Sample records for nasa sport goes-r

  1. NASA SPoRT GOES-R Proving Ground Activities

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Fuell, Kevin K.; Jedloec, Gary J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) program is a partner with the GOES-R Proving Ground (PG) helping prepare forecasters understand the unique products to come from the GOES-R instrument suite. SPoRT is working collaboratively with other members of the GOES-R PG team and Algorithm Working Group (AWG) scientists to develop and disseminate a suite of proxy products that address specific forecast problems for the WFOs, Regional and National Support Centers, and other NOAA users. These products draw on SPoRT s expertise with the transition and evaluation of products into operations from the MODIS instrument and the North Alabama Lightning Mapping Array (NALMA). The MODIS instrument serves as an excellent proxy for the Advanced Baseline Imager (ABI) that will be aboard GOES-R. SPoRT has transitioned and evaluated several multi-channel MODIS products. The true and false color products are being used in natural hazard detection by several SPoRT partners to provide better observation of land features, such as fires, smoke plumes, and snow cover. Additionally, many of SPoRT s partners are coastal offices and already benefit from the MODIS sea surface temperature composite. This, along with other surface feature observations will be developed into ABI proxy products for diagnostic use in the forecast process as well as assimilation into forecast models. In addition to the MODIS instrument, the NALMA has proven very valuable to WFOs with access to these total lightning data. These data provide situational awareness and enhanced warning decision making to improve lead times for severe thunderstorm and tornado warnings. One effort by SPoRT scientists includes a lightning threat product to create short-term model forecasts of lightning activity. Additionally, SPoRT is working with the AWG to create GLM proxy data from several of the ground based total lightning networks, such as the NALMA. The evaluation will focus on the vastly improved spatial

  2. An Overview of NASA SPoRT GOES-R JPSS Proving Ground Testbed Activities

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Stano, Geoffrey; Fuell, Kevin; Leroy, Anita; Mcgrath, Kevin; Molthan, Andrew; Schultz, Lori; Smith, Matthew; White, Kris; Schultz, Christopher; hide

    2017-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center is funded by NASA's Earth Science Division and NOAA's JPSS and GOES-R Proving Grounds to transition satellite products and capabilities to the NWS to improve short term (0-48 hr) forecasts on a regional and local scale. SPoRT currently collaborates with 30+ NWS WFOs (at least one in each NWS region) and 5 National Centers/Testbeds. SPoRT matches user-identified forecast challenges to specific products, providing access to these data in AWIPS through new plug-in development, and generating applications-based training to use the products for their needs (R20). Upon transition, SPoRT collaborates with the user to assess the product impact in a real-world environment for feedback to product developers (O2R) and to benefit their peers.

  3. SPoRT's Participation in the GOES-R Proving Ground Activity

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Fuell, K.; Smith, M. R.; Stano, G. T.; Molthan, A.

    2011-12-01

    The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT's activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental

  4. SPoRT's Participation in the GOES-R Proving Ground Activity

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Fuell, Kevin; Smith, Matthew; Stano, Geoffrey; Molthan, Andrew

    2011-01-01

    The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT s activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental

  5. SPoRT Participation in the GOES-R and JPSS Proving Grounds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Fuell, Kevin; Smith, Matthew

    2013-01-01

    For the last several years, the NASA Short-term Prediction Research and Transition (SPoRT) project at has been working with the various algorithm working groups and science teams to demonstrate the utility of future operational sensors for GOES-R and the suite of instruments for the JPSS observing platforms. For GOES-R, imagery and products have been developed from polar-orbiting sensors such as MODIS and geostationary observations from SEVIRI, simulated imagery, enhanced products derived from existing GOES satellites, and data from ground-based observing systems to generate pseudo or proxy products for the ABI and GLM instruments. The suite of products include GOES-POES basic and RGB hybrid imagery, total lightning flash products, quantitative precipitation estimates, and convective initiation products. SPoRT is using imagery and products from VIIRS, CrIS, ATMS, and OMPS to show the utility of data and products from their operational counterparts on JPSS. The products include VIIRS imagery in swath form, the GOES-POES hybrid, a suite of RGB products including the air mass RGB using water vapor and ozone channels from CrIS, and several DNB products. Over a dozen SPoRT collaborative WFOs and several National Centers are involved in an intensive evaluation of the operational utility of these products.

  6. GOES-R Proving Ground Activities at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew

    2011-01-01

    SPoRT is actively involved in GOES-R Proving Ground activities in a number of ways: (1) Applying the paradigm of product development, user training, and interaction to foster interaction with end users at NOAA forecast offices national centers. (2) Providing unique capabilities in collaboration with other GOES-R Proving Ground partners (a) Hybrid GOES-MODIS imagery (b) Pseudo-GLM via regional lightning mapping arrays (c) Developing new RGB imagery from EUMETSAT guidelines

  7. NASA/SPoRT's GOES-R Activities in Support of Product Development, Management, and Training

    NASA Astrophysics Data System (ADS)

    Fuell, K. K.; Jedlovec, G.; Molthan, A.; Stano, G. T.

    2012-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center supports many activities within the GOES-R Proving Grounds (PG). These include the development of imagery from existing instrumentation as a proxy to future Advanced Baseline Imager (ABI) capabilities on GOES-R. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible/Infrared Imager/Radiometer Suite (VIIRS) instruments are used to provide a glimpse of the multi-spectral capabilities that will become the norm as the number of channels and data rate dramatically increase with GOES-R. The NOAA/NWS has plans to provide operational users with all ABI channels at the highest resolution. Data fusion of individual channels into composite red, green, and blue imagery products will assist the end user with this future wave of information. While increasing the efficiency in the operational use of ABI channels, these composites provide only qualitative information. Within the GOES-R PG, SPoRT and other partners are exploring ways to include quantitative information as part of the composite imagery. However, limitations in local hardware processing and/or data bandwidth for users of the GOES-R data stream are challenges to overcome. This presentation will discuss the creation of these composite images as well as possible solutions to address these processing challenges. In a similar manner the Geostationary Lightning Mapper (GLM) to be launched on GOES-R presents several data management challenges. The GLM is a pioneering instrument to quantify total lightning from a geostationary platform. The expected data frequency from the GLM is to be at a sub-minute interval. Users of such a data set may have little experience in handling such a rapid update of information. To assist users, SPoRT is working with the NWS to develop tools within the user's decision support system to allow tracking and analysis of total lightning from a storm-based perspective. This presentation will discuss the

  8. NASA/SPoRT's GOES-R Activities in Support of Product Development, Management, and Training

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin K.; Jedlovec, Gary; Molthan, Andrew L.; Stano, Geoffrey T.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center supports many activities within the GOES-R Proving Grounds (PG). These include the development of imagery from existing instrumentation as a proxy to future Advanced Baseline Imager (ABI) capabilities on GOES-R. The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible/Infrared Imager/Radiometer Suite (VIIRS) instruments are used to provide a glimpse of the multi-spectral capabilities that will become the norm as the number of channels and data rate dramatically increase with GOES-R. The NOAA/NWS has plans to provide operational users with all ABI channels at the highest resolution. Data fusion of individual channels into composite red, green, and blue imagery products will assist the end user with this future wave of information. While increasing the efficiency in the operational use of ABI channels, these composites provide only qualitative information. Within the GOES-R PG, SPoRT and other partners are exploring ways to include quantitative information as part of the composite imagery. However, limitations in local hardware processing and/or data bandwidth for users of the GOES-R data stream are challenges to overcome. This presentation will discuss the creation of these composite images as well as possible solutions to address these processing challenges. In a similar manner the Geostationary Lightning Mapper (GLM) to be launched on GOES-R presents several data management challenges. The GLM is a pioneering instrument to quantify total lightning from a geostationary platform. The expected data frequency from the GLM is to be at a sub-minute interval. Users of such a data set may have little experience in handling such a rapid update of information. To assist users, SPoRT is working with the NWS to develop tools within the user fs decision support system to allow tracking and analysis of total lightning from a storm-based perspective. This presentation will discuss the

  9. Al Roker Interview with NASA for GOES-R Mission

    NASA Image and Video Library

    2016-11-19

    During the countdown for the launch of NOAA's Geostationary Operational Environmental Satellite, or GOES-R, Stephanie Martin of NASA Communications, right, interviews Al Roker, weather forecaster on NBC's "Today Show." GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  10. Al Roker Interview with NASA for GOES-R Mission

    NASA Image and Video Library

    2016-11-19

    During the countdown for the launch of NOAA's Geostationary Operational Environmental Satellite, or GOES-R, Stephanie Martin of NASA Communications, left, interviews Al Roker, weather forecaster on NBC's "Today Show." GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  11. Early Transition and Use of VIIRS and GOES-R Products by NWS Forecast Offices

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin K.; Smith, Mathew; Jedlovec, Gary

    2012-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the NPOESS Preparatory Project (NPP) satellite, part of the Joint Polar Satellite System (JPSS), and the ABI and GLM sensors scheduled for the GOES-R geostationary satellite will bring advanced observing capabilities to the operational weather community. The NASA Short-term Prediction Research and Transition (SPoRT) project at Marshall Space Flight Center has been facilitating the use of real-time experimental and research satellite data by NWS Weather Forecast Offices (WFOs) for a number of years to demonstrate the planned capabilities of future sensors to address particular forecast challenges through improve situational awareness and short-term weather forecasts. For the NOAA GOES-R Proving Ground (PG) activity, SPoRT is developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. SPoRT developed the a pseudo-Geostationary Lightning Mapper product and helped in the transition of the Algorithm Working Group (AWG) Convective Initiation (CI) proxy product for the Hazardous Weather Testbed (HWT) Spring Experiment,. Along with its partner WFOs, SPoRT is evaluating MODIS/GOES Hybrid products, which brings ABI-like data sets from existing NASA instrumentation in front of the forecaster for everyday use. The Hybrid uses near real-time MODIS imagery to demonstrate future ABI capabilities, while utilizing standard GOES imagery to provide the temporal frequency of geostationary imagery expected by operational forecasters. In addition, SPoRT is collaborating with the GOES-R hydrology AWG to transition a baseline proxy product for rainfall rate / quantitative precipitation estimate (QPE) to the OCONUS regions. For VIIRS, SPoRT is demonstrating multispectral observing capabilities and the utility of low-light channels not previously available on operational weather satellites to address a variety of weather forecast challenges. This presentation will discuss the results of

  12. Using the SPoRT POES/GOES Hybrid Product in OCONUS Forecasting

    NASA Technical Reports Server (NTRS)

    Smith, Matt; Fuell, Kevin; Nelson, Jim

    2014-01-01

    The SPoRT (Short-term Prediction and Research Transition) Program at the NASA/Marshall Space Flight Center has been providing unique NASA and NOAA data and techniques to partner Weather Forecast Offices (WFOs) for ten years. Data are provided in the Decision Support System used by WFO forecasters: AWIPS. For the last couple of years, SPoRT has been producing the POES/GOES Hybrid. This suite of products combines the strength ofl5- minute animations of GOES imagery - providing temporal continuity, with the higher resolution, relatively random availability, of polar orbiting (POES) imagery data. The product was first introduced with only MODIS data from NASA's Terra and Aqua satellites, but recently the VIIRS instrument onboard the Suomi-NPP satellite was added, providing better high-resolution coverage. These products represent SPoRT's efforts to prepare for higher resolution, higher frequency GOES-R imagery - as well as helping to move VIIRS (JPSS) data into the mainstream of weather forecasting. SPoRT generates 5 products for this dataset: Visible, Longwave Infrared (11 micrometers), Shortwave IR (3.7 micrometers), Water Vapor (6.7 micrometers), and Fog (Difference of 11 micrometer and 3.7 micrometer channels). The Water Vapor hybrid product has a Red-Blue-Green image from MODIS inlaid, since it provides even more qualitative information than water vapor alone. Animated examples of the products will be shown in this presentation. While the resolution at nadir of GOES imagery is nominally Han (4km for IR channels), the inlaid polar orbiter imagery has a resolution of 250m (lkm for IR channels). This has tremendous application in the continental US. However, in high latitudes, since the usefulness of GOES degrades poleward rapidly, the contrast of GOES and POES data is stark. The consistent temporal nature of GOES, even though at a reduced resolution at high latitudes, provides basic situational awareness, but the introduction of polar data is very helpful in seeing

  13. GOES-R Prelaunch News Conference

    NASA Image and Video Library

    2016-11-17

    NASA and industry leaders participate in a Geostationary Operational Environmental Satellite (GOES-R), prelaunch news conference in the Kennedy Space Center's Press Site auditorium in Florida. NASA and industry leaders include: Michael Curie, of NASA Communications; Stephen Volz, assistant administrator for satellite and information services, National Oceanic and Atmospheric Administration (NOAA's); Greg Mandt, GOES-R system program director, NOAA; Sandra Smalley, director, Joint Agency Satellite Division, NASA Headquarters; Omar Baez, launch director, NASA Kennedy; Scott Messer, program manager, NASA Missions, United Launch Alliance; and Clay Flinn, launch weather officer, 4th Weather Squadron, Cape Canaveral Air Force Station.

  14. GOES-R Prelaunch News Conference

    NASA Image and Video Library

    2016-11-17

    Members of the news media attend a Geostationary Operational Environmental Satellite (GOES-R) prelaunch news conference in the Kennedy Space Center's Press Site auditorium in Florida. NASA and industry leaders include: Michael Curie, of NASA Communications; Stephen Volz, assistant administrator for satellite and information services, National Oceanic and Atmospheric Administration (NOAA's); Greg Mandt, GOES-R system program director, NOAA; Sandra Smalley, director, Joint Agency Satellite Division, NASA Headquarters; Omar Baez, launch director, NASA Kennedy; Scott Messer, program manager, NASA Missions, United Launch Alliance; and Clay Flinn, launch weather officer, 4th Weather Squadron, Cape Canaveral Air Force Station.

  15. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, Sean Potter of NASA Communications, moderates a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  16. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Pam Sullivan, NASA's GOES-R flight director, left, and A.J. Sandora, Lockheed Martin's GOES-R Series Mechanical Operations Assembly, Test and Launch Operations (ATLO) manager, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  17. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). Briefing participants from left are: Steven Goodman, NOAA's GOES-R program scientist; Joseph A. Pica, director of the National Weather Service Office of Observations; and Sandra Cauffman, deputy director of NASA's Earth Science Division. GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  18. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, Sandra Cauffman, deputy director of NASA's Earth Science Division, speaks to the media during a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  19. GOES-R Prelaunch News Conference

    NASA Image and Video Library

    2016-11-17

    From left, Stephen Volz, assistant administrator for satellite and information services, National Oceanic and Atmospheric Administration (NOAA); Greg Mandt, GOES-R system program director, NOAA; and Sandra Smalley, director, Joint Agency Satellite Division, NASA Headquarters, speak to members of the news media during a Geostationary Operational Environmental Satellite (GOES-R) prelaunch news conference in the Kennedy Space Center's Press Site auditorium.

  20. GOES-R Prelaunch News Conference

    NASA Image and Video Library

    2016-11-17

    From left, Sandra Smalley, director, Joint Agency Satellite Division, NASA Headquarters; Omar Baez, launch director, NASA Kennedy; and Scott Messer, program manager, NASA Missions, United Launch Alliance, speak to members of the news media during a Geostationary Operational Environmental Satellite (GOES-R) prelaunch news conference in the Kennedy Space Center's Press Site auditorium in Florida.

  1. Colorado Lightning Mapping Array Collaborations through the GOES-R Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Szoke, Edward; Rydell, Nezette; Cox, Robert; Mazur, Rebecca

    2014-01-01

    For the past two years, the GOES-R Proving Ground has solicited proposals for its Visiting Scientist Program. NASA's Short-term Prediction Research and Transition (SPoRT) Center has used this opportunity to support the GOES-R Proving Ground by expanding SPoRT's total lightning collaborations. In 2012, this expanded the evaluation of SPoRT's pseudo-geostationary lightning mapper product to the Aviation Weather Center and Storm Prediction Center. This year, SPoRT has collaborated with the Colorado Lightning Mapping Array (COLMA) and potential end users. In particular, SPoRT is collaborating with the Cooperative Institute for Research in the Atmosphere (CIRA) and Colorado State University (CSU) to obtain these data in real-time. From there, SPoRT is supporting the transition of these data to the local forecast offices in Boulder, Colorado and Cheyenne, Wyoming as well as to Proving Ground projects (e.g., the Hazardous Weather Testbed's Spring Program and Aviation Weather Center's Summer Experiment). This presentation will focus on the results of this particular Visiting Scientist Program trip. In particular, the COLMA data are being provided to both forecast offices for initial familiarization. Additionally, several forecast issues have been highlighted as important uses for COLMA data in the operational environment. These include the utility of these data for fire weather situations, situational awareness for both severe weather and lightning safety, and formal evaluations to take place in the spring of 2014.

  2. GOES-R Arrival and Offload

    NASA Image and Video Library

    2016-08-22

    An Air Force C-5 Galaxy transport plane approaches the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida to deliver the GOES-R spacecraft for launch processing. The GOES series are weather satellites operated by NOAA to enhance forecasts. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  3. NOAA: Primary GOES-R instrument cleared for installation onto spacecraft

    Science.gov Websites

    : NOAA-NASA GOES-R Program Office) In early 2014 the ABI will be shipped from its developer, Exelis, in performance of power grids. NOAA manages the GOES-R Series program through an integrated NOAA-NASA office

  4. GOES-R Arrival and Offload

    NASA Image and Video Library

    2016-08-22

    A truck with a specialized transporter drives away from an Air Force C-5 Galaxy transport plane at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida to deliver the GOES-R spacecraft for launch processing. The GOES series are weather satellites operated by NOAA to enhance forecasts. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  5. GOES-R Arrival and Offload

    NASA Image and Video Library

    2016-08-22

    A truck with a specialized transporter drives out of the cargo hold of an Air Force C-5 Galaxy transport plane at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida to deliver the GOES-R spacecraft for launch processing. The GOES series are weather satellites operated by NOAA to enhance forecasts. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  6. GOES-R Prelaunch News Conference

    NASA Image and Video Library

    2016-11-17

    Scott Messer, program manager, NASA Missions, United Launch Alliance, speak to members of the news media during a Geostationary Operational Environmental Satellite (GOES-R) prelaunch news conference in the Kennedy Space Center's Press Site auditorium in Florida.

  7. GOES-R Prelaunch News Conference

    NASA Image and Video Library

    2016-11-17

    Sandra Smalley, director, Joint Agency Satellite Division, NASA Headquarters, speaks to members of the news media during a Geostationary Operational Environmental Satellite (GOES-R) prelaunch news conference in the Kennedy Space Center's Press Site auditorium in Florida.

  8. Development of IDEA product for GOES-R aerosol data

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Hoff, Raymond M.; Kondragunta, Shobha

    2009-08-01

    The NOAA GOES-R Advanced Baseline Imager (ABI) will have nearly the same capabilities as NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) to generate multi-wavelength retrievals of aerosol optical depth (AOD) with high temporal and spatial resolution, which can be used as a surrogate of surface particulate measurements such as PM2.5 (particulate matter with diameter less than 2.5 μm). To prepare for the launch of GOES-R and its application in the air quality forecasting, we have transferred and enhanced the Infusing satellite Data into Environmental Applications (IDEA) product from University of Wisconsin to NOAA NESDIS. IDEA was created through a NASA/EPA/NOAA cooperative effort. The enhanced IDEA product provides near-real-time imagery of AOD derived from multiple satellite sensors including MODIS Terra, MODIS Aqua, GOES EAST and GOES WEST imager. Air quality forecast guidance is produced through a trajectory model initiated at locations with high AOD retrievals and/or high aerosol index (AI) from OMI (Ozone Monitoring Instrument). The product is currently running at http://www.star.nesdis.noaa.gov/smcd/spb/aq/. The IDEA system will be tested using the GOES-R ABI proxy dataset, and will be ready to operate with GOES-R aerosol data when GOES-R is launched.

  9. Preparing the Direct Broadcast Community for GOES-R

    NASA Astrophysics Data System (ADS)

    Dubey, K. F.; Baptiste, E.; Prasad, K.; Shin, H.

    2012-12-01

    The first satellite in the United States next generation weather satellite program, GOES-R, will be launched in 2015. SeaSpace Corporation is using our recent experience and lessons learned from bringing Suomi NPP-capable direct reception systems online, to similarly bring direct reception solutions to future GOES-R users. This includes earlier outreach to customers, due to the advance budgeting deadline for procurement in many agencies. With the cancellation of eGRB, all current GOES gvar customer will need a new direct readout system, with a new receiver, high powered processing subsystem, and a larger antenna in some locations. SeaSpace's preparations have also included communicating with program leaders in NOAA and NASA regarding direct readout specifications and the development of the borrowing process for the government-procured GRB emulator. At the request of NASA, SeaSpace has offered input towards the emulator check-out process, which is expected to begin in spring 2013. After the launch of Suomi NPP, SeaSpace found a need by non-traditional customers (such as customers with non-SeaSpace ground stations or those getting data via the NOAA archive), for a processing-only subsystem. In response to this need, SeaSpace developed such a solution for Suomi NPP users, and plans to do similar for GOES-R. This presentation will cover the steps that SeaSpace is undertaking to prepare the members of the direct reception community for reception and processing of GOES-R satellite data, and detail the solutions offered.

  10. The GOES-R Spacecraft Space Weather Instruments and Level 2+ Products

    NASA Astrophysics Data System (ADS)

    Loto'aniu, Paul; Rodriguez, Juan; Machol, Janet; Kress, Brian; Darnel, Jonathan; Redmon, Robert; Rowland, William; Seation, Daniel; Tilton, Margaret; Denig, William

    2016-04-01

    Since their inception in the 1970s, the GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The space weather instruments on GOES-R will monitor: solar X-rays, UV light, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and Earth's magnetic field. These measurements are important for providing alerts and warnings to many customers, including satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-R space weather instruments and describes the space weather Level 2+ products that are being developed for GOES-R. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.

  11. NASA/SPoRt: GOES-R Activities in Support of Product Development, Management, and Training

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin; Jedlovec, Gary; Molthan, Andrew; Stano, Geoffrey

    2012-01-01

    SPoRT is using current capabilities of MODIS and VIIRS, combined with current GOES (i.e. Hybrid Imagery) to demonstrate mesoscale capabilities of future ABI instrument. SPoRT is transitioning RGBs from EUMETSAT standard "recipes" to demonstrate a method to more efficiently handle the increase channels/frequency of ABI. Challenges for RGB production exist. Internal vs. external production, Bit depth needed, Adding quantitative information, etc. SPoRT forming group to address these issues. SPoRT is leading efforts on the application of total lightning in operations and to educate users of this new capability. Training in many forms is used to support testbed activities and is a key part to the transition process.

  12. GOES-R Space Weather Data: Products and Data Access

    NASA Astrophysics Data System (ADS)

    Tilton, M.; Rowland, W. F.; Codrescu, S.; Denig, W. F.; Seaton, D. B.

    2016-12-01

    In November 2016 NOAA launched the first in the "R" series of Geostationary Operational Environmental Satellites (GOES-R). GOES-R continues a tradition of almost 40 years of continuous space and solar observations at geostationary orbit. Compared to its predecessors, the GOES-R satellite provides improved in situ measurements of charged particle and magnetic field environments. The satellite also offers enhanced remote sensing of the sun through ultraviolet (UV) imagery and X-ray/UV irradiance. After the spacecraft completes early-orbit checkout and calibration, GOES-R space weather data and derived products will be used for operations within NOAA's Space Weather Prediction Center and publicly released through the National Centers for Environmental Information (NCEI). This presentation will provide an overview of GOES-R space weather data ranging from direct measurements (L0 data) to higher level science (L2+) products developed by NCEI scientists. We will also present planned data access and distribution features. We emphasize our strategy to ensure data discoverability and accessibility, including our participation in NOAA's OneStop project and potential partnerships with NASA's Virtual Solar Observatory and projects like Helioviewer.

  13. GOES-R Encapsulation

    NASA Image and Video Library

    2016-10-21

    Team members with United Launch Alliance (ULA) prepare the Geostationary Operational Environmental Satellite (GOES-R) for encapsulation in the payload fairing inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  14. GOES-R Encapsulation

    NASA Image and Video Library

    2016-10-21

    The two halves of the payload fairing are fully closed around the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  15. GOES-R Encapsulation

    NASA Image and Video Library

    2016-10-21

    Team members with United Launch Alliance (ULA) monitor the progress as the two halves of the payload fairing close around the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  16. GOES-R Encapsulation

    NASA Image and Video Library

    2016-10-21

    Team members with United Launch Alliance (ULA) monitor the progress as the two halves of the payload fairing begin to close around the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  17. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, Steven Goodman, NOAA's GOES-R program scientist, speaks to the media during a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  18. SPoRT: Transitioning NASA and NOAA Experimental Data to the Operational Weather Community

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2013-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the NASA Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. With the ever-broadening application of real-time high resolution satellite data from current EOS, Suomi NPP, and planned JPSS and GOES-R sensors to weather forecast problems, significant challenges arise in the acquisition, delivery, and integration of the new capabilities into the decision making process of the operational weather community. For polar orbiting sensors such as MODIS, AIRS, VIIRS, and CRiS, the use of direct broadcast ground stations is key to the real-time delivery of the data and derived products in a timely fashion. With the ABI on the geostationary GOES-R satellite, the data volumes will likely increase by a factor of 5-10 from current data streams. However, the high data volume and limited bandwidth of end user facilities presents a formidable obstacle to timely access to the data. This challenge can be addressed through the use of subsetting techniques, innovative web services, and the judicious selection of data formats. Many of these approaches have been implemented by SPoRT for the delivery of real-time products to NWS forecast offices and other weather entities. Once available in decision support systems like AWIPS II, these new data and products must be integrated into existing and new displays that allow for the integration of the data with existing operational products in these systems. SPoRT is leading the way in demonstrating this enhanced capability. This paper will highlight the ways SPoRT is overcoming many of the challenges presented by the enormous data

  19. GOES-R: Satellite Insight

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Austin J.; Leon, Nancy J.; Novati, Alexander; Lincoln, Laura K.; Fisher, Diane K.

    2012-01-01

    GOES-R: Satellite Insight seeks to bring awareness of the GOES-R (Geostationary Operational Environmental Satellite -- R Series) satellite currently in development to an audience of all ages on the emerging medium of mobile games. The iPhone app (Satellite Insight) was created for the GOES-R Program. The app describes in simple terms the types of data products that can be produced from GOES-R measurements. The game is easy to learn, yet challenging for all audiences. It includes educational content and a path to further information about GOESR, its technology, and the benefits of the data it collects. The game features action-puzzle game play in which the player must prevent an overflow of data by matching falling blocks that represent different types of GOES-R data. The game adds more different types of data blocks over time, as long as the player can prevent a data overflow condition. Points are awarded for matches, and players can compete with themselves to beat their highest score.

  20. GOES-R Liftoff

    NASA Image and Video Library

    2016-11-19

    At Cape Canaveral Air Force Station's Space Launch Complex 41, an Atlas V rocket with NOAA's Geostationary Operational Environmental Satellite, or GOES-R, lifts off at 6:42 p.m. EST. GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  1. NASA to launch NOAA's GOES-C earth monitoring satellite

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA's launch of the GOES-C geostationary satellite from Kennedy Space Center, Florida is planned for June 16, 1978. The launch vehicle is a three stage Delta 2914. As its contribution, GOES-C will contribute information from a data sparse area of the world centered in the Indian Ocean. GOES-C will replace GOES-1 and will become GOES-3 once it has successfully orbited at 35,750 kilometers (22,300 miles). NASA's Spaceflight Tracking and Data Network (STDN) will provide support for the mission. Included in the article are: (1) Delta launch vehicle statistics, first, second and third stages; (2) Delta/GOES-C major launch events; (3) Launch operations; (4) Delta/GOES-C personnel.

  2. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). Briefing participants included Steven Goodman, NOAA's GOES-R program scientist, and Joseph A. Pica, director of the National Weather Service Office of Observations. GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  3. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    A crane is used to lift the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  4. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    Enclosed in its payload fairing, NOAA's Geostationary Operational Environmental Satellite (GOES-R) is lifted into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch aboard the rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  5. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    Preparations are underway to lift NOAA's Geostationary Operational Environmental Satellite (GOES-R), enclosed in its payload fairing at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  6. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    A crane has been attached to the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  7. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    A crane begins to lift the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. GOES-R will be mated to the United Launch Alliance Atlas V Centaur upper stage in preparation for launch in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  8. GOES-R Fairing Inspection

    NASA Image and Video Library

    2016-09-26

    Team members with United Launch Alliance (ULA) inspect the first half of the fairing for the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  9. GOES-R Fairing Inspection

    NASA Image and Video Library

    2016-09-26

    Team members with United Launch Alliance (ULA) inspect an clean the first half of the fairing for the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  10. GOES-R Fairing Inspection

    NASA Image and Video Library

    2016-09-26

    Both halves of the fairing for the Geostationary Operational Environmental Satellite (GOES-R) are being inspected and cleaned by United Launch Alliance (ULA) team members inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a ULA Atlas V rocket in November.

  11. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Jason Townsend, NASA's social media manager, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  12. Geostationary Operational Environmental Satellites (GOES): R series hyperspectral environmental suite (HES) overview

    NASA Astrophysics Data System (ADS)

    Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.

    2004-11-01

    The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during

  13. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, Joseph A. Pica, director of the National Weather Service Office of Observations, speaks to the media during a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  14. GOES-R Science Briefing

    NASA Image and Video Library

    2016-11-17

    In the Kennedy Space Center's Press Site auditorium, Damon Penn, assistant administrator for response at the Federal Emergency Management Agency, speaks to the media during a mission briefing on the Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  15. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Mic Woltman, chief of the Fleet Systems Integration Branch of NASA's Launch Services Program, left, and Gabriel Rodriguez-Mena, a United Launch Alliance systems test engineer, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  16. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    The Geostationary Operational Environmental Satellite (GOES-R) is lifted to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  17. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    The Geostationary Operational Environmental Satellite (GOES-R) is raised to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  18. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    The Geostationary Operational Environmental Satellite (GOES-R) has been secured in the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  19. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members are securing the Geostationary Operational Environmental Satellite (GOES-R) in the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  20. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Tim Walsh, GOES-R System Program director for the National Oceanic and Atmospheric Administration, or NOAA, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the Geostationary Operational Environmental Satellite, or GOES-S, the second spacecraft in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  1. The Goes-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved storm diagnostic capability with the Advanced Baseline Imager. The GLM will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. In this paper we will report on new Nowcasting and storm warning applications being developed and evaluated at various NOAA Testbeds.

  2. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members assist as the Geostationary Operational Environmental Satellite (GOES-R) is prepared for lifting to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  3. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    Enclosed in its payload fairing, NOAA's Geostationary Operational Environmental Satellite (GOES-R) is mated to the United Launch Alliance Atlas V Centaur upper stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The satellite will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  4. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members monitor the progress as the Geostationary Operational Environmental Satellite (GOES-R) is lifted to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  5. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members check the Geostationary Operational Environmental Satellite (GOES-R) after it was lifted to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  6. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    A view from high up inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. A crane lifts the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) for mating to the United Launch Alliance Atlas V Centaur upper stage. The satellite will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  7. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members assist as the Geostationary Operational Environmental Satellite (GOES-R) is raised and prepared for lifting to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November

  8. GOES-R Rotation to Vertical

    NASA Image and Video Library

    2016-09-15

    Team members assist as the Geostationary Operational Environmental Satellite (GOES-R) is raised and prepared for lifting to the vertical position on an “up-ender” inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  9. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    A.J. Sandora, Lockheed Martin's GOES-R Series Mechanical Operations Assembly, Test and Launch Operations (ATLO) manager, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. Built by Lockheed Martin Space Systems of Littleton, Colorado, the spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  10. Evaluation of NASA SPoRT's Pseudo-Geostationary Lightning Mapper Products in the 2011 Spring Program

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Carcione, Brian; Siewert, Christopher; Kuhlman, Kristin M.

    2012-01-01

    NASA's Short-term Prediction Research and Transition (SPoRT) program is a contributing partner with the GOES-R Proving Ground (PG) preparing forecasters to understand and utilize the unique products that will be available in the GOES-R era. This presentation emphasizes SPoRT s actions to prepare the end user community for the Geostationary Lightning Mapper (GLM). This preparation is a collaborative effort with SPoRT's National Weather Service partners, the National Severe Storms Laboratory (NSSL), and the Hazardous Weather Testbed s Spring Program. SPoRT continues to use its effective paradigm of matching capabilities to forecast problems through collaborations with our end users and working with the developers at NSSL to create effective evaluations and visualizations. Furthermore, SPoRT continues to develop software plug-ins so that these products will be available to forecasters in their own decision support system, AWIPS and eventually AWIPS II. In 2009, the SPoRT program developed the original pseudo geostationary lightning mapper (PGLM) flash extent product to demonstrate what forecasters may see with GLM. The PGLM replaced the previous GLM product and serves as a stepping-stone until the AWG s official GLM proxy is ready. The PGLM algorithm is simple and can be applied to any ground-based total lightning network. For 2011, the PGLM used observations from four ground-based networks (North Alabama, Kennedy Space Center, Oklahoma, and Washington D.C.). While the PGLM is not a true proxy product, it is intended as a tool to train forecasters about total lightning as well as foster discussions on product visualizations and incorporating GLM-resolution data into forecast operations. The PGLM has been used in 2010 and 2011 and is likely to remain the primary lightning training tool for the GOES-R program for the near future. This presentation will emphasize the feedback received during the 2011 Spring Program. This will discuss several topics. Based on feedback

  11. GOES-R Dual Isolation

    NASA Technical Reports Server (NTRS)

    Freesland, Doug; Carter, Delano; Chapel, Jim; Clapp, Brian; Howat, John; Krimchansky, Alexander

    2015-01-01

    The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the first of the next generation geostationary weather satellites, scheduled for delivery in late 2015. GOES-R represents a quantum increase in Earth and solar weather observation capabilities, with 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands for Earth observations. With the improved resolution, comes the instrument suite's increased sensitive to disturbances over a broad spectrum 0-512 Hz. Sources of disturbance include reaction wheels, thruster firings for station keeping and momentum management, gimbal motion, and internal instrument disturbances. To minimize the impact of these disturbances, the baseline design includes an Earth Pointed Platform (EPP), a stiff optical bench to which the two nadir pointed instruments are collocated together with the Guidance Navigation & Control (GN&C) star trackers and Inertial Measurement Units (IMUs). The EPP is passively isolated from the spacecraft bus with Honeywell D-Strut isolators providing attenuation for frequencies above approximately 5 Hz in all six degrees-of-freedom. A change in Reaction Wheel Assembly (RWA) vendors occurred very late in the program. To reduce the risk of RWA disturbances impacting performance, a secondary passive isolation system manufactured by Moog CSA Engineering was incorporated under each of the six 160 Nms RWAs, tuned to provide attenuation at frequencies above approximately 50 Hz. Integrated wheel and isolator testing was performed on a Kistler table at NASA Goddard Space Flight Center. High fidelity simulations were conducted to evaluate jitter performance for four topologies: 1) hard mounted no isolation, 2) EPP isolation only, 2) RWA isolation only, and 4) dual isolation. Simulation results demonstrate excellent performance relative to the pointing stability requirements, with dual isolated Line of Sight (LOS) jitter less than 1 micron rad.

  12. GOES-R ABI Optics Test

    NASA Image and Video Library

    2016-08-31

    With the lights out, team members perform an optics test on the Advanced Baseline Imager, the primary optical instrument, on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. Carbon dioxide is sprayed on the imager to clean it and test its sensitivity. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  13. GOES-R ABI Optics Test

    NASA Image and Video Library

    2016-08-31

    Team members prepare for an optics test on the Advanced Baseline Imager, the primary optical instrument, on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. Carbon dioxide will be sprayed on the imager to clean it and test its sensitivity. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  14. An iPhone Game with GOES-R Insight

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. J.; Fisher, D. K.; Leon, N.; Space Place Team

    2011-12-01

    Our team developed a game, "Satellite Insight," for iPhone, iPod, or iPad. The game highlights the environmental and weather data-gathering potential of the next generation GOES-R satellite. We aimed to create a game that would have educational value, feature a real NOAA mission, and increase awareness of the GOES satellites and especially of the societal benefits deriving from this next generation of technology. We also wanted to reach a different, broader audience of a wider age range than we normally target with our NASA (spaceplace.nasa.gov) and NOAA (scijinks.gov) websites for kids. Oh . . . and we wanted the game to be fun. Although we had developed many fun and educational Flash games hosted on our Space Place and SciJinks Weather Laboratory websites for kids, developing an iOS game presented some different challenges: (1) players are usually interested in playing only very short games, under two minutes; (2) we wanted the game to appeal to a range of ages; and (3) the small touch screen requires a totally different type of interface design. The game is about gathering and storing different types of data collected by GOES-R, with the data rate increasing rapidly while you try to keep up. Six different types (colors, with different symbols) of tiles drop down from the top of a grid and collect in the columns. Touch any block that is in a group of three or more like blocks, then touch the GOES-R satellite icon below the grid to "save" the data and clear the selected blocks off the grid. If more than two columns completely fill up, the game is over. The "data rate" speeds up quickly, making it more challenging to keep the grid from overflowing. "Power-up" symbols appear periodically, which, when touched, do helpful things, such as clear out your tallest column. Players try to beat their own best "survival" time. The first lesson we learned in developing this game was to make sure the game play concept was simple and feasible to implement. Our first idea, in

  15. GOES-R Prelaunch News Conference

    NASA Image and Video Library

    2016-11-17

    From left, Stephen Volz, assistant administrator for satellite and information services, National Oceanic and Atmospheric Administration (NOAA); and Greg Mandt, GOES-R system program director, NOAA, speak to members of the news media during a Geostationary Operational Environmental Satellite (GOES-R) prelaunch news conference in the Kennedy Space Center's Press Site auditorium.

  16. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    The GOES-R spacecraft is secured on its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  17. Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch readiness in December 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models will be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS

  18. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    An overhead crane lifts the GOES-R spacecraft to move it into its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  19. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    An overhead crane is positioned to move the GOES-R spacecraft into its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  20. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    An overhead crane moves the GOES-R spacecraft toward its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  1. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    Team members monitor progress as an overhead crane lowers the GOES-R spacecraft into its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  2. GOES-R Lift to Stand

    NASA Image and Video Library

    2016-08-23

    Team members monitor progress as an overhead crane lowers the GOES-R spacecraft toward its work stand inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  3. New GOES-R Risk Reduction Activities at CIRA

    NASA Astrophysics Data System (ADS)

    Rogers, M. A.; Miller, S. D.; Grasso, L. D.; Haynes, J. M.; NOH, Y. J.; Forsythe, J.; Zupanski, M.; Lindsey, D. T.

    2017-12-01

    A team of atmospheric scientists at the Cooperative Institute for Research in the Atmosphere (CIRA) at the Colorado State University has been selected by the National Oceanic and Atmospheric Administration's (NOAA) GOES-R Risk Reduction (GOES-R3) science program to develop applications to enhance the utilization of the GOES-R sensors, including the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM). The selected project topics follow NOAA's Research and Development Objectives listed in its 5-year Strategic Plan. The projects will be carried out over a three-year period which started on 1 July 2017 and will end on 30 June 2019. CIRA is working on five GOES-R3 application developments: 1) Developing an Environmental Awareness Repertoire of ABI Imagery (`DEAR-ABII') to Advise the Operational Weather Forecaster. DEAR-ABII maximizes the vast potential of the new GOES-R/GOES-16 sensor technology. 2) GOES-R ABI channel differencing used to reveal cloud-free zones of `precursors of convective initiation'. This product identifies where convective initiation may occur in cloud free skies. 3) Improving the ABI Cloud Layers Product for Multiple Layer Cloud Systems and Aviation Forecast Applications. This project aims to improve the GOES-16 cloud layer product by providing information on the boundaries of cloud layers even when one layer overlies another. 4) Using the New Capabilities of GOES-R to Improve Blended, Multisensor Water Vapor Products for Forecasters. GOES-R TPW retrievals will be merged with TPW derived from polar orbiter and surface data to improve the operational NOAA blended TPW product. 5) Data assimilation of GLM observations in HWRF/GSI system. Assimilation of GOES-R GLM observations for the NOAA operational hurricane model with the goal to improve operational hurricane forecasting. Examples for each of these applications will be presented.

  4. GOES-S Prelaunch News Conference

    NASA Image and Video Library

    2018-02-27

    GOES-S Prelaunch News Conference hosted by NASA Communications' Tori Mclendon, with Stephen Volz, Director for Satellite and Information Services, NOAA; Tim Walsh, GOES-R system program director (acting), NOAA; Sandra Smalley, Director, NASA Joint Agency Satellite Division; Tim Dunn, NASA Launch Director, Kennedy Space Center, Florida; Scott Messer, Program Manager, NASA Missions, United Launch Alliance; and Kathy Winters, Launch Weather Officer, 45th Weather Squadron, Cape Canaveral Air Force Station, Florida.

