP 1.x). It was specifically designed to reduce cyber-security risks and provide secure information directly from smart meters to consumers in near real time, using display devices already owned by the consumers. OpenSEG stores 48 hours of recent consumption data in a circular cache using a format consistent with commonly available archived (not real-time) consumption data such as Green Button, which is based on the Energy Services Provider Interface (ESPI) data standard. It consists of a common XML format for energy usage information and a data exchange protocol to facilitate automated data transfer upon utility customer authorization. Included in the design is an application program interface by which users can acquire data from OpenSEG for further post processing. A sample data display application is included in the initial software product. The data display application demonstrates that OpenSEG can help electricity use data to be retrieved from a smart meter and ported to a wide variety of user-owned devices such as cell phones or a user-selected database. This system can be used for homes, multi-family buildings, or small commercial buildings in California.« less

  17. Smart distribution systems

    DOE PAGES

    Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin

    2016-04-19

    The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less

  18. Data handling and visualization for NASA's science programs

    NASA Technical Reports Server (NTRS)

    Bredekamp, Joseph H. (Editor)

    1995-01-01

    Advanced information systems capabilities are essential to conducting NASA's scientific research mission. Access to these capabilities is no longer a luxury for a select few within the science community, but rather an absolute necessity for carrying out scientific investigations. The dependence on high performance computing and networking, as well as ready and expedient access to science data, metadata, and analysis tools is the fundamental underpinning for the entire research endeavor. At the same time, advances in the whole range of information technologies continues on an almost explosive growth path, reaching beyond the research community to affect the population as a whole. Capitalizing on and exploiting these advances are critical to the continued success of space science investigations. NASA must remain abreast of developments in the field and strike an appropriate balance between being a smart buyer and a direct investor in the technology which serves its unique requirements. Another key theme deals with the need for the space and computer science communities to collaborate as partners to more fully realize the potential of information technology in the space science research environment.

  19. Metacognitive components in smart learning environment

    NASA Astrophysics Data System (ADS)

    Sumadyo, M.; Santoso, H. B.; Sensuse, D. I.

    2018-03-01

    Metacognitive ability in digital-based learning process helps students in achieving learning goals. So that digital-based learning environment should make the metacognitive component as a facility that must be equipped. Smart Learning Environment is the concept of a learning environment that certainly has more advanced components than just a digital learning environment. This study examines the metacognitive component of the smart learning environment to support the learning process. A review of the metacognitive literature was conducted to examine the components involved in metacognitive learning strategies. Review is also conducted on the results of study smart learning environment, ranging from design to context in building smart learning. Metacognitive learning strategies certainly require the support of adaptable, responsive and personalize learning environments in accordance with the principles of smart learning. The current study proposed the role of metacognitive component in smart learning environment, which is useful as the basis of research in building environment in smart learning.

  20. SMART Boards Rock

    ERIC Educational Resources Information Center

    Giles, Rebecca M.; Shaw, Edward L.

    2011-01-01

    SMART Board is a technology that combines the functionality of a whiteboard, computer, and projector into a single system. The interactive nature of the SMART Board offers many practical uses for providing an introduction to or review of material, while the large work area invites collaboration through social interaction and communication. As a…

  1. A Smart Sensor Web for Ocean Observation: Integrated Acoustics, Satellite Networking, and Predictive Modeling

    NASA Astrophysics Data System (ADS)

    Arabshahi, P.; Chao, Y.; Chien, S.; Gray, A.; Howe, B. M.; Roy, S.

    2008-12-01

    In many areas of Earth science, including climate change research, there is a need for near real-time integration of data from heterogeneous and spatially distributed sensors, in particular in-situ and space- based sensors. The data integration, as provided by a smart sensor web, enables numerous improvements, namely, 1) adaptive sampling for more efficient use of expensive space-based sensing assets, 2) higher fidelity information gathering from data sources through integration of complementary data sets, and 3) improved sensor calibration. The specific purpose of the smart sensor web development presented here is to provide for adaptive sampling and calibration of space-based data via in-situ data. Our ocean-observing smart sensor web presented herein is composed of both mobile and fixed underwater in-situ ocean sensing assets and Earth Observing System (EOS) satellite sensors providing larger-scale sensing. An acoustic communications network forms a critical link in the web between the in-situ and space-based sensors and facilitates adaptive sampling and calibration. After an overview of primary design challenges, we report on the development of various elements of the smart sensor web. These include (a) a cable-connected mooring system with a profiler under real-time control with inductive battery charging; (b) a glider with integrated acoustic communications and broadband receiving capability; (c) satellite sensor elements; (d) an integrated acoustic navigation and communication network; and (e) a predictive model via the Regional Ocean Modeling System (ROMS). Results from field experiments, including an upcoming one in Monterey Bay (October 2008) using live data from NASA's EO-1 mission in a semi closed-loop system, together with ocean models from ROMS, are described. Plans for future adaptive sampling demonstrations using the smart sensor web are also presented.

  2. SmartWay Mark Signature Page: Tractors & Trailers

    EPA Pesticide Factsheets

    This SmartWay agreement is for companies and organizations who wish to comply with the SmartWay Graphic Standards and Usage Guide guidelines and requirements for using the SmartWay logos on SmartWay designated Tractors and Trailers.

  3. Smart Clothing Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2011-01-01

    As sensors and computers become smaller and smaller, it becomes possible to add intelligence or smartness to common items. This is already seen in smart appliances, cars that diagnose their own maintenance problems, and military hardware that is something straight out of a science fiction book. In this article, the author looks at a design…

  4. The Science of Smart Materials

    ERIC Educational Resources Information Center

    Boohan, Richard

    2011-01-01

    Over the last few decades, smart materials have become increasingly important in the design of products. Essentially, a smart material is one that has been designed to respond to a stimulus, such as a change in temperature or magnetic field, in a particular and useful way. This article looks at a range of smart materials that are relatively…

  5. Thin Film Li Ion Microbatteries for NASA Applications

    NASA Technical Reports Server (NTRS)

    West, W. C.; Ratnakumar, B. V.; Brandon, E.; Blosiu, J. O.; Surampudi, S.

    1999-01-01

    Rechargeable thin film microbatteries have recently become the topic of widespread research for use in low power applications such as battery-backed CMOS memory, miniaturized implantable medical devices and smart cards. In particular, the Center for Integrated Space Microsystems (CISM) at NASA's Jet Propulsion Laboratory has interest in applying this technology for secondary power systems in miniaturized satellites, microsensors, microactuators and other remote MEMS applications. The general requirements of the microbatteries for these applications are high specific energy, wide range of temperature stability. low self-discharge rate, and flexibility of cell design. The thin film Li ion materials system using LiCoO2(LiPO(x)N(1-x))SnO is expected to fulfill these requirements.

  6. A Study on a Microwave-Driven Smart Material Actuator

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.

    2001-01-01

    NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.

  7. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  8. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain.

    PubMed

    Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar

    2018-01-30

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  9. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain

    PubMed Central

    Vernet, David; Corral, Guiomar

    2018-01-01

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748

  10. How NASA Expanded its Innovation Framework to Find New Solutions to Old Problems

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2010-01-01

    A radio frequency engineer from rural New Hampshire contributed the best solution to a public challenge issued by NASA's Space Life Sciences Directorate. This is a clear example of what Aneesh Chopra, the US Federal Chief Technology Officer, describes as the notion that in our society, knowledge is widely dispersed. And if it s widely dispersed, how do we capture the insights from the American people?" Chopra later said, to a live audience at the 2010 Rethinking Government event: "A semi-retired radio frequency engineer was able to share his idea about how to solve this problem, and it so blew away other ideas that NASA said it exceeded their requirements! No complicated RFP, the need for lobbyists, some convoluted processes, etc. Just a smart person who was paid a modest fee for his insight."

  11. Making Smart Food Choices

    MedlinePlus

    ... turn JavaScript on. Feature: Healthy Aging Making Smart Food Choices Past Issues / Winter 2015 Table of Contents ... NIH www.nia.nih.gov/Go4Life Making Smart Food Choices To maintain a healthy weight, balance the ...

  12. GET SMART: EPA'S SMARTE INITIATIVE

    EPA Science Inventory

    The EPA's Office of Research and Development with the assistance of the U.S.-German Bilateral Working Group and the Interstate Technology Regulatory Council (ITRC), is developing Site-specific Management Approaches and Revitalization Tools (SMART) that will help stakeholders over...

  13. The Internet of things and Smart Grid

    NASA Astrophysics Data System (ADS)

    Li, Biao; Lv, Sen; Pan, Qing

    2018-02-01

    The Internet of things and smart grid are the frontier of information and Industry. The combination of Internet of things and smart grid will greatly enhance the ability of smart grid information and communication support. The key technologies of the Internet of things will be applied to the smart grid, and the grid operation and management information perception service centre will be built to support the commanding heights of the world’s smart grid.

  14. Hearing results using the SMart piston prosthesis.

    PubMed

    Fayad, Jose N; Semaan, Maroun T; Meier, Josh C; House, John W

    2009-12-01

    SMart, a newly introduced piston prosthesis for stapedotomy, is a nitinol-based, heat-activated, self-crimping prosthesis. We review our hearing results and postoperative complications using this self-crimped piston prosthesis and compare them with those obtained using stainless steel or platinum piston prostheses. Audiometric results using the SMart piston are identical to those obtained using a conventional piston prosthesis. Retrospective chart review. Private neurotologic tertiary referral center. The 416 ears reviewed included 306 with a SMart prosthesis and 110 conventional prostheses. 61% were women. Mean follow-up time was 5.6 (standard deviation [SD], 6.3 mo) and 6.9 months (SD, 7.0 mo) for the 2 groups, respectively. Stapedotomy using the SMart or a conventional (non-SMart) prosthesis. Audiometric hearing results, including pure-tone average (PTA) and air-bone gap (ABG), and prevalence of postoperative complications. Mean postoperative PTA was 32.6 (SD, 16.8) dB for the SMart group and 29.4 (SD, 13.5) dB for the non-SMart group, with ABGs of 7.6 (SD, 8.9) and 6.0 (SD, 5.2) dB, respectively. Mean change (decrease) in ABG was 18.7 (SD, 13.1) dB for the SMart group and 19.9 (SD, 10.3) dB for the non-SMart group. High-frequency bone PTAs showed overclosure of 2.0 (SD, 7.9) dB for the SMart group and 3.6 (SD, 8.6) dB for the non-SMart group. Postoperative vertigo and tinnitus were infrequent. No significant differences in these audiometric outcomes or complication rates were noted between groups. There was no significant difference in rate of gap closure to within 10 dB (78.3 versus 84.2%, SMart and non-SMart, respectively) or 20 dB (94.2 and 98.0%). Compared with conventional stapes prostheses, the nitinol-based SMart is a safe and reliable stapes prosthesis that eliminates manual crimping without significantly altering the audiometric outcome. Complications are rare, but longer follow-up is needed before establishing long-term stability.

  15. Hadoop Oriented Smart Cities Architecture.

    PubMed

    Diaconita, Vlad; Bologa, Ana-Ramona; Bologa, Razvan

    2018-04-12

    A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities.

  16. Hadoop Oriented Smart Cities Architecture

    PubMed Central

    Bologa, Ana-Ramona; Bologa, Razvan

    2018-01-01

    A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities. PMID:29649172

  17. US EPA SmartWay License Agreement

    EPA Pesticide Factsheets

    This SmartWay Tractor and Trailer trademark license agreement is for manufacturers who intend to display the SmartWay designated logo (brand) in the interior of eligible trucks and trailers (e.g. having met the SmartWay specifications established by EPA).

  18. Smart textiles: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Cherenack, Kunigunde; van Pieterson, Liesbeth

    2012-11-01

    Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. A key driver for smart textiles research is the fact that both textile and electronics fabrication processes are capable of functionalizing large-area surfaces at very high speeds. In this article we review the history of smart textiles development, introducing the main trends and technological challenges faced in this field. Then, we identify key challenges that are the focus of ongoing research. We then proceed to discuss fundamentals of smart textiles: textile fabrication methods and textile interconnect lines, textile sensor, and output device components and integration of commercial components into textile architectures. Next we discuss representative smart textile systems and finally provide our outlook over the field and a prediction for the future.

  19. Gamification in the context of smart cities

    NASA Astrophysics Data System (ADS)

    Zica, M. R.; Ionica, A. C.; Leba, M.

    2018-01-01

    The recent emergence of smart cities is highly supported by the development of IT and IoT technologies. Nevertheless, a smart city needs to be built to meet the needs and requirements of its citizens. In order to build a smart city it is necessary to understand the benefits of such a city. A smart city is, beyond technology, populated by people. A smart city can be raised by its citizens’ contribution, and gamification is the means to motivate them. In this paper we included gamification techniques in the stage of capturing the citizens’ requirements for building a smart city. The system proposed in the paper is to create an application that allows the building of a virtual smart city customized by each user. From this virtual city, the most relevant features are extracted.

  20. Smart Grid, Smart Inverters for a Smart Energy Future | State, Local, and

    Science.gov Websites

    , legislation which defines the state's interconnection standards and permits the interconnection of smart the cost and benefits of advanced inverter enabling legislation. Expect conversations concerning

  1. SMART-1 - the lunar adventure begins

    NASA Astrophysics Data System (ADS)

    2003-08-01

    preparation for future lunar and planetary exploration, we need to find resources and landing sites.” So, there are many unsolved questions about the Moon, even though six NASA Apollo missions and three unmanned Soviet spacecraft have landed on it and brought back rock samples. The far side of the Moon --the one that never faces Earth-- and the polar regions remain fairly unexplored. The existence of water on the Moon has also never been confirmed, although two orbiters in the 1990s found indirect evidence. We are not even sure how the Moon was formed. According to the most accepted theory, 4500 million years ago an asteroid the size of Mars collided with our planet, and the vapourised debris that went into space condensed to form the Moon. SMART-1 will map the Moon's topography, as well as the surface distribution of minerals such as pyroxenes, olivines, and feldspars. Also, an X-ray detector will identify key chemical elements in the lunar surface. These data will allow scientists to reconstruct the geological evolution of the Moon, and to search for traces of the impact with the giant asteroid. If the collision theory is right, the Moon should contain less iron than the Earth, in proportion to lighter elements such as magnesium and aluminium. By gauging the relative amounts of chemical elements comprehensively for the very first time, SMART-1 can make a significant contribution in resolving this issue. As for water, if it exists, it must be in the form of ice in places always hidden from the Sun. In such places, the temperature will never rise above -170ºC. Dark places like that could exist in the bottoms of small craters in the polar regions. Peering into these craters is maybe the trickiest task that the SMART-1 scientists have set themselves. They will look for the infrared signature of water- ice. It will be difficult because no direct light falls in those areas, but rays from nearby crater rims, catching the sunshine, may light the ice sufficiently for SMART-1

  2. Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access

    NASA Astrophysics Data System (ADS)

    Yang, C.; Huang, T.; Armstrong, E. M.; Moroni, D. F.; Liu, K.; Gui, Z.

    2013-12-01

    Abstract: We present a Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access across the NASA data systems, Global Earth Observation System of Systems (GEOSS) Clearinghouse and Data.gov to facilitate scientists to select Earth observation data that fit better their needs in four aspects: 1. Integrating and interfacing the SMART system to include the functionality of a) semantic reasoning based on Jena, an open source semantic reasoning engine, b) semantic similarity calculation, c) recommendation based on spatiotemporal, semantic, and user workflow patterns, and d) ranking results based on similarity between search terms and data ontology. 2. Collaborating with data user communities to a) capture science data ontology and record relevant ontology triple stores, b) analyze and mine user search and download patterns, c) integrate SMART into metadata-centric discovery system for community-wide usage and feedback, and d) customizing data discovery, search and access user interface to include the ranked results, recommendation components, and semantic based navigations. 3. Laying the groundwork to interface the SMART system with other data search and discovery systems as an open source data search and discovery solution. The SMART systems leverages NASA, GEO, FGDC data discovery, search and access for the Earth science community by enabling scientists to readily discover and access data appropriate to their endeavors, increasing the efficiency of data exploration and decreasing the time that scientists must spend on searching, downloading, and processing the datasets most applicable to their research. By incorporating the SMART system, it is a likely aim that the time being devoted to discovering the most applicable dataset will be substantially reduced, thereby reducing the number of user inquiries and likewise reducing the time and resources expended by a data center in addressing user inquiries. Keywords: EarthCube; ECHO

  3. Smart Kids: SMART Connections.

    ERIC Educational Resources Information Center

    Martin, Jennifer; And Others

    1991-01-01

    SMART (Science, Math, and Relevant Technology) Connections, an afterschool offshoot of a program addressing the scarcity of women in science, provides low-income children and children of color, both boys and girls, with hands-on science experience. Efforts continue to be made to ensure that the program works equally for boys as for girls. (CJS)

  4. The Use of Smart phones in Ophthalmology.

    PubMed

    Zvornicanin, Edita; Zvornicanin, Jasmin; Hadziefendic, Bahrudin

    2014-06-01

    Smart phones are being increasingly used among health professionals. Ophthalmological applications are widely available and can turn smart phones into sophisticated medical devices. Smart phones can be useful instruments for the practice of evidence-based medicine, professional education, mobile clinical communication, patient education, disease self-management, remote patient monitoring or as powerful administrative tools. Several applications are available for different ophthalmological examinations that can assess visual acuity, color vision, astigmatism, pupil size, Amsler grid test and more. Smart phones can be useful ophthalmic devices for taking images of anterior and posterior eye segment. Professional literature and educational material for patients are easily available with use of smart phones. Smart phones can store great amount of informations and are useful for long term monitoring with caution for patient confidentiality. The use of smart phones especially as diagnostic tools is not standardized and results should be carefully considered. Innovative role of smartphone technology and its use in research, education and information sharing makes smart phones a future of ophthalmology and medicine.

  5. Deep smarts.

    PubMed

    Leonard, Dorothy; Swap, Walter

    2004-09-01

    When a person sizes up a complex situation and rapidly comes to a decision that proves to be not just good but brilliant, you think, "That was smart." After you watch him do this a few times, you realize you're in the presence of something special. It's not raw brainpower, though that helps. It's not emotional intelligence, either, though that, too, is often involved. It's deep smarts. Deep smarts are not philosophical--they're not"wisdom" in that sense, but they're as close to wisdom as business gets. You see them in the manager who understands when and how to move into a new international market, in the executive who knows just what kind of talk to give when her organization is in crisis, in the technician who can track a product failure back to an interaction between independently produced elements. These are people whose knowledge would be hard to purchase on the open market. Their insight is based on know-how more than on know-what; it comprises a system view as well as expertise in individual areas. Because deep smarts are experienced based and often context specific, they can't be produced overnight or readily imported into an organization. It takes years for an individual to develop them--and no time at all for an organization to lose them when a valued veteran walks out the door. They can be taught, however, with the right techniques. Drawing on their forthcoming book Deep Smarts, Dorothy Leonard and Walter Swap say the best way to transfer such expertise to novices--and, on a larger scale, to make individual knowledge institutional--isn't through PowerPoint slides, a Web site of best practices, online training, project reports, or lectures. Rather, the sage needs to teach the neophyte individually how to draw wisdom from experience. Companies have to be willing to dedicate time and effort to such extensive training, but the investment more than pays for itself.

  6. Smart Radiation Therapy Biomaterials.

    PubMed

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. NREL: Renewable Resource Data Center - SMARTS

    Science.gov Websites

    SMARTS - Simple Model of the Atmospheric Radiative Transfer of Sunshine Renewable Resource Data Center The Simple Model of the Atmospheric Radiative Transfer of Sunshine, or SMARTS, predicts clear-sky architecture, atmospheric science, photobiology, and health physics. SMARTS is a complex model that requires

  8. Smart Gun Technology project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, D.R.

    The goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user form firing a law officer`s firearm by implementing user-recognizing-and-authorizing (or {open_quotes}smart{close_quotes}) surety technologies. This project was funded by the National Institute of Justice. This report lists the findings and results of the project`s three primary objectives. First, to find and document the requirements for a smart firearm technology that law enforcement officers will value. Second, to investigate, evaluate, and prioritize technologies that meet the requirements for a law enforcement officer`s smart firearm. Third, to demonstrate and document the most promising technology`s usefulness inmore » models of a smart firearm.« less

  9. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  10. Maximizing Efficiency and Reducing Robotic Surgery Costs Using the NASA Task Load Index.

    PubMed

    Walters, Carrie; Webb, Paula J

    2017-10-01

    Perioperative leaders at our facility were struggling to meet efficiency targets for robotic surgery procedures while also maintaining the satisfaction of the surgical team. We developed a human resources time and motion study tool and used it in conjunction with the NASA Task Load Index to observe and analyze the required workload of personnel assigned to 25 robotic surgery procedures. The time and motion study identified opportunities to enlist the help of nonlicensed support personnel to ensure safe patient care and improve OR efficiency. Using the NASA Task Load Index demonstrated that high temporal, effort, and physical demands existed for personnel assisting with and performing robotic surgery. We believe that this process could be used to develop cost-effective staffing models, resulting in safe and efficient care for all surgical patients. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  11. CASAS: A Smart Home in a Box

    PubMed Central

    Cook, Diane J.; Crandall, Aaron S.; Thomas, Brian L.; Krishnan, Narayanan C.

    2013-01-01

    While the potential benefits of smart home technology are widely recognized, a lightweight design is needed for the benefits to be realized at a large scale. We introduce the CASAS “smart home in a box”, a lightweight smart home design that is easy to install and provides smart home capabilities out of the box with no customization or training. We discuss types of data analysis that have been performed by the CASAS group and can be pursued in the future by using this approach to designing and implementing smart home technologies. PMID:24415794

  12. CASAS: A Smart Home in a Box.

    PubMed

    Cook, Diane J; Crandall, Aaron S; Thomas, Brian L; Krishnan, Narayanan C

    2013-07-01

    While the potential benefits of smart home technology are widely recognized, a lightweight design is needed for the benefits to be realized at a large scale. We introduce the CASAS "smart home in a box", a lightweight smart home design that is easy to install and provides smart home capabilities out of the box with no customization or training. We discuss types of data analysis that have been performed by the CASAS group and can be pursued in the future by using this approach to designing and implementing smart home technologies.

  13. Smart Secure Homes: A Survey of Smart Home Technologies that Sense, Assess, and Respond to Security Threats.

    PubMed

    Dahmen, Jessamyn; Cook, Diane J; Wang, Xiaobo; Honglei, Wang

    2017-08-01

    Smart home design has undergone a metamorphosis in recent years. The field has evolved from designing theoretical smart home frameworks and performing scripted tasks in laboratories. Instead, we now find robust smart home technologies that are commonly used by large segments of the population in a variety of settings. Recent smart home applications are focused on activity recognition, health monitoring, and automation. In this paper, we take a look at another important role for smart homes: security. We first explore the numerous ways smart homes can and do provide protection for their residents. Next, we provide a comparative analysis of the alternative tools and research that has been developed for this purpose. We investigate not only existing commercial products that have been introduced but also discuss the numerous research that has been focused on detecting and identifying potential threats. Finally, we close with open challenges and ideas for future research that will keep individuals secure and healthy while in their own homes.

  14. Throttling Impacts on Hall Thruster Performance, Erosion, and Qualification for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; DeHoyos, Amado

    2007-01-01

    With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.

  15. Graphene-based smart materials

    NASA Astrophysics Data System (ADS)

    Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan

    2017-09-01

    The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; ULTRASONIC AQUEOUS CLEANING SYSTEMS, SMART SONIC CORPORATION, SMART SONIC

    EPA Science Inventory

    This report is a product of the U.S. EPA's Environmental Technoloy Verification (ETV) Program and is focused on the Smart Sonics Ultrasonic Aqueous Cleaning Systems. The verification is based on three main objectives. (1) The Smart Sonic Aqueous Cleaning Systems, Model 2000 and...

  17. TextWithSurgeryPatients - A Research Hypothesis in Enhancing Education and Physical Assessment for Abdominal Surgical Patients.

    PubMed

    Hansen, Margaret

    2016-01-01

    Medical surgical nurses may not have the time or resources to provide effective pre- and post-operative instructions for patients in today's healthcare system. And, making timely physical assessments following discharge from the hospital is not always straightforward. Therefore, the risk for readmission associated with post-surgical complications is a concern. At present, mobile healthcare technologies and patient care are precipitously evolving and may serve as a resource to enhance communication between the healthcare provider and patient. A mobile telephone text message (short message service [SMS]) intervention for abdominal surgical patients may foster effective education (communication) and timely self-reported physical assessment in the home environment hence preventing deleterious outcomes. The aim of this research proposal is to identify the feasibility of using a SMS intervention via smart phones to improve health outcomes via timely communication, reach large numbers of at-risk surgical patients and, establish and sustain uniform protocols in a cost-efficient manner.

  18. 2016 SmartWay Affiliate Challenge Recognition Webinar

    EPA Pesticide Factsheets

    This EPA presentation gives an overview of the SmartWay program and showcases the SmartWay Affiliate awardees raising awareness of the benefits of the SmartWay program and sustainable freight transportation.

  19. SMART: The Future of Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.

    2010-01-01

    A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list

  20. Smart cities of the future

    NASA Astrophysics Data System (ADS)

    Batty, M.; Axhausen, K. W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y.

    2012-11-01

    Here we sketch the rudiments of what constitutes a smart city which we define as a city in which ICT is merged with traditional infrastructures, coordinated and integrated using new digital technologies. We first sketch our vision defining seven goals which concern: developing a new understanding of urban problems; effective and feasible ways to coordinate urban technologies; models and methods for using urban data across spatial and temporal scales; developing new technologies for communication and dissemination; developing new forms of urban governance and organisation; defining critical problems relating to cities, transport, and energy; and identifying risk, uncertainty, and hazards in the smart city. To this, we add six research challenges: to relate the infrastructure of smart cities to their operational functioning and planning through management, control and optimisation; to explore the notion of the city as a laboratory for innovation; to provide portfolios of urban simulation which inform future designs; to develop technologies that ensure equity, fairness and realise a better quality of city life; to develop technologies that ensure informed participation and create shared knowledge for democratic city governance; and to ensure greater and more effective mobility and access to opportunities for urban populations. We begin by defining the state of the art, explaining the science of smart cities. We define six scenarios based on new cities badging themselves as smart, older cities regenerating themselves as smart, the development of science parks, tech cities, and technopoles focused on high technologies, the development of urban services using contemporary ICT, the use of ICT to develop new urban intelligence functions, and the development of online and mobile forms of participation. Seven project areas are then proposed: Integrated Databases for the Smart City, Sensing, Networking and the Impact of New Social Media, Modelling Network Performance

  1. Smart Grid Information Clearinghouse (SGIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy &more » regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid

  2. SMART WINDOWS FOR SMART BUILDINGS

    EPA Science Inventory

    Roughly one third of all energy consumed in the U.S. is used in the residential or commercial sector. Of that, over half of the energy is used to provide lighting and to control the temperature of those buildings. “Smart buildings” is a concept to apply principles ...

