Science.gov

Sample records for nasa terra eos

  1. Scaling the Pipe: NASA EOS Terra Data Systems at 10

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Ramapriyan, Hampapuram K.

    2010-01-01

    Standard products from the five sensors on NASA's Earth Observing System's (EOS) Terra satellite are being used world-wide for earth science research and applications. This paper describes the evolution of the Terra data systems over the last decade in which the distributed systems that produce, archive and distribute high quality Terra data products were scaled by two orders of magnitude.

  2. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    1999-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include ASTER, CERES, MISR, MODIS and MOPITT. In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS), AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2, though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community. Detailed information about the EOS Terra validation Program can be found on the EOS Validation program

  3. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    2000-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra

  4. The NASA Earth Observing System (EOS) Terra and Aqua Mission Moderate Resolution Imaging Spectroradiometer (MODIS: Science and Applications

    NASA Technical Reports Server (NTRS)

    Salomnson, Vincent V.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. The EOS Aqua mission was launched successfully May 4,2002 with another MODIS on it and "first light" observations occurred on June 24,2002. The Terra MODIS is in a sun-synchronous orbit going north to south in the daylight portion of the orbit crossing the equator at about 1030 hours local time. The Aqua spacecraft operates in a sun-synchronous orbit going south to north in the daylight portion of the orbit crossing the equator at approximately 1330 hours local time. The spacecraft, instrument, and data systems for both MODIS instruments are performing well and are producing a wide variety of data products useful for scientific and applications studies in relatively consistent fashion extending from November 2000 to the present. Within the approximately 40 MODIS data products, several are new and represent powerful and exciting capabilities such the ability to provide observations over the globe of fire occurrences, microphysical properties of clouds and sun-stimulated fluorescence from phytoplankton in the surface waters of the ocean. The remainder of the MODIS products exceeds or, at a minimum, matches the capabilities of products from heritage sensors such as, for example, the Advanced Very High Resolution Radiometer (AVHRR). Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's) or through Direct Broadcast (DB) stations.

  5. Earth Observing System (EOS) Terra Spacecraft 120 Volt Power Subsystem: Requirements, Development and Implementation

    NASA Technical Reports Server (NTRS)

    Keys, Denney J.

    2000-01-01

    Built by the Lockheed-Martin Corporation, the Earth Observing System (EOS) TERRA spacecraft represents the first orbiting application of a 120 Vdc high voltage spacecraft electrical power system implemented by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The EOS TERRA spacecraft's launch provided a major contribution to the NASA Mission to Planet Earth program while incorporating many state of the art electrical power system technologies to achieve its mission goals. The EOS TERRA spacecraft was designed around five state-of-the-art scientific instrument packages designed to monitor key parameters associated with the earth's climate. The development focus of the TERRA electrical power system (EPS) resulted from a need for high power distribution to the EOS TERRA spacecraft subsystems and instruments and minimizing mass and parasitic losses. Also important as a design goal of the EPS was maintaining tight regulation on voltage and achieving low conducted bus noise characteristics. This paper outlines the major requirements for the EPS as well as the resulting hardware implementation approach adopted to meet the demands of the EOS TERRA low earth orbit mission. The selected orbit, based on scientific needs, to achieve the EOS TERRA mission goals is a sun-synchronous circular 98.2degree inclination Low Earth Orbit (LEO) with a near circular average altitude of 705 kilometers. The nominal spacecraft orbit is approximately 99 minutes with an average eclipse period of about 34 minutes. The scientific goal of the selected orbit is to maintain a repeated 10:30 a.m. +/- 15 minute descending equatorial crossing which provides a fairly clear view of the earth's surface and relatively low cloud interference for the instrument observation measurements. The major EOS TERRA EPS design requirements are single fault tolerant, average orbit power delivery of 2, 530 watts with a defined minimum lifetime of five years (EOL). To meet

  6. NASA's Terra spacecraft is prepared for encapsulation before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The rocket faring is lifted up the launch tower for mating with the Lockheed Martin Atlas IIAS rocket after encapsulation of Terra, formerly EOS AM-1. It is scheduled for launch Dec. 16 from Space Launch Complex 3 East at Vandenberg AFB, Calif. Terra comprises five state-of-the-art sets of instruments that will collect data for continuous, long-term records of the state of Earth's land, oceans and atmosphere. Together with data from other satellite systems launched by NASA and other countries, it will inaugurate a new self-consistent data record that will be gathered over the next 15 years. From an altitude of 438 miles, Terra will circle the Earth 16 times a day from pole to pole (98 degree inclination), crossing the equator at 10:30 a.m. The five Terra instruments will operate by measuring sunlight reflected by the Earth and heat emitted by the Earth.

  7. Southern Africa Validation of NASA's Earth Observing System (SAVE EOS)

    NASA Technical Reports Server (NTRS)

    Privette, Jeffrey L.

    2000-01-01

    Southern Africa Validation of EOS (SAVE) is 4-year, multidisciplinary effort to validate operational and experimental products from Terra-the flagship satellite of NASA's Earth Observing System (EOS). At test sites from Zambia to South Africa, we are measuring soil, vegetation and atmospheric parameters over a range of ecosystems for comparison with products from Terra, Landsat 7, AVHRR and SeaWiFS. The data are also employed to parameterize and improve vegetation process models. Fixed-point and mobile "transect" sampling are used to collect the ground data. These are extrapolated over larger areas with fine-resolution multispectral imagery. We describe the sites, infrastructure, and measurement strategies developed underSAVE, as well as initial results from our participation in the first Intensive Field Campaign of SAFARI 2000. We also describe SAVE's role in the Kalahari Transect Campaign (February/March 2000) in Zambia and Botswana.

  8. Check-Up of Planet Earth at the Turn of the Millennium: Contribution of EOS-Terra to a New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical developments that brought to the Terra mission, its objectives and example of application to biomass burning.

  9. An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.

    2004-01-01

    The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.

  10. Interactively Browsing NASA's EOS Imagery in Full Resolution

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Joshi, T.; Schmaltz, J. E.; Ilavajhala, S.; Davies, D.; Murphy, K. J.

    2012-12-01

    Worldview is a new tool designed to interactively browse full-resolution imagery from NASA's fleet of Earth Observing System (EOS) satellites. It is web-based and developed using open standards (JavaScript, CSS, HTML) for cross-platform compatibility. It addresses growing user demands for access to full-resolution imagery by providing a responsive, interactive interface with global coverage, no artificial boundaries, and views in geographic and polar projections. Currently tailored to the near real-time community, Worldview enables the rapid evaluation and comparison of imagery related to such application areas as fires, floods, and air quality. It is supported by the Global Imagery Browse Services (GIBS), a system that continuously ingests, mosaics, and serves approximately 21GB of imagery daily. This imagery spans over 50 data products that are available within three hours of observation from instruments aboard Terra, Aqua, and Aura. The GIBS image archive began in May 2012 and will have published approximately 4.4TB of imagery as of December 2012. Worldview facilitates rapid access to this archive and is supplemented by socioeconomic data layers from the Socioeconomic Data and Applications Center (SEDAC), including products such as population density and economic risk from cyclones. Future plans include the accessibility of additional products that cover the entire Terra/MODIS and Aqua/MODIS missions (>150TB) and the ability to download the underlying science data of the onscreen imagery.

  11. NASA's Terra spacecraft is prepared for encapsulation before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers at Vandenberg AFB, Calif., help prepare NASA's Terra spacecraft (right) for encapsulation in the rocket faring (left). Terra is expected to be launched aboard a Lockheed Martin Atlas IIAS rocket Dec. 16 from Space Launch Complex 3 East at Vandenberg. Terra comprises five state-of-the-art sets of instruments that will collect data for continuous, long-term records of the state of Earth's land, oceans and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. From an altitude of 438 miles, Terra will circle the Earth 16 times a day from pole to pole (98 degree inclination), crossing the equator at 10:30 a.m. The five Terra instruments will operate by measuring sunlight reflected by the Earth and heat emitted by the Earth.

  12. NASA's Terra spacecraft is prepared for encapsulation before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Terra spacecraft (foreground) is ready for encapsulation in the rocket faring behind it. Terra is expected to be launched aboard a Lockheed Martin Atlas IIAS rocket Dec. 16 from Space Launch Complex 3 East at Vandenberg AFB, Calif. Terra comprises five state-of-the-art sets of instruments that will collect data for continuous, long-term records of the state of Earth's land, oceans and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. From an altitude of 438 miles, Terra will circle the Earth 16 times a day from pole to pole (98 degree inclination), crossing the equator at 10:30 a.m. The five Terra instruments will operate by measuring sunlight reflected by the Earth and heat emitted by the Earth.

  13. NASA's Terra spacecraft is prepared for encapsulation before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers (left) at Vandenberg AFB, Calif., get ready to prepare NASA's Terra spacecraft (right) for encapsulation in the rocket faring (left) before launch. The spacecraft is expected to be launched Dec. 16 aboard a Lockheed Martin Atlas IIAS rocket from the AFB's Space Launch Complex 3 East. Terra comprises five state-of-the-art sets of instruments that will collect data for continuous, long-term records of the state of Earth's land, oceans and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. From an altitude of 438 miles, Terra will circle the Earth 16 times a day from pole to pole (98 degree inclination), crossing the equator at 10:30 a.m. The five Terra instruments will operate by measuring sunlight reflected by the Earth and heat emitted by the Earth.

  14. NASA's Terra spacecraft is prepared for encapsulation before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Terra spacecraft awaits installation of the instruments that will collect data for continuous, long-term records of the state of Earth's land, oceans and atmosphere. Terra is expected to be launched aboard a Lockheed Martin Atlas IIAS rocket Dec. 16 from Space Launch Complex 3 East at Vandenberg AFB, Calif. Terra comprises five state-of-the-art sets of instruments that, together with data from other satellite systems launched by NASA and other countries, will inaugurate a new self-consistent data record that will be gathered over the next 15 years. From an altitude of 438 miles, Terra will circle the Earth 16 times a day from pole to pole (98 degree inclination), crossing the equator at 10:30 a.m. The five Terra instruments will operate by measuring sunlight reflected by the Earth and heat emitted by the Earth.

  15. NASA's Earth Observing System (EOS): Delivering on the Dream, Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Johnson, Patricia; Case, Warren F.

    2010-01-01

    This paper describes the successful operations of NASA's Earth Observing System (EOS) satellites over the past 10 years and the plans for the future. Excellent operations performance has been a key factor in the overall success of EOS. The EOS Program was conceived in the 1980s and began to take shape in the early 1990s. EOS consists of a series of satellites that study the Earth as an interrelated system. It began with the launch of Terra in December 1999, followed by Aqua in May 2002, and Aura in July 2004. A key EOS goal is to provide a long-term continuous data set to enable the science community to develop a better understanding of land, ocean, and atmospheric processes and their interactions. EOS has produced unprecedented amounts of data which are used all over the world free of charge. Mission operations have resulted in data recovery for Terra, Aqua, and Aura that have consistently exceeded mission requirements. The paper describes the ground systems and organizations that control the EOS satellites, capture the raw data, and distribute the processed science data sets. The paper further describes how operations have evolved since 1999. Examples of this evolution include (a) the implementation of new mission safety requirements for orbital debris monitoring; (b) technology upgrades to keep facilities at the state of the art; (c) enhancements to meet changing security requirements; and (d) operations management of the 2 international Earth Observing Constellations of 11 satellites known as the "Morning Constellation" and the "A-Train". The paper concludes with a view into the future based on the latest spacecraft status, lifetime projections, and mission plans.

  16. Characteristics of Co Profile Data From The Mopitt Instrument On Eos-terra

    NASA Astrophysics Data System (ADS)

    Richards, N. A. D.; Remedios, J. J.

    Carbon monoxide (CO) is the main reaction partner of the hydroxyl radical (OH) in the troposphere and since OH plays a central role in atmospheric chemistry, CO is an important trace gas. Satellite instruments offer a way to measure the concentration and distribution of CO on a global scale. One such instrument is the Measurements of Pollution in the Troposphere (MOPITT) instrument which was launched on Decem- ber 18, 1999, onboard the NASA EOS-Terra satellite. It is a nadir viewing infra-red radiometer which targets measurements of CO and methane (CH4) using gas corre- lation spectroscopy to improve its spectral sensitivity. The CO profile measurements are made at 4.6 µm and 2.3 µm exploiting both upwelling thermal radiance and re- flected solar radiance. This study focuses on CO measurements from MOPITT, which currently employ the thermal channel data to retrieve columns and profiles. Investigation of the characteristics of MOPITT data in particular regimes, such as pollution measurements in the region of Europe and the examination of the effects of CO profile shape on MOPITT retrievals of CO in the region of Europe will be achieved through the use of retrieval simulations. An off-line data inversion system (retrieval algorithm) is currently under development. Preliminary results will be shown from retrieval simulations for a MOPITT-like instrument performed using the four thermal infra-red channels only. The simulations use optimal estimation techniques to derive typical retrieval errors given pre-computed spectra and weighting functions generated by an accurate, state of the art, infra-red, line by line radiative transfer model, the Oxford Reference Forward Model (RFM). Preliminary MOPITT data will also be shown to demonstrate the instrument's ability to observe regional CO sources as well as providing a global picture of CO behaviour.

  17. NASA's Terra spacecraft is prepared for encapsulation before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Terra spacecraft (right) is prepared for encapsulation in the rocket faring (left) before launch at Vandenberg AFB, Calif. The faring displays a logo of the many science instruments that make up Terra. The spacecraft's launch aboard a Lockheed Martin Atlas IIAS rocket is scheduled for Dec. 16 from Space Launch Complex 3 East at Vandenberg. Terra comprises five state-of-the- art sets of instruments that will collect data for continuous, long-term records of the state of Earth's land, oceans and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. From an altitude of 438 miles, Terra will circle the Earth 16 times a day from pole to pole (98 degree inclination), crossing the equator at 10:30 a.m. The five Terra instruments will operate by measuring sunlight reflected by the Earth and heat emitted by the Earth.

  18. NASA's Terra Spacecraft Measures Height of California Rim Fire Smoke Plumes

    Atmospheric Science Data Center

    2014-05-15

    ... NASA's Terra Spacecraft Measures Height of California Rim Fire Smoke Plumes     View ... - NASA's Terra Spacecraft Measures Height of California Rim Fire Smoke Plumes project:  MISR category:  ...

  19. NASA's Terra spacecraft is prepared for encapsulation before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The rocket faring (left) displays a logo of the many science instruments that make up NASA's Terra spacecraft (background). When fully assembled, Terra will be encapsulated in the faring before launch, scheduled for Dec. 16 aboard a Lockheed Martin Atlas IIAS rocket from Space Launch Complex 3 East at Vandenberg AFB, Calif. Terra comprises five state-of-the-art sets of instruments that will collect data for continuous, long-term records of the state of Earth's land, oceans and atmosphere. Together with data from other satellite systems launched by NASA and other countries, it will inaugurate a new self-consistent data record that will be gathered over the next 15 years. From an altitude of 438 miles, Terra will circle the Earth 16 times a day from pole to pole (98 degree inclination), crossing the equator at 10:30 a.m. The five Terra instruments will operate by measuring sunlight reflected by the Earth and heat emitted by the Earth.

  20. Improving the Interoperability of NASA HDF and HDF-EOS data

    NASA Astrophysics Data System (ADS)

    Yang, M.

    2010-12-01

    HDF is a set of data formats and software libraries for storing scientific data with an emphasis on standards, storage, and I/O efficiency. The HDF-EOS version 2 (HDF-EOS2) profile and library, built on top of HDF version 4 (HDF4), define and implement the standard data format for the NASA Earth Science Data and Information System (ESDIS). Since the launch of Terra in 1999, the EOS Data and Information System (EOSDIS) has produced more than three terabytes of EOS earth science data daily. More than five hundred data products in NASA data centers are stored in HDF. HDF5 is a newer data format. It has been embraced as an important data format for Earth science. HDF-EOS5, which is built on top of HDF5, is the primary data format for data from the Aura satellite. The new version of netCDF, netCDF-4, is built on top of HDF5. The OPeNDAP Data Access Protocol and its related software have emerged as important components of the earth science data system infrastructure. The OPeNDAP protocol is widely used to remotely access earth science data. Several third-party visualization and analysis tools that can read data from OPeNDAP servers, such as IDV, Panoply, GrADS, Ferret, NCL, MATLAB, and IDL, are widely used by many earth scientists and educators to access HDF earth science data. Ensuring easy access to HDF4, HDF5 and HDF-EOS data via OPeNDAP client tools will reduce the time for HDF users to visualize the data in their favorite way and accordingly improve their working efficiencies. In the past three years, under the support of NASA ESDIS and ACCESS projects, The HDF Group implemented the HDF4-OPeNDAP and HDF5-OPeNDAP data handlers so that many NASA HDF and HDF-EOS Swath and Grid data can be accessed by widely used visualization and analysis tools such as IDV, Panoply, GrADS, Ferret, NCL and IDL via OPeNDAP. We will share the challenges we have encountered and the solutions on how to address these challenges in the process of implementing the HDF OPeNDAP handlers. We also

  1. Fractional Snowcover Estimates from Earth Observing System (EOS) Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    2002-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System (EOS) Terra and Aqua missions has shown considerable capability for mapping snowcover. The typical approach that has used, along with other criteria, the Normalized Snow Difference Index (NDSI) that takes the difference between 500 meter observations at 1.64 micrometers (MODIS band 6) and 0.555 micrometers (MODIS band 4) over the sum of these observations to determine whether MODIS pixels are snowcovered or not in mapping the extent of snowcover. For many hydrological and climate studies using remote sensing of snowcover, it is desirable to assess if the MODIS snowcover observations could not be enhanced by providing the fraction of snowcover in each MODIS observation (pixel). Pursuant to this objective studies have been conducted to assess whether there is sufficient "signal%o in the NDSI parameter to provide useful estimates of fractional snowcover in each MODIS 500 meter pixel. To accomplish this objective high spatial resolution (30 meter) Landsat snowcover observations were used and co-registered with MODIS 500 meter pixels. The NDSI approach was used to assess whether a Landsat pixel was or was not snowcovered. Then the number of snowcovered Landsat pixels within a MODIS pixel was used to determine the fraction of snowcover within each MODIS pixel. The e results were then used to develop statistical relationships between the NDSI value for each 500 meter MODIS pixel and the fraction of snowcover in the MODIS pixel. Such studies were conducted for three widely different areas covered by Landsat scenes in Alaska, Russia, and the Quebec Province in Canada. The statistical relationships indicate that a 10 percent accuracy can be attained. The variability in the statistical relationship for the three areas was found to be remarkably similar (-0.02 for mean error and less than 0.01 for mean absolute error and standard deviation). Independent tests of the relationships were

  2. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  3. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  4. Global Retrieval of Roughness Length from EOS-Terra Satellite Products and Limited Field Study Data

    NASA Astrophysics Data System (ADS)

    Schaudt, K. J.; Dickinson, R. E.

    2003-12-01

    Global and regional retrievals, which illustrate the seasonality, of roughness length will be presented. Roughness length is a key factor in estimating the sensible and latent heat fluxes in climate models. In the past the lack of observations made it necessary for most climate models to use relatively crude estimates for roughness length. Typically the roughness length was assigned a constant value for each of the land cover classifications. In reality roughness length depends upon the average height, shape, density and Leaf Area Index (LAI) of the vegetation present. The retrievals presented here depend on these four variables, and they represent a significant improvement over past approaches. The parameterization of roughness length in terms of the four variables (average height, shape, density and LAI) is based on the work of Raupach and Lindroth. The roughness length is formulated in such a way that roughness length can be found either by remote sensing or by variables used in climate models with interactive canopies. The EOS-Terra satellite products used are the overstory plant density and LAI for the seven treed IGBP land cover classes (evergreen and deciduous needle-leaf, evergreen and deciduous broad-leaf and mixed forests, savannah and woody savannah). The tree crown shape (the canopy height-to-width ratio) is based on field studies; it depends on the tree's basic shape (conical or elliptical) and on latitude. At present, the height is of all the vegetation is the average height for the various land cover classifications found in numerous field studies. Limitations of the current retrieval and future improvements will be discussed.

  5. NASA's Terra Spacecraft Eyes Smoke Plumes from Massive Rim Fire Near Yosemite

    Atmospheric Science Data Center

    2014-05-15

    ... NASA's Terra Spacecraft Eyes Smoke Plumes from Massive Rim Fire Near Yosemite     View ... Image (TIFF)   This visible image of California's Rim Fire was acquired Aug. 23, 2013 by the Multi-angle Imaging ...

  6. Fifteen Years of ASTER Data on NASA's Terra Platform

    NASA Astrophysics Data System (ADS)

    Abrams, M.; Tsu, H.

    2014-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five instruments operating on NASA's Terra platform. Launched in 1999, ASTER has been acquiring data for 15 years. ASTER is a joint project between Japan's Ministry of Economy, Trade and Industry; and US NASA. Data processing and distribution are done by both organizations; a joint science team helps to define mission priorities. ASTER acquires ~550 images per day, with a 60 km swath width. A daytime acquisition is three visible bands and a backward-looking stereo band with 15 m resolution, six SWIR bands with 30 m resolution, and 5 TIR bands with 90 m resolution. Nighttime TIR-only data are routinely collected. The stereo capability has allowed the ASTER project to produce a global Digital Elevation Model (GDEM) data set, covering the earth's land surfaces from 83 degrees north to 83 degrees south, with 30 m data postings. This is the only (near-) global DEM available to all users at no charge; to date, over 28 million 1-by-1 degree DEM tiles have been distributed. As a general-purpose imaging instrument, ASTER-acquired data are used in numerous scientific disciplines, including: land use/land cover, urban monitoring, urban heat island studies, wetlands studies, agriculture monitoring, forestry, etc. Of particular emphasis has been the acquisition and analysis of data for natural hazard and disaster applications. We have been systematically acquiring images for 15,000 valley glaciers through the USGS Global Land Ice Monitoring from Space Project. The recently published Randolph Glacier Inventory, and the GLIMS book, both relied heavily on ASTER data as the basis for glaciological and climatological studies. The ASTER Volcano Archive is a unique on-line archive of thousands of daytime and nighttime ASTER images of ~1500 active glaciers, along with a growing archive of Landsat images. ASTER was scheduled to target active volcanoes at least 4 times per year, and more frequently for

  7. NASA's Eos ClearingHOuse: Integrating Access to Data Services

    NASA Astrophysics Data System (ADS)

    Burnett, M. T.; Pfister, R.; Wichman, K.

    2002-12-01

    ECHO (The Earth Observing System (EOS) ClearingHOuse) is being developed to provide flexibility to NASA's EOS to better meet the needs of the science community. ECHO is a clearinghouse of metadata, representing the data offerings of participating data providers. ECHO is being built with the goal of being an enabling system: Enabling a variety of Data Providers to participate. Enabling access to an ever-changing variety of Earth Science Data. Enabling access to an ever-growing suite of services, provided by the Science Community, which improves the usefulness of this data, including the binding of those services to the data represented in the clearinghouse. The purpose of this enabling philosophy is to support current Science efforts, but also to give the opportunity for creative organizations and individuals to break the traditional paradigm for discovering and leveraging Earth Science Data and Services in completely new ways. This presentation will focus on ECHO's approach to integrating Data Services from varied Service Providers, and facilitating access to those services by the user community. ECHO can be viewed as a typical Service oriented architecture. The fundamental interactions that it supports are (abstractly) Publish, Find and Bind. ECHO provides interfaces and mechanisms that allow organizations to publish their services. Using these interfaces, Service Providers can effectively "plug-in" their capabilities. There are mechanisms that allow the correlation of their service to the data types in the clearinghouse. ECHO's user community can find, or discover, services through a separate set of interfaces. Bindings are the mechanisms that support the invocation of services by ECHO's user community. ECHO supports binding either directly between the user and the service provider, or indirectly by using ECHO as a Service Broker. ECHO is supporting all of these Service capabilities by leveraging the contemporary (and evolving) "standards" of Web Services. Web

  8. Recent Results From The Nasa Earth Science Terra Mission and Future Possibilities

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    2000-01-01

    The NASA Earth Sciences Enterprise has made some remarkable strides in recent times in using developing, implementing, and utilizing spaceborne observations to better understand how the Earth works as a coupled, interactive system of the land, ocean, and atmosphere. Notable examples include the Upper Atmosphere Research (UARS) Satellite, the Topology Ocean Experiment (TOPEX) mission, Landsat-7, SeaWiFS, the Tropical Rainfall Monitoring Mission (TRMM), Quickscatt, the Shuttle Radar Topography Mission (SRTM), and, quite recently, the Terra'/Earth Observing System-1 mission. The Terra mission, for example, represents a major step forward in providing sensors that offer considerable advantages and progress over heritage instruments. The Moderate Resolution Imaging Spectrometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Measurements of Pollution in the Troposphere (MOPITT), the Advanced Spaceborne Thermal Emissions and Reflections (ASTER) radiometer, and the Clouds and Earth's Radiant Energy System (CERES) radiometer are the instruments involved. Early indications in March indicate that each of these instruments are working well and will be augmenting data bases from heritage instruments as well as producing new, unprecedented observations of land, ocean, and atmosphere features. Several missions will follow the Terra mission as the Earth Observing mission systems complete development and go into operation. These missions include EOS PM-1/'Aqua', Icesat, Vegetation Canopy Lidar (VCL), Jason/TOPEX Follow-on, the Chemistry mission, etc. As the Earth Observing systems completes its first phase in about 2004 a wealth of data enabling better understanding of the Earth and the management of its resources will have been provided. Considerable thought is beginning to be placed on what advances in technology can be implemented that will enable further advances in the early part of the 21st century; e.g., in the time from of 2020. Concepts such as

  9. Informing future NRT satellite distribution capabilities: Lessons learned from NASA's Land Atmosphere NRT capability for EOS (LANCE)

    NASA Astrophysics Data System (ADS)

    Davies, D.; Murphy, K. J.; Michael, K.