  5. The GOES-R Series Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms

  6. Expanding the Operational Use of Total Lightning Ahead of GOES-R

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.

    2015-01-01

    NASA's Short-term Prediction Research and Transition Center (SPoRT) has been transitioning real-time total lightning observations from ground-based lightning mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama Lightning Mapping Array (NALMA). These early collaborations established a strong interest in the use of total lightning for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and lightning safety. SPoRT has used its experience to establish connections with new lightning mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total lightning observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) lightning mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total lightning, setting the stage for a real-time assessment during May-July 2014. With five lightning mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total lightning in varying situations. Several highlights include a much broader use of total lightning for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total lightning, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach

  7. GOES-R Rollout from VIF to Pad 41

    NASA Image and Video Library

    2016-11-18

    A United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. In view is the upper stage and payload fairing containing the Geostationary Operational Environmental Satellite (GOES-R). The launch vehicle will send GOES-R to a geostationary position over the U.S. GOES-R is the first satellite in a series of next-generation NOAA GOES satellites.

  8. GOES-S Arrival to Astrotech

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) arrives at Astrotech Space Operations in Titusville, Florida, to prepare it for launch. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  9. STEM connections to the GOES-R Satellite Series

    NASA Astrophysics Data System (ADS)

    Mooney, M. E.; Schmit, T.

    2015-12-01

    GOES-R, a new Geostationary Operational Environmental Satellite (GOES) is scheduled to be launched in October of 2016. Its role is to continue western hemisphere satellite coverage while the existing GOES series winds down its 20-year operation. However, instruments on the next generation GOES-R satellite series will provide major improvements to the current GOES, both in the frequency of images acquired and the spectral and spatial resolution of the images, providing a perfect conduit for STEM education. Most of these improvements will be provided by the Advanced Baseline Imager (ABI). ABI will provide three times more spectral information, four times the spatial resolution, and more than five times faster temporal coverage than the current GOES. Another exciting addition to the GOES-R satellite series will be the Geostationary Lightning Mapper (GLM). The all new GLM on GOES-R will measure total lightning activity continuously over the Americas and adjacent ocean regions with near uniform spatial resolution of approximately 10 km! Due to ABI, GLM and improved spacecraft calibration and navigation, the next generation GOES-R satellite series will usher in an exciting era of satellite applications and opportunities for STEM education. This session will present and demonstrate exciting next-gen imagery advancements and new HTML5 WebApps that demonstrate STEM connections to these improvements. Participants will also be invited to join the GOES-R Education Proving Ground, a national network of educators who will receive stipends to attend 4 webinars during the spring of 2016, pilot a STEM lesson plan, and organize a school-wide launch awareness event.

  10. GOES-R ITAR Photos for Media Day

    NASA Image and Video Library

    2016-09-26

    The Geostationary Operational Environmental Satellite (GOES-R) is undergoing final launch preparations prior to fueling inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  11. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    GOES-S Mission Science Briefing hosted by Steve Cole, NASA Communications, with Dan Lindsey, GOES-R senior scientific advisor, NOAA; Louis Uccellini, director, National Weather Service, NOAA; Jim Roberts, scientist, Earth System Research Laboratory, Office of Atmospheric Research, NOAA; Kristin Calhoun, research scientist, National Severe Storms Laboratory, NOAA; and George Morrow, deputy director, NASA Goddard Space Flight Center.

  12. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members install the Advanced Base Line Imager, the primary optical instrument, on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  13. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    The Advanced Base Line Imager, the primary optical instrument, has been installed on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  14. Geostationary Lightning Mapper for GOES-R

    NASA Technical Reports Server (NTRS)

    Goodman, Steven; Blakeslee, Richard; Koshak, William

    2007-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 11 year data record of global lightning activity. Instrument formulation studies begun in January 2006 will be completed in March 2007, with implementation expected to begin in September 2007. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite, airborne science missions (e.g., African Monsoon Multi-disciplinary Analysis, AMMA), and regional test beds (e.g, Lightning Mapping Arrays) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data now being provided to selected forecast offices will lead to improved understanding of the application of these data in the severe storm warning process and accelerate the development of the pre-launch algorithms and Nowcasting applications. Proxy data combined with MODIS and Meteosat Second Generation SEVERI observations will also lead to new

  15. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members prepare the Advanced Base Line Imager, the primary optical instrument, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  16. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members assist as a crane lifts the Advanced Base Line Imager, the primary optical instrument, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  17. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members assist as a crane moves the Advanced Base Line Imager, the primary optical instruments, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  18. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas; Bailey, Jeffrey; Buechler, Dennis; Carey, Larry; Schultz, Chris; Bateman, Monte; McCaul, Eugene; Stano, Geoffrey

    2013-05-01

    The Geostationary Operational Environmental Satellite R-series (GOES-R) is the next block of four satellites to follow the existing GOES constellation currently operating over the Western Hemisphere. Advanced spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved cloud and moisture imagery with the 16-channel Advanced Baseline Imager (ABI). The GLM will map total lightning activity continuously day and night with near-uniform storm-scale spatial resolution of 8 km with a product refresh rate of less than 20 s over the Americas and adjacent oceanic regions in the western hemisphere. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low Earth orbit, and from ground-based lightning networks and intensive prelaunch field campaigns. The GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extend their combined climatology over the western hemisphere into the coming decades. Science and application development along with preoperational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and

  19. An Overview of the Design and Development of the Geostationary Operational Environmental Satellite R-Series (GOES-R) Space Segment

    NASA Technical Reports Server (NTRS)

    Sullivan, Pamela C.; Krimchansky, Alexander; Walsh, Timothy J.

    2017-01-01

    The first of the National Oceanic and Atmospheric Administration (NOAA) Geostationary Operational Environmental Satellite R-series (GOES-R) satellites was launched in November 2016. GOES-R has been developed by NOAA in partnership with the National Aeronautics and Space Administration (NASA). The satellite represents a quantum leap in the state of the art for geostationary weather satellites by providing data from a suite of six new instruments. All instruments were developed expressly for this mission, and include two Earth-observing instruments (the Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM)), two solar-viewing instruments (Solar Ultraviolet Imager (SUVI) and Extreme ultraviolet and X-ray Irradiance Sensors (EXIS)) and two in situ instruments (Space Environment In-Situ Suite (SEISS) and a magnetometer pair). In addition to hosting the instruments, GOES-R also accommodates several communication packages designed to collect and relay data for weather forecasting and emergency management. Accommodating the six instruments and four communication payloads imposed challenging and competing constraints on the satellite, including requirements for extremely stable earth and solar pointing, high-speed and nearly error-free instrument data transmission, and a very quiet electromagnetic background. To meet mission needs, GOES-R employed several technological innovations, including low-thrust rocket engines that allow instrument observations to continue during maneuvers, and the first civilian use of Global Positioning System-based orbit determination in geostationary orbit. This paper will provide a brief overview of the GOES-R satellite and its instruments as well as the developmental challenges involved in accommodating the instruments and communications payloads.

  20. GOES-R Space Weather Data: Ensuring Access and Usability

    NASA Astrophysics Data System (ADS)

    Tilton, M.; Rowland, W. F.; Wilkinson, D. C.; Denig, W. F.; Darnel, J.; Kress, B. T.; Loto'aniu, P. T. M.; Machol, J. L.; Redmon, R. J.; Rodriguez, J. V.

    2015-12-01

    The upcoming Geostationary Operational Environmental Satellite series, GOES-R, will provide critical space weather data. These data are used to prevent communication outages, mitigate the damage solar weather causes to satellites and power grids, and reduce astronaut radiation exposure. The space weather instruments aboard GOES-R will deliver an operational dataset of unprecedented breadth. However, NOAA's National Centers for Environmental Information (NCEI)—the organization that provides access to archived GOES-R data—has faced several challenges in delivering this information to customers in usable form. For instance, the GOES-R ground system was contracted to develop higher-level products for terrestrial data but not space weather data. Variations in GOES-R data file formats and archive locations have also threatened to create an inconsistent user experience. This presentation will examine the ways in which NCEI is making GOES-R space weather data more accessible and actionable for customers. These efforts include NCEI's development of high-level data products to meet the requirements of NOAA's Space Weather Prediction Center—a role NCEI has not previously played. In addition, NCEI is creating a demonstration system to show how these products can be produced in real-time. The organization is also examining customer usage of the GOES-NOP data access system and using these access patterns to drive decisions about the GOES-R user interface.

  1. GOES-R Rollout from VIF to Pad 41

    NASA Image and Video Library

    2016-11-18

    A United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will send the Geostationary Operational Environmental Satellite (GOES-R) to a geostationary position over the U.S. GOES-R is the first satellite in a series of next-generation NOAA GOES satellites.

  2. GOES-R User Data Types and Structure

    NASA Astrophysics Data System (ADS)

    Royle, A. W.

    2012-12-01

    GOES-R meteorological data is provided to the operational and science user community through four main distribution mechanisms. The GOES-R Ground Segment (GS) generates a set of Level 1b (L1b) data from each of the six primary satellite instruments and formats the data into a direct broadcast stream known as GOES Rebroadcast (GRB). Terrestrially, cloud and moisture imagery data is provided to forecasters at the National Weather Service (NWS) through a direct interface to the Advanced Weather Interactive Processing System (AWIPS). A secondary pathway for the user community to receive data terrestrially is via NOAA's Environmental Satellite Processing and Distribution System (ESPDS) Product Distribution and Access (PDA) system. The ESPDS PDA will service the NWS and other meteorological users through a data portal, which provides both a subscription service and an ad hoc query capability. Finally, GOES-R data is made available to NOAA's Comprehensive Large Array-Data Stewardship System (CLASS) for long-term archive. CLASS data includes the L1b and L2+ products sent to PDA, along with the Level 0 data used to create these products, and other data used for product generation and processing. This session will provide a summary description of the data types and formats associated with each of the four primary distribution pathways for user data from GOES-R. It will discuss the resources that are being developed by GOES-R to document the data structures and formats. It will also provide a brief introduction to the types of metadata associated with each of the primary data flows.

  3. An Overview of the Design and Development of the GOES R-Series Space Segment

    NASA Technical Reports Server (NTRS)

    Sullivan, Pam; Krimchansky, Alexander; Walsh, Timothy

    2017-01-01

    The first of the National Oceanic and Atmospheric Administration (NOAA) Geostationary Operational Environmental Satellite R-series (GOES-R) satellites was launched in November 2016. GOES-R has been developed by NOAA in partnership with the National Aeronautics and Space Administration (NASA). The satellite represents a quantum leap in the state of the art for geostationary weather satellites by providing data from a suite of six new instruments. All instruments were developed expressly for this mission, and include two Earth-observing instruments (the Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM)), two solar-viewing instruments (Solar Ultraviolet Imager (SUVI) and Extreme ultraviolet and X-ray Irradiance Sensors (EXIS)) and two in situ instruments (Space Environment In-Situ Suite (SEISS) and a magnetometer pair). In addition to hosting the instruments, GOES-R also accommodates several communication packages designed to collect and relay data for weather forecasting and emergency management. Accommodating the six instruments and four communication payloads imposed challenging and competing constraints on the satellite, including requirements for extremely stable earth and solar pointing, high-speed and nearly error-free instrument data transmission, and a very quiet electromagnetic background. To meet mission needs, GOES-R employed several technological innovations, including low-thrust rocket engines that allow instrument observations to continue during maneuvers, and the first civilian use of Global Positioning System-based orbit determination in geostationary orbit. This paper will provide a brief overview of the GOES-R satellite and its instruments as well as the developmental challenges involved in accommodating the instruments and communications payloads.

  4. GOES-S: Removal from Shipping Container

    NASA Image and Video Library

    2017-12-05

    At Astrotech Space Operations in Titusville, Florida, NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is uncrated from its shipping container and moved into the clean room. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  5. GOES-S Arrival and Transport

    NASA Image and Video Library

    2017-12-04

    NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) arrives onboard a U.S. Air Force C-5M Super Galaxy cargo aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The satellite is offloaded and transported to the Astrotech Space Operations facility in Titusville, Florida to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  6. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage is lifted up for transfer into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  7. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    The GOES-R spacecraft stands vertically inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  8. Post Launch Calibration and Testing of the Advanced Baseline Imager on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  9. Post Launch Calibration and Testing of the Advanced Baseline Imager on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  10. Post launch calibration and testing of the Advanced Baseline Imager on the GOES-R satellite

    NASA Astrophysics Data System (ADS)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  11. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    Operations are underway to stack the United Launch Alliance Atlas V Centaur second stage onto the first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  12. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    A close-up view of the United Launch Alliance Atlas V Centaur second stage as it travels to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  13. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage has been lifted up and transferred into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  14. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    United Launch Alliance team members assist as operation begin to lift the Atlas V Centaur second stage into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  15. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage is lifted up by crane for transfer into Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  16. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage has been mated to the first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  17. GOES-S Prelaunch News Conference

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, NASA and industry leaders speak to members of the media at a prelaunch news conference about National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. Participants from left are: Tori McLendon of NASA Communications; Stephen Volz, director for Satellite and Information Services for NOAA; Tim Walsh, acting GOES-R System Program director for NOAA; Sandra Smalley, director of the Joint Agency Satellite Division at NASA Headquarters in Washington D.C.; Tim Dunn, NASA launch director at Kennedy; Scott Messer, manager of NASA Programs for United launch Alliance; and Kathy Winters, launch weather officer for the U.S. Air Force 45th Weather Squadron at Cape Canaveral Air Force Station. The GOES series of satellites will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  18. GOES-S Arrival at Astrotech Space Operations

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) arrives inside Astrotech Space Operations in Titusville, Florida, to prepare it for launch. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  19. GOES-S Arrival at Astrotech Space Operations

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) arrives at Astrotech Space Operations in Titusville, Florida, to prepare it for launch. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  20. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    The shipping container is lifted off the GOES-R spacecraft inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  1. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    The GOES-R spacecraft is revealed following its uncrating inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  2. Future GOES-R global ground receivers

    NASA Astrophysics Data System (ADS)

    Dafesh, P. A.; Grayver, E.

    2006-08-01

    The Aerospace Corporation has developed an end-to-end testbed to demonstrate a wide range of modern modulation and coding alternatives for future broadcast by the GOES-R Global Rebroadcast (GRB) system. In particular, this paper describes the development of a compact, low cost, flexible GRB digital receiver that was designed, implemented, fabricated, and tested as part of the development. This receiver demonstrates a 10-fold increase in data rate compared to the rate achievable by the current GOES generation, without a major impact on either cost or size. The digital receiver is integrated on a single PCI card with an FPGA device, and analog-to-digital converters. It supports a wide range of modulations (including 8-PSK and 16-QAM) and turbo coding. With appropriate FPGA firmware and software changes, it can also be configured to receive the current (legacy) GOES signals. The receiver has been validated by sending large image files over a high-fidelity satellite channel emulator, including a space-qualified power amplifier and a white noise source. The receiver is a key component of a future GOES-R weather receiver system (also called user terminal) that includes the antenna, low-noise amplifier, downconverter, filters, digital receiver, and receiver system software. This work describes this receiver proof of concept and its application to providing a very credible estimate of the impact of using modern modulation and coding techniques in the future GOES-R system.

  3. Calibration/validation strategy for GOES-R L1b data products

    NASA Astrophysics Data System (ADS)

    Fulbright, Jon P.; Kline, Elizabeth; Pogorzala, David; MacKenzie, Wayne; Williams, Ryan; Mozer, Kathryn; Carter, Dawn; Race, Randall; Sims, Jamese; Seybold, Matthew

    2016-10-01

    intercomparisons with other space-based sensors and utilize special spacecraft maneuvers. Given the importance of cal/val to the success of GOES-R, the mission is committed to a long-term effort. This commitment enhances our knowledge of the long-term data quality and builds user confidence. The plan is a collaborative effort amongst the National Oceanic and Atmospheric Administration (NOAA), the National Institute of Standards and Technology (NIST), and the National Aeronautics and Space Administration (NASA). It is being developed based on the experience and lessons-learned from the heritage GOES and Polar-orbiting Operational Environmental Satellite (POES) systems, as well as other programs. The methodologies described in the plan encompass both traditional approaches and the current state-of-the-art in cal/val.

  4. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    The GOES-R spacecraft is inspected after being uncrated and raised to vertical inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  5. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    Team members monitor progress as the GOES-R spacecraft is lifted from horizontal to vertical inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  6. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    Team members monitor progress as the GOES-R spacecraft is raised to vertical inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  7. GOES-R Uncrating and Move to Vertical

    NASA Image and Video Library

    2016-08-23

    Team members remove a protective plastic covering from the GOES-R spacecraft inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA Geostationary Operational Environmental Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  8. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.

    2012-12-01

    The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning activity (in-cloud and cloud-to-ground lightning flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based lightning networks and intensive pre-launch field campaigns. GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after

  9. The GOES-R GeoStationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning

  10. GOES-S Move to Workstand; Transition into Highbay

    NASA Image and Video Library

    2017-12-06

    At Astrotech Space Operations in Titusville, Florida, technicians and engineers inspect NOAA's Geostationary Operational Environmental Satellite-S (GOES-S). The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  11. GOES-S Move to Workstand; Transition into Highbay

    NASA Image and Video Library

    2017-12-06

    At Astrotech Space Operations in Titusville, Florida, a technician inspects NOAA's Geostationary Operational Environmental Satellite-S (GOES-S). The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  12. GOES EXIS Quadruplets Together in a Clean Room "Nursery"

    NASA Image and Video Library

    2014-02-10

    Four Extreme Ultraviolet and X-ray Irradiance Sensors or EXIS instruments that will fly aboard four of NOAA's Geostationary Operational Environmental Satellite-R or GOES-R Series spacecraft were recently lined up like babies in a nursery. The EXIS Team at NOAA's Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado took a short timeout during the week of January 20, 2014 to take advantage of a rare photo opportunity. Each EXIS instrument will fly aboard one of the GOES-R series of spacecraft that include GOES-R, S, T, and U. All four EXIS instruments happened to be in the clean room at the same time. It is expected that this will probably be the last time that all four siblings will be in one place together as Flight Model 1 (seen on the left) is being shipped on February 3 to begin integration and testing onto the GOES-R spacecraft at a Lockheed Martin facility in Littleton, Colo. The other instruments have already dispersed to other areas at LASP for continued build and test operations. The EXIS instruments on the GOES-R series satellites are critical to understanding and monitoring solar irradiance in the upper atmosphere, that is, the power and effect of the Sun’s electromagnetic radiation per unit of area. EXIS will be able to detect solar flares that could interrupt communications and reduce navigational accuracy, affecting satellites, high altitude airlines and power grids on Earth. On board the EXIS are two main sensors, the Extreme Ultraviolet Sensor (EUVS) and the X-Ray Sensor (XRS), which will help scientists monitor activity on the sun. The GOES-R series is a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration and NASA. The GOES-R satellites will provide continuous imagery and atmospheric measurements of Earth’s Western Hemisphere and space weather monitoring. For more information about the GOES-R series, visit: www.goes-r.gov Credit: NOAA/NASA NASA image use policy. NASA

  13. GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.

  14. Post launch calibration and testing of the Geostationary Lightning Mapper on GOES-R satellite

    NASA Astrophysics Data System (ADS)

    Rafal, Marc; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 μs) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  15. Post Launch Calibration and Testing of the Geostationary Lightning Mapper on GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Rafal, Marc; Cholvibul, Ruth; Clarke, Jared

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 s) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  16. GOES-S satellite in thermal vacuum testing

    NASA Image and Video Library

    2017-12-08

    In March, NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) satellite was lifted into a thermal vacuum chamber to test its ability to function in the cold void of space in its orbit 22,300 miles above the Earth. The most complicated and challenging test is thermal vacuum where a satellite experiences four cycles of extreme cold to extreme heat in a giant vacuum chamber. To simulate the environment of space, the chamber is cooled to below minus 100 degrees Celsius or minus 148 degrees Fahrenheit and air is pumped out. The test simulates the temperature changes GOES-S will encounter in space, as well as worst case scenarios of whether the instruments can come back to life in case of a shut down that exposes them to even colder temperatures. In this photo from March 8, the GOES-S satellite was lowered into the giant vacuum chamber at Lockheed Martin Space Systems, Denver, Colorado. GOES-S will be in the thermal vacuum chamber for 45 days. As of March 30, two of four thermal cycles were complete. GOES-S is the second in the GOES-R series. The GOES-R program is a collaborative development and acquisition effort between the National Oceanic and Atmospheric Administration and NASA. The GOES-R series of satellites will help meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, flash floods, and other severe weather. In addition, GOES-R will monitor hazards such as aerosols, dust storms, volcanic eruptions, and forest fires and will also be used for space weather, oceanography, climate monitoring, in-situ data collection, and for search and rescue. Credit: Lockheed Martin NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on

  17. NASA SPoRT JPSS PG Activities in Alaska

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Molthan, Andrew; Fuell, Kevin; McGrath, Kevin; Smith, Matt; LaFontaine, Frank; Leroy, Anita; White, Kris

    2018-01-01

    SPoRT (NASA's Short-term Prediction Research and Transition Center) has collaboratively worked with Alaska WFOs (Weather Forecast Offices) to introduce RGB (Red/Green/Blue false color image) imagery to prepare for NOAA-20 (National Oceanic and Atmospheric Administration, JPSS (Joint Polar Satellite System) series-20 satellite) VIIRS (Visible Infrared Imaging Radiometer Suite) and improve forecasting aviation-related hazards. Last R2O/O2R (Research-to-Operations/Operations-to-Research) steps include incorporating NOAA-20 VIIRS in RGB suite and fully transitioning client-side RGB processing to GINA (Geographic Information Network of Alaska) and Alaska Region. Alaska Region WFOs have been part of the successful R2O/O2R story to assess the use of NESDIS (National Environmental Satellite, Data, and Information Service) Snowfall Rate product in operations. SPoRT introduced passive microwave rain rate and IMERG (Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement)) (IMERG) to Alaska WFOs for use in radar-void areas and assessing flooding potential. SPoRT has been part of the multi-organization collaborative effort to introduce Gridded NUCAPS (NOAA Unique CrIS/ATMS (Crosstrack Infrared Sounder/Advanced Technology Microwave Sounder) Processing System) to the Anchorage CWSU (Center Weather Service Unit) to assess Cold Air Aloft events, [and as part of NOAA's PG (Product Generation) effort].

  18. GOES-S Arrival at Kennedy Space Center

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) is being offloaded from a C-5 transport aircraft onto the flatbed of a heavy-lift truck at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The satellite will be transported to the Astrotech Space Operations facility in Titusville, Florida to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  19. GOES-R Prelaunch News Conference

    NASA Image and Video Library

    2016-11-17

    Clay Flinn, launch weather officer, 4th Weather Squadron, Cape Canaveral Air Force Station, speaks to members of the news media during a Geostationary Operational Environmental Satellite (GOES-R) prelaunch news conference in the Kennedy Space Center's Press Site auditorium in Florida.

  20. Post Launch Calibration and Testing of the Geostationary Lightning Mapper on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Rafal, Marc D.; Clarke, Jared T.; Cholvibul, Ruth W.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration (NOAA). The National Aeronautics and Space Administration (NASA) is procuring the GOES-R spacecraft and instruments with the first launch of the GOES-R series planned for October 2016. Included in the GOES-R Instrument suite is the Geostationary Lightning Mapper (GLM). GLM is a single-channel, near-infrared optical detector that can sense extremely brief (800 microseconds) transient changes in the atmosphere, indicating the presence of lightning. GLM will measure total lightning activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km. Due to its large CCD (1372x1300 pixels), high frame rate, sensitivity and onboard event filtering, GLM will require extensive post launch characterization and calibration. Daytime and nighttime images will be used to characterize both image quality criteria inherent to GLM as a space-based optic system (focus, stray light, crosstalk, solar glint) and programmable image processing criteria (dark offsets, gain, noise, linearity, dynamic range). In addition ground data filtering will be adjusted based on lightning-specific phenomenology (coherence) to isolate real from false transients with their own characteristics. These parameters will be updated, as needed, on orbit in an iterative process guided by pre-launch testing. This paper discusses the planned tests to be performed on GLM over the six-month Post Launch Test period to optimize and demonstrate GLM performance.

  1. GOES-S Transport to Kennedy Space Center

    NASA Image and Video Library

    2017-12-04

    At Buckley Air Force Base in Aurora, Colorado, NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is being loaded into the cargo hold of a U.S. Air Force C-5M super Galaxy cargo aircraft. GOES-S will be flown to NASA's Kennedy Space Center in Florida. After it arrives at Kennedy's Shuttle Landing Facility, it will be offloaded and transported to the Astrotech Space Operations facility in Titusville, Florida, to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  2. High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.

  3. GOES-R STATIONKEEPING AND MOMENTUM MANAGEMENT

    NASA Technical Reports Server (NTRS)

    Chu, Donald; Chen, Sam; Early, Derrick; Freesland, Doug; Krimchansky, Alexander; Naasz, Bo; Reth, Alan; Tadikonda, Kumar; Tsui, John; Walsh, Tim

    2006-01-01

    The NOAA Geostationary Operational Environmental Satellites (GOES) fire thrusters to remain within a 1deg longitude-latitude box and to dump accumulated angular momentum. In the past, maneuvers have disrupted GOES imaging due to attitude transients and the loss of orbit knowledge. If the R-series of spacecraft to be launched starting in 2012 were to follow current practice, maneuvers would still fail to meet Image Navigation and Registration (INR) specifications during and after thruster firings. Although maneuvers and recovery take only one percent of spacecraft lifetime, they sometimes come at inopportune times, such as hurricane season, when coverage is critical. To alleviate this problem, thruster firings small enough not to affect imaging are being considered. Eliminating post-maneuver recovery periods increases availability and facilitates autonomous operation. Frequent maneuvers also reduce 1ongitudeAatitude variation and allow satellite co-location. Improved orbit observations come from a high-altitude GPS receiver, and improved attitude control comes from thruster torque compensation. This paper reviews the effects of thruster firings on position knowledge and pointing control and suggests that low-thrust burns plus GPS and feedforward control offer a less disruptive approach to GOES-R stationkeeping and momentum management.

  4. GOES-R GS Product Generation Infrastructure Operations

    NASA Astrophysics Data System (ADS)

    Blanton, M.; Gundy, J.

    2012-12-01

    GOES-R GS Product Generation Infrastructure Operations: The GOES-R Ground System (GS) will produce a much larger set of products with higher data density than previous GOES systems. This requires considerably greater compute and memory resources to achieve the necessary latency and availability for these products. Over time, new algorithms could be added and existing ones removed or updated, but the GOES-R GS cannot go down during this time. To meet these GOES-R GS processing needs, the Harris Corporation will implement a Product Generation (PG) infrastructure that is scalable, extensible, extendable, modular and reliable. The primary parts of the PG infrastructure are the Service Based Architecture (SBA), which includes the Distributed Data Fabric (DDF). The SBA is the middleware that encapsulates and manages science algorithms that generate products. The SBA is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. The SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DDF to provide this data communication layer between algorithms. The DDF provides an abstract interface over a distributed and persistent multi-layered storage system (memory based caching above disk-based storage) and an event system that allows algorithm services to know when data is available and to get the data that they need to begin processing when they need it. Together, the SBA and the DDF provide a flexible, high performance architecture that can meet

  5. The Goes-R Geostationary Lightning Mapper (GLM): Algorithm and Instrument Status

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2010-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and

  6. GOES-R L1b Readiness Implementation and Management Plan

    NASA Technical Reports Server (NTRS)

    Kunkee, David; Farley, Robert; Kwan, Betty; Walterscheid, Richard; Hecht, James; Claudepierre, Seth.; De Luccia, Frank

    2017-01-01

    A complement of Readiness, Implementation and Management Plans (RIMPs) to facilitate management of post-launch product test activities for the official Geostationary Operational Environmental Satellite (GOES-R) Level 1b (L1b) products have been developed and documented. Separate plans have been created for each of the GOES-R sensors including: the Advanced Baseline Imager (ABI), the Extreme ultraviolet and X-ray Irradiance Sensors (EXIS), Geostationary Lightning Mapper (GLM), GOES-R Magnetometer (MAG), the Space Environment In-Situ Suite (SEISS), and the Solar Ultraviolet Imager (SUVI). The GOES-R program has implemented these RIMPs in order to address the full scope of CalVal activities required for a successful demonstration of GOES-R L1b data product quality throughout the three validation stages: Beta, Provisional and Full Validation. For each product maturity level, the RIMPs include specific performance criteria and required artifacts that provide evidence a given validation stage has been reached, the timing when each stage will be complete, a description of every applicable Post-Launch Product Test (PLPT), roles and responsibilities of personnel, upstream dependencies, and analysis methods and tools to be employed during validation. Instrument level Post-Launch Tests (PLTs) are also referenced and apply primarily to functional check-out of the instruments.

  7. Guidance, Navigation, and Control Performance for the GOES-R Spacecraft

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.; Stancliffe, Devin; Bevacqua, Tim; Winkler, Stephen; Clapp, Brian; Rood, Tim; Gaylor, David; Freesland, Douglas C.; Krimchansky, Alexander

    2014-01-01

    The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the first of the next generation geostationary weather satellites, scheduled for delivery in late 2015 and launch in early 2016. Relative to the current generation of GOES satellites, GOES-R represents a dramatic increase in Earth and solar weather observation capabilities, with 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands for Earth observations. GOES-R will also provide unprecedented availability, with less than 120 minutes per year of lost observation time. The Guidance Navigation & Control (GN&C) design requirements to achieve these expanded capabilities are extremely demanding. This paper first presents the pointing control, pointing stability, attitude knowledge, and orbit knowledge requirements necessary to realize the ambitious Image Navigation and Registration (INR) objectives of GOES-R. Because the GOES-R suite of instruments is sensitive to disturbances over a broad spectral range, a high fidelity simulation of the vehicle has been created with modal content over 500 Hz to assess the pointing stability requirements. Simulation results are presented showing acceleration, shock response spectrum (SRS), and line of sight responses for various disturbances from 0 Hz to 512 Hz. These disturbances include gimbal motion, reaction wheel disturbances, thruster firings for station keeping and momentum management, and internal instrument disturbances. Simulation results demonstrate excellent performance relative to the pointing and pointing stability requirements, with line of sight jitter of the isolated instrument platform of approximately 1 micro-rad. Low frequency motion of the isolated instrument platform is internally compensated within the primary instrument. Attitude knowledge and rate are provided directly to the instrument with an accuracy defined by the Integrated Rate Error (IRE) requirements. The allowable IRE ranges from 1 to 18

  8. GOES-S Transport to Kennedy Space Center

    NASA Image and Video Library

    2017-12-04

    NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is prepared for transport at the Lockheed Martin facility in Littleton, Colorado, where it was built and assembled. GOES-S will be loaded into a U.S. Air Force C-5M Super Galaxy cargo aircraft at Buckley Air Force Base in Aurora, Colorado, and flown to NASA's Kennedy Space Center in Florida. After it arrives at Kennedy's Shuttle Landing Facility, it will be offloaded and transported to the Astrotech Space Operations facility in Titusville, Florida, to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  9. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  10. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is being mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  11. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  12. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Technicians with United Launch Alliance (ULA) assist as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  13. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Technicians with United Launch Alliance (ULA) monitor the progress as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  14. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor is lifted on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  15. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. Briefing participants from left are: Steve Cole of NASA Communications; Dan Lindsey, GOES-R senior scientific advisor for NOAA; Louis Uccellini, director of the National Weather Service for NOAA; Jim Roberts, a scientist with the Earth System Research Laboratory's Office of Atmospheric Research for NOAA; Kristin Calhoun, a research scientist with NOAA's National Severe Storms Laboratory, and George Morrow, deputy director of NASA's Goddard Space Flight Center in Greenbelt, Maryland. GOES-S is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  16. Guidance, Navigation, and Control Performance for the GOES-R Spacecraft

    NASA Technical Reports Server (NTRS)

    Chapel, Jim; Stancliffe, Devin; Bevacqua, TIm; Winkler, Stephen; Clapp, Brian; Rood, Tim; Gaylor, David; Freesland, Doug; Krimchansky, Alexander

    2014-01-01

    The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the first of the next generation geostationary weather satellites. The series represents a dramatic increase in Earth observation capabilities, with 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands. GOES-R also provides unprecedented availability, with less than 120 minutes per year of lost observation time. This paper presents the Guidance Navigation & Control (GN&C) requirements necessary to realize the ambitious pointing, knowledge, and Image Navigation and Registration (INR) objectives of GOES-R. Because the suite of instruments is sensitive to disturbances over a broad spectral range, a high fidelity simulation of the vehicle has been created with modal content over 500 Hz to assess the pointing stability requirements. Simulation results are presented showing acceleration, shock response spectra (SRS), and line of sight (LOS) responses for various disturbances from 0 Hz to 512 Hz. Simulation results demonstrate excellent performance relative to the pointing and pointing stability requirements, with LOS jitter for the isolated instrument platform of approximately 1 micro-rad. Attitude and attitude rate knowledge are provided directly to the instrument with an accuracy defined by the Integrated Rate Error (IRE) requirements. The data are used internally for motion compensation. The final piece of the INR performance is orbit knowledge, which GOES-R achieves with GPS navigation. Performance results are shown demonstrating compliance with the 50 to 75 m orbit position accuracy requirements. As presented in this paper, the GN&C performance supports the challenging mission objectives of GOES-R.

  17. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position and moved into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida for mating to the United Launch Alliance Atlas V rocket. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  18. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Preparations are underway to lift the solid rocket motor up from its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  19. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  20. The Geostationary Lightning Mapper (GLM) for the GOES-R Series Next Generation Operational Environmental Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard; Koshak, William; Petersen, Walter; Carey, Larry; Mach, Douglas; Buechler, Dennis; Bateman, Monte; McCaul, Eugene; Bruning, Eric; hide

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2015 is a follow on to the existing GOES system currently operating over the Western Hemisphere. The system will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. The system provides products including lightning, cloud properties, rainfall rate, volcanic ash, air quality, hurricane intensity, and fire/hot spot characterization. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral, spatial, and temporal resolution for the 16-channel Advanced Baseline Imager (ABI). The Geostationary Lightning Mapper (GLM), an optical transient detector will map total (in-cloud and cloud-to-ground) lightning flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the higher level algorithms and applications using the GLM alone and decision aids incorporating information from the ABI, ground-based weather radar, and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional lightning networks are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time total lightning mapping data are also being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via

  1. The GOES-R Proving Ground: 2012 Update

    NASA Astrophysics Data System (ADS)

    Gurka, J.; Goodman, S. J.; Schmit, T.; Demaria, M.; Mostek, A.; Siewert, C.; Reed, B.

    2011-12-01

    The Geostationary Operational Environmental Satellite (GOES)-R will provide a great leap forward in observing capabilities, but will also offer a significant challenge to ensure that users are ready to exploit the vast improvements in spatial, spectral, and temporal resolutions. To ensure user readiness, forecasters and other users must have access to prototype advanced products well before launch, and have the opportunity to provide feedback to product developers and computing and communications managers. The operational assessment is critical to ensure that the end products and NOAA's computing and communications systems truly meet their needs in a rapidly evolving environment. The GOES-R Proving Ground (PG) engages the National Weather Service (NWS) forecast, watch and warning community and other agency users in pre-operational demonstrations of select products with GOES-R attributes (enhanced spectral, spatial, and temporal resolution). In the PG, developers and forecasters test and apply algorithms for new GOES-R satellite data and products using proxy and simulated data sets, including observations from current and future satellite instruments (MODIS, AIRS, IASI, SEVIRI, NAST-I, NPP/VIIRS/CrIS, LIS), lightning networks, and computer simulated products. The complete list of products to be evaluated in 2012 will be determined after evaluating results from experiments in 2011 at the NWS' Storm Prediction Center, National Hurricane Center, Aviation Weather Center, Ocean Prediction Center, Hydrometeorological Prediction Center, and from the six NWS regions. In 2012 and beyond, the PG will test and validate data processing and distribution systems and the applications of these products in operational settings. Additionally developers and forecasters will test and apply display techniques and decision aid tools in operational environments. The PG is both a recipient and a source of training. Training materials are developed using various distance training tools in

  2. Assessing and Ensuring GOES-R Magnetometer Accuracy

    NASA Technical Reports Server (NTRS)

    Carter, Delano R.; Todirita, Monica; Kronenwetter, Jeffrey; Chu, Donald

    2016-01-01

    The GOES-R magnetometer subsystem accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. Error comes both from outside the magnetometers, e.g. spacecraft fields and misalignments, as well as inside, e.g. zero offset and scale factor errors. Because zero offset and scale factor drift over time, it will be necessary to perform annual calibration maneuvers. To predict performance before launch, we have used Monte Carlo simulations and covariance analysis. Both behave as expected, and their accuracy predictions agree within 30%. With the proposed calibration regimen, both suggest that the GOES-R magnetometer subsystem will meet its accuracy requirements.

  3. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    A United Launch Alliance (ULA) technician inspects the solid rocket motor for the ULA Atlas V rocket on its transporter near the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The solid rocket motor will be lifted and mated to the rocket in preparation for the launch of NOAA's Geostationary Operational Environmental Satellite (GOES-R) this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  4. Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Petersen, W.; Buechler, D. E.; Krehbiel, P. R.; Gatlin, P.; Zubrick, S.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models is expected to be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 ground processing algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area)

  5. GOES-R Space Weather Data: Achieving User Ready Products

    NASA Astrophysics Data System (ADS)

    Rowland, W. F.; Tilton, M.; Redmon, R. J.; Goodman, S. J.; Comerford, M.

    2017-12-01

    Forecasters and the science community will rely on improved Space Weather products from the next generation of Geostationary Operational Environmental Satellite (GOES-R Series) for decades to come. Many issues must be successfully addressed in order to produce useful products. The instruments themselves and their basic scientific measurements (Level 1b data, i.e. L1b) must be calibrated and validated. Algorithms must be created to transform L1b into the specific environmental parameters that are of interest to forecasters and the community (Level 2+, i.e. L2+). In the case of Space Weather data, because the L2+ products are not generated within the core GOES-R Ground Segment, a separate system had to be developed in order to implement the L2+ products. Finally, the products must be made available to real time and retrospective users, as well as preserved for future generations. We give an overview of the path to production of the GOES-R Space Weather products, and the role of the National Centers for Environmental Information (NCEI) in this process.

  6. Early Performance Results from the GOES-R Product Generation System

    NASA Astrophysics Data System (ADS)

    Marley, S.; Weiner, A.; Kalluri, S. N.; Hansen, D.; Dittberner, G.

    2013-12-01

    Enhancements to remote sensing capabilities for the next generation of Geostationary Operational Environmental Satellite (GOES R-series) scheduled to be launched in 2015 require high performance computing capabilities to output meteorological observations and products at low latency compared to the legacy processing systems. GOES R-series (GOES-R, -S, -T, and -U) represents a generational change in both spacecraft and instrument capability, and the GOES Re-Broadcast (GRB) data which contains calibrated and navigated radiances from all the instruments will be at a data rate of 31 Mb/sec compared to the current 2.11 Mb/sec from existing GOES satellites. To keep up with the data processing rates, the Product Generation (PG) system in the ground segment is designed on a Service Based Architecture (SBA). Each algorithm is executed as a service and subscribes to the data it needs to create higher level products via an enterprise service bus. Various levels of product data are published and retrieved from a data fabric. Together, the SBA and the data fabric provide a flexible, scalable, high performance architecture that meets the needs of product processing now and can grow to accommodate new algorithms in the future. The algorithms are linked together in a precedence chain starting from Level 0 to Level 1b and higher order Level 2 products that are distributed to data distribution nodes for external users. Qualification testing for more than half the product algorithms has so far been completed the PG system.

  7. The Geostationary Lighting Mapper (GLM) for GOES-R: A New Operational Capability to Improve Storm Forecasts and Warnings

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R.; Koshak, William J.; Petersen, W. A.; Carey, L.; Mah, D.

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series is a follow on to the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral (3x), spatial (4x), and temporal (5x) resolution for the Advanced Baseline Imager (ABI). The GLM, an optical transient detector and imager operating in the near-IR at 777.4 nm will map all (in-cloud and cloud-to-ground) lighting flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and

  8. Improving precipitation estimates over the western United States using GOES-R precipitation data

    NASA Astrophysics Data System (ADS)

    Karbalaee, N.; Kirstetter, P. E.; Gourley, J. J.