  3. Virtual surgical planning in endoscopic skull base surgery.

    PubMed

    Haerle, Stephan K; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Kucharczyk, Walter; Irish, Jonathan C

    2013-12-01

    Skull base surgery (SBS) involves operative tasks in close proximity to critical structures in a complex three-dimensional (3D) anatomy. The aim was to investigate the value of virtual planning (VP) based on preoperative magnetic resonance imaging (MRI) for surgical planning in SBS and to compare the effects of virtual planning with 3D contours between the expert and the surgeon in training. Retrospective analysis. Twelve patients with manually segmented anatomical structures based on preoperative MRI were evaluated by eight surgeons in a randomized order using a validated National Aeronautics and Space Administration Task Load Index (NASA-TLX) questionnaire. Multivariate analysis revealed significant reduction of workload when using VP (P<.0001) compared to standard planning. Further, it showed that the experience level of the surgeon had a significant effect on the NASA-TLX differences (P<.05). Additional subanalysis did not reveal any significant findings regarding which type of surgeon benefits the most (P>.05). Preoperative anatomical segmentation with virtual surgical planning using contours in endoscopic SBS significantly reduces the workload for the expert and the surgeon in training. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Detection of Social Interaction in Smart Spaces.

    PubMed

    Cook, Diane J; Crandall, Aaron; Singla, Geetika; Thomas, Brian

    2010-02-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily life that is important for one's emotional and physical health is social interaction. In this paper we investigate the use of smart environment technologies to detect and analyze interactions in smart spaces. We introduce techniques for collect and analyzing sensor information in smart environments to help in interpreting resident behavior patterns and determining when multiple residents are interacting. The effectiveness of our techniques is evaluated using two physical smart environment testbeds.

  5. Detection of Social Interaction in Smart Spaces

    PubMed Central

    Cook, Diane J.; Crandall, Aaron; Singla, Geetika; Thomas, Brian

    2010-01-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily life that is important for one's emotional and physical health is social interaction. In this paper we investigate the use of smart environment technologies to detect and analyze interactions in smart spaces. We introduce techniques for collect and analyzing sensor information in smart environments to help in interpreting resident behavior patterns and determining when multiple residents are interacting. The effectiveness of our techniques is evaluated using two physical smart environment testbeds. PMID:20953347

  6. Market Acceptance of Smart Growth

    EPA Pesticide Factsheets

    This report finds that smart growth developments enjoy market acceptance because of stability in prices over time. Housing resales in smart growth developments often have greater appreciation than their conventional suburban counterparts.

  7. Smart Markets for Water Resources

    NASA Astrophysics Data System (ADS)

    Raffensperger, John

    2017-04-01

    Commercial water users often want to trade water, but their trades can hurt other users and the environment. So government has to check every transaction. This checking process is slow and expensive. That's why "free market" water trading doesn't work, especially with trading between a single buyer and a single seller. This talk will describe a water trading mechanism designed to solve these problems. The trading mechanism is called a "smart market". A smart market allows simultaneous many-to-many trades. It can reduce the transaction costs of water trading, while improving environmental outcomes. The smart market depends on a combination of recent technologies: hydrology simulation, computer power, and the Internet. Our smart market design uses standard hydrological models, user bids from a web page, and computer optimization to maximize the economic value of water while meeting all environmental constraints. Before the smart market can be implemented, however, users and the water agency must meet six critical prerequisites. These prerequisites may be viewed as simply good water management that should be done anyway. I will describe these prerequisites, and I will briefly discuss common arguments against water markets. This talk will be an abstract of a forthcoming book, "Smart Markets for Water Resources: A Manual for Implementation," by John F. Raffensperger and Mark W. Milke, from Springer Publishing.

  8. Smart Grid Communications System Blueprint

    NASA Astrophysics Data System (ADS)

    Clark, Adrian; Pavlovski, Chris

    2010-10-01

    Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.

  9. Creating Smart-er Cities: An Overview

    ERIC Educational Resources Information Center

    Allwinkle, Sam; Cruickshank, Peter

    2011-01-01

    The following offers an overview of what it means for cities to be "smart." It draws the supporting definitions and critical insights into smart cities from a series of papers presented at the 2009 Trans-national Conference on Creating Smart(er) Cities. What the papers all have in common is their desire to overcome the all too often…

  10. Playing the Smart Card.

    ERIC Educational Resources Information Center

    Zuzack, Christine A.

    1997-01-01

    Enhanced magnetic strip cards and "smart cards" offer varied service options to college students. Enhanced magnetic strip cards serve as cash cards and provide access to services. Smart cards, which resemble credit cards but contain a microchip, can be used as phone cards, bus passes, library cards, admission tickets, point-of-sale debit…

  11. Prototype of smart office system using based security system

    NASA Astrophysics Data System (ADS)

    Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.

    2018-05-01

    Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.

  12. Smart materials and structures: what are they?

    NASA Astrophysics Data System (ADS)

    Spillman, W. B., Jr.; Sirkis, J. S.; Gardiner, P. T.

    1996-06-01

    There has been considerable discussion in the technical community on a number of questions concerned with smart materials and structures, such as what they are, whether smart materials can be considered a subset of smart structures, whether a smart structure and an intelligent structure are the same thing, etc. This discussion is both fueled and confused by the technical community due to the truly multidisciplinary nature of this new field. Smart materials and structures research involves so many technically diverse fields that it is quite common for one field to completely misunderstand the terminology and start of the art in other fields. In order to ascertain whether a consensus is emerging on a number of questions, the technical community was surveyed in a variety of ways including via the internet and by direct contact. The purpose of this survey was to better define the smart materials and structures field, its current status and its potential benefits. Results of the survey are presented and discussed. Finally, a formal definition of the field of smart materials and structures is proposed.

  13. Vehicle Fault Diagnose Based on Smart Sensor

    NASA Astrophysics Data System (ADS)

    Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng

    In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.

  14. Entry Vehicle Control System Design for the Mars Smart Lander

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Queen, Eric M.

    2002-01-01

    The NASA Langley Research Center, in cooperation with the Jet Propulsion Laboratory, participated in a preliminary design study of the Entry, Descent and Landing phase for the Mars Smart Lander Project. This concept utilizes advances in Guidance, Navigation and Control technology to significantly reduce uncertainty in the vehicle landed location on the Mars surface. A candidate entry vehicle controller based on the Reaction Control System controller for the Apollo Lunar Excursion Module digital autopilot is proposed for use in the entry vehicle attitude control. A slight modification to the phase plane controller is used to reduce jet-firing chattering while maintaining good control response for the Martian entry probe application. The controller performance is demonstrated in a six-degree-of-freedom simulation with representative aerodynamics.

  15. Analyzing Resiliency of the Smart Grid Communication Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anas AlMajali, Anas; Viswanathan, Arun; Neuman, Clifford

    Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromisemore » the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.« less

  16. SMART Grid Evaluation Using Fuzzy Numbers and TOPSIS

    NASA Astrophysics Data System (ADS)

    El Alaoui, Mohammed

    2018-05-01

    In recent advent of smart grids, the end-users aims to satisfy simultaneously low electricity bills, with a reasonable level of comfort. While cost evaluation appears to be an easy task, capturing human preferences seems to be more challenging. Here we propose the use of fuzzy logic and a modified version of the TOPSIS method, to quantify end-users’ preferences in a smart grid. While classical smart grid focus only on the technological side, it is proven that smart grid effectiveness is hugely linked to end-users’ behaviours. The main objective here, is to involve smart grid users in order to get maximum satisfaction, preserving classical smart grid objectives.

  17. A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework

    PubMed Central

    Hernández, Luis; Baladrón, Carlos; Aguiar, Javier M.; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Cook, Diane J.; Chinarro, David; Gómez, Jorge

    2012-01-01

    One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.

  18. Study of Smart Campus Development Using Internet of Things Technology

    NASA Astrophysics Data System (ADS)

    Widya Sari, Marti; Wahyu Ciptadi, Prahenusa; Hafid Hardyanto, R.

    2017-04-01

    This paper describes the development of smart campus using Internet of Things (IoT) technology. Through smart campus, it is possible that a campus is connected via online by the outside entity, so that the teaching approach based on technology can be conducted in real time. This research was conducted in smart education, smart parking and smart room. Observation and literature studies were applied as the research method with the related theme for the sake of system design of smart campus. The result of this research is the design of smart campus system that includes smart education development, smart parking and smart room with the sake of Universitas PGRI Yogyakarta as the case study.

  19. 77 FR 38768 - Smart Grid Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Smart Grid Advisory... Smart Grid Interoperability, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop... open meeting. SUMMARY: The Smart Grid Advisory Committee (SGAC or Committee) will hold a meeting via...

  20. Predicting Air Quality in Smart Environments

    PubMed Central

    Deleawe, Seun; Kusznir, Jim; Lamb, Brian; Cook, Diane J.

    2011-01-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. As aspect of daily life that is often overlooked in maintaining a healthy lifestyle is the air quality of the environment. In this paper we investigate the use of machine learning technologies to predict CO2 levels as an indicator of air quality in smart environments. We introduce techniques for collecting and analyzing sensor information in smart environments and analyze the correlation between resident activities and air quality levels. The effectiveness of our techniques is evaluated using three physical smart environment testbeds. PMID:21617739

  1. Imaging standards for smart cards

    NASA Astrophysics Data System (ADS)

    Ellson, Richard N.; Ray, Lawrence A.

    1996-02-01

    "Smart cards" are plastic cards the size of credit cards which contain integrated circuits for the storage of digital information. The applications of these cards for image storage has been growing as card data capacities have moved from tens of bytes to thousands of bytes. This has prompted the recommendation of standards by the X3B10 committee of ANSI for inclusion in ISO standards for card image storage of a variety of image data types including digitized signatures and color portrait images. This paper will review imaging requirements of the smart card industry, challenges of image storage for small memory devices, card image communications, and the present status of standards. The paper will conclude with recommendations for the evolution of smart card image standards towards image formats customized to the image content and more optimized for smart card memory constraints.

  2. Imaging standards for smart cards

    NASA Astrophysics Data System (ADS)

    Ellson, Richard N.; Ray, Lawrence A.

    1996-01-01

    'Smart cards' are plastic cards the size of credit cards which contain integrated circuits for the storage of digital information. The applications of these cards for image storage has been growing as card data capacities have moved from tens of bytes to thousands of bytes. This has prompted the recommendation of standards by the X3B10 committee of ANSI for inclusion in ISO standards for card image storage of a variety of image data types including digitized signatures and color portrait images. This paper reviews imaging requirements of the smart card industry, challenges of image storage for small memory devices, card image communications, and the present status of standards. The paper concludes with recommendations for the evolution of smart card image standards towards image formats customized to the image content and more optimized for smart card memory constraints.

  3. SMART SKINS - A Development Roadmap

    NASA Astrophysics Data System (ADS)

    Lochocki, Joseph M.

    1990-02-01

    The Air Force Project Forecast II identified a number of key technology initiatives for development. This paper addresses one such initiative, PT-16, Smart Skins. The concept of the Smart Skin is introduced by briefly highlighting its attributes and potential advantages over standard avionics packaging and maintenance, and then goes on to describe some of the key ingredients necessary for its development. Problem areas are brought out along with some of the required trades that must be made. Finally, a time phased development roadmap is introduced which shows Calspan's proposed sequence of technology development programs that can, in combination, lead to first functional Smart Skins implementations in narrowband form in the late 1990's and in wideband form in first decade of the twenty - first century. A Smart Skins implementation in integral aircraft skin structure form will take at least until 2010.

  4. Finite element analyses of a dual actuated prototype of a smart needle

    NASA Astrophysics Data System (ADS)

    Konh, Bardia; Podder, Tarun K.

    2017-04-01

    Brachytherapy is one of the most effective modalities for treating early stage prostate cancer. In this procedure, radioactive seeds are being placed in the prostate to kill the tumorous cells. Inaccurate placement of seeds can underdose the tumor and dangerously overdose the critical structures (urethra, rectum, bladder) and adjacent healthy tissues. It is very difficult, if not impossible, for the surgeons to compensate the needle misplacement errors while using the conventional passive straight needles. The smart needles actuated by shape memory alloy (SMA) wires are being developed to provide more actuation and control for the surgeons to achieve more geometric conformity. In our recent work, a prototype of a smart needle was developed where not only the actuation of SMA wires were incorporated, but also shape memory polymers (SMPs) were included in the design introducing a soft joint element to further assist the flexibility of the active surgical needles. The additional actuation of shape memory polymers provided the capability of reaching much high flexibility that was not achievable before. However, there are some disadvantages using this active SMP component compared to a passive Nylon joint component that are discussed in this work. The utilization of a heated SMP as a soft joint showed about 20% improvement in the final needle tip deflection. This work presents the finite element studies of the developed prototype. A finite element model that could accurately predict the behavior of the smart needle could be very valuable in analyzing and optimizing the future novel designs.

  5. A Smart Home Test Bed for Undergraduate Education to Bridge the Curriculum Gap from Traditional Power Systems to Modernized Smart Grids

    ERIC Educational Resources Information Center

    Hu, Qinran; Li, Fangxing; Chen, Chien-fei

    2015-01-01

    There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…

  6. PLCs used in smart home control

    NASA Astrophysics Data System (ADS)

    Barz, C.; Deaconu, S. I.; Latinovic, T.; Berdie, A.; Pop-Vadean, A.; Horgos, M.

    2016-02-01

    This paper presents the realization of a smart home automation using Siemens PLCs. The smart home interface is realized using the HMI Weintek eMT3070a touchscreen, which shows the window for controlling and monitoring the lighting, room temperature, irrigation systems, swimming pool, etc. By using PLCs, the smart home can be controlled via Ethernet and it can be programmed to the needs of tenants.

  7. Reliability analysis in interdependent smart grid systems

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  8. All-printed smart structures: a viable option?

    NASA Astrophysics Data System (ADS)

    O'Donnell, John; Ahmadkhanlou, Farzad; Yoon, Hwan-Sik; Washington, Gregory

    2014-03-01

    The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure.

  9. New Results and Synthesis from SMART-1

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    2012-07-01

    We present new SMART-1 results recently published and give a synthesis of mission highlights and legacy. SMART-1 demonstrated the use of Solar Electric Propulsion that will be useful for Bepi-Colombo and future deep-space missions, tested new technologies for spacecraft and instruments miniaturisation, and provided an opportunity for science [1-12]. The SMART-1 spacecraft operated on a science orbit for 18 months until impact on 3 September 2006. To date, 72 refereed papers and more than 325 conference or technical papers have been published based on SMART-1 (see ADS on SMART-1 scitech website). The SMART-1 data are accessible on the ESA Planetary Science Archive PSA [13]. Recent SMART-1 published results using these archives include: Multi-angular photometry of Mare and specific regions to diagnose the regolith roughness and to constrain models of light re ection and scattering [14] that can be extended to understand the surface of other moons and asteroids; the SMART-1 impact observed from Earth was modelled using laboratory experiments predicting the size of asymmetric crater and ejecta [15]; the lunar North and South polar illumination was mapped and monitored over the entire year, permitting to identify SMART-1 peaks of quasi-eternal light" and to derive their topography [16, 17]; SMART-1 was also used for radio occultation experiments [18], and the X-Ray Solar Monitor data were used for activity and are studies of the Sun as a star in conjunction with GOES AND RHESSI [19] or to design future coronal X-ray instruments [20]. The SMART-1 archive observations have been used to support Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, and to characterise potential sites relevant for lunar science and future exploration. Credits and links: we acknowledge members of SMART-1 Science and Technology Working Team and collaborators. SMART-1 Scitech or public websites: sci.esa.int/smart-1 or www.esa.int/smart-1 References [1] Foing

  10. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery.

    PubMed

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2011-06-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information.

  11. Prototyping a Hybrid Cooperative and Tele-robotic Surgical System for Retinal Microsurgery

    PubMed Central

    Balicki, Marcin; Xia, Tian; Jung, Min Yang; Deguet, Anton; Vagvolgyi, Balazs; Kazanzides, Peter; Taylor, Russell

    2013-01-01

    This paper presents the design of a tele-robotic microsurgical platform designed for development of cooperative and tele-operative control schemes, sensor based smart instruments, user interfaces and new surgical techniques with eye surgery as the driving application. The system is built using the distributed component-based cisst libraries and the Surgical Assistant Workstation framework. It includes a cooperatively controlled EyeRobot2, a da Vinci Master manipulator, and a remote stereo visualization system. We use constrained optimization based virtual fixture control to provide Virtual Remote-Center-of-Motion (vRCM) and haptic feedback. Such system can be used in a hybrid setup, combining local cooperative control with remote tele-operation, where an experienced surgeon can provide hand-over-hand tutoring to a novice user. In another scheme, the system can provide haptic feedback based on virtual fixtures constructed from real-time force and proximity sensor information. PMID:24398557

  12. SmartPark Technology Demonstration Project

    DOT National Transportation Integrated Search

    2013-11-01

    The purpose of FMCSAs SmartPark initiative is to determine the feasibility of a technology for providing truck parking space availability in real time to truckers on the road. SmartPark consists of two phases. Phase I was a field operational test ...

  13. Design of the smart scenic spot service platform

    NASA Astrophysics Data System (ADS)

    Yin, Min; Wang, Shi-tai

    2015-12-01

    With the deepening of the smart city construction, the model "smart+" is rapidly developing. Guilin, the international tourism metropolis fast constructing need smart tourism technology support. This paper studied the smart scenic spot service object and its requirements. And then constructed the smart service platform of the scenic spot application of 3S technology (Geographic Information System (GIS), Remote Sensing (RS) and Global Navigation Satellite System (GNSS)) and the Internet of things, cloud computing. Based on Guilin Seven-star Park scenic area as an object, this paper designed the Seven-star smart scenic spot service platform framework. The application of this platform will improve the tourists' visiting experience, make the tourism management more scientifically and standardly, increase tourism enterprises operating earnings.

  14. Sensor technology for smart homes.

    PubMed

    Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia

    2011-06-01

    A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. OpenSHS: Open Smart Home Simulator.

    PubMed

    Alshammari, Nasser; Alshammari, Talal; Sedky, Mohamed; Champion, Justin; Bauer, Carolin

    2017-05-02

    This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS).

  16. OpenSHS: Open Smart Home Simulator

    PubMed Central

    Alshammari, Nasser; Alshammari, Talal; Sedky, Mohamed; Champion, Justin; Bauer, Carolin

    2017-01-01

    This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS). PMID:28468330

  17. Decentral Smart Grid Control

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  18. Professor Ninian Smart, Phenomenology and Religious Education

    ERIC Educational Resources Information Center

    O'Grady, Kevin

    2005-01-01

    I reply to L. Philip Barnes' assessment of the contributions of Ninian Smart and phenomenology to religious education. My argument is that Barnes first misconceives and then underestimates Smart's legacy. I sketch Smart's relevance to some current issues in religious education, suggesting that his thought helps us to avoid potentially damaging…

  19. Smart thermal networks for smart cities - Introduction of concepts and measures

    NASA Astrophysics Data System (ADS)

    Schmidt, R. R.; Pol, O.; Basciotti, D.; Page, J.

    2012-10-01

    In order to contribute to high living standards, climate mitigation and energy supply security, future urban energy systems require a holistic approach. In particular an intelligent integration of thermal networks is necessary. This paper will briefly present the "smart city" concept and introduce an associated definition for smart thermal networks defined on three levels: 1. the interaction with urban planning processes and the interface to the overall urban energy system, 2. the adaptation of the temperature level and 3. supply and demand-side management strategies.

  20. Fiber-wireless for smart grid: A survey

    NASA Astrophysics Data System (ADS)

    Radzi, NAM; Ridwan, MA; Din, NM; Abdullah, F.; Mustafa, IS; l-Mansoori, MH

    2017-11-01

    Smart grid allows two-way communication between power utility companies and their customers while having the ability to sense along the transmission lines. However, the downside is such, when the smart devices are transmitting data simultaneously, it results in network congestion. Fiber wireless (FiWi) network is one of the best congestion solutions for smart grid up to date. In this paper, a survey of current literature on FiWi for smart grid will be reviewed and a testbed to test the protocols and algorithms for FiWi in smart grid will be proposed. The results of number of packets received and delay vs packet transmitted obtained via the testbed are compared with the results obtained via simulation and they show that they are in line with each other, validating the accuracy of the testbed.

  1. Support of surgical process modeling by using adaptable software user interfaces

    NASA Astrophysics Data System (ADS)

    Neumuth, T.; Kaschek, B.; Czygan, M.; Goldstein, D.; Strauß, G.; Meixensberger, J.; Burgert, O.

    2010-03-01

    Surgical Process Modeling (SPM) is a powerful method for acquiring data about the evolution of surgical procedures. Surgical Process Models are used in a variety of use cases including evaluation studies, requirements analysis and procedure optimization, surgical education, and workflow management scheme design. This work proposes the use of adaptive, situation-aware user interfaces for observation support software for SPM. We developed a method to support the modeling of the observer by using an ontological knowledge base. This is used to drive the graphical user interface for the observer to restrict the search space of terminology depending on the current situation. In the evaluation study it is shown, that the workload of the observer was decreased significantly by using adaptive user interfaces. 54 SPM observation protocols were analyzed by using the NASA Task Load Index and it was shown that the use of the adaptive user interface disburdens the observer significantly in workload criteria effort, mental demand and temporal demand, helping him to concentrate on his essential task of modeling the Surgical Process.

  2. Cost benefit analysis for smart grid projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; He, Gang; Mauzey, J

    The U.S. is unusual in that a definition of the term “smart grid” was written into legislation, appearing in the Energy Independence and Security Act (2007). When the recession called for stimulus spending and the American Recovery and Reinvestment Act (ARRA, 2009) was passed, a framework already existed for identification of smart grid projects. About $4.5B of the U.S. Department of Energy’s (U.S. DOE’s) $37B allocation from ARRA was directed to smart grid projects of two types, investment grants and demonstrations. Matching funds from other sources more than doubled the total value of ARRA-funded smart grid projects. The Smart Gridmore » Investment Grant Program (SGIG) consumed all but $620M of the ARRA funds, which was available for the 32 projects in the Smart Grid Demonstration Program (SGDP, or demonstrations). Given the economic potential of these projects and the substantial investments required, there was keen interest in estimating the benefits of the projects (i.e., quantifying and monetizing the performance of smart grid technologies). Common method development and application, data collection, and analysis to calculate and publicize the benefits were central objectives of the program. For this purpose standard methods and a software tool, the Smart Grid Computational Tool (SGCT), were developed by U.S. DOE and a spreadsheet model was made freely available to grantees and other analysts. The methodology was intended to define smart grid technologies or assets, the mechanisms by which they generate functions, their impacts and, ultimately, their benefits. The SGCT and its application to the Demonstration Projects are described, and actual projects in Southern California and in China are selected to test and illustrate the tool. The usefulness of the methodology and tool for international analyses is then assessed.« less

  3. Being "SMART" About Adolescent Conduct Problems Prevention: Executing a SMART Pilot Study in a Juvenile Diversion Agency.

    PubMed

    August, Gerald J; Piehler, Timothy F; Bloomquist, Michael L

    2016-01-01

    The development of adaptive treatment strategies (ATS) represents the next step in innovating conduct problems prevention programs within a juvenile diversion context. Toward this goal, we present the theoretical rationale, associated methods, and anticipated challenges for a feasibility pilot study in preparation for implementing a full-scale SMART (i.e., sequential, multiple assignment, randomized trial) for conduct problems prevention. The role of a SMART design in constructing ATS is presented. The SMART feasibility pilot study includes a sample of 100 youth (13-17 years of age) identified by law enforcement as early stage offenders and referred for precourt juvenile diversion programming. Prior data on the sample population detail a high level of ethnic diversity and approximately equal representations of both genders. Within the SMART, youth and their families are first randomly assigned to one of two different brief-type evidence-based prevention programs, featuring parent-focused behavioral management or youth-focused strengths-building components. Youth who do not respond sufficiently to brief first-stage programming will be randomly assigned a second time to either an extended parent- or youth-focused second-stage programming. Measures of proximal intervention response and measures of potential candidate tailoring variables for developing ATS within this sample are detailed. Results of the described pilot study will include information regarding feasibility and acceptability of the SMART design. This information will be used to refine a subsequent full-scale SMART. The use of a SMART to develop ATS for prevention will increase the efficiency and effectiveness of prevention programing for youth with developing conduct problems.

  4. Educating next-generation civil engineers about smart structures technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng

    2005-05-01

    The implementation of smart structures technology in the design, construction and maintenance of civil and mechanical systems have been shown beneficial to the performance enhancement, operating efficiency and reliability of structural systems. However, most of today's engineering students are unaware of the remarkable properties of smart sensors and many applications of smart structures technology. It is thus desirable to prepare the future engineers of the society for the cutting-edge technologies in smart structures, for which they may see broad application in their generation. Pioneering work in incorporating smart structures technologies into civil engineering curriculum has been done by the writer at Lehigh University and is described in this paper. In particular, a graduate-level course entitled "Smart Structural Systems" has been taught in the Spring Semester of Year 2004 at Lehigh University. To better convey the course material to students, a smart structures test-bed, which is used not only to showcase various technological aspects of a smart structural system but also offer students an opportunity to gain hands-on experience by doing experiments has been under development at Lehigh University. The hands-on experience that could be developed with the smart structures test-bed is believed being essential for students to have a good understanding and mastering of the smart structures technologies.

  5. Smart particles for noble drug delivery system.

    PubMed

    Park, Cheolyoung; Kim, Jihoon; Jang, Seunghyun; Woo, Hee-Gweon; Ko, Young Chun; Sohn, Honglae

    2010-05-01

    Optically encoded smart particles were prepared for noble drug delivery materials. Distributed Bragg reflector (DBR) porous silicon (PSi) was generated by applying a computer-generated pseudo-square wave current waveform. This DBR PSi film was lifted off from the Si substrate and thermally oxidized to convert PSi to porous silicon dioxide (PSD). DBR PSD film was derivatized with 20(S)-Camptothecin (CPT) and fractured by ultrasono-method to give smart particles. DBR PSD smart particles exhibited a sharp photonic band gap in the optical reflectivity spectrum. Optical characteristic of PSD smart particles retained DBR photonic property in aqueous buffer solution. The release of CPT and change of reflection wavelength were measured by UV-vis and reflectance spectrometer, respectively. The intensity of differential peak from reflection resonances of the smart particles was increased with a drug release. The blue shift of reflection peak resulted in the decrease of refractive index of PSD smart particles during the drug release. The concentration of released drug exhibited an linear relationship with a release time.

  6. Use of a mobile device app: a potential new tool for poster presentations and surgical education.

    PubMed

    Atherton, S; Javed, M; Webster, Sv; Hemington-Gorse, S

    2013-06-01

    Poster presentations are an important part of presenting scientific techniques and represent an integral part of conferences and meetings. Traditionally, paper format is used; however, in recent years electronic posters and other methods, such as incorporating a DVD player as part of a poster, have been successfully used. We describe and demonstrate the use of an augmented reality application for smartphones and tablets as a potential future addition to the presentation of scientific work and surgical techniques in poster format. This method allows the audience to view surgical techniques and research as 3D animation or video by using a trigger image in a poster/journal/text book via their smart device. The author used the free Aurasma© application available on both iOS and Android 2.2 and higher platforms from iTunes App Store and Google Play. Once installed, any user with a 3G or WiFi connection via a smart phone or tablet can subscribe to the Medical Illustration channel for free. The user can then scan the trigger image placed on a poster with a mobile device to view videos, animations or 3D data. Further interaction can direct the user to a website for more content. The author has trialled this method at a regional burns and plastic surgery centre and found it to be highly effective. The use of this novel method adds a new dimension to the presentation of scientific work at surgical and medical conferences and as part of journals and textbooks by permitting users to view scientific data and techniques on mobile devices as videos or as three dimensional environments at their own leisure.