    2013-12-01

    NASA's Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery from Terra, Aqua and Aura satellites in less than 3 hours from satellite observation, to meet the needs of the near real-time (NRT) applications community. This article describes the architecture of the LANCE and outlines the modifications made to achieve the 3-hour latency requirement with a view to informing future NRT satellite distribution capabilities. It also describes how latency is determined. LANCE is a distributed system that builds on the existing EOS Data and Information System (EOSDIS) capabilities. To achieve the NRT latency requirement, many components of the EOS satellite operations, ground and science processing systems have been made more efficient without compromising the quality of science data processing. The EOS Data and Operations System (EDOS) processes the NRT stream with higher priority than the science data stream in order to minimize latency. In addition to expediting transfer times, the key difference between the NRT Level 0 products and those for standard science processing is the data used to determine the precise location and tilt of the satellite. Standard products use definitive geo-location (attitude and ephemeris) data provided daily, whereas NRT products use predicted geo-location provided by the instrument Global Positioning System (GPS) or approximation of navigational data (depending on platform). Level 0 data are processed in to higher-level products at designated Science Investigator-led Processing Systems (SIPS). The processes used by LANCE have been streamlined and adapted to work with datasets as soon as they are downlinked from satellites or transmitted from ground stations. Level 2 products that require ancillary data have modified production rules to relax the requirements for ancillary data so reducing processing times. Looking to the future, experience gained from LANCE can provide valuable lessons on

  10. TERRA.

    ERIC Educational Resources Information Center

    Locke, Kirsty

    1997-01-01

    TERRA (Teaching Ecological Responsibility, Recreation, and Adventure) is an integrated, one-semester, four-course program in environmental science, environmental English, independent geography, and outdoor education for grades 11 and 12 in New Liskeard, Ontario. Program activities include outdoor adventure, environmental research projects,…

  11. Enhancement to Hitran to Support the NASA EOS Program

    NASA Technical Reports Server (NTRS)

    Kirby, Kate P.; Rothman, Laurence S.

    1998-01-01

    The HITRAN molecular database has been enhanced with the object of providing improved capabilities for the EOS program scientists. HITRAN itself is the database of high-resolution line parameters of gaseous species expected to be observed by the EOS program in its remote sensing activities. The database is part of a larger compilation that includes IR cross-sections, aerosol indices of refraction, and software for filtering and plotting portions of the database. These properties have also been improved. The software has been advanced in order to work on multiple platforms. Besides the delivery of the compilation on CD-ROM, the effort has been directed toward making timely access of data and software on the world wide web.

  12. Enhancement to HITRAN to Support the NASA EOS Program

    NASA Technical Reports Server (NTRS)

    Kirby, Kate P.; Rothman, Laurence S.

    1999-01-01

    The HITRAN molecular database has been enhanced with the object of providing improved capabilities for the EOS program scientists. HITRAN itself is the database of high-resolution line parameters of gaseous species expected to be observed by the EOS program in its remote sensing activities. The database is part of a larger compilation that includes IR cross-sections, aerosol indices of refraction, and software for filtering and plotting portions of the database. These properties have also been improved. The software has been advanced in order to work on multiple platforms. Besides the delivery of the compilation on CD-ROM, the effort has been directed toward making timely access of data and software on the world wide web.

  13. The Transition of NASA EOS Datasets to WFO Operations: A Model for Future Technology Transfer

    NASA Technical Reports Server (NTRS)

    Darden, C.; Burks, J.; Jedlovec, G.; Haines, S.

    2007-01-01

    The collocation of a National Weather Service (NWS) Forecast Office with atmospheric scientists from NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama has afforded a unique opportunity for science sharing and technology transfer. Specifically, the NWS office in Huntsville has interacted closely with research scientists within the SPORT (Short-term Prediction and Research and Transition) Center at MSFC. One significant technology transfer that has reaped dividends is the transition of unique NASA EOS polar orbiting datasets into NWS field operations. NWS forecasters primarily rely on the AWIPS (Advanced Weather Information and Processing System) decision support system for their day to day forecast and warning decision making. Unfortunately, the transition of data from operational polar orbiters or low inclination orbiting satellites into AWIPS has been relatively slow due to a variety of reasons. The ability to integrate these high resolution NASA datasets into operations has yielded several benefits. The MODIS (MODerate-resolution Imaging Spectrometer ) instrument flying on the Aqua and Terra satellites provides a broad spectrum of multispectral observations at resolutions as fine as 250m. Forecasters routinely utilize these datasets to locate fine lines, boundaries, smoke plumes, locations of fog or haze fields, and other mesoscale features. In addition, these important datasets have been transitioned to other WFOs for a variety of local uses. For instance, WFO Great Falls Montana utilizes the MODIS snow cover product for hydrologic planning purposes while several coastal offices utilize the output from the MODIS and AMSR-E instruments to supplement observations in the data sparse regions of the Gulf of Mexico and western Atlantic. In the short term, these datasets have benefited local WFOs in a variety of ways. In the longer term, the process by which these unique datasets were successfully transitioned to operations will benefit the planning and

  14. Simulation of the long term radiometric responses of the Terra MODIS and EO-1 ALI using Hyperion spectral responses over Railroad Valley Playa in Nevada (RVPN)

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung; Xiong, Xiaoxiong J.; Angal, Amit; Chander, Gyanesh

    2010-10-01

    The Earth Observing-1 (EO-1) Hyperion instrument provides 220 spectral bands with wavelengths between 400 and 2500 nm at 30 m spatial resolution, which covers a 7.5 km by 100 km area on the ground. The EO-1 spacecraft has another multispectral sensor called the Advanced Land Imager (ALI), which has 10 spectral bands with wavelengths between 400 and 2350 nm at 30 m spatial resolution. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Terra spacecraft was launched in Dec., 1999, and flies approximately 30 minutes behind EO-1. Nearsimultaneous observations from Terra MODIS, EO-1 ALI and Hyperion over a well characterized Railroad Valley Playa in Nevada (RVPN) target are chosen for this study. A uniform region of interest (ROI) within the playa within latitudes and longitudes of 38.48 and -115.71 to 38.53 and -115.66 was chosen for this analysis. A representation of the ground spectra during every near-simultaneous acquisition of MODIS and ALI is obtained using EO-1 Hyperion data. Using the EO-1 Hyperion derived top-of-atmosphere (TOA) reflectance profile along with the ALI and MODIS relative spectral responses (RSR), simulated reflectance for the matching band pairs is calculated. The Hyperion simulated TOA reflectance results are compared to the measured TOA reflectance trends of ALI and MODIS. The long-term measured versus simulated reflectance results are used to examine the relationships and calibration differences between the ALI and MODIS sensors.

  15. EOS

    Atmospheric Science Data Center

    2012-11-30

    ... program is NASA's contribution to the United States Global Change Research Program (USGCRP). The purpose of this program is "to assess the ... condition, understand its processes, predict its future state, and find ways to ensure that the collective actions of humanity on the ...

  16. Vegetation canopy structure from NASA EOS multiangle imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjus...

  17. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  18. Vegetation Canopy Structure from NASA EOS Multiangle Imaging

    NASA Astrophysics Data System (ADS)

    Chopping, M.; Martonchik, J. V.; Bull, M.; Rango, A.; Schaaf, C. B.; Zhao, F.; Wang, Z.

    2008-12-01

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjustment of the mean radius and mean crown aspect ratio parameters of an hybrid geometric-optical (GO) model. We used a technique to rapidly obtain MISR surface reflectance estimates at 275 m resolution through regression on 1 km MISR land surface estimates previously corrected for atmospheric attenuation using MISR aerosol estimates. MISR data were used to make end of dry season maps from 2000-2007 for parts of southern New Mexico, while MODIS data were used to replicate previous results obtained using MISR for June 2002 over large parts of New Mexico and Arizona. We also examined the applicability of this method in Alaskan tundra and forest by adjusting the GO model against MISR data for winter (March 2000) and summer (August 2008) scenes. We found that the GO model crown aspect ratio from MISR followed dominant shrub species distributions in the USDA, ARS Jornada Experimental Range, enabling differentiation of the more spherical crowns of creosotebush (Larrea tridentata) from the more prolate crowns of honey mesquite (Prosopis glandulosa). The measurement limits determined from 2000-2007 maps for a large part of southern New Mexico are ~0.1 in fractional shrub crown cover and ~3 m in mean canopy height (results obtained using data acquired shortly after precipitation events that radically darkened and altered the structure and angular response of the background). Typical standard deviations over the period for 12 sites covering a range of cover types are on the order of 0.05 in crown cover and 2 m in mean canopy height. We found that the GO model can be inverted to retrieve reasonable distributions of canopy parameters in southwestern environments using MODIS V005 red

  19. Use of EO-1 Hyperion data to calculate spectral band adjustment factors (SBAF) between the L7 ETM+ and Terra MODIS sensors

    USGS Publications Warehouse

    Chander, Gyanesh; Mishra, N.; Helder, Dennis L.; Aaron, D.; Choi, T.; Angal, A.; Xiong, X.

    2010-01-01

    Different applications and technology developments in Earth observations necessarily require different spectral coverage. Thus, even for the spectral bands designed to look at the same region of the electromagnetic spectrum, the relative spectral responses (RSR) of different sensors may be different. In this study, spectral band adjustment factors (SBAF) are derived using hyperspectral Earth Observing-1 (EO-1) Hyperion measurements to adjust for the spectral band differences between the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) top-of-atmosphere (TOA) reflectance measurements from 2000 to 2009 over the pseudo-invariant Libya 4 reference standard test site.

  20. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  1. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  2. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin; Bauer, Frank (Technical Monitor)

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Flight Dynamics Analysis Branch at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon, its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  3. Results Of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called Enhanced Formation Flying. To enable this technology, a team at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(trademark), its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  4. Middle East Health and Air Quality Utilizing NASA EOS in the Saharan and Arabian Deserts to Examine Dust Particle Size and Mineralogy of Aerosols

    NASA Technical Reports Server (NTRS)

    Keeton, Tiffany; Barrick, Bradley; Cooksey, Kirstin; Cowart, Kevin; Florence, Victoria; Herdy, Claire; Padgett-Vasquez, Steve; Luvall, Jeffrey; Molthan, Andrew

    2012-01-01

    Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5micron (PM2.5) can cause long-term damage to the human respiratory system. NASA fs Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles and dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angstrom Exponent. Brightness Temperature Difference (BTD) equation was used to determine the area of the dust storm. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the JPL Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodele Depression in the Sahara Desert on 7 June 2003.

  5. Design of a battery charger for the NASA EOS space platform

    NASA Technical Reports Server (NTRS)

    Sizemore, Tom; Lee, Fred C.; Cho, Bo H.

    1991-01-01

    A battery charger design for the NASA Earth Observing System (EOS) space platform has been developed and tested. The authors discuss the design of the battery charger power state and its current and voltage control loops. In addition to restoring energy to the batteries, this charger regulates the spacecraft bus voltage during the posteclipse transition period. The battery charger design and analysis were facilitated by use of the pulse-width-modulated (PWM) switch model and the new continuous-time model for current-mode control. Analyses of the battery charger small-signal behavior are compared to hardware measurements to verify modeling accuracy.

  6. Report from the School of Experience: Lessons-Learned on NASA's EOS/ICESat Mission

    NASA Technical Reports Server (NTRS)

    Anselm, William

    2003-01-01

    Abstract-NASA s Earth Observing System EOS) Ice, Cloud, and Land Elevation Satellite (ICESat) mission was one of the first missions under Goddard Space Flight Center s (then-) new Rapid Spacecraft Development Office. This paper explores the lessons-learned under the ICESat successful implementation and launch, focusing on four areas: Procurement., Management, Technical, and Launch and Early Operations. Each of these areas is explored in a practical perspective of communication, the viewpoint of the players, and the interactions among the organizations. Conclusions and lessons-learned are summarized in the final section.

  7. Hdf-Eos in Matlab(r)

    NASA Astrophysics Data System (ADS)

    Comer, R. P.; Lawton, C.; Yale, M. M.

    2001-05-01

    Since 1998, MATLAB has supported HDF-EOS, the Earth Observing System (EOS) extension to the Hierarchical Data Format (HDF). MATLAB users can access, process, or view HDF-EOS data sets or to construct new HDF-EOS products. They can work interactively or use MATLAB as a high-level programming language, and use the MATLAB Image Processing or Mapping Toolboxes. MATLAB 6.0, released in November 2000, incorporates the latest HDF 4 (Version 4.1r3) and HDF-EOS (Version 2.5v1) libraries. MATLAB provides a family of functions that parallel the C and Fortran application programmer interfaces (APIs) provided by the NCSA HDF and NASA HDF-EOS libraries. These functions enable full access to HDF-EOS data sets, via either interactive exploration or MATLAB programs (M-files). HDF and HDF-EOS data files can be read into or written from a MATLAB workspace. API-level functions in MATLAB include HDFPT, HDFSW, and HDFGD for interfaces to HDF-EOS point, swath, or grid objects, respectively. Both high level functions and a graphical user interface (GUI) are planned for future releases. Prototypes of high level functions (HDFINFO and HDFREAD) have already been developed and successfully demonstrated on HDF-EOS data sets from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra (EOS AM-1) satellite and HDF data sets from Landsat 7. (R)MATLAB is a registered trademark of The MathWorks, Inc.

  8. The Use of MODIS Instrument on the EOS-Terra Satellite to Assess the Impact of Aerosol on Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: 1) From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. 2) Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. 3) Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  9. Terra Mission Operations: Launch to the Present (and Beyond)

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren

    2014-01-01

    The Terra satellite, flagship of NASA's long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASA's international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations. This paper will review the Terra spacecraft mission successes and unique spacecraft component designs that provided significant benefits extending mission life and science. In addition, it discusses special activities as well as anomalies and corresponding recovery efforts. Lastly, it discusses future plans for continued operations.

  10. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution smaller than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have some first images that demonstrate the most innovative capability from EOS Terra: MODIS - 1.37 microns cirrus channel; 250 m daily cover for clouds and vegetation change; 7 solar channels for land and aerosol; new fire channels; Chlorophyll fluorescence; MISR - 9 multi angle views of clouds and vegetation; MOPITT - Global CO maps and CH4 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  11. The Earth Observing System Terra Mission

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  12. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  13. NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg

    2002-01-01

    NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.

  14. Tracking and Data Relay Satellite (TDRS-3) Range Biases and Momentum Unload Modeling for Terra (EOS-AMI)

    NASA Technical Reports Server (NTRS)

    Ward, Douglas T.

    2001-01-01

    The Flight Dynamics Facility (FDF) reports its performance in meeting Tracking and Data Relay Satellite (TDRS) predicted ephemeris accuracy requirements with TDRS-3. The Terra (Earth Observing System AM-1) satellite has 3-sigma TDRS requirements of 75 m for total position accuracy predicted over one day onboard. The study sample includes selected cases over 21 months after Guam Remote Ground Terminal (GRGT) support started in June 1998. For daily solutions with a 1.5-day prediction span, predicted results of the study were below the Terra requirement by at least 12 m. Refined range bias estimation and modeled momentum unloads are needed to meet Terra's requirements for TDRS-3. Maintained at 275 W longitude over the zone of exclusion, TDRS-3 is analyzed separately from other TDRSs because of its unique tracking data. Only the Bilateration Ranging Transponder (BRT) at Alice Springs (ALS), Australia, and the Telemetry, Tracking and Command (TT&C) system at Guam are used for routine operational tracking data for TDRS-3. Simultaneous batch orbit solutions with three TDRSs and either the Compton Gamma Ray Observatory (GRO) or Terra were done with the Goddard Trajectory Determination System (GTDS) to periodically refine the TT&C and BRT System (BRTS) range biases. As new biases were determined, significant changes were made in estimating the absolute position. FDF achieved similar results using a sequential filter with all operational TDRSs and four user satellites. Definitive accuracy (3-sigma) is expected to be below 50 m. The White Sands Complex (WSC) performs momentum unloads to maintain three-axis stabilized attitude of TDRSs. The relationship between velocity changes (delta-V) and reaction wheel speed changes was empirically determined for roll/yaw unloads. A theoretical relationship was verified and used for pitch unloads. Modeling both pitch and roll/yaw momentum unloads is necessary to meet the 75-m requirement. Moving the orbit solution epoch an hour before a

  15. The Development of Two Science Investigator-led Processing Systems (SIPS) for NASA's Earth Observation System (EOS)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2004-01-01

    In 2001, NASA Goddard Space Flight Center's Laboratory for Terrestrial Physics started the construction of a science Investigator-led Processing System (SIPS) for processing data from the Ozone Monitoring Instrument (OMI) which will launch on the Aura platform in mid 2004. The Ozone Monitoring Instrument (OMI) is a contribution of the Netherlands Agency for Aerospace Programs (NIVR) in collaboration with the Finnish Meteorological Institute (FMI) to the Earth Observing System (EOS) Aura mission. It will continue the Total Ozone Monitoring System (TOMS) record for total ozone and other atmospheric parameters related to ozone chemistry and climate. OMI measurements will be highly synergistic with the other instruments on the EOS Aura platform. The LTP previously developed the Moderate Resolution Imaging Spectrometer (MODIS) Data Processing System (MODAPS), which has been in full operations since the launches of the Terra and Aqua spacecrafts in December, 1999 and May, 2002 respectively. During that time, it has continually evolved to better support the needs of the MODIS team. We now run multiple instances of the system managing faster than real time reprocessings of the data as well as continuing forward processing. The new OMI Data Processing System (OMIDAPS) was adapted from the MODAPS. It will ingest raw data from the satellite ground station and process it to produce calibrated, geolocated higher level data products. These data products will be transmitted to the Goddard Distributed Active Archive Center (GDAAC) instance of the Earth Observing System (EOS) Data and Information System (EOSDIS) for long term archive and distribution to the public. The OMIDAPS will also provide data distribution to the OMI Science Team for quality assessment, algorithm improvement, calibration, etc. We have taken advantage of lessons learned from the MODIS experience and software already developed for MODIS. We made some changes in the hardware system organization, database and

  16. Science Writers' Guide to TERRA

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The launch of NASA's Terra spacecraft marks a new era of comprehensive monitoring of the Earth's atmosphere, oceans, and continents from a single space-based platform. Data from the five Terra instruments will create continuous, long-term records of the state of the land, oceans, and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. The science objectives of NASAs Earth Observing System (EOS) program are to provide global observations and scientific understanding of land cover change and global productivity, climate variability and change, natural hazards, and atmospheric ozone. Observations by the Terra instruments will: provide the first global and seasonal measurements of the Earth system, including such critical functions as biological productivity of the land and oceans, snow and ice, surface temperature, clouds, water vapor, and land cover; improve our ability to detect human impacts on the Earth system and climate, identify the "fingerprint" of human activity on climate, and predict climate change by using the new global observations in climate models; help develop technologies for disaster prediction, characterization, and risk reduction from wildfires, volcanoes, floods, and droughts, and start long-term monitoring of global climate change and environmental change.

  17. NASA A-Train and Terra Observations of the 2010 Russian Wildfires

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Douglass, A. R.; DaSilva, A.; Torres, O.; Levy, R.; Duncan, B. N.

    2011-01-01

    Wildfires raged throughout western Russia and parts of Eastern Europe during a persistent heat wave in the summer of 2010. Anomalously high surface temperatures (35 - 41 C) and low relative humidity (9 - 25 %) from mid- June to mid-August 2010 shown by analysis of radiosonde data from multiple sites in western Russia were ideal conditions for the wildfires to thrive. Measurements of outgoing longwave radiation (OLR) from the Atmospheric Infrared Sounder (AIRS) over western Russian indicate persistent subsidence during the heat wave. Daily three-day back-trajectories initiated over Moscow reveal a persistent anticyclonic circulation for 18 days in August, coincident with the most intense period of fire activity observed by Moderate Resolution Imaging Spectroradiometer (MODIS). This unfortunate meteorological coincidence allowed transport of polluted air from the region of intense fires to Moscow and the surrounding area. We demonstrate that the 2010 Russian wildfires are unique in the record of observations obtained by remote-sensing instruments on-board NASA satellites: Aura and Aqua (part of the A-Train Constellation) and Terra. Analysis of the distribution of MODIS fire products and aerosol optical thickness (AOT), UV aerosol index (AI) and single-scattering albedo (SSA) from Aura's Ozone Monitoring Instrument (OMI), and total column carbon monoxide (CO) from Aqua s Atmospheric Infrared Sounder (AIRS) show that the region in the center of western Russia surrounding Moscow (52-58 deg N, 33 -43 deg E) is most severely impacted by wildfire emissions. Over this area, AIRS CO, OMI AI, and MODIS AOT are significantly enhanced relative to the historical satellite record during the first 18 days in August when the anti-cyclonic circulation persisted. By mid-August, the anti-cyclonic circulation was replaced with westerly transport over Moscow and vicinity. The heat wave

  18. Remote Sensing of Aerosol and their Radiative Properties from the MODIS Instrument on EOS-Terra Satellite: First Results and Evaluation

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Holben, Brent; Lau, William K.-M. (Technical Monitor)

    2001-01-01

    The MODIS instrument was launched on the NASA Terra satellite in Dec. 1999. Since last Oct., the sensor and the aerosol algorithm reached maturity and provide global daily retrievals of aerosol optical thickness and properties. MODIS has 36 spectral channels in the visible to IR with resolution down to 250 m. This allows accurate cloud screening and multi-spectral aerosol retrievals. We derive the aerosol optical thickness over the ocean and most of the land areas, distinguishing between fine (mainly man-made aerosol) and coarse aerosol particles. The information is more precise over the ocean where we derive also the effective radius and scattering asymmetry parameter of the aerosol. New methods to derive the aerosol single scattering albedo are also being developed. These measurements are use to track different aerosol sources, transport and the radiative forcing at the top and bottom of the atmosphere. The AErosol RObotic NETwork of ground based radiometers is used for global validation of the satellite derived optical thickness, size parameters and single scattering albedo and measure additional aerosol parameters that cannot be derived from space.

  19. Radiometric Measurement Comparisons Using Transfer Radiometers in Support of the Calibration of NASA's Earth Observing System (EOS) Sensors

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Brown, Steven W.; Yoon, Howard W.; Barnes, Robert A.; Markham, Brian L.; Biggar, Stuart F.; Zalewski, Edward F.; Spyak, Paul R.; Cooper, John W.; Sakuma, Fumihiro

    1999-01-01

    EOS satellite instruments operating in the visible through the shortwave infrared wavelength regions (from 0.4 micrometers to 2.5 micrometers) are calibrated prior to flight for radiance response using integrating spheres at a number of instrument builder facilities. The traceability of the radiance produced by these spheres with respect to international standards is the responsibility of the instrument builder, and different calibration techniques are employed by those builders. The National Aeronautics and Space Administration's (NASA's) Earth Observing System (EOS) Project Science Office, realizing the importance of preflight calibration and cross-calibration, has sponsored a number of radiometric measurement comparisons, the main purpose of which is to validate the radiometric scale assigned to the integrating spheres by the instrument builders. This paper describes the radiometric measurement comparisons, the use of stable transfer radiometers to perform the measurements, and the measurement approaches and protocols used to validate integrating sphere radiances. Stable transfer radiometers from the National Institute of Standards and Technology, the University of Arizona Optical Sciences Center Remote Sensing Group, NASA's Goddard Space Flight Center, and the National Research Laboratory of Metrology in Japan, have participated in these comparisons. The approaches used in the comparisons include the measurement of multiple integrating sphere lamp levels, repeat measurements of select lamp levels, the use of the stable radiometers as external sphere monitors, and the rapid reporting of measurement results. Results from several comparisons are presented. The absolute radiometric calibration standard uncertainties required by the EOS satellite instruments are typically in the +/- 3% to +/- 5% range. Preliminary results reported during eleven radiometric measurement comparisons held between February 1995 and May 1998 have shown the radiance of integrating spheres

  20. Utilizing NASA EOS Data for Fire Management in el Departmento del Valle del Cauco, Colombia

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Bledsoe, N.; Alabdouli, K.

    2012-12-01

    In the last few years, fire incidence in Colombian wild areas has increased, damaging pristine forests into savannas and sterile lands. Fire poses a significant threat to biodiversity, rural communities and established infrastructure. These events issue an urgent need to address this problem. NASA Earth Observing System (EOS) can play a significant role in the monitoring fires and natural disasters. SERVIR, the Regional Visualization and Monitoring Network, constitutes a platform for the observation, forecasting and modeling of environmental processes in Central America. A project called "The GIS for fire management in Guatemala (SIGMA-I)" has been already conducted to address the same problem in another Latin American country, Guatemala. SIGMA-I was developed by the Inter-agency work among the National protected areas council (CONAP), National Forestry Institution (INAB), the National Coordinator for Disaster Reduction / National Forest Fire Prevention and Control System (CONRED/SIPECIF), and the Ministry of the Environment and National Resources (MARN) in Guatemala under the guidance and assistance of SERVIR. With SIGMA-I as an example, we proposed to conduct a similar project for the country of Colombia. First, a pilot study in the area of the watershed of the Cali River, Colombia was conducted to ensure that the data was available and that the maps and models were accurate. The proposed study will investigate the technical resources required: 1.) A fire map with a compilation of ignition data (hot spots) utilizing Fire Information for Resource Management System (FIRMS) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD14 and MYD14 2.) A map of fire scars derived from medium resolution satellite data (ASTER) during the period 2003-2011 for the entire country, and a map of fire scar recurrence and statistics derived from the datasets produced. 3.) A pattern analysis and ignition cause model derived from a matrix of variables

  1. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  2. A Summary of NASA Summer Faculty Fellowship Work in the E.O. Office and in the Educator Resources Center

    NASA Technical Reports Server (NTRS)

    Thompson, H. Wendell, Sr.