    2017-12-01

    Satellite remote sensing data with fine spatial and temporal resolution are widely used for precipitation estimation for different applications such as hydrological modeling, storm prediction, and flash flood monitoring. The Geostationary Operational Environmental Satellites-R series (GOES-R) is the next generation of environmental satellites that provides hydrologic, atmospheric, and climatic information every 30 seconds over the western hemisphere. The high-resolution and low-latency of GOES-R observations is essential for the monitoring and prediction of floods, specifically in the Western United States where the vantage point of space can complement the degraded weather radar coverage of the NEXRAD network. The GOES-R rainfall rate algorithm will yield deterministic quantitative precipitation estimates (QPE). Accounting for inherent uncertainties will further advance the GOES-R QPEs since with quantifiable error bars, the rainfall estimates can be more readily fused with ground radar products. On the ground, the high-resolution NEXRAD-based precipitation estimation from the Multi-Radar/Multi-Sensor (MRMS) system, which is now operational in the National Weather Service (NWS), is challenged due to a lack of suitable coverage of operational weather radars over complex terrain. Distribution of QPE uncertainties associated with the GOES-R deterministic retrievals are derived and analyzed using MRMS over regions with good radar coverage. They will be merged with MRMS-based probabilistic QPEs developed to advance multisensor QPE integration. This research aims at improving precipitation estimation over the CONUS by combining the observations from GOES-R and MRMS to provide consistent, accurate and fine resolution precipitation rates with uncertainties over the CONUS.

  9. GPS Receiver On-Orbit Performance for the GOES-R Spacecraft

    NASA Technical Reports Server (NTRS)

    Winkler, Stephen; Ramsey, Graeme; Frey, Charles; Chapel, Jim; Chu, Donald; Freesland, Douglas; Krimchansky, Alexander; Concha, Marco

    2017-01-01

    This paper evaluates the on-orbit performance of the first civilian operational use of a Global Positioning System Receiver (GPSR) at a geostationary orbit (GEO). The GPSR is on-board the newly launched Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first of four next generation GEO weather satellites for NOAA, now in orbit GOES-R is formally identified as GOES-16. Among the pioneering technologies required to support its improved spatial, spectral and temporal resolution is a GPSR. The GOES-16 GPSR system is a new design that was mission critical and therefore received appropriate scrutiny. As ground testing of a GPSR for GEO can only be done by simulations with numerous assumptions and approximations regarding the current GPS constellation, this paper reveals what performance can be achieved in using on orbit data. Extremely accurate orbital position is achieved using GPS navigation at GEO. Performance results are shown demonstrating compliance with the1007575 meter and 6 cms radial/in-track/cross-track orbital position and velocity accuracy requirements of GOES-16. The aforementioned compliance includes station-keeping and momentum management maneuvers, contributing to no observational outages. This performance is achieved by a completely new system design consisting of a unique L1 GEOantenna, low-noise amplifier (LNA) assembly and a 12 channel GPSR capable of tracking the edge of the main beam and the side lobes of the GPS L1 signals. This paper presents the definitive answer that the GOES-16 GPSR solution exceeds all performance requirements tracking up to 12 satellites and achieving excellent carrier-to-noise density (C/N0). Additionally, these performance results show the practicality of this approach. This paper makes it clear that all future GEO Satellites should consider the addition of a GPSR in their spacecraft design, otherwise they may be sacrificing spacecraft capabilities and accuracy along with incurring increased and

  10. Short-Term Prediction Research and Transition (SPoRT) Center: Transitioning Satellite Data to Operations

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.

  11. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Gabriel Rodriguez-Mena, a United Launch Alliance systems test engineer, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  12. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Joe Pica, director of the Office of Observations for the National Oceanic and Atmospheric Administration's, or NOAA’s, National Weather Service, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the Geostationary Operational Environmental Satellite, or GOES-S, the second spacecraft in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  13. AWIPS II Application Development, a SPoRT Perspective

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Smith, Matthew; McGrath, Kevin M.

    2014-01-01

    The National Weather Service (NWS) is deploying its next-generation decision support system, called AWIPS II (Advanced Weather Interactive Processing System II). NASA's Short-term Prediction Research and Transition (SPoRT) Center has developed several software 'plug-ins' to extend the capabilities of AWIPS II. SPoRT aims to continue its mission of improving short-term forecasts by providing NASA and NOAA products on the decision support system used at NWS weather forecast offices (WFOs). These products are not included in the standard Satellite Broadcast Network feed provided to WFOs. SPoRT has had success in providing support to WFOs as they have transitioned to AWIPS II. Specific examples of transitioning SPoRT plug-ins to WFOs with newly deployed AWIPS II systems will be presented. Proving Ground activities (GOES-R and JPSS) will dominate SPoRT's future AWIPS II activities, including tool development as well as enhancements to existing products. In early 2012 SPoRT initiated the Experimental Product Development Team, a group of AWIPS II developers from several institutions supporting NWS forecasters with innovative products. The results of the team's spring and fall 2013 meeting will be presented. Since AWIPS II developers now include employees at WFOs, as well as many other institutions related to weather forecasting, the NWS has dealt with a multitude of software governance issues related to the difficulties of multiple remotely collaborating software developers. This presentation will provide additional examples of Research-to-Operations plugins, as well as an update on how governance issues are being handled in the AWIPS II developer community.

  14. Challenges in Transitioning Research Data to Operations: The SPoRT Paradigm

    NASA Technical Reports Server (NTRS)

    Jedloved, Gary J.; Smith, Matt; McGrath, Kevin

    2010-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the NASA Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. With the ever-broadening application of real-time high resolution satellite data from current EOS and planned NPP, JPSS, and GOES-R sensors to weather forecast problems, significant challenges arise in the acquisition, delivery, and integration of the new capabilities into the decision making process of the operational weather community. For polar orbiting sensors such as MODIS, AIRS, VIIRS, and CRiS, the use of direct broadcast ground stations is key to the real-time delivery of the data and derived products in a timely fashion. With the ABI on the geostationary GOES-R satellite, the data volume will likely increase by a factor of 5- 10 from current data streams. However, the high data volume and limited bandwidth of end user facilities presents a formidable obstacle to timely access to the data. This challenge can be addressed through the use of subsetting techniques, innovative web services, and the judicious selection of data formats. Many of these approaches have been implemented by SPoRT for the delivery of real-time products to NWS forecast offices and other weather entities. Once available in decision support systems like AWIPS II, these new data and products must be integrated into existing and new displays that allow for the integration of the data with existing operational products in these systems. SPoRT is leading the way in demonstrating this enhanced capability. This paper will highlight the ways SPoRT is overcoming many of the challenges presented by the enormous data volumes of

  15. Space Weather Monitoring with GOES-16: Instruments and Data Products

    NASA Astrophysics Data System (ADS)

    Loto'aniu, Paul; Rodriguez, Juan; Redmon, Robert; Machol, Janet; Kress, Brian; Seaton, Daniel; Darnel, Jonathan; Rowland, William; Tilton, Margaret; Denig, William; Boudouridis, Athanasios; Codrescu, Stefan; Claycomb, Abram

    2017-04-01

    Since their inception in the 1970s, the NOAA GOES satellites have monitored the sources of space weather on the sun and the effects of space weather at Earth. The GOES-16 spacecraft, the first of four satellites as part of the GOES-R spacecraft series mission, was launched in November 2016. The space weather instruments on GOES-16 have significantly improved capabilities over older GOES instruments. They will image the sun's atmosphere in extreme-ultraviolet and monitor solar irradiance in X-rays and UV, solar energetic particles, magnetospheric energetic particles, galactic cosmic rays, and the Earth's magnetic field. These measurements are important for providing alerts and warnings to many worldwide customers, including the NOAA National Weather Service, satellite operators, the power utilities, and NASA's human activities in space. This presentation reviews the capabilities of the GOES-16 space weather instruments and presents initial post launch data along with a discussion of calibration activities and the current status of the instruments. We also describe the space weather Level 2+ products that are being developed for the GOES-R series including solar thematic maps, automated magnetopause crossing detection and spacecraft charging estimates. These new and continuing data products will be an integral part of NOAA space weather operations in the GOES-R era.

  16. The NASA Short-term Prediction and Research Transition (SPoRT) Center: A Research to Operations Test Bed

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2005-01-01

    Over the last three years, NASA/MSFC scientists have embarked on an effort to transition unique NASA EOS data/products and research technology to selected NWSEOs in the southeast U.S. This activity, called the Short-term Prediction and - Research Transition (SPoRT) program, supports the NASA Science Mission Directorate and its Earth-Sun System Mission to develop a scientific understanding of the Earth System and its response to natural or human-induced changes that will enable improved prediction capability for climate, weather, and natural hazards. The overarching question related to weather prediction is "How well can weather forecasting duration and reliability be improved by new space-based observations, data assimilation, and modeling?" The transition activity has included the real-time delivery of MODIS data and products to several NWS Forecast Offices. Local NWS FOs have used the MODIS data to complement the coarse resolution GOES data for a number of applications. Specialized products have also been developed and made available to local and remote offices for their weather applications. Data from &e Lightning Mapping Array (LMA) network has been used in severe storm forecasts at several offices in the region. At the regional scale and forecast horizons from 0-1 day, the next generation of high-resolution mesoscale forecast and data assimilation models have been used to provide local offices with unique weather forecasts not otherwise available. The continued use of near red-time infusion of NASA science products into high-resolution mesoscale forecast and decision-making models can be expected to improve the model initialization as well as short-term forecasts. A current focus of SPoRT is to expand collaborations to include contributions from the assimilation of AMSR-E data in the ADASIARPS forecast system (OU), inclusion of MODIS SSTs and AIRS thermodynamic profiles in the WRF, and to extend the distribution of real-time MODIS and AMSR-E data and products

  17. Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven; Blakeslee, Richard; Koshak, William

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous,full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornado activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2B algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving

  18. GOES-R active vibration damping controller design, implementation, and on-orbit performance

    NASA Astrophysics Data System (ADS)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2018-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is

  19. GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2017-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural

  20. Pre-Launch GOES-R Risk Reduction Activities for the Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Blakeslee, R. J.; Boccippio, D. J.; Christian, H. J.; Koshak, W. J.; Petersen, W. A.

    2005-01-01

    The GOES-R Geostationary Lightning Mapper (GLM) is a new instrument planned for GOES-R that will greatly improve storm hazard nowcasting and increase warning lead time day and night. Daytime detection of lightning is a particularly significant technological advance given the fact that the solar illuminated cloud-top signal can exceed the intensity of the lightning signal by a factor of one hundred. Our approach is detailed across three broad themes which include: Data Processing Algorithm Readiness, Forecast Applications, and Radiance Data Mining. These themes address how the data will be processed and distributed, and the algorithms and models for developing, producing, and using the data products. These pre-launch risk reduction activities will accelerate the operational and research use of the GLM data once GOES-R begins on-orbit operations. The GLM will provide unprecedented capabilities for tracking thunderstorms and earlier warning of impending severe and hazardous weather threats. By providing direct information on lightning initiation, propagation, extent, and rate, the GLM will also capture the updraft dynamics and life cycle of convective storms, as well as internal ice precipitation processes. The GLM provides information directly from the heart of the thunderstorm as opposed to cloud-top only. Nowcasting applications enabled by the GLM data will expedite the warning and response time of emergency management systems, improve the dispatch of electric power utility repair crews, and improve airline routing around thunderstorms thereby improving safety and efficiency, saving fuel and reducing delays. The use of GLM data will assist the Bureau of Land Management (BLM) and the Forest Service in quickly detecting lightning ground strikes that have a high probability of causing fires. Finally, GLM data will help assess the role of thunderstorms and deep convection in global climate, and will improve regional air quality and global chemistry/climate modeling

  1. GOES-S Uncrating

    NASA Image and Video Library

    2017-12-05

    At Astrotech Space Operations in Titusville, Florida, NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) has been removed from its shipping container. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  2. Applications of NASA and NOAA Satellite Observations by NASA's Short-term Prediction Research and Transition (SPoRT) Center in Response to Natural Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2012-01-01

    NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.

  3. Avoiding Stair-Step Artifacts in Image Registration for GOES-R Navigation and Registration Assessment

    NASA Technical Reports Server (NTRS)

    Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John

    2016-01-01

    In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.

  4. GOES-S Uncrating

    NASA Image and Video Library

    2017-12-05

    At Astrotech Space Operations in Titusville, Florida, technicians and engineers remove NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) from its shipping container. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  5. GOES-S Uncrating

    NASA Image and Video Library

    2017-12-05

    At Astrotech Space Operations in Titusville, Florida, technicians and engineers inspect NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) after removal from its shipping container. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  6. Satellite Proving Ground for the GOES-R Geostationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Gurka, James; Bruning, E. C.; Blakeslee, J. R.; Rabin, Robert; Buechler, D.

    2009-01-01

    The key mission of the Satellite Proving Ground is to demonstrate new satellite observing data, products and capabilities in the operational environment to be ready on Day 1 to use the GOES-R suite of measurements. Algorithms, tools, and techniques must be tested, validated, and assessed by end users for their utility before they are finalized and incorporated into forecast operations. The GOES-R Proving Ground for the Geostationary Lightning Mapper (GLM) focuses on evaluating how the infusion of the new technology, algorithms, decision aids, or tailored products integrate with other available tools (weather radar and ground strike networks; nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing forecasts and warning products. Additionally, the testing concept fosters operation and development staff interactions which will improve training materials and support documentation development. Real-time proxy total lightning data from regional VHF lightning mapping arrays (LMA) in Northern Alabama, Central Oklahoma, Cape Canaveral Florida, and the Washington, DC Greater Metropolitan Area are the cornerstone for the GLM Proving Ground. The proxy data will simulate the 8 km Event, Group and Flash data that will be generated by GLM. Tailored products such as total flash density at 1-2 minute intervals will be provided for display in AWIPS-2 to select NWS forecast offices and national centers such as the Storm Prediction Center. Additional temporal / spatial combinations are being investigated in coordination with operational needs and case-study proxy data and prototype visualizations may also be generated from the NASA heritage Lightning Imaging Sensor and Optical Transient Detector data. End users will provide feedback on the utility of products in their operational environment, identify use cases and spatial/temporal scales of interest, and provide feedback to the developers for adjusted or

  7. Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven; Blakeslee, Richard; Koshak, William; Petersen, Walt; Buechler, Dennis; Krehbiel, Paul; Gatlin, Patrick; Zubrick, Steven

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational.The mission objectives for the GLM are to 1) provide continuous,full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2B algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) sate]lite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving

  8. Initial Navigation Alignment of Optical Instruments on GOES-R

    NASA Technical Reports Server (NTRS)

    Isaacson, Peter J.; DeLuccia, Frank J.; Reth, Alan D.; Igli, David A.; Carter, Delano R.

    2016-01-01

    Post-launch alignment errors for the Advanced Baseline Imager (ABI) and Geospatial Lightning Mapper (GLM) on GOES-R may be too large for the image navigation and registration (INR) processing algorithms to function without an initial adjustment to calibration parameters. We present an approach that leverages a combination of user-selected image-to-image tie points and image correlation algorithms to estimate this initial launch-induced offset and calculate adjustments to the Line of Sight Motion Compensation (LMC) parameters. We also present an approach to generate synthetic test images, to which shifts and rotations of known magnitude are applied. Results of applying the initial alignment tools to a subset of these synthetic test images are presented. The results for both ABI and GLM are within the specifications established for these tools, and indicate that application of these tools during the post-launch test (PLT) phase of GOES-R operations will enable the automated INR algorithms for both instruments to function as intended.

  9. What Goes Around Comes Around … Or Does It? Disrupting the Cycle of Traditional, Sport-Based Physical Education

    PubMed Central

    Ennis, Catherine D.

    2015-01-01

    As typically taught, sport-based, multiactivity approaches to physical education provide students with few opportunities to increase their skill, fitness, or understanding. Alternative curriculum models, such as Sport Education, Teaching Games for Understanding, and Fitness for Life, represent a second generation of models that build on strong statements of democratic, student-centered practice in physical education. In the What Goes Around section of the paper, I discuss the U.S. perspective on the origins of alternative physical education curriculum models introduced in the early and mid-20th century as a response to sport and exercise programs of the times. Today, with the help of physical educators, scholars are conducting research to test new curricular alternatives or prototypes to provide evidence-based support for these models. Yet, the multiactivity, sport-based curriculum continues to dominate in most U.S. physical education classes. I discuss reasons for this dogged persistence and propose reforms to disrupt this pervasive pattern in the future. PMID:25960937

  10. Development of Level 1b Calibration and Validation Readiness, Implementation and Management Plans for GOES-R

    NASA Technical Reports Server (NTRS)

    Kunkee, David B.; Farley, Robert W.; Kwan, Betty P.; Hecht, James H.; Walterscheid, Richard L.; Claudepierre, Seth G.; Bishop, Rebecca L.; Gelinas, Lynette J.; Deluccia, Frank J.

    2017-01-01

    A complement of Readiness, Implementation and Management Plans (RIMPs) to facilitate management of post-launch product test activities for the official Geostationary Operational Environmental Satellite (GOES-R) Level 1b (L1b) products have been developed and documented. Separate plans have been created for each of the GOES-R sensors including: the Advanced Baseline Imager (ABI), the Extreme ultraviolet and X-ray Irradiance Sensors (EXIS), Geostationary Lightning Mapper (GLM), GOES-R Magnetometer (MAG), the Space Environment In-Situ Suite (SEISS), and the Solar Ultraviolet Imager (SUVI). The GOES-R program has implemented these RIMPs in order to address the full scope of CalVal activities required for a successful demonstration of GOES-R L1b data product quality throughout the three validation stages: Beta, Provisional and Full Validation. For each product maturity level, the RIMPs include specific performance criteria and required artifacts that provide evidence a given validation stage has been reached, the timing when each stage will be complete, a description of every applicable Post-Launch Product Test (PLPT), roles and responsibilities of personnel, upstream dependencies, and analysis methods and tools to be employed during validation. Instrument level Post-Launch Tests (PLTs) are also referenced and apply primarily to functional check-out of the instruments.

  11. Using NASA's Reference Architecture: Comparing Polar and Geostationary Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Burnett, Michael

    2013-01-01

    The JPSS and GOES-R programs are housed at NASA GSFC and jointly implemented by NASA and NOAA to NOAA requirements. NASA's role in the JPSS Ground System is to develop and deploy the system according to NOAA requirements. NASA's role in the GOES-R ground segment is to provide Systems Engineering expertise and oversight for NOAA's development and deployment of the system. NASA's Earth Science Data Systems Reference Architecture is a document developed by NASA's Earth Science Data Systems Standards Process Group that describes a NASA Earth Observing Mission Ground system as a generic abstraction. The authors work within the respective ground segment projects and are also separately contributors to the Reference Architecture document. Opinions expressed are the author's only and are not NOAA, NASA or the Ground Projects' official positions.

  12. GOES-S Prelaunch News Conference

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Tim Dunn, NASA launch director at Kennedy, left, and Scott Messer, manager of NASA Programs for United launch Alliance, speak to members of the media at a prelaunch news conference about National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The GOES series of satellites will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  13. Preliminary assessment of the GOES-R ABI hourly land surface albedo and reflectance products prototyped with Himawari AHI data

    NASA Astrophysics Data System (ADS)

    He, T.; Liang, S.; Zhang, Y.; Yu, Y.

    2016-12-01

    Land surface albedo and reflectance are critical geophysical variables used in climate and environmental applications. The multispectral Advanced Baseline Imager (ABI) onboard the next generation geostationary satellites (GOES-R series, set to launch in late 2016) offers high temporal and medium spatial resolution observations, which can be used for monitoring diurnal variation of surface albedo and reflectance. In the GOES-R data processing chain there is no atmospheric correction to generate surface reflectance product, which is usually required for surface albedo estimation. We propose an optimization method to simultaneously retrieve surface bidirectional reflectance distribution function (BRDF) parameters and aerosol optical depth with GOES-R ABI data on a daily-basis, which are used for estimating surface albedo and reflectance. Before the launch of the GOES-R satellite, our algorithm was prototyped with data from the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 satellite, which has spectral bands and spatial resolutions similar to GOES-R ABI. Cal/val activities were carried out against ground measurements at the OzFlux sites in Australia and satellite data including albedo/BRDF products from MODIS and Landsat. The preliminary accuracy assessment showed promising results for both the surface albedo and reflectance estimates. The GOES-R surface albedo and reflectance products will serve as critical inputs for downstream GOES-R satellite products and also help improve climate modeling and weather forecasting with a high temporal resolution.

  14. Preliminary GOES-R ABI navigation and registration assessment results

    NASA Astrophysics Data System (ADS)

    Tan, B.; Dellomo, J.; Wolfe, R. E.; Reth, A. D.

    2017-12-01

    The US Geostationary Operational Environmental Satellite - R Series (GOES-R) was launched on November 19, 2016, and was designated GOESR-16 upon reaching geostationary orbit ten days later. The Advanced Baseline Imager (ABI) is the primary instrument on the GOES-R series for imaging Earth's surface and atmosphere to aid in weather prediction and climate monitoring. We developed algorithms and software for independent verification of the ABI Image Navigation and Registration (INR). Since late January 2017, four INR metrics have been continuously generated to monitor the ABI INR performance: navigation (NAV) error, channel-to-channel registration (CCR) error, frame-to-frame registration (FFR) error, and within-frame registration (WIFR) error. In this paper, we will describe the fundamental algorithm used for the image registration and briefly discuss the processing flow of INR Performance Assessment Tool Set (IPATS) developed for ABI INR. The assessment of the accuracy shows that IPATS measurements error is about 1/20 of the size of a pixel. Then the GOES-16 NAV assessments results, the primary metric, from January to August 2017, will be presented. The INR has improved over time as post-launch tests were performed and corrections were applied. The mean NAV error of the visible and near infrared (VNIR) channels dropped from 20 μrad in January to around 5 μrad (+/-4 μrad, 1 σ) in June, while the mean NAV error of long wave infrared (LWIR) channels dropped from around 70 μrad in January to around 5 μrad (+/-15 μrad, 1 σ) in June. A full global ABI image is composed with 22 east-west direction swaths. The swath-wise NAV error analysis shows that there was some variation in the mean swath-wise NAV errors. The variations are about as much as 20% of the scene NAV mean errors. As expected, the swaths over the tropical area have far fewer valid assessments (matchups) than those in mid-latitude region due to cloud coverage. It was also found that there was a rotation

  15. Development of Level 2 Calibration and Validation Plans for GOES-R; What is a RIMP?

    NASA Technical Reports Server (NTRS)

    Kopp, Thomas J.; Belsma, Leslie O.; Mollner, Andrew K.; Sun, Ziping; Deluccia, Frank

    2017-01-01

    Calibration and Validation (CalVal) plans for Geostationary Operational Environmental Satellite version R (GOES-R) Level 2 (L2) products were documented via Resource, Implementation, and Management Plans (RIMPs) for all of the official L2 products required from the GOES-R Advanced Baseline Imager (ABI). In 2015 the GOES-R program decided to replace the typical CalVal plans with RIMPs that covered, for a given L2 product, what was required from that product, how it would be validated, and what tools would be used to do so. Similar to Level 1b products, the intent was to cover the full spectrum of planning required for the CalVal of L2 ABI products. Instead of focusing on step-by-step procedures, the RIMPs concentrated on the criteria for each stage of the validation process (Beta, Provisional, and Full Validation) and the many elements required to prove when each stage was reached.

  16. GOES-S Rotate to Vertical

    NASA Image and Video Library

    2017-12-05

    At Astrotech Space Operations in Titusville, Florida, technicians and engineers inspect NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) after removal from its shipping container. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  17. Use and Assessment of Multi-Spectral Satellite Imagery in NWS Operational Forecasting Environments

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Fuell, Kevin; Stano, Geoffrey; McGrath, Kevin; Schultz, Lori; LeRoy, Anita

    2015-01-01

    NOAA's Satellite Proving Grounds have established partnerships between product developers and NWS WFOs for the evaluation of new capabilities from the GOES-R and JPSS satellite systems. SPoRT has partnered with various WFOs to evaluate multispectral (RGB) products from MODIS, VIIRS and Himawari/AHI to prepare for GOES-R/ABI. Assisted through partnerships with GINA, UW/CIMSS, NOAA, and NASA Direct Broadcast capabilities.

  18. The GOES-R Product Generation Architecture

    NASA Astrophysics Data System (ADS)

    Dittberner, G. J.; Kalluri, S.; Hansen, D.; Weiner, A.; Tarpley, A.; Marley, S.

    2011-12-01

    The GOES-R system will substantially improve users' ability to succeed in their work by providing data with significantly enhanced instruments, higher resolution, much shorter relook times, and an increased number and diversity of products. The Product Generation architecture is designed to provide the computer and memory resources necessary to achieve the necessary latency and availability for these products. Over time, new and updated algorithms are expected to be added and old ones removed as science advances and new products are developed. The GOES-R GS architecture is being planned to maintain functionality so that when such changes are implemented, operational product generation will continue without interruption. The primary parts of the PG infrastructure are the Service Based Architecture (SBA) and the Data Fabric (DF). SBA is the middleware that encapsulates and manages science algorithms that generate products. It is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DF to provide this data communication layer between algorithms. The DF provides an abstract interface over a distributed and persistent multi-layered storage system (e.g., memory based caching above disk-based storage) and an event management system that allows event-driven algorithm services to know when instrument data are available and where they reside. Together, the SBA and the DF provide a

  19. NASA SPoRT Modeling and Data Assimilation Research and Transition Activities Using WRF, LIS and GSI

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Blankenship, Clay B.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Berndt, Emily B.

    2014-01-01

    weather research and forecasting ===== The NASA Short-term Prediction Research and Transition (SPoRT) program has numerous modeling and data assimilation (DA) activities in which the WRF model is a key component. SPoRT generates realtime, research satellite products from the MODIS and VIIRS instruments, making the data available to NOAA/NWS partners running the WRF/EMS, including: (1) 2-km northwestern-hemispheric SST composite, (2) daily, MODIS green vegetation fraction (GVF) over CONUS, and (3) NASA Land Information System (LIS) runs of the Noah LSM over the southeastern CONUS. Each of these datasets have been utilized by specific SPoRT partners in local EMS model runs, with select offices evaluating the impacts using a set of automated scripts developed by SPoRT that manage data acquisition and run the NCAR Model Evaluation Tools verification package. SPoRT is engaged in DA research with the Gridpoint Statistical Interpolation (GSI) and Ensemble Kalman Filter in LIS for soil moisture DA. Ongoing DA projects using GSI include comparing the impacts of assimilating Atmospheric Infrared Sounder (AIRS) radiances versus retrieved profiles, and an analysis of extra-tropical cyclones with intense non-convective winds. As part of its Early Adopter activities for the NASA Soil Moisture Active Passive (SMAP) mission, SPoRT is conducting bias correction and soil moisture DA within LIS to improve simulations using the NASA Unified-WRF (NU-WRF) for both the European Space Agency's Soil Moisture Ocean Salinity and upcoming SMAP mission data. SPoRT has also incorporated real-time global GVF data into LIS and WRF from the VIIRS product being developed by NOAA/NESDIS. This poster will highlight the research and transition activities SPoRT conducts using WRF, NU-WRF, EMS, LIS, and GSI.

  20. GOES-16 On-Orbit Dual Isolation Performance Characterization Results

    NASA Technical Reports Server (NTRS)

    Carter, Delano; Clapp, Brian; Early, Derrick; Freesland, Douglas; Chapel, Jim; Bailey, Robert; Krimchansky, Alexander

    2016-01-01

    The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the first of the next generation geostationary weather satellites. GOES-R successfully launched on November19, 2016 and renamed GOES-16 upon entering geostationary orbit. Subsequently, GOES-16post-launch testing began. This paper presents the GOES-16 Satellite Dynamic Interaction Characterization results for the Earth Pointed Platform (EPP) stowed, referred to as the Reaction Wheel Assembly (RWA) Isolation Only configuration, and deployed, referred to as the Dual Isolation configuration. GOES-R represents a quantum increase in Earth and solar weather observation capabilities, with 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands for Earth observations. With the improved resolution, comes the instrument suites increased sensitivity to disturbances over a broad spectrum 0-512Hz. Sources of disturbance include reaction wheels, thruster firings for station keeping and momentum management, gimbal motion, and internal instrument disturbances. To minimize the impact of these disturbances, the baseline design included an EPP, a stiff optical bench to which the two nadir pointed instruments are collocated together with the Guidance Navigation Control (GNC) star trackers and Inertial Measurement Units (IMUs). The EPP is passively isolated from the spacecraft bus with Honeywell D-Strut isolators providing attenuation for frequencies above 5 Hz in all six degrees-of-freedom. To reduce the risk of wheel disturbances impacting performance, a secondary passive isolation system manufactured by Moog CSA Engineering was incorporated under each of the six 160 Nms reaction wheels, tuned to provide attenuation at frequencies above 50 Hz. Integrated wheel and isolator testing was performed on a Kistler table at NASA Goddard Space Flight Center. Pre-launch Satellite Dynamic Interaction Characterization high-fidelity simulations and ground testing were conducted to

  1. Correcting GOES-R Magnetometer Data for Stray Fields

    NASA Technical Reports Server (NTRS)

    Carter, Delano; Freesland, Douglas; Tadikonda, Sivakumar; Kronenwetter, Jeffrey; Todirita, Monica; Dahya, Melissa; Chu, Donald

    2016-01-01

    Time-varying spacecraft magnetic fields, i.e. stray fields, are a problem for magnetometer systems. While constant fields can be removed by calibration, stray fields are difficult to distinguish from ambient field variations. Putting two magnetometers on a long boom and solving for both the ambient and stray fields can help, but this gradiometer solution is more sensitive to noise than a single magnetometer. As shown here for the R-series Geostationary Operational Environmental Satellites (GOES-R), unless the stray fields are larger than the noise, simply averaging the two magnetometer readings gives a more accurate solution. If averaging is used, it may be worthwhile to estimate and remove stray fields explicitly. Models and estimation algorithms to do so are provided for solar array, arcjet and reaction wheel fields.

  2. Assessing and Ensuring GOES-R Magnetometer Accuracy

    NASA Technical Reports Server (NTRS)

    Kronenwetter, Jeffrey; Carter, Delano R.; Todirita, Monica; Chu, Donald

    2016-01-01

    The GOES-R magnetometer accuracy requirement is 1.7 nanoteslas (nT). During quiet times (100 nT), accuracy is defined as absolute mean plus 3 sigma. During storms (300 nT), accuracy is defined as absolute mean plus 2 sigma. To achieve this, the sensor itself has better than 1 nT accuracy. Because zero offset and scale factor drift over time, it is also necessary to perform annual calibration maneuvers. To predict performance, we used covariance analysis and attempted to corroborate it with simulations. Although not perfect, the two generally agree and show the expected behaviors. With the annual calibration regimen, these predictions suggest that the magnetometers will meet their accuracy requirements.

  3. Early Benchmarks of Product Generation Capabilities of the GOES-R Ground System for Operational Weather Prediction

    NASA Astrophysics Data System (ADS)

    Kalluri, S. N.; Haman, B.; Vititoe, D.

    2014-12-01

    The ground system under development for Geostationary Operational Environmental Satellite-R (GOES-R) series of weather satellite has completed a key milestone in implementing the science algorithms that process raw sensor data to higher level products in preparation for launch. Real time observations from GOES-R are expected to make significant contributions to Earth and space weather prediction, and there are stringent requirements to product weather products at very low latency to meet NOAA's operational needs. Simulated test data from all the six GOES-R sensors are being processed by the system to test and verify performance of the fielded system. Early results show that the system development is on track to meet functional and performance requirements to process science data. Comparison of science products generated by the ground system from simulated data with those generated by the algorithm developers show close agreement among data sets which demonstrates that the algorithms are implemented correctly. Successful delivery of products to AWIPS and the Product Distribution and Access (PDA) system from the core system demonstrate that the external interfaces are working.

  4. A Prototype Web-based system for GOES-R Space Weather Data

    NASA Astrophysics Data System (ADS)

    Sundaravel, A.; Wilkinson, D. C.

    2010-12-01

    The Geostationary Operational Environmental Satellite-R Series (GOES-R) makes use of advanced instruments and technologies to monitor the Earth's surface and provide with accurate space weather data. The first GOES-R series satellite is scheduled to be launched in 2015. The data from the satellite will be widely used by scientists for space weather modeling and predictions. This project looks into the ways of how these datasets can be made available to the scientists on the Web and to assist them on their research. We are working on to develop a prototype web-based system that allows users to browse, search and download these data. The GOES-R datasets will be archived in NetCDF (Network Common Data Form) and CSV (Comma Separated Values) format. The NetCDF is a self-describing data format that contains both the metadata information and the data. The data is stored in an array-oriented fashion. The web-based system will offer services in two ways: via a web application (portal) and via web services. Using the web application, the users can download data in NetCDF or CSV format and can also plot a graph of the data. The web page displays the various categories of data and the time intervals for which the data is available. The web application (client) sends the user query to the server, which then connects to the data sources to retrieve the data and delivers it to the users. Data access will also be provided via SOAP (Simple Object Access Protocol) and REST (Representational State Transfer) web services. These provide functions which can be used by other applications to fetch data and use the data for further processing. To build the prototype system, we are making use of proxy data from existing GOES and POES space weather datasets. Java is the programming language used in developing tools that formats data to NetCDF and CSV. For the web technology we have chosen Grails to develop both the web application and the services. Grails is an open source web application

  5. SMAP Data Assimilation at NASA SPoRT

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Case, Jonathan L.; Zavodsky, Bradley T.

    2016-01-01

    The NASA Short-Term Prediction Research and Transition (SPoRT) Center maintains a near-real- time run of the Noah Land Surface Model within the Land Information System (LIS) at 3-km resolution. Soil moisture products from this model are used by several NOAA/National Weather Service Weather Forecast Offices for flood and drought situational awareness. We have implemented assimilation of soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active/ Passive (SMAP) satellites, and are now evaluating the SMAP assimilation. The SMAP-enhanced LIS product is planned for public release by October 2016.

  6. The GOES-R Rebroadcast (GRB) Data Stream Simulator

    NASA Astrophysics Data System (ADS)

    Dittberner, G. J.; Gibbons, K.; Czopkiewicz, E.; Miller, C.; Brown-Bergtold, B.; Haman, B.; Marley, S.

    2013-12-01

    GOES Rebroadcast (GRB) signals in the GOES-R era will replace the current legacy GOES Variable (GVAR) signal and will have substantially different characteristics, including a change in data rate from a single 2.1 Mbps stream to two digital streams of 15.5 Mbps each. Five GRB Simulators were developed as portable systems that output a high-fidelity stream of Consultative Committee for Space Data Systems (CCSDS) formatted GRB packet data equivalent to live GRB data. The data are used for on-site testing of user ingest and data handling systems known as field terminal sites. The GRB Simulator is a fully self-contained system which includes all software and hardware units needed for operation. The operator manages configurations to edit preferences, define individual test scenarios, and manage event logs and reports. Simulations are controlled by test scenarios, which are scripts that specify the test data and provide a series of actions for the GRB Simulator to perform when generating GRB output. Scenarios allow for the insertion of errors or modification of GRB packet headers for testing purposes. The GRB Simulator provides a built-in editor for managing scenarios. The GRB Simulator provides GRB data as either baseband (digital) or Intermediate Frequency (IF) output to the test system. GRB packet data are sent in the same two output streams used in the operational system: one for Left Hand Circular Polarization (LHCP) and one for Right Hand Circular Polarization (RHCP). Use of circular polarization in the operational system allows the transmitting antenna to multiplex the two digital streams into the same signal, thereby doubling the available bandwidth. The GRB Simulator is designed to be used at sites that receive the GRB downlink.

  7. GOES-S Arrival at Astrotech Space Operations

    NASA Image and Video Library

    2017-12-05

    At Astrotech Space Operations in Titusville, Florida, technicians and engineers prepare to remove NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) from its shipping container. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  8. GOES-S Prelaunch News Conference

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Tim Dunn, NASA launch director at Kennedy, speaks to members of the media at a prelaunch news conference about National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The GOES series of satellites will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  9. The GOES-R Lightning Mapper Sensor

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis; Christian, Hugh; Goodman, Steve

    2004-01-01

    The Lightning Mapper Sensor on GOES-R builds on previous measurements of lightning from low earth orbit by the OTD (Optical Transient Detector) and LIS (Lightning Imaging Sensor) sensors. Unlike observations from low earth orbit, the GOES-R platform will allow continuous monitoring of lightning activity over the Continental United States and southern Canada, Central and South America, and portions of the Atlantic and Pacific Oceans. The LMS will detect total (cloud-to-ground and intracloud) lightning at storm scale resolution (approx. 8 km) using a highly sensitive Charge Coupled Device (CCD) detector array. Discrimination between lightning optical transients and a bright sunlit background scene is accomplished by employing spectral, spatial, and temporal filtering along with a background subtraction technique. The result is 24 hour detection capability of total lightning. These total lightning observations can be made available to users within about 20 seconds. Research indicates a number of ways that total lightning observations from LMS could benefit operational activities, including 1) potential increases in lead times and reduced false alarms for severe thunderstorm and tornado Warnings, 2) improved routing of &rail around thunderstorms, 3) support for spacecraft launches and landings, 4) improved ability to monitor tropical cyclone intensity, 5) ability to monitor thunderstorm intensification/weakening during radar outages or where radar coverage is poor, 6) better identification of deep convection for the initialization of numerical prediction models, 7) improved forest fire forecasts, 8) identification of convective initiation, 9) identification of heavy convective snowfall, and 10) enhanced temporal resolution of storm evolution (1 minute) than is available from radar observations. Total lightning data has been used in an operational environment since July 2003 at the Huntsville, Alabama National Weather Service office. Total lightning measurements are

  10. Sport Transition of JPSS VIIRS Imagery for Night-time Applications

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin; LeRoy, Anita; Smith, Matt; Miller, Steve; Kann, Diedre; Bernhardt, David; Reydell, Nezette; Cox, Robert

    2014-01-01

    The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program and NOAA/Cooperative Institute for Research in the Atmosphere (CIRA) work within the NOAA/Joint Polar Satellite System (JPSS) Proving Ground to demonstrate the unique capabilities of the VIIRS instrument. Very similar to MODIS, the VIIRS instrument provides many high-resolution visible and infrared channels in a broad spectrum. In addition, VIIRS is equipped with a low-light sensor that is able to detect light emissions from the land and atmosphere as well as reflected sunlight by the lunar surface. This band is referred to as the Day-Night Band due to the sunlight being used at night to see cloud and topographic features just as one would typically see in day-time visible imagery. NWS forecast offices that collaborate with SPoRT and CIRA have utilized MODIS imagery in operations, but have longed for more frequent passes of polar-orbiting data. The VIIRS instrument enhances SPoRT collaborations with WFOs by providing another day and night-time pass, and at times two additional passes due to its large swath width. This means that multi-spectral, RGB imagery composites are more readily available to prepare users for their use in GOES-R era and high-resolution imagery for use in high-latitudes is more frequently able to supplement standard GOES imagery within the SPoRT Hybrid GEO-LEO product. The transition of VIIRS also introduces the new Day-Night Band capability to forecast operations. An Intensive Evaluation Period (IEP) was conducted in Summer 2013 with a group of "Front Range" NWS offices related to VIIRS night-time imagery. VIIRS single-channel imagery is able to better analyze the specific location of fire hotspots and other land features, as well as provide a more true measurement of various cloud and aerosol properties than geostationary measurements, especially at night. Viewed within the SPoRT Hybrid imagery, the VIIRS data allows forecasters to better interpret the more frequent, but

  11. GOES-West Satellite Eyes Soggy Storm Approaching California

    NASA Image and Video Library

    2014-02-28

    A swirling Eastern Pacific Ocean storm system headed for California was spotted by NOAA's GOES-West satellite on February 28. According to the National Weather Service, this storm system has the potential to bring heavy rainfall to the drought-stricken state. The storm was captured using visible data from NOAA's GOES-West or GOES-15 satellite on Feb. 28 at 1915 UTC/11:15 a.m. PST was made into an image by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. The storm's center appeared as a tight swirl, with bands of clouds and showers already sweeping over the state extending from northern California to Baja California, Mexico. At 11:30 a.m. PST on February 28, Bill Patzert, climatologist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. said, "Right now from northern to southern California we are being battered by very heavy rain, strong winds and our coastal communities are being battered by high surf. Through the weekend we are bracing for mud and rock slides in areas that recently burned [from wildfires]. Flooding is looming up and down the state." The National Weather Service (NWS) serving Los Angeles posted a Flood Watch for the region on Friday, February 28. The Flood Watch notes the "potential for flash flooding and debris flows for some 2013 and 2014 burn areas in Los Angeles County from this morning through Saturday evening (March 1).” The NWS Flood Watch also noted "a very strong and dynamic storm will bring a significant amount of rain to much of southwestern California through Saturday evening. A flash flood watch has been issued for several recent burn areas in Los Angeles County due to the abundant rainfall expected. Rain rates at times are expected to range from a half inch to one inch per hour which could cause significant mud and debris flows. There will be a chance of thunderstorms with locally higher rainfall rates." "Californians haven't seen rain and wind this powerful in 3 years," Patzert said. "By early

  12. GOES-S Prelaunch News Conference

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Sandra Smalley, director of the Joint Agency Satellite Division at NASA Headquarters in Washington D.C., speaks to members of the media at a prelaunch news conference about National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The GOES series of satellites will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  13. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Lafontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its NOAA/National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center Environmental Modeling System (EMS). The suite of SPoRT products for use in the EMS consists of a Sea Surface Temperature (SST) composite that includes a Lake Surface Temperature (LST) analysis over the Great Lakes, a Great Lakes sea-ice extent within the SST composite, a real-time Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This paper and companion poster describe each dataset and provide recent upgrades made to the SST, Great Lakes LST, GVF composites, and the real-time LIS runs.