  7. Air Force Smart Bases

    DTIC Science & Technology

    2017-10-19

    the future. Then to design an information and data architecture to enable many use cases for further mission experimentation and acquisition strategy...development. A key feature of the future of smart cities (or, in our case , smart bases) is that citizen engagement with one another and with their...cybersecurity on Air Force installations. Participants The design sprint brought in over 30 participants from across the military and industry

  8. Cybersecurity and Optimization in Smart “Autonomous” Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mylrea, Michael E.; Gourisetti, Sri Nikhil Gup

    Significant resources have been invested in making buildings “smart” by digitizing, networking and automating key systems and operations. Smart autonomous buildings create new energy efficiency, economic and environmental opportunities. But as buildings become increasingly networked to the Internet, they can also become more vulnerable to various cyber threats. Automated and Internet-connected buildings systems, equipment, controls, and sensors can significantly increase cyber and physical vulnerabilities that threaten the confidentiality, integrity, and availability of critical systems in organizations. Securing smart autonomous buildings presents a national security and economic challenge to the nation. Ignoring this challenge threatens business continuity and the availability ofmore » critical infrastructures that are enabled by smart buildings. In this chapter, the authors address challenges and explore new opportunities in securing smart buildings that are enhanced by machine learning, cognitive sensing, artificial intelligence (AI) and smart-energy technologies. The chapter begins by identifying cyber-threats and challenges to smart autonomous buildings. Then it provides recommendations on how AI enabled solutions can help smart buildings and facilities better protect, detect and respond to cyber-physical threats and vulnerabilities. Next, the chapter will provide case studies that examine how combining AI with innovative smart-energy technologies can increase both cybersecurity and energy efficiency savings in buildings. The chapter will conclude by proposing recommendations for future cybersecurity and energy optimization research for examining AI enabled smart-energy technology.« less

  9. 2007 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    2007 National Award for Smart Growth Achievement Booklet displays the winners of the 2007 Smart Growth Report displays the winners of the 2007 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  10. How the SmartWay Partnership Works

    EPA Pesticide Factsheets

    This page describes how the SmartWay program and the SmartWay Transport Partnership work for carriers, shippers, and logistics companies to track air quality, reduce fuel consumption, improve freight supply chain sustainability.

  11. Online Bridge Crack Monitoring with Smart Film

    PubMed Central

    Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2013-01-01

    Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496

  12. Ubiquitous Robotic Technology for Smart Manufacturing System.

    PubMed

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.

  13. Ubiquitous Robotic Technology for Smart Manufacturing System

    PubMed Central

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  14. Towards a framework of smart city diplomacy

    NASA Astrophysics Data System (ADS)

    Mursitama, T. N.; Lee, L.

    2018-03-01

    This article addresses the impact of globalization on the contemporary society, particularly the role of the city that is becoming increasingly important. Three distinct yet intertwine aspects such as decentralization, technology, and para diplomacy become antecedent of competitiveness of the city. A city has more power and authority in creating wealth and prosperity of the society by utilizing technology. The smart city, in addition to the importance of technology as enabler, we argue that possessing the sophisticated technology and apply it towards the matter is not enough. The smart city needs to build smart diplomacy at the sub-national level. In this article, we extend the discussion about smart city by proposing a new framework of smart city diplomacy as one way to integrate information technology, public policy and international relations which will be the main contribution to literature and practice.

  15. Open Smart Energy Gateway (OpenSEG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Open Smart Energy Gateway (OpenSEG) aims to provide near-real time smart meter data to consumers without the delays or latencies associated with it being transported to the utility data center and then back to the consumer's application. To do this, the gateway queries the local Smart Meter to which it is bound to get energy consumption information at pre-defined intervals (minimum interval is 4 seconds). OpenSEG then stores the resulting data internally for retrieval by an external application.

  16. Towards Smart Grid Dynamic Ratings

    NASA Astrophysics Data System (ADS)

    Cheema, Jamal; Clark, Adrian; Kilimnik, Justin; Pavlovski, Chris; Redman, David; Vu, Maria

    2011-08-01

    The energy distribution industry is giving greater attention to smart grid solutions as a means for increasing the capabilities, efficiency and reliability of the electrical power network. The smart grid makes use of intelligent monitoring and control devices throughout the distribution network to report on electrical properties such as voltage, current and power, as well as raising network alarms and events. A further aspect of the smart grid embodies the dynamic rating of electrical assets of the network. This fundamentally involves a rating of the load current capacity of electrical assets including feeders, transformers and switches. The mainstream approach to rate assets is to apply the vendor plate rating, which often under utilizes assets, or in some cases over utilizes when environmental conditions reduce the effective rated capacity, potentially reducing lifetime. Using active intelligence we have developed a rating system that rates assets in real time based upon several events. This allows for a far more efficient and reliable electrical grid that is able to extend further the life and reliability of the electrical network. In this paper we describe our architecture, the observations made during development and live deployment of the solution into operation. We also illustrate how this solution blends with the smart grid by proposing a dynamic rating system for the smart grid.

  17. A rhythm-based authentication scheme for smart media devices.

    PubMed

    Lee, Jae Dong; Jeong, Young-Sik; Park, Jong Hyuk

    2014-01-01

    In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience.

  18. Systems Maintenance Automated Repair Tasks (SMART)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    SMART is an interactive decision analysis and refinement software system that uses evaluation criteria for discrepant conditions to automatically provide and populate a document/procedure with predefined steps necessary to repair a discrepancy safely, effectively, and efficiently. SMART can store the tacit (corporate) knowledge merging the hardware specification requirements with the actual "how to" repair methods, sequences, and required equipment, all within a user-friendly interface. Besides helping organizations retain repair knowledge in streamlined procedures and sequences, SMART can also help them in saving processing time and expense, increasing productivity, improving quality, and adhering more closely to safety and other guidelines. Though SMART was developed for Space Shuttle applications, its interface is easily adaptable to any hardware that can be broken down by component, subcomponent, discrepancy, and repair.

  19. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    2005-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  20. Smart Mobility Stakeholders - Curating Urban Data & Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, Joshua

    This presentation provides an overview of the curation of urban data and models through engaging SMART mobility stakeholders. SMART Mobility Urban Science Efforts are helping to expose key data sets, models, and roles for the U.S. Department of Energy in engaging across stakeholders to ensure useful insights. This will help to support other Urban Science and broader SMART initiatives.

  1. Sustainability, Smart Growth, and Landscape Architecture

    EPA Pesticide Factsheets

    Sustainability, Smart Growth, and Landscape Architecture is an overview course for landscape architecture students interested in sustainability in landscape architecture and how it might apply to smart growth principles in urban, suburban, and rural areas

  2. Bellevue Smart Traveler And Cellular Telecommunication

    DOT National Transportation Integrated Search

    1993-05-01

    SEATTLE (BELLEVUE) SMART TRAVELER OR SST : PHASE I OF THE BELLEVUE SMART TRAVELER PROJECT WAS FUNDED BY THE FEDERAL TRANSIT ADMINISTRATION UNDER THE ADVANCED PUBLIC TRANSPORTATION SYSTEMS (APTS) PROGRAM. THE GRANTEE, THE MUNICIPALITY OF METROPOLIT...

  3. Teaching Basic Cooking Skills: Evaluation of the North Carolina Extension "Cook Smart, Eat Smart" Program

    ERIC Educational Resources Information Center

    Dunn, Carolyn; Jayaratne, K. S. U.; Baughman, Kristen; Levine, Katrina

    2014-01-01

    Cook Smart, Eat Smart (CSES) is a 12-hour cooking school that teaches participants to prepare nutritious, delicious food using simple, healthy preparation techniques, basic ingredients, and minimal equipment. The purpose of this evaluation was to examine the impact of CSES on food preparation and meal consumption behavior. Program outcomes include…

  4. Survey of cyber security issues in smart grids

    NASA Astrophysics Data System (ADS)

    Chen, Thomas M.

    2010-04-01

    The future smart grid will enable cost savings and lower energy use by means of smart appliances and smart meters which support dynamic load management and real-time monitoring of energy use and distribution. The introduction of two-way communications and control into power grid introduces security and privacy concerns. This talk will survey the security and privacy issues in smart grids using the NIST reference model, and relate these issues to cyber security in the Internet.

  5. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  6. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2007-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  7. Best practices for rural smart growth.

    DOT National Transportation Integrated Search

    2010-07-01

    Smart growth is a development strategy that encompasses economic, environmental and social objectives to manage : the growth of a community. The basic principles of smart growth are to: : Mix land uses. : Take advantage of compact building de...

  8. Get Smart about Energy. Revised.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Energy Efficiency and Renewable Energy.

    This publication offers information on energy efficiency in schools. It discusses the high costs of energy in schools, the benefits of smart energy use, options for schools to be smarter in their energy use, energy's impact on student performance, how schools can participate in the EnergySmart Schools campaign operated by Rebuild America, why the…

  9. [SmartCare: automatizing clinical guidelines].

    PubMed

    Mersmann, Stefan

    2009-10-01

    In critical care environments, important medical and economic challenges are presented by the enhancement of therapeutic quality and the reduction of therapeutic costs. For this purpose, several clinical studies have demonstrated a positive impact of the adoption of so-called clinical guidelines. Clinical guidelines represent well documented best practices in healthcare and are fundamental aspects of evidence-based medicine. However, at the bedside, such clinical guidelines remain difficult to use by clinical staff. The knowledge-based technology SmartCare allows incorporation of arbitrary computerized clinical guidelines into various medical target systems. SmartCare constitutes a clinical guideline engine because it executes one or more clinical guidelines on a specific medical device. SmartCare was initially applied for the automated control of a mechanical ventilator to assist the process of weaning from a medical device. The methodology allows further applications to be implemented effectively with other medical devices and/or with other appropriate guidelines. In this paper, we report on the methodology and the resulting versatility of such a system, as well as the clinical evaluation of SmartCare/PS and its perspectives.

  10. Switchable Materials for Smart Windows.

    PubMed

    Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J

    2016-06-07

    This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.

  11. Colombia - A Case Study in Smart Power

    DTIC Science & Technology

    2014-05-22

    COLOMBIA–A CASE STUDY IN SMART POWER A Monograph by John P. Brady Foreign Service Officer United States Agency for...Colombia–A Case Study in Smart Power 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) John P. Brady...of Candidate: John P. Brady Monograph Title: Colombia–A Case Study in Smart Power Approved by: , Monograph Director Robert W

  12. Protecting water resources with smart growth.

    DOT National Transportation Integrated Search

    2004-05-01

    Protecting Water Resources with : Smart Growth is intended for audiences already familiar with smart : growth, who now seek specific ideas : on how techniques for smarter growth : can be used to protect their water : resources. This document is one...

  13. Multiple sensor smart robot hand with force control

    NASA Technical Reports Server (NTRS)

    Killion, Richard R.; Robinson, Lee R.; Bejczy, Antal

    1987-01-01

    A smart robot hand developed at JPL for the Protoflight Manipulator Arm (PFMA) is described. The development of this smart hand was based on an integrated design and subsystem architecture by considering mechanism, electronics, sensing, control, display, and operator interface in an integrated design approach. The mechanical details of this smart hand and the overall subsystem are described elsewhere. The sensing and electronics components of the JPL/PFMA smart hand are summarized and it is described in some detail in control capabilities.

  14. A Rhythm-Based Authentication Scheme for Smart Media Devices

    PubMed Central

    Lee, Jae Dong; Park, Jong Hyuk

    2014-01-01

    In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience. PMID:25110743

  15. A telemedicine wound care model using 4G with smart phones or smart glasses

    PubMed Central

    Ye, Junna; Zuo, Yanhai; Xie, Ting; Wu, Minjie; Ni, Pengwen; Kang, Yutian; Yu, Xiaoping; Sun, Xiaofang; Huang, Yao; Lu, Shuliang

    2016-01-01

    Abstract To assess the feasibility of a wound care model using 4th-generation mobile communication technology standards (4G) with smart phones or smart glasses for wound management. This wound care model is an interactive, real-time platform for implementing telemedicine changing wound dressings, or doing operations. It was set up in March 2015 between Jinhua in Zhejiang province and Shanghai, China, which are 328 km apart. It comprised of a video application (APP), 4G net, smart phones or smart glasses, and a central server. This model service has been used in 30 patients with wounds on their lower extremities for 109 times in 1 month. Following a short learning curve, the service worked well and was deemed to be user-friendly. Two (6.7%) patients had wounds healed, while others still required wound dressing changes after the study finished. Both local surgeons and patients showed good acceptance of this model (100% and 83.33%, respectively). This telemedicine model is feasible and valuable because it provides an opportunity of medical service about wound healing in remote areas where specialists are scarce. PMID:27495023

  16. Smart blood pressure holter.

    PubMed

    İlhan, İlhan

    2018-03-01

    In this study, a wireless blood pressure holter that can be used with smart mobile devices was developed. The developed blood pressure holter consists of two parts, which are a smart mobile device and a cuff. The smart mobile device is used as a recording, control and display device through a developed interface, while the cuff was designed to take measurements from the arm. Resistor-Capacitor (RC) and digital filters were used on the cuff that communicates with the smart mobile device via Bluetooth. The blood pressure was estimated using the Simple Hill Climbing Algorithm (HCA). It is possible to measure instantaneous or programmable blood pressure and heart rate values at certain intervals using this holter. The test was conducted with 30 individuals at different ages with the guidance of a specialist health personnel. The results showed that an accuracy at 93.89% and 91.95% rates could be obtained for systolic and diastolic pressure values, respectively, when compared with those obtained using a traditional sphygmomanometer. The accuracy level for the heart rate was measured as 97.66%. Furthermore, this device was tested day and night in the holter mode in terms of working time, the continuity of the Bluetooth connection and the reliability of the measurement results. The test results were evaluated separately in terms of measurement accuracy, working time, the continuity of the Bluetooth connection and the reliability of the measurement results. The measurement accuracy for systolic, diastolic blood pressure and heart rate values was obtained as 93.89%, 91.95% and 97.66%, respectively. The maximum number of measurements which can be conducted with four 1000 mA alkaline batteries at 20 min intervals was found approximately 79 (little more than 24 h). In addition, it was determined that the continuity of the Bluetooth connection and the reliability of the measurement results were automatically achieved through the features in the interface developed for the

  17. Attack Classification Schema for Smart City WSNs

    PubMed Central

    Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena

    2017-01-01

    Urban areas around the world are populating their streets with wireless sensor networks (WSNs) in order to feed incipient smart city IT systems with metropolitan data. In the future smart cities, WSN technology will have a massive presence in the streets, and the operation of municipal services will be based to a great extent on data gathered with this technology. However, from an information security point of view, WSNs can have failures and can be the target of many different types of attacks. Therefore, this raises concerns about the reliability of this technology in a smart city context. Traditionally, security measures in WSNs have been proposed to protect specific protocols in an environment with total control of a single network. This approach is not valid for smart cities, as multiple external providers deploy a plethora of WSNs with different security requirements. Hence, a new security perspective needs to be adopted to protect WSNs in smart cities. Considering security issues related to the deployment of WSNs as a main data source in smart cities, in this article, we propose an intrusion detection framework and an attack classification schema to assist smart city administrators to delimit the most plausible attacks and to point out the components and providers affected by incidents. We demonstrate the use of the classification schema providing a proof of concept based on a simulated selective forwarding attack affecting a parking and a sound WSN. PMID:28379192

  18. Attack Classification Schema for Smart City WSNs.

    PubMed

    Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena

    2017-04-05

    Urban areas around the world are populating their streets with wireless sensor networks (WSNs) in order to feed incipient smart city IT systems with metropolitan data. In the future smart cities, WSN technology will have a massive presence in the streets, and the operation of municipal services will be based to a great extent on data gathered with this technology. However, from an information security point of view, WSNs can have failures and can be the target of many different types of attacks. Therefore, this raises concerns about the reliability of this technology in a smart city context. Traditionally, security measures in WSNs have been proposed to protect specific protocols in an environment with total control of a single network. This approach is not valid for smart cities, as multiple external providers deploy a plethora of WSNs with different security requirements. Hence, a new security perspective needs to be adopted to protect WSNs in smart cities. Considering security issues related to the deployment of WSNs as a main data source in smart cities, in this article, we propose an intrusion detection framework and an attack classification schema to assist smart city administrators to delimit the most plausible attacks and to point out the components and providers affected by incidents. We demonstrate the use of the classification schema providing a proof of concept based on a simulated selective forwarding attack affecting a parking and a sound WSN.

  19. Smart glove: hand master using magnetorheological fluid actuators

    NASA Astrophysics Data System (ADS)

    Nam, Y. J.; Park, M. K.; Yamane, R.

    2007-12-01

    In this study, a hand master using five miniature magneto-rheological (MR) actuators, which is called 'the smart glove', is introduced. This hand master is intended to display haptic feedback to the fingertip of the human user interacting with any virtual objects in virtual environment. For the smart glove, two effective approaches are proposed: (i) by using the MR actuator which can be considered as a passive actuator, the smart glove is made simple in structure, high in power, low in inertia, safe in interface and stable in haptic feedback, and (ii) with a novel flexible link mechanism designed for the position-force transmission between the fingertips and the actuators, the number of the actuator and the weight of the smart glove can be reduced. These features lead to the improvement in the manipulability and portability of the smart glove. The feasibility of the constructed smart glove is verified through basic performance evaluation.

  20. Smart surgical needle actuated by shape memory alloys for percutaneous procedures

    NASA Astrophysics Data System (ADS)

    Konh, Bardia

    Background: Majority of cancer interventions today are performed percutaneously using needle-based procedures, i.e. through the skin and soft tissue. Insufficient accuracy using conventional surgical needles motivated researchers to provide actuation forces to the needle's body for compensating the possible errors of surgeons/physicians. Therefore, active needles were proposed recently where actuation forces provided by shape memory alloys (SMAs) are utilized to assist the maneuverability and accuracy of surgical needles. This work also aims to introduce a novel needle insertion simulation to predict the deflection of a bevel tip needle inside the tissue. Methods: In this work first, the actuation capability of a single SMA wire was studied. The complex response of SMAs was investigated via a MATLAB implementation of the Brinson model and verified via experimental tests. The material characteristics of SMAs were simulated by defining multilinear elastic isothermal stress-strain curves. Rigorous experiments with SMA wires were performed to determine the material properties as well as to show the capability of the code to predict a stabilized SMA transformation behavior with sufficient accuracy. The isothermal stress-strain curves of SMAs were simulated and defined as a material model for the Finite Element Analysis of the active needle. In the second part of this work, a three-dimensional finite element (FE) model of the active steerable needle was developed to demonstrate the feasibility of using SMA wires as actuators to bend the surgical needle. In the FE model, birth and death method of defining boundary conditions, available in ANSYS, was used to achieve the pre-strain condition on SMA wire prior to actuation. This numerical model was validated with needle deflection experiments with developed prototypes of the active needle. The third part of this work describes the design optimization of the active using genetic algorithm aiming for its maximum flexibility

  1. Smart Drug Delivery Systems in Cancer Therapy.

    PubMed

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. SMART-1, Platform Design and Project Status

    NASA Astrophysics Data System (ADS)

    Sjoberg, F.

    SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.

  3. Using Smart City Technology to Make Healthcare Smarter.

    PubMed

    Cook, Diane J; Duncan, Glen; Sprint, Gina; Fritz, Roschelle

    2018-04-01

    Smart cities use information and communication technologies (ICT) to scale services include utilities and transportation to a growing population. In this article we discuss how smart city ICT can also improve healthcare effectiveness and lower healthcare cost for smart city residents. We survey current literature and introduce original research to offer an overview of how smart city infrastructure supports strategic healthcare using both mobile and ambient sensors combined with machine learning. Finally, we consider challenges that will be faced as healthcare providers make use of these opportunities.

  4. Interactive 3D display simulator for autostereoscopic smart pad

    NASA Astrophysics Data System (ADS)

    Choe, Yeong-Seon; Lee, Ho-Dong; Park, Min-Chul; Son, Jung-Young; Park, Gwi-Tae

    2012-06-01

    There is growing interest of displaying 3D images on a smart pad for entertainments and information services. Designing and realizing various types of 3D displays on the smart pad is not easy for costs and given time. Software simulation can be an alternative method to save and shorten the development. In this paper, we propose a 3D display simulator for autostereoscopic smart pad. It simulates light intensity of each view and crosstalk for smart pad display panels. Designers of 3D display for smart pad can interactively simulate many kinds of autostereoscopic displays interactively by changing parameters required for panel design. Crosstalk to reduce leakage of one eye's image into the image of the other eye, and light intensity for computing visual comfort zone are important factors in designing autostereoscopic display for smart pad. Interaction enables intuitive designs. This paper describes an interactive 3D display simulator for autostereoscopic smart pad.

  5. OnCampus: a mobile platform towards a smart campus.

    PubMed

    Dong, Xin; Kong, Xiangjie; Zhang, Fulin; Chen, Zhen; Kang, Jialiang

    2016-01-01

    An increasing number of researchers and practitioners are working to develop smart cities. Considerable attention has been paid to the college campus as it is an important component of smart cities. Consequently, the question of how to construct a smart campus has become a topical one. Here, we propose a scheme that can facilitate the construction of a smart and friendly campus. We primarily focus on three aspects of smart campuses. These are: the formation of social circles based on interests mining, the provision of educational guidance based on emotion analysis of information posted on a platform, and development of a secondary trading platform aimed at optimizing the allocation of campus resources. Based on these objectives, we designed and implemented a mobile platform called OnCampus as the first step towards the development of a smart campus that has been introduced in some colleges. We found that OnCampus could successfully accomplish the three above mentioned functions of a smart campus.

  6. A Framework to Develop Persuasive Smart Environments

    NASA Astrophysics Data System (ADS)

    Lobo, Pedro; Romão, Teresa; Dias, A. Eduardo; Danado, José Carlos

    This paper presents a framework for the creation of context-sensitive persuasive applications. The framework allows the authoring of new persuasive smart environments producing the appropriate feedback to the users based on different sensors spread throughout the environment to capture contextual information. Using this framework, we created an application, Smart Bins, aimed at promoting users' behavioural changes regarding the recycling of waste materials. Furthermore, to evaluate the usability of our authoring tool, we performed user tests to analyze if developers could successfully create the Smart Bins application using the framework. A description of the Smart Bins application, as well as the results of the user tests, are also presented in this paper.

  7. SmartStuff: A case study of a smart water bottle.

    PubMed

    Jovanov, Emil; Nallathimmareddygari, Vindhya R; Pryor, Jonathan E

    2016-08-01

    The rapid growth of Internet of Things (IoT) and miniature wearable biosensors have generated new opportunities for personalized eHealth and mHealth services. Smart objects equipped with physiological sensors can provide robust monitoring of activities of daily living and context for wearable physiological sensors. We present a case study of an intelligent water bottle that can precisely measure the amount of liquid in the bottle, monitor activity using inertial sensors, and physiological parameters using a touch and photoplethysmographic sensor. We evaluate two system configurations: a smart water bottle integrated into a personal body sensor network and a cloud based device. This paper presents system organization and the results from preliminary field testing of the prototype device.

  8. SMARTE: SUSTAINABLE MANAGEMENT APPROACHES AND REVITALIZATION TOOLS-ELECTRONIC (BELFAST, IRELAND)

    EPA Science Inventory

    The U.S.-German Bilateral Working Group is developing Site-specific Management Approaches and Redevelopment Tools (SMART). In the U.S., the SMART compilation is housed in a web-based, decision support tool called SMARTe. All tools within SMARTe that are developed specifically for...

  9. Open architecture of smart sensor suites

    NASA Astrophysics Data System (ADS)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  10. NASA's Optical Measurement Program 2014

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Lederer, S.; Stansbery, G.; Seitzer, P.; Buckalew, B.; Abercromby, K.; Barker, E.

    2014-01-01

    The Optical Measurements Group (OMG) within the NASA Orbital Debris Program Office (ODPO) addresses U.S. National Space Policy goals by monitoring and characterizing debris. Since 2001, the OMG has used the Michigan Orbital Debris Survey Telescope (MODEST) at Cerro Tololo Inter-American Observatory (CTIO) in Chile for general orbital debris survey. The 0.6-m Schmidt MODEST provides calibrated astronomical data of GEO targets, both catalogued and uncatalogued debris, with excellent image quality. The data are utilized by the ODPO modeling group and are included in the Orbital Debris Engineering Model (ORDEM) v. 3.0. MODEST and the CTIO/SMARTS (Small and Moderate Aperture Research Telescope System) 0.9 m both acquire filter photometric data, as well as synchronously observing targets in selected optical filters. This information provides data used in material composition studies as well as longer orbital arc data on the same target, without time delay or bias from a rotating, tumbling, or spinning target. NASA, in collaboration with the University of Michigan, began using the twin 6.5-m Magellan telescopes at Las Campanas Observatory in Chile for deep imaging (Baade) and spectroscopic data (Clay) in 2011. Through the data acquired on Baade, debris have been detected that are 3 magnitudes fainter than detections with MODEST, while the data from Clay provide better resolved information used in material characterization analyses via selected bandpasses. To better characterize and model optical data, the Optical Measurements Center (OMC) at NASA/JSC has been in operation since 2005, resulting in a database of comparison laboratory data. The OMC is designed to emulate illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. Lastly, the OMG is building the Meter Class Autonomous Telescope (MCAT) at Ascension Island. The 1.3-m telescope is designed to observe GEO and LEO targets, using a

  11. Redefining smart city concept with resilience approach

    NASA Astrophysics Data System (ADS)

    Arafah, Y.; Winarso, H.

    2017-06-01

    The smart city concept originally aimed at dealing with various urban problems, in particular, those related to the urban environment and infrastructure, such as modeling transport flow in a city. As it developed, the concept is now widely used to accelerate the process of urban management by using IT technology and by the availability of big data. However, the smart city discourses are still debated. There is a number of critical literature on the discourses; some are more concerned with the use and development of information communication technology (ICT). ICT and modern technology are considered the key aspect of the smart city concept. Meanwhile, others emphasize the importance of the people who operate the technology. Very few, if any, literature emphasizes the importance of resilience in the smart city discourse. The city as a complex system should have the ability to be resilient, especially when technology fails either due to technical/man-made or natural disasters. This paper aims to redefine the smart city concept in urban planning through a literature study in the context of planning using a resilience approach. This paper describes and defines what the smart city concept is, what it means, as well as explains the relation and linkage of the importance of using resilience approach in defining the smart city. Factors of resilience will lead to a soft infrastructure approach, such as enhancement in many aspects, e.g. community capacity, social and human capital, knowledge inclusion, participation, social innovation, and social equity. Discussion and analysis are conducted through a deep literature study using systematic literature review methodology.