    2005-01-01

    The Office of Equal Opportunity supports a number of summer programs which are designed to: 1.) Increase the number of elementary and secondary students and teachers who are involved in NASA-related education opportunities; and 2.) Support higher education research capability and opportunities that attract and prepare increasing numbers of students and faculty for NASA-related careers. A part of my work in the E.O. office involved the evaluation of several of the programs in order to determine their level of success and to make recommendations for the improvement of those programs where necessary. As a part of the involvement with one of the programs, the PSTI, I had the great opportunity to interact with the students in a number of their sessions which involved problem-based learning in science, mathematics and technology. A summary of the evaluation of those programs is included in this report. The second part of my work involved assisting the coordinator of the Educator Resource Center at the Space and Rocket Center. I participated in space science workshops for in-service and pre-service teachers. There educational resources were made available to the participants including many hands-on activities that hey could take back to their classes. I participated in the three hour workshops that were offered on Tuesdays and Thursdays of each week, although there were workshops on other days. On Mondays, Wednesdays, and Fridays, I worked in the E.O. office. As a result of my work in the ERC, I developed a Directed Reading PowerPoint Lesson Plan Guide involving remote sensing entitled, Echo the Bat. This was based on a NASA published children's book entitled Echo The Bat, written by Ginger Butcher. I have included a description of the lesson in this report. A summary of the evaluations of several of the summer programs supported by the Equal Opportunity office are included in this report.

  3. The State of Scientific Visualization with Regard to the NASA EOS Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Christy, John R.; Botts, Michael E.; Newchurch, Michael; McNider, Richard T.

    1996-01-01

    In support of the mission to better understand the dynamics of the global atmosphere, John R. Christy and Nathaniel D. Reynolds investigated a wide range of topics. Christy worked closely with NASA scientist Roy Spencer to develop a data set of precision temperature measurements using the NASA built Microwave Sounding Unit. The data from this effort has received international recognition as they provide a source of precise information for the most difficult of environmental issues in the global climate change arena. In addition, Christy coordinated modeling research with NASA scientist Franklin Robertson with research focusing on the validation of global model output using various satellite data with sophisticated statistical techniques. Reynolds worked with NASA scientist Timothy Miller on idealized flows in a rotating annulus and the application of the results to the general circulation of the atmosphere. Additional work was carried out in investigation of stratospheric ozone fluctuations due to dynamical causes.

  4. NCO: Simpler and faster model evaluation by NASA satellite data via unified file-level netCDF and HDF-EOS data post-processing tools

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Vicente, P.; Wang, W.

    2012-12-01

    The fidelity of geoscientific model results are increasingly evaluated by comparison to products derived from NASA satellite measurements. The satellite data are archived in HDF-EOS format, which is now a superset of the netCDF format employed by most geoscientific models. Putting NASA-generated (HDF-EOS) data and model-generated (netCDF) data on a common grid, in the same format, for numerical comparison can be arduous because of data format incompatibilities. Many researchers desire a common toolkit for both HDF-EOS and netCDF data that would 1.~simplify and accelerate the independent analysis of both data formats (HDF-EOS and netCDF), 2.~exploit the strengths of netCDF's underlying HDF data format with easy-to-use netCDF tools, 3.~ease evaluations of model predictions (in netCDF format) by NASA-generated data (in HDF-EOS format). We describe recent progress extending the netCDF Operators (NCO) to process netCDF and HDF-EOS datasets that use hierarchical groups. Utilizing groups to store ensembles of observations and predictions can vastly simplify and accelerate the characterization, evaluation, and intercomparison of multiple geophysical observations and simulations. We will illustrate our approach by showing how much easier it is to characterize, evaluate, and intercompare Earth System Model-simulated (CMIP5 archive) and NASA-retrieved snow cover and albedo trends (from MODIS/CERES) with the group and HDF-EOS ``aware'' NCO compared to previous methods.

  5. Utilizing NASA EOS to Assist in Determining Suitable Planting Locations for Bottomland Hardwood Trees in St. Bernard Parish, Louisiana

    NASA Astrophysics Data System (ADS)

    Reahard, R. R.; Arguelles, M.; Ewing, M.; Kelly, C.; Strong, E.

    2012-12-01

    St. Bernard Parish, located in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a variety of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have focused not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for restoring coastal forests. Using NASA Earth Observing Systems (EOS), Natural Resource Conservation Service (NRCS) soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of bottomland hardwood trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using Digital Elevation Models derived from LIDAR data, and determining existing land cover in the study area from classified Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from a single low-altitude swath was used to assess the health of vegetation over an area near the Mississippi River Gulf Outlet Canal (MRGO) and Bayou La Loutre. Historic extent of coastal forests was also mapped using aerial photos collected between 1952 and 1956. The final products demonstrated yet another application of NASA EOS in the rebuilding and monitoring of coastal ecosystems in

  6. Towards a Comprehensive Dynamic-chemistry Assimilation for Eos-Chem: Plans and Status in NASA's Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Stajner, Ivanka; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.

    2000-01-01

    In order to support the EOS-Chem project, a comprehensive assimilation package for the coupled chemical-dynamical system is being developed by the Data Assimilation Office at NASA GSFC. This involves development of a coupled chemistry/meteorology model and of data assimilation techniques for trace species and meteorology. The model is being developed using the flux-form semi-Lagrangian dynamical core of Lin and Rood, the physical parameterizations from the NCAR Community Climate Model, and atmospheric chemistry modules from the Atmospheric Chemistry and Dynamics branch at NASA GSFC. To date the following results have been obtained: (i) multi-annual simulations with the dynamics-radiation model show the credibility of the package for atmospheric simulations; (ii) initial simulations including a limited number of middle atmospheric trace gases reveal the realistic nature of transport mechanisms, although there is still a need for some improvements. Samples of these results will be shown. A meteorological assimilation system is currently being constructed using the model; this will form the basis for the proposed meteorological/chemical assimilation package. The latter part of the presentation will focus on areas targeted for development in the near and far terms, with the objective of Providing a comprehensive assimilation package for the EOS-Chem science experiment. The first stage will target ozone assimilation. The plans also encompass a reanalysis (ReSTS) for the 1991-1995 period, which includes the Mt. Pinatubo eruption and the time when a large number of UARS observations were available. One of the most challenging aspects of future developments will be to couple theoretical advances in tracer assimilation with the practical considerations of a real environment and eventually a near-real-time assimilation system.

  7. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    NASA Astrophysics Data System (ADS)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  8. Using Ncl to Visualize and Analyse of NASA/NOAA Satellite Data in Format of Netcdf, Hdf, Hdf-Eos

    NASA Astrophysics Data System (ADS)

    Huang, W.

    2014-12-01

    The NCAR Command Language (NCL, http://www.ncl.ucar.edu), a product of National Center for Atmospheric Research (NCAR) and sponsored by the National Science Foundation, is a free interpreted language designed specifically for scientific data processing and visualization. NCL has robust file input of NetCDF, HDF, HDF-EOS, and can be OPenDAP-enabled. NCL team has developed examples to handle some of NASA data and posted at: http://www.ncl.ucar.edu/Applications/HDF.shtml. The HDF group has used developed more examples at:http://hdfeos.org/zoo. In order to serve the community better, and to handle future NASA/NOAA data, such as: AIRS, TRMM, MERRA, TOMS, OMI, HIRDLS, BUV, SWDB, GSSTF, GOSAT/ACOS, MOD, MYD, NPP, VIIRS, MCD, VIP, WELD, GED, CALIPSO, CERES, MISR, MOPITT, etc., better, the NCL team is willing to share source code, and examples used to visualize and analyze the above data, and want to hear from the community to improve our work.

  9. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on NASA's EOS-AMI Platform

    NASA Technical Reports Server (NTRS)

    Abrams, M.

    1999-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a high spatial resolution, multispectral imager with along-track stereo capabilities scheduled for launch on the first NASA spacecraft of the Earth Observing System (EOS AM-1) in mid-1999.

  10. Using NASA EOS to Assess Burn Severity and Perform Fire Risk Mapping of the 2011 North Carolina Wildfire Season

    NASA Astrophysics Data System (ADS)

    Gleason, J. L.; Ehlen, A.

    2012-12-01

    Since the beginning of 2011 North Carolina has experienced dry conditions and high winds, which has increased the fuel load on the ground. This extreme weather led to several periods of severe wildfires which burned nearly 100,000 acres, caused significant damage to the Coastal Plains region's ecosystem, and greatly affected the livelihoods of many North Carolinians. Utilizing NASA's Earth Observing Systems (EOS), burn severity, real-time drought severity, and fire- risk mapping were conducted on the two largest fires in North Carolina during the 2011 wildfire season, the Pains Bay Fire in Dare County and the Juniper Road Fire in Pender County. In order to show the impact of fires on the ecosystem and the extent of ecological change the fires caused, burn severity maps were created using Landsat 5 TM and the Relative difference Normalized Burn Ratio (RdNBR). To assess drought conditions, the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI) were derived from Landsat 5TM data to show changes in vegetation cover and moisture. In addition, MODIS Daily Surface Reflectance product (MOD09GA/MYD09GA) with the Normalized Multi-band Drought Index (NMDI) was utilized to estimate real-time drought severity of vegetation and soil moisture. Finally, Landsat 5 TM and various ancillary sources were used to create a fire risk map utilizing a Multi-criteria Evaluation (MCE) method with the new Fuzzification method in ArcGIS. Multiple variables were inserted into the MCE including soil survey data, Normalized Difference Moisture Index (NDMI), slope data obtained from ASTER Global DEM, land cover/fuel data, and proximity to roads. Methodologies using NASA EOS to acquire all end products were provided to project partners, the Alligator River National Wildlife Refuge (ARNWR) and the North Carolina Forest Service (NCFS), in the form of a user tutorial to allow for a better understanding of how remote sensing can be applied to analyze wildfires

  11. EOSDIS Terra Data Sampler #1: Western US Wildfires 2000. 1.1

    NASA Technical Reports Server (NTRS)

    Perkins, Dorothy C. (Technical Monitor)

    2000-01-01

    This CD-ROM contains sample data in HDF-EOS format from the instruments on board the Earth Observing System (EOS) Terra satellite: (1) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); (2) Clouds and the Earth's Radiant Energy System (CERES); (3) Multi-angle Imaging Spectroradiometer (MISR); and (4) Moderate Resolution Imaging Spectroradiometer (MODIS). Data from the Measurements of Pollution in the Troposphere (MOPITT) instrument were not available for distribution (as of October 17, 2000). The remotely sensed, coincident data for the Western US wildfires were acquired August 30, 2000. This CD-ROM provides information about the Terra mission, instruments, data, and viewing tools. It also provides the Collage tool for viewing data, and links to Web sites containing other digital data processing software. Full granules of the data on this CD-ROM and other EOS Data and Information System (EOSDIS) data products are available from the NASA Distributed Active Archive Centers (DAACs).

  12. Cross-calibration of the Terra MODIS, Landsat 7 ETM+ and EO-1 ALI sensors using near-simultaneous surface observation over the Railroad Valley Playa, Nevada, test site

    NASA Astrophysics Data System (ADS)

    Chander, Gyanesh; Angal, Amit; Choi, Taeyoung Jason; Meyer, David J.; Xiong, Xiaoxiong Jack; Teillet, Philippe M.

    2007-09-01

    A cross-calibration methodology has been developed using coincident image pairs from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS), the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing EO-1 Advanced Land Imager (ALI) to verify the absolute radiometric calibration accuracy of these sensors with respect to each other. To quantify the effects due to different spectral responses, the Relative Spectral Responses (RSR) of these sensors were studied and compared by developing a set of "figures-of-merit." Seven cloud-free scenes collected over the Railroad Valley Playa, Nevada (RVPN), test site were used to conduct the cross-calibration study. This cross-calibration approach was based on image statistics from near-simultaneous observations made by different satellite sensors. Homogeneous regions of interest (ROI) were selected in the image pairs, and the mean target statistics were converted to absolute units of at-sensor reflectance. Using these reflectances, a set of cross-calibration equations were developed giving a relative gain and bias between the sensor pair.

  13. Cross-calibration of the Terra MODIS, Landsat 7 ETM+ and EO-1 ALI sensors using near-simultaneous surface observation over the Railroad Valley Playa, Nevada, test site

    USGS Publications Warehouse

    Chander, G.; Angal, A.; Choi, T.; Meyer, D.J.; Xiong, X.; Teillet, P.M.

    2007-01-01

    A cross-calibration methodology has been developed using coincident image pairs from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS), the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing EO-1 Advanced Land Imager (ALI) to verify the absolute radiometric calibration accuracy of these sensors with respect to each other. To quantify the effects due to different spectral responses, the Relative Spectral Responses (RSR) of these sensors were studied and compared by developing a set of "figures-of-merit." Seven cloud-free scenes collected over the Railroad Valley Playa, Nevada (RVPN), test site were used to conduct the cross-calibration study. This cross-calibration approach was based on image statistics from near-simultaneous observations made by different satellite sensors. Homogeneous regions of interest (ROI) were selected in the image pairs, and the mean target statistics were converted to absolute units of at-sensor reflectance. Using these reflectances, a set of cross-calibration equations were developed giving a relative gain and bias between the sensor pair.

  14. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near

  15. Towards Long-Term Archiving of NASA HDF-EOS and HDF Data - Data Maps and the Use of Mark-Up language

    NASA Astrophysics Data System (ADS)

    Duerr, R.; Folk, M.; Yang, M.; Lynnes, C.; Cao, P.

    2007-12-01

    The Hierarchical Data Format (HDF) has been a data format standard in NASA's Earth Observing System Data and Information System (EOSDIS) since the 1990s. Its rich structure, platform independence, full-featured Application Programming Interface (API), and internal compression make it very useful for archiving science data and utilizing them with a rich set of software tools. However, a key drawback for long-term archiving is the complex internal byte layout of HDF files, requiring one to use the API to access HDF data. This makes the long-term readability of HDF data for a given version dependent on long-term allocation of resources to support that version. The majority of the data from NASA's Earth Observing System (EOS) have been archived in HDF Version 4 (HDF4) format. To address the long-term archival issues for these data a collaborative study between The HDF Group and NASAs EOSDIS data centers is underway. One of the first activities undertaken has been an assessment of the range of HDF4 formatted data held by NASA to determine the capabilities inherent in the HDF format that have been used in practice. Based on the results of this assessment, methods for producing a map of the layout of the HDF Version 4 files held by NASA will be prototyped using a markup-language-based HDF tool to map the layout of the HDF Version 4 files. The resulting maps should allow a separate program to read the file without recourse to the HDF API. To verify this, two independent tools based solely on the map files will be developed and tested with a variety of data products archived by NASA.

  16. Terra Sirenum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image is from a region called Terra Sirenum in Mars' southern hemisphere. This region was named in 1958 for the Sea of the Sirens from Greek Mythology. This is not a sea, however, but a relatively dusty, high albedo region of Mars. There are numerous dust devil tracks that are apparent in the center- left of the image. The dust devils act like vacuum cleaners and lift dust off of the surface leaving a less dusty and relatively lower albedo surface behind. Dust devils are very common on Mars and are thought to be the primary mechanism for constantly lifting the dust into the atmosphere. Dust is constantly present in the Martian atmosphere in greater abundances than typically seen on Earth. The Martian dust is one of the main factors that affect the present Martian climate and clearly displays the relationship between Mars' geology and atmosphere.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California

  17. Arabia Terra

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image shows deposits in a crater located in Arabia Terra. Arabia is generally dust covered and dark streaks or dust avalanches are present in the crater walls. The dominant geologic process acting in this crater interior is wind erosion. The central crater deposits are eroded to form yardangs, or linear wind-sculpted hills that resemble an inverted boat hull. Deflation and abrasion are capable of eroding rock structures that are aligned parallel to wind direction. In the lower right hand side of the crater, a dark deposit has formed barchan dunes. These crescent shaped dunes have 'horns' that point downwind indicating general northwest to southeast wind direction. These dark sands probably played a role in the erosion and formation of the yardangs.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Utilizing NASA Earth Observing System (EOS) Data to Determine Ideal Planting Locations for Wetland Tree Species in St. Bernard Parish, Louisiana

    NASA Technical Reports Server (NTRS)

    Reahard, Ross; Arguelles, Maria; Strong, Emma; Ewing, Michael; Kelly, Chelsey

    2012-01-01

    St. Bernard Parish, in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a combination of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have worked not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for coastal forests. Using NASA EOS, NRCS soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of wetland trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using LIDAR data and classifying existing land cover in the study area from ASTER multispectral satellite data. Low altitude AVIRIS hyperspectral imagery was used to assess the health of vegetation over an area near the intersection of the Mississippi River Gulf Outlet Canal (MRGO) and Bayou la Loutre. Historic extent of coastal forests was mapped using aerial photos from USGS collected between 1952 and 1956. The final products demonstrated the utility of combining NASA EOS with other geospatial data in assessing, monitoring, and restoring of coastal ecosystems in Louisiana. This methodology also provides a useful template for other ecological forecasting and coastal restoration applications.

  19. Terra Satellite

    Atmospheric Science Data Center

    2013-04-19

    ... techniques, this enables construction of 3-D models and estimation of the total amount of sunlight reflected by Earth's diverse ... Artist Concept Terra with MISR location:  Global Images thumbnail:  ...

  20. Using NASA EOS to Assess Air Quality and Health Risks Associated with the Virginia Dismal Swamp Fires of 2011 for Improved Decision Making

    NASA Astrophysics Data System (ADS)

    Hebbar, V.

    2012-12-01

    The Great Dismal Swamp has always experienced recurring wildfires that are part of a natural cycle of ecological growth and succession. However, the Lateral West Fire in 2011 was the product of two factors; an ongoing regional drought and a lightning strike. The fire burned from August to late November and was a challenge to extinguish because of the highly organic peat ecosystem. The fire released smoke that was reported over 200 miles north of the origin. The combustion of organic peat content augmented PM2.5, PM10, and carbon monoxide levels enough to exceed federal air quality limits. In order to analyze the effects, MODIS (Moderate-resolution Imaging Spectroradiometer) aboard Aqua and Terra and Aqua's AIRS (Atmospheric Infrared Sounder) were used. The satellites were used to discern aerosol distribution and chemical content of the fire's smoke plumes. In addition, data taken from NASA Langley's High Spectral Resolution LiDAR from flights conducted during the time period in conjunction with CALIPSO's CALIOP (Cloud-Aerosol LiDAR with Orthogonal Polarization) sensor offered vertical cross sections of aerosol tracking and air quality analysis. Finally, Meteorology-based trajectories and concentration plots from NOAA's HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model added theoretical smoke plume direction and distribution information to compare with observed data. With the utilization of NASA Earth and airborne observing systems in conjunction with models were able to analyze the spread of smoke, aerosols, and its effects on air quality to provide a method that can be used by concerned agencies in an effort to protect regional environment and public health in the case of future exceptional and wildfire events.; MODIS AOD and CALIPSO 532nm attenuated backscatter along with NOAA HYSPLIT Frequency model on August 22nd, indicating smoke direction and particles in the atmosphere.

  1. EOS standards

    SciTech Connect

    Greeff, Carl W

    2011-01-12

    An approach to creating accurate EOS for pressure standards is described. Applications to Cu, Au, and Ta are shown. Extension of the method to high compressions using DFT is illustrated. Comparisons with modern functionals show promise.

  2. 15 Years of Terra, 14 Years of Application Usage

    NASA Astrophysics Data System (ADS)

    Schmaltz, J. E.; Alarcon, C.; Boller, R. A.; Cechini, M. F.; Davies, D.; Fu, G.; Gunnoe, T.; Hall, J. R.; Huang, T.; Ilavajhala, S.; Jackson, M.; King, J.; McGann, M.; Murphy, K. J.; Roberts, J. T.; Thompson, C. K.; Ye, G.

    2014-12-01

    The instruments onboard the Terra spacecraft were designed for long-term Earth science research but not long after launch it became apparent that this data and imagery could be made available in near real-time for applications users. During the year 2000 fire season in the western United States, the US Forest Service approached NASA with a request to expedite MODIS fire detections. The Rapid Response system was created to generate fire detections as well as true color imagery in both swath and geo-referenced formats. This imagery was used by a wide variety of applications, such as NASA's AERONET program, the USDA Foreign Agricultural Service, Antarctic resupply shipping, flood mapping for relief agencies, Deepwater Horizon monitoring, volcanic ash monitoring, as well as print, televised, and Internet media. From 2004, the University of Maryland's Web Fire Mapper helped distribute fire detection information in a variety of formats. However, the applications community expressed the need for near-real time access to the underlying data. This requirement led to the development of the Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) in 2009. To achieve the latency requirements, many components of the EOS satellite operations, ground and science processing systems had to be made more efficient. In addition, products that require ancillary data were modified to use alternate inputs. Forty Terra MODIS data products are currently available from LANCE. LANCE also includes data from other instruments including AIRS, AMSR-E, MLS, and OMI. To help near-real time users navigate this large data offering, a new imagery service was begun in 2011 - Global Imagery Browse Services (GIBS). This service provides very responsive viewing using the Web Map Tile Service protocol. These programs will continue to support and expand the use of Terra data for near-real time applications well into the future.

  3. What A Long Strange Trip It's Been: Lessons Learned From NASA EOS, LTER, NEON, CZO And On To The Future With Sustainable Research Networks

    NASA Astrophysics Data System (ADS)

    Williams, M. W.

    2014-12-01

    The traditional, small-scale, incremental approach to environmental science is changing as researchers embrace a more integrated and multi-disciplinary approach to understanding how our natural systems work today and how they may respond in the future to forcings such as climate change. In situ networks are evolving in response to these challenges so as to provide the appropriate measurements to develop high-resolution spatial and temporal data sets across a wide range of platforms from microbial measurements to remote sensing. These large programs provide a unique set of challenges when compared to more traditional programs. Here I provide insights learned from my participation in a number of large programs, including NASA EOS, LTER, CZO, NEON, and WSC and how those experiences in environmental science can help us move forward towards more applied applications of environmental science, including sustainability initiatives. I'll chat about the importance of managerial and management skills, which most of us scientists prefer to avoid. I'll also chat about making decisions about what long-term measurements to make and when to stop. Data management is still the weakest part of environmental networks; what needs to be done. We have learned that these networks provide an important knowledge base that can lead to informed decisions leading to environmental, energy, social and cultural sustainability.

  4. EOS-WEBSTER - Providing Satellite Imagery for Everyone

    NASA Astrophysics Data System (ADS)

    Schloss, A. L.; Moore, B.; Braswell, R.; Hurtt, G.; Armstrong, W.; Blaha, D.; Carmell, T.; Freuder, R.; Routhier, M.; Spencer, S.

    2002-12-01

    The University of New Hampshire's WEB-based System for Terrestrial Ecosystem Research (EOS-WEBSTER) distributes a special collection of data and imagery products for the Earth Science community. This collection includes satellite imagery from several sensors including the MODIS instrument aboard TERRA. Our services have been designed so that different types of users can access and use only the data that they want. Users can search EOS-WEBSTER's collections, create spatial and temporal subsets, and order data in ASCII or binary formats. We have developed a suite of MODIS products covering Amazonia. These products serve the Large Scale Biosphere-Atmosphere Project in Amazonia (LBA), a joint project of the Brazilian government and NASA. Products include 8-day reflectances (MOD09A1), daily fire potential (MOD14A1), and 16-day NDVIs (MOD13Q1), starting in January 2001. EOS-WEBSTER takes care of obtaining the 14 MODIS tiles that cover Amazonia and stitching them together into a seamless regional coverage. Users can cookie-cut the regional data into smaller areas of interest, such as a field site, a political boundary, or a watershed, then choose an output format such as GrADS and retrieve their order by ftp or on CD-ROM. EOS-WEBSTER delivers MODIS to users whether or not they can manipulate the HDF-EOS format. These regional data sets were developed in cooperation with Eros Data Center to facilitate use of MODIS products by the LBA community. Other products and regions can be developed for other user communities if there is enough interest. Please contact us at support@eos-webster.sr.unh.edu for more information. MODIS is only one of a variety of imagery products available from EOS-WEBSTER. Other platforms include Landsat, SPOT-VEGETATION and IKONOS. We provide Landsat imagery data access to educators by supporting the Forest Watch program, an educational project that includes K-12 teachers and students in UNH research activities that assess the state-of-health of local

  5. EOS Directory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Earth Observing System (EOS) directory is divided into two main sections: white and yellow pages. The white pages list alphabetically the names and addresses -- including e-mail, phone, and fax when available -- of all individuals involved with EOS, from graduate students to panel members to program management and more. The yellow pages list the names, affiliation, and phone number of participants divided by project management, program management, individual project participants, interdisciplinary investigations (listed alphabetically by PI), the Science Executive Committee, various panels, platforms, working groups, fellowships, and contractors.

  6. Adjustments to the MODIS Terra Radiometric Calibration and Polarization Sensitivity in the 2010 Reprocessing

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan A.

    2011-01-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.

  7. Earth System Science Research Using Datra and Products from Terra, Aqua, and ACRIM Satellites

    NASA Technical Reports Server (NTRS)

    Hutchison, Keith D.

    2007-01-01

    The report describes the research conducted at CSR to extend MODIS data and products to the applications required by users in the State of Texas. This research presented in this report was completed during the timeframe of August 2004 - December 31, 2007. However, since annual reports were filed in December 2005 and 2006, results obtained during calendar year 2007 are emphasized in the report. The stated goals of the project were to complete the fundamental research needed to create two types of new, Level 3 products for the air quality community in Texas from data collected by NASA s EOS Terra and Aqua missions.