  14. Recent Upgrades to NASA SPoRT Initialization Datasets for the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Zavodsky, Bradley T.; Rozumalski, Robert A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can initialize specific fields for local model runs within the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS). In last year's NWA abstract on this topic, the suite of SPoRT products supported in the STRC EMS was presented, which includes a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Green Vegetation Fraction (GVF) composite, and NASA Land Information System (LIS) gridded output. This abstract and companion presentation describes recent upgrades made to the SST and GVF composites, as well as the real-time LIS runs. The Great Lakes sea-ice product is unchanged from 2011. The SPoRT SST composite product has been expanded geographically and as a result, the resolution has been coarsened from 1 km to 2 km to accommodate the larger domain. The expanded domain covers much of the northern hemisphere from eastern Asia to western Europe (0 N to 80 N latitude and 150 E to 10 E longitude). In addition, the NESDIS POES-GOES product was added to fill in gaps caused by the Moderate Resolution Imaging Spectroradiometer (MODIS) being unable to sense in cloudy regions, replacing the recently-lost Advanced Microwave Scanning Radiometer for EOS with negligible change to product fidelity. The SST product now runs twice per day for Terra and Aqua combined data collections from 0000 to 1200 UTC and from 1200 to 0000 UTC, with valid analysis times at 0600 and 1800 UTC. The twice-daily compositing technique reduces the overall latency of the previous version while still representing the diurnal cycle characteristics. The SST composites are available at approximately four hours after the end of each collection period (i.e. 1600 UTC for the nighttime analysis and 0400 UTC for the daytime analysis). The real-time MODIS GVF composite has only received minor updates in the

  15. image1goes5117.jpg

    NASA Image and Video Library

    2017-12-08

    NASA Sees Severe Weather from Central to Eastern US A vigorous weather system has generated severe weather over the mid-section of the U.S. and satellites are providing a look at it as it is moving toward the East Coast. NASA and NOAA satellites have been tracking a storm system that has generated flooding and tornadic thunderstorms in the central U.S. and is expected bring severe weather to the U.S. Mid-Atlantic region. At NASA's Goddard Space Flight Center in Greenbelt, Maryland, data from NOAA's GOES-East satellite were used to create images and an animation of the movement of the powerful storm. On April 30, the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument aboard NASA's Aqua satellite captured a visible image of the storms moving over eastern Texas and Louisiana. Tornadoes in eastern Texas killed four people. The system generated heavy rainfall and caused additional fatalities and damages in Arkansas, Missouri, Mississippi, Alabama and Tennessee. On Monday, May 1, NOAA's National Weather Service noted, "Major to record flooding continues over portions of the central U.S. Severe thunderstorms are possible from the Mid-Atlantic to the northeastern U.S. "Major to record flooding will continue over portions of eastern Oklahoma, northern Arkansas, Missouri, Illinois and Indiana. Rivers will gradually recede over the next several days. Additional strong to severe thunderstorms will be possible Monday afternoon and evening over portions of the Mid-Atlantic and Northeast U.S. Damaging winds, large hail, and isolated tornadoes will be possible." Image caption: On May 1, 2017, at 10:37 a.m. EDT (1437 UTC) NOAA's GOES-East satellite captured this visible image of the storm system centered over Iowa with an associated cold front that stretches into the Gulf of Mexico. Credits: NASA/NOAA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar

  16. Initial Navigation Alignment of Optical Instruments on GOES-R

    NASA Astrophysics Data System (ADS)

    Isaacson, P.; DeLuccia, F.; Reth, A. D.; Igli, D. A.; Carter, D.

    2016-12-01

    The GOES-R satellite is the first in NOAA's next-generation series of geostationary weather satellites. In addition to a number of space weather sensors, it will carry two principal optical earth-observing instruments, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM). During launch, currently scheduled for November of 2016, the alignment of these optical instruments is anticipated to shift from that measured during pre-launch characterization. While both instruments have image navigation and registration (INR) processing algorithms to enable automated geolocation of the collected data, the launch-derived misalignment may be too large for these approaches to function without an initial adjustment to calibration parameters. The parameters that may require adjustment are for Line of Sight Motion Compensation (LMC), and the adjustments will be estimated on orbit during the post-launch test (PLT) phase. We have developed approaches to estimate the initial alignment errors for both ABI and GLM image products. Our approaches involve comparison of ABI and GLM images collected during PLT to a set of reference ("truth") images using custom image processing tools and other software (the INR Performance Assessment Tool Set, or "IPATS") being developed for other INR assessments of ABI and GLM data. IPATS is based on image correlation approaches to determine offsets between input and reference images, and these offsets are the fundamental input to our estimate of the initial alignment errors. Initial testing of our alignment algorithms on proxy datasets lends high confidence that their application will determine the initial alignment errors to within sufficient accuracy to enable the operational INR processing approaches to proceed in a nominal fashion. We will report on the algorithms, implementation approach, and status of these initial alignment tools being developed for the GOES-R ABI and GLM instruments.

  17. Louisiana NASA EPSCoR Preparation Grant

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Savoie, E. Joseph

    2002-01-01

    In August, 1999, the National Aeronautics and Space Administration issued a Cooperative Agreement (CA) to the State of Louisiana, through the Louisiana Board of Regents (BOB), for the performance of scientific research and graduate fellowships under the NASA Experimental Program to Stimulate Competitive Research (EPSCoR) -- Preparation Grant. Originally constructed as a one year program, with an optional one year continuation, this federal-state partnership culminated on 14 August 2002, including a successful continuation proposal and a no cost extension. The total value of the project reached $450K in NASA funding, matched by state funds and institutional contributions. The purpose of the Preparation Grant program was to develop and nurture strong research ties between the state and NASA field centers and Enterprises, in order to prepare for the upcoming full competition for NASA EPSCoR.

  18. SPoRT - An End-to-End R2O Activity

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2009-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral observational data applications from EOS satellites to improve short-term weather forecasts on a regional and local scale. SPoRT currently partners with several universities and other government agencies for access to real-time data and products, and works collaboratively with them and operational end users at 13 WFOs to develop and test the new products and capabilities in a "test-bed" mode. The test-bed simulates key aspects of the operational environment without putting constraints on the forecaster workload. Products and capabilities which show utility in the test-bed environment are then transitioned experimentally into the operational environment for further evaluation and assessment. SPoRT focuses on a suite of data and products from MODIS, AMSR-E, and AIRS on the NASA Terra and Aqua satellites, and total lightning measurements from ground-based networks. Some of the observations are assimilated into or used with various versions of the WRF model to provide supplemental forecast guidance to operational end users. SPoRT is enhancing partnerships with NOAA / NESDIS for new product development and data access to exploit the remote sensing capabilities of instruments on the NPOESS satellites to address short term weather forecasting problems. The VIIRS and CrIS instruments on the NPP and follow-on NPOESS satellites provide similar observing capabilities to the MODIS and AIRS instruments on Terra and Aqua. SPoRT will be transitioning existing and new capabilities into the AWIIPS II environment to continue the continuity of its activities.

  19. Accelerator Tests of the Prototype Energetic Heavy Ion Sensor (EHIS) for GOES-R

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.; McKibben, R. B.

    2010-12-01

    The Energetic Heavy Ion Sensor (EHIS) is part of the Space Environmental In-Situ Suite (SEISS) for the Geostationary Operational Environment Satellite series R (GOES-R) program. It will measure energetic protons from 10-200 MeV and ions through nickel (Z=28) with similar penetrating power. By use of an Angle Detecting Inclined Sensor (ADIS) system, EHIS achieves single element resolution with extensive on-board event processing. A prototype or "brass-board" instrument, fully functional but not intended for environmental testing, has been completed. In November of 2009, we exposed the prototype to protons at Massachusetts General Hospital (MGH) and in March of 2010, we exposed it to Ni primary and fragment beams at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). In both cases, the instrument was rotated over a range of angles and a moving degrader spread the energy from full beam energy to zero energy. We will present results of these tests. These show an angular resolution for the prototype which results in a one sigma charge resolution of ~0.25 e at Ni. The prototype also demonstrated the capability for calculating the charge of 2500 events per second with its internal processor, accumulating those events in on-board charge histograms, and thus providing unprecedented statistics in high flux conditions. The EHIS represents a major advance in capabilities for operational space weather instruments while also providing data quality suitable for scientific research. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  20. NASA Goes to the Super Bowl

    NASA Image and Video Library

    2016-02-07

    It can't always be about space, right? Well, technically this still is about space...and the Super Bowl. Take a look at how NASA sees all the Super Bowl Championship Cities! Enjoy the game! NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. The NASA Short-term Prediction Research and Transition (SPoRT) Center: A Collaborative Model for Accelerating Research into Operations

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; Jedlovec, G.; Dodge, J.; Bradshaw, T.

    2003-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama was created to accelerate the infusion of NASA earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The principal focus of experimental products is on the regional scale with an emphasis on forecast improvements on a time scale of 0-24 hours. The SPoRT Center research is aligned with the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues ranging from convective initiation to 24-hr quantitative precipitation forecasting. The SPoRT Center, together with its other interagency partners, universities, and the NASA/NOAA Joint Center for Satellite Data Assimilation, provides a means and a process to effectively transition NASA Earth Science Enterprise observations and technology to National Weather Service operations and decision makers at both the global/national and regional scales. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future.

  2. McIDAS-V: Data Analysis and Visualization for NPOESS and GOES-R

    NASA Astrophysics Data System (ADS)

    Rink, T.; Achtor, T. H.

    2009-12-01

    McIDAS-V, the next-generation McIDAS, is being built on top a modern, cross-platform software framework which supports development of 4-D, interactive displays and integration of wide-array of geophysical data. As the replacement of McIDAS, the development emphasis is on future satellite observation platforms such as NPOESS and GOES-R. Data interrogation, analysis and visualization capabilities have been developed for multi- and hyper-spectral instruments like MODIS, AIRS and IASI, and are being extended for application to VIIRS and CrIS. Compatibility with GOES-R ABI level1 and level2 product storage formats has been demonstrated. The abstract data model, which can internalize most any geophysical data, opens up new possibilities for data fusion techniques, for example, polar and geostationary, (LEO/GEO), synergy for research and validation. McIDAS-V follows an object-oriented design model, using the Java programming language, allowing specialized extensions for for new sources of data, and novel displays and interactive behavior. The reference application, what the user sees on startup, can be customized, and the system has a persistence mechanism allowing sharing of the application state across the internet. McIDAS-V is open-source, and free to the public.

  3. Projected Applications of a "Weather in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew; Zavodsky, Bradley T.; Case, Jonathan L.; LaFontaine, Frank J.; Srikishen, Jayanthi

    2010-01-01

    The NASA Short-term Prediction Research and Transition Center (SPoRT)'s new "Weather in a Box" resources will provide weather research and forecast modeling capabilities for real-time application. Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities. By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.

  4. A near real time regional JPSS and GOES-R data assimilation system for high impact weather research and applications

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, P.; Han, H.; Schmit, T. J.

    2014-12-01

    JPSS and GOES-R observations play important role in numerical weather prediction (NWP). However, how to best represent the information from satellite observations and how to get value added information from these satellite data into regional NWP models, including both radiance and derived products, still need investigations. In order to enhance the applications of JPSS and GOES-R data in regional NWP for high impact weather forecasts, scientists from Cooperative Institute of Meteorological Satellite Studies (CIMSS) at University of Wisconsin-Madison have recently developed a near realtime regional Satellite Data Assimilation system for Tropical storm forecasts (SDAT) (http://cimss.ssec.wisc.edu/sdat). The system consists of the community Gridpoint Statistical Interpolation (GSI) assimilation system and the advanced Weather Research Forecast (WRF) model. In addition to assimilate GOES, AMSUA/AMSUB, HIRS, MHS, ATMS (Suomi-NPP), AIRS and IASI radiances, the SDAT is also able to assimilate satellite-derived products such as hyperspectral IR retrieved temperature and moisture profiles, total precipitable water (TPW), GOES Sounder (and future GOES-R) layer precipitable water (LPW) and GOES Imager atmospheric motion vector (AMV) products into the system. Real time forecasted GOES infrared (IR) images simulated from SDAT output have also been part of the SDAT system for applications and forecast evaluations. To set up the system parameters, a series of experiments have been carried out to test the impacts of different initialization schemes, including different background error matrix, different NCEP global model date sets, and different WRF model horizontal resolutions. Using SDAT as a research testbed, researches have been conducted for different satellite data impacts study, as well as different techniques for handling clouds in radiance assimilation. Since the fall of 2013, the SDAT system has been running in near real time. The results from historical cases and 2014

  5. GOES-13 Satellite Sees a "Giant Apostrophe" from Strong Eastern U.S. Low Pressure

    NASA Image and Video Library

    2017-12-08

    NASA image captured April 12, 2011 at 1731 UTC (1:31 p.m. EDT) A giant swirl of clouds that form an apostrophe-like shape over the eastern U.S. was spotted in visible imagery from the Geostationary Operational Environmental Satellite, GOES-13 on April 12, 2011 at 1731 UTC (1:31 p.m. EDT). The GOES-13 satellite monitors weather over the eastern continental U.S. and Atlantic Ocean, while GOES-11 monitors the western U.S. and the Eastern Pacific Ocean. GOES-13 captured this image of the clouds associated with a strong upper level low pressure area that is moving though the Tennessee River Valley and bringing moderate to heavy rainfall as it moves eastward. The low is forecast by the National Weather Service to bring unsettled conditions to the Mid-Atlantic and then to New England late Tuesday and Wednesday as it tracks northeast. Severe thunderstorms are possible today in extreme eastern Virginia and North Carolina as the cold front associated with the low pushes through that region. Meanwhile, rainfall from the low stretches from Massachusetts south to Florida today. It seems that New Englanders are having a tough time getting warm spring weather and this low won't help as it moves north. The low pressure area may even bring some light to moderate snowfall on the northern fringe of the storm. The GOES series of satellites keep an eye on the weather happening over the continental U.S. and eastern Pacific and Atlantic Oceans. NASA's GOES Project, located at NASA's Goddard Space Flight Center in Greenbelt, Md., procures and manages the development and launch of the GOES series of satellites for NOAA and creates images and animations. The GOES satellites are operated by NOAA. Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments

  6. Development of RGB Composite Imagery for Operational Weather Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; Oswald, Hayden, K; Knaff, John A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, in collaboration with the Cooperative Institute for Research in the Atmosphere (CIRA), is providing red-green-blue (RGB) color composite imagery to several of NOAA s National Centers and National Weather Service forecast offices as a demonstration of future capabilities of the Advanced Baseline Imager (ABI) to be implemented aboard GOES-R. Forecasters rely upon geostationary satellite imagery to monitor conditions over their regions of responsibility. Since the ABI will provide nearly three times as many channels as the current GOES imager, the volume of data available for analysis will increase. RGB composite imagery can aid in the compression of large data volumes by combining information from multiple channels or paired channel differences into single products that communicate more information than provided by a single channel image. A standard suite of RGB imagery has been developed by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), based upon the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The SEVIRI instrument currently provides visible and infrared wavelengths comparable to the future GOES-R ABI. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the NASA Terra and Aqua satellites can be used to demonstrate future capabilities of GOES-R. This presentation will demonstrate an overview of the products currently disseminated to SPoRT partners within the GOES-R Proving Ground, and other National Weather Service forecast offices, along with examples of their application. For example, CIRA has used the channels of the current GOES sounder to produce an "air mass" RGB originally designed for SEVIRI. This provides hourly imagery over CONUS for looping applications while demonstrating capabilities similar to the future ABI instrument. SPoRT has developed similar "air mass" RGB imagery from MODIS, and through

  7. GOES-S Prelaunch News Conference

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Tim Walsh, acting GOES-R System Program director for NOAA, speaks to members of the media at a prelaunch news conference about National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The GOES series of satellites will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  8. Hurricane Joaquin Seen From GOES West

    NASA Image and Video Library

    2017-12-08

    Major Hurricane Joaquin is shown at the far eastern periphery of the GOES West satellite's full disk extent, taken at 1200Z on October 1, 2015. Credit: NASA/NOAA via NOAA Environmental Visualization Laboratory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. The GOES-R Product Generation Architecture - Post CDR Update

    NASA Astrophysics Data System (ADS)

    Dittberner, G.; Kalluri, S.; Weiner, A.

    2012-12-01

    The GOES-R system will substantially improve the accuracy of information available to users by providing data from significantly enhanced instruments, which will generate an increased number and diversity of products with higher resolution, and much shorter relook times. Considerably greater compute and memory resources are necessary to achieve the necessary latency and availability for these products. Over time, new and updated algorithms are expected to be added and old ones removed as science advances and new products are developed. The GOES-R GS architecture is being planned to maintain functionality so that when such changes are implemented, operational product generation will continue without interruption. The primary parts of the PG infrastructure are the Service Based Architecture (SBA) and the Data Fabric (DF). SBA is the middleware that encapsulates and manages science algorithms that generate products. It is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DF to provide this data communication layer between algorithms. The DF provides an abstract interface over a distributed and persistent multi-layered storage system (e.g., memory based caching above disk-based storage) and an event management system that allows event-driven algorithm services to know when instrument data are available and where they reside. Together, the SBA and the DF provide a flexible, high

  10. GOES-R SUVI EUV Flatfields Generated Using Boustrophedon Scans

    NASA Astrophysics Data System (ADS)

    Shing, L.; Edwards, C.; Mathur, D.; Vasudevan, G.; Shaw, M.; Nwachuku, C.

    2017-12-01

    The Solar Ultraviolet Imager (SUVI) is mounted on the Solar Pointing Platform (SPP) of the Geostationary Operational Environmental Satellite, GOES-R. SUVI is a Generalized Cassegrain telescope with a large field of view that employs multilayer coatings optimized to operate in six extreme ultraviolet (EUV) narrow bandpasses centered at 9.4, 13.1, 17.1, 19.5, 28.4 and 30.4 nm. The SUVI CCD flatfield response was determined using two different techniques; The Kuhn-Lin-Lorentz (KLL) Raster and a new technique called, Dynamic Boustrophedon Scans. The new technique requires less time to collect the data and is also less sensitive to Solar features compared with the KLL method. This paper presents the flatfield results of the SUVI using this technique during Post Launch Testing (PLT).

  11. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Steve Cole of NASA Communications speaks to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  12. GOES Full Disk Shows First Day of Spring in the Northern Hemisphere

    NASA Image and Video Library

    2014-03-20

    This full-disk image from NOAA’s GOES-13 satellite was captured at 11:45 UTC (7:45 a.m. EDT) and shows the Americas on March 20, 2014. This date marks the start of astronomical spring in the northern hemisphere. Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. The Geostationary Operational Satellite R Series SpaceWire Based Data System

    NASA Technical Reports Server (NTRS)

    Anderson, William; Birmingham, Michael; Krimchansky, Alexander; Lombardi, Matthew

    2016-01-01

    The Geostationary Operational Environmental Satellite R-Series Program (GOES-R, S, T, and U) mission is a joint program between National Oceanic & Atmospheric Administration (NOAA) and National Aeronautics & Space Administration (NASA) Goddard Space Flight Center (GSFC). SpaceWire was selected as the science data bus as well as command and telemetry for the GOES instruments. GOES-R, S, T, and U spacecraft have a mission data loss requirement for all data transfers between the instruments and spacecraft requiring error detection and correction at the packet level. The GOES-R Reliable Data Delivery Protocol (GRDDP) [1] was developed in house to provide a means of reliably delivering data among various on board sources and sinks. The GRDDP was presented to and accepted by the European Cooperation for Space Standardization (ECSS) and is part of the ECSS Protocol Identification Standard [2]. GOES-R development and integration is complete and the observatory is scheduled for launch November 2016. Now that instrument to spacecraft integration is complete, GOES-R Project reviewed lessons learned to determine how the GRDDP could be revised to improve the integration process. Based on knowledge gained during the instrument to spacecraft integration process the following is presented to help potential GRDDP users improve their system designs and implementation.

  14. GOES-S Atlas V Centaur Stage Transport from ASOC to DOC

    NASA Image and Video Library

    2018-01-24

    The Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, arrives at the Delta Operations Center at Cape Canaveral Air Force Station for further processing. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  15. GOES-S Atlas V Centaur Stage Transport from ASOC to DOC

    NASA Image and Video Library

    2018-01-24

    The Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, has been lifted from its transporter inside the Delta Operations Center at Cape Canaveral Air Force Station for further processing. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  16. GOES-S Atlas V Centaur Stage Transport from ASOC to DOC

    NASA Image and Video Library

    2018-01-24

    The Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, has been positioned in at test cell inside the Delta Operations Center at Cape Canaveral Air Force Station for further processing. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  17. GOES-S Atlas V Centaur Stage Transport from ASOC to DOC

    NASA Image and Video Library

    2018-01-24

    The Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, is being transported to the Delta Operations Center at Cape Canaveral Air Force Station for further processing. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  18. GOES-S Atlas V Centaur Stage Transport from ASOC to DOC

    NASA Image and Video Library

    2018-01-24

    The Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, arrives inside the Delta Operations Center at Cape Canaveral Air Force Station for further processing. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  19. The solar panels on the GOES-L satellite are deployed

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., deploy one of the solar panels of the GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  20. The solar panels on the GOES-L satellite are deployed

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., check out the solar panels of the GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  1. GOES Satellite Sees Strong Front Bringing Blizzard Conditions to U.S. Southwest

    NASA Image and Video Library

    2017-12-08

    Image acquired December 19, 2011 A strong low pressure area in the southwestern U.S. today is bringing snowfall there as NOAA's GOES-13 satellite captured its associated clouds. Blizzard warnings are already posted for some areas. The image was created on Dec. 19 at 19:10 UTC (2:10 p.m. EST) from the Geostationary Operational Environmental Satellite called GOES-13. GOES-13 is operated by the National Oceanic and Atmospheric Administration. Images and animations are created by NASA's GOES Project, located at NASA's Goddard Space Flight Center, Greenbelt, Md. The low is forecast to move northeast across southeastern New Mexico today and reach southwest the Texas panhandle by early evening. The plains states including portions of Kansas, New Mexico and the Texas and Oklahoma panhandles could all have blizzard warnings later in the day on Dec. 19. Wind gusts to 60mph were recorded in northeastern New Mexico during the afternoon hours today. Kansas City may have a mix of rain, sleet and snow as the front moves past and temperatures fall. At 3 p.m. EST, the National Weather Service forecast indicated that moderate to heavy snow and strong north winds to impact the Texas and Oklahoma panhandles today into Tuesday morning. The low and associated cold front are expected to bring heavy snow to the Oklahoma panhandle and all but the far southeast Texas Panhandle. Behind the cold front, the strong winds will blow snow and lead to poor visibilities and blizzard conditions. The GOES image shows the large bank of clouds along the front stretching from the four corners states east-northeast through the Ohio Valley and into upstate New York. The rounded comma shape of clouds over Texas and stretching into Colorado indicate where the low pressure center is located. Image: NASA/NOAA GOES Project Text: NASA, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration

  2. GOES-S Atlas V Centaur Stage Transport from ASOC to DOC

    NASA Image and Video Library

    2018-01-24

    Under the watchful eyes of technicians and engineers, the Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, arrives inside the Delta Operations Center at Cape Canaveral Air Force Station for further processing. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  3. GOES-S Atlas V Centaur Stage Transport from ASOC to DOC

    NASA Image and Video Library

    2018-01-24

    The Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, is being transported from the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station to the Delta Operations Center for further processing. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  4. Long-term stability of GOES-8 and -9 attitude control

    NASA Astrophysics Data System (ADS)

    Carr, James L.

    1996-10-01

    An independent audit of the in-orbit behavior of the GOES-8 and GOES-9 satellites has been conducted for the NASA/GSFC. This audit utilized star and landmark observations from the GOES imager to determine long-term histories for spacecraft attitude, orbital position, and instrument internal misalignments. The paper presents results from this audit. Long-term drifts are found in the attitude histories, whereas the misalignment histories are shown to be diurnally stable. The GOES image navigation and registration system is designed to compensate for instrument internal misalignments, and both the diurnally repeatable and drift components of the attitude. Correlations between GOES-8 and GOES-9 long-term roll and pitch drifts implicate the Earth sensor as the origin of these observed drifts. This results clearly demonstrates the enhanced registration stability to be obtained with stellar inertial attitude determination replacing or supplementing Earth sensor control on future GOES missions.

  5. Maximizing the Science Output of GOES-R SUVI during Operations

    NASA Astrophysics Data System (ADS)

    Shaw, M.; Vasudevan, G.; Mathur, D. P.; Mansir, D.; Shing, L.; Edwards, C. G.; Seaton, D. B.; Darnel, J.; Nwachuku, C.

    2017-12-01

    Regular manual calibrations are an often-unavoidable demand on ground operations personnel during long-term missions. This paper describes a set of features built into the instrument control software and the techniques employed by the Solar Ultraviolet Imager (SUVI) team to automate a large fraction of regular on-board calibration activities, allowing SUVI to be operated with little manual commanding from the ground and little interruption to nominal sequencing. SUVI is a Generalized Cassegrain telescope with a large field of view that images the Sun in six extreme ultraviolet (EUV) narrow bandpasses centered at 9.4, 13.1, 17.1, 19.5, 28.4 and 30.4 nm. It is part of the payload of the Geostationary Operational Environmental Satellite (GOES-R) mission.

  6. NASA SPoRT Initialization Datasets for Local Model Runs in the Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Carcione, Brian; Wood, Lance; Maloney, Joseph; Estupinan, Jeral; Medlin, Jeffrey M.; Blottman, Peter; Rozumalski, Robert A.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can be used to initialize local model runs within the Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). These real-time datasets consist of surface-based information updated at least once per day, and produced in a composite or gridded product that is easily incorporated into the WRF EMS. The primary goal for making these NASA datasets available to the WRF EMS community is to provide timely and high-quality information at a spatial resolution comparable to that used in the local model configurations (i.e., convection-allowing scales). The current suite of SPoRT products supported in the WRF EMS include a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Greenness Vegetation Fraction (GVF) composite, and Land Information System (LIS) gridded output. The SPoRT SST composite is a blend of primarily the Moderate Resolution Imaging Spectroradiometer (MODIS) infrared and Advanced Microwave Scanning Radiometer for Earth Observing System data for non-precipitation coverage over the oceans at 2-km resolution. The composite includes a special lake surface temperature analysis over the Great Lakes using contributions from the Remote Sensing Systems temperature data. The Great Lakes Environmental Research Laboratory Ice Percentage product is used to create a sea-ice mask in the SPoRT SST composite. The sea-ice mask is produced daily (in-season) at 1.8-km resolution and identifies ice percentage from 0 100% in 10% increments, with values above 90% flagged as ice.

  7. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, George Morrow, deputy director of NASA's Goddard Space Flight Center in Greenbelt, Maryland, speaks to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  8. The solar panels on the GOES-L satellite are deployed

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., stand back as they deploy the solar panels of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  9. GOES-K solar panel inspection at Astrotech

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power systems of the spacecraft. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The launch of the satellite from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) is currently planned for Apr. 24 at the opening of a launch window which extends from 1:56 to 3:19 a.m. EDT.

  10. 75 FR 37281 - President's Council on Fitness, Sports, and Nutrition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... Part VI The President Executive Order 13545--President's Council on Fitness, Sports, and Nutrition... Order 13545 of June 22, 2010 President's Council on Fitness, Sports, and Nutrition By the authority... recognize that good nutrition goes hand in hand with fitness and sports participation, Executive Order 13265...

  11. Sao Paulo Lightning Mapping Array (SP-LMA): Network Assessment and Analyses for Intercomparison Studies and GOES-R Proxy Activities

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Bailey, J. C.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.

    2013-01-01

    A 12 station Lightning Mapping Array (LMA) network was deployed during October 2011in the vicinity of São Paulo, Brazil (SP-LMA) to contribute total lightning measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D lightning mapping out to150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. The SP-LMA data also will be intercompared with lightning observations from other deployed lightning networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation activities. This paper addresses the network assessment and analyses for intercomparison studies and GOES-R proxy activities

  12. The solar panels on the GOES-L satellite are deployed

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The solar panels on the GOES-L weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be performed at the Astrotech facility, Titusville, Fla. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES- L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  13. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Tadikonda, S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todrita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments Solar UltraViolet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar back-ground-sevents impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  14. Post-Launch Calibration and Testing of Space Weather Instruments on GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Tadikonda, Sivakumara S. K.; Merrow, Cynthia S.; Kronenwetter, Jeffrey A.; Comeyne, Gustave J.; Flanagan, Daniel G.; Todirita, Monica

    2016-01-01

    The Geostationary Operational Environmental Satellite - R (GOES-R) is the first of a series of satellites to be launched, with the first launch scheduled for October 2016. The three instruments - Solar Ultra Violet Imager (SUVI), Extreme ultraviolet and X-ray Irradiance Sensor (EXIS), and Space Environment In-Situ Suite (SEISS) provide the data needed as inputs for the product updates National Oceanic and Atmospheric Administration (NOAA) provides to the public. SUVI is a full-disk extreme ultraviolet imager enabling Active Region characterization, filament eruption, and flare detection. EXIS provides inputs to solar backgrounds/events impacting climate models. SEISS provides particle measurements over a wide energy-and-flux range that varies by several orders of magnitude and these data enable updates to spacecraft charge models for electrostatic discharge. EXIS and SEISS have been tested and calibrated end-to-end in ground test facilities around the United States. Due to the complexity of the SUVI design, data from component tests were used in a model to predict on-orbit performance. The ground tests and model updates provided inputs for designing the on-orbit calibration tests. A series of such tests have been planned for the Post-Launch Testing (PLT) of each of these instruments, and specific parameters have been identified that will be updated in the Ground Processing Algorithms, on-orbit parameter tables, or both. Some of SUVI and EXIS calibrations require slewing them off the Sun, while no such maneuvers are needed for SEISS. After a six-month PLT period the GOES-R is expected to be operational. The calibration details are presented in this paper.

  15. After 10 years of service, NOAA retires GOES-12 satellite

    Science.gov Websites

    Destinations After 10 years of service, NOAA retires GOES-12 satellite Progress continuing toward launch of next-generation GOES-R satellite August 19, 2013 GOES-12 captured this visible image of Hurricane 10 years of stellar service, NOAA's Geostationary Operational Environmental Satellite (GOES)-12

  16. NASA EPSCoR Preparation Grant

    NASA Technical Reports Server (NTRS)

    Sukanek, Peter C.

    2002-01-01

    The NASA EPSCoR project in Mississippi involved investigations into three areas of interest to NASA by researchers at the four comprehensive universities in the state. These areas involved: (1) Noninvasive Flow Measurement Techniques, (2) Spectroscopic Exhaust Plume Measurements of Hydrocarbon Fueled Rocket Engines and (3) Integration of Remote Sensing and GIS data for Flood Forecasting on the Mississippi Gulf Coast. Each study supported a need at the Stennis Space Center in Mississippi. The first two addressed needs in rocket testing, and the third, in commercial remote sensing. Students from three of the institutions worked with researchers at Stennis Space Center on the projects.

  17. NASA Satellite Gives a Clear View for NASA's LADEE Launch

    NASA Image and Video Library

    2013-09-06

    NASA's Wallops Flight Facility is located on Wallops Island, Va. and is the site of tonight's moon mission launch. Satellite imagery from NOAA's GOES-East satellite shows that high pressure remains in control over the Mid-Atlantic region, providing an almost cloud-free sky. This visible image of the Mid-Atlantic was captured by NOAA's GOES-East satellite at 17:31 UTC/1:31 p.m. EDT and shows some fair weather clouds over the Delmarva Peninsula (which consists of the state of Delaware and parts of Maryland and Virginia - which together is "Delmarva") and eastern Virginia and North Carolina. Most of the region is cloud-free, making for a perfect viewing night to see a launch. NOAA operates GOES-East and NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. creates images and animations from the data. NOAA's National Weather Service forecast for tonight, Sept. 6 calls for winds blowing from the east to 11 mph, with clear skies and overnight temperatures dropping to the mid-fifties. The Lunar Atmosphere and Dust Environment Explorer, known as LADEE (pronounced like "laddie"), launches tonight at 11:27 p.m. EDT from Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA Wallops and will be visible along the Mid-Atlantic with tonight's perfect weather conditions. LADEE is managed by NASA's Ames Research Center in Moffett Field, Calif. This will be the first launch to lunar orbit from NASA Wallops and the first launch of a Minotaur V rocket – the biggest ever launched from Wallops. NASA's LADEE is a robotic mission that will orbit the moon to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. LADEE also carries an important secondary payload, the Lunar Laser Communication Demonstration, or LLCD, which will help us open a new

  18. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Dan Lindsey, GOES-R senior scientific advisor for NOAA, speaks to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  19. GOES-16 Space Weather Data Availability and Applications

    NASA Astrophysics Data System (ADS)

    Tilton, M.; Rowland, W. F.; Codrescu, S.; Seaton, D. B.; Redmon, R. J.; Hsu, V.

    2017-12-01

    In November 2016, NOAA launched the first in the "R" series of Geostationary Operational Environmental Satellites, GOES-16. Compared to its GOES predecessors, the GOES-R series satellites provide improved in situ measurements of charged particles, higher cadence magnetic field measurements, and enhanced remote sensing of the sun through ultraviolet (UV) imagery and X-ray/UV irradiance. GOES-16 space weather instruments will nominally reach provisional status near the beginning of 2018. After this milestone has been achieved, NOAA's National Centers for Environmental Information (NCEI) will provide archive access to GOES-16 space weather data. This presentation will describe the status of the space weather instruments, including available products and their applicability for forecasters, modelers, academics, spacecraft operators, and other users. It will discuss the available access systems for all levels of data-raw telemetry (Level 0), science measurements in high resolution (L1b), and higher-level (L2+) products developed by NCEI scientists. Finally, it will cover NCEI's efforts to promote space weather awareness through data visualization tools and image dissemination via the Helioviewer project.

  20. The economic impact of NASA R and D spending

    NASA Technical Reports Server (NTRS)

    Evans, M. K.

    1976-01-01

    The economic impact of R and D spending, particularly NASA R and D spending, on the U. S. economy was evaluated. The crux of the methodology and hence the results revolve around the fact that it was necessary to consider both the demand effects of increased spending and the supply effects of a higher rate of technological growth and a larger total productive capacity. The demand effects are primarily short-run in nature, while the supply effects do not begin to have a significant effect on aggregate economic activity until the fifth year after increased expenditures have taken place. The short-term economic impact of alternative levels of NASA expenditures for 1975 was first examined. The long-term economic impact of increased levels of NASA R and D spending over a sustained period was then evaluated.

  1. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT

  2. NASA Sees Winter Storm Slamming Eastern United States

    NASA Image and Video Library

    2017-12-08

    NASA satellite imagery captured the size of the massive winter storm that continued to pummel the U.S. East Coast early on January 23, 2016. This visible image of the major winter storm was taken from NOAA's GOES-East satellite on Saturday, January 23, 2016 at 1437 UTC (9:37 a.m. EST) as the Baltimore/Washington corridor was under a blizzard warning. Read more: go.nasa.gov/1RFv70u Credits: NASA/NOAA GOES Project NASA Sees Winter Storm Slamming Eastern United States

  3. ACTN3 R577X polymorphism and team-sport performance: a study involving three European cohorts.

    PubMed

    Eynon, Nir; Banting, Lauren K; Ruiz, Jonatan R; Cieszczyk, Pawel; Dyatlov, Dmitry A; Maciejewska-Karlowska, Agnieszka; Sawczuk, Marek; Pushkarev, Vladimir P; Kulikov, Leonid M; Pushkarev, Evgeny D; Femia, Pedro; Stepto, Nigel K; Bishop, David J; Lucia, Alejandro

    2014-01-01

    To determine the association between the α-actinin-3 (ACTN3) R577X polymorphism and elite team-sport athletic status in three cohorts of European team-sport athletes. We compared the genotype and allele frequencies of the ACTN3 R577X (rs1815739) polymorphisms between team-sport athletes (n=205), endurance athletes (n=305), sprint/power athletes (n=378), and non-athletic controls (n=568) from Poland, Russia and Spain; all participants were unrelated European men. Genomic DNA was extracted from either buccal epithelium or peripheral blood using a standard protocol. Genotyping was performed using several methods, and the results were replicated following recent recommendations for genotype-phenotype association studies. Genotype distributions of all control and athletic groups met Hardy-Weinberg equilibrium (all p>0.05). Team-sport athletes were less likely to have the 577RR genotype compared to the 577XX genotype than sprint/power athletes [odds ratio: 0.58, 95% confidence interval: 0.34-0.39, p=0.045]. However, the ACTN3 R577X polymorphism was not associated with team-sports athletic status, compared to endurance athletes and non-athletic controls. Furthermore, no association was observed for any of the genotypes with respect to the level of competition (elite vs. national level). The ACTN3 R577X polymorphism was not associated with team-sport athletic status, compared to endurance athletes and non-athletic controls, and the observation that the 577RR genotype is overrepresented in power/sprint athletes compared with team-sport athletes needs to be confirmed in future studies. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Initial design and performance of the near surface unmanned aircraft system sensor suite in support of the GOES-R field campaign

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Shao, Xi; Cao, Changyong; Goodman, Steven J.

    2016-09-01

    One of the main objectives of the Geostationary Operational Environmental Satellite R-Series (GOES-R) field campaign is to validate the SI traceability of the Advanced Baseline Imager. The campaign plans include a feasibility demonstration study for new near surface unmanned aircraft system (UAS) measurement capability that is being developed to meet the challenges of validating geostationary sensors. We report our progress in developing our initial systems by presenting the design and preliminary characterization results of the sensor suite. The design takes advantage of off-the-shelf technologies and fiber-based optical components to make hemispheric directional measurements from a UAS. The characterization results - including laboratory measurements of temperature effects and polarization sensitivity - are used to refine the radiometric uncertainty budget towards meeting the validation objectives for the campaign. These systems will foster improved validation capabilities for the GOES-R field campaign and other next generation satellite systems.

  5. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.

    2010-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed

  6. Sao Paulo Lightning Mapping Array (SP-LMA): Network Assessment and Analyses for Intercomparison Studies and GOES-R Proxy Activities

    NASA Technical Reports Server (NTRS)

    Bailey, J. C.; Blakeslee, R. J.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.; Buechler, D. E.

    2014-01-01

    A 12 station Lightning Mapping Array (LMA) network was deployed during October 2011 in the vicinity of Sao Paulo, Brazil (SP-LMA) to contribute total lightning measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012 during the Vale do Paraiba campaign. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D lightning mapping out to 150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. As the CHUVA Vale do Paraiba campaign opportunity was formulated, a broad community-based interest developed for a comprehensive Lightning Location System (LLS) intercomparison and assessment study, leading to the participation and/or deployment of eight other ground-based networks and the space-based Lightning Imaging Sensor (LIS). The SP-LMA data is being intercompared with lightning observations from other deployed lightning networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation activities. This paper addresses the network assessment including noise reduction criteria, detection efficiency estimates, and statistical and climatological (both temporal and spatially) analyses for intercomparison studies and GOES-R proxy activities.

  7. The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.; hide

    2014-01-01

    for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.

  8. Long-Term Stability Assessment of Sonoran Desert for Vicarious Calibration of GOES-R

    NASA Astrophysics Data System (ADS)

    Kim, W.; Liang, S.; Cao, C.