  12. Overview of the ARPA/WL Smart Structures and Materials Development-Smart Wing contract

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Jardine, A. Peter; Martin, Christopher A.; Appa, Kari

    1996-05-01

    While the concept of an adaptive aircraft wing, i.e., a wing whose shape parameters such as camber, wing twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied, the complexity and weight penalty of the actuation mechanisms have precluded their practical implementation. Recent development of sensors and actuators using smart materials could potentially alleviate the shortcomings of prior designs, paving the way for a practical, `smart' adaptive wing which responds to changes in flight and environmental conditions by modifying its shape to provide optimal performance. This paper presents a summary of recent work done on adaptive wing designs under an on-going ARPA/WL contract entitled `Smart Structures and Materials Development--Smart Wing.' Specifically, the design, development and planned wind tunnel testing of a 16% model representative of a fighter aircraft wing and incorporating the following features, are discussed: (1) a composite wing torque box whose span-wise twist can be varied by activating built-in shape memory alloy (SMA) torque tubes to provide increased lift and enhanced maneuverability at multiple flight conditions, (2) trailing edge control surfaces deployed using composite SMA actuators to provide smooth, hingeless aerodynamic surfaces, and (3) a suite of fiber optic sensors integrated into the wing skin which provide real-time strain and pressure data to a feedback control system.

  13. Smart cards: a specific application in the hospital.

    PubMed

    Güler, I; Zengin, R M; Sönmez, M

    1998-12-01

    Computers have the ability to process and access tremendous amounts of information in our daily lives. But, now, individuals have this ability by carrying a smart card in their own wallets. These cards provide us the versatility, power, and security of computers. This study begins with a short description of smart cards and their advantages. Then, an electronic circuit that is designed for healthcare application in hospitals is introduced. This circuit functions as a smart card holder identifier, access controller for hospital doors and also can be used as a smart card reader/writer. Design steps of this electronic circuit, operation principles, serial communication with P.C., and the software are examined. Finally a complete access control network for hospital doors that functions with smart cards is discussed.

  14. SMARTE 2007 TUTORIAL - JANUARY 2007 REVISION

    EPA Science Inventory

    SMARTe 2007 is a web-based decision support tool intended to help revitalization practitioners find information, perform data analysis, communicate, and evaluate future reuse options for a site or area. This tutorial CD was developed to help users navigate SMARTe 2007. It is appr...

  15. Interactive Environment Design in Smart City

    NASA Astrophysics Data System (ADS)

    Deng, DeXiang; Chen, LanSha; Zhou, Xi

    2017-08-01

    The interactive environment design of smart city is not just an interactive progress or interactive mode design, rather than generate an environment such as the “organic” life entity as human beings through interactive design, forming a smart environment with perception, memory, thinking, and reaction.

  16. Research on the application of wisdom technology in smart city

    NASA Astrophysics Data System (ADS)

    Li, Juntao; Ma, Shuai; Gu, Weihua; Chen, Weiyi

    2015-12-01

    This paper first analyzes the concept of smart technology, the relationship between wisdom technology and smart city, and discusses the practical application of IOT(Internet of things) in smart city to explore a better way to realize smart city; then Introduces the basic concepts of cloud computing and smart city, and explains the relationship between the two; Discusses five advantages of cloud computing that applies to smart city construction: a unified and highly efficient, large-scale infrastructure software and hardware management, service scheduling and resource management, security control and management, energy conservation and management platform layer, and to promote modern practical significance of the development of services, promoting regional social and economic development faster. Finally, a brief description of the wisdom technology and smart city management is presented.

  17. Assessing Smart Phones for Generating Life-space Indicators.

    PubMed

    Wan, Neng; Qu, Wenyu; Whittington, Jackie; Witbrodt, Bradley C; Henderson, Mary Pearl; Goulding, Evan H; Schenk, A Katrin; Bonasera, Stephen J; Lin, Ge

    2013-04-01

    Life-space is a promising method for estimating older adults' functional status. However, traditional life-space measures are costly and time consuming because they often rely on active subject participation. This study assesses the feasibility of using the global positioning system (GPS) function of smart phones to generate life-space indicators. We first evaluated the location accuracy of smart phone collected GPS points versus those acquired by a commercial GPS unit. We then assessed the specificity of the smart phone processed life-space information against the traditional diary method. Our results suggested comparable location accuracy between the smart phone and the standard GPS unit in most outdoor situations. In addition, the smart phone method revealed more comprehensive life-space information than the diary method, which leads to higher and more consistent life-space scores. We conclude that the smart phone method is more reliable than traditional methods for measuring life-space. Further improvements will be required to develop a robust application of this method that is suitable for health-related practices.

  18. Smart homes, private homes? An empirical study of technology researchers' perceptions of ethical issues in developing smart-home health technologies.

    PubMed

    Birchley, Giles; Huxtable, Richard; Murtagh, Madeleine; Ter Meulen, Ruud; Flach, Peter; Gooberman-Hill, Rachael

    2017-04-04

    Smart-home technologies, comprising environmental sensors, wearables and video are attracting interest in home healthcare delivery. Development of such technology is usually justified on the basis of the technology's potential to increase the autonomy of people living with long-term conditions. Studies of the ethics of smart-homes raise concerns about privacy, consent, social isolation and equity of access. Few studies have investigated the ethical perspectives of smart-home engineers themselves. By exploring the views of engineering researchers in a large smart-home project, we sought to contribute to dialogue between ethics and the engineering community. Either face-to-face or using Skype, we conducted in-depth qualitative interviews with 20 early- and mid-career smart-home researchers from a multi-centre smart-home project, who were asked to describe their own experience and to reflect more broadly about ethical considerations that relate to smart-home design. With participants' consent, interviews were audio-recorded, transcribed and analysed using a thematic approach. Two overarching themes emerged: in 'Privacy', researchers indicated that they paid close attention to negative consequences of potential unauthorised information sharing in their current work. However, when discussing broader issues in smart-home design beyond the confines of their immediate project, researchers considered physical privacy to a lesser extent, even though physical privacy may manifest in emotive concerns about being watched or monitored. In 'Choice', researchers indicated they often saw provision of choice to end-users as a solution to ethical dilemmas. While researchers indicated that choices of end-users may need to be restricted for technological reasons, ethical standpoints that restrict choice were usually assumed and embedded in design. The tractability of informational privacy may explain the greater attention that is paid to it. However, concerns about physical privacy may

  19. Smart Sensor Demonstration Payload

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Bracey, Andrew; Rawls, Stephen; Morris, Jon; Turowski, Mark; Franzl, Richard; Figueroa, Fernando

    2010-01-01

    Sensors are a critical element to any monitoring, control, and evaluation processes such as those needed to support ground based testing for rocket engine test. Sensor applications involve tens to thousands of sensors; their reliable performance is critical to achieving overall system goals. Many figures of merit are used to describe and evaluate sensor characteristics; for example, sensitivity and linearity. In addition, sensor selection must satisfy many trade-offs among system engineering (SE) requirements to best integrate sensors into complex systems [1]. These SE trades include the familiar constraints of power, signal conditioning, cabling, reliability, and mass, and now include considerations such as spectrum allocation and interference for wireless sensors. Our group at NASA s John C. Stennis Space Center (SSC) works in the broad area of integrated systems health management (ISHM). Core ISHM technologies include smart and intelligent sensors, anomaly detection, root cause analysis, prognosis, and interfaces to operators and other system elements [2]. Sensor technologies are the base fabric that feed data and health information to higher layers. Cost-effective operation of the complement of test stands benefits from technologies and methodologies that contribute to reductions in labor costs, improvements in efficiency, reductions in turn-around times, improved reliability, and other measures. ISHM is an active area of development at SSC because it offers the potential to achieve many of those operational goals [3-5].

  20. A double responsive smart upconversion fluorescence sensing material for glycoprotein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo

    2016-11-15

    A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fiber-Optic Sensor And Smart Structures Research At Florida Institute Of Technology

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Alavie, A. Tino; Ham, Fredric M.; Franke, Jorge E.; Thursby, Michael H.

    1990-02-01

    This paper discusses the fundamental issues being investigated by Florida Institute of Technology (F.I.T.) to implement the technology of smart structural systems for DoD, NASA, and commercial applications. Embedded sensors and actuators controlled by processors can provide a modification of the mechanical characteristics of composite structures to produce smart structures1-3. Recent advances in material science have spurred the development and use of composite materials in a wide range of applications from rotocraft blades and advanced tactical fighter aircraft to undersea and aerospace structures. Along with the advantages of an increased strength-to-weight ratio, the use of these materials has raised a number of questions related to understanding their failure mechanisms. Also, being able to predict structural failures far enough in advance to prevent them and to provide real-time structural health and damage monitoring has become a realistic possibility. Unfortunately, conventional sensors, actuators, and digital processors, although highly developed and well proven for other systems, may not be best suited for most smart structure applications. Our research has concentrated on few-mode and polarimetric single-fiber strain sensors4-7 and optically activated shape memory alloy (SMA) actuators controlled by artificial neural processors. We have constructed and characterized both few-mode and polarimetric sensors for a variety of fiber types, including standard single-mode, high-birefringence polarization preserving, and low-birefringence polarization insensitive fibers. We have investigated signal processing techniques for these sensors and have demonstrated active phase tracking for the high- and low-birefringence polarimetric sensors through the incorporation into the system of an electrooptic modulator designed and fabricated at F.I.T.. We have also started the design and testing of neural network architectures for processing the sensor signal outputs to

  2. Smart storage technologies applied to fresh foods: A review.

    PubMed

    Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu

    2017-06-30

    Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.

  3. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2018-05-30

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  4. An Approach for Smart Antenna Testbed

    NASA Astrophysics Data System (ADS)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing

  5. Interactive Data Exploration with Smart Drill-Down

    PubMed Central

    Joglekar, Manas; Garcia-Molina, Hector; Parameswaran, Aditya

    2017-01-01

    We present smart drill-down, an operator for interactively exploring a relational table to discover and summarize “interesting” groups of tuples. Each group of tuples is described by a rule. For instance, the rule (a, b, ⋆, 1000) tells us that there are a thousand tuples with value a in the first column and b in the second column (and any value in the third column). Smart drill-down presents an analyst with a list of rules that together describe interesting aspects of the table. The analyst can tailor the definition of interesting, and can interactively apply smart drill-down on an existing rule to explore that part of the table. We demonstrate that the underlying optimization problems are NP-Hard, and describe an algorithm for finding the approximately optimal list of rules to display when the user uses a smart drill-down, and a dynamic sampling scheme for efficiently interacting with large tables. Finally, we perform experiments on real datasets on our experimental prototype to demonstrate the usefulness of smart drill-down and study the performance of our algorithms. PMID:28210096

  6. SMART Platforms: Building the App Store for Biosurveillance

    PubMed Central

    Mandl, Kenneth D.

    2013-01-01

    Objective To enable public health departments to develop “apps” to run on electronic health records (EHRs) for (1) biosurveillance and case reporting and (2) delivering alerts to the point of care. We describe a novel health information technology platform with substitutable apps constructed around core services enabling EHRs to function as iPhone-like platforms. Introduction Health care information is a fundamental source of data for biosurveillance, yet configuring EHRs to report relevant data to health departments is technically challenging, labor intensive, and often requires custom solutions for each installation. Public health agencies wishing to deliver alerts to clinicians also must engage in an endless array of one-off systems integrations. Despite a $48B investment in HIT, and meaningful use criteria requiring reporting to biosurveillance systems, most vendor electronic health records are architected monolithically, making modification difficult for hospitals and physician practices. An alternative approach is to reimagine EHRs as iPhone-like platforms supporting substitutable apps-based functionality. Substitutability is the capability inherent in a system of replacing one application with another of similar functionality. Methods Substitutability requires that the purchaser of an app can replace one application with another without being technically expert, without requiring re-engineering other applications that they are using, and without having to consult or require assistance of any of the vendors of previously installed or currently installed applications. Apps necessarily compete with each other promoting progress and adaptability. The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project is funded by a $15M grant from Office of the National Coordinator of Health Information Technology’s Strategic Health IT Advanced Research Projects (SHARP) Program. All SMART standards are open and the core software is open

  7. 78 FR 22846 - Smart Grid Advisory Committee Meeting Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Smart Grid Advisory... Commerce. ACTION: Notice of meeting cancellation. SUMMARY: The meeting of the Smart Grid Advisory Committee... INFORMATION CONTACT: Mr. Cuong Nguyen, Smart Grid and Cyber-Physical Systems Program Office, National...

  8. Trust in smart systems: sharing driving goals and giving information to increase trustworthiness and acceptability of smart systems in cars.

    PubMed

    Verberne, Frank M F; Ham, Jaap; Midden, Cees J H

    2012-10-01

    We examine whether trust in smart systems is generated analogously to trust in humans and whether the automation level of smart systems affects trustworthiness and acceptability of those systems. Trust is an important factor when considering acceptability of automation technology. As shared goals lead to social trust, and intelligent machines tend to be treated like humans, the authors expected that shared driving goals would also lead to increased trustworthiness and acceptability of adaptive cruise control (ACC) systems. In an experiment, participants (N = 57) were presented with descriptions of three ACCs with different automation levels that were described as systems that either shared their driving goals or did not. Trustworthiness and acceptability of all the ACCs were measured. ACCs sharing the driving goals of the user were more trustworthy and acceptable than were ACCs not sharing the driving goals of the user. Furthermore, ACCs that took over driving tasks while providing information were more trustworthy and acceptable than were ACCs that took over driving tasks without providing information. Trustworthiness mediated the effects of both driving goals and automation level on acceptability of ACCs. As when trusting other humans, trusting smart systems depends on those systems sharing the user's goals. Furthermore, based on their description, smart systems that take over tasks are judged more trustworthy and acceptable when they also provide information. For optimal acceptability of smart systems, goals of the user should be shared by the smart systems, and smart systems should provide information to their user.

  9. Effect of a Smart Start Playground Improvement Grant on Child Care Playground Hazards. Smart Start Evaluation Report.

    ERIC Educational Resources Information Center

    Kotch, Jonathan; Guthrie, Christine

    Smart Start (North Carolina) playground improvement grants were awarded to cover playground safety assessment, planning and evaluation, quality enhancements (such as fencing, surfacing, and new equipment), and safety programs. Visual inspections were conducted of the safety of child care home and center playgrounds after Smart Start-sponsored…

  10. Towards Smart and Resilient City: A Conceptual Model

    NASA Astrophysics Data System (ADS)

    Arafah, Y.; Winarso, H.; Suroso, D. S. A.

    2018-05-01

    This paper aims to compare five smart city models selected based on a number of specific criteria. Following the comparison and assessment performed, we draw conclusions and further linkages identifying the components and characters found in resilient cities. The purpose of this analysis is to produce a new approach and concept: the “smart and resilient city.” Through in-depth literature study, this paper analyzes five conceptual smart city models deemed to have a background, point of view, and benchmark towards software group, as they focus on welfare, inclusion, social equality, and competitiveness. Analyzing the strategies, methods, and techniques of five smart city models, this paper concludes that there has been no inclusion of resilience concepts in the assessment, especially in the context of natural disasters. Basically, the models are also interrelated and there are some things that overlap. As a recommendation, there is a model that tries to combine the components and character of smart city and resilient city into one entity that is embedded as a whole in a conceptual picture towards the new concept, the “smart and resilient city”. The concept of smart city and resilient city go hand in hand with each other and thus are interrelated. Therefore, it is imperative to study that concept deeper, in this case primarily in the context of disaster.

  11. Smart Grid Legislative and Regulatory Policies and Case Studies

    EIA Publications

    2011-01-01

    In recent years, a number of U.S. states have adopted or are considering smart grid related laws, regulations, and voluntary or mandatory requirements. At the same time, the number of smart grid pilot projects has been increasing rapidly. The Energy Information Administration (EIA) commissioned SAIC to research the development of smart grid in the United States and abroad. The research produced several documents that will help guide EIA as it considers how best to track smart grid developments.

  12. Comprehensive Smart Grid Planning in a Regulated Utility Environment

    NASA Astrophysics Data System (ADS)

    Turner, Matthew; Liao, Yuan; Du, Yan

    2015-06-01

    This paper presents the tools and exercises used during the Kentucky Smart Grid Roadmap Initiative in a collaborative electric grid planning process involving state regulators, public utilities, academic institutions, and private interest groups. The mandate of the initiative was to assess the existing condition of smart grid deployments in Kentucky, to enhance understanding of smart grid concepts by stakeholders, and to develop a roadmap for the deployment of smart grid technologies by the jurisdictional utilities of Kentucky. Through involvement of many important stakeholder groups, the resultant Smart Grid Deployment Roadmap proposes an aggressive yet achievable strategy and timetable designed to promote enhanced availability, security, efficiency, reliability, affordability, sustainability and safety of the electricity supply throughout the state while maintaining Kentucky's nationally competitive electricity rates. The models and methods developed for this exercise can be utilized as a systematic process for the planning of coordinated smart grid deployments.

  13. NASA Update

    NASA Image and Video Library

    2010-04-08

    "NASA Update" program with NASA Administrator Charles Bolden, NASA Deputy Administrator Lori Garver and NASA Acting Asistant Administrator for Public Affairs Bob Jacobs as moderator, NASA Headquarters, Thursday, April 8, 2010 in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model

    PubMed Central

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-01-01

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results

  15. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model.

    PubMed

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-06-30

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results

  16. Implementing a High-Assurance Smart-Card OS

    NASA Astrophysics Data System (ADS)

    Karger, Paul A.; Toll, David C.; Palmer, Elaine R.; McIntosh, Suzanne K.; Weber, Samuel; Edwards, Jonathan W.

    Building a high-assurance, secure operating system for memory constrained systems, such as smart cards, introduces many challenges. The increasing power of smart cards has made their use feasible in applications such as electronic passports, military and public sector identification cards, and cell-phone based financial and entertainment applications. Such applications require a secure environment, which can only be provided with sufficient hardware and a secure operating system. We argue that smart cards pose additional security challenges when compared to traditional computer platforms. We discuss our design for a secure smart card operating system, named Caernarvon, and show that it addresses these challenges, which include secure application download, protection of cryptographic functions from malicious applications, resolution of covert channels, and assurance of both security and data integrity in the face of arbitrary power losses.

  17. Using smart materials to solve new challenges in the automotive industry

    NASA Astrophysics Data System (ADS)

    Gath, Kerrie K.; Maranville, Clay; Tardiff, Janice

    2018-03-01

    Ford has an extensive history of developing and utilizing smart and innovative materials in its vehicles. In this paper, we present new challenges the automotive industry is facing and explore how intelligent uses of smart materials can help provide solutions. We explore which vehicle attributes may provide most advantageous for the use smart materials, and discuss how smart material have had technical challenges that limit their use. We also look at how smart materials such as gecko inspired adhesion is providing opportunities during the vehicle assembly process by improving manufacturing quality, environmental sustainability, and worker safety. An emerging area for deployment of smart materials may involve autonomous vehicles and mobility solutions, where customer expectations are migrating toward a seamless and adaptive experience leading to new expectations for an enhanced journey. Another area where smart materials are influencing change is interior and exterior design including smart textiles, photochromatic dyes, and thermochromatic materials. The key to advancing smart materials in automotive industry is to capitalize on the smaller niche applications where there will be an advantage over traditional methods. Ford has an extensive history of developing and utilizing smart and innovative materials. Magnetorheological fluids, thermoelectric materials, piezoelectric actuators, and shape memory alloys are all in production. In this paper we present new challenges the automotive industry is facing and explore how intelligent uses of smart materials can help provide solutions. We explore which vehicle attributes may provide most advantageous for the use smart materials, and discuss how smart materials have had technical challenges that limit their use. An emerging area for deployment of smart materials may involve autonomous vehicles and mobility solutions, where customer expectations may require a seamless and adaptive experience for users having various

  18. Smart-Glasses: Exposing and Elucidating the Ethical Issues.

    PubMed

    Hofmann, Bjørn; Haustein, Dušan; Landeweerd, Laurens

    2017-06-01

    The objective of this study is to provide an overview over the ethical issues relevant to the assessment, implementation, and use of smart-glasses. The purpose of the overview is to facilitate deliberation, decision making, and the formation of knowledge and norms for this emerging technology. An axiological question-based method for human cognitive enhancement including an extensive literature search on smart-glasses is used to identify relevant ethical issues. The search is supplemented with relevant ethical issues identified in the literature on human cognitive enhancement (in general) and in the study of the technical aspects of smart-glasses. Identified papers were subject to traditional content analysis: 739 references were identified of which 247 were regarded as relevant for full text examinations, and 155 were included in the study. A wide variety of ethical issues with smart-glasses have been identified, such as issues related to privacy, safety, justice, change in human agency, accountability, responsibility, social interaction, power and ideology. Smart-glasses are envisioned to change individual human identity and behavior as well as social interaction. Taking these issues into account appears to be relevant when developing, deliberating, deciding on, implementing, and using smart-glasses.

  19. Designing components using smartMOVE electroactive polymer technology

    NASA Astrophysics Data System (ADS)

    Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter

    2008-03-01

    Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.

  20. Study on smart city construction of Jiujiang based on IOT technology

    NASA Astrophysics Data System (ADS)

    Liu, Zeliang; Wang, Ying; Xu, Qin; Yan, Tao

    2017-06-01

    At present, with the technology of the Internet of things (IOT), building smart city is forming a powerful wave of city, which promotes economic and social development of city. This paper expounds the connotation of smart city, explores the social and economic significance of the construction of smart city, analyzes the present situation of smart city construction in Jiujiang, studies the basic principles development altar get and key construction projects, and puts forward relevant of Jiujiang smart city construction, and puts forward relevant proposals about smart construction in Jiujiang, Jiangxi.

  1. A Review of Rock Bolt Monitoring Using Smart Sensors.

    PubMed

    Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael

    2017-04-05

    Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.

  2. A Review of Rock Bolt Monitoring Using Smart Sensors

    PubMed Central

    Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael

    2017-01-01

    Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced. PMID:28379167

  3. Learn about SmartWay Tractors and Trailers

    EPA Pesticide Factsheets

    Companies that lease or purchase tractors or trailers that meet EPA's designated SmartWay standards are using more efficient equipment and may be eligible to put the SmartWay logo on the exterior of their equipment.

  4. Applications of polymeric smart materials to environmental problems.

    PubMed Central

    Gray, H N; Bergbreiter, D E

    1997-01-01

    New methods for the reduction and remediation of hazardous wastes like carcinogenic organic solvents, toxic materials, and nuclear contamination are vital to environmental health. Procedures for effective waste reduction, detection, and removal are important components of any such methods. Toward this end, polymeric smart materials are finding useful applications. Polymer-bound smart catalysts are useful in waste minimization, catalyst recovery, and catalyst reuse. Polymeric smart coatings have been developed that are capable of both detecting and removing hazardous nuclear contaminants. Such applications of smart materials involving catalysis chemistry, sensor chemistry, and chemistry relevant to decontamination methodology are especially applicable to environmental problems. PMID:9114277

  5. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  6. Smart material-based radiation sources

    NASA Astrophysics Data System (ADS)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  7. Smart patch piezoceramic actuator issues

    NASA Technical Reports Server (NTRS)

    Griffin, Steven F.; Denoyer, Keith K.; Yost, Brad

    1993-01-01

    The Phillips Laboratory is undertaking the challenge of finding new and innovative ways to integrate sensing, actuation, and the supporting control and power electronics into a compact self-contained unit to provide vibration suppression for a host structure. This self-contained unit is commonly referred to as a smart patch. The interfaces to the smart patch will be limited to standard spacecraft power and possibly a communications line. The effort to develop a smart patch involves both contractual and inhouse programs which are currently focused on miniaturization of the electronics associated with vibrational control using piezoceramic sensors and actuators. This paper is comprised of two distinct parts. The first part examines issues associated with bonding piezoceramic actuators to a host structure. Experimental data from several specimens with varying flexural stiffness are compared to predictions from two piezoelectric/substructure coupling models, the Blocked Force Model and the Uniform Strain Model with Perfect Bonding. The second part of the paper highlights a demonstration article smart patch created using the insights gained from inhouse efforts at the Phillips Laboratory. This demonstration article has self contained electronics on the same order of size as the actuator powered by a voltage differential of approximately 32 volts. This voltage is provided by four rechargeable 8 volt batteries.

  8. tranSMART-XNAT Connector tranSMART-XNAT connector-image selection based on clinical phenotypes and genetic profiles.

    PubMed

    He, Sijin; Yong, May; Matthews, Paul M; Guo, Yike

    2017-03-01

    TranSMART has a wide range of functionalities for translational research and a large user community, but it does not support imaging data. In this context, imaging data typically includes 2D or 3D sets of magnitude data and metadata information. Imaging data may summarise complex feature descriptions in a less biased fashion than user defined plain texts and numeric numbers. Imaging data also is contextualised by other data sets and may be analysed jointly with other data that can explain features or their variation. Here we describe the tranSMART-XNAT Connector we have developed. This connector consists of components for data capture, organisation and analysis. Data capture is responsible for imaging capture either from PACS system or directly from an MRI scanner, or from raw data files. Data are organised in a similar fashion as tranSMART and are stored in a format that allows direct analysis within tranSMART. The connector enables selection and download of DICOM images and associated resources using subjects' clinical phenotypic and genotypic criteria. tranSMART-XNAT connector is written in Java/Groovy/Grails. It is maintained and available for download at https://github.com/sh107/transmart-xnat-connector.git. sijin@ebi.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Smart built-in test

    NASA Technical Reports Server (NTRS)

    Richards, Dale W.

    1990-01-01

    The work which built-in test (BIT) is asked to perform in today's electronic systems increases with every insertion of new technology or introduction of tighter performance criteria. Yet the basic purpose remains unchanged -- to determine with high confidence the operational capability of that equipment. Achievement of this level of BIT performance requires the management and assimilation of a large amount of data, both realtime and historical. Smart BIT has taken advantage of advanced techniques from the field of artificial intelligence (AI) in order to meet these demands. The Smart BIT approach enhances traditional functional BIT by utilizing AI techniques to incorporate environmental stress data, temporal BIT information and maintenance data, and realtime BIT reports into an integrated test methodology for increased BIT effectiveness and confidence levels. Future research in this area will incorporate onboard fault-logging of BIT output, stress data and Smart BIT decision criteria in support of a singular, integrated and complete test and maintenance capability. The state of this research is described along with a discussion of directions for future development.

  10. Smart built-in test

    NASA Astrophysics Data System (ADS)

    Richards, Dale W.

    1990-03-01

    The work which built-in test (BIT) is asked to perform in today's electronic systems increases with every insertion of new technology or introduction of tighter performance criteria. Yet the basic purpose remains unchanged -- to determine with high confidence the operational capability of that equipment. Achievement of this level of BIT performance requires the management and assimilation of a large amount of data, both realtime and historical. Smart BIT has taken advantage of advanced techniques from the field of artificial intelligence (AI) in order to meet these demands. The Smart BIT approach enhances traditional functional BIT by utilizing AI techniques to incorporate environmental stress data, temporal BIT information and maintenance data, and realtime BIT reports into an integrated test methodology for increased BIT effectiveness and confidence levels. Future research in this area will incorporate onboard fault-logging of BIT output, stress data and Smart BIT decision criteria in support of a singular, integrated and complete test and maintenance capability. The state of this research is described along with a discussion of directions for future development.