  8. Terra Meridiani

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] (Released 28 June 2002) The Science This THEMIS visible image illustrates the complex terrains within Terra Meridiani. This general region is one of the more complex on Mars, with a rich array of sedimentary, volcanic, and impact surfaces that span a wide range of martian history. This image lies at the eastern edge of a unique geologic unit that was discovered by the Mars Global Surveyor Thermal Emission Spectrometer (TES) Science Team to have high concentrations of a unique mineral called grey (crystalline) hematite. As discussed by the TES Science Team, this mineral typically forms by processes associated with water, and this region appears to have undergone alteration by hydrothermal (hot water) or other water-related processes. As a result of this evidence for water activity, this region is a leading candidate for further exploration by one of NASA's upcoming Mars Exploration Rovers. The brightness and texture of the surface varies remarkably throughout this image. These differences are associated with different rock layers or ?units?, and can be used to map the occurrence of these layers. The number of layers indicates that extensive deposition by volcanic and sedimentary processes has occurred in this region. Since that time, however, extensive erosion has occurred to produce the patchwork of different layers exposed across the surface. Several distinct layers can be seen within the 20 km diameter crater at the bottom (south) of the image, indicating that this crater once contained layers of sedimentary material that has since been removed. THEMIS infrared images of this region show that many of these rock layers have distinctly different temperatures, indicating that the physical properties vary from layer to layer. These differences suggest that the environment and the conditions under which these layers were deposited or solidified varied through time as these layers were formed. The Story Mars exploration

  9. EOS workstation

    NASA Technical Reports Server (NTRS)

    Leberl, Franz; Karspeck, Milan; Millot, Michel; Maurice, Kelly; Jackson, Matt

    1992-01-01

    This final report summarizes the work done from mid-1989 until January 1992 to develop a prototype set of tools for the analysis of EOS-type images. Such images are characterized by great multiplicity and quantity. A single 'snapshot' of EOS-type imagery may contain several hundred component images so that on a particular pixel, one finds multiple gray values. A prototype EOS-sensor, AVIRIS, has 224 gray values at each pixel. The work focused on the ability to utilize very large images and continuously roam through those images, zoom and be able to hold more than one black and white or color image, for example for stereo viewing or for image comparisons. A second focus was the utilization of so-called 'image cubes', where multiple images need to be co-registered and then jointly analyzed, viewed, and manipulated. The target computer platform that was selected was a high-performance graphics superworkstation, Stardent 3000. This particular platform offered many particular graphics tools such as the Application Visualization System (AVS) or Dore, but it missed availability of commercial third-party software for relational data bases, image processing, etc. The project was able to cope with these limitations and a phase-3 activity is currently being negotiated to port the software and enhance it for use with a novel graphics superworkstation to be introduced into the market in the Spring of 1993.

  10. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Madhavan, Sriharsha; Wenny, Brian

    2012-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur.

  11. HDF-EOS Dump Tools

    NASA Astrophysics Data System (ADS)

    Prasad, U.; Rahabi, A.

    2001-05-01

    The following utilities developed for HDF-EOS format data dump are of special use for Earth science data for NASA's Earth Observation System (EOS). This poster demonstrates their use and application. The first four tools take HDF-EOS data files as input. HDF-EOS Metadata Dumper - metadmp Metadata dumper extracts metadata from EOS data granules. It operates by simply copying blocks of metadata from the file to the standard output. It does not process the metadata in any way. Since all metadata in EOS granules is encoded in the Object Description Language (ODL), the output of metadmp will be in the form of complete ODL statements. EOS data granules may contain up to three different sets of metadata (Core, Archive, and Structural Metadata). HDF-EOS Contents Dumper - heosls Heosls dumper displays the contents of HDF-EOS files. This utility provides detailed information on the POINT, SWATH, and GRID data sets. in the files. For example: it will list, the Geo-location fields, Data fields and objects. HDF-EOS ASCII Dumper - asciidmp The ASCII dump utility extracts fields from EOS data granules into plain ASCII text. The output from asciidmp should be easily human readable. With minor editing, asciidmp's output can be made ingestible by any application with ASCII import capabilities. HDF-EOS Binary Dumper - bindmp The binary dumper utility dumps HDF-EOS objects in binary format. This is useful for feeding the output of it into existing program, which does not understand HDF, for example: custom software and COTS products. HDF-EOS User Friendly Metadata - UFM The UFM utility tool is useful for viewing ECS metadata. UFM takes an EOSDIS ODL metadata file and produces an HTML report of the metadata for display using a web browser. HDF-EOS METCHECK - METCHECK METCHECK can be invoked from either Unix or Dos environment with a set of command line options that a user might use to direct the tool inputs and output . METCHECK validates the inventory metadata in (.met file) using The

  12. Data Information for Global Change Studies: NASA's Distributed Active Archive Centers and Cooperating Data Centers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Earth Observing System (EOS) is an integral part of the National Aeronautics and Space Administration's (NASA's) Earth Science Enterprise (ESE). ESE is a long-term global change research program designed to improve our understanding of the Earth's interrelated processes involving the atmosphere, oceans, land surfaces, and polar regions. Data from EOS instruments and other Earth science measurement systems are useful in understanding the causes and processes of global climate change and the consequences of human activities. The EOS Data and Information System (EOSDIS) provides a structure for data management and user services for products derived from EOS satellite instruments and other NASA Earth science data. Within the EOSDIS framework, the Distributed Active Archive Centers (DAACs) have been established to provide expertise in one or more Earth science disciplines. The DAACs and cooperating data centers provide data and information services to support the global change research community. Much of the development of the DAACs has been in anticipation of the enormous amount of data expected from EOS instruments to be launched within the next two decades. Terra, the EOS flagship launched in December 1999, is the first of a series of EOS satellites to carry several instruments with multispectral capabilities. Some data products from these instruments are now available from several of the DAACs. These and other data products can be ordered through the EOS Data Gateway (EDG) and DAAC-specific online ordering systems.

  13. TerraSAR-X mission

    NASA Astrophysics Data System (ADS)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  14. Electronic crosstalk in Terra MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Madhavan, Sriharsha; Xiong, Xiaoxiong; Wang, Menghua

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is a legacy Earth remote sensing instrument in the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS). The first MODIS instrument was launched in December 1999 on board the Terra spacecraft. MODIS has 36 bands, among which bands 20-25 and bands 27-36 are thermal emissive bands covering a wavelength range from 3.7μm to 14.2μm. It has been found that there are severe contaminations in Terra bands 27-30 (6.7 μm - 9.73 μm) due to crosstalk of signals among themselves. The crosstalk effect induces strong striping artifacts in the Earth View (EV) images and causes large long-term drifts in the EV brightness temperature (BT) in these bands. An algorithm using a linear approximation derived from on-orbit lunar observations has been developed to correct the crosstalk effect for them. It was demonstrated that the crosstalk correction can substantially reduce the striping noise in the EV images and significantly remove the long-term drifts in the EV BT in the Long Wave InfraRed (LWIR) water vapor channels (bands 27-28). In this paper, the crosstalk correction algorithm previously developed is applied to correct the crosstalk effect in the remaining LWIR bands 29 and 30. The crosstalk correction successfully reduces the striping artifact in the EV images and removes long-term drifts in the EV BT in bands 29-30 as was done similarly for bands 27-28. The crosstalk correction algorithm can thus substantially improve both the image quality and the radiometric accuracy of the Level 1B (L1B) products of the LWIR PV bands, bands 27-30. From this study it is also understood that other Terra MODIS thermal emissive bands are contaminated by the crosstalk effect and that the algorithm can be applied to these bands for crosstalk correction.

  15. NASA Remote Sensing Validation Data: Saudi Arabia

    DOE Data Explorer

    Myers, Daryl R. [NREL; Al-Abbadi, Naif [King Abdulaziz City for Science and Technology, Energy Research Institite; Wilcox, Steve [NREL

    Since 1995, the King Abdulaziz City for Science and Technology (KACST) and the National Renewable Energy Laboratory (NREL) have co-operated to establish a 12 station network of high quality solar radiation monitoring installations across the Kingdom of Saudi Arabia. NREL and KACST realized the value of accurate surface solar radiation flux measurements for validation of satellite derived surface and atmospheric solar radiation flux measurements, and is making this data available to support validation of satellite data products related to the NASA Mission to Planet Earth component of the Earth Science Enterprise Earth Observing System (EOS) project to evaluate long term climate trends based on measuements from EOS Terra Platforms. A CIMEL 8 channel sunphotometer for measuring aerosol optical depth at 6 wavelengths and total column water has been deployed at the Solar Village station since February 24, 1999. [Taken from http://rredc.nrel.gov/solar/new_data/Saudi_Arabia/

  16. InfoTerra/TerraSAR initiative

    NASA Astrophysics Data System (ADS)

    Wahl, Manfred W.

    2004-01-01

    The overarching goal of the InfoTerra/TerraSAR Initiative is to establish a self-sustaining operational/commercial business built on Europe"s know-how and experience in space-borne Synthetic Aperture Radar (SAR) technology, in SAR data processing as well as in SAR applications. InfoTerra stands for a new business concept based on supplying innovative geo-information products and services. TerraSAR is a space and ground system conceived to consist of an initial deployment and operation of 2 Radar satellites (one in X- and one in L-band) flying in a tandem configuration in the same orbit. The design of TerraSAR is driven by the market and is user-oriented. TerraSAR is key to capturing a significant proportion of the existing market and to opening new market opportunities, when it becomes operational. The InfoTerra/TerraSAR Initiative has evolved gradually. It started in 1997 as a joint venture between German (DSS) and British (MMS-UK) space industry, strongly supported by both space agencies, DLR and BNSC. In early 2001, DLR and BNSC submitted to ESA the Formal Programme Proposal for InfoTerra/TerraSAR to become an essential element of ESA"s Earth Watch Programme. In summer 2001, when it became evident that there was not yet sufficient support from the ESA Member States to allow immediate start entering into TerraSAR Phase C/D, it has been decided to implement first a TerraSAR consolidation phase. In early 2002, in order to avoid further delays, a contract was signed between DLR and Astrium GmbH on the development of one component of TerraSAR, the TerraSAR-X, in the frame of a national programme, governed by a Public Private Partnership Agreement. Even if now the different launch dates for TerraSAR-X and TerraSAR-L are narrowing down the window of common data acquisition, it is a reasonable starting point, but it should always be kept in mind that the utmost goal for the longterm is to achieve self sustainability by supplying geo-information products and services

  17. HDF-EOS 5 Validator

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    A computer program partly automates the task of determining whether an HDF-EOS 5 file is valid in that it conforms to specifications for such characteristics as attribute names, dimensionality of data products, and ranges of legal data values. ["HDF-EOS" and variants thereof are defined in "Converting EOS Data From HDF-EOS to netCDF" (GSC-15007-1), which is the first of several preceding articles in this issue of NASA Tech Briefs.] Previously, validity of a file was determined in a tedious and error-prone process in which a person examined human-readable dumps of data-file-format information. The present software helps a user to encode the specifications for an HDFEOS 5 file, and then inspects the file for conformity with the specifications: First, the user writes the specifications in Extensible Markup Language (XML) by use of a document type definition (DTD) that is part of the program. Next, the portion of the program (denoted the validator) that performs the inspection is executed, using, as inputs, the specifications in XML and the HDF-EOS 5 file to be validated. Finally, the user examines the output of the validator.

  18. Vector Data Model: A New Model of HDF-EOS to Support GIS Applications in EOS

    NASA Astrophysics Data System (ADS)

    Chi, E.; Edmonds, R d

    2001-05-01

    NASA's Earth Science Data Information System (ESDIS) project has an active program of research and development of systems for the storage and management of Earth science data for Earth Observation System (EOS) mission, a key program of NASA Earth Science Enterprise. EOS has adopted an extension of the Hierarchical Data Format (HDF) as the format of choice for standard product distribution. Three new EOS specific datatypes - point, swath and grid - have been defined within the HDF framework. The enhanced data format is named HDF-EOS. Geographic Information Systems (GIS) are used by Earth scientists in EOS data product generation, visualization, and analysis. There are two major data types in GIS applications, raster and vector. The current HDF-EOS handles only raster type in the swath data model. The vector data model is identified and developed as a new HDFEOS format to meet the requirements of scientists working with EOS data products in vector format. The vector model is designed using a topological data structure, which defines the spatial relationships among points, lines, and polygons. The three major topological concepts that the vector model adopts are: a) lines connect to each other at nodes (connectivity), b) lines that connect to surround an area define a polygon (area definition), and c) lines have direction and left and right sides (contiguity). The vector model is implemented in HDF by mapping the conceptual model to HDF internal data models and structures, viz. Vdata, Vgroup, and their associated attribute structures. The point, line, and polygon geometry and attribute data are stored in similar tables. Further, the vector model utilizes the structure and product metadata, which characterize the HDF-EOS. Both types of metadata are stored as attributes in HDF-EOS files, and are encoded in text format by using Object Description Language (ODL) and stored as global attributes in HDF-EOS files. EOS has developed a series of routines for storing

  19. Results and Lessons from a Decade of Terra MODIS On-Orbit Spectral Characterization

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Choi, T.; Che, N.; Wang, Z.; Dodd, J.

    2010-01-01

    Since its launch in December 1999, the NASA EOS Terra MODIS has successfully operated for more than a decade. MODIS makes observations in 36 spectral bands from visible (VIS) to longwave infrared (LWIR) and at three nadir spatial resolutions: 250m (2 bands), 500m (5 bands), and 1km (29 bands). In addition to its on-board calibrators designed for the radiometric calibration, MODIS was built with a unique device, called the spectro-radiometric calibration assembly (SRCA). It can be configured in three different modes: radiometric, spatial, and spectral. When it is operated in the spectral modes, the SRCA can monitor changes in Sensor spectral performance for the VIS and near-infrared (NIR) spectral bands. For more than 10 years, the SRCA operation has continued to provide valuable information for MODIS on-orbit spectral performance. This paper briefly describes SRCA on-orbit operation and calibration activities; it presents decade-long spectral characterization results for Terra MODIS VIS and NIR spectral bands in terms of chances in their center wavelengths (CW) and bandwidths (BW). It is shown that the SRCA on-orbit wavelength calibration capability remains satisfactory. For most spectral bands, the changes in CW and BW are less than 0.5 and 1 nm, respectively. Results and lessons from Terra MODIS on-orbit spectral characterization have and will continue to benefit its successor, Aqua MODIS, and other future missions.

  20. Terra Cimmeria Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Terra Cimmeria region of Mars. The unnamed crater hosting this image is just east of Molesworth Crater.

    Image information: VIS instrument. Latitude -27.7, Longitude 152 East (208 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Earth Observing System (EOS) Snow and Ice Products for Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Hall, D.; Kaminski, M.; Cavalieri, D.; Dickinson, R.; Marquis, M.; Riggs, G.; Robinson, D.; VanWoert, M.; Wolfe, R.

    2005-01-01

    Snow and ice are the key components of the Earth's cryosphere, and their influence on the Earth's energy balance is very significant due at least in part to the large areal extent and high albedo characterizing these features. Large changes in the cryosphere have been measured over the last century and especially over the past decade, and remote sensing plays a pivotal role in documenting these changes. Many of NASA's Earth Observing System (EOS) products derived from instruments on the Terra, Aqua, and Ice, Cloud and land Elevation Satellite (ICESat) satellites are useful for measuring changes in features that are associated with climate change. The utility of the products is continually enhanced as the length of the time series increases. To gain a more coherent view of the cryosphere and its historical and recent changes, the EOS products may be employed together, in conjunction with other sources of data, and in models. To further this goal, the first EOS Snow and Ice Products Workshop was convened. The specific goals of the workshop were to provide current and prospective users of EOS snow and ice products up-to-date information on the products, their validation status and future enhancements, to help users utilize the data products through hands-on demonstrations, and to facilitate the integration of EOS products into models. Oral and poster sessions representing a wide variety of snow and ice topics were held; three panels were also convened to discuss workshop themes. Panel discussions focused on data fusion and assimilation of the products into models. Approximately 110 people attended, representing a wide array of interests and organizations in the cryospheric community.

  2. Eos Chasma Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This VIS image shows several landslides within Eos Chasma. Many very large landslides have occurred within different portions of Valles Marineris. Note where the northern wall has failed in a upside-down bowl shape, releasing the material that formed the landslide deposit.

    Image information: VIS instrument. Latitude -8, Longitude 318.6 East (41.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Terra in K-16 formal education settings

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Fischer, J. D.; Lewis, P. M.; Moore, S. W.; Oots, P. C.; Rogerson, T. M.; Hitke, K. M.; Riebeek, H.

    2009-12-01

    Since it began, the Terra mission has had an active presence in formal education at the K-16 level. This educational presence was provided through the S’COOL project for the first five years of the mission, joined by the MY NASA DATA project for the second five years. The Students’ Cloud Observations On-Line (S’COOL) Project, begun in 1997 under the auspices of the Clouds and the Earth’s Radiant Energy System (CERES) project, seeks to motivate students across the entire K-12 spectrum to learn science basics and how they tie in to a larger picture. Beginning early on, college level participants have also participated in the project, both in science classes and in science education coursework. The project uses the connection to an on-going NASA science investigation as a powerful motivator for student observations, analysis and learning, and has reached around the globe as shown in the world map. This poster will review the impact that Terra, through S’COOL, has made in formal education over the last decade. The MY NASA DATA Project began in 2004 under the NASA Research, Education and Applications Solutions Network (REASoN). A 5-year REASoN grant enabled the creation of an extensive website which wraps easily accessible Earth science data - including Terra parameters from CERES (involving MODIS data fusion), MISR, and MOPITT (an example for carbon monoxide is given in the graph, with dark areas indicating high CO levels) - with explanatory material written at the middle school level, and an extensive collection of peer-reviewed lesson plans. The MY NASA DATA site has a rapidly growing user-base and was recently adopted by a number of NASA Earth Science missions, in addition to Terra, as a formal education arm of their Education and Public Outreach efforts. This poster will summarize the contributions that Terra, through MY NASA DATA, has made to formal education since 2004.

  4. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    NASA Technical Reports Server (NTRS)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  5. Sensor to User - NASA/EOS Data for Coastal Zone Management Applications Developed from Integrated Analyses: Verification, Validation and Benchmark Report

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Arnone, Robert

    2006-01-01

    The NASA Applied Sciences Program seeks to transfer NASA data, models, and knowledge into the hands of end-users by forming links with partner agencies and associated decision support tools (DSTs). Through the NASA REASoN (Research, Education and Applications Solutions Network) Cooperative Agreement, the Oceanography Division of the Naval Research Laboratory (NRLSSC) is developing new products through the integration of data from NASA Earth-Sun System assets with coastal ocean forecast models and other available data to enhance coastal management in the Gulf of Mexico. The recipient federal agency for this research effort is the National Oceanic and Atmospheric Administration (NOAA). The contents of this report detail the effort to further the goals of the NASA Applied Sciences Program by demonstrating the use of NASA satellite products combined with data-assimilating ocean models to provide near real-time information to maritime users and coastal managers of the Gulf of Mexico. This effort provides new and improved capabilities for monitoring, assessing, and predicting the coastal environment. Coastal managers can exploit these capabilities through enhanced DSTs at federal, state and local agencies. The project addresses three major issues facing coastal managers: 1) Harmful Algal Blooms (HABs); 2) hypoxia; and 3) freshwater fluxes to the coastal ocean. A suite of ocean products capable of describing Ocean Weather is assembled on a daily basis as the foundation for this semi-operational multiyear effort. This continuous realtime capability brings decision makers a new ability to monitor both normal and anomalous coastal ocean conditions with a steady flow of satellite and ocean model conditions. Furthermore, as the baseline data sets are used more extensively and the customer list increased, customer feedback is obtained and additional customized products are developed and provided to decision makers. Continual customer feedback and response with new improved

  6. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  7. Terra, Aqua, and Aura Direct Broadcast - Providing Earth Science Data for Realtime Applications

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Coronado, Patrick L.; Case, Warren F.; Franklin, Ameilia

    2010-01-01

    The need for realtime data to aid in disaster management and monitoring has been clearly demonstrated for the past several years, e.g., during the tsunami in Indonesia in 2004, the hurricane Katrina in 2005, fires, etc. Users want (and often require) the means to get earth observation data for operational regional use as soon as they are generated by satellites. This is especially true for events that can cause loss of human life and/or property. To meet this need, NASA's Earth Observing System (EOS) satellites, Terra and Aqua, provide realtime data useful to disaster management teams. This paper describes the satellites, their Direct Broadcast (DB) capabilities, the data uses, what it takes to deploy a DB ground station, and the future of the DB.

  8. 15 Years of Terra MODIS Instrument on-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Salomonson, V.

    2014-12-01

    The first MODIS instrument, launched on-board the NASA EOS Terra spacecraft in December 1999, has successfully operated for nearly 15 years. MODIS observations have significantly contributed to the studies of many geophysical parameters of the earth's system and its changes over time. Dedicated effort made by the MODIS Characterization Support Team (MCST) to constantly monitor instrument operation, to calibrate changes in sensor response, to derive and update sensor calibration parameters, and to maintain and improve calibration algorithms has played an extremely important role to assure the quality of MODIS data products. MODIS was developed with overall improvements over its heritage sensors. Its observations are made in 36 spectral bands, covering wavelengths from visible to long-wave infrared. The reflective solar bands (1-19 and 26) are calibrated on-orbit by a solar diffuser (SD) panel and regularly scheduled lunar observations. The thermal emissive bands (20-25 and 27-36) calibration is referenced to an on-board blackbody (BB) source. On-orbit changes in the sensor spectral and spatial characteristics are tracked by a spectroradiometric calibration assembly (SRCA). This paper provides an overview of Terra MODIS on-orbit operation and calibration activities implemented from launch to present and the status of instrument health and functions. It demonstrates sensor on-orbit performance derived from its telemetry, on-board calibrators (OBC), and lunar observations. Also discussed in this paper are changes in sensor characteristics, corrections applied to maintain level 1B data quality, various challenging issues, and future improvements.

  9. Visualization, Analysis and Subsetting Tools for EOS Aura Data Products in HDF-EOS5

    NASA Technical Reports Server (NTRS)

    Johnson, J.; Ahmad, S.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.

    2004-01-01

    Aura data products are among the first to use the new version 5 of the Hierarchical Data Format for the Earth Observing System, or HDF-EOS5. This presentation discusses the common HDF-EOS5 file layout that is adopted for most of the EOS Aura standard data products. Details of the various tools that can be used to access, visualize and subset these data will also be provided. Aura, the NASA Earth Observing System's atmospheric chemistry mission, was successfully launched July 15, 2004. The Aura spacecraft includes four instruments: the High Resolution Dynamics Limb Sounder (HIRDLS), the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), and the Tropospheric Emission Spectrometer (TES). Data from the HIRDLS, MLS and OMI will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while TES data will be archived at the NASA Langley Research Center DAAC. For more information see http://daac.gsfc.nasa.gov/.

  10. Web-based Hierarchical Ordering Mechanism (WHOM) tool for MODIS data from Terra

    NASA Astrophysics Data System (ADS)

    Sikder, M. S.; Eaton, P.; Leptoukh, G.; McCrimmon, N.; Zhou, B.

    2001-05-01

    At the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), we have substantially enhanced the popular Web-based Hierarchical Ordering Mechanism (WHOM) to include data from the Earth Observing System (EOS). The GES DAAC archives unprecedented volumes of remotely sensed data and large number of geophysical products derived from the MODIS instrument on board Terra satellite, and distributes them to the world scientific and applications user community. These products are currently divided into three groups: Radiometric and Geolocation, Atmosphere, and Ocean data products. The so-called Terra-WHOM (http://acdisx.gsfc.nasa.gov/data/dataset/MODIS/index.html) is a GES DAAC developed search and order user interface which is a smaller segment of the WHOM interface that provides access to all other GES DAAC data holdings. Terra-WHOM specifically provides user access to MODIS data archived at the GES DAAC. It allows users to navigate through all the available data products and submit a data request with minimal effort. The WHOM modular design and hierarchical architecture makes this tool unique, user-friendly, and very efficient to complete the search and order. The main principle of WHOM is that it advertises the available data products, so, users always know what they can get. The WHOM design includes: simple point & click, flexible, web pages generated from templates, consistent look and feel throughout interface, and easy configuration management due to contents being encapsulated and separated from software. Modular search algorithms provide dynamic Spatial and Temporal search capability and return the search results as html pages using CGI scripts. In Terra-WHOM, calendar pages show the actual number of data granules archived for each day for high-resolution local scenes, and from there the user can go to a page showing the geo-coverage for every granule for a given day. This feature significantly optimizes user's effort for selecting data. The

  11. EOS Data Products Handbook. Volume 2

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L. (Editor); Greenstone, Reynold (Editor); Closs, James (Technical Monitor)

    2000-01-01

    The EOS Data Products Handbook provides brief descriptions of the data products that will be produced from a range of missions of the Earth Observing System (EOS) and associated projects. Volume 1, originally published in 1997, covers the Tropical Rainfall Measuring Mission (TRMM), the Terra mission (formerly named EOS AM-1), and the Data Assimilation System, while this volume, Volume 2, covers the Active Cavity Radiometer Irradiance Monitor Satellite (ACRIMSAT), Aqua, Jason-1, Landsat 7, Meteor 3M/Stratospheric Aerosol and Gas Experiment III (SAGE III). the Quick Scatterometer (QuikScat), the Quick Total Ozone Mapping Spectrometer (Quik-TOMS), and the Vegetation Canopy Lidar (VCL) missions. Volume 2 follows closely the format of Volume 1, providing a list of products and an introduction and overview descriptions of the instruments and data processing, all introductory to the core of the book, which presents the individual data product descriptions, organized into 11 topical chapters. The product descriptions are followed by five appendices, which provide contact information for the EOS data centers that will be archiving and distributing the data sets, contact information for the science points of contact for the data products, references, acronyms and abbreviations, and a data products index.