    2012-12-01

    Vicarious calibration refers to calibration techniques that do not depend on onboard calibration devices. Although sensors and onboard calibration devices undergo rigorous validation processes before launch, performance of sensors often degrades after the launch due to exposure to the harsh space environment and the aging of devices. Such in-flight changes of devices can be identified and adjusted through vicarious calibration activities where the sensor degradation is measured in reference to exterior calibration sources such as the Sun, the Moon, and the Earth surface. Sonoran desert is one of the best calibration sites located in the North America that are available for vicarious calibration of GOES-R satellite. To accurately calibrate sensors onboard GOES-R satellite (e.g. advanced baseline imager (ABI)), the temporal stability of Sonoran desert needs to be assessed precisely. However, short-/mid-term variations in top-of-atmosphere (TOA) reflectance caused by meteorological variables such as water vapor amount and aerosol loading are often difficult to retrieve, making the use of TOA reflectance time series for the stability assessment of the site. In this paper, we address this issue of normalization of TOA reflectance time series using a time series analysis algorithm - seasonal trend decomposition procedure based on LOESS (STL) (Cleveland et al, 1990). The algorithm is basically a collection of smoothing filters which leads to decomposition of a time series into three additive components; seasonal, trend, and remainder. Since this non-linear technique is capable of extracting seasonal patterns in the presence of trend changes, the seasonal variation can be effectively identified in the time series of remote sensing data subject to various environmental changes. The experiment results performed with Landsat 5 TM data show that the decomposition results acquired for the Sonoran Desert area produce normalized series that have much less uncertainty than those

  9. An illumination test is performed on the solar panel of a GOES-L satellite

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A Loral worker at Astrotech, Titusville, Fla., assists with an illumination test for circuitry verification on the solar panel of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  10. An illumination test is performed on the solar panel of a GOES-L satellite

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Loral workers at Astrotech, Titusville, Fla., perform an illumination test for circuitry verification on the solar panel of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  11. An illumination test is performed on the solar panel of a GOES-L satellite

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an illumination test, a Loral worker at Astrotech, Titusville, Fla., verifies circuitry on the solar panel of the GOES-L weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  12. Hands-on Activities Designed to Familiarize Users with Data from ABI on GOES-R and AHI on Himawari-8

    NASA Astrophysics Data System (ADS)

    Lindstrom, S. S.; Schmit, T.; Gerth, J.; Gunshor, M. M.; Mooney, M. E.; Whittaker, T. M.

    2016-12-01

    Recent and ongoing launches of next-generation geostationary satellites offer a challenge to familiarize National Weather Service (and other) forecasters with the new capabilities of different spectral channels sensed by the Advanced Baseline Imager (ABI) on GOES-R and the Advanced Himawari Imager (AHI) on Himawari-8. Hands on HTML5-based applets developed at the Cooperative Institute for Meteorological Satellite Studies allow for quick comparisons of reflectance in the visible (0.4 to 0.7 um) and near-infrared channels (0.86 to 2.2 um) and brightness temperatures in the infrared (3.9 to 13.3 um). The web apps to explore the different channels on ABI and AHI are at http://cimss.ssec.wisc.edu/goes/webapps/bandapp/; those that offer guidance on how to produce Red/Green/Blue composites are at http://cimss.ssec.wisc.edu/goes/webapps/satrgb/overview.html. This talk will briefly discuss highlights from both websites, and suggest ways the applications can be used to educate forecasters and the general public.

  13. The Sao Paulo Lightning Mapping Array (SPLMA): Prospects to GOES-R GLM and CHUVA

    NASA Technical Reports Server (NTRS)

    Albrecht, Rachel I.; Carrey, Larry; Blakeslee, Richard J.; Bailey, Jeffrey C.; Goodman, Steven J.; Bruning, Eric C.; Koshak, William; Morales, Carlos A.; Machado, Luiz A. T.; Angelis, Carlos F.; hide

    2010-01-01

    This paper presents the characteristics and prospects of a Lightning Mapping Array to be deployed at the city of S o Paulo (SPLMA). This LMA network will provide CHUVA campaign with total lightning, lightning channel mapping and detailed information on the locations of cloud charge regions for the thunderstorms investigated during one of its IOP. The real-time availability of LMA observations will also contribute to and support improved weather situational awareness and mission execution. For GOES-R program it will form the basis of generating unique and valuable proxy data sets for both GLM and ABI sensors in support of several on-going research investigations

  14. An illumination test is performed on the solar panel of a GOES-L satellite

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers (right) at Astrotech, Titusville, Fla., arrange the lights for an illumination test on the solar panel of the GOES-L weather satellite. The test is verifying the circuitry on the panel. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.

  15. The USL NASA PC R and D project: General specifications of objectives

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor)

    1984-01-01

    Given here are the general specifications of the objectives of the University of Southwestern Louisiana Data Base Management System (USL/DBMS) NASA PC R and D Project, a project initiated to address future R and D issues related to PC-based processing environments acquired pursuant to the NASA contract work; namely, the IBM PC/XT systems.

  16. 3 CFR 13545 - Executive Order 13545 of June 22, 2010. President's Council on Fitness, Sports, and Nutrition

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Council on Fitness, Sports, and Nutrition 13545 Order 13545 Presidential Documents Executive Orders Executive Order 13545 of June 22, 2010 EO 13545 President's Council on Fitness, Sports, and Nutrition By the... recognize that good nutrition goes hand in hand with fitness and sports participation, Executive Order 13265...

  17. What Goes around Comes around: Re-Emerging Themes in Sport and Exercise Psychology

    ERIC Educational Resources Information Center

    Weiss, Maureen R.; Gill, Diane L.

    2005-01-01

    Sport and exercise psychology research appearing in Research Quarterly for Exercise and Sport (RQES) over the past 75 years can be characterized by re-emerging themes--hot topics in the 1930s remain hot topics now. Re-emerging themes include sportsmanship/moral development, social development/significant others, self-perceptions,…

  18. The economic impact of NASA R and D spending Appendices

    NASA Technical Reports Server (NTRS)

    Evans, M. K.

    1976-01-01

    Seven appendices related to a previous report on the economic impact of NASA R and D spending were presented. They dealt with: (1) theoretical and empirical development of aggregate production functions, (2) the calculation of the time series for the rate of technological progress, (3) the calculation of the industry mix variable, (4) the estimation of distributed lags, (5) the estimation of the equations for gamma, (6) a ten-year forecast of the U.S. economy, (7) simulations of the macroeconomic model for increases in NASA R and D spending of $1.0, $.0.5, and 0.1 billions.

  19. Determinants of team-sport performance: implications for altitude training by team-sport athletes

    PubMed Central

    Bishop, David J; Girard, Olivier

    2013-01-01

    Team sports are increasingly popular, with millions of participants worldwide. Athletes engaged in these sports are required to repeatedly produce skilful actions and maximal or near-maximal efforts (eg, accelerations, changes in pace and direction, sprints, jumps and kicks), interspersed with brief recovery intervals (consisting of rest or low-intensity to moderate-intensity activity), over an extended period of time (1–2 h). While performance in most team sports is dominated by technical and tactical proficiencies, successful team-sport athletes must also have highly-developed, specific, physical capacities. Much effort goes into designing training programmes to improve these physical capacities, with expected benefits for team-sport performance. Recently, some team sports have introduced altitude training in the belief that it can further enhance team-sport physical performance. Until now, however, there is little published evidence showing improved team-sport performance following altitude training, despite the often considerable expense involved. In the absence of such studies, this review will identify important determinants of team-sport physical performance that may be improved by altitude training, with potential benefits for team-sport performance. These determinants can be broadly described as factors that enhance either sprint performance or the ability to recover from maximal or near-maximal efforts. There is some evidence that some of these physical capacities may be enhanced by altitude training, but further research is required to verify that these adaptations occur, that they are greater than what could be achieved by appropriate sea-level training and that they translate to improved team-sport performance. PMID:24282200

  20. Potential Use of a Bayesian Network for Discriminating Flash Type from Future GOES-R Geostationary Lightning Mapper (GLM) data

    NASA Technical Reports Server (NTRS)

    Solakiewiz, Richard; Koshak, William

    2008-01-01

    Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian

  1. Image Navigation and Registration Performance Assessment Evaluation Tools for GOES-R ABI and GLM

    NASA Technical Reports Server (NTRS)

    Houchin, Scott; Porter, Brian; Graybill, Justin; Slingerland, Philip

    2017-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. This paper describes the software design and implementation of IPATS and provides preliminary test results.

  2. In-Flight Guidance, Navigation, and Control Performance Results for the GOES-16 Spacecraft

    NASA Technical Reports Server (NTRS)

    Chapel, Jim; Stancliffe, Devin; Bevacqua, Tim; Winkler, Stephen; Clapp, Brian; Rood, Tim; Freesland, Doug; Reth, Alan; Early, Derrick; Walsh, Tim; hide

    2017-01-01

    The Geostationary Operational Environmental Satellite-R Series (GOES-R), which launched in November 2016, is the first of the next generation geostationary weather satellites. GOES-R provides 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands for Earth observations compared with its predecessor spacecraft. Additionally, Earth relative and Sun-relative pointing and pointing stability requirements are maintained throughout reaction wheel desaturation events and station keeping activities, allowing GOES-R to provide continuous Earth and sun observations. This paper reviews the pointing control, pointing stability, attitude knowledge, and orbit knowledge requirements necessary to realize the ambitious Image Navigation and Registration (INR) objectives of GOES-R. This paper presents a comparison between low-frequency on-orbit pointing results and simulation predictions for both the Earth Pointed Platform (EPP) and Sun Pointed Platform (SPP). Results indicate excellent agreement between simulation predictions and observed on-orbit performance, and compliance with pointing performance requirements. The EPP instrument suite includes 6 seismic accelerometers sampled at 2 KHz, allowing in-flight verification of jitter responses and comparison back to simulation predictions. This paper presents flight results of acceleration, shock response spectrum (SRS), and instrument line of sight responses for various operational scenarios and instrument observation modes. The results demonstrate the effectiveness of the dual-isolation approach employed on GOES-R. The spacecraft provides attitude and rate data to the primary Earth-observing instrument at 100 Hz, which are used to adjust instrument scanning. The data must meet accuracy and latency numbers defined by the Integrated Rate Error (IRE) requirements. This paper discusses the on-orbit IRE results, showing compliance to these requirements with margin. During the spacecraft checkout

  3. The GOES-16 Energetic Heavy Ion Sensor (EHIS) Ion Composition and Flux Measurements

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite (formerly GOES-R) in Geostationary orbit. EHIS measures energetic ions over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range (e.g., 19-207 MeV/u for carbon and 38-488 MeV/u for iron). EHIS uses the Angle Detecting Inclined Sensors (ADIS) technique to provide single-element charge resolution. Though on an operational mission for Space Weather monitoring, EHIS can thus provide a new source of high quality Solar Particle Event (SPE) data for science studies. With a high rate of on-board processing ( 2000 events/s), EHIS will provide exceptional statistics for ion composition measurements in large SPEs. For the GOES Level 1-B and Level 2 data products, heavy ions are distinguished in EHIS using pulse-height analysis with on-board processing producing charge histograms for five energy bands. Fits to these data are normalized to priority rate data on the ground. The instrumental cadence for histograms is 1 minute and the primary Level 1-B heavy ion data products are 1-minute and 5-minute averages. We discuss the preliminary EHIS heavy ion data results which show elemental peaks from H to Fe, with peaks for the isotopes D and 3He. (GOES-16 was launched in 19 November, 2016 and data has, though July 2017, been dominated by Galactic Cosmic Rays.) The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  4. New Energetic Particle Data and Products from the GOES Program

    NASA Astrophysics Data System (ADS)

    Onsager, Terrance; Rodriguez, Juan

    The NOAA Geostationary Operational Environmental Satellite (GOES) program has provided continuous, real-time measurements of the near-Earth space environment for decades. In addition to their scientific value, the GOES energetic particle measurements are the basis for a variety of space weather products and services, including the forecasting of elevated energetic particle levels, real-time knowledge of the satellite environment at geostationary orbit, and data to allow post-event analyses when satellite anomalies occur. The GOES satellites have traditionally provided measurements of high-energy electrons, protons, and alpha particles (100s of keV to 100s of MeV). Beginning with the launch of GOES-13 in 2006, the measurement capabilities were expanded to include medium-energy electrons and protons (10s to 100s of keV) with pitch angle resolution. The next generation of GOES satellites, starting with GOES-R in 2016, will include low-energy electrons and ions (10s of eV to 10s of keV) as well as energetic heavy ions. In this presentation, we will overview the GOES particle measurements available now and in the future and describe the space weather services and scientific investigations that these data support.

  5. GOES SXI Monthly Project Status Report Lockheed Martin Advanced Technology Center Month of October 2004

    NASA Technical Reports Server (NTRS)

    Morrison, Mons D.

    2004-01-01

    The Lockheed Martin Missiles and Space Advanced Technology Center (LMATC) is developing three Solar X-ray Imager (SXI) instruments. Two are being built for flights on the National Oceanic and Atmospheric Administration's (NOAA) Geostationary Operational Environmental Satellites (GOES) N and O, and one will be a flight spare. The SXI development is being managed by the NASA Goddard Space Flight Center. The SXI will image the full sun at wavelengths between approximately 6 and 60 A with a detector having 5 arcsec pixels. The launch of the first SXI will be on GOES N and the second SXI is to be launched on on GOES O or P.

  6. BaR-SPOrt: the instrument to be accommodated at Dome C

    NASA Astrophysics Data System (ADS)

    Zannoni, M.; Carretti, E.; Cortiglioni, S.; Macculi, C.; Ramponi, M.; Sbarra, C.; Ventura, G.; Monari, J.; Poloni, M.; Poppi, S.; Natale, V.; Nesti, R.; Baralis, M.; Peverini, O.; Tascone, R.; Virone, G.; Boscaleri, A.; Boella, G.; Sironi, G.; Gervasi, M.; de Bernardis, P.; Masi, S.; de Petris, M.

    The BaR-SPOrt (Balloon-Borne Radiometers for Sky Polarization Observations) experiment, a program of the Agenzia Spaziale Italiana (ASI) co-funded by PNRA (Progetto Nazionale di Ricerca in Antartide) was originally designed as a payload for long duration balloons flights. The changing scenario, both scientific and strategic, has led us to propose it for the starting winter campaign of at the Concordia Base. Here the instrument and the features making it suitable to operate at Dome-C are described. After the initial setup, BaR-SPOrt should not require any kind of routine intervention by a dedicated base staff. The experiment will just need electrical power (less than 2 kW) and a suitable accommodation on the field. It can be fully monitored and controlled, including the data acquisition, through its own telemetry/telecommand link using IRIDIUM modems. Both the receiver and the critical electronics are housed inside a temperature-controlled vacuum chamber, providing the properly stabilized environment. The cold part of the radiometer employs a closed loop mechanical cryo-cooler that provides temperatures <70 ±0.1 K with low power consumption (<200 W).

  7. How to Understand Skill Acquisition in Sport

    ERIC Educational Resources Information Center

    Moe, Vegard Fusche

    2004-01-01

    A crucial task for sport research is to understand and explain the processes and conditions underlying skillful motor behavior. One way to account for these processes and conditions is to describe and analyze the distinct stages a learner goes through when acquiring a skill. This article starts by elaborating one of the most dominant…

  8. NASA Sees Post-Patricia Moisture, Winds Stalking the Mid-Atlantic

    NASA Image and Video Library

    2017-12-08

    The remnant moisture from what was once Hurricane Patricia and moisture from the Gulf of Mexico were being transported north by a trough of low pressure over Wisconsin. The clouds and moisture were streaming into the Eastern third of the U.S. on October 28, 2015. The hybrid system was generating windy conditions which were seen from NASA's RapidScat instrument, while NOAA's GOES-East satellite captured an image of the impressive and sizeable cloud cover. Read more: www.nasa.gov/feature/goddard/patricia-eastern-pacific-2015 Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. The GOES-R/JPSS Approach for Identifying Hazardous Low Clouds: Overview and Operational Impacts

    NASA Astrophysics Data System (ADS)

    Calvert, Corey; Pavolonis, Michael; Lindstrom, Scott; Gravelle, Chad; Terborg, Amanda

    2017-04-01

    Low ceiling and visibility is a weather hazard that nearly every forecaster, in nearly every National Weather Service (NWS) Weather Forecast Office (WFO), must regularly address. In addition, national forecast centers such as the Aviation Weather Center (AWC), Alaska Aviation Weather Unit (AAWU) and the Ocean Prediction Center (OPC) are responsible for issuing low ceiling and visibility related products. As such, reliable methods for detecting and characterizing hazardous low clouds are needed. Traditionally, hazardous areas of Fog/Low Stratus (FLS) are identified using a simple stand-alone satellite product that is constructed by subtracting the 3.9 and 11 μm brightness temperatures. However, the 3.9-11 μm brightness temperature difference (BTD) has several major limitations. In an effort to address the limitations of the BTD product, the GOES-R Algorithm Working Group (AWG) developed an approach that fuses satellite, Numerical Weather Prediction (NWP) model, Sea Surface Temperature (SST) analyses, and other data sets (e.g. digital surface elevation maps, surface emissivity maps, and surface type maps) to determine the probability that hazardous low clouds are present using a naïve Bayesian classifier. In addition, recent research has focused on blending geostationary (e.g. GOES-R) and low earth orbit (e.g. JPSS) satellite data to further improve the products. The FLS algorithm has adopted an enterprise approach in that it can utilize satellite data from a variety of current and future operational sensors and NWP data from a variety of models. The FLS products are available in AWIPS/N-AWIPS/AWIPS-II and have been evaluated within NWS operations over the last four years as part of the Satellite Proving Ground. Forecaster feedback has been predominantly positive and references to these products within Area Forecast Discussions (AFD's) indicate that the products are influencing operational forecasts. At the request of the NWS, the FLS products are currently being

  10. Preliminary Results of a U.S. Deep South Modeling Experiment Using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Wood, Lance; Medlin, Jeffrey M.; Case, Jon

    2012-01-01

    A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA Short-term Prediction Research and Transition (SPoRT) Center began during the 2011-2012 cold season, and continued into the 2012 warm season. The focus was on two frequent U.S. Deep South forecast challenges: the initiation of deep convection during the warm season; and heavy precipitation during the cold season. We wanted to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System in improving the model representation of mesoscale boundaries such as the local sea-, bay- and land-breezes (which often leads to warm season convective initiation); and improving the model representation of slow moving, or quasi-stationary frontal boundaries (which focus cold season storm cell training and heavy precipitation). The NASA products were: the 4-km Land Information System, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with an outer grid with a 9 km spacing and an inner nest with a 3 km grid spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the positive and negative impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  11. Maniac talk - Dr. Richard R. Fisher, Director, Heliophysics Division (Emeritus), NASA HQ

    NASA Image and Video Library

    2016-05-25

    Dr. Richard R. Fisher: "As in the case of learning how to perform in any specialized context, I found there were a number of issues I was neither taught nor did I learn from life experience. Over the course of a 50-year career that transitioned from ground-based to space-based, I came to understand that there are specific tools and values that proved vital. Using my own journey, I shall summarize a few of the more useful, to identify and make available things and ideas that helped me with my time with NASA." Dr. Richard R. Fisher, Director, Heliophysics Division (Emeritus), NASA HQ

  12. Status and Future of GOES X-Ray Sensor Observations

    NASA Astrophysics Data System (ADS)

    Viereck, R.; Biesecker, D.

    2008-05-01

    The GOES X-Ray Sensor (XRS) has provided x-ray irradiance measurements in the 0.05 to 0.8 nm spectral band for nearly 30 years. These observations define the magnitude of x-ray flares. There are three issues that should be brought to the attention of the scientific community. First, today's XRS data have multiplicative factors of 0.7 and 0.85 that have been applied to the data to make recent (since GOES 8) observations match the earlier ones. We now believe that these factors are not correct and should be removed. There are implications on the magnitudes of flares and the historic record. The second issue is the current state of the XRS sensors. Two concurrent satellites, GOES 11 and GOES 12, now have failed XRS systems and the GOES 13 XRS (soon to be deployed) is only partially functioning leaving a serious vulnerability in the near future. The third issue is the future of these observations. From the beginning, the XRS detectors have been gas ionization cells which have proven to be very robust and stable. The future GOES R+ XRS instruments will be changing to solid state silicon diode detectors. The possible implications of this new detector technology should be considered as well. Details of these three issues will be presented and the implications discussed. Alternatives for the multiplicative factor and the failed XRS's will be presented.

  13. Curating NASA's Extraterrestrial Samples - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Allton, Judith; Lofgren, Gary; Righter, Kevin; Zolensky, Michael

    2011-01-01

    Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA s extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "documentation, preservation, preparation, and distribution of samples for research, education, and public outreach."

  14. Curating NASA's Extraterrestrial Samples - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Allton, Judith; Lofgren, Gary; Righter, Kevin; Zolensky, Michael

    2010-01-01

    Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials," JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach.

  15. Team Sports: A Place for Primary Care

    PubMed Central

    Hancock, Larry

    1985-01-01

    Physicians' role in team sports goes beyond the traditional ‘Doc’ who attends the game for stitching and primary injury management. Injury and illness prevention, ongoing supervision of rehabilitation, education, fitness evaluation, and training prescription are roles which have often fallen, by default, to paramedicals. The author recounts his experience in medical supervision of major junior hockey in the Western Hockey League. PMID:21274088

  16. Curating NASA's Past, Present, and Future Extraterrestrial Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Allton, J. H.; Evans, C. A.; Fries, M. D.; Nakamura-Messenger, K.; Righter, K.; Zeigler, R. A.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "...curation of all extra-terrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "...documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the past, present, and future activities of the NASA Curation Office.

  17. Examining Magnetotail Stretching and Substorm Onsets using GOES Satellite Data and Information Theory

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Verrill, N.; Horton, D.; Wing, S.

    2017-12-01

    Since the beginning of NOAA and NASA's Geostationary Operational Environmental Satellite (GOES) program in 1975, GOES satellites have been monitoring the geomagnetic field at geosynchronous orbit with onboard magnetometers. Using this GOES magnetometer data, we develop a state variable which characterizes the stretching of the near-Earth magnetotail by mapping the data to a central location within the magnetotail at geosynchronous distance (≈6.6 RE). Because the stretching of the magnetotail is thought to be related to the occurrence of substorms, we then assess the transfer entropy between the measure of tail stretching and substorm onsets in order to quantify the information content of our state variable with regards to substorms. Our results support the idea that stretching in the magnetotail precedes substorms and that the relationship is causal, which can be useful for magnetospheric activity and substorm predictions. We are currently assessing how well magnetic field measurements at geosynchronous orbit characterize tail stretching and their usefulness for predictions.

  18. A report on the USL NASA/RECON project. Part 2: PC-based R and D in support of IS and R applications

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros

    1984-01-01

    This Working Paper Series entry describes the PC R and D development effort initiated as part of the NASA/RECON Project at the University of Southwestern Louisiana. This effort involves the development of a PC-based environment for the prototyping and evaluation of various tools designed to enhance the interaction between scientists and engineers and remote information systems. The design of PC-based tools for the enhancement of the NASA/RECON university-level courses is described as well as the design of a multi-functional PC-based workstation to support access to and processing of information from local, distributed, and remote sources. Course preparation activities are described in a companion report entitled A Report on the USL NASA/RECON Project: Part 1, the Development of a Transportable, University-Level, IS and R Educational Program, by Suzy Gallagher and Martin Granier, USL/DBMS NASA/RECON Working Paper Series report number DBMS.NASA/RECON-7.

  19. Image navigation and registration performance assessment tool set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Astrophysics Data System (ADS)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-05-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99. 73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  20. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  1. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along

  2. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  3. What Counselors Need To Know About College and Pro Sports

    ERIC Educational Resources Information Center

    Gilbert, Bil

    1974-01-01

    That an athletic career is currently a glamor one almost goes without saying. Given the national infatuation with sports and the publicity, praise, and money paid athletes, it is a rare teenager who, if given the opportunity, would not opt for a games-playing job no matter what his other talents and prospects. (Author)

  4. Modeling 13.3nm Fe XXIII Flare Emissions Using the GOES-R EXIS Instrument

    NASA Astrophysics Data System (ADS)

    Rook, H.; Thiemann, E.

    2017-12-01

    The solar EUV spectrum is dominated by atomic transitions in ionized atoms in the solar atmosphere. As solar flares evolve, plasma temperatures and densities change, influencing abundances of various ions, changing intensities of different EUV wavelengths observed from the sun. Quantifying solar flare spectral irradiance is important for constraining models of Earth's atmosphere, improving communications quality, and controlling satellite navigation. However, high time cadence measurements of flare irradiance across the entire EUV spectrum were not available prior to the launch of SDO. The EVE MEGS-A instrument aboard SDO collected 0.1nm EUV spectrum data from 2010 until 2014, when the instrument failed. No current or future instrument is capable of similar high resolution and time cadence EUV observation. This necessitates a full EUV spectrum model to study EUV phenomena at Earth. It has been recently demonstrated that one hot flare EUV line, such as the 13.3nm Fe XXIII line, can be used to model cooler flare EUV line emissions, filling the role of MEGS-A. Since unblended measurements of Fe XXIII are typically unavailable, a proxy for the Fe XXIII line must be found. In this study, we construct two models of this line, first using the GOES 0.1-0.8nm soft x-ray (SXR) channel as the Fe XXIII proxy, and second using a physics-based model dependent on GOES emission measure and temperature data. We determine that the more sophisticated physics-based model shows better agreement with Fe XXIII measurements, although the simple proxy model also performs well. We also conclude that the high correlation between Fe XXIII emissions and the GOES 0.1-0.8nm band is because both emissions tend to peak near the GOES emission measure peak despite large differences in their contribution functions.

  5. Deployment and Performance of the NASA D3R During the GPM OLYMPEx Field Campaign

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Beauchamp, Robert M.; Chen, Haonan; Vega, Manuel; Schwaller, Mathew; Willie, Delbert; Dabrowski, Aaron; Kumar, Mohit; Petersen, Walter; Wolff, David

    2016-01-01

    The NASA D3R was successfully deployed and operated throughout the NASA OLYMPEx field campaign. A differential phase based attenuation correction technique has been implemented for D3R observations. Hydrometeor classification has been demonstrated for five distinct classes using Ku-band observations of both convection and stratiform rain. The stratiform rain hydrometeor classification is compared against LDR observations and shows good agreement in identification of mixed-phase hydrometeors in the melting layer.

  6. Use of NASA Near Real-Time and Archived Satellite Data to Support Disaster Assessment

    NASA Technical Reports Server (NTRS)

    McGrath, Kevin M.; Molthan, Andrew L.; Burks, Jason E.

    2014-01-01

    NASA's Short-term Prediction Research and Transition (SPoRT) Center partners with the NWS to provide near realtime data in support of a variety of weather applications, including disasters. SPoRT supports NASA's Applied Sciences Program: Disasters focus area by developing techniques that will aid the disaster monitoring, response, and assessment communities. SPoRT has explored a variety of techniques for utilizing archived and near real-time NASA satellite data. An increasing number of end-users - such as the NWS Damage Assessment Toolkit (DAT) - access geospatial data via a Web Mapping Service (WMS). SPoRT has begun developing open-standard Geographic Information Systems (GIS) data sets via WMS to respond to end-user needs.

  7. The Geostationary Operational Satellite R Series SpaceWire Based Data System Architecture

    NASA Technical Reports Server (NTRS)

    Krimchansky, Alexander; Anderson, William H.; Bearer, Craig

    2010-01-01

    The GOES-R program selected SpaceWire as the best solution to satisfy the desire for simple and flexible instrument to spacecraft command and telemetry communications. Data generated by GOES-R instruments is critical for meteorological forecasting, public safety, space weather, and other key applications. In addition, GOES-R instrument data is provided to ground stations on a 24/7 basis. GOES-R requires data errors be detected and corrected from origin to final destination. This paper describes GOES-R developed strategy to satisfy this requirement

  8. From Data to Knowledge — Faster: GOES Early Fire Detection System to Inform Operational Wildfire Response and Management

    NASA Astrophysics Data System (ADS)

    Koltunov, A.; Quayle, B.; Prins, E. M.; Ambrosia, V. G.; Ustin, S.

    2014-12-01

    Fire managers at various levels require near-real-time, low-cost, systematic, and reliable early detection capabilities with minimal latency to effectively respond to wildfire ignitions and minimize the risk of catastrophic development. The GOES satellite images collected for vast territories at high temporal frequencies provide a consistent and reliable source for operational active fire mapping realized by the WF-ABBA algorithm. However, their potential to provide early warning or rapid confirmation of initial fire ignition reports from conventional sources remains underutilized, partly because the operational wildfire detection has been successfully optimized for users and applications for which timeliness of initial detection is a low priority, contrasting to the needs of first responders. We present our progress in developing the GOES Early Fire Detection (GOES-EFD) system, a collaborative effort led by University of California-Davis and USDA Forest Service. The GOES-EFD specifically focuses on first detection timeliness for wildfire incidents. It is automatically trained for a monitored scene and capitalizes on multiyear cross-disciplinary algorithm research. Initial retrospective tests in Western US demonstrate significantly earlier identification detection of new ignitions than existing operational capabilities and a further improvement prospect. The GOES-EFD-β prototype will be initially deployed for the Western US region to process imagery from GOES-NOP and the rapid and 4 times higher spatial resolution imagery from GOES-R — the upcoming next generation of GOES satellites. These and other enhanced capabilities of GOES-R are expected to significantly improve the timeliness of fire ignition information from GOES-EFD.

  9. GOES-S Encapsulation

    NASA Image and Video Library

    2018-02-07

    In a clean room at Astrotech Space Operations in Titusville, Florida, technicians and engineers monitor progress as NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, is encapsulated in its payload fairing. It soon will be moved to Space Launch Complex 41 at Cape Canaveral Air Force Station for mounting atop the Atlas V rocket that will boost the satellite to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  10. GOES (Geostationary Operational Environmental Satellite)-Next Overview.

    DTIC Science & Technology

    1985-09-01

    shows the locations and sizes of warm and cold eddies. r * Hydrological services. GOES (and polar orbiter) data are used to produce maps and charts...rationale used to develop specifications for the N next generation of satellites of this series. The payload * instruments of the current satellites are...reviewed in con- junction with the products prepared from their data outputs. The rationale used by the National Weather Service (NWS) in developing

  11. The YORP effect on the GOES 8 and GOES 10 satellites: A case study

    NASA Astrophysics Data System (ADS)

    Albuja, Antonella A.; Scheeres, Daniel J.; Cognion, Rita L.; Ryan, William; Ryan, Eileen V.

    2018-01-01

    The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a proposed explanation for the observed rotation behavior of inactive satellites in Earth orbit. This paper further explores the YORP effect for highly asymmetric inactive satellites. Satellite models are developed to represent the GOES 8 and GOES 10 satellites, both of which are currently inactive in geosynchronous Earth orbit (GEO). A simple satellite model for the GOES 8 satellite is used to analyze the short period variations of the angular velocity and obliquity as a result of the YORP effect. A more complex model for the rotational dynamics of the GOES 8 and GOES 10 satellites are developed to probe their sensitivity and to match observed spin periods and states of these satellites. The simulated rotation periods are compared to observations for both satellites. The comparison between YORP theory and observed rotation rates for both satellites show that the YORP effect could be the cause for the observed rotational behavior. The YORP model also predicts a novel state for the GOES 8 satellite, namely that it could periodically fall into a tumbling rotation state. Recent observations of this satellite are consistent with this prediction.

  12. Psychosocial development through Masters sport: What can be gained from youth sport models?

    PubMed

    Dionigi, Rylee A; Fraser-Thomas, Jessica; Stone, Rachael C; Gayman, Amy M

    2018-07-01

    Although sport participation is encouraged throughout the lifespan, little research has been conducted on the role of sport in development later in life. This qualitative study explored adults' experiences of development within the context of Masters sport. We interviewed 14 adults (nine men and five women) aged 46-61 years involved in Masters sport. Data was interpreted drawing upon frameworks from youth sport (i.e., Personal Assets Framework for Sport; Côté, J., Bruner, M., Strachan, L., Erickson, K., & Fraser-Thomas, J. (2010). Athletes' development and coaching. In J. Lyle & C. Cushion (Eds.), Sport coaching: Professionalism and practice (pp. 63-83). Oxford, UK: Elsevier, Côté, J., Turnnidge, J., & Evans, M. B. (2014). The dynamic process of development through sport. Kinesiologia Slovenica, 20(3), 14-26, Côté, J., Turnnidge, J., & Vieerima, M. (2016). A personal assets approach to youth sport. In K. Green & A. Smith (Eds.), Routledge handbook of youth sport (pp. 243-255). New York, NY: Routledge; 4/5Cs of positive youth development; Lerner, R. M., Fisher, C. B., & Weinberg, R. A. (2000). Toward a science for and of the people: Promoting civil society through the application of developmental science. Child Development, 71(1), 11-20. doi:10.1111/1467-8624.00113; Vierimaa, M., Erickson, K., Côté, J., & Gilbert, W. (2012). Positive youth development: A measurement framework for sport. International Journal of Sports Science & Coaching, 7(3), 601-614. doi:10.1260/1747-9541.7.3.601), combined with past research on mid-life and older athletes. Six key themes emerged as contributing to adults' personal development through sport: competence and confidence, character, commitment, connection, cognition, and challenge. Masters sport contexts appeared to facilitate changes in assets (i.e., 6Cs) similar to those within youth sport, but assets often held different meanings within the context of later life. Applying frameworks from youth sport and developmental

  13. Survey of localized solar flare signatures in the ionosphere with GNSS, VLF, and GOES observations

    NASA Astrophysics Data System (ADS)

    Blevins, S. M.; Hayes, L.; Collado-Vega, Y. M.; Michael, B. P.; Noll, C. E.

    2017-12-01

    Global navigation satellite system (GNSS) phase measurements of the total electron content (TEC) and ionospheric delay are sensitive to sudden increases in electron density in the layers of the Earth's ionosphere. These sudden ionospheric disruptions, or SIDs, are due to enhanced X-ray and extreme ultraviolet radiation from a solar flare that drastically increases the electron density in localized regions. SIDs are solar flare signatures in the Earth's ionosphere and can be observed with very low frequency (VLF 3-30 kHz) monitors and dual-frequency GNSS (L1 = 1575.42 MHz, L2 = 1227.60 MHz) receivers that probe lower (D-region) to upper (F-region) ionospheric layers, respectively. Data from over 500 solar flare events, spanning April 2010 to July 2017, including GOES C-, M-, and X-class solar flares at various intensities, were collected from the Space Weather Database Of Notifications, Knowledge, Information (DONKI) developed at the NASA Goddard Space Flight Center (GSFC) Community Coordinated Modeling Center (CCMC). Historical GOES satellite (NOAA) X-ray flux (NASA GSFC CCMC integrated Space Weather Analysis system (iSWA)), and VLF SID (Stanford University Solar SID Space Weather Monitor program) time series data are available for all solar flare events of the sample set. We use GNSS data archived at the NASA GSFC Crustal Dynamics Data Information System (CDDIS) to characterize the F-region reactions to the increased ionization, complementing the ground-based D-region (VLF), and space-based X-ray observations (GOES). CDDIS provides GNSS data with 24-hour coverage at a temporal resolution of 30 seconds from over 500 stations. In our study we choose 63 stations, spanning 23 countries at a variety of geographic locations to provide continuous coverage for all solar flare events in the sample. This geographic distribution enables us to explore the effects of different solar flare intensities at localized regions in the Earths ionosphere around the globe. The GNSS

  14. Preliminary Results of a U.S. Deep South Warm Season Deep Convective Initiation Modeling Experiment using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Medlin, Jeffrey M.; Wood, Lance; Zavodsky, Brad; Case, Jon; Molthan, Andrew

    2012-01-01

    The initiation of deep convection during the warm season is a forecast challenge in the relative high instability and low wind shear environment of the U.S. Deep South. Despite improved knowledge of the character of well known mesoscale features such as local sea-, bay- and land-breezes, observations show the evolution of these features fall well short in fully describing the location of first initiates. A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA s Short-term Prediction Research and Transition (SPoRT) Center was undertaken during the 2012 warm season to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System. The NASA products were: a 4-km Land Information System data, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with a 9 km outer grid spacing and a 3 km inner nest spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the forecast timing and location of the first initiates, with a focus on the impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  15. X-38 vehicle #131R arrives at NASA Dryden via NASA'S Super Guppy transport aircraft

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Super Guppy transport aircraft landed at Edwards Air Force Base, Calif. on July 11, 2000, to deliver the latest version of the X-38 drop vehicle to Dryden. The X-38s are intended as prototypes for a possible 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R will demonstrate a huge 7,500 square-foot parafoil that will that will enable the potential crew return vehicle to land on the length of a football field after returning from space. The crew return vehicle is intended to serve as a possible emergency transport to carry a crew to safety in the event of problems with the International Space Station. The Super Guppy evolved from the 1960s-vintage Pregnant Guppy, used for transporting outsized sections of the Apollo moon rocket. The Super Guppy was modified from 1950s-vintage Boeing C-97. NASA acquired its Super Guppy from the European Space Agency in 1997.

  16. Validation of GOES-10 Satellite-derived Cloud and Radiative Properties for the MASRAD ARM Mobile Facility Deployment

    NASA Technical Reports Server (NTRS)

    Khaiyer, M. M.; Doelling, D. R.; Palikonda, R.; Mordeen, M. L.; Minnis, P.

    2007-01-01

    This poster presentation reviews the process used to validate the GOES-10 satellite derived cloud and radiative properties. The ARM Mobile Facility (AMF) deployment at Pt Reyes, CA as part of the Marine Stratus Radiation Aerosol and Drizzle experiment (MASRAD), 14 March - 14 September 2005 provided an excellent chance to validate satellite cloud-property retrievals with the AMF's flexible suite of ground-based remote sensing instruments. For this comparison, NASA LaRC GOES10 satellite retrievals covering this region and period were re-processed using an updated version of the Visible Infrared Solar-Infrared Split-Window Technique (VISST), which uses data taken at 4 wavelengths (0.65, 3.9,11 and 12 m resolution), and computes broadband fluxes using improved CERES (Clouds and Earth's Radiant Energy System)-GOES-10 narrowband-to-broadband flux conversion coefficients. To validate MASRAD GOES-10 satellite-derived cloud property data, VISST-derived cloud amounts, heights, liquid water paths are compared with similar quantities derived from available ARM ground-based instrumentation and with CERES fluxes from Terra.

  17. Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  18. Transitioning NPOESS Data to Weather Offices: The SPoRT Paradigm with EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary

    2009-01-01

    Real-time satellite information provides one of many data sources used by NWS weather forecast offices (WFOs) to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting imagery has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. Additionally, polar orbiting sounding data can provide additional information on the thermodynamic structure of the atmosphere in data sparse regions of at asynoptic observation times. The NASA Short-term Prediction Research and Transition (SPoRT) project has demonstrated the utility of polar orbiting MODIS and AIRS data on the Terra and Aqua satellites to improve weather diagnostics and short-term forecasting on the regional and local scales. SPoRT scientists work directly forecasters at selected WFOS in the Southern Region (SR) to help them ingest these unique data streams into their AWIPS system, understand how to use the data (through on-site and distance learn techniques), and demonstrate the utility of these products to address significant forecast problems. This process also prepares forecasters for the use of similar observational capabilities from NPOESS operational sensors. NPOESS environmental data records (EDRs) from the Visible 1 Infrared Imager I Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrlS) and Advanced Technology Microwave Sounder (ATMS) instruments and additional value-added products produced by NESDIS will be available in near real-time and made available to WFOs to extend their use of NASA EOS data into the NPOESS era. These new data streams will be integrated into the NWs's new AWIPS II decision support tools. The AWIPS I1 system to be unveiled in WFOs in 2009 will be a JAVA-based decision support system which preserves the functionality of the existing systems and

  19. Louisiana NASA EPSCoR Project

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    2002-01-01

    In 1994, the National Aeronautics and Space Administration issued a Cooperative Agreement (CA) to the State of Louisiana, through the Louisiana Board of Regents (BOB), for the performance of scientific research under the Experimental Program to Stimulate Competitive Research (EPSCoR) Project. Originally constructed as a three-year program with an optional two-year follow on, this federal-state partnership culminated on 31 October 2001, including two CA extensions. The total value of the project reached $3.3M in NASA funding, matched by $2.75M in BOB funds, and supplemented by several million dollars in institutional contributions. Three Research Clusters comprised the state-wide research effort coupled with scientific/technical management and a teacher involvement component. The three research clusters addressed the Enterprises of Space Science, Earth Science and Aerospace Technology with research in High Energy Astrophysics, the Global Carbon Cycle, and Propulsion. Ten universities, over two dozen faculty, over 150 students and numerous support personnel were involved. All of the scientific and technical objectives were met or exceeded. In aggregate, the clusters generated about $18M in outside support, better than a 2:1 return on investment (better than 5:1 considering only the NASA investment). Moreover, two of the clusters have advanced to the level of applying for major NSF research center designation. This project was a trial of the model of building research infrastructure through mentoring. While not completely successful, the results at the smaller institutions were, none the less, positive. Faculty were engaged in major research and involved their students. Administrations improved their capabilities to handle grants and contracts. Faculty release time was granted, research space was provided and, in some cases, equipment was made available for the research. Some of the faculty at these schools have remained involved in research and/or formed

  20. GOES Type III Loop Heat Pipe Life Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura

    2011-01-01

    The GOES Type III Loop Heat Pipe (LHP) was built as a life test unit for the loop heat pipes on the GOES N-Q series satellites. This propylene LHP was built by Dynatherm Corporation in 2000 and tested continuously for approximately 14 months. It was then put into storage for 3 years. Following the storage period, the LHP was tested at Swales Aerospace to verify that the loop performance hadn t changed. Most test results were consistent with earlier results. At the conclusion of testing at Swales, the LHP was transferred to NASA/GSFC for continued periodic testing. The LHP has been set up for testing in the Thermal Lab at GSFC since 2006. A group of tests consisting of start-ups, power cycles, and a heat transport limit test have been performed every six to nine months since March 2006. Tests results have shown no change in the loop performance over the five years of testing. This presentation will discuss the test hardware, test set-up, and tests performed. Test results to be presented include sample plots from individual tests, along with conductance measurements for all tests performed.