  11. Does LearnSmart Connect Students to Textbook Content in an Interpersonal Communication Course?: Assessing the Effectiveness of and Satisfaction with LearnSmart

    ERIC Educational Resources Information Center

    Gearhart, Christopher

    2016-01-01

    This study examines McGraw-Hill Higher Education's LearnSmart online textbook supplement and its effect on student exam performance in an interpersonal communication course. Students (N = 62) in two sections were either enrolled in a control group with no required LearnSmart usage or a treatment group with requisite LearnSmart assignments.…

  12. Smart Location Mapping

    EPA Pesticide Factsheets

    The Smart Location Database, Access to Jobs and Workers via Transit, and National Walkability Index tools can help assess indicators related to the built environment, transit accessibility, and walkability.

  13. Smart Grid Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives,more » to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co

  14. Surface-Satellite Measurements for Atmospheric Radiative Transfer (SMART)and Chemical, Optical and Microphysical Measurements of In-Situ Troposphere (COMMIT) Research Activities

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2004-01-01

    The GSFC SMART consists of a suite of remote sensing instruments, including many commercially available radiometers, spectrometer, interferometer, and three in-house developed inskuments: micro-pulse lidar (MPL), scanning microwave radiometer (SMiR), and sun-sky-surface photometer (S(sup 3)). SMART cover the spectral range from UV to microwave, and passive to active remote sensing. This is to enrich the EOS-like research activities (i.e., EOS validation, innovative investigations, and long-term local environmental observations). During past years, SMART has been deployed in many NASA supported field campaigns to collocate with satellite nadir overpass for intercomparisons, and for initializing model simulations. Built on the successful experience of SMART, we are currently developing a new ground-based in-situ sampling package, COMMIT, including measurements of trace gases (CO, SO2, NOx, and O3,) concentrations, fine/coarse particle sizers and chemical composition, single- and three-wavelength nephelometers, and surface meteorological probes. COMMIT is built for seeking a relationship between surface in-situ measurements and boundary layer characteristics. This is to enrich EOS-like research on removing boundary layer signal from the entire column from space observation - to deduce the stable (less variability) free-troposphere observations. The COMMIT will try its best to link the chemical, microphysical, and optical properties of the boundary layer with radiation. The next major activities for SMART-COMMIT are scheduled for 2004-2006 in BASE-ASIA and EAST-AIRE. The expected close collaboration of BASE-ASIA with various research projects in Asia (i.e., ABC in South Asia, led by Ramanathan et al.; EAST-AIRE in East Asia, led by Li et al.; and APEX in Northeast Asia, led by Nakajima et al.) will definitely provide a better understanding of the impact of the biomass burning and air pollutants on regional-to-global climate, hydrological and carbon cycles, and

  15. Smart homes - current features and future perspectives.

    PubMed

    Chan, Marie; Campo, Eric; Estève, Daniel; Fourniols, Jean-Yves

    2009-10-20

    In an ageing world, maintaining good health and independence for as long as possible is essential. Instead of hospitalization or institutionalization, the elderly and disabled can be assisted in their own environment 24h a day with numerous 'smart' devices. The concept of the smart home is a promising and cost-effective way of improving home care for the elderly and the disabled in a non-obtrusive way, allowing greater independence, maintaining good health and preventing social isolation. Smart homes are equipped with sensors, actuators, and/or biomedical monitors. The devices operate in a network connected to a remote centre for data collection and processing. The remote centre diagnoses the ongoing situation and initiates assistance procedures as required. The technology can be extended to wearable and in vivo implantable devices to monitor people 24h a day both inside and outside the house. This review describes a selection of projects in developed countries on smart homes examining the various technologies available. Advantages and disadvantages, as well as the impact on modern society, are discussed. Finally, future perspectives on smart homes as part of a home-based health care network are presented.

  16. Activity Learning as a Foundation for Security Monitoring in Smart Homes.

    PubMed

    Dahmen, Jessamyn; Thomas, Brian L; Cook, Diane J; Wang, Xiaobo

    2017-03-31

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed.

  17. Activity Learning as a Foundation for Security Monitoring in Smart Homes

    PubMed Central

    Dahmen, Jessamyn; Thomas, Brian L.; Cook, Diane J.; Wang, Xiaobo

    2017-01-01

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed. PMID:28362342

  18. Learning situation models in a smart home.

    PubMed

    Brdiczka, Oliver; Crowley, James L; Reignier, Patrick

    2009-02-01

    This paper addresses the problem of learning situation models for providing context-aware services. Context for modeling human behavior in a smart environment is represented by a situation model describing environment, users, and their activities. A framework for acquiring and evolving different layers of a situation model in a smart environment is proposed. Different learning methods are presented as part of this framework: role detection per entity, unsupervised extraction of situations from multimodal data, supervised learning of situation representations, and evolution of a predefined situation model with feedback. The situation model serves as frame and support for the different methods, permitting to stay in an intuitive declarative framework. The proposed methods have been integrated into a whole system for smart home environment. The implementation is detailed, and two evaluations are conducted in the smart home environment. The obtained results validate the proposed approach.

  19. Unlocking the potential of the smart grid

    NASA Astrophysics Data System (ADS)

    Konopko, Joanna

    2015-12-01

    The smart grid refers to describe a next-generation electrical power system that is typified by the increased use of Information and Communication Technologies (ICT) in the whole delivery electrical energy process. The generation, delivery and consumption energy, all the steps for power transmission and distribution make the smart grid a complex system. The question is if the amount, diversity, and uses of such data put the smart grid in the category of Big Data applications, followed by the natural question of what is the true value of such data. In this paper an initial answer to this question is provided, the current state of data generation of the Polish grid is analyzed, and a future realistic scenario is illustrated. The analysis shows that the amount of data generated in smart grid is comparable to some of Big Data system examples.

  20. Smart growth community design and physical activity in children.

    PubMed

    Jerrett, Michael; Almanza, Estela; Davies, Molly; Wolch, Jennifer; Dunton, Genevieve; Spruitj-Metz, Donna; Ann Pentz, Mary

    2013-10-01

    Physical inactivity is a leading cause of death and disease globally. Research suggests physical inactivity might be linked to community designs that discourage active living. A "smart growth" community contains features likely to promote active living (walkability, green space, mixed land use), but objective evidence on the potential benefits of smart growth communities is limited. To assess whether living in a smart growth community was associated with increased neighborhood-centered leisure-time physical activity in children aged 8-14 years, compared to residing in a conventional community (i.e., one not designed according to smart growth principles). Participants were recruited from a smart growth community, "The Preserve," located in Chino, California, and eight conventional communities within a 30-minute drive of The Preserve. The analytic sample included 147 children. During 2009-2010, each child carried an accelerometer and a GPS for 7 days to ascertain physical activity and location information. Negative binomial models were used to assess the association between residence in the smart growth community and physical activity. Analyses were conducted in 2012. Smart growth community residence was associated with a 46% increase in the proportion of neighborhood moderate-to-vigorous physical activity (MVPA) as compared to conventional community residence. This analysis included neighborhood activity data collected during the school season and outside of school hours and home. Counterfactual simulations with model parameters suggested that smart growth community residence could add 10 minutes per day of neighborhood MVPA. Living in a smart growth community may increase local physical activity in children as compared to residence in conventionally designed communities. © 2013 American Journal of Preventive Medicine.

  1. Smart City Through a Flexible Approach to Smart Energy

    NASA Astrophysics Data System (ADS)

    Mutule, A.; Teremranova, J.; Antoskovs, N.

    2018-02-01

    The paper provides an overview of the development trends of the smart city. Over the past decades, the trend of the new urban model called smart city has been gaining momentum, which is an aggregate of the latest technologies, intelligent administration and conscious citizens, which allows the city to actively develop, and effectively and efficiently solve the problems it is facing. Profound changes are also taking place in the energy sector. Researchers and other specialists offer a wide variety of innovative solutions and approaches for the concepts of intelligent cities. The paper reviews and analyses the existing methodological solutions in the field of power industry, as well as provides recommendations how to introduce the common platform on the basis of disparate sources of information on energy resources existing in the city as an optimal solution for developing the city's intelligence, flexibility and sustainability based on its starting conditions.

  2. Smart Grid Development: Multinational Demo Project Analysis

    NASA Astrophysics Data System (ADS)

    Oleinikova, I.; Mutule, A.; Obushevs, A.; Antoskovs, N.

    2016-12-01

    This paper analyses demand side management (DSM) projects and stakeholders' experience with the aim to develop, promote and adapt smart grid tehnologies in Latvia. The research aims at identifying possible system service posibilites, including demand response (DR) and determining the appropriate market design for such type of services to be implemented at the Baltic power system level, with the cooperation of distribution system operator (DSO) and transmission system operator (TSO). This paper is prepared as an extract from the global smart grid best practices, smart solutions and business models.

  3. Smart Drill-Down: A New Data Exploration Operator

    PubMed Central

    Joglekar, Manas; Garcia-Molina, Hector; Parameswaran, Aditya

    2015-01-01

    We present a data exploration system equipped with smart drill-down, a novel operator for interactively exploring a relational table to discover and summarize “interesting” groups of tuples. Each such group of tuples is represented by a rule. For instance, the rule (a, b, ★, 1000) tells us that there are a thousand tuples with value a in the first column and b in the second column (and any value in the third column). Smart drill-down presents an analyst with a list of rules that together describe interesting aspects of the table. The analyst can tailor the definition of interesting, and can interactively apply smart drill-down on an existing rule to explore that part of the table. In the demonstration, conference attendees will be able to use the data exploration system equipped with smart drill-down, and will be able to contrast smart drill-down to traditional drill-down, for various interestingness measures, and resource constraints. PMID:26844008

  4. Probabilistic assessment of smart composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Shiao, Michael C.

    1994-01-01

    A composite wing with spars and bulkheads is used to demonstrate the effectiveness of probabilistic assessment of smart composite structures to control uncertainties in distortions and stresses. Results show that a smart composite wing can be controlled to minimize distortions and to have specified stress levels in the presence of defects. Structural responses such as changes in angle of attack, vertical displacements, and stress in the control and controlled plies are probabilistically assessed to quantify their respective uncertainties. Sensitivity factors are evaluated to identify those parameters that have the greatest influence on a specific structural response. Results show that smart composite structures can be configured to control both distortions and ply stresses to satisfy specified design requirements.

  5. Smart Growth Tools

    EPA Pesticide Factsheets

    This page describes a variety of tools useful to federal, state, tribal, regional, and local government staff and elected officials; community leaders; developers; and others interested in smart growth development.

  6. Renewable smart materials

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Chan; Mun, Seongcheol; Ko, Hyun-U.; Zhai, Lindong; Kafy, Abdullahil; Kim, Jaehwan

    2016-07-01

    The use of renewable materials is essential in future technologies to harmonize with our living environment. Renewable materials can maintain our resources from the environment so as to overcome degradation of natural environmental services and diminished productivity. This paper reviews recent advancement of renewable materials for smart material applications, including wood, cellulose, chitin, lignin, and their sensors, actuators and energy storage applications. To further improve functionality of renewable materials, hybrid composites of inorganic functional materials are introduced by incorporating carbon nanotubes, titanium dioxide and tin oxide conducting polymers and ionic liquids. Since renewable materials have many advantages of biocompatible, sustainable, biodegradable, high mechanical strength and versatile modification behaviors, more research efforts need to be focused on the development of renewable smart materials.

  7. Prevention of Information Leakage by Photo-Coupling in Smart Card

    NASA Astrophysics Data System (ADS)

    Shen, Sung-Shiou; Chiu, Jung-Hui

    Advances in smart card technology encourages smart card use in more sensitive applications, such as storing important information and securing application. Smart cards are however vulnerable to side channel attacks. Power consumption and electromagnetic radiation of the smart card can leak information about the secret data protected by the smart card. Our paper describes two possible hardware countermeasures that protect against side channel information leakage. We show that power analysis can be prevented by adopting photo-coupling techniques. This method involves the use of LED with photovoltaic cells and photo-couplers on the power, reset, I/O and clock lines of the smart card. This method reduces the risk of internal data bus leakage on the external data lines. Moreover, we also discuss the effectiveness of reducing electromagnetic radiation by using embedded metal plates.

  8. Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology

    NASA Astrophysics Data System (ADS)

    Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu

    2013-08-01

    From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.

  9. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and NASA Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  10. The Riddle of the Smart Machines

    ERIC Educational Resources Information Center

    Howell, Dusti D.

    2010-01-01

    Hundreds of graduate students were introduced to the fields of instructional design and educational technology with the riddle of the smart machines, yet over the years no one has answered it correctly. After revealing the surprising answer to this riddle, both the negative and positive impacts of smart machines are analyzed. An example of this is…

  11. A Review on Development Practice of Smart Grid Technology in China

    NASA Astrophysics Data System (ADS)

    Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming

    2017-05-01

    Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.

  12. Development of user customized smart keyboard using Smart Product Design-Finite Element Analysis Process in the Internet of Things.

    PubMed

    Kim, Jung Woo; Sul, Sang Hun; Choi, Jae Boong

    2018-06-07

    In a hyper-connected society, IoT environment, markets are rapidly changing as smartphones penetrate global market. As smartphones are applied to various digital media, development of a novel smart product is required. In this paper, a Smart Product Design-Finite Element Analysis Process (SPD-FEAP) is developed to adopt fast-changing tends and user requirements that can be visually verified. The user requirements are derived and quantitatively evaluated from Smart Quality Function Deployment (SQFD) using WebData. Then the usage scenarios are created according to the priority of the functions derived from SQFD. 3D shape analysis by Finite Element Analysis (FEA) was conducted and printed out through Rapid Prototyping (RP) technology to identify any possible errors. Thus, a User Customized Smart Keyboard has been developed using SPD-FEAP. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. From Smart Metering to Smart Grid

    NASA Astrophysics Data System (ADS)

    Kukuča, Peter; Chrapčiak, Igor

    2016-06-01

    The paper deals with evaluation of measurements in electrical distribution systems aimed at better use of data provided by Smart Metering systems. The influence of individual components of apparent power on the power loss is calculated and results of measurements under real conditions are presented. The significance of difference between the traditional and the complex evaluation of the electricity consumption efficiency by means of different definitions of the power factor is illustrated.

  14. Active control of transmission loss with smart foams.

    PubMed

    Kundu, Abhishek; Berry, Alain

    2011-02-01

    Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.

  15. The role of advanced sensing in smart cities.

    PubMed

    Hancke, Gerhard P; Silva, Bruno de Carvalho E; Hancke, Gerhard P

    2012-12-27

    In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.

  16. The Role of Advanced Sensing in Smart Cities

    PubMed Central

    Hancke, Gerhard P.; de Carvalho e Silva, Bruno; Hancke, Gerhard P.

    2013-01-01

    In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities. PMID:23271603

  17. Dubai: A Pioneer Smart City in the Arabian Territory

    NASA Astrophysics Data System (ADS)

    Virtudes, Ana; Abbara, Arwa; Sá, João

    2017-10-01

    Nowadays, one of the main issues that the cities are facing is related with how they are dealing with the challenges toward smartness, including infrastructures, economic, social and environmental aspects. In this sense, some of the current challenges on the global scale, trying to find solutions regarding urban societies, are based on the concept of “smart city”. Therefore, is clear that new ideas regarding the cities improvements, which are on the top of global agenda, could be found at the concept of “smart city”. As the literature reveals, this is a topic reason among the researchers, which is in a continuous development, in particular regarding societies, countries or regions where it is emerging, such as in the Arabian territories. Dubai, a city in the United Arab Emirates, is an example where in a short period of time, after the oil discovery in the decade of 1970, one small and badly known urban settlement became a pioneer reference in terms of smart cities requirements. Thus, this article presents background information about smart cities, their assets and key pillars, their smart infrastructures and features in cultural, social and environmental terms. The main goals are based on a theoretical approach, developed in order to get more details about smart cities, regarding the features of the Arabian territories. It argues around the case of Dubai, as a pioneer smart city in the Arab world. Among of the main conclusions, there is the idea that the urban transformation process in contemporary societies to secure the smartness, should apply to the use of ICT / information and communication technologies. This use will increase the efficiency concerns to the natural resources, and provide a high quality of life for citizens. The example of Dubai has shown that the decision-makers have built each sector and part of the city in a solid performance, in order to achieve the smart sustainability concept. This city is nowadays a reference on this matter, not

  18. Analysing Smart Metering Systems from a Consumer Perspective

    NASA Astrophysics Data System (ADS)

    Yesudas, Rani

    Many countries are deploying smart meters and Advanced Metering Infrastructure systems as part of demand management and grid modernisation efforts. Several of these projects are facing consumer resistance. The advertised benefits to the consumer appear mainly monetary but detailed analysis shows that financial benefits are hard to realise since the fixed services charges are high. Additionally, the data collected from smart meters have security and privacy implications for the consumer. These projects failed to consider end-users as an important stakeholder group during planning stages resulting in the design and roll-out of expensive systems, which do not demonstrate clear consumer benefits. The overall goal of the research reported in this thesis was to improve the smart metering system to deliver consumer benefits that increase confidence and acceptance of these projects. The smart metering system was examined from an end-user perspective for realistic insights into consumer concerns. Processes from Design Science Research methodology were utilised to conduct this research due to the utilitarian nature of the objective. Consumer segmentation was central to the proposed measures. Initially, a consumer-friendly risk analysis framework was devised, and appropriate requirement elicitation techniques were identified. Control options for smart meter data transfer and storage were explored. Various scenarios were analysed to determine consumer-friendly features in the smart metering system, including control options for smart meter data transfer and storage. Proposed functionalities (billing choices, feedback information and specific configurations to match the needs of different user segments) were studied using the Australian smart metering system. Smart meters vary in capabilities depending on the manufacturer, mode and place of deployment. The research showed that features proposed in this thesis are implementable in smart meters, by examining their applicability

  19. SMART-1 celebrates its first year in space

    NASA Astrophysics Data System (ADS)

    2004-09-01

    The ion engine went into action three days after launch and slowly placed SMART-1 safely above the radiation belts that surround the Earth. From there, SMART-1 started spiralling around our planet to eventually come closer, through ever wider orbits, to the so-called ‘Moon capture’ point. During this transfer phase, the ion engine fired its thrusters for periods of several days to progressively raise its apogee (the maximum altitude of its orbit) to the orbit of the Moon. So far, the SMART-1 ion engine has operated for about 3300 hours and covered a distance of some 78 million kilometres, with only 52 kilograms of propellant. With this successful demonstration, SMART-1 is paving the way for future deep-space missions, using a solar- electric engine as primary propulsion. It will be applied to long, energy-demanding interplanetary missions in the Solar System, reducing the size and cost of propulsion systems, while increasing manoeuvrability and the mass available for scientific instrumentation. ESA plans to use primary solar-electric propulsion for its future BepiColombo and Solar Orbiter missions. During its first year in space, SMART-1 has also successfully tested new space communication techniques. For the first time, SMART-1 has used very short radio waves (called Ka band at 32 Gigahertz, with the KaTE instrument) to communicate with Earth. These enable far more information to be transmitted over deep space than the commonly used frequencies and in a shorter period of time. Another SMART-1 achievement is the successful testing of a laser communication link experiment with ESA’s optical ground station in Tenerife, Canary Islands in February of this year. This laser technology, in which Europe is a leader, has already been applied to telecommunications satellites, but this was the first time a laser link had been used to communicate with a distant, rapidly moving spacecraft. Both techniques will be crucial for future science missions where huge amounts of

  20. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George R.

    1996-01-01

    It is widely known that the average American citizen has either no idea or the wrong impression of what NASA is doing. The most common impression is that NASA's sole mission is to build and launch spacecraft and that the everyday experience of the common citizen would be impacted very little if NASA failed to exist altogether. Some feel that most of NASA's efforts are much too expensive and that the money would be better used on other efforts. Others feel that most of NASA's efforts either fail altogether or fail to meet their original objectives. Yet others feel that NASA is so mired in bureaucracy that it is no longer able to function. The goal of the NASA Ambassadors Program (NAP) is to educate the general populace as to what NASA's mission and goals actually are, to re-excite the "man on the street" with NASA's discoveries and technologies, and to convince him that NASA really does impact his everyday experience and that the economy of the U.S. is very dependent on NASA-type research. Each of the NASA centers currently run a speakers bureau through its Public Affairs Office (PAO). The speakers, NASA employees, are scheduled on an "as available" status and their travel is paid by NASA. However, there are only a limited number of them and their message may be regarded as being somewhat biased as they are paid by NASA. On the other hand, there are many members of NASA's summer programs which come from all areas of the country. Most of them not only believe that NASA's mission is important but are willing and able to articulate it to others. Furthermore, in the eyes of the public, they are probably more effective as ambassadors for NASA than are the NASA employees, as they do not derive their primary funding from it. Therefore it was decided to organize materials for them to use in presentations to general audiences in their home areas. Each person who accepted these materials was to be called a "NASA Ambassador".

  1. Design and implementation of a smart card based healthcare information system.

    PubMed

    Kardas, Geylani; Tunali, E Turhan

    2006-01-01

    Smart cards are used in information technologies as portable integrated devices with data storage and data processing capabilities. As in other fields, smart card use in health systems became popular due to their increased capacity and performance. Their efficient use with easy and fast data access facilities leads to implementation particularly widespread in security systems. In this paper, a smart card based healthcare information system is developed. The system uses smart card for personal identification and transfer of health data and provides data communication via a distributed protocol which is particularly developed for this study. Two smart card software modules are implemented that run on patient and healthcare professional smart cards, respectively. In addition to personal information, general health information about the patient is also loaded to patient smart card. Health care providers use their own smart cards to be authenticated on the system and to access data on patient cards. Encryption keys and digital signature keys stored on smart cards of the system are used for secure and authenticated data communication between clients and database servers over distributed object protocol. System is developed on Java platform by using object oriented architecture and design patterns.

  2. 2002 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    2002 National Award for Smart Growth Achievement Bookletdisplays the winners of the 2002 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  3. Validation of the NASA-TLX Score in Ongoing Assessment of Mental Workload During a Laparoscopic Learning Curve in Bariatric Surgery.

    PubMed

    Ruiz-Rabelo, Juan Francisco; Navarro-Rodriguez, Elena; Di-Stasi, Leandro Luigi; Diaz-Jimenez, Nelida; Cabrera-Bermon, Juan; Diaz-Iglesias, Carlos; Gomez-Alvarez, Manuel; Briceño-Delgado, Javier

    2015-12-01

    Fatigue and mental workload are directly associated with high-complexity tasks. In general, difficult tasks produce a higher mental workload, leaving little opportunity to deal with new/unexpected events and increasing the likelihood of performance errors. The laparoscopic Roux-en-Y gastric bypass (LRYGB) learning curve is considered to be one of the most difficult to complete in laparoscopic surgery. We wished to validate the National Aeronautics and Space Administration Task Load Index (NASA-TLX) in LRYGB and identify factors that could provoke a higher mental workload for surgeons during the learning curve. A single surgeon was enrolled to undertake 70 consecutive LRYGB procedures with two internal surgeons mentoring the first 35 cases. Patients were consecutive and ranked from case 35 to case 105 according to the date of the surgical procedure ("case rank"). Self-ratings of satisfaction, performance, and fatigue were measured at the end of surgery using a validated NASA-TLX questionnaire. The procedure was recorded for later viewing by two external evaluators. General data for patients and surgical variables were collected prospectively. A moderate correlation between the NASA-TLX score, BMI, operative time, and volumes of blood drainage was observed. There was no correlation between the NASA-TLX score and duration of hospital stay or time of drain removal. BMI ≥50 kg/m(2), male sex, inexperienced first assistant, and type 2 diabetes mellitus were identified as independent predictive factors of a higher NASA-TLX score. The NASA-TLX is a valid tool to gauge mental workload in LRYGB.

  4. Smart Grid Status and Metrics Report Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papersmore » covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.« less

  5. An innovative and multi-functional smart vibration platform

    NASA Astrophysics Data System (ADS)

    Olmi, C.; Song, G.; Mo, Y. L.

    2007-08-01

    Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.

  6. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, right, looks on as NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  7. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, second right on stage, speaks as NASA Administrator Charles F. Bolden Jr. looks on during a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  8. An Optical-Fiber-Based Smart Textile (Smart Socks) to Manage Biomechanical Risk Factors Associated With Diabetic Foot Amputation.

    PubMed

    Najafi, Bijan; Mohseni, Hooman; Grewal, Gurtej S; Talal, Talal K; Menzies, Robert A; Armstrong, David G

    2017-07-01

    This study aimed to validate a smart-textile based on fiber-optics for simultaneous measurement of plantar temperature, pressure, and joint angles in patients with diabetic peripheral neuropathy (DPN). After in-vitro validation in the laboratory, 33 eligible subjects with DPN were recruited (age: 58 ± 8 years, BMI: 31.5 ± 8 kg/m 2 ) for assessing plantar pressure and temperature during habitual gait-speed in a clinical-setting. All participants were asked to walk at their habitual speed while wearing a pair of sensorized socks made from highly flexible fiber optics (SmartSox). An algorithm was designed to estimate temperature, pressure, and toe range of motion from optical wavelength generated from SmartSox. To validate the device, results from thermal stress response (TSR) using thermography and peak pressure measured by computerized pressure insoles (F-Scan) were used as gold standards. In laboratory and under controlled conditions, the agreements for parameters of interest were excellent ( r > .98, P = .000), and no noticeable cross-talks between measurements of temperature, angle, and pressure were observed. During clinical data acquisition, a significant correlation was found for pressure profile under different anatomical regions of interest between SmartSox and F-Scan ( r = .67, P < .050) as well as between thermography and SmartSox ( r = .55, P < .050). This study demonstrates the validity of an innovative smart textile for assessing simultaneously the key parameters associated with risk of foot ulcers in patients with DPN. It may empower clinicians to objectively stratify foot risk and provide timely care. Another study is warranted to validate its clinical application in preventing limb threating problems in patients with DPN.

  9. An Optical-Fiber-Based Smart Textile (Smart Socks) to Manage Biomechanical Risk Factors Associated With Diabetic Foot Amputation

    PubMed Central

    Najafi, Bijan; Mohseni, Hooman; Grewal, Gurtej S.; Talal, Talal K.; Menzies, Robert A.; Armstrong, David G.