  12. EOS mapping accuracy study

    NASA Technical Reports Server (NTRS)

    Forrest, R. B.; Eppes, T. A.; Ouellette, R. J.

    1973-01-01

    Studies were performed to evaluate various image positioning methods for possible use in the earth observatory satellite (EOS) program and other earth resource imaging satellite programs. The primary goal is the generation of geometrically corrected and registered images, positioned with respect to the earth's surface. The EOS sensors which were considered were the thematic mapper, the return beam vidicon camera, and the high resolution pointable imager. The image positioning methods evaluated consisted of various combinations of satellite data and ground control points. It was concluded that EOS attitude control system design must be considered as a part of the image positioning problem for EOS, along with image sensor design and ground image processing system design. Study results show that, with suitable efficiency for ground control point selection and matching activities during data processing, extensive reliance should be placed on use of ground control points for positioning the images obtained from EOS and similar programs.

  13. Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric; Day, John H. (Technical Monitor)

    2000-01-01

    The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components. A viewgraph presentation is attached that outlines the same information as the paper and includes more images of the Terra Spacecraft and its components.

  14. Early-EOS data and information system

    NASA Technical Reports Server (NTRS)

    Ludwig, George H.; Hunolt, Gregory W.

    1991-01-01

    NASA's Earth Observing System (EOS), an integral part of the U.S. Global Change Research Program, will provide simultaneous observations from a suite of instruments in low-earth orbit. The EOS Data and Information System (EOSDIS) will handle the data from those instruments, as well as provide access to observations and related information from other earth science missions. The Early-EOSDIS Program will provide initial improved support for global change research by building upon present capabilities and data, and will establish a working prototype EOSDIS for selected archiving, distribution, and information management functions by mid-1994.

  15. EOS Laser Atmosphere Wind Sounder (LAWS) investigation

    NASA Technical Reports Server (NTRS)

    Emmitt, George D.

    1991-01-01

    The related activities of the contract are outlined for the first year. These include: (1) attend team member meetings; (2) support EOS Project with science related activities; (3) prepare and Execution Phase plan; and (4) support LAWS and EOSDIS related work. Attached to the report is an appendix, 'LAWS Algorithm Development and Evaluation Laboratory (LADEL)'. Also attached is a copy of a proposal to the NASA EOS for 'LAWS Sampling Strategies and Wind Computation Algorithms -- Storm-Top Divergence Studies. Volume I: Investigation and Technical Plan, Data Plan, Computer Facilities Plan, Management Plan.'

  16. MOPITT Mechanisms 16 Years In-Orbit Operation on TERRA

    NASA Technical Reports Server (NTRS)

    Gibson, Andrew S.; Nichitiu, Florian; Caldwell, Dwight

    2016-01-01

    The 16th anniversary of the launch of NASA's Terra Spacecraft was marked on December 18, 2015, with the Measurements of Pollution in the Troposphere (MOPITT) instrument being a successful contributor to the NASA EOS flagship. MOPITT has been enabled by a large suite of mechanisms, allowing the instrument to perform long-duration monitoring of atmospheric carbon monoxide, providing global measurements of this important greenhouse gas for 16 years. Mechanisms have been successfully employed for scanning, cooling of detectors, and to optically modulate the gas path length within the instrument by means of pressure and gas cell length variation. The instrument utilizes these devices to perform correlation spectroscopy, enabling measurements with vertical resolution from the nadir view, and has thereby furthered understanding of source and global transport effects of carbon monoxide. Given the design requirement for a 5.25-year lifetime, the stability and performance of the majority of mechanisms have far surpassed design goals. With 16 continuously operating mechanisms in service on MOPITT, including 12 rotating mechanisms and 4 with linear drive elements, the instrument was an ambitious undertaking. The long life requirements combined with demands for cleanliness and optical stability made for difficult design choices including that of the selection of new lubrication processes. Observations and lessons learned with regards to many aspects of the mechanisms and associated monitoring devices are discussed here. Mechanism behaviors are described, including anomalies, long-term drive current/power, fill pressure, vibration and cold-tip temperature trends. The effectiveness of particular lubrication formulations and the screening method implemented is discussed in relation to continuous rotating mechanisms and stepper motors, which have exceeded 15 billon rotations and 2.5 billion steps respectively. Aspects of gas cell hermeticity, optical cleanliness, heater problems

  17. EOS-WEBSTER

    EPA Science Inventory

    The mission of EOS-WEBSTER (Earth, Oceans, and Space - WEB-based System for Terrestrial Environmental Reasearch) is to make data and information products and services concerning terrestrial, ecological and hydrological processesavailable to the Earth System Science community and...

  18. Terra Nova Bay Polynya, Antarctica

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In Terra Nova Bay, off the Scott Coast of Victoria Land, Antarctica, a large pocket of open water persists throughout most of the Southern Hemisphere winter, even while most of the rest of the Antarctic coastline is firmly embraced by the frozen Southern Ocean. This pocket of open water--a polynya--results from exceptionally strong winds that blow downslope from the Trans-Antarctic Mountains. These fierce katabatic winds drive the sea ice eastward. Since the dominant ice drift pattern in the area is northward, the Drygalski Ice Tongue prevents the bay from being re-populated with sea ice. This image of the Terra Nova Bay polynya was captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite on October 16, 2007. Sea ice sits over the Ross Sea like a cracked and crumbling windshield. Blue-tinged glaciers flow down from the Trans-Antarctic Mountains. Although glaciers can appear blue because of melt water, they can also get that tint when the wind scours and polishes the ice surface. Given the strength of the katabatic winds along this part of the Antarctic coast, it is likely that the blue color of these glaciers is a result of their having been swept clean of snow. The large image has a spatial resolution (level of detail) of 250 meters per pixel.

  19. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  20. Terra - the Earth Observing System flagship observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2013-12-01

    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  1. The EOS data and information system

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    1990-01-01

    The Earth Observing System (EOS) is proposed as a 1991 new initiative by NASA as part of the Mission to Planet Earth. One of the key components of the EOS program is the EOS Data and Information System (EOSDIS). Two independent Phase B studies of EOSDIS were conducted from January 1989 through April 1990. Some of the key challenges faced by EOSDIS are: satisfying the data and information needs of a diverse multidisciplinary scientific community integrating product generation algorithms for over two dozen instruments, keeping up with an orbital average data rate of over 50 Mb/sec and assuring prompt generation of standard products, reprocessing data as product generation algorithms change, and storing, and managing information about tens of Petabytes of data over the 15-year life of the mission.

  2. The EOS Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1992-01-01

    The Earth Observing System (EOS) is the centerpiece of NASA's Mission to Planet Earth initiative. It is a pivotal part of the U.S. Global Change Research Program and hence of the international effort to understand global change and the increasing demands of human activity. EOS consists of a space-based observing system, a Data and Information System (EOSDIS) and a scientific research program. The space component consists of two series of polar-orbiting spacecraft, the first scheduled for launch in 1998, that will collect data for 15 years. EOS is completing its conceptual design phase and is preparing to enter the design phase with the selection and construction of the instruments for the first platform. EOSDIS will allow researchers to quickly and easily access data about the Earth system. Development of EOSDIS has already begun; it will support research and analysis with existing data. Geophysical and biological products will be created from the satellite data to be used to a broad range of the scientific community. NASA has also committed to providing smaller missions - called Earth Probes - dedicated to near-term observations of specific Earth processes. The scientific research program was initiated in 1990, with funding for 28 interdisciplinary teams, to begin development of models that will use EOS data and define the data requirements from the instruments, nine facility instruments and their science teams, 23 instrument investigations and definition studies for a synthetic-aperture radar.

  3. EOS Aura Mission Status

    NASA Technical Reports Server (NTRS)

    Guit, William J.

    2015-01-01

    This PowerPoint presentation will discuss EOS Aura mission and spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage lifetime estimate. Eric Moyer, ESMO Deputy Project Manager-Technical (code 428) has reviewed and approved the slides on April 30, 2015.

  4. Eos visible imagers

    NASA Technical Reports Server (NTRS)

    Barnes, W. L.

    1990-01-01

    Some of the proposed Earth Observing System (Eos) optical imagers are examined. These imagers include: moderate resolution imaging spectrometer (MODIS); geoscience laser ranging system (GLRS); high resolution imaging spectrometer (HIRIS); the intermediate thermal infrared spectrometer (ITIR); multi-angle imaging spectrometer (MISR); earth observing scanning polarimeter (EOSP); and the lightening imaging sensor (LIS).

  5. Xanthe Terra Landslide in IR

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    This is a daytime IR image of a chaos region within Xanthe Terra. As with earlier images, the landslide in this image is caused by the failure of steep slopes releasing material to form the landslide deposit.

    Image information: IR instrument. Latitude 3.1, Longitude 309.7 East (50.3 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. The 1991 EOS reference handbook

    NASA Technical Reports Server (NTRS)

    Dokken, David (Editor)

    1991-01-01

    The following topics are covered: (1) The Global Change Research Program; (2) The Earth Observing System (EOS) goal and objectives; (3) primary EOS mission requirements; (4) EOS science; (5) EOS Data and Information System (EOSDIS) architecture; (6) data policy; (7) international cooperation; (8) plans and status; (9) the role of the National Oceanic and Atmospheric Administration; (10) The Global Fellowship Program; (11) management of EOS; (12) mission elements; (13) EOS instruments; (14) interdisciplinary science investigations; (15) points of contact; and (16) acronyms and abbreviations.

  7. The development of the EOS data and information system

    NASA Technical Reports Server (NTRS)

    Taylor, Thomas D.; Ramapriyan, H. K.; Dozier, Jeffrey C.

    1991-01-01

    The architecture of the Earth Observing System (EOS), a major component of NASA's contribution to the U.S. Global Change Research Program, is described with emphasis on its development strategy. It is noted that the EOS is comprised of a scientific research program, a space measurement system, and an EOS Data and Information System (EOSDIS). Details are presented concerning the EOS program and its candidate instruments. Major components of EOS include Version 0 (V0) built on existing Distributed Active Archive Centers (DAACs), the EOSDIS core system (ECS), DAAC-unique functions, science computing facilities (SCF), and independent verification validation of the ECS. Requirements for EODIS are also reviewed noting that, among other requirements, it must keep up with an orbital average data rate of more than 30 Mbps as well as store, distribute, and manage information about tens of Petabytes of data during and after the 15-year mission.

  8. Toward a complete EOS data and information system

    NASA Technical Reports Server (NTRS)

    Chase, Robert R. P.

    1989-01-01

    Based on NASA EOS data panel analyses, an architectural concept is described in terms of elemental composition, top-level functions, and external and internal interfaces. This concept has been evaluated through the use of realistic user-generated scenarios consistent with existing plans for the 1990s and the Space Station. Developmental approaches for the requisite EOS data and information system are presented and a hybrid methodology for implementing this system is discussed.

  9. WebGasEOS

    Energy Science and Technology Software Center (ESTSC)

    2005-10-01

    WebGasEOS provides quick, user-friendly access to real gas physical properties. Using the real gas properties modules of the TOUGH-Fx project, WebGasEOS allows any user, though a web- based application, to define a multicornponent system, specify temperature and pressure, select an equation of state, and compute volumetric, thermodynamic, and fluid properties. Additional functions allow the inclusion of gaseous or liquid water, with or without added salts. The user may choose the format of the results, performmore » repeat calculations or calculations over a range of temperature and pressure, or vary compositions by simply changing form parameters, The application is publicly available on the internet and can be used at any time by anyone with a standards-compliant web browser.« less

  10. Archiving tools for EOS

    NASA Astrophysics Data System (ADS)

    Sindrilaru, Elvin-Alin; Peters, Andreas-Joachim; Duellmann, Dirk

    2015-12-01

    Archiving data to tape is a critical operation for any storage system, especially for the EOS system at CERN which holds production data for all major LHC experiments. Each collaboration has an allocated quota it can use at any given time therefore, a mechanism for archiving "stale" data is needed so that storage space is reclaimed for online analysis operations. The archiving tool that we propose for EOS aims to provide a robust client interface for moving data between EOS and CASTOR (tape backed storage system) while enforcing best practices when it comes to data integrity and verification. All data transfers are done using a third-party copy mechanism which ensures point-to- point communication between the source and destination, thus providing maximum aggregate throughput. Using ZMQ message-passing paradigm and a process-based approach enabled us to achieve optimal utilisation of the resources and a stateless architecture which can easily be tuned during operation. The modular design and the implementation done in a high-level language like Python, has enabled us to easily extended the code base to address new demands like offering full and incremental backup capabilities.

  11. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  12. Terra MODIS RSB on-orbit calibration and performance: four years of data

    NASA Astrophysics Data System (ADS)

    Erives, Hector; Xiong, Xiaoxiong; Sun, Junqiang; Esposito, Joseph A.; Xiong, Sanxiong; Barnes, William L.

    2004-11-01

    Terra MODIS, also referred to as the MODIS Protoflight Model (PFM), was launched on-board the NASA's EOS Terra spacecraft on December 18, 1999. It has been in operation for more than four years and continuously providing the science community quality data sets for studies of the Earth's land, oceans, and atmosphere. It has also served as the primary source of information for the MODIS Land Rapid Response System for observing and reporting on natural disasters, and providing active fire information around the Earth. The MODIS instrument has 36 spectral bands with wavelengths ranging from 0.41mm to 14.5mm: 20 bands with wavelengths below 2.2mm are the reflective solar bands (RSB) and the other 16 bands are the thermal emissive bands (TEB). The RSB are calibrated on-orbit using a solar diffuser (SD) with the degradation of its bi-directional reflectance factor (BRF) tracked by an on-board solar diffuser stability monitor (SDSM). The calibration coefficients are updated via Look-Up Tables (LUTs) for the Level 1B code that converts the sensor's Earth view response from digital counts to calibrated reflectance and radiance. In this paper we review the MODIS RSB on-orbit calibration algorithm and the methodology of computing and updating the calibration coefficients determined from the SD and SDSM data sets. We present examples of the sensor's long-term and short-term stability trending of key RSB calibration parameters using over four years of on-orbit calibration data sets. Special considerations due to changes in instrument configuration and sensor response are also discussed.

  13. GDAL Enhancements for Interoperability with EOS Data

    NASA Astrophysics Data System (ADS)

    Tisdale, M.; Mathews, T. J.; Tisdale, B.; Sun, M.; Yang, C. P.; Lee, H.; Habermann, T.

    2015-12-01

    Historically, Earth Observing Satellite (EOS) data products have been difficult to consume by GIS tools, weather commercial or open-source. This has resulted in a reduced acceptance of these data products by GIS and general user communities. Common problems and challenges experienced by these data users include difficulty when: Consuming data products from NASA Distributed Active Archive Centers (DAACs) that pre-date modern application software with commercial and open-source geospatial tools; Identifying an initial approach for developing a framework and plug-ins that interpret non-compliant data; Defining a methodology that is extensible across NASA Earth Observing System Data and Information System (EOSDIS), scientific communities, and GIS communities by enabling other data centers to construct their own plug-ins and adjust specific data products; and Promoting greater use of NASA Data and new analysis utilizing GIS tools. To address these challenges and to make EOS data products more accessible and interpretable by GIS applications, a collaborative approach has been taken that includes the NASA Langley Atmospheric Science Data Center (ASDC), Esri, George Mason University (GMU), and the Hierarchical Data Format (HDF) Group to create a framework and plugins to be applied to Geospatial Data Abstraction Library (GDAL). This framework and its plugins offer advantages of extensibility within NASA EOSDIS, permitting other data centers to construct their own plugins necessary to adjust their data products. In this session findings related to the framework and the development of GDAL plugins will be reviewed. Specifically, this session will offer a workshop to review documentation and training materials that have been generated for the purpose of guiding other NASA DAACs through the process of constructing plug-ins consistent with the framework as well as a review of the certification process by which the plugins can be independently verified as properly converting the

  14. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoebert, Mark R.; Douglass, A. R.; Hilsenrath, E.; Bhartia, P. K.; Barnett, J.; Gille, J.; Beer, R.; Gunson, M.; Waters, J.; Levelt, P. F.

    2004-01-01

    The Earth Observing System (EOS) Aura satellite is scheduled to launch in the second quarter of 2004. The Aura mission is designed to attack three science questions: (1) Is the ozone layer recovering as expected? (2) What are the sources and processes that control tropospheric pollutants? (3) What is the quantitative impact of constituents on climate change? Aura will answer these questions by globally measuring a comprehensive set of trace gases and aerosols at high vertical and horizontal resolution. Fig. 1 shows the Aura spacecraft and its four instruments.

  15. Synergism of MODIS Aerosol Remote Sensing from Terra and Aqua

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Remer, Lorraine A.

    2003-01-01

    The MODerate-resolution Imaging Spectro-radiometer (MODIS) sensors, aboard the Earth Observing System (EOS) Terra and Aqua satellites, are showing excellent competence at measuring the global distribution and properties of aerosols. Terra and Aqua were launched on December 18, 1999 and May 4, 2002 respectively, with daytime equator crossing times of approximately 10:30 am and 1:30 pm respectively. Several aerosol parameters are retrieved at 10-km spatial resolution from MODIS daytime data over land and ocean surfaces. The parameters retrieved include: aerosol optical thickness (AOT) at 0.47, 0.55 and 0.66 micron wavelengths over land, and at 0.47, 0.55, 0.66, 0.87, 1.2, 1.6, and 2.1 microns over ocean; Angstrom exponent over land and ocean; and effective radii, and the proportion of AOT contributed by the small mode aerosols over ocean. Since the beginning of its operation, the quality of Terra-MODIS aerosol products (especially AOT) have been evaluated periodically by cross-correlation with equivalent data sets acquired by ground-based (and occasionally also airborne) sunphotometers, particularly those coordinated within the framework of the AErosol Robotic NETwork (AERONET). Terra-MODIS AOT data have been found to meet or exceed pre-launch accuracy expectations, and have been applied to various studies dealing with local, regional, and global aerosol monitoring. The results of these Terra-MODIS aerosol data validation efforts and studies have been reported in several scientific papers and conferences. Although Aqua-MODIS is still young, it is already yielding formidable aerosol data products, which are also subjected to careful periodic evaluation similar to that implemented for the Terra-MODIS products. This paper presents results of validation of Aqua-MODIS aerosol products with AERONET, as well as comparative evaluation against corresponding Terra-MODIS data. In addition, we show interesting independent and synergistic applications of MODIS aerosol data from

  16. Terra - 15 Years as the Earth Observing System Flagship Observatory

    NASA Astrophysics Data System (ADS)

    Thome, K. J.

    2014-12-01

    Terra marks its 15th year on orbit with an array of accomplishments and the potential to do much more. Efforts continue to extend the Terra data record to make its data more valuable by creating a record length to examine interannual variability, observe trends on the decadal scale, and gather statistics relevant to climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The power of Terra is in the high quality of the data calibration, sensor characterization, and the complementary nature of the instruments covering a range of scientific measurements as well as scales. The broad range of products enable the community to provide answers to the overarching question, "How is the Earth changing and what are the consequences for life on Earth?" Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National

  17. Terra Sirenum Slope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    16 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the layered rocks and boulders exposed on the wall of a trough in the Terra Sirenum region. The layers that erode to produce large boulders are harder and more resistant to weathering and erosion than those that do not. The slope is located near 25.8oS, 139.8oW. The image covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  18. Comparing Crustal Magnetism of Terra Meridiani and Terra Cimmeria, Mars

    NASA Astrophysics Data System (ADS)

    French, R. A.; Jurdy, D. M.

    2014-12-01

    Terra Meridiani displays remanent crustal magnetization, roughly symmetric and coherent over long distances, that has been interpreted by some workers as resulting from seafloor spreading. A detailed magnetization map of this region, located at 0º, 0º ±20º, will be compared with that of Terra Cimmeria (-40º, 180º) which hosts Mars' most intense and continuous magnetization. Mars Global Surveyor magnetometer (MGS MAG) data from mapping altitude (~400km) was downward continued to the surface. Data from the MGS aerobraking phase contains tracks in Terra Meridiani at altitudes between 110-190 km, revealing localized persistent Br signatures between -268 and 278 nT, with standard deviations of 24 and 17 nT, respectively. These signatures coincide with areas of strongest magnetization on the downward continued map at corresponding altitudes. However, several uncorrelated small-scale pockets of magnetization that appear in the aerobraking dataset may be attributed to shorter wavelength signals or noise. Positive and negative sources in Terra Meridiani show comparable decay with altitude. Similarly, sources in Terra Cimmeria resemble this decay. By extrapolating into the subsurface, we estimate the source depths for both regions and observe that Terra Meridiani has shallower sources than Terra Cimmeria. The strongest magnetization in Terra Meridiani lies along the 4,600 km diameter outer ring of the Chryse basin. A similar association occurs in Terra Cimmeria along the outer rings of the Sirenum basin. The decay of magnetization intensity with altitude, crustal composition, and crustal thickness estimates will be used to create simple models of magnetic sources for Terra Meridiani.

  19. Terra is in NORMAL Mode

    Atmospheric Science Data Center

    2016-02-23

    ... 22, 2016.  TERRA has recovered from Safe Hold and is now in Normal mode. CERES will hold their CAM Wednesday morning and will ... . You can learn more about this mission at the Terra web site. The Flight Operations Team is working on resolving the issue as ...

  20. EOS image data processing system definition study

    NASA Technical Reports Server (NTRS)

    Gilbert, J.; Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.

    1973-01-01

    The Image Processing System (IPS) requirements and configuration are defined for NASA-sponsored advanced technology Earth Observatory System (EOS). The scope included investigation and definition of IPS operational, functional, and product requirements considering overall system constraints and interfaces (sensor, etc.) The scope also included investigation of the technical feasibility and definition of a point design reflecting system requirements. The design phase required a survey of present and projected technology related to general and special-purpose processors, high-density digital tape recorders, and image recorders.

  1. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, E. G.; King, M. D.; Platnick, S.; Schaaf, C. B.; Gao, F.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. The availability of global albedo data over a large range of spectral channels and at high spatial resolution has dramatically improved with the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA s Earth Observing System (EOS) Terra spacecraft in December 1999. However, lack of spatial and temporal coverage due to cloud and snow effects can preclude utilization of official products in production and research studies. We report on a technique used to fill incomplete MOD43 albedo data sets with the intention of providing complete value-added maps. The technique is influenced by the phenological concept that within a certain area, a pixel s ecosystem class should exhibit similar growth cycle events over the same time period. The shape of an area s phenological temporal curve can be imposed upon existing pixel-level data to fill missing temporal points. The methodology will be reviewed by showcasing 2001 global and regional results of complete albedo and NDVl data sets.

  2. Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric; Day, John H. (Technical Monitor)

    2000-01-01

    The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components.

  3. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived From Terra MODIS Land Products

    NASA Astrophysics Data System (ADS)

    Moody, E.; King, M. D.; Platnick, S.; Schaaf, C. B.; Gao, F.

    2003-12-01

    Spectral land surface albedo is an important parameter for describing the radia-tive properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. The availability of global albedo data over a large range of spectral channels and at high spatial resolution has dramatically improved with the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Earth Observing System (EOS) Terra spacecraft in December 1999. However, lack of spatial and temporal coverage due to cloud and snow effects can preclude utilization of official products in production and research studies. We report on a technique used to fill incomplete MOD43 albedo data sets with the intention of providing complete value-added maps. The technique is influ-enced by the phenological concept that within a certain area, a pixel's ecosystem class should exhibit similar growth cycle events over the same time period. The shape of an area's phenological temporal curve can be imposed upon existing pixel-level data to fill missing temporal points. The methodology will be reviewed by showcasing 2001 global and regional results of complete albedo and NDVI data sets.

  4. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  5. Thermal Performance of Capillary Pumped Loops Onboard Terra Spacecraft

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Butler, Charles D.; Swanson, Theodore; Thies, Diane

    2004-01-01

    The Terra spacecraft is the flagship of NASA's Earth Science Enterprise. It provides global data on the state of atmosphere, land and oceans, as well as their interactions with solar radiation and one another. Three Terra instruments utilize Capillary Pumped Heat Transport System (CPHTS) for temperature control: Each CPHTS, consisting of two capillary pumped loops (CPLs) and several heat pipes and electrical heaters, is designed for instrument heat loads ranging from 25W to 264W. The working fluid is ammonia. Since the launch of the Terra spacecraft, each CPHTS has been providing a stable interface temperature specified by the instrument under all modes of spacecraft and instrument operations. The ability to change the CPHTS operating temperature upon demand while in service has also extended the useful life of one instrument. This paper describes the design and on-orbit performance of the CPHTS thermal systems.

  6. Mission operations update for the restructured Earth Observing System (EOS) mission

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  7. Robotic servicing of EOS instruments

    NASA Technical Reports Server (NTRS)

    Razzaghi, Andrea I.; Juberts, Maris

    1990-01-01

    This paper addresses robotic servicing of the Earth Observing Satellite (EOS) instruments. The goals of implementing a robotic servicing system on EOS would be to maintain the instruments throughout the required mission life and minimize life-cycle costs. To address robot servicing, an initial design concept has been developed which will be applied to a representative EOS instrument. This instrument will be used as a model for determining the most practical level of servicing of its parts, and how to design these parts for robot servicing. Using this representative EOS instrument as a model, a generic design scheme will be developed that can be applied to all EOS instruments. The first task is to determine how to identify which parts must be designed for robot servicing. Next, the requirements imposed on the instruments and the servicing robot when designing for robot serviceability must be examined.

  8. 10 years of Terra Outreach over the Internet

    NASA Astrophysics Data System (ADS)

    Yuen, K.; Riebeek, H.; Chambers, L. H.