  1. JPSS Proving Ground Activities with NASA's Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Schultz, L. A.; Smith, M. R.; Fuell, K.; Stano, G. T.; LeRoy, A.; Berndt, E.

    2015-12-01

    Instruments aboard the Joint Polar Satellite System (JPSS) series of satellites will provide imagery and other data sets relevant to operational weather forecasts. To prepare current and future weather forecasters in application of these data sets, Proving Ground activities have been established that demonstrate future JPSS capabilities through use of similar sensors aboard NASA's Terra and Aqua satellites, and the S-NPP mission. As part of these efforts, NASA's Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama partners with near real-time providers of S-NPP products (e.g., NASA, UW/CIMSS, UAF/GINA, etc.) to demonstrate future capabilities of JPSS. This includes training materials and product distribution of multi-spectral false color composites of the visible, near-infrared, and infrared bands of MODIS and VIIRS. These are designed to highlight phenomena of interest to help forecasters digest the multispectral data provided by the VIIRS sensor. In addition, forecasters have been trained on the use of the VIIRS day-night band, which provides imagery of moonlit clouds, surface, and lights emitted by human activities. Hyperspectral information from the S-NPP/CrIS instrument provides thermodynamic profiles that aid in the detection of extremely cold air aloft, helping to map specific aviation hazards at high latitudes. Hyperspectral data also support the estimation of ozone concentration, which can highlight the presence of much drier stratospheric air, and map its interaction with mid-latitude or tropical cyclones to improve predictions of their strengthening or decay. Proving Ground activities are reviewed, including training materials and methods that have been provided to forecasters, and forecaster feedback on these products that has been acquired through formal, detailed assessment of their applicability to a given forecast threat or task. Future opportunities for collaborations around the delivery of training are proposed

  2. Aeronautics Education, Research, and Industry Alliance (AERIAL) Progress Report and Proposal for Funding Continuation NASA Nebraska EPSCoR

    NASA Technical Reports Server (NTRS)

    Bowen, Brent; Fink, Mary; Gogos, George; Moussavi, Massoum; Nickerson, Jocelyn; Rundquist, Donald; Russell, Valerie; Tarry, Scott

    2004-01-01

    The Aeronautics Education, Research, and Industry Alliance (AERIAL), which began as a comprehensive, multi-faceted NASA EPSCoR 2000 initiative, has contributed substantially to the strategic research and technology priorities of NASA, while intensifying Nebraska's rapidly growing aeronautics research and development endeavors. AERIAL has enabled Nebraska researchers to: (a) continue strengthening their collaborative relationships with NASA Field Centers, Codes, and Enterprises; (b) increase the capacity of higher education throughout Nebraska to invigorate and expand aeronautics research; and (c) expedite the development of aeronautics-related research infrastructure and industry in the state. Nebraska has placed emphasis on successfully securing additional funds from non-EPSCoR and non-NASA sources. AERIAL researchers have aggressively pursued additional funding opportunities offered by NASA, industry, and other agencies. This report contains a summary of AERIAL's activities and accomplishments during its first three years of implementation.

  3. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    The Advanced Baseline Imager (ABI) will be aboard the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-Series (GOES-R) to supply data needed for operational weather forecasts and long-term climate variability studies, which depend on high quality data. Unlike the heritage operational GOES systems that have two or four detectors per band, ABI has hundreds of detectors per channel requiring calibration coefficients for each one. This increase in number of detectors poses new challenges for next generation sensors as each detector has a unique spectral response function (SRF) even though only one averaged SRF per band is used operationally to calibrate each detector. This simplified processing increases computational efficiency. Using measured system-level SRF data from pre-launch testing, we have the opportunity to characterize the calibration impact using measured SRFs, both per detector and as an average of detector-level SRFs similar to the operational version. We calculated the spectral response impacts for the thermal emissive bands (TEB) theoretically, by simulating the ABI response viewing an ideal blackbody and practically, with the measured ABI response to an external reference blackbody from the pre-launch TEB calibration test. The impacts from the practical case match the theoretical results using an ideal blackbody. The observed brightness temperature trends show structure across the array with magnitudes as large as 0.1 K for and 12 (9.61 µm), and 0.25 K for band 14 (11.2 µm) for a 300 K blackbody. The trends in the raw ABI signal viewing the blackbody support the spectral response measurements results, since they show similar trends in bands 12 (9.61µm), and 14 (11.2 µm), meaning that the spectral effects dominate the response differences between detectors for these bands. We further validated these effects using the radiometric bias calculated between calibrations using the external blackbody and

  4. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Kozlowski, Danielle; Case, Jonathan; Molthan, Andrew

    2012-01-01

    Short-term Prediction Research and Transition (SPoRT) seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities SPoRT has developed a unique, real-time configuration of the NASA Unified Weather Research and Forecasting (WRF)WRF (ARW) that integrates all SPoRT modeling research data: (1) 2-km SPoRT Sea Surface Temperature (SST) Composite, (2) 3-km LIS with 1-km Greenness Vegetation Fraction (GVFs) (3) 45-km AIRS retrieved profiles. Transitioned this real-time forecast to NOAA's Hazardous Weather Testbed (HWT) as deterministic model at Experimental Forecast Program (EFP). Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs

  5. MTSAT: Full Disk - NOAA GOES Geostationary Satellite Server

    Science.gov Websites

    GOES Himawari-8 Indian Ocean Meteosat HEMISPHERIC GOES Atlantic Source | Local GOES West Himawari-8 Meteosat CONTINENTAL PACUS CONUS Source | Local REGIONAL GOES-West Northwest West Central Southwest GOES -East Regional Page Source | Local Pacific Northwest Source | Local Northern Rockies Source | Local

  6. The X-38 vehicle #131R arrives at NASA Dryden Flight Research Center

    NASA Image and Video Library

    2000-07-11

    The X-38 Vehicle 131R, intended to prove the utility of a "lifeboat" crew return vehicle to bring crews home from the International Space Station in the event of an emergency, was unloaded from NASA's Super Guppy transport aircraft on July 11, 2000. The newest X-38 version arrived at Dryden for drop tests from NASA's venerable B-52 mother ship. The tests will evaluate a 7,500 square-foot parafoil intended to permit the crew return vehicle to return from space and land in the length of a football field.

  7. The X-38 vehicle #131R arrives at NASA Dryden Flight Research Center

    NASA Image and Video Library

    2000-07-11

    The X-38 Vehicle 131R, intended to prove the utility of a "lifeboat" crew return vehicle to bring crews home from the International Space Station in the event of an emergency, was unloaded from NASA's Super Guppy transport aircraft on July 11, 2000. The newest X-38 version arrived at Dryden for drop tests from NASA's venerable B-52 mother ship. The tests will evaluate a 7,500 square-foot parafoil intended to permit the CRV to return from space and land in the length of a football field.

  8. The X-38 vehicle #131R arrives at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 Vehicle 131R, intended to prove the utility of a 'lifeboat' crew return vehicle to bring crews home from the International Space Station in the event of an emergency, was unloaded from NASA's Super Guppy transport aircraft on July 11, 2000. The newest X-38 version arrived at Dryden for drop tests from NASA's venerable B-52 mother ship. The tests will evaluate a 7,500 square-foot parafoil intended to permit the CRV to return from space and land in the length of a football field.

  9. The X-38 vehicle #131R arrives at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The X-38 Vehicle 131R, intended to prove the utility of a 'lifeboat' crew return vehicle to bring crews home from the International Space Station in the event of an emergency, was unloaded from NASA's Super Guppy transport aircraft on July 11, 2000. The newest X-38 version arrived at Dryden for drop tests from NASA's venerable B-52 mother ship. The tests will evaluate a 7,500 square-foot parafoil intended to permit the crew return vehicle to return from space and land in the length of a football field.

  10. GOES-S Liftoff

    NASA Image and Video Library

    2018-03-01

    A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying the NOAA Geostationary Operational Environmental Satellite, or GOES-S. Liftoff was at 5:02 p.m. EST. GOES-S is the second satellite in a series of next-generation weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting.

  11. Curating NASA's Future Extraterrestrial Sample Collections: How Do We Achieve Maximum Proficiency?

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis; Evans, Cynthia; Zeigler, Ryan; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "... documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working towards a state of maximum proficiency.

  12. The USL NASA PC R and D project: Detailed specifications of objects

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros

    1984-01-01

    The specifications for a number of projects which are to be implemented within the University of Southwestern Louisiana NASA PC R and D Project are discussed. The goals and objectives of the PC development project and the interrelationships of the various components are discussed. Six projects are described. They are a NASA/RECON simulator, a user interface to multiple remote information systems, evaluation of various personal computer systems, statistical analysis software development, interactive presentation system development, and the development of a distributed processing environment. The relationships of these projects to one another and to the goals and objectives of the overall project are discussed.

  13. GOES-K on display in Astrotech clean room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Geostationary Operational Environmental Satellite-K (GOES-K) is placed on display for news media representatives at the Astrotech Space Operations LP facility in Titusville. GOES-K, the latest in the current series of advanced geostationary weather satellites in service, is scheduled to be launched into space aboard an Atlas 1 rocket on April 24 from Launch Complex 36, Pad B, Cape Canaveral Air Station. Once in orbit, GOES-K will become GOES-10, joining GOES-8 and GOES-9 in space.

  14. Innovative Approaches for the Dissemination of Near Real-time Geostationary Satellite Data for Terrestrial and Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; McGrath, K.; Meyer, P. J.; Berndt, E.

    2017-12-01

    A GOES-R series receiving station has been installed at the NASA Marshall Space Flight Center (MSFC) to support GOES-16 transition-to-operations projects of NASA's Earth science program and provide a community portal for GOES-16 data access. This receiving station is comprised of a 6.5-meter dish; motor-driven positioners; Quorum feed and demodulator; and three Linux workstations for ingest, processing, display, and subsequent product generation. The Community Satellite Processing Package (CSPP) is used to process GOES Rebroadcast data from the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS), and Space Environment In-Situ Suite (SEISS) into Level 1b and Level 2 files. GeoTIFFs of the imagery from several of these instruments are ingested into an Esri Arc Enterprise Web Map Service (WMS) server with tiled imagery displayable through a web browser interface or by connecting directly to the WMS with a Geographic Information System software package. These data also drive a basic web interface where users can manually zoom to and animate regions of interest or acquire similar results using a published Application Program Interface. While not as interactive as a WMS-driven interface, this system is much more expeditious with generating and distributing requested imagery. The legacy web capability enacted for the predecessor GOES Imager currently supports approximately 500,000 unique visitors each month. Dissemination capabilities have been refined to support a significantly larger number of anticipated users. The receiving station also supports NASA's Short-term Prediction, Research, and Transition Center's (SPoRT) project activities to dissemination near real-time ABI RGB products to National Weather Service National Centers, including the Satellite Analysis Branch, National Hurricane Center, Ocean Prediction Center, and Weather Prediction Center, where they

  15. Meteorological Observations and System Performance From the NASA D3R's First 5 Years

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Beauchamp, Robert M.; Vega, Manuel; Chen, Haonan; Kumar, Mohit; Joshil, Shashank; Schwaller, Mathew; Petersen, Walter; Wolff, David

    2017-01-01

    The NASA dual-frequency, dual-polarization, Doppler radar (D3R) was conceived and developed to support ground validation (GV) operations of the Global Precipitation Measurement (GPM) mission. The D3R operates in the same frequencies bands, Ku- and Ka-band, as GPMs dual-frequency precipitation radar enabling direct comparisons of microphysical observations of precipitation. To support the GPM GVmission, D3R substantively participated in four field campaigns in North America with diverse geographic features covering both winter and summer conditions.

  16. P.E. & Sports Studies toward Peace in the World. The Establishment of World Academy of Physical Education and Sports Studies for All Nations of the World (NGO, Non Governmental Organization).

    ERIC Educational Resources Information Center

    Osada, Noriaki

    This paper discusses how to foster peace in the world via the establishment of global physical education and sports studies. It begins by defining the word human as a way to grasp the entirety of the people living throughout the world. It goes on to discuss a hypothesis for creating ball game studies, explaining that when a human plays a ball…

  17. New GOES satellite synchronized time code generation

    NASA Technical Reports Server (NTRS)

    Fossler, D. E.; Olson, R. K.

    1984-01-01

    The TRAK Systems' GOES Satellite Synchronized Time Code Generator is described. TRAK Systems has developed this timing instrument to supply improved accuracy over most existing GOES receiver clocks. A classical time code generator is integrated with a GOES receiver.

  18. An overview of the USL/DBMS NASA/PC R and D project working paper series

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor)

    1984-01-01

    An introduction is given to the University of Southwestern Louisiana Data Base Management System (USL/DBMS) NASA/PC R and D Working Paper Series which has been established to provide a foundation for both a formal and informal information dissemination mechanism concerning PC-based research and development activities being performed pursuant to the NASA contract. This entry also serves as an index to the collection of Working Paper Series reports.

  19. GOES-S Rollout to Pad

    NASA Image and Video Library

    2018-02-28

    A United Launch Alliance Atlas V rocket is rolled to Space Launch Complex 41 at Cape Canaveral Air Force Station. The launch vehicle will send the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S, into orbit. The GOES series is designed to significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  20. GOES-S Prelaunch News Conference

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Stephen Volz, director for Satellite and Information Services for NOAA, speaks to members of the media at a prelaunch news conference about National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The GOES series of satellites will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  1. Application of the SRI cloud-tracking technique to rapid-scan GOES observations

    NASA Technical Reports Server (NTRS)

    Wolf, D. E.; Endlich, R. M.

    1980-01-01

    An automatic cloud tracking system was applied to multilayer clouds associated with severe storms. The method was tested using rapid scan observations of Hurricane Eloise obtained by the GOES satellite on 22 September 1975. Cloud tracking was performed using clustering based either on visible or infrared data. The clusters were tracked using two different techniques. The data of 4 km and 8 km resolution of the automatic system yielded comparable in accuracy and coverage to those obtained by NASA analysts using the Atmospheric and Oceanographic Information Processing System.

  2. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances

  3. NASA Sees Heavy Rainfall in Tropical Storm Andrea

    NASA Image and Video Library

    2017-12-08

    This NOAA GOES-East satellite animation shows the development of System 91L into Tropical Storm Andrea over the course of 3 days from June 4 to June 6, just after Andrea was officially designated a tropical storm. Credit: NASA's GOES Project --- NASA Sees Heavy Rainfall in Tropical Storm Andrea NASA’s TRMM satellite passed over Tropical Storm Andrea right after it was named, while NASA’s Terra satellite captured a visible image of the storm’s reach hours beforehand. TRMM measures rainfall from space and saw that rainfall rates in the southern part of the storm was falling at almost 5 inches per hour. NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the Moderate Resolution Imaging Spectroradiometer or MODIS instrument, captured a visible image of the storm. At that time, Andrea’s clouds had already extended over more than half of Florida. At 8 p.m. EDT on Wednesday, June 5, System 91L became the first tropical storm of the Atlantic Ocean hurricane season. Tropical Storm Andrea was centered near 25.5 North and 86.5 West, about 300 miles (485 km) southwest of Tampa, Fla. At the time Andrea intensified into a tropical storm, its maximum sustained winds were near 40 mph (65 kph). Full updates can be found at NASA's Hurricane page: www.nasa.gov/hurricane Rob Gutro NASA’s Goddard Space Flight Center

  4. The Scintillation Prediction Observations Research Task (SPORT) Mission

    NASA Technical Reports Server (NTRS)

    Spann, James; Swenson, Charles; Durao, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Denardin, Clezio; hide

    2017-01-01

    SPORT is a science mission using a 6U CubeSat and integrated ground network that will (1) advance understanding and (2) enable improved predictions of scintillation occurrence that impact GPS signals and radio communications. This is the science of Space Weather. SPORT is an international partnership with NASA, U.S. institutions, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA).

  5. GOES-S Prelaunch News Conference

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, and Kathy Winters, launch weather officer for the U.S. Air Force 45th Weather Squadron at Cape Canaveral Air Force Station, speaks to members of the media at a prelaunch news conference about National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The GOES series of satellites will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  6. GOES-S Rollout to Pad

    NASA Image and Video Library

    2018-02-28

    A United Launch Alliance Atlas V rocket exits the Vertical Integration Facility on its way to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. The launch vehicle will send the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S, into orbit. The GOES series is designed to significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  7. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many

  8. New GOES High-Resolution Magnetic Measurements and their Contribution to Understanding Magnetospheric Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Redmon, R. J.; Loto'aniu, P. T. M.; Boudouridis, A.; Chi, P. J.; Singer, H. J.; Kress, B. T.; Rodriguez, J. V.; Abdelqader, A.; Tilton, M.

    2017-12-01

    The era of NOAA observations of the geomagnetic field started with SMS-1 in May 1974 and continues to this day with GOES-13-16 (on-orbit). We describe the development of a new 20+ year archive of science-quality, high-cadence geostationary measurements of the magnetic field from eight NOAA spacecraft (GOES-8 through GOES-15), the status of GOES-16 and new scientific results using these data. GOES magnetic observations provide an early warning of impending space weather, are the core geostationary data set used for the construction of magnetospheric magnetic models, and can be used to estimate electromagnetic wave power in frequency bands important for plasma processes. Many science grade improvements are being made across the GOES archive to unify the format and content from GOES-8 through the new GOES-R series (with the first of that series launched on November 19, 2016). A majority of the 2-Hz magnetic observations from GOES-8-12 have never before been publicly accessible due to processing constraints. Now, a NOAA Big Earth Data Initiative project is underway to process these measurements starting from original telemetry records. Overall the new archive will include vector measurements in geophysically relevant coordinates (EPN, GSM, and VDH), comprehensive documentation, highest temporal cadence, best calibration parameters, recomputed means, updated quality flagging, full spacecraft ephemeris information, a unified standard format and public access. We are also developing spectral characterization tools for estimating power in standard frequency bands (up to 1 Hz for G8-15), and detecting ULF waves related to field-line resonances. We present the project status and findings, including in-situ statistical and extreme ULF event properties, and case studies where the ULF oscillations along the same field line were observed simultaneously by GOES near the equator in the magnetosphere, the ST-5 satellites at low altitudes, and ground magnetometer stations. For event

  9. A Historical Perspective on Sports Concussion: Where We Have Been and Where We Are Going.

    PubMed

    Williams, Vernon B; Danan, Ilan J

    2016-06-01

    The approach to sports concussion diagnosis and management has been evolving at an unprecedented rate over the last several years. So much so, that committees at all level of sports have implemented concussion protocols and made adjustments to certain league rules in an effort to minimize the risk of head injury. With this newfound attention has come an even greater push by the scientific community to address the many questions that remain. The aim of this review article is to present the topic of sports concussion by means of discreet eras. It begins by introducing the very first mentions of concussion, dating back to ancient Greece, to present day, highlighting important periods along the way. It then goes on to review emerging scientific data, from biomarkers and serum studies, to imaging modalities, and brain networking. All of which will hopefully contribute to both the diagnostic and therapeutic approach to sports concussion.

  10. GOES Data Collection System - Home

    Science.gov Websites

    Contact Us Survey GOES Data Collection System GOES DCS High Data Rate Transition has ended For more ), as well as contact information for reporting trouble, and gaining personal assistance. NOAA Policy on Spring, MD 20910-3282 USA DOC logo NOAASIS Contact | Contact Webmaster weather.gov | Privacy Act

  11. In Situ Verification of the NASA D3R's Hydrometeor Classification and Rainfall Products during the OLYMPEx Field Campaign

    NASA Astrophysics Data System (ADS)

    Chen, H.; Chandra, C. V.

    2017-12-01

    As a ground validation (GV) radar for the Global Precipitation Measurement (GPM) satellite mission, the NASA dual-frequency, dual-polarization, Doppler radar (D3R) was deployed just north of Pacific Beach, WA between November 8th, 2015 and January 15th, 2016, as part of the Olympic Mountains Experiment (OLYMPEx). The D3R's observations were coordinated with a diverse array of instruments including the NASA NPOL S-band radar, Autonomous Parsivel Unit (APU) disdrometers, rain gauges, and airborne probe. The Ku- and Ka-band D3R is analogous to the GPM core satellite dual-frequency precipitation radar (DPR), but can provide more detailed insight into the precipitation microphysics through the ground-based dual-frequency dual-polarization observations. Previous studies have revealed that the dual polarization radar can be used to identify different hydrometeor types and their size and shape information. However, most of the previous studies are devoted to S-, C-, and/or X-band frequencies since they are standard operating frequency in many countries. This paper presents a region-based hydrometeor classification methodology applied for the NASA D3R measurements collected during OLYMPEx. This paper also details the differential phase based attenuation correction methodology and rainfall algorithm developed for the D3R. The D3R's hydrometeor classification and rainfall products are evaluated using other remote sensors and in situ measurements. In particular, the derived hydrometeor types are cross compared with collocated S-band products and images collected by the airborne probe. The rainfall performance are assessed using rain gauge and disdrometer observations. Results show that the NASA D3R has great potential for monitoring precipitation microphysics and rainfall estimation, especially light rainfall that is hard to be observed by traditional ground or space based sensors.

  12. Advanced Curation Activities at NASA: Implications for Astrobiological Studies of Future Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Evans, C. A.; Fries, M. D.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for re-search, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  13. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    NASA Technical Reports Server (NTRS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    synergic use of two future geostationary satellites, GOES-R (Geostationary Operational Environmental Satellite R-series) and TEMPO (Tropospheric Emissions: Monitoring of Pollution). Strong synergy between GEOS-R and TEMPO are found especially in their characterization of surface bi-directional reflectance, and thereby, can potentially improve the AOD retrieval to the accuracy required by GEO-CAPE.

  14. ACL Return to Sport Guidelines and Criteria.

    PubMed

    Davies, George J; McCarty, Eric; Provencher, Matthew; Manske, Robert C

    2017-09-01

    Because of the epidemiological incidence of anterior cruciate ligament (ACL) injuries, the high reinjury rates that occur when returning back to sports, the actual number of patients that return to the same premorbid level of competition, the high incidence of osteoarthritis at 5-10-year follow-ups, and the effects on the long-term health of the knee and the quality of life for the patient, individualizing the return to sports after ACL reconstruction (ACL-R) is critical. However, one of the challenging but unsolved dilemmas is what criteria and clinical decision making should be used to return an athlete back to sports following an ACL-R. This article describes an example of a functional testing algorithm (FTA) as one method for clinical decision making based on quantitative and qualitative testing and assessment utilized to make informed decisions to return an athlete to their sports safely and without compromised performance. The methods were a review of the best current evidence to support a FTA. In order to evaluate all the complicated domains of the clinical decision making for individualizing the return to sports after ACL-R, numerous assessments need to be performed including the biopsychosocial concepts, impairment testing, strength and power testing, functional testing, and patient-reported outcomes (PROs). The optimum criteria to use for individualizing the return to sports after ACL-R remain elusive. However, since this decision needs to be made on a regular basis with the safety and performance factors of the patient involved, this FTA provides one method of quantitatively and qualitatively making the decisions. Admittedly, there is no predictive validity of this system, but it does provide practical guidelines to facilitate the clinical decision making process for return to sports. The clinical decision to return an athlete back into competition has significant implications ranging from the safety of the athlete, to performance factors and actual

  15. Advancements in the Development of an Operational Lightning Jump Algorithm for GOES-R GLM

    NASA Technical Reports Server (NTRS)

    Shultz, Chris; Petersen, Walter; Carey, Lawrence

    2011-01-01

    Rapid increases in total lightning have been shown to precede the manifestation of severe weather at the surface. These rapid increases have been termed lightning jumps, and are the current focus of algorithm development for the GOES-R Geostationary Lightning Mapper (GLM). Recent lightning jump algorithm work has focused on evaluation of algorithms in three additional regions of the country, as well as, markedly increasing the number of thunderstorms in order to evaluate the each algorithm s performance on a larger population of storms. Lightning characteristics of just over 600 thunderstorms have been studied over the past four years. The 2 lightning jump algorithm continues to show the most promise for an operational lightning jump algorithm, with a probability of detection of 82%, a false alarm rate of 35%, a critical success index of 57%, and a Heidke Skill Score of 0.73 on the entire population of thunderstorms. Average lead time for the 2 algorithm on all severe weather is 21.15 minutes, with a standard deviation of +/- 14.68 minutes. Looking at tornadoes alone, the average lead time is 18.71 minutes, with a standard deviation of +/-14.88 minutes. Moreover, removing the 2 lightning jumps that occur after a jump has been detected, and before severe weather is detected at the ground, the 2 lightning jump algorithm s false alarm rate drops from 35% to 21%. Cold season, low topped, and tropical environments cause problems for the 2 lightning jump algorithm, due to their relative dearth in lightning as compared to a supercellular or summertime airmass thunderstorm environment.

  16. GOES-S Atlas V Centaur Stage OVI

    NASA Image and Video Library

    2018-02-08

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a Centaur upper stage is mated to a United Launch Alliance Atlas V rocket that will boost NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  17. Advanced Curation Activities at NASA: Preparing to Receive, Process, and Distribute Samples Returned from Future Missions

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis M.; Zeigler, Ryan A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  18. Office of Satellite and Product Operations - GOES History

    Science.gov Websites

    ; Strategy » International Agreements » POES Current » GOES Current History » History in Images » POES History » GOES History OSPO Information » Access and Distribution Policy » Organization Chart  Bulletins Ingest Logs and Schedules ESPC Helpdesk Email Click to Search GOES History Geostationary

  19. 76 FR 7579 - Sport Fishing and Boating Partnership Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R9-EA-2011-N015] Sport Fishing and.... SUMMARY: We, the U.S. Fish and Wildlife Service, announce a public meeting of the Sport Fishing and... announce that the Sport Fishing and Boating Partnership Council will hold a meeting on Thursday, March 3...

  20. GOES-S Spacecraft Mate to PLA

    NASA Image and Video Library

    2018-02-05

    In a clean room at Astrotech Space Operations in Titusville, Florida, technicians and engineers monitor progress as NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, is mated to its payload attach fitting. It soon will be moved to Space Launch Complex 41 at Cape Canaveral Air Force Station for mounting atop the Atlas V rocket that will boost the satellite to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  1. The GOES-S Social Briefing

    NASA Image and Video Library

    2018-03-01

    Social media followers got a briefing on the upcoming launch of NOAA’s GOES-S spacecraft, set to launch March 1 from Cape Canaveral Air Force Base in Florida. Once the satellite is declared operational, late this year, it will occupy NOAA’s GOES-West position and provide faster, more accurate data for tracking wildfires, tropical cyclones, fog and other storm systems and hazards that threaten the western United States, including Hawaii and Alaska, Mexico, Central America and the Pacific Ocean, all the way to New Zealand.

  2. NASA gateway requirements analysis

    NASA Technical Reports Server (NTRS)

    Duncan, Denise R.; Doby, John S.; Shockley, Cynthia W.

    1991-01-01

    NASA devotes approximately 40 percent of its budget to R&D. Twelve NASA Research Centers and their contractors conduct this R&D, which ranges across many disciplines and is fueled by information about previous endeavors. Locating the right information is crucial. While NASA researchers use peer contacts as their primary source of scientific and technical information (STI), on-line bibliographic data bases - both Government-owned and commercial - are also frequently consulted. Once identified, the STI must be delivered in a usable format. This report assesses the appropriateness of developing an intelligent gateway interface for the NASA R&D community as a means of obtaining improved access to relevant STI resources outside of NASA's Remote Console (RECON) on-line bibliographic database. A study was conducted to determine (1) the information requirements of the R&D community, (2) the information sources to meet those requirements, and (3) ways of facilitating access to those information sources. Findings indicate that NASA researchers need more comprehensive STI coverage of disciplines not now represented in the RECON database. This augmented subject coverage should preferably be provided by both domestic and foreign STI sources. It was also found that NASA researchers frequently request rapid delivery of STI, in its original format. Finally, it was found that researchers need a better system for alerting them to recent developments in their areas of interest. A gateway that provides access to domestic and international information sources can also solve several shortcomings in the present STI delivery system. NASA should further test the practicality of a gateway as a mechanism for improved STI access.

  3. The GOES In-Situ Geomagnetism Experiment Reimagined

    NASA Technical Reports Server (NTRS)

    Abraham, Bereket; Chu, Donald; Comeyne, Gustave J.; Concha, Marco; Fellows, David W.; Heacock, Matthew G.; Tadikonda, Sivakumara K.

    2017-01-01

    The Geostationary Operational Environmental Satellites (GOES) carry several instruments each with its own requirements. Because accommodating all of them is difficult, there is interest in putting some on their own smaller platforms. The simplest instruments are the magnetometers. These are small and have low communication, attitude control and cleanliness requirements. Getting on-station and operating in close proximity with another satellite, however, requires significant propulsion capabilities. This paper describes a CubeSat mission that goes from geo-transfer to geostationary orbit and operates next to a GOES spacecraft. Requirements, a notional design and performance predictions are provided.

  4. GOES-S Atlas V Centaur Stage OVI

    NASA Image and Video Library

    2018-02-08

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, technicians and engineers monitor progress as a Centaur upper stage is mated to a United Launch Alliance Atlas V rocket that will boost NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  5. GOES-S Atlas V Centaur Stage OVI

    NASA Image and Video Library

    2018-02-08

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a crane lifts a Centaur upper stage for mating to a United Launch Alliance Atlas V rocket that will boost NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  6. Cloud Macro- and Microphysical Properties Derived from GOES over the ARM SGP Domain

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Smith, W. L., Jr.; Young, D. F.

    2001-01-01

    Cloud macrophysical properties like fractional coverage and height Z(sub c) and microphysical parameters such as cloud liquid water path (LWP), effective droplet radius r(sub e), and cloud phase, are key factors affecting both the radiation budget and the hydrological cycle. Satellite data have been used to complement surface observations from Atmospheric Radiation Measurements (ARM) by providing additional spatial coverage and top-of-atmosphere boundary conditions of these key parameters. Since 1994, the Geostationary Operational Environmental Satellite (GOES) has been used for deriving at each half-hour over the ARM Southern Great Plains (SGP) domain: cloud amounts, altitudes, temperatures, and optical depths as well as broadband shortwave (SW) albedo and outgoing longwave radiation at the top of the atmosphere. A new operational algorithm has been implemented to increase the number of value-added products to include cloud particle phase and effective size (r(sub e) or effective ice diameter D(sub e)) as well as LWP and ice water path. Similar analyses have been performed on the data from the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission satellite as part of the Clouds and Earth's Radiant Energy System project. This larger suite of cloud properties will enhance our knowledge of cloud processes and further constrain the mesoscale and single column models using ARM data as a validation/initialization resource. This paper presents the results of applying this new algorithm to GOES-8 data taken during 1998 and 2000. The global VIRS results are compared to the GOES SGP results to provide appropriate context and to test consistency.

  7. Geostationary Operational Environmental Satellite (GOES)-8 mission flight experience

    NASA Technical Reports Server (NTRS)

    Noonan, C. H.; Mcintosh, R. J.; Rowe, J. N.; Defazio, R. L.; Galal, K. F.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 spacecraft was launched on April 13, 1994, at 06:04:02 coordinated universal time (UTC), with separation from the Atlas-Centaur launch vehicle occurring at 06:33:05 UTC. The launch was followed by a series of complex, intense operations to maneuver the spacecraft into its geosynchronous mission orbit. The Flight Dynamics Facility (FDF) of the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) was responsible for GOES-8 attitude, orbit maneuver, orbit determination, and station acquisition support during the ascent phase. This paper summarizes the efforts of the FDF support teams and highlights some of the unique challenges the launch team faced during critical GOES-8 mission support. FDF operations experience discussed includes: (1) The abort of apogee maneuver firing-1 (AMF-1), cancellation of AMF-3, and the subsequent replans of the maneuver profile; (2) The unexpectedly large temperature dependence of the digital integrating rate assembly (DIRA) and its effect on GOES-8 attitude targeting in support of perigee raising maneuvers; (3) The significant effect of attitude control thrusting on GOES-8 orbit determination solutions; (4) Adjustment of the trim tab to minimize torque due to solar radiation pressure; and (5) Postlaunch analysis performed to estimate the GOES-8 separation attitude. The paper also discusses some key FDF GOES-8 lessons learned to be considered for the GOES-J launch which is currently scheduled for May 19, 1995.

  8. Associations between sports participation, cardiorespiratory fitness, and adiposity in young adult twins.

    PubMed

    Mustelin, L; Latvala, A; Pietiläinen, K H; Piirilä, P; Sovijärvi, A R; Kujala, U M; Rissanen, A; Kaprio, J

    2011-03-01

    Exercise behavior, cardiorespiratory fitness, and obesity are strongly influenced by genetic factors. By studying young adult twins, we examined to what extent these interrelated traits have shared genetic and environmental etiologies. We studied 304 twin individuals selected from the population-based FinnTwin16 study. Physical activity was assessed with the Baecke questionnaire, yielding three indexes: sport index, leisure-time index, and work index. In this study, we focused on sport index, which describes sports participation. Body composition was determined using dual-energy X-ray absorptiometry and cardiorespiratory fitness using a bicycle ergometer exercise test with gas exchange analysis. The Baecke sport index was associated with high maximal oxygen uptake adjusted for lean body mass (Vo(2max)[adj]) (r = 0.40), with low body fat percentage (BF%) (r = -0.44) and low waist circumference (WC) (r = -0.29). Heritability estimates for the key traits were as follows: 56% for sport index, 71% for Vo(2max)[adj], 77% for body mass index, 66% for WC, and 68% for BF%. The association between sport index and Vo(2max) was mostly explained by genetic factors (70%), as were both the association between sport index and BF% (71%) and that between sport index and WC (59%). Our results suggest that genetic factors explain a considerable part of the associations between sports participation, cardiorespiratory fitness, and obesity.

  9. Applications of LANCE Data at SPoRT

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew

    2014-01-01

    Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society

  10. Suggested hurricane operational scenario for GOES I-M

    NASA Technical Reports Server (NTRS)

    Menzel, W. P.; Merrill, R. T.; Shenk, W. E.

    1987-01-01

    Improvements in tropical cyclone forecasts require optimum use of remote sensing capabilities, because conventional data sources cannot provide the necessary spatial and temporal data density over tropical and subtropical oceanic regions. In 1989, the first of a series of geostationary weather satellites, GOES 1-M, will be launched with the capability for simultaneous imaging and sounding. Careful scheduling of the GOES 1-M will enable measurements of both the wind and mass fields over the entire tropical cyclone activity area. The document briefly describes the GOES 1-M imager and sounder, surveys the data needs for hurricane forecasting, discusses how geostationary satellite observations help to meet them, and proposes a GOES 1-M schedule of observations and hurricane relevant derived products.

  11. Convective rainfall estimation from digital GOES-1 infrared data

    NASA Technical Reports Server (NTRS)

    Sickler, G. L.; Thompson, A. H.

    1979-01-01

    An investigation was conducted to determine the feasibility of developing and objective technique for estimating convective rainfall from digital GOES-1 infrared data. The study area was a 240 km by 240 km box centered on College Station, Texas (Texas A and M University). The Scofield and Oliver (1977) rainfall estimation scheme was adapted and used with the digital geostationary satellite data. The concept of enhancement curves with respect to rainfall approximation is discussed. Raingage rainfall analyses and satellite-derived rainfall estimation analyses were compared. The correlation for the station data pairs (observed versus estimated rainfall amounts) for the convective portion of the storm was 0.92. It was demonstrated that a fairly accurate objective rainfall technique using digital geostationary infrared satellite data is feasible. The rawinsonde and some synoptic data that were used in this investigation came from NASA's Atmospheric Variability Experiment, AVE 7.

  12. EQS Goes R: Simulations for SEM Using the Package REQS

    ERIC Educational Resources Information Center

    Mair, Patrick; Wu, Eric; Bentler, Peter M.

    2010-01-01

    The REQS package is an interface between the R environment of statistical computing and the EQS software for structural equation modeling. The package consists of 3 main functions that read EQS script files and import the results into R, call EQS script files from R, and run EQS script files from R and import the results after EQS computations.…

  13. NASA Electronic Publishing System: Cost/benefit Methodology

    NASA Technical Reports Server (NTRS)

    Tuey, Richard C.

    1994-01-01

    The NASA Scientific and Technical Information Office was assigned the responsibility to examine the benefits of the utilization of electronic printing and duplicating systems throughout NASA Installations and Headquarters. The subject of this report is the documentation of the methodology used in justifying the acquisition of the most cost beneficial solution for the printing and duplicating requirements of a duplicating facility that is contemplating the acquisition of an electronic printing and duplicating system. Four alternatives are presented with each alternative costed out with its associated benefits. The methodology goes a step further than just a cost benefit analysis through its comparison of risks associated with each alternative, sensitivity to number of impressions and productivity gains on the selected alternative and finally the return on investment for the selected alternative. The report can be used in conjunction with the two earlier reports, NASA-TM-106242 and TM-106510 in guiding others in determining the cost effective duplicating alternative.

  14. Calibration of NOAA-7 AVHRR, GOES-5 and GOES-6 VISSR/VAS solar channels

    NASA Technical Reports Server (NTRS)

    Frouin, R.; Gautier, C.

    1986-01-01

    The NOAA-7, GOES-5 and GOES-6 Visible Infrared Spin Scan Radiometer/Vertical Atmospheric Sounder (VISSR/VAS) solar channels were calibrated. The White Sands Monument area in New Mexico, whose reflectance properties are well known, and space are used as calibration targets. The shortwave reflected terrestrial irradiance that is measured at satellite altitude is computed using a fairly accurate radiative transfer model which accounts for multiple scattering and bidirectional effects. The ground target reflectance and relevant characteristics of the overlying atmosphere are estimated from climatological data and observation at the nearest meteorological sites. The approach is believed to produce accuracies of 8 to 13% depending on the channel considered.

  15. NASA's future Earth observation plans

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.

    2004-11-01

    geostationary orbit to facilitate continuous measurements of weather-related phenomena, improve "nowcasting" of extreme weather events, and measure important atmospheric gases. NASA is currently developing with its partners the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and the next-generation geostationary system, GOES-R. Future missions will migrate today's capabilities in low Earth orbit to higher orbits such as L1 and L2 to enable more continuous monitoring of changes in the Earth system with a smaller number of satellites.

  16. Expansion of the Real-time Sport-land Information System for NOAA / National Weather Service Situational Awareness and Local Modeling Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; White, Kristopher D.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL (Jedlovec 2013; Ralph et al. 2013; Merceret et al. 2013) is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The SPoRT-LIS is currently run over a domain covering the southeastern half of the Continental United States (CONUS), with an additional experimental real-time run over the entire CONUS and surrounding portions of southern Canada and northern Mexico. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) product (Zhang et al. 2011, 2014), which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014. This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations. Section 2 gives background information on the NASA LIS and describes the realtime SPoRT-LIS configurations being compared. Section 3 presents recent work done to develop a training module on situational awareness applications of real-time SPoRT-LIS output. Comparisons between output from the two SPoRT-LIS runs are shown in Section 4, including a documentation of issues encountered in using the MRMS precipitation dataset. A summary and future work in given in Section 5, followed by acknowledgements and references.

  17. Experiences with a Requirements-Based Programming Approach to the Development of a NASA Autonomous Ground Control System

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.; Gracanin, Denis; Erickson, John

    2005-01-01

    Requirements-to-Design-to-Code (R2D2C) is an approach to the engineering of computer-based systems that embodies the idea of requirements-based programming in system development. It goes further; however, in that the approach offers not only an underlying formalism, but full formal development from requirements capture through to the automatic generation of provably-correct code. As such, the approach has direct application to the development of systems requiring autonomic properties. We describe a prototype tool to support the method, and illustrate its applicability to the development of LOGOS, a NASA autonomous ground control system, which exhibits autonomic behavior. Finally, we briefly discuss other areas where the approach and prototype tool are being considered for application.