    2017-01-01

    Objective: This study aimed to validate a smart-textile based on fiber-optics for simultaneous measurement of plantar temperature, pressure, and joint angles in patients with diabetic peripheral neuropathy (DPN). Methods: After in-vitro validation in the laboratory, 33 eligible subjects with DPN were recruited (age: 58 ± 8 years, BMI: 31.5 ± 8 kg/m2) for assessing plantar pressure and temperature during habitual gait-speed in a clinical-setting. All participants were asked to walk at their habitual speed while wearing a pair of sensorized socks made from highly flexible fiber optics (SmartSox). An algorithm was designed to estimate temperature, pressure, and toe range of motion from optical wavelength generated from SmartSox. To validate the device, results from thermal stress response (TSR) using thermography and peak pressure measured by computerized pressure insoles (F-Scan) were used as gold standards. Results: In laboratory and under controlled conditions, the agreements for parameters of interest were excellent (r > .98, P = .000), and no noticeable cross-talks between measurements of temperature, angle, and pressure were observed. During clinical data acquisition, a significant correlation was found for pressure profile under different anatomical regions of interest between SmartSox and F-Scan (r = .67, P < .050) as well as between thermography and SmartSox (r = .55, P < .050). Conclusion: This study demonstrates the validity of an innovative smart textile for assessing simultaneously the key parameters associated with risk of foot ulcers in patients with DPN. It may empower clinicians to objectively stratify foot risk and provide timely care. Another study is warranted to validate its clinical application in preventing limb threating problems in patients with DPN. PMID:28513212

  10. 2006 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    2006 National Award for Smart Growth Achievement Booklet displays the winners of the 2006 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  11. 2012 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    012 National Award for Smart Growth Achievement Booklet displays the winners of the 2012 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  12. 2010 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    2010 National Award for Smart Growth Achievement Booklet displays the winners of the 2010 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  13. 2011 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    2011 National Award for Smart Growth Achievement Booklet displays the winners of the 2011 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  14. 2008 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    2008 National Award for Smart Growth Achievement Booklet displays the winners of the 2008 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  15. 2003 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    2003 National Award for Smart Growth Achievement Booklet displays the winners of the 2003 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  16. 2004 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    2004 National Award for Smart Growth Achievement Booklet displays the winners of the 2004 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  17. 2005 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    2005 National Award for Smart Growth Achievement Booklet displays the winners of the 2005 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  18. 2009 National Award for Smart Growth Achievement Booklet

    EPA Pesticide Factsheets

    2009 National Award for Smart Growth Achievement Booklet displays the winners of the 2009 Smart Growth Achievement Awards along with their projects and accomplishments that earned them this recognition.

  19. Exploring the critical quality attributes and models of smart homes.

    PubMed

    Ted Luor, Tainyi; Lu, Hsi-Peng; Yu, Hueiju; Lu, Yinshiu

    2015-12-01

    Research on smart homes has significantly increased in recent years owing to their considerably improved affordability and simplicity. However, the challenge is that people have different needs (or attitudes toward smart homes), and provision should be tailored to individuals. A few studies have classified the functions of smart homes. Therefore, the Kano model is first adopted as a theoretical base to explore whether the functional classifications of smart homes are attractive or necessary, or both. Second, three models and test user attitudes toward three function types of smart homes are proposed. Based on the Kano model, the principal results, namely, two "Attractive Quality" and nine "Indifferent Quality" items, are found. Verification of the hypotheses also indicates that the entertainment, security, and automation functions are significantly correlated with the variables "perceive useful" and "attitude." Cost consideration is negatively correlated with attitudes toward entertainment and automation. Results suggest that smart home providers should survey user needs for their product instead of merely producing smart homes based on the design of the builder or engineer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Smart house-based optimal operation of thermal unit commitment for a smart grid considering transmission constraints

    NASA Astrophysics Data System (ADS)

    Howlader, Harun Or Rashid; Matayoshi, Hidehito; Noorzad, Ahmad Samim; Muarapaz, Cirio Celestino; Senjyu, Tomonobu

    2018-05-01

    This paper presents a smart house-based power system for thermal unit commitment programme. The proposed power system consists of smart houses, renewable energy plants and conventional thermal units. The transmission constraints are considered for the proposed system. The generated power of the large capacity renewable energy plant leads to the violated transmission constraints in the thermal unit commitment programme, therefore, the transmission constraint should be considered. This paper focuses on the optimal operation of the thermal units incorporated with controllable loads such as Electrical Vehicle and Heat Pump water heater of the smart houses. The proposed method is compared with the power flow in thermal units operation without controllable loads and the optimal operation without the transmission constraints. Simulation results show the validation of the proposed method.

  1. An RFID Based Smart Feeder for Hummingbirds.

    PubMed

    Ibarra, Vicente; Araya-Salas, Marcelo; Tang, Yu-ping; Park, Charlie; Hyde, Anthony; Wright, Timothy F; Tang, Wei

    2015-12-16

    We present an interdisciplinary effort to record feeding behaviors and control the diet of a hummingbird species (Phaethornis longirostris, the long-billed hermit or LBH) by developing a Radio Frequency Identification (RFID) based smart feeder. The system contains an RFID reader, a microcontroller, and a servo-controlled hummingbird feeder opener; the system is presented as a tool for studying the cognitive ability of the LBH species. When equipped with glass capsule RFID tags (which are mounted on the hummingbird), the smart feeder can provide specific diets for predetermined sets of hummingbirds at the discretion of biologists. This is done by reading the unique RFID tag on the hummingbirds and comparing the ID number with the pre-programmed ID numbers stored in the smart feeder. The smart feeder records the time and ID of each hummingbird visit. The system data is stored in a readily available SD card and is powered by two 9 V batteries. The detection range of the system is approximately 9-11 cm. Using this system, biologists can assign the wild hummingbirds to different experimental groups and monitor their diets to determine if they develop a preference to any of the available nectars. During field testing, the smart feeder system has demonstrated consistent detection (when compared to detections observed by video-recordings) of RFID tags on hummingbirds and provides pre-designed nectars varying water and sugar concentrations to target individuals. The smart feeder can be applied to other biological and environmental studies in the future.

  2. An RFID Based Smart Feeder for Hummingbirds

    PubMed Central

    Ibarra, Vicente; Araya-Salas, Marcelo; Tang, Yu-ping; Park, Charlie; Hyde, Anthony; Wright, Timothy F.; Tang, Wei

    2015-01-01

    We present an interdisciplinary effort to record feeding behaviors and control the diet of a hummingbird species (Phaethornis longirostris, the long-billed hermit or LBH) by developing a Radio Frequency Identification (RFID) based smart feeder. The system contains an RFID reader, a microcontroller, and a servo-controlled hummingbird feeder opener; the system is presented as a tool for studying the cognitive ability of the LBH species. When equipped with glass capsule RFID tags (which are mounted on the hummingbird), the smart feeder can provide specific diets for predetermined sets of hummingbirds at the discretion of biologists. This is done by reading the unique RFID tag on the hummingbirds and comparing the ID number with the pre-programmed ID numbers stored in the smart feeder. The smart feeder records the time and ID of each hummingbird visit. The system data is stored in a readily available SD card and is powered by two 9 V batteries. The detection range of the system is approximately 9–11 cm. Using this system, biologists can assign the wild hummingbirds to different experimental groups and monitor their diets to determine if they develop a preference to any of the available nectars. During field testing, the smart feeder system has demonstrated consistent detection (when compared to detections observed by video-recordings) of RFID tags on hummingbirds and provides pre-designed nectars varying water and sugar concentrations to target individuals. The smart feeder can be applied to other biological and environmental studies in the future. PMID:26694402

  3. Smart Inverter Control and Operation for Distributed Energy Resources

    NASA Astrophysics Data System (ADS)

    Tazay, Ahmad F.

    The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of

  4. NASA's Optical Measurement Program 2014 H.

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Lederer, S.; Stansbery, G.; Seitzer, P.; Buckalew, B.; Abercromby, K.; Barker, E.

    2014-09-01

    The Optical Measurements Group (OMG) within the NASA Orbital Debris Program Office (ODPO) addresses U.S. National Space Policy goals by monitoring and characterizing debris. Since 2001, the OMG has used the Michigan Orbital Debris Survey Telescope (MODEST) at Cerro Tololo Inter-American Observatory (CTIO) in Chile for general orbital debris survey. The 0.6-m Schmidt MODEST provides calibrated astronomical data of GEO targets, both catalogued and uncatalogued debris, with excellent image quality. The data are utilized by the ODPO modeling group and are included in the Orbital Debris Engineering Model (ORDEM) v. 3.0. MODEST and the CTIO/SMARTS (Small and Moderate Aperture Research Telescope System)0.9 m both acquire filter photometric data, as well as synchronously observing targets in selected optical filters. This information provides data used in material composition studies as well as longer orbital arc data on the same target, without time delay or bias from a rotating, tumbling, or spinning target. NASA, in collaboration with the University of Michigan, began using the twin 6.5-m Magellan telescopes at Las Campanas Observatory in Chile for deep imaging (Baade) and spectroscopic data (Clay) in 2011. Through the data acquired on Baade, debris have been detected that are ~3 magnitudes fainter than detections with MODEST, while the data from Clay provide better resolved information used in material characterization analyses via selected bandpasses. To better characterize and model optical data, the Optical Measurements Center (OMC) at NASA/JSC has been in operation since 2005, resulting in a database of comparison laboratory data. The OMC is designed to emulate illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. Lastly, the OMG is building the Meter Class Autonomous Telescope (MCAT) at Ascension Island. The 1.3-m telescope is designed to observe GEO and LEO targets, using a

  5. Smart Board in the Music Classroom

    ERIC Educational Resources Information Center

    Baker, Jean

    2007-01-01

    A Smart Board is an interactive whiteboard connected to a computer and a data projector. Images can be projected on the board, and the Smart Board can be used as a computer. A person can control the computer using his finger, and can mark directly on the screen using various colors. Best of all, users can easily import many types of information,…

  6. Smart Phones, a Powerful Tool in the Chemistry Classroom

    ERIC Educational Resources Information Center

    Williams, Antony J.; Pence, Harry E.

    2011-01-01

    Cell phones, especially "smart phones", seem to have become ubiquitous. Actually, it is misleading to call many of these devices phones, as they are actually a portable and powerful computer that can be very valuable in the chemistry classroom. Currently, there are three major ways in which smart phones can be used for education. Smart phones…

  7. Idea Bank: How a Smart Board Changed My Teaching

    ERIC Educational Resources Information Center

    McNamara-Cabral, Meghan

    2012-01-01

    By using a Smart Board or other "smart" technologies, it has become possible to teach interactively with students. One of the hardest concepts for middle schoolers to understand is key signatures. The Smart Board has changed the way the author reinforces key signatures with all her students, beginners to eighth graders. In this article, the author…

  8. SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert

    "SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combine modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combinedmore » with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different

  9. A review of the functionalities of smart walkers.

    PubMed

    Martins, Maria; Santos, Cristina; Frizera, Anselmo; Ceres, Ramón

    2015-10-01

    There is a need to conceptualize and improve the investigation and developments in assistive devices, focusing on the design and effectiveness of walkers in the user's rehabilitation process and functional compensation. This review surveys the importance of smart walkers in maintaining mobility and discusses their potential in rehabilitation and their demands as assistive devices. It also presents related research in addressing and quantifying the smart walker's efficiency and influence on gait. Besides, it discusses smart walkers focusing on studies related to the concept of autonomous and shared-control and manual guidance, the use of smart walkers as personal helpers to sit-to-stand and diagnostic tools for patients' rehabilitation through the evaluation of their gait. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Evaluation of 3D printed optofluidic smart glass prototypes.

    PubMed

    Wolfe, Daniel; Goossen, K W

    2018-01-22

    Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.

  11. 77 FR 71169 - Smart Grid Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... cybersecurity coordination and the NIST Smart Grid Program Plan. The agenda may change to accommodate Committee... receive presentations on cybersecurity coordination and the NIST Smart Grid Program Plan. The agenda may...

  12. Smart Book Charts

    NASA Technical Reports Server (NTRS)

    Chinnapongse, Ronald L.

    2015-01-01

    Smart book charts for TPSM: Heatshield for Extreme Entry Environment Technology (HEEET), Conformal Ablative TPS (CA-TPS), 3D Woven Multifunctional Ablative TPS (3D MAT), and Adaptable, Deployable, Entry and Placement Technology (ADEPT).

  13. Smart boards: a reemerging technology.

    PubMed

    Brigham, Tara J

    2013-01-01

    Smart boards, also known as interactive whiteboards (IWBs), are large, interactive, touch-sensitive displays that are mainly used for presentation or educational purposes. While some may not consider this an emerging technology today, changes in the design and capabilities challenge that line of thinking. This column will explain what a smart board is, provide a brief history about it, and describe where it is currently used and why it might be a technology to consider having in a library today.

  14. The segmentation of the HMD market: optics for smart glasses, smart eyewear, AR and VR headsets

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Saeedi, Ehsan; Brac-de-la-Perriere, Vincent

    2014-09-01

    This paper reviews the various optical technologies that have been developed to implement HMDs (Head Mounted Displays), both as AR (Augmented Reality) devices, VR (Virtual Reality) devices and more recently as smart glasses, smart eyewear or connected glasses. We review the typical requirements and optical performances of such devices and categorize them into distinct groups, which are suited for different (and constantly evolving) market segments, and analyze such market segmentation.

  15. NASA Update.

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Garver and NASA Administrator Charles Bolden took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  16. Smart Sensors' Role in Integrated System Health Management

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Mata, Carlos

    2005-01-01

    During the last decade, there has been a major effort in the aerospace industry to reduce the cost per pond of payload and become competitive in the international market. Competition from Europe, Japan, and China has reduced this cost to almost a third from 1990 to 2000. This cost has leveled in recent years to an average price of around $12,000/pound of payload. One of NASA's goals is to promote the development of technologies to reduce this cost by a factor of 10 or more Exploration of space, specially manned exploration missions, involves very complex launch and flight vehicles, associated ground support systems, and extensive human support during all phases of the mission. When considering the Space Shuttle Program, we can see that vehicle and ground support systems' processing, operation, and maintenance represent a large percentage of the program cost and time. Reducing operating, processing and maintenance costs will greatly reduce the cost of Exploration programs. The Integrated System Health Management (ISHM) concept is one of the technologies that will help reduce these operating, processing and maintenance costs. ISHM is an integrated health monitoring system applicable to both flight and ground systems. It automatically and autonomously acquires information from sensors and actuators and processes that information using the ISHM-embedded knowledge. As a result, it establishes the health of the system based on the acquired information and its prior knowledge. When this concept is fully implemented, ISHM systems shall be able to perform failure prediction and remediation before actual hard failures occurs, preventing its costly consequences. Data sources, sensors, and their associated data acquisition systems, constitute the foundation of the system. A smart sensing architecture is required to support the acquisition of reliable, high quality data, required by the ISHM. A thorough definition of the smart sensor architectures, their embedded diagnostic

  17. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, senior advisor to the NASA Administator, far left, makes a point as he introduces NASA Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  18. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  19. Electromagnetic Smart Valves for Cryogenic Applications

    NASA Astrophysics Data System (ADS)

    Traum, M. J.; Smith, J. L.; Brisson, J. G.; Gerstmann, J.; Hannon, C. L.

    2004-06-01

    Electromagnetic valves with smart control capability have been developed and demonstrated for use in the cold end of a Collins-style cryocooler. The toroidal geometry of the valves was developed utilizing a finite-element code and optimized for maximum opening force with minimum input current. Electromagnetic smart valves carry two primary benefits in cryogenic applications: 1) magnetic actuation eliminates the need for mechanical linkages and 2) valve timing can be modified during system cool down and in regular operation for cycle optimization. The smart feature of these electromagnetic valves resides in controlling the flow of current into the magnetic coil. Electronics have been designed to shape the valve actuation current, limiting the residence time of magnetic energy in the winding. This feature allows control of flow through the expander via an electrical signal while dissipating less than 0.0071 J/cycle as heat into the cold end. The electromagnetic smart valves have demonstrated reliable, controllable dynamic cycling. After 40 hours of operation, they suffered no perceptible mechanical degradation. These features enable the development of a miniaturized Collins-style cryocooler capable of removing 1 Watt of heat at 10 K.

  20. NREL Smart Grid Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation,more » etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.« less

  1. Integrated smart structures wingbox

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1993-09-01

    One objective of smart structures development is to demonstrate the ability of a mechanical component to monitor its own structural integrity and health. Achievement of this objective requires the integration of different technologies, i.e.: (1) structures, (2) sensors, and (3) artificial intelligence. We coordinated a team of experts from these three fields. These experts used reliable knowledge towards the forefront of their technologies and combined the appropriate features into an integrated hardware/software smart structures wingbox (SSW) test article. A 1/4 in. hole was drilled into the SSW test article. Although the smart structure had never seen damage of this type, it correctly recognized and located the damage. Based on a knowledge-based simulation, quantification and assessment were also carried out. We have demonstrated that the SSW integrated hardware & software test article can perform six related functions: (1) identification of a defect; (2) location of the defect; (3) quantification of the amount of damage; (4) assessment of performance degradation; (5) continued monitoring in spite of damage; and (6) continuous recording of integrity data. We present the successful results of the integrated test article in this paper, along with plans for future development and deployment of the technology.

  2. Houston Smart Commuter

    DOT National Transportation Integrated Search

    2002-04-01

    This final report documents the background, history, operations and findings of the Houston Smart Commuter operational test. This operational test was designed to evaluate the potential for achieving more efficient use of travel alternatives through ...

  3. Aging well with smart technology.

    PubMed

    Cheek, Penny; Nikpour, Linda; Nowlin, Heather D

    2005-01-01

    As baby-boomers age, the need for long-term nursing care services increases. In the future, there will simply not be enough long-term care facilities to accommodate all of these patients. In addition, many people prefer to grow old at home, a concept known as aging-in-place. Smart home technology facilities aging-in-place by assisting patients with emergency assistance, fall prevention/detection, reminder systems, medication administration and assistance for those with hearing, visual or cognitive impairments. Benefits include making aging-in-place a reality, continuous monitoring, and improved psychosocial effects. Concerns of this technology include cost, availability of technology, retrofitting complications, and potential inappropriate use of the technology. Overall, the concept of smart homes is gaining in popularity and will expand the role of the nurse in the future. It is important for all nurses to understand how their practices will be transformed as smart homes become a reality for the aging population.

  4. Integrated microelectronics for smart textiles.

    PubMed

    Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner

    2005-01-01

    The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.

  5. Surgical ethics and the challenge of surgical innovation.

    PubMed

    Angelos, Peter

    2014-12-01

    Surgical ethics as a specific discipline is relatively new to many. Surgical ethics focuses on the ethical issues that are particularly important to the care of surgical patients. Informed consent for surgical procedures, the level of responsibility that surgeons feel for their patients' outcomes, and the management of surgical innovation are specific issues that are important in surgical ethics and are different from other areas of medicine. The future of surgical progress is dependent on surgical innovation, yet the nature of surgical innovation raises specific concerns that challenge the professionalism of surgeons. These concerns will be considered in the following pages. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., and Deputy Administrator Lori Garver deliver a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  7. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver listens as NASA Administrator Charles Bolden answers a question during a NASA Update on Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden and Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  8. Systems Maintenance Automated Repair Tasks (SMART)

    NASA Technical Reports Server (NTRS)

    Schuh, Joseph; Mitchell, Brent; Locklear, Louis; Belson, Martin A.; Al-Shihabi, Mary Jo Y.; King, Nadean; Norena, Elkin; Hardin, Derek

    2010-01-01

    SMART is a uniform automated discrepancy analysis and repair-authoring platform that improves technical accuracy and timely delivery of repair procedures for a given discrepancy (see figure a). SMART will minimize data errors, create uniform repair processes, and enhance the existing knowledge base of engineering repair processes. This innovation is the first tool developed that links the hardware specification requirements with the actual repair methods, sequences, and required equipment. SMART is flexibly designed to be useable by multiple engineering groups requiring decision analysis, and by any work authorization and disposition platform (see figure b). The organizational logic creates the link between specification requirements of the hardware, and specific procedures required to repair discrepancies. The first segment in the SMART process uses a decision analysis tree to define all the permutations between component/ subcomponent/discrepancy/repair on the hardware. The second segment uses a repair matrix to define what the steps and sequences are for any repair defined in the decision tree. This segment also allows for the selection of specific steps from multivariable steps. SMART will also be able to interface with outside databases and to store information from them to be inserted into the repair-procedure document. Some of the steps will be identified as optional, and would only be used based on the location and the current configuration of the hardware. The output from this analysis would be sent to a work authoring system in the form of a predefined sequence of steps containing required actions, tools, parts, materials, certifications, and specific requirements controlling quality, functional requirements, and limitations.

  9. Designing and Securing an Event Processing System for Smart Spaces

    ERIC Educational Resources Information Center

    Li, Zang

    2011-01-01

    Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…

  10. Privacy-Assured Aggregation Protocol for Smart Metering: A Proactive Fault-Tolerant Approach [Proactive Fault-Tolerant Aggregation Protocol for Privacy-Assured Smart Metering

    DOE PAGES

    Won, Jongho; Ma, Chris Y. T.; Yau, David K. Y.; ...

    2016-06-01

    Smart meters are integral to demand response in emerging smart grids, by reporting the electricity consumption of users to serve application needs. But reporting real-time usage information for individual households raises privacy concerns. Existing techniques to guarantee differential privacy (DP) of smart meter users either are not fault tolerant or achieve (possibly partial) fault tolerance at high communication overheads. In this paper, we propose a fault-tolerant protocol for smart metering that can handle general communication failures while ensuring DP with significantly improved efficiency and lower errors compared with the state of the art. Our protocol handles fail-stop faults proactively bymore » using a novel design of future ciphertexts, and distributes trust among the smart meters by sharing secret keys among them. We prove the DP properties of our protocol and analyze its advantages in fault tolerance, accuracy, and communication efficiency relative to competing techniques. We illustrate our analysis by simulations driven by real-world traces of electricity consumption.« less

  11. Privacy-Assured Aggregation Protocol for Smart Metering: A Proactive Fault-Tolerant Approach [Proactive Fault-Tolerant Aggregation Protocol for Privacy-Assured Smart Metering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Jongho; Ma, Chris Y. T.; Yau, David K. Y.

    Smart meters are integral to demand response in emerging smart grids, by reporting the electricity consumption of users to serve application needs. But reporting real-time usage information for individual households raises privacy concerns. Existing techniques to guarantee differential privacy (DP) of smart meter users either are not fault tolerant or achieve (possibly partial) fault tolerance at high communication overheads. In this paper, we propose a fault-tolerant protocol for smart metering that can handle general communication failures while ensuring DP with significantly improved efficiency and lower errors compared with the state of the art. Our protocol handles fail-stop faults proactively bymore » using a novel design of future ciphertexts, and distributes trust among the smart meters by sharing secret keys among them. We prove the DP properties of our protocol and analyze its advantages in fault tolerance, accuracy, and communication efficiency relative to competing techniques. We illustrate our analysis by simulations driven by real-world traces of electricity consumption.« less

  12. New Technologies for Smart Grid Operation

    NASA Astrophysics Data System (ADS)

    Mak, Sioe T.

    2015-02-01

    This book is a handbook for advanced applications design and integration of new and future technologies into Smart Grids for researchers and engineers in academia and industry, looking to pull together disparate technologies and apply them for greater gains. The book covers Smart Grids as the midpoint in the generation, storage, transmission and distribution process through to database management, communication technologies, intelligent devices and synchronisation.

  13. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Associate Administrator for the Office of Communications Bob Jacobs moderates the NASA Update program, Tuesday, Feb. 15, 2011 at NASA Headquarters in Washington. NASA's 12th Administrator Charles Bolden and Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  14. Smart Sensor Network for Aircraft Corrosion Monitoring

    DTIC Science & Technology

    2010-02-01

    Network Elements – Hub, Network capable application processor ( NCAP ) – Node, Smart transducer interface module (STIM)  Corrosion Sensing and...software Transducer software Network Protocol 1451.2 1451.3 1451.5 1451.6 1451.7 I/O Node -processor Power TEDS Smart Sensor Hub ( NCAP ) IEEE 1451.0 and

  15. Smartness as a Cultural Practice in Schools

    ERIC Educational Resources Information Center

    Hatt, Beth

    2012-01-01

    This study explores smartness as a cultural construct rather than a biological capacity. The cultural construction of smartness has broad consequences related to teacher expectations, student academic identity development, and schooling inequities. This study is based on a 1-year ethnography in a kindergarten classroom, and the author investigates…

  16. The smart meter and a smarter consumer: quantifying the benefits of smart meter implementation in the United States

    PubMed Central

    2012-01-01

    The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed “smart grid” contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household’s electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments. PMID:22540990

  17. The smart meter and a smarter consumer: quantifying the benefits of smart meter implementation in the United States.

    PubMed

    Cook, Brendan; Gazzano, Jerrome; Gunay, Zeynep; Hiller, Lucas; Mahajan, Sakshi; Taskan, Aynur; Vilogorac, Samra

    2012-04-23

    The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed "smart grid" contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household's electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments.

  18. Regulatory Aspects of Smart Water Networks in the U.S.

    EPA Science Inventory

    The presentation addresses regulatory aspects of smart water networks in the U.S. It will be presented at the Smart Water Networks Forum (SWAN) annual conference in London, England from April 29-30, 2015. The conference will bring together key voices in the smart water space f...

  19. Influential Aspects of the Smart City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinovici, Maria C.; Kirkham, Harold; Widergren, Steven E.

    2016-01-05

    Using millions of sensors in everyday objects, smart cities will generate petabytes of data, and it will be delivered to multiple users via networks. Multi-disciplinary inter-operability is essential. We propose system engineering management, with multidisciplinary teams as an effective way to deliver real change. Their goal is to develop intelligent and integrated services through the use of digital technologies and open collaboration. We also caution that the process cannot be entirely planned ahead of time, it must be allowed to evolve. New technology will change the game (where does a 3-D printer fit into a smart city?). Municipal planning meansmore » central planning – not known for its sensitivity to reality. A successful smart city will include lots of feedback mechanisms for the citizenry.« less

  20. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  1. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left, and Deputy Administrator Lori Garver are seen during their first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  2. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  3. SmartWay Tractor and Trailer Logo Usage Instructions

    EPA Pesticide Factsheets

    View a presentation provides guidelines for SmartWay Partners on tractor and trailer logo usage, including SmartWay designated technical specifications and requirements, importance of logo display, how to obtain the logo, and logo placement.

  4. Share Your Participation in SmartWay-Best Practices

    EPA Pesticide Factsheets

    SmartWay partners and affiliates can use the SmartWay logo in a variety of ways to promote their participation in the program and signal their commitment to sustainable freight transportation to customers and clients.

  5. Research on data collection key technology of smart electric energy meters

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Mouhailiu; Renheng, Xu

    2018-02-01

    In recent years, smart electric energy meters are demand at 70 million to 90 million with the strong smart grid construction every year in China. However, there are some issues in smart electric energy meters data collection such as the interference of environment, low collection efficiency and inability to work when the power is off. In order to solve these issues above, it uses the RFID communication technology to collect the numbers and electric energy information of smart electric energy meters on the basis of the existing smart electric energy meters, and the related data collection communication experiments were made. The experimental result shows that the electric information and other data batch collection of RFID smart electric energy meters are realized in power and power off. It improves the efficiency and the overall success rate is 99.2% within 2 meters. It provides a new method for smart electric energy meters data collection.

  6. Smart Microsystems with Photonic Element and Their Applications to Aerospace Platforms

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Lekki, J.; Sutter, J. K.; Sarkisov, S. S.; Curley, M. J.; Martin, C. E.