    2009-12-01

    1 Author Yuen, Karen JPL (818) 393-7716 2 Author Riebeek, Holli Sigma Space Corporation (department) at NASA Goddard Space Flight Center (Institution), Greenbelt, Maryland 3 Author Chambers, Lin NASA Abstract: Since launch, Terra has returned about 195 gigabytes (level 0) of data per day or 1 terabyte every 5 days. Few outlets were able to accommodate and quickly share that amount of information as well as the Internet. To honor the 10-year anniversary of the launch of Terra, we would like to highlight the education and outreach efforts of the Terra mission on the Internet and its reach to the science attentive public. The Internet or web has been the primary way of delivering Terra content to different groups- from formal and informal education to general public outreach. Through the years, many different web-based projects have been developed, and they were of service to a growing population of the science attentive public. One of Terra’s original EPO activities was the Earth Observatory. It was initially dedicated to telling the remote sensing story of Terra, but quickly grew to include science and imagery from other sensors. The web site allowed for collaboration across NASA centers, universities and other organizations by exchanging and sharing of story ideas, news and images. The award winning Earth Observatory helped pave the way for the more recently funded development of the Climate Change website. With its specific focus on climate change studies, once again, Terra stories and images are shared with an even more specific audience base. During the last 10 years, Terra as a mission has captured the imagination of the public through its visually stunning and artistically arresting images. With its five instruments of complementary but unique capabilities, the mission gave the world not just pretty pictures, but scientific data-based images. The world was able to see from space everything from calving icebergs to volcanic eruption plumes and the eye of a

  9. On-orbit performance and calibration improvements for the reflective solar bands of Terra and Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Angal, Amit; Xiong, Xiaoxiong (Jack); Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake

    2016-05-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASA's EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 μm to 2.2 μm, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of +/-55° off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in

  10. Collection of LAI and FPAR Data Over The Terra Core Sites

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Knjazihhin, J.; Tian, Y.; Wang, Y.

    2001-01-01

    The objective of our effort was to collect and archive data on LAI (leaf area index) and FPAR (Fraction of Photosynthetically active Radiation absorbed by vegetation) at the EOS Core validation sites as well as to validate and evaluate global fields of LAI and FPAR derived from atmospherically corrected MODIS (Moderate Resolution Imaging Spectrometer) surface reflectance data by comparing these fields with the EOS Core validation data set. The above has been accomplished by: (a) the participation in selected field campaigns within the EOS Validation Program; (b) the processing of the collected data so that suitable comparison between field measurements and the MODIS LAI/FPAR fields can be made; (c) the comparison of the MODAS LAI/FRAM fields with the EOS Terra Core validation data set.

  11. NASA Surfs the Skies Above Oahu, Hawaii

    NASA Video Gallery

    This flyover of the Hawaiian island of Oahu was made by draping Jan. 13, 2010, image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra ...

  12. Bilateral symmetry across Aphrodite Terra

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Head, J. W.; Campbell, D. B.

    1987-01-01

    There are three main highland areas on Venus: Beta Regio, Ishtar Terra and Aphrodite Terra. The latter is least known and the least mapped, yet existing analyses of Aphrodite Terra based on available Pioneer-Venus orbiter data suggest that it may be the site of extensive rifting. Some of the highest resolution (30 km) PV data (SAR) included most of the western half of Aphrodite Terra. Recent analysis of the SAR data together with Arecibo range-doppler topographic profiling (10 X 100 km horizontal and 10 m vertical resolution) across parts of Aphrodite, further characterized the nature of possible tectonic processes in the equatorial highlands. The existence of distinct topographic and radar morphologic linear discontinuities across the nearly east-west strike of Aphrodite Terra is indicated. Another prominent set of linear features is distinctly parallel to and orthogonal to the ground tracks of the PV spacecraft and are not included because of the possibility that they are artifacts. Study of the northwest trending cross-strike discontinuities (CSD's) and the nature of topographic and morphologic features along their strike suggest the presence of bilateral topographic and morphologic symmetry about the long axis of Aphrodite Terra.

  13. An Overview of the EOS Data Dissemination Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H.K.; Pfister, Robin; Weinstein, Beth

    2008-01-01

    The Earth Observing System Data and Information System (EOSDIS) is the primary data system serving the broad-scope of NASA s Earth Observing System (EOS) program and a significant portion of the "heritage" Earth science data. EOSDIS was designed to support the Earth sciences within NASA s Science Mission Directorate (previously the Earth Science Enterprise (ESE) and Mission to Planet Earth). The EOS Program was NASA s contribution to the United States Global Change Research Program (USGCRP) enacted by Congress in 1990 as part of the Global Change Act. ESE s objective was to launch a series of missions to help answer fundamental global change questions such as "How is Earth changing?" and "What are the consequences for life on Earth?" resulting support of this objective, EOSDIS distributes a wide variety of data to a diverse community.

  14. Preliminary Operational Results of the TDRSS Onboard Navigation System (TONS) for the Terra Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Lorah, John; Santoro, Ernest; Work, Kevin; Chambers, Robert; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Earth Observing System Terra spacecraft was launched on December 18, 1999, to provide data for the characterization of the terrestrial and oceanic surfaces, clouds, radiation, aerosols, and radiative balance. The Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (ONS) (TONS) flying on Terra provides the spacecraft with an operational real-time navigation solution. TONS is a passive system that makes judicious use of Terra's communication and computer subsystems. An objective of the ONS developed by NASA's Goddard Space Flight Center (GSFC) Guidance, Navigation and Control Center is to provide autonomous navigation with minimal power, weight, and volume impact on the user spacecraft. TONS relies on extracting tracking measurements onboard from a TDRSS forward-link communication signal and processing these measurements in an onboard extended Kalman filter to estimate Terra's current state. Terra is the first NASA low Earth orbiting mission to fly autonomous navigation which produces accurate results. The science orbital accuracy requirements for Terra are 150 meters (m) (3sigma) per axis with a goal of 5m (1 sigma) RSS which TONS is expected to meet. The TONS solutions are telemetered in real-time to the mission scientists along with their science data for immediate processing. Once set in the operational mode, TONS eliminates the need for ground orbit determination and allows for a smooth flow from the spacecraft telemetry to planning products for the mission team. This paper will present the preliminary results of the operational TONS solution available from Terra.

  15. An Overview of Future NASA Missions, Concepts, and Technologies Related to Imaging of the World's Land Areas

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1999-01-01

    In the near term NASA is entering into the peak activity period of the Earth Observing System (EOS). The EOS AM-1 /"Terra" spacecraft is nearing launch and operation to be followed soon by the New Millennium Program (NMP) Earth Observing (EO-1) mission. Other missions related to land imaging and studies include EOS PM-1 mission, the Earth System Sciences Program (ESSP) Vegetation Canopy Lidar (VCL) mission, the EOS/IceSat mission. These missions involve clear advances in technologies and observational capability including improvements in multispectral imaging and other observing strategies, for example, "formation flying". Plans are underway to define the next era of EOS missions, commonly called "EOS Follow-on" or EOS II. The programmatic planning includes concepts that represent advances over the present Landsat-7 mission that concomitantly recognize the advances being made in land imaging within the private sector. The National Polar Orbiting Environmental Satellite Series (NPOESS) Preparatory Project (NPP) is an effort that will help to transition EOS medium resolution (herein meaning spatial resolutions near 500 meters), multispectral measurement capabilities such as represented by the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) into the NPOESS operational series of satellites. Developments in Synthetic Aperture Radar (SAR) and passive microwave land observing capabilities are also proceeding. Beyond these efforts the Earth Science Enterprise Technology Strategy is embarking efforts to advance technologies in several basic areas: instruments, flight systems and operational capability, and information systems. In the case of instruments architectures will be examined that offer significant reductions in mass, volume, power and observational flexibility. For flight systems and operational capability, formation flying including calibration and data fusion, systems operation autonomy, and mechanical and electronic innovations that can reduce

  16. Complete EOS for PBX 9502

    SciTech Connect

    Menikoff, Ralph S

    2009-10-08

    PBX 9502 is an insensitive plastic-bonded explosive based on triamino-trinitrobenzene (TATB). A complete equation of state (EOS) is constructed for unreacted PBX 9502 suitable for reactive burn models, i.e., high pressure regime in which material strength is unimportant. The PBX EOS is composed of two parts: a complete EOS for TATB and a porosity model which allows for variations in the initial PBX density. The TATB EOS is based on a cold curve and a thermal model for lattice vibrations. The heat capacity, and hence thermal model, is determined by the vibrational spectrum from Raman scattering. The cold curve is calibrated to diamond anvil cell data for isothermal compression using a two-piece Keane fitting form. Hugoniot data for PBX 9502 is used as a consistency check.

  17. New Millennium EO3

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    The New Millennium Program (NMP) is a NASA technology program that focuses on the validation of advanced spacecraft and instrumentation technologies in space. This program specifically seeks technologies that could significantly benefit future space and Earth science missions by enabling new science capabilities and reducing life cycle costs. These technologies must also require a validation in space to mitigate risks to the first science users, and provide cross-cutting benefits to both NASA's Earth and Space Science enterprises. The NASA Office of Earth Science (OES) directed the NMP to focus the third Earth Observing mission, E03, on innovative measurement concepts that would facilitate remote sensing observations from orbits beyond conventional low-Earth orbit (LEO). These orbits include geosynchronous orbits, highly elliptical orbits, mid-Earth and high-Earth orbits, and other unique vantage points such as L1 and L2. To maximize the input from the Earth science community, a NASA Research Announcement (NRA) was released to solicit innovative measurement concepts for this NMP flight. Because the NMP is a technology validation program, rather than a conventional science program, the NRA required that these measurement concepts employ revolutionary technologies and/or measurement strategies that will enable future science missions from orbits beyond LEO. Another requirement was that a validation in space was needed to reduce real or perceived risks of this concept to future science users. The proposals submitted in response to this NRA were peer reviewed by the NASA OES. The measurement concepts selected through this process will be summarized in this presentation. The E03 measurement concept NRA did not solicit complete mission concepts or flight hardware. Instead, the selected investigators will join integrated project formulation teams to define the mission for the demonstration of the measurement technique and participate in mission design trades and

  18. Follow That Satellite: EO-1 Maneuvers Into Close Formation With Landsat-7

    NASA Technical Reports Server (NTRS)

    DeFazio, Robert L.; Owens, Skip; Good, Susan; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    As the Landsat-7 (LS-7) spacecraft continued NASA's historic program of earth imaging begun over three decades ago, NASA launched the Earth Observing-1 (EO-1) spacecraft carrying examples of the next generation of LS instruments. The validation method for these instruments was to have EO-1 fly in a close formation behind LS-7 on the same World Reference System (WRS) path. From that formation hundreds of near-coincident images would be taken by each spacecraft and compared to evaluate improvements in the EO-1 instruments. This paper will address the mission analysis required to launch and maneuver EO-1 into the formation with LS-7 where instrument validation was to occur plus a summary of completing the formation acquisition. Each EO-1 launch opportunity that occurred on a different day of a LS-7 16-day repeat cycle required a separate and distinct maneuver profile.

  19. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2008-01-01

    Observations of the Earth from space over the past 30 years has enabled an increasingly detailed view of our Earth's atmosphere, land, oceans, and cryosphere, and its many alterations over time. With the advent of improvements in technology, together with increased understanding of the physical principles of remote sensing, it is now possible to routinely observe the global distribution of atmospheric constituents, including both cloud and aerosol optical properties, land surface reflectance, sea ice and glaciers, and numerous properties of the world's oceans. This talk will review the current status of recent NASA Earth observing missions, and summarize key findings. These missions include EOS missions such as Landsat 7, QuikScat, Terra, Jason-1, Aqua, ICESat, SORCE, and Aura, as well as Earth probe missions such as TRMM and SeaWiFS. Recent findings from Cloud- Sat and CALIPSO from the Earth System Science Pathfinder program will also be summarized, if time permits. Due to its wide utilization by the Earth science community, both in the US and abroad, special emphasis will be placed on the Moderate Resolution Imaging Spectroradiometer (MODIS), developed by NASA and launched onboard the Terra spacecraft in 1999 and the Aqua spacecraft in 2002. As the quintessential instrument of the Earth Observing System, it is widely used for studies of the oceans, land, and atmosphere, and its lengthening time series of Earth observations is finding utilization in many communities for both climate, weather, and applications use.

  20. Ocean Data from MODIS at the NASA Goddard DAAC

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Terra satellite carrying the Moderate Resolution Imaging Spectroradiometer (MODIS) was successfully launched on December 18, 1999. Some of the 36 different wavelengths that MODIS samples have never before been measured from space. New ocean data products, which have not been derived on a global scale before, are made available for research to the scientific community. For example, MODIS uses a new split window in the four-micron region for the better measurement of Sea Surface Temperature (SST), and provides the unprecedented ability (683 nm band) to measure chlorophyll fluorescence. At full ocean production, more than a thousand different ocean products in three major categories (ocean color, sea surface temperature, and ocean primary production) are archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) at the rate of approx. 230GB/day. The challenge is to distribute such large volumes of data to the ocean community. It is achieved through a combination of public and restricted EOS Data Gateways, the GES DAAC Search and Order WWW interface, and an FTP site that contains samples of MODIS data. A new Search and Order WWW interface at http://acdisx.gsfc.nasa.gov/data/ developed at the GES DAAC is based on a hierarchical organization of data, will always return non-zero results. It has a very convenient geographical representation of five-minute data granule coverage for each day MODIS Data Support Team (MDST) continues the tradition of quality support at the GES DAAC for the ocean color data from the Coastal Zone Color Scanner (CZCS) and the Sea Viewing Wide Field-of-View Sensor (SeaWiFS) by providing expert assistance to users in accessing data products, information on visualization tools, documentation for data products and formats (Hierarchical Data Format-Earth Observing System (HDF-EOS)), information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN DOCS/MODIS/index.html

  1. HDF-EOS Web Server

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    A shell script has been written as a means of automatically making HDF-EOS-formatted data sets available via the World Wide Web. ("HDF-EOS" and variants thereof are defined in the first of the two immediately preceding articles.) The shell script chains together some software tools developed by the Data Usability Group at Goddard Space Flight Center to perform the following actions: Extract metadata in Object Definition Language (ODL) from an HDF-EOS file, Convert the metadata from ODL to Extensible Markup Language (XML), Reformat the XML metadata into human-readable Hypertext Markup Language (HTML), Publish the HTML metadata and the original HDF-EOS file to a Web server and an Open-source Project for a Network Data Access Protocol (OPeN-DAP) server computer, and Reformat the XML metadata and submit the resulting file to the EOS Clearinghouse, which is a Web-based metadata clearinghouse that facilitates searching for, and exchange of, Earth-Science data.

  2. Slope Streaks in Terra Sabaea

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version

    This HiRISE image shows the rim of a crater in the region of Terra Sabaea in the northern hemisphere of Mars.

    The subimage (figure 1) is a close-up view of the crater rim revealing dark and light-toned slope streaks. Slope streak formation is among the few known processes currently active on Mars. While their mechanism of formation and triggering is debated, they are most commonly believed to form by downslope movement of extremely dry sand or very fine-grained dust in an almost fluidlike manner (analogous to a terrestrial snow avalanche) exposing darker underlying material.

    Other ideas include the triggering of slope streak formation by possible concentrations of near-surface ice or scouring of the surface by running water from aquifers intercepting slope faces, spring discharge (perhaps brines), and/or hydrothermal activity.

    Several of the slope streaks in the subimage, particularly the three longest darker streaks, show evidence that downslope movement is being diverted around obstacles such as large boulders. Several streaks also appear to originate at boulders or clumps of rocky material.

    In general, the slope streaks do not have large deposits of displaced material at their downslope ends and do not run out onto the crater floor suggesting that they have little reserve kinetic energy. The darkest slope streaks are youngest and can be seen to cross cut and superpose older and lighter-toned streaks. The lighter-toned streaks are believed to be dark streaks that have lightened with time as new dust is deposited on their surface.

    Observation Geometry Image PSP_001808_1875 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Dec-2006. The complete image is centered at 7.4 degrees latitude, 47.0 degrees East longitude. The range to the target site was 272.1 km

  3. Point Response Characteristics for the CERES/EOS-PM, FM3 & FM4 instruments.

    NASA Technical Reports Server (NTRS)

    Paden, Jack; Smith, G. Louis; Lee, Robert B., III; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1999-01-01

    This paper describes the point source functions (PSF s) of the Clouds and the Earth s Radiant Energy System (CERES,) Earth Observing System (EOS,) afternoon platform (PM,) Flight Model 3 (FM3,) and Flight Model 4 (FM4) scanning instruments. The PSF (also known as the Point Response Function, or PRF) is vital to the accurate geo-location of the remotely sensed radiance measurements acquired by the instrument. This paper compares the characteristics of the FM3 and FM4 instruments with the earlier Proto Flight Model (PFM) on the Tropical Rainfall Measuring Mission (TRMM) platform, and the FM1 and FM2 Models on the EOS morning orbiting (AM) platform, which has recently been renamed "Terra". All of the PSF s were found to be quite comparable, and the previously noted "spreading" characteristic of the window (water vapor) channel PSF is analyzed Keywords: PSF, PRF, CERES, TRMM, EOS, Earth Radiation Budget

  4. Follow That Satellite: EO-1 Maneuvers into Closed Formation With Landsat-7

    NASA Technical Reports Server (NTRS)

    DeFazio, Robert; Owens, Skip; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    As the Landsat-7 spacecraft continued NASA's historic program of earth imaging, begun over three decades ago, NASA launched the Earth Observing-1 (EO-1) spacecraft carrying examples of the next generation of Landsat-7 instruments. The validation method for these instruments was to have EO-1 fly in a close formation behind Landsat-7 on the same World Reference System path. From that formation hundreds of near coincident images would be taken by each spacecraft and compared to evaluate improvements in the EO-1 instruments. This paper will address the mission analysis required to launch and maneuver EO-1 into the formation with Landsat-7 where instrument validation was to occur plus a summary of completing the formation acquisition. EO-1 is required to operate one minute +/- 6 seconds behind Landsat-7 during the period of co-fly imaging with a cross track separation of within + 3 kilometers. This separation time can also be stated as a one minute +/- 6 seconds time difference in the Mean Local Time (MLT) at the descending nodes. Achieving the required MLT is heavily dependent on the time of launch. The EO-1 launch window, which had to accommodate the dual payloads of EO-1 and SAC-C, was very limited ranging from 0 to 22 seconds over the 16 day Landsat-7 WRS repeat cycle during which EO-1 was launched. Each EO-1 launch opportunity that occurred on a different day of a Landsat-7 16 day repeat cycle required a separate and distinct maneuver profile. These profiles varied significantly in duration and amount of onboard propellant required to achieve them. EO-1 launched on a day judged to have "medium" resource requirements for achieving the formation with Landsat-7. To phase EO-1 one minute behind Landsat-7 in the along track direction, a series of altitude adjusts separated by specific drift intervals were executed. Additional maneuvers slightly changed the EO-1 inclination to maintain the MLT requirements. Orbit maneuvers were planned and executed within errors of less

  5. Earth Observing System (EOS) real-time onboard orbit determination

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Muller, Ron

    1993-01-01

    The paper describes the TDRSS Onboard Navigation System (TONS) selected by NASA/GSFC for the EOS-AM1 spacecraft as the baseline navigation system for real-time onboard orbit determination. Particular attention is given to the TONS algorithms and environmental models, the general design considerations, the algorithm implementation, and the required hardware. Results are presented of the covariance analysis for the nominal onboard and instrument requirements.

  6. Bringing Terra Science to the People: 10 years of education and public outreach

    NASA Astrophysics Data System (ADS)

    Riebeek, H.; Chambers, L. H.; Yuen, K.; Herring, D.

    2009-12-01

    The default image on Apple's iPhone is a blue, white, green and tan globe: the Blue Marble. The iconic image was produced using Terra data as part of the mission's education and public outreach efforts. As far-reaching and innovative as Terra science has been over the past decade, Terra education and public outreach efforts have been equally successful. This talk will provide an overview of Terra's crosscutting education and public outreach projects, which have reached into educational facilities—classrooms, museums, and science centers, across the Internet, and into everyday life. The Earth Observatory web site was the first web site designed for the public that told the unified story of what we can learn about our planet from all space-based platforms. Initially conceived as part of Terra mission outreach in 1999, the web site has won five Webby awards, the highest recognition a web site can receive. The Visible Earth image gallery is a catalogue of NASA Earth imagery that receives more than one million page views per month. The NEO (NASA Earth Observations) web site and WMS (web mapping service) tool serves global data sets to museums and science centers across the world. Terra educational products, including the My NASA Data web service and the Students' Cloud Observations Online (S'COOL) project, bring Terra data into the classroom. Both projects target multiple grade levels, ranging from elementary school to graduate school. S'COOL uses student observations of clouds to help validate Terra data. Students and their parents have puzzled over weekly "Where on Earth" geography quizzes published on line. Perhaps the most difficult group to reach is the large segment of the public that does not seek out science information online or in a science museum or classroom. To reach these people, EarthSky produced a series of podcasts and radio broadcasts that brought Terra science to more than 30 million people in 2009. Terra imagery, including the Blue Marble, have

  7. Autonomous Sciencecraft Experiment (ASE) Operations on EO-1 in 2004

    NASA Technical Reports Server (NTRS)

    Davies, A. G.; Baker, V.; Castano, R.; Chien, S.; Cichy, B.; Doggett, T.; Dohm, J. M.; Greeley, R.; Lee, R.; Sherwood, R.

    2004-01-01

    The Autonomous Sciencecraft Experiment (ASE) has been selected for flight demonstration by NASAs New Millennium Program (NMP) as part of the Space Technology 6 (ST6) mission. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control software, image formation software, and science processing software will be uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 to detect surface modification related to volcanism, ice formation and retreat, and flooding.

  8. Lidar instruments proposed for Eos

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    1990-01-01

    Lidar, an acronym for light detection and ranging, represents a class of instruments that utilize lasers to send probe beams into the atmosphere or onto the surface of the Earth and detect the backscattered return in order to measure properties of the atmosphere or surface. The associated technology has matured to the point where two lidar facilities, Geodynamics Laser Ranging System (GLRS), and Laser Atmospheric Wind Sensor (LAWS) were accepted for Phase 2 studies for Eos. A third lidar facility Laser Atmospheric Sounder and Altimeter (LASA), with the lidar experiment EAGLE (Eos Atmospheric Global Lidar Experiment) was proposed for Eos. The generic lidar system has a number of components. They include controlling electronics, laser transmitters, collimating optics, a receiving telescope, spectral filters, detectors, signal chain electronics, and a data system. Lidar systems that measure atmospheric constituents or meteorological parameters record the signal versus time as the beam propagates through the atmosphere. The backscatter arises from molecular (Rayleigh) and aerosol (Mie) scattering, while attenuation arises from molecular and aerosol scattering and absorption. Lidar systems that measure distance to the Earth's surface or retroreflectors in a ranging mode record signals with high temporal resolution over a short time period. The overall characteristics and measurements objectives of the three lidar systems proposed for Eos are given.

  9. The EducEO project

    NASA Astrophysics Data System (ADS)

    Fritz, Steffen; Dias, Eduardo; Zeug, Guenther; Vescovi, Fabio; See, Linda; Sturn, Tobias; McCallum, Ian; Stammes, Piet; Snik, Frans; Hendriks, Elise

    2015-04-01

    The ESA funded EducEO project is aimed at demonstrating the potential of citizen science and crowdsourcing for Earth Observation (EO), where citizen science and crowdsourcing refer to the involvement of citizens in tasks such as data collection. The potential for using citizens in the calibration and validation of satellite imagery through in-situ measurements and image recognition is largely untapped. The EducEO project will aim to achieve good integration with networks such as GLOBE (primary and secondary education) and COST (higher education) to involve students in four different applications that will be piloted as part of the EducEO project. The presentation will provide a brief overview and initial results of these applications, which include: the iSpex tool for measuring air pollution using an iPhone; a game to classify cropland and deforested areas from high resolution satellite imagery; an application to monitor areas of forest change using radar data from Sentinel-1; and the collection of in-situ yield and production data from both farmers (using high-tech farming equipment) and students. In particular initial results and future potential of the serious game on land cover and forest change monitoring will be discussed.

  10. NASA's mission to planet Earth: Earth observing system

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The topics covered include the following: global climate change; radiation, clouds, and atmospheric water; the ocean; the troposphere - greenhouse gases; land cover and the water cycle; polar ice sheets and sea level; the stratosphere - ozone chemistry; volcanoes; the Earth Observing System (EOS) - how NASA will support studies of global climate change?; research and assessment - EOS Science Investigations; EOS Data and Information System (EOSDIS); EOS observations - instruments and spacecraft; a national international effort; and understanding the Earth System.

  11. Implementation of electronic crosstalk correction for terra MODIS PV LWIR bands

    NASA Astrophysics Data System (ADS)

    Geng, Xu; Madhavan, Sriharsha; Chen, Na; Xiong, Xiaoxiong

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the fleet of NASA's Earth Observing Systems (EOS) in space. Terra MODIS has completed 15 years of operation far exceeding its design lifetime of 6 years. The MODIS Level 1B (L1B) processing is the first in the process chain for deriving various higher level science products. These products are used mainly in understanding the geophysical changes occurring in the Earth's land, ocean, and atmosphere. The L1B code is designed to carefully calibrate the responses of all the detectors of the 36 spectral bands of MODIS and provide accurate L1B radiances (also reflectances in the case of Reflective Solar Bands). To fulfill this purpose, Look Up Tables (LUTs), that contain calibration coefficients derived from both on-board calibrators and Earth-view characterized responses, are used in the L1B processing. In this paper, we present the implementation mechanism of the electronic crosstalk correction in the Photo Voltaic (PV) Long Wave InfraRed (LWIR) bands (Bands 27-30). The crosstalk correction involves two vital components. First, a crosstalk correction modular is implemented in the L1B code to correct the on-board Blackbody and Earth-View (EV) digital number (dn) responses using a linear correction model. Second, the correction coefficients, derived from the EV observations, are supplied in the form of LUTs. Further, the LUTs contain time stamps reflecting to the change in the coefficients assessed using the Noise Equivalent difference Temperature (NEdT) trending. With the algorithms applied in the MODIS L1B processing it is demonstrated that these corrections indeed restore the radiometric balance for each of the affected bands and substantially reduce the striping noise in the processed images.