  18. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true

  19. Evaluating the Impact of AIRS Observations on Regional Forecasts at the SPoRT Center

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2011-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center collaborates with operational partners of different sizes and operational goals to improve forecasts using targeted projects and data sets. Modeling and DA activities focus on demonstrating utility of NASA data sets and capabilities within operational systems. SPoRT has successfully assimilated the Atmospheric Infrared Sounder (AIRS) radiance and profile data. A collaborative project is underway with the Joint Center for Satellite Data Assimilation (JCSDA) to use AIRS profiles to better understand the impact of AIRS radiances assimilated within Gridpoint Statistical Interpolation (GSI) in hopes of engaging the operational DA community in a reassessment of assimilation methodologies to more effectively assimilate hyperspectral radiances.

  20. Validation of the GOES-16 magnetometer using multipoint measurements and magnetic field models

    NASA Astrophysics Data System (ADS)

    Califf, S.; Loto'aniu, P. T. M.; Redmon, R. J.; Sarris, T. E.; Brito, T.

    2017-12-01

    The Geostationary Operational Environmental Satellites (GOES) have been providing continuous geomagnetic field measurements for over 40 years. While the primary purpose of GOES is operational, the magnetometer data are also widely used in the scientific community. In an effort to validate the recently launched GOES-16 magnetometer, we compare the measurements to existing magnetic field models and other GOES spacecraft currently on orbit. There are four concurrent measurements from GOES-13, 14, 15 and 16 spanning 75W to 135W longitude. Also, GOES-13 is being replaced by GOES-16 in the GOES-East location, and during the transition, GOES-13 and GOES-16 will be parked nearby in order to assist with calibration of the new operational satellite. This work explores techniques to quantify the performance of the GOES-16 magnetometer by comparison to data from nearby spacecraft. We also build on previous work to assimilate in situ measurements with existing magnetic field models to assist in comparing data from different spatial locations. Finally, we use this unique dataset from four simultaneous geosynchronous magnetometer measurements and the close separation between GOES-13 and GOES-16 to study the spatial characteristics of ULF waves and other magnetospheric processes.

  1. Resources: NASA for entrepreneurs

    NASA Technical Reports Server (NTRS)

    Jannazo, Mary Ann

    1988-01-01

    The services of NASA's Technology Utilization Program are detailed and highlights of spinoff products in various stages of completion are described. Areas discussed include: Stirling engines for automotive applications, klystron tubes used to reduce power costs at UHF television stations, sports applications of riblet film (e.g., boat racing), reinforced plastic for high-temperature applications, coating technology appropriate for such applications similar to the renovation of the Statue of Liberty, and medical uses of fuel pump technology (e.g., heart pumps).

  2. Ceramic R and D Programs. Part III. NASA, ARPA, AEC, NBS, Bureau of Mines, and National Science Foundation.

    DTIC Science & Technology

    The report is a DCIC compilation of current R and D programs that are supported by NASA, ARPA, AEC, NBS, Bureau of Mines, and National Science Foundation in the field of ceramics and related materials. (Author)

  3. Geostationary Operational Environmental Satellite (GOES-N report). Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The GOES-N study consisted of five distinct tasks including: determining replication costs of GOES I-M and GOES-7 in the GOES-N time frame; defining and evaluating modifications to GOES I-M to improve efficiency or reduce costs; and defining evolutionary changes to the GOES I-M design to satisfy National Weather Service (NWS) 1983 and NOAA 1989 requirements. The categorization and disposition of NOAA requirements is reported in volume 1 section 4. Results of the GOES I-M efficiency/cost improvement modifications study are described in Section 7.1. The system concept options 1, 2, and 3 that generally represent the results of the Task 2, 3A, and 3B studies are summarized in Section 7.2. Another result of the GOES-N study, the determination of which NWS 1983 and NOAA 1989 requirements can be met with the three options, is contained in volume 1 section 7. Conclusions and recommendations are covered in volume 1 section 8. Imager, sounder, control system, space environment monitor, search and rescue, weather facsimile, data collection system, and products/process/communications recommendations were extracted from sections 9, 10, and 11. Section 8 also contains conclusions pertaining to programmatic operational satellite issues (prerequisite development strategies, the direct procurement of instruments by the government, protoflight mission, etc.). Sections 9, 10, and 11 address instrument, control system, image/navigation/registration, and other system design considerations and surveys. These sections are supported by the appendices in volume 2.

  4. Geostationary Operational Environmental Satellite (GOES-N report). Volume 1: Technical

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The GOES-N study consisted of five distinct tasks including: determining replication costs of GOES I-M and GOES-7 in the GOES-N time frame; defining and evaluating modifications to GOES I-M to improve efficiency or reduce costs; and defining evolutionary changes to the GOES I-M design to satisfy National Weather Service (NWS) 1983 and NOAA 1989 requirements. The categorization and disposition of NOAA requirements is reported in volume 1 section 4. Results of the GOES I-M efficiency/cost improvement modifications study are described in Section 7.1. The system concept options 1, 2, and 3 that generally represent the results of the Task 2, 3A, and 3B studies are summarized in Section 7.2. Another result of the GOES-N study, the determination of which NWS 1983 and NOAA 1989 requirements can be met with the three options, is contained in volume 1 section 7. Conclusions and recommendations are covered in volume 1 section 8. Imager, sounder, control system, space environment monitor, search and rescue, weather facsimile, data collection system, and products/process/communications recommendations were extracted from sections 9, 10, and 11. Section 8 also contains conclusions pertaining to programmatic operational satellite issues (prerequisite development strategies, the direct procurement of instruments by the government, protoflight mission, etc.). Sections 9, 10, and 11 address instrument, control system, image/navigation/registration, and other system design considerations and surveys. These sections are supported by the appendices in volume 2.

  5. Development of WMS Capabilities to Support NASA Disasters Applications and App Development

    NASA Astrophysics Data System (ADS)

    Bell, J. R.; Burks, J. E.; Molthan, A.; McGrath, K. M.

    2013-12-01

    During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.

  6. Development of WMS Capabilities to Support NASA Disasters Applications and App Development

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.

    2013-01-01

    During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.

  7. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Kristin Calhoun, a research scientist with NOAA's National Severe Storms Laboratory, speaks to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  8. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Louis Uccellini, director of the National Weather Service for NOAA, speaks to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket

  9. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Technical Reports Server (NTRS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  10. NASA preferred reliability-practices for design and test

    NASA Technical Reports Server (NTRS)

    Lisk, Ronald C.

    1992-01-01

    NASA HQ established the NASA R&M Steering Committee (R&MSC) comprised of membership from each NASA field center. The primary charter of the R&MSC is to obtain, record, and share the best design practices that NASA has applied to successful space flight programs and current design considerations (guidelines) that should enhance flight reliability on emerging programs. The practices and guidelines are being assembled in a living document for distribution to NASA centers and the aerospace community. The document will be updated annually with additional practices and guidelines as contributions from the centers are reviewed and approved by the R&MSC. Practices and guidelines are not requirements, but rather a means of sharing procedures and techniques that a given center and the R&MSC together feel have strong technical merit and application to the design of space-related equipment.

  11. Food, fizzy, and football: promoting unhealthy food and beverages through sport - a New Zealand case study.

    PubMed

    Carter, Mary-Ann; Signal, Louise; Edwards, Richard; Hoek, Janet; Maher, Anthony

    2013-02-11

    High participation rates in sport and increasing recognition of how diet benefits athletic performance suggest sports settings may be ideal locations for promoting healthy eating. While research has demonstrated the effect of tobacco and alcohol sponsorship on consumption, particularly among youth, few studies have examined the extent or impact of food and beverage company sponsorship in sport. Studies using brand logos as a measure suggest unhealthy foods and beverages dominate sports sponsorship. However, as marketing goes beyond the use of brand livery, research examining how marketers support sponsorships that create brand associations encouraging consumer purchase is also required. This study aimed to identify the characteristics and extent of sponsorships and associated marketing by food and non-alcoholic beverage brands and companies through a case study of New Zealand sport. We conducted a systematic review of 308 websites of national and regional New Zealand sporting organisations to identify food and beverage sponsors, which were then classified as healthy or unhealthy using nutrient criteria for energy, fat, sodium and fibre levels. We interviewed 18 key informants from national and regional sporting organisations about sponsorships. Food and beverage sponsorship of sport is not extensive in New Zealand. However, both healthy and unhealthy brands and companies do sponsor sport. Relatively few support their sponsorships with additional marketing. Interviews revealed that although many sports organisations felt concerned about associating themselves with unhealthy foods or beverages, others considered sponsorship income more important. While there is limited food and beverage sponsorship of New Zealand sport, unhealthy food and beverage brands and companies do sponsor sport. The few that use additional marketing activities create repeat exposure for their brands, many of which target children. The findings suggest policies that restrict sponsorship of

  12. Food, fizzy, and football: promoting unhealthy food and beverages through sport - a New Zealand case study

    PubMed Central

    2013-01-01

    Background High participation rates in sport and increasing recognition of how diet benefits athletic performance suggest sports settings may be ideal locations for promoting healthy eating. While research has demonstrated the effect of tobacco and alcohol sponsorship on consumption, particularly among youth, few studies have examined the extent or impact of food and beverage company sponsorship in sport. Studies using brand logos as a measure suggest unhealthy foods and beverages dominate sports sponsorship. However, as marketing goes beyond the use of brand livery, research examining how marketers support sponsorships that create brand associations encouraging consumer purchase is also required. This study aimed to identify the characteristics and extent of sponsorships and associated marketing by food and non-alcoholic beverage brands and companies through a case study of New Zealand sport. Methods We conducted a systematic review of 308 websites of national and regional New Zealand sporting organisations to identify food and beverage sponsors, which were then classified as healthy or unhealthy using nutrient criteria for energy, fat, sodium and fibre levels. We interviewed 18 key informants from national and regional sporting organisations about sponsorships. Results Food and beverage sponsorship of sport is not extensive in New Zealand. However, both healthy and unhealthy brands and companies do sponsor sport. Relatively few support their sponsorships with additional marketing. Interviews revealed that although many sports organisations felt concerned about associating themselves with unhealthy foods or beverages, others considered sponsorship income more important. Conclusions While there is limited food and beverage sponsorship of New Zealand sport, unhealthy food and beverage brands and companies do sponsor sport. The few that use additional marketing activities create repeat exposure for their brands, many of which target children. The findings suggest

  13. General specifications for the development of a USL/DBMS NASA/PC R and D distributed workstation

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.

    1984-01-01

    The general specifications for the development of a PC-based distributed workstation (PCDWS) for an information storage and retrieval systems environment are defined. This research proposes the development of a PCDWS prototype as part of the University of Southwestern Louisiana Data Base Management System (USL/DBMS) NASA/PC R and D project in the PC-based workstation environment.

  14. Bayesian Research at the NASA Ames Research Center,Computational Sciences Division

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.

    2003-01-01

    NASA Ames Research Center is one of NASA s oldest centers, having started out as part of the National Advisory Committee on Aeronautics, (NACA). The site, about 40 miles south of San Francisco, still houses many wind tunnels and other aviation related departments. In recent years, with the growing realization that space exploration is heavily dependent on computing and data analysis, its focus has turned more towards Information Technology. The Computational Sciences Division has expanded rapidly as a result. In this article, I will give a brief overview of some of the past and present projects with a Bayesian content. Much more than is described here goes on with the Division. The web pages at http://ic.arc. nasa.gov give more information on these, and the other Division projects.

  15. The NASA Short-Term Prediction Research and Transition (SPoRT) Center: Opportunities for Collaboration in the Great Lakes Region

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2010-01-01

    The presentation slides include: The SPoRT Center, History and Future of SPoRT, Great Lakes Applications, Great Lakes Forecasting Issues, Applications to the WRF-EMS, Precipitation Science, Lake Effect Precipitation, Sensitivity to Microphysics, Exploring New Schemes, Opportunities for Collaboration, and SPoRT Research and Development.

  16. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Jim Roberts, a scientist with the Earth System Research Laboratory's Office of Atmospheric Research for NOAA, speaks to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  17. American Medical Society for Sports Medicine recommended sports ultrasound curriculum for sports medicine fellowships.

    PubMed

    Finnoff, Jonathan T; Berkoff, David; Brennan, Fred; DiFiori, John; Hall, Mederic M; Harmon, Kimberly; Lavallee, Mark; Martin, Sean; Smith, Jay; Stovak, Mark

    2015-02-01

    The American Medical Society for Sports Medicine (AMSSM) developed a musculoskeletal ultrasound curriculum for sports medicine fellowships in 2010. As the use of diagnostic and interventional ultrasound in sports medicine has evolved, it became clear that the curriculum needed to be updated. Furthermore, the name 'musculoskeletal ultrasound' was changed to 'sports ultrasound' (SPORTS US) to reflect the broad range of diagnostic and interventional applications of ultrasound in sports medicine. This document was created to outline the core competencies of SPORTS US and to provide sports medicine fellowship directors and others interested in SPORTS US education with a guide to create a SPORTS US curriculum. By completing this SPORTS US curriculum, sports medicine fellows and physicians can attain proficiency in the core competencies of SPORTS US required for the practice of sports medicine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Meteosat: Full Disk - NOAA GOES Geostationary Satellite Server

    Science.gov Websites

    » DOC » NOAA » NESDIS » OSPO NOAA GOES Geostationary Satellite Server NOAA GOES Geostationary Satellite Server Click to Search GENERAL Home Channel Overview Site Disclaimer Enhancement Info FULL DISK by Europe's Meteorological Satellite Organization (EUMETSAT) and brought to you by the National

  19. Psychological impact of sports activity in spinal cord injury patients.

    PubMed

    Gioia, M C; Cerasa, A; Di Lucente, L; Brunelli, S; Castellano, V; Traballesi, M

    2006-12-01

    To investigate whether sports activity is associated with better psychological profiles in patients with spinal cord injury (SCI) and to evaluate the effect of demographic factors on psychological benefits. The State-Trait Anxiety Inventory, Form X2 (STAI-X2), the Eysenck Personality Questionnaire for extraversion (EPQ-R (E)) and the questionnaire for depression (QD) were administered in a cross-sectional study of 137 males with spinal cord injury including 52 tetraplegics and 85 paraplegics. The subjects were divided into two groups according to sports activity participation (high frequency vs no sports participation). Moreover, multiple regression analysis was adopted to investigate the influence of demographic variables, such as age, educational level, occupational status and marital status, on psychological variables. Analysis of variance revealed significant differences among the groups for anxiety (STAI-X2), extraversion (EPQ-R (E)) and depression (QD). In particular, SCI patients who did not practice sports showed higher anxiety and depression scores and lower extraversion scores than sports participants. In addition, with respect to the paraplegics, the tetraplegic group showed the lowest depression scores. Following multiple regression analysis, only the sports activity factor remained as an independent factor of anxiety scores. These findings demonstrate that sports activity is associated with better psychological status in SCI patients, irrespective of tetraplegia and paraplegia, and that psychological benefits are not emphasized by demographic factors.

  20. Periodic magnetopause oscillations observed with the GOES satellites on March 24, 1991

    NASA Technical Reports Server (NTRS)

    Cahill, L. J., Jr.; Winckler, J. R.

    1992-01-01

    The GOES 6 and 7 satellites were in the dayside magnetosphere late on March 24, 1991, when the magnetopause moved in to geosynchronous orbit. Observations on GOES 6 near 1030 local time (LT) indicated six inward and outward periodic movements of the magnetopause past the satellite over a 30-min interval. Later the magnetopause moved farther in, placing GOES 6 (1100 LT) in the magnetosheath and then moving in past GOES 7, near 1245 LT. The periodic oscillations of the magnetopause at GOES 6 suggest surface waves propagating toward the dawn flank of the magnetopause.

  1. Development of Web Mapping Service Capabilities to Support NASA Disasters Applications/App Development

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.

    2014-01-01

    During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.

  2. Development of Web Mapping Service Capabilities to Support NASA Disasters Applications / App Development

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Molthan, Andrew L.; McGrath, Kevin M.

    2014-01-01

    During the last year several significant disasters have occurred such as Superstorm Sandy on the East coast of the United States, and Typhoon Bopha in the Phillipines, along with several others. In support of these disasters NASA's Short-term Prediction Research and Transition (SPoRT) Center delivered various products derived from satellite imagery to help in the assessment of damage and recovery of the affected areas. To better support the decision makers responding to the disasters SPoRT quickly developed several solutions to provide the data using open Geographical Information Service (GIS) formats. Providing the data in open GIS standard formats allowed the end user to easily integrate the data into existing Decision Support Systems (DSS). Both Tile Mapping Service (TMS) and Web Mapping Service (WMS) were leveraged to quickly provide the data to the end-user. Development of the deliver methodology allowed quick response to rapidly developing disasters and enabled NASA SPoRT to bring science data to decision makers in a successful research to operations transition.

  3. SMS/GOES cell and battery data analysis report

    NASA Technical Reports Server (NTRS)

    Armantrout, J. D.

    1977-01-01

    The nickel-cadmium battery design developed for the Synchronous Meteorological Satellite (SMS) and Geostationary Operational Environmental Satellite (GOES) provided background and guidelines for future development, manufacture, and application of spacecraft batteries. SMS/GOES battery design, development, qualification testing, acceptance testing, and life testing/mission performance characteristics were evaluated for correlation with battery cell manufacturing process variables.

  4. The relation between perceived parent-created sport climate and competitive male youth hockey players' good and poor sport behaviors.

    PubMed

    LaVoi, Nicole M; Stellino, Megan Babkes

    2008-09-01

    The authors examined achievement goal orientation (J. L. Duda & J. G. Nicholls, 1992), parental influence (M. L. Babkes & M. R. Weiss, 1999), and the parent-initiated motivational climate (S. A. White, 1996, 1998) in combination to broaden understanding of competitive male youth hockey players' (N = 259) perceptions of the parent-created sport climate and its relation to their self-reported good and poor sport behaviors (GPSB). Exploratory factor analysis revealed a multidimensional measure of GPSB. Multiple regression analyses indicated that athletes' GPSB were significantly predicted by different forms of parental influence. Canonical correlations revealed a complex picture of the contributions of goal orientation and the parent-created sport climate on boys' GPSB in youth hockey. Results expand knowledge of the influence that parents have in youth sport and emphasize the importance of understanding how children's interpretations of parental beliefs and behaviors affect their choices to engage in good and poor sport behaviors.

  5. Childhood Sports Participation and Adolescent Sport Profile.

    PubMed

    Gallant, François; O'Loughlin, Jennifer L; Brunet, Jennifer; Sabiston, Catherine M; Bélanger, Mathieu

    2017-12-01

    We aimed to increase understanding of the link between sport specialization during childhood and adolescent physical activity (PA). The objectives were as follows: (1) describe the natural course of sport participation over 5 years among children who are early sport samplers or early sport specializers and (2) determine if a sport participation profile in childhood predicts the sport profile in adolescence. Participants ( n = 756, ages 10-11 years at study inception) reported their participation in organized and unorganized PA during in-class questionnaires administered every 4 months over 5 years. They were categorized as early sport samplers, early sport specializers, or nonparticipants in year 1 and as recreational sport participants, performance sport participants, or nonparticipants in years 2 to 5. The likelihood that a childhood sport profile would predict the adolescent profile was computed as relative risks. Polynomial logistic regression was used to identify predictors of an adolescent sport profile. Compared with early sport specialization and nonparticipation, early sport sampling in childhood was associated with a higher likelihood of recreational participation (relative risk, 95% confidence interval: 1.55, 1.18-2.03) and a lower likelihood of nonparticipation (0.69, 0.51-0.93) in adolescence. Early sport specialization was associated with a higher likelihood of performance participation (1.65, 1.19-2.28) but not of nonparticipation (1.01, 0.70-1.47) in adolescence. Nonparticipation in childhood was associated with nearly doubling the likelihood of nonparticipation in adolescence (1.88, 1.36-2.62). Sport sampling should be promoted in childhood because it may be linked to higher PA levels during adolescence. Copyright © 2017 by the American Academy of Pediatrics.

  6. 1/ r potential in higher dimensions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; Dadhich, Naresh

    2018-01-01

    In Einstein gravity, gravitational potential goes as 1/r^{d-3} in d non-compactified spacetime dimensions, which assumes the familiar 1 / r form in four dimensions. On the other hand, it goes as 1/r^{α }, with α =(d-2m-1)/m, in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1 / r potential for the non-compactified dimension spectrum given by d=3m+1. Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole - cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in 3m+1 dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions.

  7. GOES-S Mission Science Briefing

    NASA Image and Video Library

    2018-02-27

    In the Kennedy Space Center's Press Site auditorium, Jim Roberts, a scientist with the Earth System Research Laboratory's Office of Atmospheric Research for NOAA, left, and Kristin Calhoun, a research scientist with NOAA's National Severe Storms Laboratory, speak to members of the media at a mission briefing on National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  8. Evaluating the Contribution of NASA Remotely-Sensed Data Sets on a Convection-Allowing Forecast Model

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer

  9. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is mated to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  10. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is lifted for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  11. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is prepared for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  12. GOES-S Atlas V Centaur Stage Transport to VIF

    NASA Image and Video Library

    2018-02-08

    The Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, departs the Delta Operations Center for the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Centaur then will be mated to a United Launch Alliance Atlas V booster. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  13. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A crane lifts a solid rocket booster (SRB) for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  14. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is mated to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  15. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    Technicians and engineers prepare to mate a solid rocket booster (SRB) to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  16. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is lifted by a crane for mating to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  17. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is prepared for mating to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  18. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    In the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is lifted by a crane for mating to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  19. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is lifted for mating to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  20. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is mated to a United Launch Alliance Atlas V first stage. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  1. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, technicians support operations to mate a solid rocket booster (SRB) to a United Launch Alliance Atlas V first stage. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  2. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, technicians support operations to mate a solid rocket booster (SRB) to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  3. GOES-S Atlas V Centaur Stage Transport to VIF

    NASA Image and Video Library

    2018-02-08

    The Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Centaur will be mated to a United Launch Alliance Atlas V booster. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  4. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, solid rocket boosters (SRBs) have been mated to a United Launch Alliance Atlas V first stage. The SRBs will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  5. Sports practice is related to parasympathetic activity in adolescents

    PubMed Central

    Cayres, Suziane Ungari; Vanderlei, Luiz Carlos Marques; Rodrigues, Aristides Machado; Coelho e Silva, Manuel João; Codogno, Jamile Sanches; Barbosa, Maurício Fregonesi; Fernandes, Rômulo Araújo

    2015-01-01

    OBJECTIVE: To analyze the relationship among sports practice, physical education class, habitual physical activity and cardiovascular risk in adolescents. METHODS: Cross-sectional study with 120 schoolchildren (mean: 11.7±0.7 years old), with no regular use of medicines. Sports practice and physical education classes were assessed through face-to-face interview, while habitual physical activity was assessed by pedometers. Bodyweight, height and height-cephalic trunk were used to estimate maturation. The following variables were measured: body fatness, blood pressure, resting heart rate, blood flow velocity, intima-media thickness (carotid and femoral) and heart rate variability (mean between consecutive heartbeats and statistical index in the time domain that show the autonomic parasympathetic nervous system activity root-mean by the square of differences between adjacent normal R-R intervals in a time interval). Statistical treatment used Spearman correlation adjusted by sex, ethnicity, age, body fatness and maturation. RESULTS: Independently of potential confounders, sports practice was positively related to autonomic parasympathetic nervous system activity (β=0.039 [0.01; 0.76]). On the other hand, the relationship between sport practice and mean between consecutive heartbeats (β=0,031 [-0.01; 0.07]) was significantly mediated by biological maturation. CONCLUSIONS: Sport practice was related to higher heart rate variability at rest. PMID:25887927

  6. Development and Applications of the GOES Sounder Products

    NASA Astrophysics Data System (ADS)

    Li, Jun; Menzel, W. P.; Li, Z.; Wade, G.; Schmit, T. J.; Li, J. L.; Aune, R.; Schreiner, A. J.; Schmidt, C. C.; Genkova, I.

    Since 1994 a new generation of Geostationary Operational Environmental Satellite GOES Sounders GOES-8 9 10 11 12 has been measuring radiances in 18 infrared spectral bands ranging from approximately 3 7um - 14 7 um This data has been used to provide atmospheric sounding and cloud products for meteorological applications on an hourly basis over North America and adjacent oceanic regions The products include atmospheric temperature and moisture profiles total precipitable water cloud-top pressure water-vapor tracked winds etc Products are generated operationally by NOAA NESDIS in Washington D C Some Sounder products including total column ozone are also produced at the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison Applications of those products include nowcasting and forecasting of weather events assimilation of cloud products into regional numerical forecast models and monitoring of temperature and moisture changes during active convective periods The impact of GOES Sounder products on numerical model forecasts will be demonstrated Furthermore recent improvements to several of the products have been made by taking into account the GOES Sounder temporal and spatial information within the processing algorithms These improvements and implications thereof will be presented and discussed

  7. NASA Day at the Capitol

    NASA Image and Video Library

    2009-02-19

    Stennis Space Center leaders and guests visit with Mississippi Senate members in chambers during NASA Day at the Capitol events in Jackson on Feb. 19. Standing at the Senate podium (rear) is Mississippi Lt. Gov. Phil Bryant. Standing at the lectern below are (l to r): Sen. David Baria, D-Bay St. Louis; Partners for Stennis Chair Clay Wagner; NASA Shared Services Center Director Rick Arbuthnot; astronaut Rex Walheim; Stennis Space Center Director Gene Goldman; President Pro Tempore Billy Hewes, R-Gulfport; Sen. Ezell Lee, D-Picayune; and Sen. Tommy Gollott, R-Biloxi.

  8. The economic impact of NASA R and D spending: Executive summary

    NASA Technical Reports Server (NTRS)

    Evans, M. K.

    1976-01-01

    An evaluation of the economic impact of NASA research and development programs is made. The methodology and the results revolve around the interrelationships existing between the demand and supply effects of increased research and development spending, in particular, NASA research and development spending. The INFORUM Inter-Industry Forecasing Model is used to measure the short-run economic impact of alternative levels of NASA expenditures for 1975. An aggregate production function approach is used to develop the data series necessary to measure the impact of NASA research and development spending, and other determinants of technological progress, on the rate of growth in productivity of the U. S. economy. The measured relationship between NASA research and development spending and technological progress is simulated in the Chase Macroeconometric Model to measure the immediate, intermediate, and long-run economic impact of increased NASA research and development spending over a sustained period.

  9. American Medical Society for Sports Medicine recommended sports ultrasound curriculum for sports medicine fellowships.

    PubMed

    Finnoff, Jonathan T; Berkoff, David; Brennan, Fred; DiFiori, John; Hall, Mederic M; Harmon, Kimberly; Lavallee, Mark; Martin, Sean; Smith, Jay; Stovak, Mark

    2015-01-01

    The following sports ultrasound (SPORTS US) curriculum is a revision of the curriculum developed by the American Medical Society for Sports Medicine (AMSSM) in 2010. Several changes have been made to the curriculum with the primary aim of providing a pathway by which a sports medicine fellow can obtain sufficient SPORTS US training to become proficient in the core competencies of SPORTS US. The core competencies of SPORTS US are outlined in the learning objectives section of this document. The term "SPORTS US" was purposefully chosen rather than "musculoskeletal ultrasound" (MSK US) because it was recognized by the panel that the evolving field of SPORTS US encompasses non-MSK applications of ultrasound such as the FAST examination (focused assessment with sonography for trauma). Although the SPORTS US core competencies in this curriculum are all MSK in nature, they represent the minimum SPORTS US knowledge a sports medicine fellow should acquire during fellowship. However, additional training in more advanced MSK and non-MSK applications of ultrasound can be provided at the fellowship director's discretion. Completion of this SPORTS US curriculum fulfills the American Institute of Ultrasound in Medicine's (AIUM) requirements to perform an MSK US examination and the prerequisites for the American Registry for Diagnostic Medical Sonography's (ARDMS) MSK sonography certification examination.

  10. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    Technicians and engineers offload a solid rocket booster (SRB) that just arrived at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  11. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is offloaded from a transport vehicle at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  12. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    Technicians and engineers assist as a crane lifts a solid rocket booster (SRB) for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  13. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A technician prepares to offload a solid rocket booster (SRB) that just arrived at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  14. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    Technicians prepare to offload a solid rocket booster (SRB) that just arrived at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  15. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    A technician monitors activity as a solid rocket booster (SRB) is prepared for mating to a United Launch Alliance Atlas V first stage At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  16. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A transport vehicle carrying a solid rocket booster (SRB) arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  17. Sports Physicals

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Sports Physicals KidsHealth / For Teens / Sports Physicals What's in ... beginning of your sports season. What Is a Sports Physical? In the sports medicine field, the sports ...

  18. The GOES-16 Energetic Heavy Ion Instrument Proton and Helium Fluxes for Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures energetic ions in space over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all energetic ions in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  19. Where biomedicalisation and magic meet: Therapeutic innovations of elite sports injury in British professional football and cycling.

    PubMed

    Faulkner, Alex; McNamee, Michael; Coveney, Catherine; Gabe, Jonathan

    2017-04-01

    Injury is a conspicuous feature of the practice and public spectacle of contemporary elite sports. The paper argues that the 'biomedicalisation' thesis (medico-industrial nexus, techno-scientific drivers, medical optimisation, biologisation, the rise of evidence and health surveillance) goes some way to capturing the use in elite sports injury of some highly specialised mainstream therapies and some highly maverick biological therapies, which are described. Nevertheless, these main strands of biomedicalisation do not capture the full range of these phenomena in the contexts of sports medicine and athletes' practices in accessing innovative, controversial therapies. Drawing on multi-method qualitative research on top-level professional football and cycling in the UK, 2014-2016, we argue that concepts of 'magic' and faith-based healing, mediated by notions of networking behaviour and referral systems, furnish a fuller explanation. We touch on the concept of 'medical pluralism', concluding that this should be revised in order to take account of belief-based access to innovative bio-therapies amongst elite sportspeople and organisations. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. NASA Aeronautics Research: An Assessment

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The U.S. air transportation system is vital to the economic well-being and security of the United States. To support continued U.S. leadership in aviation, Congress and NASA requested that the National Research Council undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. In 2006, the National Research Council published the Decadal Survey of Civil Aeronautics. That report presented a set of six strategic objectives for the next decade of aeronautics R&T, and it described 51 high-priority R&T challenges--characterized by five common themes--for both NASA and non-NASA researchers. The National Research Council produced the present report, which assesses NASA's Aeronautics Research Program, in response to the National Aeronautics and Space Administration Authorization Act of 2005 (Public Law 109-155). This report focuses on three sets of questions: 1. How well does NASA's research portfolio implement appropriate recommendations and address relevant high-priority research and technology challenges identified in the Decadal Survey of Civil Aeronautics? If gaps are found, what steps should be taken by the federal government to eliminate them? 2. How well does NASA's aeronautics research portfolio address the aeronautics research requirements of NASA, particularly for robotic and human space exploration? How well does NASA's aeronautics research portfolio address other federal government department/agency non-civil aeronautics research needs? If gaps are found, what steps should be taken by NASA and/or other parts of the federal government to eliminate them? 3. Will the nation have a skilled research workforce and research facilities commensurate with the requirements in (1) and (2) above? What critical improvements in workforce expertise and research facilities, if any, should NASA and the nation make to achieve the goals of NASA

  1. Assimilation of GOES-Derived Cloud Fields Into MM5

    NASA Astrophysics Data System (ADS)

    Biazar, A. P.; Doty, K. G.; McNider, R.

    2007-12-01

    This approach for the assimilation of GOES-derived cloud data into an atmospheric model (the Fifth-Generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model, or MM5) was performed in two steps. In the first step, multiple linear regression equations were developed using a control MM5 simulation to develop relationships for several dependent variables in model columns that had one or more layers of clouds. In the second step, the regression equations were applied during an MM5 simulation with assimilation in which the hourly GOES satellite data were used to determine the cloud locations and some of the cloud properties, but with all the other variables being determined by the model data. The satellite-derived fields used were shortwave cloud albedo and cloud top pressure. Ten multiple linear regression equations were developed for the following dependent variables: total cloud depth, number of cloud layers, depth of the layer that contains the maximum vertical velocity, the maximum vertical velocity, the height of the maximum vertical velocity, the estimated 1-h stable (i.e., grid scale) precipitation rate, the estimated 1-h convective precipitation rate, the height of the level with the maximum positive diabatic heating, the magnitude of the maximum positive diabatic heating, and the largest continuous layer of upward motion. The horizontal components of the divergent wind were adjusted to be consistent with the regression estimate of the maximum vertical velocity. The new total horizontal wind field with these new divergent components was then used to nudge an ongoing MM5 model simulation towards the target vertical velocity. Other adjustments included diabatic heating and moistening at specified levels. Where the model simulation had clouds when the satellite data indicated clear conditions, procedures were taken to remove or diminish the errant clouds. The results for the period of 0000 UTC 28 June - 0000 UTC 16 July 1999

  2. Bridenstine Sworn In As NASA Administrator

    NASA Image and Video Library

    2018-04-23

    Sen. Ted Cruz, R-Texas, takes a picture of Vice President Mike Pence as he speaks prior to the swearing-in of Jim Bridenstine as the 13th NASA Administrator, Monday, April 23, 2018 at NASA Headquarters in Washington. Photo Credit: (NASA/Joel Kowsky)

  3. Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life--Data from the Berlin Aging Study II (BASE-II).

    PubMed

    Saßenroth, Denise; Meyer, Antje; Salewsky, Bastian; Kroh, Martin; Norman, Kristina; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja

    2015-01-01

    Physical activity and sports have repeatedly been reported to be associated with telomere length. We studied the association of different types of sports across different stages of life on relative leukocyte telomere length (rLTL) in advanced age.815 participants (397 men) from the Berlin Aging Study II aged over 61 years were included in the analysis. rLTL was measured by real time PCR and physical activity was determined retrospectively by questionnaire, assessing type and duration of sports in the past as well as currently. Five separate multiple linear regression models adjusted for various control variables were performed. 67.3% of participants exercised currently, whereas 19.4% performed sports only between the age of 20 and 30. rLTL was higher in subjects who stated to exercise currently (N = 456), and in subjects who engaged in endurance (N = 138) or intensive activity sports (N = 32). Current physical activity was positively associated with rLTL in the risk factor adjusted regression model (β = 0.26, p < 0.001) and practicing sports for a minimum of 10 years preceding the assessment had a significant effect on rLTL (β = 0.39, p = 0.011). The highest impact was seen for intensive activity sports (β = 0.79, p < 0.001) and physical activity since at least 42 years (β = 0.47, p = 0.001). However, physical activity only between 20 and 30 years of age did not affect rLTL in old age when compared to no sports at all (β = -0.16, p = 0.21). Physical activity is clearly associated with longer rLTL. The effect is seen with longer periods of physical activity (at least 10 years), with intensive sports activities having the greatest impact on rLTL. Our data suggest that regular physical activity for at least 10 years is necessary to achieve a sustained effect on rLTL.

  4. Ties That Bond: Youth Sport as a Vehicle for Social Identity and Positive Youth Development.

    PubMed

    Bruner, Mark W; Balish, Shea M; Forrest, Christopher; Brown, Sarah; Webber, Kristine; Gray, Emily; McGuckin, Matthew; Keats, Melanie R; Rehman, Laurene; Shields, Christopher A

    2017-06-01

    An emerging area of research has focused on understanding how the group dynamics of a sport team influence positive youth development (PYD). The identities that youth form through their membership in sport teams (i.e., social identities) have been found to influence teammate behavior and team performance. Yet, minimal work exists on social identity and PYD in youth sport. The purpose of this study was to investigate the relationship between social identity and PYD in sport. Youth engaged in recreational sport (N = 219; M age  = 11.61 years, SD = 1.39 years) completed measures of social identity and PYD in sport. The social identity measure assessed 3 dimensions including ingroup ties (IGT; perceptions of similarity, bonding, belongingness), cognitive centrality (importance of being a team member), and ingroup affect (IGA; feelings associated with group membership). A regression analysis was performed separately for 4 PYD outcomes (personal and social skills, goal setting, initiative, negative experiences) with the 3 dimensions of social identity entered as predictors. Regression analyses revealed that IGT and IGA were positively associated with personal and social skills (R 2 Adj. = .29). Further, IGT predicted initiative (R 2 Adj. = .16), whereas IGA was positively associated with goal setting (R 2 Adj. = .17) and negatively associated with negative experiences (R 2 Adj. = .08). The findings extend previous research highlighting the benefits of social identity on teammate behavior and team performance and demonstrate how social identity may contribute to PYD through sport.

  5. Inter-Comparison of GOES-8 Imager and Sounder Skin Temperature Retrievals

    NASA Technical Reports Server (NTRS)

    Haines, Stephanie L.; Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.

  6. Bridenstine Sworn In As NASA Administrator

    NASA Image and Video Library

    2018-04-23

    Counselor to the President of the United States Kellyanne Conway, left, Sen. Ted Cruz, R-Texas, and NASA Chief Financial Officer Jeff DeWit are seen in the audience during the swearing in of Jim Bridenstine as the 13th NASA Administrator by Vice President Mike Pence, Monday, April 23, 2018 at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  7. GOES dynamic propagation of attitude

    NASA Astrophysics Data System (ADS)

    Markley, F. Landis; Seidewitz, Ed; Chu, Don; Rowe, John N.

    1988-09-01

    The spacecraft in the next series of Geostationary Operational Environmental Satellites (GOES-Next) are Earth pointing and have 5-year mission lifetimes. Because gyros can be depended on only for a few years of continuous use, they will be turned off during routine operations. This means attitude must, at times, be determined without benefit of gyros and, often, using only Earth sensor data. To minimize the interruption caused by dumping angular momentum, these spacecraft have been designed to reduce the environmental torque acting on them and incorporate an adjustable solar trim tab for fine adjustment. A new support requirement for GOES-Next is that of setting the solar trim tab. Optimizing its setting requires an estimate of the unbalanced torque on the spacecraft. These two requirements, determining attitude without gyros and estimating the external torque, are addressed by replacing or supplementing the gyro propagation with a dynamic one, that is, one that integrates the rigid body equations of motion. By processing quarter-orbit or longer batches, this approach takes advantage of roll-yaw coupling to observe attitude completely without Sun sensor data. Telemetered momentum wheel speeds are used as observations of the unbalanced external torques. GOES-Next provides a unique opportunity to study dynamic attitude propagation. The geosynchronous altitude and adjustable trim tab minimize the external torque and its uncertainty, making long-term dynamic propagation feasible. This paper presents the equations for dynamic propagation, an analysis of the environmental torques, and an estimate of the accuracies obtainable with the proposed method.

  8. A socio-sports model of disordered eating among Brazilian male athletes.

    PubMed

    Fortes, Leonardo de Sousa; Ferreira, Maria Elisa Caputo; de Oliveira, Saulo Melo Fernandes; Cyrino, Edilson Serpeloni; Almeida, Sebastião Sousa

    2015-09-01

    The objective of this study was to develop a socio-sports model of disordered eating (DE) in Brazilian male athletes. Three hundred and twenty one athletes over 12 years of age from 18 different sports modalities were investigated. The Eating Attitudes Test (EAT-26) was applied to evaluate DE. The Body Shape Questionnaire (BSQ) was used to evaluate athlete dissatisfaction with body fat levels. The Muscularity Concern subscale of the Drive for Muscularity Scale (DMS) was used to evaluate athlete dissatisfaction with muscularity levels. To investigate the influence of sociocultural factors on body image, the Sociocultural Attitudes Towards Appearance Questionnaire-3 (SATAQ-3) was applied. Body fat was estimated by skinfold measurement. Demographic data were collected (competitive level and training regimen). Structural equation modelling was conducted to analyse the relationships between research variables and the factors that mediate them. The results indicated that the sociocultural factors and body fat dissatisfaction adhered to socio-sports model of DE (X(2) = 18.50, p = .001, RMSEA = .069, GFI = .97, AGFI = .91, TLI = .93). The BSQ accurately predicted the relationship between SATAQ-3 and EAT-26 (R(2) = .08, p = 0.001) scores. A direct relationship between the SATAQ-3 and EAT-26 (R(2) = .07, p = 0.01) and BSQ (R(2) = .10, p = 0.001) scores was identified. No relationship was found between structural equation model and Muscularity Concern (R(2) = .02, p = 0.14), competitive level (R(2) = .01, p = 0.19), training regimen (R(2) = .03, p = 0.11) or body fat (R(2) = .02, p = 0.14). The results suggest that sociocultural factors and body fat dissatisfaction follow the socio-sports model of DE in Brazilian male athletes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Junior Sport and the Evolution of Sport Cultures.