    2000-01-01

    The need to make manufacturing, operation, and support of airborne vehicles safer and more efficient forces engineers and scientists to look for lighter, cheaper, more reliable technologies. Light weight, immunity to EMI, fire safety, high bandwidth, and high signal fidelity have already made photonics in general and fiber optics in particular an extremely attractive medium for communication purposes. With the fiber optics serving as a central nervous system of the vehicle, generation, detection, and processing of the signal occurs at the peripherals that include smart structures and devices. Due to their interdisciplinary nature, photonic technologies cover such diverse areas as optical sensors and actuators, embedded and distributed sensors, sensing schemes and architectures, harnesses and connectors, signal processing and algorithms. The paper includes a brief description of work in the photonic area that is going on at NASA, especially at the Glenn Research Center (GRC).

  7. Smart sensor technology for advanced launch vehicles

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff

    1989-07-01

    Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.

  8. Families & the North Carolina Smart Start Initiative.

    ERIC Educational Resources Information Center

    Lowman, Betsy; Bryant, Donna; Zolotor, Adam

    Smart Start is North Carolina's partnership between state government and local leaders, service providers, and families to better serve children under 6 years and their families. This study examined characteristics of families participating in Smart Start, their child care arrangements and family activities, and their need for and use of community…

  9. Smart Grid | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    begun to build smart grids. Most operate electricity grids that include power generation; load control plant managers use these communications for energy management and load shedding, which are among the top familiar with equipment interoperability, central dispatch, and load shedding. These are common in smart

  10. Creating New Mathematical Applications Utilizing SMART Table

    ERIC Educational Resources Information Center

    Seals, Cheryl D.; Swanier, Cheryl S.; Nyagwencha, Justus Nyamweya; Cagle, Ashley L.; Houser, Navorro

    2011-01-01

    SMART Technologies is leading the way for interactive learning, through their many different tools. The SMART Table is a multi-user, multi-touch interactive interface that not only teaches children different concepts in fun ways (Steurer P., 2003), but it also inspires cooperative competition. In Alabama, the state curriculum for kindergarten…

  11. Smart Partnerships to Increase Equity in Education

    ERIC Educational Resources Information Center

    Leahy, Margaret; Davis, Niki; Lewin, Cathy; Charania, Amina; Nordin, Hasniza; Orlic, Davor; Butler, Deirdre; Lopez-Fernadez, Olatz

    2016-01-01

    This exploratory analysis of smart partnerships identifies the risk of increasing the digital divide with the deployment of data analytics. Smart partnerships in education appear to include a process of evolution into a synergy of strategic and holistic approaches that enhance the quality of education with digital technologies, harnessing ICT…

  12. 75 FR 55306 - Smart Grid Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... orientation for Committee members and provide an update on NIST's Smart Grid program. The agenda may change to accommodate Committee business. The final agenda will be posted on the Smart Grid Web site at http://www.nist... Room C, in the Administration Building at NIST in Gaithersburg, Maryland. Please note admittance...

  13. Smart Sensors Gather Information for Machine Diagnostics

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Stennis Space Center was interested in using smart sensors to monitor components on test stands and avert equipment failures. Partnering with St. Paul, Minnesota-based Lion Precision through a Cooperative Agreement, the team developed a smart sensor and the associated communication protocols. The same sensor is now commercially available for manufacturing.

  14. Bio-inspired device: a novel smart MR spring featuring tendril structure

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Park, Chun-Yong; Choi, Seung-Bok

    2016-01-01

    Smart materials such as piezoelectric patches, shape memory alloy, electro and magneto rheological fluid, magnetostrictive materials, etc are involved by far to design intelligent and high performance smart devices like injectors, dental braces, dampers, actuators and sensors. In this paper, an interesting smart device is proposed by inspiring on the structure of the bio climber plant. The key enabling concept of this proposed work is to design the smart spring damper as a helical shaped tendril structure using magneto-rheological (MR) fluid. The proposed smart spring consists of a hollow helical structure filled with MR fluid. The viscosity of the MR fluid decides the damping force of helical shaped smart spring, while the fluid intensity in the vine decides the strength of the tendril in the climber plant. Thus, the proposed smart spring can provide a new concept design of the damper which can be applicable to various damping system industries with tuneable damping force. The proposed smart spring damper has several advantageous such as cost effective, easy implementation compared with the conventional damper. In addition, the proposed spring damper can be easily designed to adapt different damping force levels without any alteration.

  15. Center-Based Child Care in the Pioneer Smart Start Partnerships of North Carolina. UNC Smart Start Evaluation Report.

    ERIC Educational Resources Information Center

    Maxwell, Kelly; Bryant, Donna; Peisner-Feinberg, Ellen; Buysse, Virginia

    Smart Start is North Carolina's partnership between state government and local leaders, service providers, and families to better serve children under 6 years and their families to ensure that all children enter school healthy and prepared to succeed. This study acquired a baseline measure of the quality of child care in the 12 pioneer Smart Start…

  16. Integrating smart container technology into existing shipping and law enforcement infrastructure

    NASA Astrophysics Data System (ADS)

    Ferriere, Dale; Pysareva, Khrystyna; Rucinski, Andrzej

    2006-05-01

    While there has been important research and development in the area of smart container technologies, no system design methodologies have yet emerged for integrating this technology into the existing shipping and law enforcement infrastructure. A successful deployment of smart containers requires a precise understanding of how to integrate this new technology into the existing shipping and law enforcement infrastructure, how to establish communication interoperability, and how to establish procedures and protocols related to the operation of smart containers. In addition, this integration needs to be seamless, unobtrusive to commerce, and cost-effective. In order to address these issues, we need to answer the following series of questions: 1) Who will own and operate the smart container technology; 2) Who will be responsible for monitoring the smart container data and notifying first responders; 3) What communication technologies currently used by first responders might be adopted for smart container data transmission; and 4) How will existing cargo manifest data be integrated into smart container data. In short, we need to identify the best practices for smart container ownership and operation. In order to help provide answers to these questions, we have surveyed a sample group of representatives from law enforcement, first responder, regulatory, and private sector organizations. This paper presents smart container infrastructure best practices recommendations obtained from the results of the survey.

  17. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on at right,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  18. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr., left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on at right,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  19. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver makes a point as she speaks during a NASA Update with Administrator Charles F. Bolden Jr.,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  20. Learn about Smart Sectors

    EPA Pesticide Factsheets

    about the Smart Sectors program including: Meaningful Collaboration with Regulated Sectors; Sensible Policies to Improve Environmental Outcomes; Better EPA Practices and Streamlined Operations; Historical Context

  1. Microgravity effects on fine motor skills: tying surgical knots during parabolic flight.

    PubMed

    Rafiq, Azhar; Hummel, Russ; Lavrentyev, Vladimir; Derry, William; Williams, David; Merrell, Ronald C

    2006-08-01

    The health provider on a space exploration mission cannot evacuate a patient to Earth. Contingency plans for medical intervention must be designed for autonomy. This study measured the effect of microgravity on performance of fine motor skills such as basic surgical tasks. Eight subjects, six with medical and two with non-medical backgrounds, were evaluated during parabolic microgravity flights aboard NASA's KC-135. We evaluated their skill in tying surgical knots on simulated skin made of silicone using standard techniques for minimally invasive surgery. LabView software was developed to archive forces applied to the laparoscopic tool handles during knot-tying. Studies were controlled for medication (ScopeDex) and the aircraft environment. All participants completed the tests successfully. The data indicated that increased force was applied to the instruments and knot quality decreased during flight compared with ground control sessions. Specific metrics of surgical task performance are essential in developing education modules for providers of medical care during exploration-class missions.

  2. The application and development of artificial intelligence in smart clothing

    NASA Astrophysics Data System (ADS)

    Wei, Xiong

    2018-03-01

    This paper mainly introduces the application of artificial intelligence in intelligent clothing. Starting from the development trend of artificial intelligence, analysis the prospects for development in smart clothing with artificial intelligence. Summarize the design key of artificial intelligence in smart clothing. Analysis the feasibility of artificial intelligence in smart clothing.

  3. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. is seen through a television camera monitor during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  4. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. is seen on a television camera monitor while speaking at his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  5. Chattanooga SmartBus Project : phase III evaluation report

    DOT National Transportation Integrated Search

    2009-12-01

    This report presents the results of Phase III of the national evaluation of the Chattanooga Area Regional Transportation Authoritys (CARTA) SmartBus Project. The SmartBus Project is a comprehensive transit ITS program for the city of Chattanooga, ...

  6. Types of architectural structures and the use of smart materials

    NASA Astrophysics Data System (ADS)

    Tavşan, Cengiz; Sipahi, Serkan

    2017-07-01

    The developments in technology following the industrial revolution had their share of impact on both construction techniques, and material technologies. The change in the materials used by the construction industry brought along numerous innovations, which, in turn, took on an autonomous trend of development given the rise of nano-tech materials. Today, nano-tech materials are used extensively in numerous construction categories. Nano-tech materials, in general, are characterized by their reactionary nature, with the intent of repeating the reactions again and again under certain conditions. That is why nano-tech materials are often called smart materials. In construction industry, smart materials are categorized under 4 major perspectives: Shape-shifting smart materials, power generating smart materials, self-maintenance smart materials, and smart materials providing a high level of insulation. In architecture, various categories of construction often tend to exhibit their own approaches to design, materials, and construction techniques. This is a direct consequence of the need for different solutions for different functions. In this context, the use of technological materials should lead to the use of a set of smart materials for a given category of structures, while another category utilizes yet another set. In the present study, the smart materials used in specific categories of structures were reviewed with reference to nano-tech practices implemented in Europe, with a view to try and reveal the changes in the use of smart materials with reference to categories of structures. The study entails a discussion to test the hypothesis that nano-tech materials vary with reference to structure categories, on the basis of 18 examples from various structure categories, built by the construction firms with the highest level of potential in terms of doing business in Europe. The study comprises 3 major sections: The first section reiterates what the literature has to say

  7. A smart grid simulation testbed using Matlab/Simulink

    NASA Astrophysics Data System (ADS)

    Mallapuram, Sriharsha; Moulema, Paul; Yu, Wei

    2014-06-01

    The smart grid is the integration of computing and communication technologies into a power grid with a goal of enabling real time control, and a reliable, secure, and efficient energy system [1]. With the increased interest of the research community and stakeholders towards the smart grid, a number of solutions and algorithms have been developed and proposed to address issues related to smart grid operations and functions. Those technologies and solutions need to be tested and validated before implementation using software simulators. In this paper, we developed a general smart grid simulation model in the MATLAB/Simulink environment, which integrates renewable energy resources, energy storage technology, load monitoring and control capability. To demonstrate and validate the effectiveness of our simulation model, we created simulation scenarios and performed simulations using a real-world data set provided by the Pecan Street Research Institute.

  8. A twice-as-smart synthetic G-quartet: PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe.

    PubMed

    Laguerre, Aurélien; Stefan, Loic; Larrouy, Manuel; Genest, David; Novotna, Jana; Pirrotta, Marc; Monchaud, David

    2014-09-03

    Recent and unambiguous evidences of the formation of DNA and RNA G-quadruplexes in cells has provided solid support for these structures to be considered as valuable targets in oncology. Beyond this, they have lent further credence to the anticancer strategies relying on small molecules that selectively target these higher-order DNA/RNA architectures, referred to as G-quadruplex ligands. They have also shed bright light on the necessity of designing multitasking ligands, displaying not only enticing quadruplex interacting properties (affinity, structural selectivity) but also additional features that make them usable for detecting quadruplexes in living cells, notably for determining whether, when, and where these structures fold and unfold during the cell cycle and also for better assessing the consequences of their stabilization by external agents. Herein, we report a brand new design of such multitasking ligands, whose structure experiences a quadruplex-promoted conformational switch that triggers not only its quadruplex affinity (i.e., smart ligands, which display high affinity and selectivity for DNA/RNA quadruplexes) but also its fluorescence (i.e., smart probes, which behave as selective light-up fluorescent reporters on the basis of a fluorogenic electron redistribution). The first prototype of such multifunctional ligands, termed PyroTASQ, represents a brand new generation of quadruplex ligands that can be referred to as "twice-as-smart" quadruplex ligands.

  9. The SmartHand transradial prosthesis

    PubMed Central

    2011-01-01

    Background Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent) sensorization or limited dexterity. SmartHand tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand. Methods SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces. Results SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g) and speed (closing time: 1.5 seconds) are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects. Conclusions Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial amputees and employed as a bi

  10. Impact landing ends SMART-1 mission to the Moon

    NASA Astrophysics Data System (ADS)

    2006-09-01

    SMART-1 scientists, engineers and space operations experts witnessed the final moments of the spacecraft’s life in the night between Saturday 2 and Sunday 3 September at ESA’s European Space Operations Centre (ESOC), in Darmstadt, Germany. The confirmation of the impact reached ESOC at 07:42:22 CEST (05:42:22 UT) when ESA’s New Norcia ground station in Australia suddenly lost radio contact with the spacecraft. SMART-1 ended its journey in the Lake of Excellence, in the point situated at 34.4º South latitude and 46.2º West longitude. The SMART-1 impact took place on the near side of the Moon, in a dark area just near the terminator (the line separating the day side from the night side), at a “grazing” angle of about one degree and a speed of about 2 kilometres per second. The impact time and location was planned to favour observations of the impact event from telescopes on Earth, and was achieved by a series of orbit manoeuvres and corrections performed during the course of summer 2006, the last of which was on 1 September. Professional and amateur ground observers all around the world - from South Africa to the Canary Islands, South America, the continental United States, Hawaii, and many other locations - were watching before and during the small SMART-1 impact, hoping to spot the faint impact flash and to obtain information about the impact dynamics and about the lunar surface excavated by the spacecraft. The quality of the data and images gathered from the ground observatories - a tribute to the end of the SMART-1 mission and a possible additional contribution to lunar science - will be assessed in the days to come. For the last 16 months and until its final orbits, SMART-1 has been studying the Moon, gathering data about the morphology and mineralogical composition of the surface in visible, infrared and X-ray light. “The legacy left by the huge wealth of SMART-1 data, to be analysed in the months and years to come, is a precious contribution to

  11. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    NASA Technical Reports Server (NTRS)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  12. Smart and functional polymer materials for smart and functional microfluidic instruments

    NASA Astrophysics Data System (ADS)

    Gray, Bonnie L.

    2014-04-01

    As microfluidic systems evolve from "chip-in-the-lab" to true portable lab-on-a-chip (LoC) or lab-in-a-package (LiP) microinstrumentation, there is a need for increasingly miniaturized sensors, actuators, and integration/interconnect technologies with high levels of functionality and self-direction. Furthermore, as microfluidic instruments are increasingly realized in polymer-based rather than glass- or silicon- based platforms, there is a need to realize these highly functional components in materials that are polymer-compatible. Polymers that are altered to possess basic functionality, and even higher-functioning "smart" polymer materials, may help to realize high-functioning and selfdirecting portable microinstrumentation. Stimuli-responsive hydrogels have been recognized for over a decade as beneficial to the development of smart microfluidics systems and instrumentation. In addition, functional materials such as conductive and magnetic composite polymers are being increasingly employed to push microfluidics systems to greater degrees of functionality, portability, and/or flexibility for wearable/implantable systems. Functional and smart polymer materials can be employed to realize electrodes, electronic routing, heaters, mixers, valves, pumps, sensors, and interconnect structures in polymer-based microfluidic systems. Stimuli for such materials can be located on-chip or in a small package, thus greatly increasing the degree of portability and the potential for mechanical flexibility of such systems. This paper will examine the application of functional polymer materials to the development of high-functioning microfluidics instruments with a goal towards self-direction.

  13. Smart glass based on electrochromic polymers

    NASA Astrophysics Data System (ADS)

    Xu, Chunye; Kong, Xiangxing; Liu, Lu; Su, Fengyu; Kim, Sooyeun; Taya, Minoru

    2006-03-01

    Five-layer-structured electrochromic glass (window), containing a transparent conductive layer, an electrochromic layer, an ionic conductive layer, an ionic storage layer and a second conductive transparent layer, was fabricated. The electrochromic glass adopts the conjugated polymer, poly[3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine] (PProDOT-Me2), as a blue electrochromic active layer, vanadium pentaoxide film as an ion storage layer and polymer gel electrolyte as the ionic transport layer. Dimension of smart glass up to 12 x 20 inch was developed. UV curable sealant was applied for the sealing devices. Color changing or switching speed of 12 x 20 inch smart glass from dark state to the transparent state (or vise versa) is less than 15 seconds under applied 1.5 voltages. Besides the long open circuit memory (the colored state or transparent state remains the same state after the power is off), the smart window can be adjusted easily into the intermediate state between the dark state and the transparent state by just simply turn the power on or off. No space consuming or dirt collecting shades, curtains or blinds are needed. The applications of the smart window, e.g. in the aircrafts, automobiles and architectures were discussed as well.

  14. SepticSmart Homeowners

    EPA Pesticide Factsheets

    EPA’s SepticSmart initiative is a nation-wide public education effort with resources for homeowners with septic systems, local organizations and government leaders to learn how septic systems work and simple, everyday tips on how to properly maintain them.

  15. Europe rediscovers the Moon with SMART-1

    NASA Astrophysics Data System (ADS)

    2006-08-01

    The whole story began in September 2003, when an Ariane 5 launcher blasted off from Kourou, French Guiana, to deliver the European Space Agency’s lunar spacecraft SMART-1 into Earth orbit. SMART-1 is a small unmanned satellite weighing 366 kilograms and roughly fitting into a cube just 1 metre across, excluding its 14-metre solar panels (which were folded during launch). After launch and injection into an elliptical orbit around the Earth, the gentle but steady push provided by the spacecraft’s highly innovative electric propulsion engine forcefully expelling xenon gas ions caused SMART-1 to spiral around the Earth, increasing its distance from our planet until, after a long journey of about 14 months, it was “captured” by the Moon’s gravity. To cover the 385,000 km distance that separates the Earth from the Moon if one travelled in a straight line, this remarkably efficient engine brought the spacecraft on a 100 million km long spiralling journey on only 60 litres of fuel! The spacecraft was captured by the Moon in November 2004 and started its scientific mission in March 2005 in an elliptical orbit around its poles. ESA’s SMART-1 is currently the only spacecraft around the Moon, paving the way for the fleet of international lunar orbiters that will be launched from 2007 onwards. The story is now close to ending. On the night of Saturday 2 to Sunday 3 September, looking at the Moon with a powerful telescope, one may be able to see something special happening. Like most of its lunar predecessors, SMART-1 will end its journey and exploration of the Moon by landing in a relatively abrupt way. It will impact the lunar surface in an area called the “Lake of Excellence”, situated in the mid-southern region of the Moon’s visible disc at 07:41 CEST (05:41 UTC), or five hours before if it finds an unknown peak on the way. The story is close to ending After 16 months harvesting scientific results in an elliptical orbit around the Moon’s poles (at

  16. Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives

    NASA Astrophysics Data System (ADS)

    Zheng, Pai; wang, Honghui; Sang, Zhiqian; Zhong, Ray Y.; Liu, Yongkui; Liu, Chao; Mubarok, Khamdi; Yu, Shiqiang; Xu, Xun

    2018-06-01

    Information and communication technology is undergoing rapid development, and many disruptive technologies, such as cloud computing, Internet of Things, big data, and artificial intelligence, have emerged. These technologies are permeating the manufacturing industry and enable the fusion of physical and virtual worlds through cyber-physical systems (CPS), which mark the advent of the fourth stage of industrial production (i.e., Industry 4.0). The widespread application of CPS in manufacturing environments renders manufacturing systems increasingly smart. To advance research on the implementation of Industry 4.0, this study examines smart manufacturing systems for Industry 4.0. First, a conceptual framework of smart manufacturing systems for Industry 4.0 is presented. Second, demonstrative scenarios that pertain to smart design, smart machining, smart control, smart monitoring, and smart scheduling, are presented. Key technologies and their possible applications to Industry 4.0 smart manufacturing systems are reviewed based on these demonstrative scenarios. Finally, challenges and future perspectives are identified and discussed.

  17. Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yirong

    The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall materialmore » property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.« less

  18. Optical smart card using semipassive communication.

    PubMed

    Glaser, I; Green, Shlomo; Dimkov, Ilan

    2006-03-15

    An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.

  19. Optical smart card using semipassive communication

    NASA Astrophysics Data System (ADS)

    Glaser, I.; Green, Shlomo; Dimkov, Ilan

    2006-03-01

    An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.

  20. Measuring level of friendliness of smart city: a perceptual study

    NASA Astrophysics Data System (ADS)

    Sani Roychansyah, Muhammad; Felasari, Sushardjanti

    2018-03-01

    Currently the concept of smart city comes not only at the level of discussion, but some cities have stepped in the stage of implementation. Many of promised benefits will be met for the needs of urban residents if the city applies this concept. Conversely, many professionals and scholars are still in doubt about readiness of a city in the application of this concept. Dimension of friendliness of the real city certainly will have some limitations in a smart city that relies more on interactions with information and communication technology (ICT). This new paradigm becomes background of this paper in viewing the friendliness dimension of a smart city based on city residents’ perceptions. This paper uses case of 2 cities that have different level of readiness in the application of smart city. They are Yogyakarta City and Magelang City, both are located in Central Java. The method applied in this paper is quantitative method based on perceptual answer of respondents structured in a Likert Scale. Importance Performance Analysis (IPA) is then used to look at the attributes of smart city’s dimension which will show the relationship of the level of city friendliness and the level of city readiness in an application of smart city. The result briefly shows that the level of city sensitivity in the application of smart city is very influential in viewing the friendliness of the city. The city that is better equipped to meet the needs of its population according to the dimensions of the smart city based on its existing characteristics has higher friendliness. Time period of applying a smart city concept as the City of Yogyakarta has done longer before Magelang City, is not a guarantee that the city then has a better level of friendliness. The urban citizens have appropriate affective aspect to articulate between what they need and what the city has provided.

  1. Cloud computing for energy management in smart grid - an application survey

    NASA Astrophysics Data System (ADS)

    Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed

    2016-03-01

    The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.

  2. Automated Cognitive Health Assessment From Smart Home-Based Behavior Data.

    PubMed

    Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen

    2016-07-01

    Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behavior in the home and predicting clinical scores of the residents. To accomplish this goal, we propose a clinical assessment using activity behavior (CAAB) approach to model a smart home resident's daily behavior and predict the corresponding clinical scores. CAAB uses statistical features that describe characteristics of a resident's daily activity performance to train machine learning algorithms that predict the clinical scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years. We obtain a statistically significant correlation ( r=0.72) between CAAB-predicted and clinician-provided cognitive scores and a statistically significant correlation ( r=0.45) between CAAB-predicted and clinician-provided mobility scores. These prediction results suggest that it is feasible to predict clinical scores using smart home sensor data and learning-based data analysis.

  3. Automated assessment of cognitive health using smart home technologies.

    PubMed

    Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2013-01-01

    The goal of this work is to develop intelligent systems to monitor the wellbeing of individuals in their home environments. This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve=0.80, g-mean=0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained.

  4. NASA Releases 'NASA App HD' for iPad

    NASA Image and Video Library

    2012-07-06

    The NASA App HD invites you to discover a wealth of NASA information right on your iPad. The application collects, customizes and delivers an extensive selection of dynamically updated mission information, images, videos and Twitter feeds from various online NASA sources in a convenient mobile package. Come explore with NASA, now on your iPad. 2012 Updated Version - HD Resolution and new features. Original version published on Sept. 1, 2010.

  5. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  6. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  7. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  8. Smart Columbus : Systems Engineering Management Plan (SEMP) for Smart Columbus Demonstration Program

    DOT National Transportation Integrated Search

    2018-01-16

    The Smart City Demonstration Program is intended to improve access through expanded mobility options in major job centers, enhance visitor experience by better connecting visitors to transportation options, stimulate regional economic prosperity and ...

  9. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes"…

  10. AquaSMART: Water & Boating Safety, Grades 3-5. Teacher's Guide.

    ERIC Educational Resources Information Center

    Texas State Dept. of Parks and Wildlife, Austin.

    This teacher's guide accompanies a program designed to teach water and boating safety to students in grades 3-5. The written curriculum accompanies a video, AquaSMART 3-5. The theme of the curriculum is AquaSMART. To become AquaSMART, students must learn 10 basic lessons for water and boating safety. The written curriculum begins with an overview…

  11. Smart Phones Permitted: How Teachers Use Text Messaging to Collaborate

    ERIC Educational Resources Information Center

    Cosier, Meghan; Gomez, Audri; McKee, Aja; Maghzi, Kimiya Sohrab

    2015-01-01

    The use of smart phones by teachers in K-12 education has been contentious. Although teachers are often instructed to put their phones away during instruction, teachers and students can benefit in many ways from using smart phones in the classroom. The use of information systems such as a smart phone can support knowledge sharing and collaboration…

  12. Justification of the Utility of Introducing Smart Meters in Latvia

    NASA Astrophysics Data System (ADS)

    Kunickis, M.; Dandens, A.; Bariss, U.

    2015-12-01

    Automatic data reading from smart meters is being developed in many parts of the world, including Latvia. The key drivers for that are developments of smart technologies and economic benefits for consumers. Deployment of smart meters could be launched in a massive scale. Several pilot projects were implemented to verify the feasibility of smart meters for individual consumer groups. Preliminary calculations indicate that installation of smart meters for approximately 23 % of electricity consumers would be economically viable. Currently, the data for the last two years is available for an in-depth mathematical analysis. The continuous analysis of consumption data would be established, when more measurements from smart meters are available. The extent of introduction of smart meters should be specified during this process in order to gain the maximum benefit for the whole society (consumers, grid companies, state authorities), because there are still many uncertain and variable factors. For example, it is necessary to consider statistical load variations by hour, dependence of electricity consumption on temperature fluctuations, consumer behaviour and demand response to market signals to reduce electricity consumption in the short and long term, consumer's ambitions and capability to install home automation for regulation of electricity consumption. To develop the demand response, it is necessary to analyse the whole array of additional factors, such as expected cost reduction of smart meters, possible extension of their functionality, further development of information exchange systems, as well as standard requirements and different political and regulatory decisions regarding the reduction of electricity consumption and energy efficiency.

  13. NASA Social

    NASA Image and Video Library

    2012-05-19

    A NASA Social follower holds up a mobile device as NASA Administrator Charles Bolden, left, and Kennedy Space Center director Robert Cabana appear at the NASA Social event, Friday morning, May 19, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  14. Annotating smart environment sensor data for activity learning.

    PubMed

    Szewcyzk, S; Dwan, K; Minor, B; Swedlove, B; Cook, D

    2009-01-01

    The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track the activities that people perform at home. Machine learning techniques can perform this task, but the software algorithms rely upon large amounts of sample data that is correctly labeled with the corresponding activity. Labeling, or annotating, sensor data with the corresponding activity can be time consuming, may require input from the smart home resident, and is often inaccurate. Therefore, in this paper we investigate four alternative mechanisms for annotating sensor data with a corresponding activity label. We evaluate the alternative methods along the dimensions of annotation time, resident burden, and accuracy using sensor data collected in a real smart apartment.