  12. Seasonal Frost in Terra Sirenum

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image of the Terra Sirenum region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0918 UTC (4:18 a.m. EST) on Nov. 25, 2006, near 38.9 degrees south latitude, 195.9 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across.

    At this time, Mars' southern hemisphere was experiencing mid-winter. During Martian southern winter, the southern polar cap is covered and surrounded by carbon dioxide frost and water frost. This is unlike Earth, whose frozen winter precipitation is made up of only one volatile -- water. The carbon dioxide frost evaporates, or sublimates, at a lower temperature than water frost. So, during spring, the carbon dioxide ice evaporates first and leaves a residue of water frost, which later sublimates as well.

    The image shown here covers part of a crater rim, which is illuminated from the upper left. North is at the top. The topography creates a cold microenvironment on the south side of the rim that is partially protected from solar illumination. That cold surface contains an outlier of the southern seasonal frost about 15 degrees of latitude closer to the equator than the average edge of the frost at this season.

    The top image was constructed from three infrared wavelengths that highlight the bluer color of frost than the background rock and soil. Note that the frost occurs both on sunlit and shaded surfaces on the south side of the rim. The shaded areas are still visible because they are illuminated indirectly by the Martian sky.

    The bottom image was constructed by measuring the depths of spectral absorption bands due to water frost and carbon dioxide frost, and displaying the results in image form. Blue shows strength of an absorption due to water frost near 1.50 micrometers, and green shows strength of an absorption due to carbon dioxide frost near 1.45 micrometers. Red shows

  13. Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA's Earth Observing System

    NASA Astrophysics Data System (ADS)

    Ramsey, Michael S.; Flynn, Luke P.

    2004-07-01

    In 1991, the U.S. National Aeronautics and Space Administration (NASA) launched a comprehensive program to study the Earth as one environmental system. Now called the Earth Science Enterprise (ESE), this coordinated monitoring effort was initially comprised of free-flying satellites and Space Shuttle missions, as well as airborne and ground-based studies. The satellite component of the ESE is known as the Earth Observing System (EOS), which has now entered a planned long-term global monitoring phase. The first EOS satellite, Terra, was launched in December of 1999 and offers integrated measurements of numerous solid earth and atmospheric processes, including volcanic activity. There are currently 10 NASA EOS-designated satellites carrying over thirty instruments, all of which are providing integrated measurements of the interactions between the Earth's global cycles. Included in this effort are science investigations that examine the solid earth cycle and the natural hazards that are an inevitable result of that cycle. For volcanologists, the new higher spatial, spectral, and temporal resolution EOS data have spawned a variety of new algorithms and methodologies to monitor changes in volcanic activity, map volcanic surfaces, and investigate volcanic processes. Thermal anomaly detection, plume chemistry and mass flux, lava composition and textural properties, interaction of ash with the natural and human environment, and mitigation of hazards are but a few of the topics being addressed with these data sets. In this paper, we summarize the current state of volcanic remote sensing in the new EOS era and introduce the more detailed papers that follow in this special issue. This work stems from a special session at the Fall 2001 American Geophysical Union (AGU) meeting that was convened to showcase the current research in volcanic systems and processes using the new EOS satellite data sets. That session was also intended to provide a forum for field, aircraft, and other

  14. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    NASA Astrophysics Data System (ADS)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with

  15. EOS MLS Lessons Learned: Design Ideas for Safer and Lower Cost Operations

    NASA Technical Reports Server (NTRS)

    Miller, Dominick

    2012-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) is a complex instrument with a front end computer and 32 subsystem computers. MLS is one of four instruments on NASA's EOS Aura spacecraft With almost 8 years in orbit, MLS has a few lessons learned which can be applied during the design phase of future instruments to effect better longevity, more robust operations and a significant cost benefit during operations phase.

  16. Terra firma-forme dermatosis.

    PubMed

    Oztürk, Ferdi; Kocabaş, Engin; Ertan, Pelin; Ermertcan, Aylin Türel

    2010-12-01

    Terra firma-forme dermatosis (TFFD) is an uncommon disorder of keratinization with an unknown etiology in which patients present with dirt-like lesions that are resistant to washing. A 6-year old girl presented with the complaint of an asymptomatic brownish black dirt-like eruption on her body. Her parents reported no response to washing with soap and water. Dermatologic examination revealed brown hyperpigmented patches on the trunk and abdominal region. TFFD was suspected, and isopropyl alcohol was applied to the patient's lesions. All lesions completely disappeared after rubbing with alcohol. Terra firma-forme dermatosis is a relatively recently described entity that is much more common than might be expected when surveying the medical literature. With the very few reports found in the literature about TFFD, we believe that an increased awareness of this entity among primary care physicians would help decrease unnecessary worries or medical procedures, since TFFD lesions simply resolve by rubbing with isopropyl alcohol. PMID:20684734

  17. MODIS Ocean Color, SST and Primary Productivity Products at the NASA Goddard Earth Sciences DAAC

    NASA Astrophysics Data System (ADS)

    Koziana, J.; Leptoukh, G.; Savtchenko, A.; Serafino, G.; Sharma, A. K.

    2001-12-01

    The Goddard Earth Science (GES) Distributed Active Archive Center (DAAC) plays a major role in enabling basic scientific research and providing access to scientific data for the user community through the ingest, processing, archive and distribution of MODIS data. MODIS is part of the instrument package on the Terra (formally AM-1) satellite that was launched on December 18. 1999. Global scale ocean products are derived from many of the 36 different wavelengths measured by the MODIS/Terra instrument and are archived at a rate of about 230 GB/day. This paper will provide a description of the MODIS Ocean data products and associated geophysical parameters, data access, data availability and tools. The full suite of ocean products is grouped into three categories: ocean color, SST and primary productivity. The amount of MODIS ocean data being archived at the DAAC will increase dramatically in the near future when the data from the MODIS instrument onboard the Aqua (formally PM-1) spacecraft begins transmission. This will result in a significant increase in the volume of ocean data being ingested, archived and distributed at the GES DAAC. The current suite of products will be generated for both Terra and Aqua. In addition, joint Terra/Aqua ocean products will be derived. The challenge, to distribute such large volumes of data to the ocean community, is achieved through a combination of GES DAAC Hierarchical Search and Order Tool known as, WHOM, and EOS Data Gateway (EDG) World Wide Web (WWW) interfaces and an FTP site that contains samples of MODIS data. The MODIS Data Support Team (MDST) continues the tradition of quality support at the GES DAAC for the ocean color data from CZCS and SeaWiFS by providing expert assistance to users in accessing data products, information on visualization tools, documentation for data products and formats (HDF-EOS), information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/MODIS/index.html

  18. Libraries and Tools for Efficiently Computing and Analyzing NASA Earth Science Data With HDF and HDF5

    NASA Astrophysics Data System (ADS)

    YANG, M.; McGrath, R. E.; Folk, M. J.

    2002-05-01

    The Hierarchical Data Format (HDF) developed at the National Center for Supercomputing Application (NCSA) at University of Illinois at Urbana-Champaign has become the primary standard file format for storing data from NASA's Earth Observing System (EOS). Data from Landsat 7 and Terra (including the CERES, MODIS and MISR instruments) are all stored in HDF and/or HDF-EOS. The original HDF format and library had inherent limitations. For example HDF Version 4 has difficulty supporting huge datasets and does not support parallel computing environments. Since 1999, NCSA has developed a more general and robust data format, called HDF 5, which will support the future demands of Earth Science HDF5 is a new format and library which can support files larger than 2 Gigabytes and a much larger number of number of objects in one file. Moreover, HDF5 supports the Message Passing Interface (MPI-I/O) standard, which is capable of performing I/O efficiently in parallel computing environments. Future NASA EOS missions, beginning with the Aura platform (to be launched in 2003) will use HDF5 and HDF-EOS5. HDF5 is a new data format and is not compatible with earlier versions of HDF. To help smooth transition from HDF to HDF5, NCSA provides a freely distributed toolkit for converting data from HDF4 into HDF5. Users can choose to convert one object or even one attribute of this object to a new HDF5 file. This library is designed to be easily understood and used. The primary language is chosen to be C while Fortran 90 and other APIs will be added. Several experiments with the h4toh5 utility show the conversion time is very minimal, even for realistic NASA datasets. NCSA is also developing a Java tool called HDF View to help users to browse and edit both HDF and HDF5 file in a user-friendly visualization environment. This poster will emphasize on introduction of HDF5 and the conversion and visualization tools from HDF4 to HDF5. NCSA seeks to get feedback from Earth Scientists, especially

  19. Production and Distribution of NASA MODIS Remote Sensing Products

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert

    2007-01-01

    The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on-board NASA's Earth Observing System (EOS) Terra and Aqua satellites make key measurements for understanding the Earth's terrestrial ecosystems. Global time-series of terrestrial geophysical parameters have been produced from MODIS/Terra for over 7 years and for MODIS/Aqua for more than 4 1/2 years. These well calibrated instruments, a team of scientists and a large data production, archive and distribution systems have allowed for the development of a new suite of high quality product variables at spatial resolutions as fine as 250m in support of global change research and natural resource applications. This talk describes the MODIS Science team's products, with a focus on the terrestrial (land) products, the data processing approach and the process for monitoring and improving the product quality. The original MODIS science team was formed in 1989. The team's primary role is the development and implementation of the geophysical algorithms. In addition, the team provided feedback on the design and pre-launch testing of the instrument and helped guide the development of the data processing system. The key challenges the science team dealt with before launch were the development of algorithms for a new instrument and provide guidance of the large and complex multi-discipline processing system. Land, Ocean and Atmosphere discipline teams drove the processing system requirements, particularly in the area of the processing loads and volumes needed to daily produce geophysical maps of the Earth at resolutions as fine as 250 m. The processing system had to handle a large number of data products, large data volumes and processing loads, and complex processing requirements. Prior to MODIS, daily global maps from heritage instruments, such as Advanced Very High Resolution Radiometer (AVHRR), were not produced at resolutions finer than 5 km. The processing solution evolved into a combination of

  20. Transitioning NPOESS Data to Weather Offices: The SPoRT Paradigm with EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary

    2009-01-01

    Real-time satellite information provides one of many data sources used by NWS weather forecast offices (WFOs) to diagnose current weather conditions and to assist in short-term forecast preparation. While GOES satellite data provides relatively coarse spatial resolution coverage of the continental U.S. on a 10-15 minute repeat cycle, polar orbiting imagery has the potential to provide snapshots of weather conditions at high-resolution in many spectral channels. Additionally, polar orbiting sounding data can provide additional information on the thermodynamic structure of the atmosphere in data sparse regions of at asynoptic observation times. The NASA Short-term Prediction Research and Transition (SPoRT) project has demonstrated the utility of polar orbiting MODIS and AIRS data on the Terra and Aqua satellites to improve weather diagnostics and short-term forecasting on the regional and local scales. SPoRT scientists work directly forecasters at selected WFOS in the Southern Region (SR) to help them ingest these unique data streams into their AWIPS system, understand how to use the data (through on-site and distance learn techniques), and demonstrate the utility of these products to address significant forecast problems. This process also prepares forecasters for the use of similar observational capabilities from NPOESS operational sensors. NPOESS environmental data records (EDRs) from the Visible 1 Infrared Imager I Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrlS) and Advanced Technology Microwave Sounder (ATMS) instruments and additional value-added products produced by NESDIS will be available in near real-time and made available to WFOs to extend their use of NASA EOS data into the NPOESS era. These new data streams will be integrated into the NWs's new AWIPS II decision support tools. The AWIPS I1 system to be unveiled in WFOs in 2009 will be a JAVA-based decision support system which preserves the functionality of the existing systems and

  1. HDF-EOS 2 and HDF-EOS 5 Compatibility Library

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    The HDF-EOS 2 and HDF-EOS 5 Compatibility Library contains C-language functions that provide uniform access to HDF-EOS 2 and HDF-EOS 5 files through one set of application programming interface (API) calls. ("HDFEOS 2" and "HDF-EOS 5" are defined in the immediately preceding article.) Without this library, differences between the APIs of HDF-EOS 2 and HDF-EOS 5 would necessitate writing of different programs to cover HDF-EOS 2 and HDF-EOS 5. The API associated with this library is denoted "he25." For nearly every HDF-EOS 5 API call, there is a corresponding he25 API call. If a file in question is in the HDF-EOS 5 format, the code reverts to the corresponding HDF-EOS 5 call; if the file is in the HDF-EOS 2 format, the code translates the arguments to HDF-EOS 2 equivalents (if necessary), calls the HDFEOS 2 call, and retranslates the results back to HDF-EOS 5 (if necessary).

  2. On-orbit stability and performance of the Clouds and Earth's Radiant Energy System (CERES) instrument sensors onboard the Aqua and Terra Spacecraft

    NASA Astrophysics Data System (ADS)

    Shankar, Mohan; Priestley, Kory; Smith, Nitchie; Thomas, Susan; Walikainen, Dale

    2014-09-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments onboard the Terra and Aqua spacecraft are part of the NASA Earth Observing System (EOS) constellation to make long-term observations of the earth. CERES measures the earth-reflected shortwave energy as well as the earth-emitted thermal energy, which are two components of the earth's radiation energy budget. These measurements are made by five instruments- Flight Models (FM) 1 and 2 onboard Terra, FMs 3 and 4 onboard Aqua and FM5 onboard Suomi NPP. Each instrument comprises three sensors that measure the radiances in different wavelength bands- a shortwave sensor that measures in the 0.3 to 5 micron band, a total sensor that measures all the incident energy (0.3-200 microns) and a window sensor that measures the water-vapor window region of 8 to 12 microns. The stability of the sensors is monitored through on-orbit calibration and validation activities. On-orbit calibration is carried out using the Internal Calibration Module (ICM) that consists of a tungsten lamp, blackbodies, and a solar diffuser known as the Mirror Attenuator Mosaic (MAM). The ICM calibration provides information about the stability of the sensors' broadband radiometric gains on-orbit. Several validation studies are conducted in order to monitor the behavior of the instruments in various spectral bands. The CERES Edition-4 data products for FM1-FM4 incorporate the latest corrections to the sensor responses using the calibration techniques. In this paper, we present the on-orbit performance stability as well as some validation studies used in deriving the CERES Edition-4 data products from all four instruments.

  3. Geological Time on Display in Arabia Terra

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This scene from the dust covered plains of eastern Arabia Terra portrays a range of geological time. Three craters at the center of the image capture some of this range. Two have the classic bowl-shape of small, relatively recent craters while the one just to the north has seen much more history. Its rim has been scoured away by erosion and its floor has been filled in by material likely of a sedimentary nature. The channels that wind through the scene may be the oldest features present while the relatively dark streaks scattered about could have been produced in the past few years or even months as winds remove a layer of dust to reveal darker material below.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. 78 FR 23199 - NASA FAR Supplement Regulatory Review No. 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... SPACE ADMINISTRATION 48 CFR Parts 1834, 1841, 1846, 1851 and 1852 RIN 2700-AE01 NASA FAR Supplement...: NASA is updating the NASA FAR Supplement (NFS) with the goal of eliminating unnecessary regulation... this rule are part of NASA's retrospective plan under EO 13563 completed in August 2011....

  5. GDAL Enhancements for Interoperability with EOS Data (GEE)

    NASA Astrophysics Data System (ADS)

    Tisdale, B.

    2015-12-01

    Historically, Earth Observing Satellite (EOS) data products have been difficult to consume by GIS tools, weather commercial or open-source. This has resulted in a reduced acceptance of these data products by GIS and general user communities. Common problems and challenges experienced by these data users include difficulty when: Consuming data products from NASA Distributed Active Archive Centers (DAACs) that pre-date modern application software with commercial and open-source geospatial tools; Identifying[MI1] an initial approach for developing a framework and plug-ins that interpret non-compliant data; Defining a methodology that is extensible across NASA Earth Observing System Data and Information System (EOSDIS), scientific communities, and GIS communities by enabling other data centers to construct their own plug-ins and adjust specific data products; and Promoting greater use of NASA Data and new analysis utilizing GIS tools. To address these challenges and make EOS data products more accessible and interpretable by GIS applications, a collaborative approach has been taken that includes the NASA Langley Atmospheric Science Data Center (ASDC), Esri, George Mason University (GMU), and the Hierarchical Data Format (HDF) Group to create a framework and plugins to be applied to Geospatial Data Abstraction Library (GDAL). This framework and its plugins offer advantages of extensibility within NASA EOSDIS, permitting other data centers to construct their own plugins necessary to adjust their data products. In this session findings related to the framework and the development of GDAL plugins will be reviewed. Specifically, this session will offer a workshop to review documentation and training materials that have been generated for the purpose of guiding other NASA DAACs through the process of constructing plug-ins consistent with the framework as well as a review of the certification process by which the plugins can be independently verified as properly converting

  6. It Security and EO Systems

    NASA Astrophysics Data System (ADS)

    Burnett, M.

    2010-12-01

    One topic that is beginning to influence the systems that support these goals is that of Information Technology (IT) Security. Unsecure systems are vulnerable to increasing attacks and other negative consequences; sponsoring agencies are correspondingly responding with more refined policies and more stringent security requirements. These affect how EO systems can meet the goals of data and service interoperability and harmonization through open access, transformation and visualization services. Contemporary systems, including the vision of a system-of-systems (such as GEOSS, the Global Earth Observation System of Systems), utilize technologies that support a distributed, global, net-centric environment. These types of systems have a high reliance on the open systems, web services, shared infrastructure and data standards. The broader IT industry has developed and used these technologies in their business and mission critical systems for many years. Unfortunately, the IT industry, and their customers have learned the importance of protecting their assets and resources (computing and information) as they have been forced to respond to an ever increasing number and more complex illegitimate “attackers”. This presentation will offer an overview of work done by the CEOS WGISS organization in summarizing security threats, the challenges to responding to them and capturing the current state of the practice within the EO community.

  7. MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.

  8. The NPOESS VIIRS Sensor as the Follow-On to the EOS MODIS Sensor

    NASA Astrophysics Data System (ADS)

    Guenther, B.; Xiong, J.; Murphy, R. E.; Johnson, E.; Deluccia, F.

    2009-12-01

    The NPOESS Preparatory Project (NPP) is serving the operations and research community as the bridge mission between the Earth Observing System (EOS) and the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The key sensor on the first EOS flight is the Moderate Resolution Imaging Spectro-radiometer (MODIS) and the companion key sensor on the NPP mission is the Visible and Infrared Imaging Radiometer Suite (VIIRS). MODIS Terra mission now is more than a decade old. This presentation will review the VIIRS capabilities in the context of continuity with MODIS. The VIIRS sensor has recently completed its calibration and characterization test program and final test results are emerging from it. The comparison between VIIRS and MODIS will include spectral, spatial, radiometric and polarization performance comparisons. New capabilities on VIIRS that are not part of the MODIS sensor also will be highlighted.

  9. Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Ichoku, Charles; Randles, Cynthia; Yuan, Tianle; Da Silva, Arlindo M.; Colarco, Peter R.; Kim, Dongchul; Levy, Robert; Sayer, Andrew; Chin, Mian; Giles, David; Holben, Brent; Welton, Ellsworth; Eck, Thomas; Remer, Lorraine

    2014-01-01

    Aerosols are tiny atmospheric particles that are emitted from various natural and anthropogenic sources. They affect climate through direct and indirect interactions with solar and thermal radiation, clouds, and atmospheric circulation (Solomon et al. 2007). The launch of a variety of sophisticated satellite-based observing systems aboard the Terra, Aqua, Aura, SeaWiFS (see appendix for all acronym expansions), CALIPSO, and other satellites in the late 1990s to mid-2000s through the NASA EOS and other U.S. and non-U.S. programs ushered in a golden era in aerosol research. NASA has been a leader in providing global aerosol characterizations through observations from satellites, ground networks, and field campaigns, as well as from global and regional modeling. AeroCenter (http://aerocenter.gsfc.nasa.gov/), which was formed in 2002 to address the many facets of aerosol research in a collaborative manner, is an interdisciplinary union of researchers (200 members) at NASA GSFC and other nearby institutions, including NOAA, several universities, and research laboratories. AeroCenter hosts a web-accessible regular seminar series and an annual meeting to present up-to-date aerosol research, including measurement techniques; remote sensing algorithms; modeling development; field campaigns; and aerosol interactions with radiation, clouds, precipitation, climate, biosphere, atmospheric chemistry, air quality, and human health. The 2013 annual meeting was held at the NASA GSFC Visitor Center on 31 May 2013, which coincided with the seventh anniversary of the passing of Yoram Kaufman, a modern pioneer in satellite-based aerosol science and the founder of AeroCenter. The central theme of this year's meeting was "current and future perspectives" of NASA's aerosol science and satellite missions.

  10. Earth observing system. Data and information system. Volume 2A: Report of the EOS Data Panel

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this report is to provide NASA with a rationale and recommendations for planning, implementing, and operating an Earth Observing System data and information system that can evolve to meet the Earth Observing System's needs in the 1990s. The Earth Observing System (Eos), defined by the Eos Science and Mission Requirements Working Group, consists of a suite of instruments in low Earth orbit acquiring measurements of the Earth's atmosphere, surface, and interior; an information system to support scientific research; and a vigorous program of scientific research, stressing study of global-scale processes that shape and influence the Earth as a system. The Eos data and information system is conceived as a complete research information system that would transcend the traditional mission data system, and include additional capabilties such as maintaining long-term, time-series data bases and providing access by Eos researchers to relevant non-Eos data. The Working Group recommends that the Eos data and information system be initiated now, with existing data, and that the system evolve into one that can meet the intensive research and data needs that will exist when Eos spacecraft are returning data in the 1990s.

  11. NASA budget in Congress

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The House of Representatives has authorized $161.7 million more than President Ronald Reagan proposed for the fiscal 1984 National Aeronautics and Space Administration (NASA) budget. The House NASA authorization bill (H.R. 2065) passed by voice vote on April 26. Five days earlier, the Senate Commerce, Science, and Technology Committee marked up S. 1096, the Senate's NASA authorization bill, and recommended $171.6 million more than the Reagan proposal. The Senate is expected to vote on the bill in mid May, after which time a conference committee will iron out the differences between the House and Senate versions.President Reagan requested a total NASA budget of $7.1065 billion: $5.7085 billion for research and development, $150.5 million for construction of facilities, and $1.2475 billion for research and program management (Eos, February 15, 1983, p. 65).

  12. The EOS TPC analysis shell

    SciTech Connect

    Olson, D.L.

    1991-03-01

    Key features of the general purpose event-based-data analysis shell (TAS) for the EOS TPC at LBL are described including the code development/code management procedures used. The architecture is designed with a view towards a distributed and multi-processing environment. TAS is interfaced seamlessly with the CERN PAW program and provides a consistent environment for both on-line and off-line analysis. The data model used is relational tables and the data structure definitions are maintained in a commercial database (INFORMIX). The interface for analysis modules is specified and enhances group participation in the development process. The use of commercial database as a data dictionary for both the table definitions and parameters used in the TAS kernel is extremely useful and productive. 6 refs., 4 figs.

  13. TerraLook: GIS-Ready Time-Series of Satellite Imagery for Monitoring Change

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    TerraLook is a joint project of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) with a goal of providing satellite images that anyone can use to see changes in the Earth's surface over time. Each TerraLook product is a user-specified collection of satellite images selected from imagery archived at the USGS Earth Resources Observation and Science (EROS) Center. Images are bundled with standards-compliant metadata, a world file, and an outline of each image's ground footprint, enabling their use in geographic information systems (GIS), image processing software, and Web mapping applications. TerraLook images are available through the USGS Global Visualization Viewer (http://glovis.usgs.gov).

  14. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A2 (EOS/AMSU-A): EOS Software Test Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This document describes the results of the formal qualification test (FQT)/ Demonstration conducted on September 10, and 14, 1998 for the EOS AMSU-A2 instrument. The purpose of the report is to relate the results of the functional performance and interface tests of the software. This is the final submittal of the EOS/AMSU-A Software Test report.

  15. Project to Interface Climate Modeling on Global and Regional Scales with Earth Observing (EOS) Observations

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    2002-01-01

    This ten-year NASA IDS project began in 1990. Its initial work plan adopted the NASA provided timeline that data would become available for new Earth Observing System (EOS) platforms beginning in 1995. Over its first phase, it was based at NCAR, which had submitted the original proposal and involved activities of a substantial number of co-investigators at NCAR who engaged in research over several areas related to the observations expected to be received from the EOS platforms. Their focus was the theme of use of EOS data for improving climate models for projecting global change. From the climate system viewpoint, the IDS addressed land, clouds-hydrological cycle, radiative fluxes and especially aerosol impacts, ocean and sea-ice, and stratosphere. Other research addressed issues of data assimilation, diagnostic analyses, and data set development from current satellite systems, especially use of SAR data for climate models.