    ERIC Educational Resources Information Center

    Siedentop, Daryl

    2002-01-01

    Addresses junior sport and sport culture in New Zealand, recommending that it receive serious consideration for its crucial role in the future of New Zealand's sport culture. The paper presents three goals for junior sport programs (educative, public health, and elite development), describes characteristics of junior sport (e.g., youth want to…

  10. Interest in sports and belief in sports superstitions.

    PubMed

    McClearn, Duane G

    2004-06-01

    51 nonathletes, students (45 women) at a medium-sized southern university, were administered a survey containing three scales: an Interest in Sports Scale, a Belief in Sports Superstitions Scale, and Tobacyk and Milford's Paranormal Belief Scale (1983). Scores on the Interest in Sports Scale were significantly correlated with scores on the Belief in Sports Superstitions Scale, which measured adherence specifically to sports superstitions, but not with scores on the Paranormal Belief Scale, which measured a wide variety of irrational beliefs. Thus, participants with high interest in sports showed a tendency to subscribe to the type of irrational belief associated specifically with sports. Scores on the Belief in Sports Superstitions Scale were positively correlated with scores on the Paranormal Belief Scale.

  11. General specifications for the development of a USL NASA PC R and D statistical analysis support package

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Bassari, Jinous; Triantafyllopoulos, Spiros

    1984-01-01

    The University of Southwestern Louisiana (USL) NASA PC R and D statistical analysis support package is designed to be a three-level package to allow statistical analysis for a variety of applications within the USL Data Base Management System (DBMS) contract work. The design addresses usage of the statistical facilities as a library package, as an interactive statistical analysis system, and as a batch processing package.

  12. Can Patients Practice Strenuous Sports After Uncemented Ceramic-on-Ceramic Total Hip Arthroplasty?

    PubMed Central

    Bonnin, Michel P.; Rollier, Jean-Charles; Chatelet, Jean-Christophe; Ait-Si-Selmi, Tarik; Chouteau, Julien; Jacquot, Laurent; Hannink, Gerjon; Saffarini, Mo; Fessy, Michel-Henri

    2018-01-01

    Background: Patients are often concerned about returning to sports after total hip arthroplasty (THA). Purpose: To (1) evaluate sports participation and motivation rates in a large cohort of patients who underwent uncemented THA with ceramic-on-ceramic bearings and (2) determine whether patients’ participation was associated with their motivation for each sport, preoperative demographics, or patient-reported outcomes. Study Design: Case-control study; Level of evidence, 3. Methods: We surveyed 1310 patients (aged <75 years) who underwent uncemented ceramic-on-ceramic THA and collected levels of motivation and participation for 22 different sports as well as patient-reported outcome measure scores. A total of 1042 patients (1206 hips) returned questionnaires; the mean age at index surgery was 60.6 ± 8.8 years. Results: At least 51% of patients participated regularly or frequently in at least 1 light sport, 73% in at least 1 moderate sport, and 20% in at least 1 strenuous sport. Sports participation was strongly correlated with motivation (r = 0.97, P < .001) but not with level of discomfort (r = 0.22, P = .292). Participation in strenuous sports was significantly associated with age, body mass index, and sex. There were significant differences among patients who practiced various categories of sports as determined using the Oxford Hip Score (P = .008), but not with regard to the Forgotten Joint Score (P = .054). Conclusion: Only 20% of patients practiced strenuous sports regularly or frequently after THA, regardless of pain or discomfort. Participation in sports after THA is strongly correlated with motivation but not with level of discomfort. Longer term studies with a greater focus on complications and survival are necessary to determine whether high-impact sports compromise patient safety or implant longevity. PMID:29707594

  13. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    Sen. Richard Shelby, R-Ala., questions NASA Administrator Charles Bolden during a Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee hearing concerning the FY 2011 NASA Budget, Thursday, April 22, 2010 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    Sen. George Voinovich, R-Ohio, questions NASA Administrator Charles Bolden during a Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee hearing concerning the FY 2011 NASA Budget, Thursday, April 22, 2010 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  15. Human Factors Interface with Systems Engineering for NASA Human Spaceflights

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2009-01-01

    This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.

  16. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  17. Fly's Eye GLM Simulator

    NASA Image and Video Library

    2017-07-27

    The Fly’s Eye GLM Simulator (FEGS) is an airborne array of multi-spectral radiometers optimized to measure the optical emission from lightning. The instrument was designed by the Lightning Group in the Earth Science Office at the Marshall Space Flight Center as part of the validation effort for the first Geostationary Lightning Mapper (GLM) onboard GOES-16. From March to May of 2017, FEGS was flown on the NASA Armstrong Flight Research Center ER-2 along with a payload of other instruments during the GOES-16 Validation Flight Campaign. Data collected during the campaign are being analyzed by scientists at NASA and collaborating institutions to test the accuracy of GLM and other GOES-16 instruments. FEGS adds the capability to investigate sub-millisecond lightning energetics to the NASA Airborne Earth Science program. When flown with its complimentary suite of instruments, the FEGS package observes lightning radiation signatures that span from radio frequencies to gamma-ray emission. Learn more about the GOES-16 Validation Flight Campaign here: https://www.youtube.com/watch?v=rCTIk...

  18. Alabama NASA EPSCoR Preparation Grant Program: Grant No. NCC5-391

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    2003-01-01

    The funded research projects under the Experimental Program to Stimulate Cooperative Research (EPSCoR) grant program and the student fellowship awards are summarized in this report. The projects include: 1) Crystallization of Dehydratase/DcoH: A Target in Lung Disease; 2) Measuring Velocity Profiles in Liquid Metals using an Ultrasonic Doppler Velocimeter; 3) Synthesis, Structure, and Properties of New Thermoelectric Materials; 4) Computational Determination of Structures and Reactivity of Phenol-Formaldehyde Resins; 5) Synthesis of Microbial Polyesters in the NASA Bioreactor; 6) Visualization of Flow-Fields in Magnetocombustion; 7) Synthesis of Fluorescent Saccharide Derivatives. The student fellowship awards include: 1) Distributed Fusion of Satellite Images; 2) Study of the Relationship between Urban Development, Local Climate, and Water Quality for the Atlanta, Georgia Metrop; 3) Computer Simulation of the Effectiveness of a Spring-Loaded Exercise Device.

  19. Transforming System Engineering through Model-Centric Engineering

    DTIC Science & Technology

    2015-01-31

    story that is being applied and evolved on Jupiter Europa Orbiter (JEO) project [75], and we summarize some aspects of it here, because it goes beyond...JEO Jupiter Europa Orbiter project at NASA/JPL JSF Joint Strike Fighter JPL Jet Propulsion Laboratory of NASA Linux An operating system created by...Adaptation of Flight-Critical Systems, Digital Avionics Systems Conference, 2009. [75] Rasumussen, R., R. Shishko, Jupiter Europa Orbiter Architecture

  20. GOES satellite time code dissemination

    NASA Technical Reports Server (NTRS)

    Beehler, R. E.

    1983-01-01

    The GOES time code system, the performance achieved to date, and some potential improvements in the future are discussed. The disseminated time code is originated from a triply redundant set of atomic standards, time code generators and related equipment maintained by NBS at NOAA's Wallops Island, VA satellite control facility. It is relayed by two GOES satellites located at 75 W and 135 W longitude on a continuous basis to users within North and South America (with overlapping coverage) and well out into the Atlantic and Pacific ocean areas. Downlink frequencies are near 468 MHz. The signals from both satellites are monitored and controlled from the NBS labs at Boulder, CO with additional monitoring input from geographically separated receivers in Washington, D.C. and Hawaii. Performance experience with the received time codes for periods ranging from several years to one day is discussed. Results are also presented for simultaneous, common-view reception by co-located receivers and by receivers separated by several thousand kilometers.

  1. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    Sen. Kay Bailey Hutchinson, R-Texas, listens to NASA Administrator Charles Bolden during a Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee hearing concerning the FY 2011 NASA Budget, Thursday, April 22, 2010 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    Sen. Kay Bailey Hutchinson, R-Texas, questions NASA Administrator Charles Bolden during a Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee hearing concerning the FY 2011 NASA Budget, Thursday, April 22, 2010 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  3. Vicarious calibration of GOES imager visible channel using the moon

    USGS Publications Warehouse

    Wu, X.; Stone, T.C.; Yu, F.; Han, D.

    2006-01-01

    In this paper, we study the feasibility of a method for vicarious calibration of the GOES Imager visible channel using the Moon. The measured Moon irradiance from 26 undipped moon imagers exhausted all the potential Moon appearances between July 1998 and December 2005, together with the seven scheduled Moon observation data obtained after November 2005, were compared with the USGS lunar model results to estimate the degradation rate of the GOES-10 Imager visible channel. A total of nine methods of determining the space count and identifying lunar pixels were employed in this study to measure the GOES-10 Moon irradiance. Our results show that the selected mean and the masking Moon appears the best method. Eight of the nine resulting degradation rates range from 4.5%/year to 5.0%/year during the nearly nine years of data, which are consistent with most other degradation rates obtained for GOES-10 based on different references. In particular, the degradation rate from the Moon-based calibration (4.5%/year) agrees very well with the MODIS-based calibration (4.4%/year) over the same period, confirming the capability of relative and absolute calibration based on the Moon. Finally, our estimate of lunar calibration precision as applied to GOES-10 is 3.5%.

  4. NASA Stennis hosts 2010 NASA Day at the Capitol.

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Astronaut Danny Olivas (center) speaks to members of the Mississippi Senate in chambers during NASA Day at the Capitol in Jackson on Jan. 6. Olivas was joined at the podium by Stennis Deputy Director Patrick Scheuermann (standing, l to r), Sen. David Baria, D-Bay St. Louis, and Sen. Billy Hewes, R-Gulfport. Baria and Hewes both are members of the Mississippi Senate Gulf Coast delegation.

  5. NASA and The Semantic Web

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen

    2005-01-01

    We provide an overview of several ongoing NASA endeavors based on concepts, systems, and technology from the Semantic Web arena. Indeed NASA has been one of the early adopters of Semantic Web Technology and we describe ongoing and completed R&D efforts for several applications ranging from collaborative systems to airspace information management to enterprise search to scientific information gathering and discovery systems at NASA.

  6. Knowledge, Attitudes, and Beliefs of Youth Sports Coaches Regarding Sport Volume Recommendations and Sport Specialization.

    PubMed

    Post, Eric G; Trigsted, Stephanie M; Schaefer, Daniel A; Cadmus-Bertram, Lisa A; Watson, Andrew M; McGuine, Timothy A; Brooks, M Alison; Bell, David R

    2018-02-22

    Overuse injuries in youth athletes are becoming increasingly common which may be a result of the prevalence of year-round specialized sport participation. Previous research has identified sport volume recommendations related to months per year, hours per week, and simultaneous participation in multiple sports leagues. Coaches are a primary influence on a youth athlete's decision to specialize in a single sport. Therefore, identifying coaches' baseline beliefs and perceptions is important for developing strategies to educate coaches about safe sport participation. A total of 253 youth sport coaches (207 males) completed an anonymous online questionnaire regarding knowledge of sport volume recommendations and attitudes and beliefs regarding sport specialization. Eligible participants were required to serve as a head or assistant coach of a youth sport team in the past 12 months whose members were between the ages of 12 and 18. Most coaches were unaware of recommendations regarding the maximum number of months per year (79.4%), hours per week in one sport (79.3%), or number of simultaneous leagues for an athlete to participate in to reduce injury (77.6%). Fewer than half (43.2%) of all coaches were "very" or "extremely" concerned about the risk of injury in youth sports. A majority (60.1%) believed that sport specialization was either "quite a bit" or "a great deal" of a problem. Two-thirds (67.2%) responded that year-round participation in a single sport was either "very" or "extremely" likely to increase an athlete's risk of injury. Although the responses to this survey were predominantly from coaches from one state, our results suggest that coaches are unaware of sport volume recommendations but are concerned about specialization. Future efforts are needed to communicate these recommendations to coaches in order to reduce the risk of overuse injury in youth sports.

  7. NASA aeronautics R&T - A resource for aircraft design

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1981-01-01

    This paper discusses the NASA aeronautics research and technology program from the viewpoint of the aircraft designer. The program spans the range from fundamental research to the joint validation with industry of technology for application into product development. Examples of recent developments in structures, materials, aerodynamics, controls, propulsion systems, and safety technology are presented as new additions to the designer's handbook. Finally, the major thrusts of NASA's current and planned programs which are keyed to revolutionary advances in materials science, electronics, and computer technology are addressed.

  8. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  9. Is Vertical Jump Height an Indicator of Athletes' Power Output in Different Sport Modalities?

    PubMed

    Kons, Rafael L; Ache-Dias, Jonathan; Detanico, Daniele; Barth, Jonathan; Dal Pupo, Juliano

    2018-03-01

    Kons, RL, Ache-Dias, J, Detanico, D, Barth, J, and Dal Pupo, J. Is vertical jump height an indicator of athletes' power output in different sports modalities? J Strength Cond Res 32(3): 708-715, 2018-This study aimed to identify whether the ratio standard is adequate for the scaling of peak power output (PPO) for body mass (BM) in athletes of different sports and to verify classification agreement for athletes involved in different sports using PPO scaled for BM and jump height (JH). One hundred and twenty-four male athletes divided into 3 different groups-combat sports, team sports, and runners-participated in this study. Participants performed the countermovement jump on a force plate. Peak power output and JH were calculated from the vertical ground reaction force. We found different allometric exponents for each modality, allowing the use of the ratio standard for team sports. For combat sports and runners, the ratio standard was not considered adequate, and therefore, a specific allometric exponent for these 2 groups was found. Significant correlations between adjusted PPO for BM (PPOADJ) and JH were found for all modalities, but it was higher for runners (r = 0.81) than team and combat sports (r = 0.63 and 0.65, respectively). Moderate agreement generated by the PPOADJ and JH was verified in team sports (k = 0.47) and running (k = 0.55) and fair agreement in combat sports (k = 0.29). We conclude that the ratio standard seems to be suitable only for team sports; for runners and combat sports, an allometric model seems adequate. The use of JH as an indicator of power output may be considered reasonable only for runners.

  10. The Scintillation Prediction Observations Research Task (SPORT): A Multinational Science Mission using a CubeSat

    NASA Astrophysics Data System (ADS)

    Spann, J. F.; Habash Krause, L.; Swenson, C.; Heelis, R. A.; Bishop, R. L.; Le, G.; Abdu, M. A.; Durão, O.; Loures, L.; De Nardin, C. M.; Shibuya, L.; Casas, J.; Nash-STevenson, S.; Muralikrishana, P.; Costa, J. E. R.; Wrasse, C. M.; Fry, C. D.

    2017-12-01

    The Scintillation Prediction Observations Research Task (SPORT) is a 6U CubeSat pathfinder mission to address the very compelling but difficult problem of understanding the preconditions leading to equatorial plasma bubbles. The scientific literature describes the preconditions in both the plasma drifts and the density profiles related to bubble formations that occur several hours later in the evening. Most of the scientific discovery has resulted from observations at the Jicamarca Radio Observatory from Peru, a single site, within a single longitude sector. SPORT will provide a systematic study of the state of the pre-bubble conditions at all longitudes sectors to allow us to understand the differences between geography and magnetic geometry. This talk will present an overview of the mission and the anticipated data products. Products include global maps of scintillation occurrence as a function of local time, and magnetic conjugacy occurrence observations. SPORT is a multinational partnership between NASA, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA). It has been encouraged by U.S. Southern Command (SOUTHCOM) to foster increased cooperation and ties between academics, civilian space programs and the militaries. NASA Marshall Space Flight Center is coordinating this investigation by overseeing the launch to orbit and the flight instruments, which are being built by the Aerospace Corporation, University of Texas Dallas, Utah State University, and NASA Goddard Space Flight Center. The Brazilian partners are contributing the spacecraft, observatory integration and test, ground observation networks, and mission operations and data management. The science data will be distributed from and archived at the INPE/EMBRACE regional space-weather forecasting center in Brazil, and mirrored at the NASA GSFC Space Physics Data Facility (SPDF).

  11. ACE and ACTN3 genes polymorphisms among female Hungarian athletes in the aspect of sport disciplines.

    PubMed

    Bosnyák, E; Trájer, E; Udvardy, A; Komka, Z; Protzner, A; Kováts, T; Györe, I; Tóth, M; Pucsok, J; Szmodis, M

    2015-12-01

    The aim of the study was to determine the importance of two sport-associated gene polymorphisms, alpha-actinin-3 R577X (ACTN3) and angiotensin-converting enzyme I/D (ACE), among Hungarian athletes in different sports. The examination was carried out only on women (n = 100). Sport-specific groups were formed in order to guarantee the most homogeneous clusters. Human genomic DNA was isolated from blood, and genotyping was performed by polymerase chain reaction. To measure the differences between the participating groups, Chi-squared test was performed using Statistica 9.0 for Windows® (significance level: p < 0.05). In comparing the ACE I/D allele frequencies, significant difference was detected between water polo (I = 61.11%; D = 38.89%) and combat sports (I = 35.71%, D = 64.29%) athletes (p < 0.03). There was no statistical difference when ACE I/D alleles in combat sports and kayaking/rowing (p > 0.05) were compared. A similarity was detectable in the I allele frequencies of the water polo (61.11%) and kayaking/rowing (56.67%) groups. The ACTN3 R/X polymorphism showed no differences in comparison with the sport groups. R allele frequencies were higher in every group compared to the X allele. The potential significance of the ACE I allele in sports of an aerobic nature was not clearly confirmed among Hungarian athletes.

  12. Tests for the Assessment of Sport-Specific Performance in Olympic Combat Sports: A Systematic Review With Practical Recommendations.

    PubMed

    Chaabene, Helmi; Negra, Yassine; Bouguezzi, Raja; Capranica, Laura; Franchini, Emerson; Prieske, Olaf; Hbacha, Hamdi; Granacher, Urs

    2018-01-01

    The regular monitoring of physical fitness and sport-specific performance is important in elite sports to increase the likelihood of success in competition. This study aimed to systematically review and to critically appraise the methodological quality, validation data, and feasibility of the sport-specific performance assessment in Olympic combat sports like amateur boxing, fencing, judo, karate, taekwondo, and wrestling. A systematic search was conducted in the electronic databases PubMed, Google-Scholar, and Science-Direct up to October 2017. Studies in combat sports were included that reported validation data (e.g., reliability, validity, sensitivity) of sport-specific tests. Overall, 39 studies were eligible for inclusion in this review. The majority of studies (74%) contained sample sizes <30 subjects. Nearly, 1/3 of the reviewed studies lacked a sufficient description (e.g., anthropometrics, age, expertise level) of the included participants. Seventy-two percent of studies did not sufficiently report inclusion/exclusion criteria of their participants. In 62% of the included studies, the description and/or inclusion of a familiarization session (s) was either incomplete or not existent. Sixty-percent of studies did not report any details about the stability of testing conditions. Approximately half of the studies examined reliability measures of the included sport-specific tests (intraclass correlation coefficient [ICC] = 0.43-1.00). Content validity was addressed in all included studies, criterion validity (only the concurrent aspect of it) in approximately half of the studies with correlation coefficients ranging from r = -0.41 to 0.90. Construct validity was reported in 31% of the included studies and predictive validity in only one. Test sensitivity was addressed in 13% of the included studies. The majority of studies (64%) ignored and/or provided incomplete information on test feasibility and methodological limitations of the sport-specific test. In 28

  13. Tests for the Assessment of Sport-Specific Performance in Olympic Combat Sports: A Systematic Review With Practical Recommendations

    PubMed Central

    Chaabene, Helmi; Negra, Yassine; Bouguezzi, Raja; Capranica, Laura; Franchini, Emerson; Prieske, Olaf; Hbacha, Hamdi; Granacher, Urs

    2018-01-01

    The regular monitoring of physical fitness and sport-specific performance is important in elite sports to increase the likelihood of success in competition. This study aimed to systematically review and to critically appraise the methodological quality, validation data, and feasibility of the sport-specific performance assessment in Olympic combat sports like amateur boxing, fencing, judo, karate, taekwondo, and wrestling. A systematic search was conducted in the electronic databases PubMed, Google-Scholar, and Science-Direct up to October 2017. Studies in combat sports were included that reported validation data (e.g., reliability, validity, sensitivity) of sport-specific tests. Overall, 39 studies were eligible for inclusion in this review. The majority of studies (74%) contained sample sizes <30 subjects. Nearly, 1/3 of the reviewed studies lacked a sufficient description (e.g., anthropometrics, age, expertise level) of the included participants. Seventy-two percent of studies did not sufficiently report inclusion/exclusion criteria of their participants. In 62% of the included studies, the description and/or inclusion of a familiarization session (s) was either incomplete or not existent. Sixty-percent of studies did not report any details about the stability of testing conditions. Approximately half of the studies examined reliability measures of the included sport-specific tests (intraclass correlation coefficient [ICC] = 0.43–1.00). Content validity was addressed in all included studies, criterion validity (only the concurrent aspect of it) in approximately half of the studies with correlation coefficients ranging from r = −0.41 to 0.90. Construct validity was reported in 31% of the included studies and predictive validity in only one. Test sensitivity was addressed in 13% of the included studies. The majority of studies (64%) ignored and/or provided incomplete information on test feasibility and methodological limitations of the sport-specific test. In

  14. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    U.S. Sen. Orrin Hatch, R-Utah, left, talks with NASA Administrator Charles Bolden prior to testifying at a Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee hearing on the FY 2011 NASA Budget, Thursday, April 22, 2010 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  15. Sport involvement, sport violence and health behaviours of Greek adolescents.

    PubMed

    Papaioannou, Athanasios; Karastogiannidou, Calliope; Theodorakis, Yannis

    2004-06-01

    Within the context of problem-behaviour theory, this study investigated the intra-relationship between attitudes and behaviours towards exercise, sport involvement, violence in sport-related events, eating fruits, smoking and hashish or ecstasy use in a sample of Greek adolescents. Age and gender patterns are considered. Participants were 5991 Greek school pupils who responded to questionnaires assessing behaviour and attitudes towards health-related behaviours. Positive associations were found between pupils' reports of violence in sport-related events, smoking and hashish or ecstasy use on the one hand, and eating fruits and participation in sport and exercise on the other. In contrast, small positive association was observed between sport involvement and violence in sport-related events. Attitudes towards health risk behaviours were inversely related to attitudes towards health-promoting behaviours, and attitudes were positively related to corresponding behaviours. Sport involvement and regular exercise decreased but smoking and use of hashish or ecstasy increased with age. More males than females participated in organized sport and violent acts in sport-related events. Males' involvement in sport violence increased with age. Sport is a suitable context for the promotion of several health-related behaviours apart from exercise. Nevertheless, the present sport structure excludes most young people and is positively linked with sport violence. A less demanding sport context should be provided for the majority of young people, particularly for females. Sport programmes designed to promote health behaviours should be encouraged. More concentrated actions to combat sport violence are required.

  16. Solar X-Ray Irradiance Observations from the NOAA GOES Spacecraft: Accuracy vs Continuity

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.; Machol, J. L.

    2017-12-01

    For 45 years, the solar X-Ray Sensors (XRS) on the GOES weather satellites have been making real-time measurements of the disk-integrated solar x-ray irradiance. These data have been remarkably consistent and contiguous and are the backbone of modern solar flare classification. When GOES 8 was launched in 1994, it observed 30% higher x-ray flux values compared to the earlier GOES. But no obvious cause of this offset was ever determined. For the sake of continuity, NOAA decided to adjust the GOES 8 data to match the old. We have been adjusting the XRS data on every GOES since (GOES 8-15). GOES 16 was launched in November of 2016 with a new XRS. This will be the first XRS that will have been fully calibrated with a primary calibration source so the values that it produces are presumed to be the most accurate yet. These new data show that our adjustment of the GOES 8 through 15 XRS data is not correct and that the true solar X-ray values are 30% higher than what has been reported for the last 45 years. In this presentation, we will show how the XRS sensors are characterized how the raw data are transformed into the science units that are presented to the public. We will present a plan on how to accurately present these new XRS values while maintaining continuity with the long record of XRS data.

  17. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    NASA Technical Reports Server (NTRS)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  18. Comparison of eSports and Traditional Sports Consumption Motives

    ERIC Educational Resources Information Center

    Lee, Donghun; Schoenstedt, Linda J.

    2011-01-01

    With recognition of the need for studying eSports in this interactive digital communication era, this study explored 14 motivational factors affecting the time spent on eSports gaming. Using a sample of 515 college students and athletic event attendees, we further compared eSports game patterns to their non-eSport or traditional sport involvements…

  19. Azimuthal propagation of storm time Pc 5 waves observed simultaneously by geostationary satellites GOES 2 and GOES 3

    NASA Astrophysics Data System (ADS)

    Lin, C. S.; Barfield, J. N.

    1985-11-01

    Storm-time Pc 5 wave events observed simultaneously by the GOES 2 and GOES 3 satellites in the afternoon sector during the 1-year interval of March 1979 to February 1980 are surveyed to learn the wave propagation. Essentially, all storm-time Pc 5 waves (approximately 93 percent) are found to propagate westward azimuthally with a velocity of 5 to 50 km/s and a wavelength of 1000 km to 9000 km (Only two of 30 events had eastward propagation, with a velocity of about 150 km/s). It is concluded that westward propagating waves are excited by ion drift instabilities associated with the ion ring current, and that the eastward propagating waves are excited by surface waves on the magnetopause through Kelvin-Helmholtz instability.

  20. Meteosat Indian Ocean Data Coverage (IODC): Full Disk - NOAA GOES

    Science.gov Websites

    Geostationary Satellite Server » DOC » NOAA » NESDIS » OSPO NOAA GOES Geostationary Satellite Server NOAA GOES Geostationary Satellite Server Click to Search GENERAL Home Channel Overview Site loops. These images are updated every six hours from data provided by Europe's Meteorological Satellite

  1. The GOES Time Code Service, 1974–2004: A Retrospective

    PubMed Central

    Lombardi, Michael A.; Hanson, D. Wayne

    2005-01-01

    NIST ended its Geostationary Operational Environmental Satellites (GOES) time code service at 0 hours, 0 minutes Coordinated Universal Time (UTC) on January 1, 2005. To commemorate the end of this historically significant service, this article provides a retrospective look at the GOES service and the important role it played in the history of satellite timekeeping. PMID:27308105

  2. Sports-science roundtable: does sports-science research influence practice?

    PubMed

    Bishop, David; Burnett, Angus; Farrow, Damian; Gabbett, Tim; Newton, Robert

    2006-06-01

    As sports scientists, we claim to make a significant contribution to the body of knowledge that influences athletic practice and performance. Is this the reality? At the inaugural congress of the Australian Association for Exercise and Sports Science, a panel of well-credentialed academic experts with experience in the applied environment debated the question, Does sports-science research influence practice? The first task was to define "sports-science research," and it was generally agreed that it is concerned with providing evidence that improves sports performance. When practices are equally effective, sports scientists also have a role in identifying practices that are safer, more time efficient, and more enjoyable. There were varying views on the need for sports-science research to be immediately relevant to coaches or athletes. Most agreed on the importance of communicating the results of sports-science research, not only to the academic community but also to coaches and athletes, and the need to encourage both short- and long-term research. The panelists then listed examples of sports-science research that they believe have influenced practice, as well as strategies to ensure that sports-science research better influences practice.

  3. Transition and Evaluation of RGB Imagery to WFOs and National Centers by NASA SPoRT

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin K.; Molthan, Andrew L.

    2012-01-01

    MODIS Snow/Cloud and True Color RGB imagery has been used by SPoRT partners since 2004 to examine changes in surface features such as snow cover, vegetation, ocean color, fires, smoke plumes, and oil spills.

  4. Earth Remote Sensing for Weather Forecasting and Disaster Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad

    2016-01-01

    NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.

  5. Sport-specific influences on respiratory patterns in elite athletes.

    PubMed

    Durmic, Tijana; Lazovic, Biljana; Djelic, Marina; Lazic, Jelena Suzic; Zikic, Dejan; Zugic, Vladimir; Dekleva, Milica; Mazic, Sanja

    2015-01-01

    To examine differences in lung function among sports that are of a similar nature and to determine which anthropometric/demographic characteristics correlate with lung volumes and flows. This was a cross-sectional study involving elite male athletes (N = 150; mean age, 21  4 years) engaging in one of four different sports, classified according to the type and intensity of exercise involved. All athletes underwent full anthropometric assessment and pulmonary function testing (spirometry). Across all age groups and sport types, the elite athletes showed spirometric values that were significantly higher than the reference values. We found that the values for FVC, FEV1, vital capacity, and maximal voluntary ventilation were higher in water polo players than in players of the other sports evaluated (p < 0.001). In addition, PEF was significantly higher in basketball players than in handball players (p < 0.001). Most anthropometric/demographic parameters correlated significantly with the spirometric parameters evaluated. We found that BMI correlated positively with all of the spirometric parameters evaluated (p < 0.001), the strongest of those correlations being between BMI and maximal voluntary ventilation (r = 0.46; p < 0.001). Conversely, the percentage of body fat correlated negatively with all of the spirometric parameters evaluated, correlating most significantly with FEV1 (r = -0.386; p < 0.001). Our results suggest that the type of sport played has a significant impact on the physiological adaptation of the respiratory system. That knowledge is particularly important when athletes present with respiratory symptoms such as dyspnea, cough, and wheezing. Because sports medicine physicians use predicted (reference) values for spirometric parameters, the risk that the severity of restrictive disease or airway obstruction will be underestimated might be greater for athletes.

  6. House NASA FY 19' Budget Hearing

    NASA Image and Video Library

    2018-03-07

    House Subcommittee on Space Chairman Rep. Brian Babin, R-Texas, is seen during a hearing overview of the NASA Budget for Fiscal Year 2019, Wednesday, March 7, 2018, at the Rayburn House Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  7. Contamination of the GOES-K filter wheel cooler

    NASA Astrophysics Data System (ADS)

    Sanders, Jack T., Jr.; Rosecrans, Glenn P.

    1998-10-01

    The Geostationary Operational Environmental Satellite (GOES) Sounder instrument uses radiant coolers to reduce the operating temperature of the detectors and filter wheel. GOES resides in an equatorial orbit 36,000 kilometers above the earth, and is stationary with respect to it. During the year, all sides of the spacecraft are exposed to the sun; the filter wheel emitter and detector radiators must be shielded form it to adequately cooled these components for nominal operations.Mirror Optical Solar Reflectors are used too reject sunlight before it can strike the radiators. Molecular outgassing from the Sounder instrument cavity, the filter wheel module, and the Sounder vacuum cooler housing have been demonstrated through mass transport modeling to contaminate the filter wheel sunshield panels during the in- orbit Radiant Cooler bakeout. Excessive molecular and particulate contamination can increase solar energy scatter, increase thermal emittance, and increase solar absorptance; all of which can increase the temperature of the components they serve, thus degrading nominal operations. After the GOES-K spacecraft thermal vacuum test, a haze was observed on and around the entrance aperture, and on the inside faces the filter wheel cooler sunshield. This paper documents the inspections, testing, and analysis used to: a) locate the likely sources for the contaminants, b) predict molecular contaminant accumulation on the filter wheel sunshields during the in-orbit bakeout, c) estimate the thermal effects from molecular build-up, and d) assess proposed hardware modifications and show the selection rationale used to maintain functionality for the GOES-K Sounder instrument.

  8. Design, Calibration, and Expected On-Orbit Performance of the GOES-R MPS-LO Suprathermal Plasma Analyzer Instrument

    NASA Astrophysics Data System (ADS)

    Golightly, M. J.; McGarity, J. O.; Dichter, B. K.; Galica, G. E.

    2015-12-01

    The next generation U.S. geosynchronous weather satellite—GOES series R-U—will include for the first time a suprathermal plasma analyzer. The Magnetospheric Particle Sensor-Low (MPS-LO), an electrostatic analyzer utilizing triquadrispheric geometry (270° turn)deflection electrodes, will measure the flux of electrons and ions with energies between 30 eV - 30 keV in fifteen logarithmically-spaced differential energy channels and arrival direction in twelve angular bins. MPS-LO consists of two sensor heads mounted in a common electronics box. Each sensor head contains a set of deflection electrodes, microchannel plates, and segmented detector anodes. The common electronics box provides the power and I/O interface with a data processing unit, voltage supplies for all of the instrument's electronics, high voltage for the deflection electrodes, in-flight calibration pulsers, and the digital electronics to process signals from sensor heads' detector anodes. Great care was taken in the manufacture and mounting of the triquadrisphere deflection electrodes; each electrode was machined from a single piece of aluminum and specific electrode combinations were mounted with precision machined spacers and matched drilling. The precise fabrication and assembly resulted in near perfect spherical electric fields between the electrodes. The triquadrispheric electrode shape also prevents photons from reaching the detection elements-as a result, MPS-LO is solar blind. The combined field-of-view for the two sensor heads is 180° x 5°, with the larger angle in a plane perpendicular to the spacecraft's orbit and its central axis oriented anti-Earthward. An incident particle's arrival direction is determined in one of twelve 15° x 5° angular zones. A set of shielded anodes is used to measure the background caused by penetrating charged particles that reach the MCPs; this background data is used to correct the MPS-LO data. The instrument's energy resolution ΔE/E is 5.8%.

  9. Online training in sports concussion for youth sports coaches.

    PubMed

    Glang, Ann; Koester, Michael C; Beaver, Sherry Vondy; Clay, Janet E; McLaughlin, Karen A

    2010-03-01

    The purpose of this study was to evaluate ACTive: Athletic Concussion Training using Interactive Video Education, an interactive e-learning program designed to train community coaches of youth ages 10-18 in effective sports concussion prevention and management practices. Seventy-five youth sports coaches from across the country completed the study over the Internet. Results of a randomized control trial demonstrated significant differences between treatment and control participants on measures of (a) knowledge about sports concussion, management, and prevention; (b) attitudes about the importance of preventing sports concussion; and (c) intention and self-efficacy in sports concussion management and prevention. The results suggest that ACTive is an effective method of training youth sports coaches who are in an important position to reduce risks associated with sports concussion.

  10. BOREAS RSS-14 Level-2 GOES-7 Shortwave and Longwave Radiation Images

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Gu, Jiujing; Smith, Eric A.

    2000-01-01

    The BOREAS RSS-14 team collected and processed several GOES-7 and GOES-8 image data sets that covered the BOREAS study region. This data set contains images of shortwave and longwave radiation at the surface and top of the atmosphere derived from collected GOES-7 data. The data cover the time period of 05-Feb-1994 to 20-Sep-1994. The images missing from the temporal series were zero-filled to create a consistent sequence of files. The data are stored in binary image format files. Due to the large size of the images, the level-1a GOES-7 data are not contained on the BOREAS CD-ROM set. An inventory listing file is supplied on the CD-ROM to inform users of what data were collected. The level-1a GOES-7 image data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). See sections 15 and 16 for more information. The data files are available on a CD-ROM (see document number 20010000884).

  11. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Compton Tucker’s presentation on NASA’s earth science research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Photo Credit: NASA/Goddard/Rebecca Roth Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Compton Tucker’s presentation on NASA’s earth science research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Joihn Mather’s presentation on NASA’s astrophysics research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Measuring the returns to NASA life sciences research and development

    NASA Astrophysics Data System (ADS)

    Hertzfeld, Henry R.

    1998-01-01

    The National Aeronautics and Space Administration has invested in R&D in the life sciences for forty years. The thrust of this investment has been directed toward the support of human beings in space flight and in space activities. There are many documented examples of beneficial services and products now used in everyday life and medical practice that can be traced to origins in the R&D of the space program. However, a framework for quantitatively documenting, characterizing, and analyzing these public benefits has eluded researchers. This paper will present the results of a pilot project that includes the development of a methodology for assessing the economic benefits from NASA life sciences R&D and for realistically evaluating the financial leverage that private companies which are either involved in NASA R&D or which have ``bootstrapped'' NASA R&D into commercial products have realized. The results will show that the NASA life sciences investments are more engineering oriented, and more typically show results in the fields of instrumentation and medical devices. This is substantially different in nature from the focus of the National Institutes of Health, which is organized around the diagnosis and treatment of diseases. The appropriate measures of benefits for engineering-oriented products are economic parameters that focus on capital equipment. NIH benefits are more typically measured by human labor parameters, including the much more difficult to quantify measures of the quality and delivery of medical services. Although there is tremendous overlap in the goals and outputs of NASA life sciences and NIH investments, and NASA R&D is also very concerned with human beings and the quality of life, NIH is the overwhelming large source of life sciences R&D funds in the US. NASA has a special niche in life sciences R&D that supports the NASA mission as well as overall research issues in the life sciences. This paper evaluates the economic benefits of NASA's life

  15. In sport and now in medical school: examining students’ well-being and motivations for learning

    PubMed Central

    Mosewich, Amber

    2017-01-01

    Objectives To investigate relationships between students’ past level of involvement in physical activity/sport and their motivations for learning (achievement goals) and well-being in medical school. In doing so, we provide evidence to medical programs to inform admission processes and curriculum planning. Methods A cross-sectional study was conducted. Out of 640 medical students, 267 completed an online questionnaire with measures of: achievement goals, academic burnout, physical activity/sport involvement, and demographics. Data were analyzed using descriptive and inferential statistics (frequency, mean, standard deviation, chi-square test, Cronbach alpha, Spearman correlation). Results Students who had pursued physical activity/sport at higher levels of involvement had lower academic burnout scores and endorsed maladaptive achievement goals to a less degree. Specifically, the level of students’ involvement in physical activity/sport was negatively correlated with academic burnout (r=-0.15, p=0.014) and with achievement goals of performance approach (r=-0.15, p=0.014), performance avoidance (r=-0.21, p=0.001), and mastery avoidance (r=-0.24, p<0.001). Conclusions Pursuit of dedicated personal activities such as sport appears to be associated with the desired quality of motivation and well-being of medical students. A school culture that fosters resilience of newly admitted students through extracurricular activities and raises students’ awareness of maladaptive and adaptive achievement goals is likely to be beneficial in addressing academic burnout and improving the mental health of medical students.   PMID:28968223

  16. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and

  17. Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bell, Jordan R.; LaFontaine, Frank J.; Peters-Lidard, Christa D.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the

  18. [Sport medicine].

    PubMed

    Epstein, Yoram

    2012-02-01

    It is only since the late 20th century that Sport and Exercise Medicine has emerged as a distinct entity in health care. In Israel, sports medicine is regulated by a State Law and a sport physician is certified after graduating a structured program. In the past, sports medicine was related to the diagnosis and treatment of injuries encountered by top athletes. In recent years, the scope of sport medicine has broadened to reflect the awareness of modern society of the dangers of physical inactivity. In this perspective the American College of Sport Medicine (ACSM) recently launched a program--"Exercise is Medicine", to promote physical activity in order to improve health and well-being and prevention of diseases through physical activity prescriptions. This program is from doctors and healthcare providers, adjusted to the patient or trainee. The sport physician does not replace a medical specialist, but having a thorough understanding about the etiology of a sport-related injury enables him to better focus on treatment and prevention. Therefore, Team Physicians in Elite Sport often play a role regarding not only the medical care of athletes, but also in the physiological monitoring of the athlete and correcting aberrations, to achieve peak physical performance. The broad spectrum of issues in sport and exercise medicine cannot be completely covered in one issue of the Journal. Therefore, the few reports that are presented to enhance interest and understanding in the broad spectrum of issues in sports and exercise medicine are only the tip of the iceberg.

  19. Developing Sport Psychology in a Girls' Sport Academy Curriculum

    ERIC Educational Resources Information Center

    Lewis, Andrew

    2014-01-01

    This article explores the initial steps in developing and presenting Sport Psychology in a leadership and sport curriculum at Stellenbosch University's (SU) Centre for Human Performance Sciences' (CHPS) Academy for Girls' Leadership and Sport Development. Sport Psychology does not feature within the South African school curriculum specifically,…

  20. Epidemiology of dermatophytosis in junior combat and non-combat sports participants.

    PubMed

    Döğen, Aylin; Gümral, Ramazan; Oksüz, Zehra; Kaplan, Engin; Serin, Mehmet Sami; Ilkit, Macit

    2013-03-01

    Participation in competitive sports is popular and widely encouraged worldwide. Herein, we investigated 252 male and 67 female sports players, aged 16.4 ± 1.3 years, active in 15 different types of combat (n = 143) and non-combat (n = 176) sports. Of the 319 participants in this study, 11 (3.5%) players, including six wrestlers, four football players and one handball player, all of whom were men, harboured dermatophytic fungi. Briefly, Trichophyton tonsurans was present in three athletes, who were scalp carriers of the fungus. Furthermore, T. rubrum (4), T. interdigitale (3) and Arthroderma simii (1) were recovered from eight participants with tinea inguinalis (4), tinea pedis (2) or both (1). One patient was a trunk carrier of concomitant tinea pedis. All dermatophytic fungi were identified using both direction sequence of the rDNA regions spanning the internal transcribed spacers (ITS1 and ITS2) and 5.8 rRNA gene. Although sports-active individuals are active and sweat more, we observed a low prevalence of dermatophytosis, both in combat (5.2%) and non-combat sports participants (3.4%) (P > 0.05). However, dermatophyte infections require more attention and appropriate management to eradicate the infection and to prevent possible outbreaks. This study also documents the first case of zoophilic A. simii in Turkey. © 2012 Blackwell Verlag GmbH.