  15. Biomimetic approaches with smart interfaces for bone regeneration.

    PubMed

    Sailaja, G S; Ramesh, P; Vellappally, Sajith; Anil, Sukumaran; Varma, H K

    2016-11-05

    A 'smart tissue interface' is a host tissue-biomaterial interface capable of triggering favourable biochemical events inspired by stimuli responsive mechanisms. In other words, biomaterial surface is instrumental in dictating the interface functionality. This review aims to investigate the fundamental and favourable requirements of a 'smart tissue interface' that can positively influence the degree of healing and promote bone tissue regeneration. A biomaterial surface when interacts synergistically with the dynamic extracellular matrix, the healing process become accelerated through development of a smart interface. The interface functionality relies equally on bound functional groups and conjugated molecules belonging to the biomaterial and the biological milieu it interacts with. The essential conditions for such a special biomimetic environment are discussed. We highlight the impending prospects of smart interfaces and trying to relate the design approaches as well as critical factors that determine species-specific functionality with special reference to bone tissue regeneration.

  16. Street Smarts vs. Book Smarts: The Figured World of Smartness in the Lives of Marginalized, Urban Youth

    ERIC Educational Resources Information Center

    Hatt, Beth

    2007-01-01

    How smartness is defined within schools contributes to low academic achievement by poor and racial/ethnic minority students. Using Holland et al.'s (1998) [Holland, D., Lachicotte, W., Skinner, D., & Cain, C. (Eds.) (1998). "Identity and agency in cultural worlds." Cambridge, MA: Harvard University Press.] concept of "figured worlds," this paper…

  17. A Portable Shoulder-Mounted Camera System for Surgical Education in Spine Surgery.

    PubMed

    Pham, Martin H; Ohiorhenuan, Ifije E; Patel, Neil N; Jakoi, Andre M; Hsieh, Patrick C; Acosta, Frank L; Wang, Jeffrey C; Liu, John C

    2017-02-07

    The past several years have demonstrated an increased recognition of operative videos as an important adjunct for resident education. Currently lacking, however, are effective methods to record video for the purposes of illustrating the techniques of minimally invasive (MIS) and complex spine surgery. We describe here our experiences developing and using a shoulder-mounted camera system for recording surgical video. Our requirements for an effective camera system included wireless portability to allow for movement around the operating room, camera mount location for comfort and loupes/headlight usage, battery life for long operative days, and sterile control of on/off recording. With this in mind, we created a shoulder-mounted camera system utilizing a GoPro™ HERO3+, its Smart Remote (GoPro, Inc., San Mateo, California), a high-capacity external battery pack, and a commercially available shoulder-mount harness. This shoulder-mounted system was more comfortable to wear for long periods of time in comparison to existing head-mounted and loupe-mounted systems. Without requiring any wired connections, the surgeon was free to move around the room as needed. Over the past several years, we have recorded numerous MIS and complex spine surgeries for the purposes of surgical video creation for resident education. Surgical videos serve as a platform to distribute important operative nuances in rich multimedia. Effective and practical camera system setups are needed to encourage the continued creation of videos to illustrate the surgical maneuvers in minimally invasive and complex spinal surgery. We describe here a novel portable shoulder-mounted camera system setup specifically designed to be worn and used for long periods of time in the operating room.

  18. Learn about SmartWay

    EPA Pesticide Factsheets

    The SmartWay® Program is public-private initiative between EPA, large and small trucking companies, rail carriers, logistics companies, commercial manufacturers, retailers, and other federal and state agencies.

  19. Reduction of peak energy demand based on smart appliances energy consumption adjustment

    NASA Astrophysics Data System (ADS)

    Powroźnik, P.; Szulim, R.

    2017-08-01

    In the paper the concept of elastic model of energy management for smart grid and micro smart grid is presented. For the proposed model a method for reducing peak demand in micro smart grid has been defined. The idea of peak demand reduction in elastic model of energy management is to introduce a balance between demand and supply of current power for the given Micro Smart Grid in the given moment. The results of the simulations studies were presented. They were carried out on real household data available on UCI Machine Learning Repository. The results may have practical application in the smart grid networks, where there is a need for smart appliances energy consumption adjustment. The article presents a proposal to implement the elastic model of energy management as the cloud computing solution. This approach of peak demand reduction might have application particularly in a large smart grid.

  20. Irvine Smart Grid Demonstration, a Regional Smart Grid Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yinger, Robert; Irwin, Mark

    ISGD was a comprehensive demonstration that spanned the electricity delivery system and extended into customer homes. The project used phasor measurement technology to enable substation-level situational awareness, and demonstrated SCE’s next-generation substation automation system. It extended beyond the substation to evaluate the latest generation of distribution automation technologies, including looped 12-kV distribution circuit topology using URCIs. The project team used DVVC capabilities to demonstrate CVR. In customer homes, the project evaluated HAN devices such as smart appliances, programmable communicating thermostats, and home energy management components. The homes were also equipped with energy storage, solar PV systems, and a number ofmore » energy efficiency measures (EEMs). The team used one block of homes to evaluate strategies and technologies for achieving ZNE. A home achieves ZNE when it produces at least as much renewable energy as the amount of energy it consumes annually. The project also assessed the impact of device-specific demand response (DR), as well as load management capabilities involving energy storage devices and plug-in electric vehicle charging equipment. In addition, the ISGD project sought to better understand the impact of ZNE homes on the electric grid. ISGD’s SENet enabled end-to-end interoperability between multiple vendors’ systems and devices, while also providing a level of cybersecurity that is essential to smart grid development and adoption across the nation. The ISGD project includes a series of sub-projects grouped into four logical technology domains: Smart Energy Customer Solutions, Next-Generation Distribution System, Interoperability and Cybersecurity, and Workforce of the Future. Section 2.3 provides a more detailed overview of these domains.« less

  1. How to engage end-users in smart energy behaviour?

    NASA Astrophysics Data System (ADS)

    Valkering, Pieter; Laes, Erik; Kessels, Kris; Uyterlinde, Matthijs; Straver, Koen

    2014-12-01

    End users will play a crucial role in up-coming smart grids that aim to link end-users and energy providers in a better balanced and more efficient electricity system. Within this context, this paper aims to deliver a coherent view on current good practice in end-user engagement in smart grid projects. It draws from a recent review of theoretical insights from sustainable consumption behaviour, social marketing and innovation systems and empirical insights from recent smart grid projects to create an inventory of common motivators, enablers and barriers of behavioural change, and the end-user engagement principles that can be derived from that. We conclude with identifying current research challenges as input for a research agenda on end-user engagement in smart grids.

  2. VO₂ thermochromic smart window for energy savings and generation.

    PubMed

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-10-24

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.

  3. Effect of smart phone use on dynamic postural balance.

    PubMed

    Cho, Sung-Hak; Choi, Mun-Hee; Goo, Bong-Oh

    2014-07-01

    [Purpose] The present study investigated what kind of effect smart phone use has on dynamic postural balance. [Subjects] The study subjects were 30 healthy students in their 20's who were recruited from a University in Busan, Korea. [Methods] The present experiment was quasi-experimental research which measured the postural balance (Biodex) of subjects while they sent text messages via smart phones in the standing position with the eyes open, and while they used two-way SNS. [Results] There were significant differences between standing and the dual-task situations. Among dual tasks using smart phones, SNS using situations showed the highest instability. [Conclusion] The use of smart phones in less stable conditions such as while walking or in moving vehicles should be discouraged.

  4. Reversible hemispheric hypoperfusion in two cases of SMART syndrome.

    PubMed

    Wai, Karmen; Balabanski, Anna; Chia, Nicholas; Kleinig, Timothy

    2017-09-01

    Stroke-like migraine attacks after radiation therapy (SMART) syndrome manifests as prolonged episodes of cortical dysfunction, years after cranial irradiation. We present two cases demonstrating reversible hemispheric hypoperfusion. Case 1 presented with left hemispheric symptoms following previous similar episodes. CT perfusion (CTP) demonstrated reversible hemispheric hypoperfusion; subsequent investigations were consistent with SMART syndrome. Case 2 presented following the third episode of a hemispheric syndrome with near-identical CTP abnormalities. L-arginine was administered with rapid reversal of clinical and CTP abnormalities. We conclude that SMART syndrome may demonstrate significant hypoperfusion on hyperacute CTP without subsequent infarction. Impaired cerebrovascular autoregulation probably contributes to cortical dysfunction in SMART syndrome. L-arginine warrants investigation as a potential treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Definition of an Ontology Matching Algorithm for Context Integration in Smart Cities

    PubMed Central

    Otero-Cerdeira, Lorena; Rodríguez-Martínez, Francisco J.; Gómez-Rodríguez, Alma

    2014-01-01

    In this paper we describe a novel proposal in the field of smart cities: using an ontology matching algorithm to guarantee the automatic information exchange between the agents and the smart city. A smart city is composed by different types of agents that behave as producers and/or consumers of the information in the smart city. In our proposal, the data from the context is obtained by sensor and device agents while users interact with the smart city by means of user or system agents. The knowledge of each agent, as well as the smart city's knowledge, is semantically represented using different ontologies. To have an open city, that is fully accessible to any agent and therefore to provide enhanced services to the users, there is the need to ensure a seamless communication between agents and the city, regardless of their inner knowledge representations, i.e., ontologies. To meet this goal we use ontology matching techniques, specifically we have defined a new ontology matching algorithm called OntoPhil to be deployed within a smart city, which has never been done before. OntoPhil was tested on the benchmarks provided by the well known evaluation initiative, Ontology Alignment Evaluation Initiative, and also compared to other matching algorithms, although these algorithms were not specifically designed for smart cities. Additionally, specific tests involving a smart city's ontology and different types of agents were conducted to validate the usefulness of OntoPhil in the smart city environment. PMID:25494353

  6. Definition of an Ontology Matching Algorithm for Context Integration in Smart Cities.

    PubMed

    Otero-Cerdeira, Lorena; Rodríguez-Martínez, Francisco J; Gómez-Rodríguez, Alma

    2014-12-08

    In this paper we describe a novel proposal in the field of smart cities: using an ontology matching algorithm to guarantee the automatic information exchange between the agents and the smart city. A smart city is composed by different types of agents that behave as producers and/or consumers of the information in the smart city. In our proposal, the data from the context is obtained by sensor and device agents while users interact with the smart city by means of user or system agents. The knowledge of each agent, as well as the smart city's knowledge, is semantically represented using different ontologies. To have an open city, that is fully accessible to any agent and therefore to provide enhanced services to the users, there is the need to ensure a seamless communication between agents and the city, regardless of their inner knowledge representations, i.e., ontologies. To meet this goal we use ontology matching techniques, specifically we have defined a new ontology matching algorithm called OntoPhil to be deployed within a smart city, which has never been done before. OntoPhil was tested on the benchmarks provided by the well known evaluation initiative, Ontology Alignment Evaluation Initiative, and also compared to other matching algorithms, although these algorithms were not specifically designed for smart cities. Additionally, specific tests involving a smart city's ontology and different types of agents were conducted to validate the usefulness of OntoPhil in the smart city environment.

  7. Human-Computer Interaction in Smart Environments

    PubMed Central

    Paravati, Gianluca; Gatteschi, Valentina

    2015-01-01

    Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  8. Role of Smart Grids in Integrating Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speer, B.; Miller, M.; Schaffer, W.

    2015-05-27

    This report was prepared for the International Smart Grid Action Network (ISGAN), which periodically publishes briefs and discussion papers on key topics of smart grid development globally. The topic of this report was selected by a multilateral group of national experts participating in ISGAN Annex 4, a working group that aims to produce synthesis insights for decision makers. This report is an update of a 2012 ISGAN Annex 4 report entitled “Smart Grid Contributions to Variable Renewable Resource Integration.” That report and other past publications of ISGAN Annexes can be found at www.iea-isgan.org and at www.cleanenergysolutions.org.

  9. SODA: Smart Objects, Dumb Archives

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Maly, Kurt; Zubair, Mohammad; Shen, Stewart N. T.

    2004-01-01

    We present the Smart Object, Dumb Archive (SODA) model for digital libraries (DLs). The SODA model transfers functionality traditionally associated with archives to the archived objects themselves. We are exploiting this shift of responsibility to facilitate other DL goals, such as interoperability, object intelligence and mobility, and heterogeneity. Objects in a SODA DL negotiate presentation of content and handle their own terms and conditions. In this paper we present implementations of our smart objects, buckets, and our dumb archive (DA). We discuss the status of buckets and DA and how they are used in a variety of DL projects.

  10. Comparative advantage between traditional and smart navigation systems

    NASA Astrophysics Data System (ADS)

    Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan

    2013-03-01

    The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).

  11. Rethinking GIS Towards The Vision Of Smart Cities Through CityGML

    NASA Astrophysics Data System (ADS)

    Guney, C.

    2016-10-01

    Smart cities present a substantial growth opportunity in the coming years. The role of GIS in the smart city ecosystem is to integrate different data acquired by sensors in real time and provide better decisions, more efficiency and improved collaboration. Semantically enriched vision of GIS will help evolve smart cities into tomorrow's much smarter cities since geospatial/location data and applications may be recognized as a key ingredient of smart city vision. However, it is need for the Geospatial Information communities to debate on "Is 3D Web and mobile GIS technology ready for smart cities?" This research places an emphasis on the challenges of virtual 3D city models on the road to smarter cities.

  12. My Project. In: SMARTe20ll, EPA/600/C-10/007

    EPA Science Inventory

    SMARTe's "My Project" is intended to allow stakeholders to work together in a project "team room" and evaluate different reuse options for their specific situation. "My Project" is a password protected version of SMARTe. This personal SMARTe site has pull down menus for access ...

  13. 75 FR 66752 - Smart Grid Interoperability Standards; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid... adoption of Smart Grid Interoperability Standards (Standards) in their States. On October 6, 2010, the....m. Eastern time in conjunction with the NARUC/FERC Collaborative on Smart Response (Collaborative...

  14. Engineering the smart factory

    NASA Astrophysics Data System (ADS)

    Harrison, Robert; Vera, Daniel; Ahmad, Bilal

    2016-10-01

    The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.

  15. AquaSMART: Water & Boating Safety, Grades K-2. Teacher's Guide.

    ERIC Educational Resources Information Center

    Texas State Dept. of Parks and Wildlife, Austin.

    This teacher's guide accompanies a program designed to teach water and boating safety to students in grades K-2. The written curriculum accompanies a video, AquaSMART K-2. The theme of the curriculum is AquaSMART. To become AquaSMART, students must learn 10 basic lessons for water and boating safety. The teacher's guide begins with an overview of…

  16. Sensor Transmission Power Schedule for Smart Grids

    NASA Astrophysics Data System (ADS)

    Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.

    2017-11-01

    Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).

  17. Microencapsulation of Corrosion Indicators for Smart Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  18. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids

    PubMed Central

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic. PMID:27007951

  19. Elliptic Curve Cryptography-Based Authentication with Identity Protection for Smart Grids.

    PubMed

    Zhang, Liping; Tang, Shanyu; Luo, He

    2016-01-01

    In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham-Yahalom logic.

  20. Automated Clinical Assessment from Smart home-based Behavior Data

    PubMed Central

    Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen

    2016-01-01

    Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behaviour in the home and predicting standard clinical assessment scores of the residents. To accomplish this goal, we propose a Clinical Assessment using Activity Behavior (CAAB) approach to model a smart home resident’s daily behavior and predict the corresponding standard clinical assessment scores. CAAB uses statistical features that describe characteristics of a resident’s daily activity performance to train machine learning algorithms that predict the clinical assessment scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years using prediction and classification-based experiments. In the prediction-based experiments, we obtain a statistically significant correlation (r = 0.72) between CAAB-predicted and clinician-provided cognitive assessment scores and a statistically significant correlation (r = 0.45) between CAAB-predicted and clinician-provided mobility scores. Similarly, for the classification-based experiments, we find CAAB has a classification accuracy of 72% while classifying cognitive assessment scores and 76% while classifying mobility scores. These prediction and classification results suggest that it is feasible to predict standard clinical scores using smart home sensor data and learning-based data analysis. PMID:26292348

  1. NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams

    NASA Technical Reports Server (NTRS)

    Prahst, Steve

    2003-01-01

    Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.

  2. NASA's Optical Measurement Program 2014

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Lederer, S. M.; Stansbery, G.; Seitzer, P.; Buckalew, B.; Abercromby, K.; Barker, E.

    2014-01-01

    The Optical Measurements Group (OMG) within the NASA Orbital Debris Program Office (ODPO) addresses U.S. National Space Policy goals by monitoring and characterizing debris. Since 2001, the OMG has used the Michigan Orbital Debris Survey Telescope (MODEST) at Cerro Tololo Inter-American Observatory (CTIO) in Chile for general orbital debris surveys. The 0.6-m Schmidt MODEST provides calibrated astronomical data of GEO targets, both catalogued and uncatalogued debris, with excellent image quality. The data are utilized by the ODPO modeling group and are included in the Orbital Debris Engineering Model (ORDEM) v. 3.0. MODEST and the CTIO/SMARTS (Small and Moderate Aperture Research Telescope System) 0.9 m are both employed to acquire filter photometry data as well as synchronously observe targets in selected optical filters. Obtaining data synchronously yields data for material composition studies as well as longer orbital arc data on the same target without time delay or bias from a rotating, tumbling, or spinning target. Observations of GEO orbital debris using the twin 6.5-m Magellan telescopes at Las Campanas Observatory in Chile for deep imaging (Baade) and spectroscopic data (Clay) began in 2011. Through the data acquired on Baade, debris has been detected that reaches approx. 3 magnitudes fainter than detections with MODEST, while the spectral data from Clay provide better resolved information used in material characterization analyses. To better characterize and model optical data, the Optical Measurements Center (OMC) at NASA/JSC has been in operation since 2005, resulting in a database of comparison laboratory data. The OMC is designed to emulate illumination conditions in space using equipment and techniques that parallel telescopic observations and sourcetarget- sensor orientations. Lastly, the OMG is building the Meter Class Autonomous Telescope (MCAT) at Ascension Island. The 1.3-m telescope is designed to observe GEO and LEO targets, using a modified

  3. Automated Assessment of Cognitive Health Using Smart Home Technologies

    PubMed Central

    Dawadi, Prafulla N.; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2014-01-01

    BACKGROUND The goal of this work is to develop intelligent systems to monitor the well being of individuals in their home environments. OBJECTIVE This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. METHODS This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. RESULTS Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve = 0.80, g-mean = 0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. CONCLUSIONS The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained. PMID:23949177

  4. A smart dust biosensor powered by kinesin motors.

    PubMed

    Fischer, Thorsten; Agarwal, Ashutosh; Hess, Henry

    2009-03-01

    Biosensors can be miniaturized by either injecting smaller volumes into micro- and nanofluidic devices or immersing increasingly sophisticated particles known as 'smart dust' into the sample. The term 'smart dust' originally referred to cubic-millimetre wireless semiconducting sensor devices that could invisibly monitor the environment in buildings and public spaces, but later it also came to include functional micrometre-sized porous silicon particles used to monitor yet smaller environments. The principal challenge in designing smart dust biosensors is integrating transport functions with energy supply into the device. Here, we report a hybrid microdevice that is powered by ATP and relies on antibody-functionalized microtubules and kinesin motors to transport the target analyte into a detection region. The transport step replaces the wash step in traditional double-antibody sandwich assays. Owing to their small size and autonomous function, we envision that large numbers of such smart dust biosensors could be inserted into organisms or distributed into the environment for remote sensing.

  5. Review of current status of smart structures and integrated systems

    NASA Astrophysics Data System (ADS)

    Chopra, Inderjit

    1996-05-01

    A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are

  6. Benefits Analysis of Smart Grid Projects. White paper, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marnay, Chris; Liu, Liping; Yu, JianCheng

    Smart grids are rolling out internationally, with the United States (U.S.) nearing completion of a significant USD4-plus-billion federal program funded under the American Recovery and Reinvestment Act (ARRA-2009). The emergence of smart grids is widespread across developed countries. Multiple approaches to analyzing the benefits of smart grids have emerged. The goals of this white paper are to review these approaches and analyze examples of each to highlight their differences, advantages, and disadvantages. This work was conducted under the auspices of a joint U.S.-China research effort, the Climate Change Working Group (CCWG) Implementation Plan, Smart Grid. We present comparative benefits assessmentsmore » (BAs) of smart grid demonstrations in the U.S. and China along with a BA of a pilot project in Europe. In the U.S., we assess projects at two sites: (1) the University of California, Irvine campus (UCI), which consists of two distinct demonstrations: Southern California Edison’s (SCE) Irvine Smart Grid Demonstration Project (ISGD) and the UCI campus itself; and (2) the Navy Yard (TNY) area in Philadelphia, which has been repurposed as a mixed commercial-industrial, and possibly residential, development. In China, we cover several smart-grid aspects of the Sino-Singapore Tianjin Eco-city (TEC) and the Shenzhen Bay Technology and Ecology City (B-TEC). In Europe, we look at a BA of a pilot smart grid project in the Malagrotta area west of Rome, Italy, contributed by the Joint Research Centre (JRC) of the European Commission. The Irvine sub-project BAs use the U.S. Department of Energy (U.S. DOE) Smart Grid Computational Tool (SGCT), which is built on methods developed by the Electric Power Research Institute (EPRI). The TEC sub-project BAs apply Smart Grid Multi-Criteria Analysis (SG-MCA) developed by the State Grid Corporation of China (SGCC) based on the analytic hierarchy process (AHP) with fuzzy logic. The B-TEC and TNY sub-project BAs are evaluated using

  7. Doing Your Part To Help Your Child Become SMART (Successful, Motivated, Autonomous, Responsible, Thoughtful): Six Workshops on Parenting SMART Learners.

    ERIC Educational Resources Information Center

    Sattes, Beth; Walsh, Jackie; Hickman, Mickey

    A SMART Learner is a lifelong learner who can adapt to rapid change and who possesses characteristics associated with success in and out of school. These workshop materials to help parents help their children become SMART learners provide: information from current research and best practice; learning activities that will actively engage parents in…

  8. Evaluation of RugbySmart: a rugby union community injury prevention programme.

    PubMed

    Gianotti, Simon M; Quarrie, Ken L; Hume, Patria A

    2009-05-01

    RugbySmart, a rugby union injury prevention programme, was launched in New Zealand in 2001. It was compulsory for all coaches and referees to complete RugbySmart requirements annually in order to continue coaching or refereeing. After 5 years of implementation the programme partners, Accident Compensation Corporation and New Zealand Rugby Union, evaluated RugbySmart to determine its effectiveness in reducing injuries. The purpose was to evaluate the effect of RugbySmart on reducing injury rates per 100,000 players and resulting injury prevention behaviours. The RugbySmart programme was associated with a decrease in injury claims per 100,000 players in most areas the programme targeted; the programme had negligible impact on non-targeted injury sites. The decrease in injury claims numbers was supported by results from the player behaviour surveys pre- and post-RugbySmart. There was an increase in safe behaviour in the contact situations of tackle, scrum and ruck technique.

  9. Development of smart textiles with embedded fiber optic chemical sensors

    NASA Astrophysics Data System (ADS)

    Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.

    2004-03-01

    Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.

  10. The Smart Health Initiative in China: The Case of Wuhan, Hubei Province.

    PubMed

    Fan, Meiyu; Sun, Jian; Zhou, Bin; Chen, Min

    2016-03-01

    To introduce smart health in Wuhan, and provide some references for other cities. As the largest mega-city in central China, Wuhan is investing large amounts of resources to push forward the development of Smart Wuhan and Health Wuhan, and it has unique features. It is one of the centerpieces of China's New Healthcare Reform, and great hope is put on it to help solve the conflict between limited healthcare resources and the large population of patients. How to plan and design smart health is important. The construction of Wuhan Smart Health includes some aspects as follows, like requirement analysis, the establishment of objectives and blueprint, the architecture design of regional health information platform, evaluation and implementation, problems and solutions, and so on. Wuhan Smart Health has obtained some achievements in health network, information systems, resident's health records, information standard, and the first phase of municipal health information platform. The focus of this article is the whole construction process of smart health in Wuhan. Although there are some difficulties during this period, some smart health services and management have been reflected. Compared with other cities or countries, Wuhan Smart Health has its own advantages and disadvantages. This study aims to provide a reference for other cities. Because smart health of Wuhan is characteristic in construction mode. Though still in the initial stage, it has great potentials in the future.

  11. Smart money management.

    PubMed

    Larkin, Howard

    2011-10-01

    With the nation's health care payment system on the verge of a dramatic overhaul and the cost of everything from workforce to construction continuing to climb, hospitals are experimenting with ways to control expenses. This cover article launches our yearlong Fiscal Fitness series on smart money management.

  12. SMARTE: NEXT STEPS

    EPA Science Inventory

    SMARTe will be developed in an overlapping phased approach. The first phase began in 2003 and focused on the collection of information and resources and the transfer of this data. This phase is ongoing as information and resources are updated annually. The second phase began in 2...

  13. The SMART Theory and Modeling Team: An Integrated Element of Mission Development and Science Analysis

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.

    2005-01-01

    When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored

  14. Abortion - surgical

    MedlinePlus

    Suction curettage; Surgical abortion; Elective abortion - surgical; Therapeutic abortion - surgical ... Surgical abortion involves dilating the opening to the uterus (cervix) and placing a small suction tube into the uterus. ...

  15. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, Senior Advisor to the NASA Administrator, introduces Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, the agency's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  16. NASA Social

    NASA Image and Video Library

    2011-05-18

    Ed Mango, of the NASA Commercial Crew Office, speaks during a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  17. Smart Learning Adoption in Employees and HRD Managers

    ERIC Educational Resources Information Center

    Lee, Junghwan; Zo, Hangjung; Lee, Hwansoo

    2014-01-01

    The innovation of online technologies and the rapid diffusion of smart devices are changing workplace learning environment. Smart learning, as emerging learning paradigm, enables employees' learning to take place anywhere and anytime. Workplace learning studies, however, have focused on traditional e-learning environment, and they have failed…

  18. 78 FR 18322 - Smart Grid Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... meeting is to discuss the NIST Smart Grid Program Plan. The agenda may change to accommodate Committee business. The final agenda will be posted on the Smart Grid Web site at http://www.nist.gov/smartgrid..., Administration Building, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg...

  19. Implementing Smart School Technology at the Secondary Level.

    ERIC Educational Resources Information Center

    Stallard, Charles K.

    This paper describes the characteristics of "smart schools" and offers guidelines for developing such schools. Smart schools are defined as having three features: (1) they are computer networked via local area networks in order to share information through teleconferencing, databases, and electronic mail; (2) they are connected beyond…

  20. How Older Adults Make Decisions regarding Smart Technology: An Ethnographic Approach

    ERIC Educational Resources Information Center

    Davenport, Rick D.; Mann, William; Lutz, Barbara

    2012-01-01

    Comparatively little research has been conducted regarding the smart technology needs of the older adult population despite the proliferation of smart technology prototypes. The purpose of this study was to explore the perceived smart technology needs of older adults with mobility impairments while using an ethnographic research approach to…