  16. Experiences with Testing the Largest Ground System NASA Has Ever Built

    NASA Technical Reports Server (NTRS)

    Lehtonen, Ken; Messerly, Robert

    2003-01-01

    In the 1980s, the National Aeronautics and Space Administration (NASA) embarked upon a major Earth-focused program called Mission to Planet Earth. The Goddard Space Flight Center (GSFC) was selected to manage and develop a key component - the Earth Observing System (EOS). The EOS consisted of four major missions designed to monitor the Earth. The missions included 4 spacecraft. Terra (launched December 1999), Aqua (launched May 2002), ICESat (Ice, Cloud, and Land Elevation Satellite, launched January 2003), and Aura (scheduled for launch January 2004). The purpose of these missions was to provide support for NASA s long-term research effort for determining how human-induced and natural changes affect our global environment. The EOS Data and Information System (EOSDIS), a globally distributed, large-scale scientific system, was built to support EOS. Its primary function is to capture, collect, process, and distribute the most voluminous set of remotely sensed scientific data to date estimated to be 350 Gbytes per day. The EOSDIS is composed of a diverse set of elements with functional capabilities that require the implementation of a complex set of computers, high-speed networks, mission-unique equipment, and associated Information Technology (IT) software along with mission-specific software. All missions are constrained by schedule, budget, and staffing resources, and rigorous testing has been shown to be critical to the success of each mission. This paper addresses the challenges associated with the planning, test definition. resource scheduling, execution, and discrepancy reporting involved in the mission readiness testing of a ground system on the scale of EOSDIS. The size and complexity of the mission systems supporting the Aqua flight operations, for example, combined with the limited resources available, prompted the project to challenge the prevailing testing culture. The resulting success of the Aqua Mission Readiness Testing (MRT) program was due in no

  17. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  18. Observations of Active Volcanoes Using the EO-1 Satellite

    NASA Astrophysics Data System (ADS)

    Flynn, L. P.; Harris, A. J.; Wright, R.; Oppenheimer, C.; Geschwind, L. R.; Donegan, S.; Garbeil, H.

    2001-12-01

    Previous satellite observations of active volcanoes have been hampered by instruments that are primarily designed to measure surface reflectance of the Earth's vegetation. Sensors detecting radiation in the near-IR and IR are frequently saturated by highly radiant active volcanic features. Two satellite instruments, Hyperion and the Advanced Land Imager (ALI) on the Earth Observing -1 (EO-1) offer a means to circumvent saturation issues. Hyperion is a hyperspectral instrument that collects data in 242 narrow spectral bands between 0.4 and 2.5 microns and produces images that are 7.5 km x 100 km. For each 30m x 30m pixel, accurate atmospheric corrections and multiple component thermal models for lava flows can be generated. ALI is a Landsat-like instrument having 10 spectral bands at 0.4 - 2.35 microns. One of these, the 1.2 micron band, is sensitive to high temperature thermal anomalies such as overturning lava lakes and open lava channels. ALI also has a 10-m panchromtic band that allows for greater detailed mapping of volcanic features. ALI and Hyperion analyses for Erta Ale (Ethiopia), Mt. Etna (Sicily), Santiaguito (Guatemala), Popocatepetl (Mexico), and Mayon (Philippines) will be presented. While distribution of these data sets is limited to the EO-1 Science Team, the future of NASA's high spatial resolution terrestrial observation program will likely be based on a hybrid of these EO-1 sensors.

  19. Evaluation of Detector-to-Detector and Mirror Side Differences for Terra MODIS Reflective Solar Bands Using Simultaneous MISR Observations

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Angal, A.; Barnes, W.

    2011-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the five Earth-observing instruments on-board the National Aeronautics and Space Administration (NASA) Earth-Observing System(EOS) Terra spacecraft, launched in December 1999. It has 36 spectral bands with wavelengths ranging from 0.41 to 14.4 mm and collects data at three nadir spatial resolutions: 0.25 km for 2 bands with 40 detectors each, 0.5 km for 5 bands with 20 detectors each and 1 km for the remaining 29 bands with 10 detectors each. MODIS bands are located on four separate focal plane assemblies (FPAs) according to their spectral wavelengths and aligned in the cross-track direction. Detectors of each spectral band are aligned in the along-track direction. MODIS makes observations using a two-sided paddle-wheel scan mirror. Its on-board calibrators (OBCs) for the reflective solar bands (RSBs) include a solar diffuser (SD), a solar diffuser stability monitor (SDSM) and a spectral-radiometric calibration assembly (SRCA). Calibration is performed for each band, detector, sub-sample (for sub-kilometer resolution bands) and mirror side. In this study, a ratio approach is applied to MODIS observed Earth scene reflectances to track the detector-to-detector and mirror side differences. Simultaneous observed reflectances from the Multi-angle Imaging Spectroradiometer (MISR), also onboard the Terra spacecraft, are used with MODIS observed reflectances in this ratio approach for four closely matched spectral bands. Results show that the detector-to-detector difference between two adjacent detectors within each spectral band is typically less than 0.2% and, depending on the wavelengths, the maximum difference among all detectors varies from 0.5% to 0.8%. The mirror side differences are found to be very small for all bands except for band 3 at 0.44 mm. This is the band with the shortest wavelength among the selected matching bands, showing a time-dependent increase for the mirror side difference. This

  20. 78 FR 5116 - NASA Information Security Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Executive Order of 13132 E.O. 13132, ``Federalism,'' 64 FR 43255 (August 4, 1999) requires regulations be... SPACE ADMINISTRATION 14 CFR Part 1203 RIN 2700-AD61 NASA Information Security Protection AGENCY..., Classified National Security Information, and appropriately to correspond with NASA's internal...

  1. ESTIMATION OF LAND SURFACE BROADBAND ALBEDOS AND LEAF AREA INDEX FROM EO-1 DATA AND VALIDATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Advanced Land Imager (ALI) is a multispectral sensor onboard NASA Earth Observer-1 (EO-1). It has similar spatial resolution to the Landsat-7 Enhanced Thematic Mapper Plus (ETM+), with three additional spectral bands. We developed new algorithms for estimating both land surface broadband albedo...

  2. Eosinophilic Esophagitis (EE) or (EoE)

    MedlinePlus

    ... Environmental allergies to substances such as dust mites, animals, pollen and molds can play a role in EoE. For some patients, it may seem like their EoE is worse during pollen seasons. Allergy testing for these common environmental allergies is often part ...

  3. Converting from XML to HDF-EOS

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    A computer program recreates an HDF-EOS file from an Extensible Markup Language (XML) representation of the contents of that file. This program is one of two programs written to enable testing of the schemas described in the immediately preceding article to determine whether the schemas capture all details of HDF-EOS files.

  4. Philosophy and Architecture of the EOS Data and Information System

    NASA Astrophysics Data System (ADS)

    Maiden, Martha

    In 2009, NASA's EOS Data and Information System (EOSDIS) is the world's largest distributed data and information system infrastructure principally supporting science, a coupled, complex network of production capabilities and data systems. Data and information are easily available through the World Wide Web from searchable, on-line data stores with sophisticated metadata schema, data dictionaries, and comprehensive scientific and technical documentation of its holdings. NASA is moving towards adoption of a service-oriented approach deploying Web services, which enable users to make connections between distributed and heterogeneous elements of environmental data and services internal to and external from EOSDIS as needed. Pertinent Web services are accessible via EOSDIS. Examples of data services include subsetting, data reformatting, and search services such as a thesaurus. The principal subject matter of this book, the MODIS and ASTER instruments, and their derived data, products and applications owe their existence and success to EOSDIS.

  5. The UARS and EOS Microwave Limb Sounder (MLS) Experiments.

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Jarnot, R. F.; Cofield, R. E.; Flower, D. A.; Lau, G. K.; Pickett, H. M.; Santee, M. L.; Wu, D. L.; Boyles, M. A.; Burke, J. R.; Lay, R. R.; Loo, M. S.; Livesey, N. J.; Lungu, T. A.; Manney, G. L.; Nakamura, L. L.;  Perun, V. S.;  Ridenoure, B. P.;  Shippony, Z.;  Siegel, P. H.;  Thurstans, R. P.;  Harwood, R. S.;  Pumphrey, H. C.;  Filipiak, M. J.

    1999-01-01

    The Microwave Limb Sounder (MLS) experiments obtain measurements of atmospheric composition, temperature, and pressure by observations of millimeter- and submillimeter-wavelength thermal emission as the instrument field of view is scanned through the atmospheric limb. Features of the measurement technique include the ability to measure many atmospheric gases as well as temperature and pressure, to obtain measurements even in the presence of dense aerosol and cirrus, and to provide near-global coverage on a daily basis at all times of day and night from an orbiting platform. The composition measurements are relatively insensitive to uncertainties in atmospheric temperature. An accurate spectroscopic database is available, and the instrument calibration is also very accurate and stable. The first MLS experiment in space, launched on the (NASA) Upper Atmosphere Research Satellite (UARS) in September 1991, was designed primarily to measure stratospheric profiles of ClO, O3, H2O, and atmospheric pressure as a vertical reference. Global measurement of ClO, the predominant radical in chlorine destruction of ozone, was an especially important objective of UARS MLS. All objectives of UARS MLS have been accomplished and additional geophysical products beyond those for which the experiment was designed have been obtained, including measurement of upper-tropospheric water vapor, which is important for climate change studies. A follow-on MLS experiment is being developed for NASA's Earth Observing System (EOS) and is scheduled to be launched on the EOS CHEMISTRY platform in late 2002. EOS MLS is designed for many stratospheric measurements, including HOx radicals, which could not be measured by UARS because adequate technology was not available, and better and more extensive upper-tropospheric and lower-stratospheric measurements.

  6. Use of EOS Data in AWIPS for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Haines, Stephanie L.; Suggs, Ron J.; Bradshaw, Tom; Darden, Chris; Burks, Jason

    2003-01-01

    Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.

  7. EOS Aqua AMSR-E Arctic Sea Ice Validation Program

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus, T.; Gasiewski, A.; Klein, M.; Maslanik, J.; Sturm, M.; Stroeve, J.; Heinrichs, J.

    2004-01-01

    A coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed in March 2003. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4,2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products include sea ice concentration, sea ice temperature, and snow depth on sea ice. The primary instrument on the P-3B aircraft was the NOAA ETL Polarimetric Scanning Radiometer (PSR) covering the same frequencies and polarizations as the AMSR-E. This paper describes the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound. Comparisons among the satellite and aircraft PSR data sets are presented.

  8. The new millennium program EO-1 mission and spacecraft design concept.

    NASA Astrophysics Data System (ADS)

    Speer, D.; Hestnes, P.; Perry, M.; Stabnow, B.

    Earth Orbiter 1 (EO-1) is the first in a series of Earth Orbiter spacecraft for NASA's New Millennium Program (NMP). Government, academia and industry have been teamed together to develop the EO-1 spacecraft. The mission, instruments, NMP technologies, and spacecraft subsystems are discussed. The remote sensing science instruments which will be flown on the EO-1 spacecraft are the Advanced Land Imager and the Atmospheric Corrector. The NMP technologies planned for spaceflight validation by EO-1 include an X-band phased array antenna, a pulsed plasma thruster, a high-rate fiber optic data bus, a lightweight flexible solar array, formation flight with Landsat-7, and carbon-carbon thermal radiators. The data subsystem contains several new technologies. Other subsystems include attitude control, power, RF communications, structure and mechanisms, and thermal subsystem. The EO-1 mission is a good example of the faster-better-cheaper philosophy that NASA has adopted for its spacecraft, and paves the way for constructing future spacecraft in the new millennium.

  9. Sand Dunes in Noachis Terra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-toned sand dunes in a crater in eastern Noachis Terra. Most big martian dunes tend to be dark, as opposed to the more familiar light-toned dunes of Earth. This difference is a product of the composition of the dunes; on Earth, most dunes contain abundant quartz. Quartz is usually clear (transparent), though quartz sand grains that have been kicked around by wind usually develop a white, frosty surface. On Mars, the sand is mostly made up of the darker minerals that comprise iron- and magnesium-rich volcanic rocks--i.e., like the black sand beaches found on volcanic islands like Hawaii. Examples of dark sand dunes on Earth are found in central Washington state and Iceland, among other places. This picture is located near 49.0oS, 326.3oW. Sunlight illuminates this scene from the upper left; the image covers an area 3 km (1.9 mi) wide.

  10. NASA Science Budget Choices Criticized

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-03-01

    NASA's decision to focus its science efforts on large missions at the expense of smaller missions and research is misguided and will have a long-term negative impact on attracting and retaining scientists and engineers to NASA-related science, several scientists testified at a 2 March hearing. Witnesses at the hearing before the U.S. House of Representatives Science Committee included NASA Associate Administrator for the Science Mission Directorate Mary Cleave and members or chairs of four U.S. National Academy of Sciences (NAS) decadal surveys of various aspects of NASA science. The witnesses discussed cuts and delays to NASA projects proposed in the agency's Fiscal Year 2007 budget request. NASA's science budget would grow by 1.5 percent in FY2007, and then by just one percent per year in 2008-2011 (see Eos 87(9), 2006).

  11. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  12. DEMONSTRATION BULLETIN: TERRA KLEEN SOLVENT EXTRACTION TECHNOLOGY - TERRA-KLEEN RESPONSE GROUP, INC.

    EPA Science Inventory

    The Terra-Kleen Solvent Extraction Technology was developed by Terra-Kleen Response Group, Inc., to remove polychlorinated biphenyls (PCB) and other organic constituents from contaminated soil. This batch process system uses a proprietary solvent at ambient temperatures to treat ...

  13. EOS ASTER thermal infrared band vicarious calibration

    NASA Technical Reports Server (NTRS)

    Palluconi, F.; Tonooka, H.; Hook, S.; Abtahi, A.; Alley, R.; Thompson, T.; Hoover, G.; Zadourian, S.

    2001-01-01

    Calibration of the 5 EOS ASTER instrument emission bands (90 m pixels at surface) is being checked during the operational life of the mission using field measurements simultaneous with the image acquisition.

  14. Small Volcano in Terra Cimmeria

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 26 June 2002) The Science This positive relief feature (see MOLA context) in the ancient highlands of Mars appears to be a heavily eroded volcanic center. The top of this feature appears to be under attack by the erosive forces of the martian wind. Light-toned streaks are visible, trending northeast to southwest, and may be caused by scouring of the terrain, or they may be dune forms moving sand. The northeast portion of the caldera area looks as though a layer of material is being removed to expose a slightly lighter-toned surface underneath. The flanks of this feature are slightly less cratered than the surrounding terrain, which could be explained in two ways: 1) this feature may be younger than the surrounding area, and has had less time to accumulate meteorite impacts, or 2) the slopes that are observed today may be so heavily eroded that the original, cratered surfaces are now gone, exposing relatively uncratered rocks. Although most of Terra Cimmeria has low albedo, some eastern portions, such as shown in this image, demonstrate an overall lack of contrast that attests to the presence of a layer of dust mantling the surface. This dust, in part, is responsible for the muted appearance and infill of many of the craters at the northern and southern ends of this image The Story This flat-topped volcano pops out from the surface, the swirls of its ancient lava flows running down onto the ancient highlands of Mars. Its smooth top appears to be under attack by the erosive forces of the martian wind. How can you tell? Click on the image above for a close-up look. You'll see some light-toned streaks that run in a northeast-southwest direction. They are caused either by the scouring of the terrain or dunes of moving sand. Either way, the wind likely plays upon the volcano's surface. Look also for the subtle, nearly crescent shaped feature at the northeast portion of the volcano's cap. It looks as if a layer of material has been removed by the wind, exposing

  15. Vacuum Energy, EoS, and the Gluon Condensate at Finite Baryon Density in QCD

    SciTech Connect

    Zhitnitsky, Ariel R.

    2007-02-27

    The Equation of States (EoS) plays the crucial role in all studies of neutron star properties. Still, a microscopical understanding of EoS remains largely an unresolved problem. We use 2-color QCD as a model to study the dependence of vacuum energy (gluon condensate in QCD) as function of chemical potential {mu} << {lambda}QCD where we find very strong and unexpected dependence on {mu}. We present the arguments suggesting that similar behavior may occur in 3-color QCD in the color superconducting phases. Such a study may be of importance for analysis of EoS when phenomenologically relevant parameters (within such models as MIT Bag model or NJL model) are fixed at zero density while the region of study lies at much higher densities not available for terrestrial tests.

  16. EOS-AM1 Nickel Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Bennett, Charles W.; Keys, Denney J.; Rao, Gopalakrishna M.; Wannemacher, Hari E.; Vaidyanathan, Harry

    1997-01-01

    This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missile and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of die tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18,202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operating at +30 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements through the first 18

  17. Building EOS capability for Malaysia - the options

    NASA Astrophysics Data System (ADS)

    Subari, M. D.; Hassan, A.

    2014-06-01

    Earth observation satellite (EOS) is currently a major tool to monitor earth dynamics and increase human understanding of earth surface process. Since the early 80s, Malaysia has been using EOS images for various applications, such as weather forecasting, land use mapping, agriculture, environment monitoring and others. Until now, all EOS images were obtained from foreign satellite systems. Realising on the strategic need of having its own capability, Malaysia embarked into EOS development programs in the early 90s. Starting with TiungSAT-1, a micro-satellite carrying small camera, then followed by RazakSAT, a small satellite carrying 2.5 m panchromatic (PAN) medium-aperture-camera, the current satellite program development, the RazakSAT-2, designed to carry a 1.0 m high resolution PAN and 4.0m multi-spectral camera, would become a strategic initiative of the government in developing and accelerating the nation's capability in the area of satellite technology and its application. Would this effort continue until all needs of the remote sensing community being fulfilled by its own EOS? This paper will analyze the intention of the Malaysian government through its National Space Policy and other related policy documents, and proposes some policy options on this. Key factors to be considered are specific data need of the EOS community, data availability and the more subjective political motivations such as national pride.

  18. New class of hybrid EoS and Bayesian M - R data analysis

    NASA Astrophysics Data System (ADS)

    Alvarez-Castillo, D.; Ayriyan, A.; Benic, S.; Blaschke, D.; Grigorian, H.; Typel, S.

    2016-03-01

    We explore systematically a new class of two-phase equations of state (EoS) for hybrid stars that is characterized by three main features: 1) stiffening of the nuclear EoS at supersaturation densities due to quark exchange effects (Pauli blocking) between hadrons, modelled by an excluded volume correction; 2) stiffening of the quark matter EoS at high densities due to multiquark interactions; and 3) possibility for a strong first-order phase transition with an early onset and large density jump. The third feature results from a Maxwell construction for the possible transition from the nuclear to a quark matter phase and its properties depend on the two parameters used for 1) and 2), respectively. Varying these two parameters, one obtains a class of hybrid EoS that yields solutions of the Tolman-Oppenheimer-Volkoff (TOV) equations for sequences of hadronic and hybrid stars in the mass-radius diagram which cover the full range of patterns according to the Alford-Han-Prakash classification following which a hybrid star branch can be either absent, connected or disconnected with the hadronic one. The latter case often includes a tiny connected branch. The disconnected hybrid star branch, also called "third family", corresponds to high-mass twin stars characterized by the same gravitational mass but different radii. We perform a Bayesian analysis and demonstrate that the observation of such a pair of high-mass twin stars would have a sufficient discriminating power to favor hybrid EoS with a strong first-order phase transition over alternative EoS.

  19. The EOS Aqua/Aura Experience: Lessons Learned on Design, Integration, and Test of Earth-Observing Satellites

    NASA Technical Reports Server (NTRS)

    Nosek, Thomas P.

    2004-01-01

    NASA and NOAA earth observing satellite programs are flying a number of sophisticated scientific instruments which collect data on many phenomena and parameters of the earth's environment. The NASA Earth Observing System (EOS) Program originated the EOS Common Bus approach, which featured two spacecraft (Aqua and Aura) of virtually identical design but with completely different instruments. Significant savings were obtained by the Common Bus approach and these lessons learned are presented as information for future program requiring multiple busses for new diversified instruments with increased capabilities for acquiring earth environmental data volume, accuracy, and type.

  20. Earth Observing System (EOS) Communication (Ecom) Modeling, Analysis, and Testbed (EMAT) activiy

    NASA Technical Reports Server (NTRS)

    Desai, Vishal

    1994-01-01

    This paper describes the Earth Observing System (EOS) Communication (Ecom) Modeling, Analysis, and Testbed (EMAT) activity performed by Code 540 in support of the Ecom project. Ecom is the ground-to-ground data transport system for operational EOS traffic. The National Aeronautic and Space Administration (NASA) Communications (Nascom) Division, Code 540, is responsible for implementing Ecom. Ecom interfaces with various systems to transport EOS forward link commands, return link telemetry, and science payload data. To understand the complexities surrounding the design and implementation of Ecom, it is necessary that sufficient testbedding, modeling, and analysis be conducted prior to the design phase. These activities, when grouped, are referred to as the EMAT activity. This paper describes work accomplished to date in each of the three major EMAT activities: modeling, analysis, and testbedding.

  1. EO-1/Hyperion: Nearing Twelve Years of Successful Mission Science Operation and Future Plans

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Campbell, Petya K.; Huemmrich, K. Fred; Zhang, Qingyuan; Landis, David R.; Ungar, Stephen G.; Ong, Lawrence; Pollack, Nathan H.; Cheng, Yen-Ben

    2012-01-01

    The Earth Observing One (EO-1) satellite is a technology demonstration mission that was launched in November 2000, and by July 2012 will have successfully completed almost 12 years of high spatial resolution (30 m) imaging operations from a low Earth orbit. EO-1 has two unique instruments, the Hyperion and the Advanced Land Imager (ALI). Both instruments have served as prototypes for NASA's newer satellite missions, including the forthcoming (in early 2013) Landsat-8 and the future Hyperspectral Infrared Imager (HyspIRI). As well, EO-1 is a heritage platform for the upcoming German satellite, EnMAP (2015). Here, we provide an overview of the mission, and highlight the capabilities of the Hyperion for support of science investigations, and present prototype products developed with Hyperion imagery for the HyspIRI and other space-borne spectrometers.

  2. Exploring NASA and ESA Atmospheric Data Using GIOVANNI, the Online Visualization and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    2007-01-01

    Giovanni, the NASA Goddard online visualization and analysis tool (http://giovanni.gsfc.nasa.gov) allows users explore various atmospheric phenomena without learning remote sensing data formats and downloading voluminous data. Using NASA MODIS (Terra and Aqua) and ESA MERIS (ENVISAT) aerosol data as an example, we demonstrate Giovanni usage for online multi-sensor remote sensing data comparison and analysis.

  3. Northern Terra Meridiani's 'Monument Valley'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Northern Terra Meridiani, near the intersection of the martian equator and prime meridian, is a region of vast exposures of layered rock. A thermal image from the Phobos 2 orbiter in 1989 showed these materials to be anomalously cool during the daytime, an observation very suggestive of dense, hardened materials like rock. Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images of this region show layered material exposed in cliffs, buttes, and mesas that in some ways resemble the rock outcrops of northern Arizona and southeastern Utah in North America (e.g., Monument Valley, Canyonlands, Zion National Park, Four Corners). MGS MOC Extended Mission operations have included several hundred opportunities for the spacecraft to be rolled off-nadir (i.e., at an angle other than 'straight down') to take pictures that repeat earlier MOC coverage. These repeat images, because they are taken from a different angle, can be combined with the original picture to produce a stereoscopic ('3-D') view. The image shown here is a composite of two pictures, the first taken October 23, 2000, the second acquired by pointing the spacecraft off-nadir on May 15, 2001. This view shows four buttes and a pinnacle (near left-center) composed of eroded, layered rock. The four buttes are each capped by the remains of a single layer of rock that is harder than the materials beneath it. It is the presence of this cap rock that has permitted these buttes to remain standing after surrounding materials were eroded away. Like the buttes of Monument Valley in the Navajo Nation on the Arizona/Utah border, these are believed to consist of sedimentary rocks, perhaps deposited in water or by wind, though some scientists have speculated that they could be made of thick accumulations of volcanic ash. The image covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left. To see the image in 3-D, red (left-eye) and blue (right-eye) '3-D' glasses are required.

  4. Assessment of the Short-Term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors

    NASA Technical Reports Server (NTRS)

    Choi, Taeyoung; Xiong, Xiaxiong; Chander, G.; Angal, Amit

    2009-01-01

    The Landsat 7 (L7) Enhanced Thematic Mapper (ETM+) sensor was launched on April 15th, 1999 and has been in operation for over nine years. It has six reflective solar spectral bands located in the visible and shortwave infrared part of the electromagnetic spectrum (0.5 - 2.5 micron) at a spatial resolution of 30 m. The on-board calibrators are used to monitor the on-orbit sensor system changes. The ETM+ performs solar calibrations using on-board Full Aperture Solar Calibrator (FASC) and the Partial Aperture Solar Calibrator (PASC). The Internal Calibrator Lamp (IC) lamps, a blackbody and shutter optics constitute the on-orbit calibration mechanism for ETM+. On 31 May 2003, a malfunction of the scan-line corrector (SLC) mirror assembly resulted in the loss of approximately 22% of the normal scene area. The missing data affects most of the image with scan gaps varying in width from one pixel or less near the centre of the image to 14 pixels along the east and west edges of the image, creating a wedge-shaped pattern. However, the SLC failure has no impacts on the radiometric performance of the valid pixels. On December 18, 1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model (PFM) was launched on-board the NASA's EOS Terra spacecraft. Terra MODIS has 36 spectral bands with wavelengths ranging from 0.41 to 14.5 micron and collects data over a wide field of view angle (+/-55 deg) at three nadir spatial resolutions of 250 m, 500 in 1 km for bands 1 to 2, 3 to 7, and 8 to 36, respectively. It has 20 reflective solar bands (RSB) with spectral wavelengths from 0.41 to 2.1 micron. The RSB radiometric calibration is performed by using on-board solar diffuser (SD), solar diffuser stability monitor (SDSM), space-view (SV), and spectro-radiometric calibration assembly (SRCA). Through the SV port, periodic lunar observations are used to track radiometric response changes at different angles of incidence (AOI) of the scan mirror. As a part of the AM

  5. Assessment of the Short-Term Radiometric Stability between Terra MODIS and Landsat 7 ETM+ Sensors

    NASA Technical Reports Server (NTRS)

    Choi, Taeyoung; Xiong, Xiaxiong; Chander, G.; Angal, Amit

    2009-01-01

    The Landsat 7 (L7) Enhanced Thematic Mapper (ETM+) sensor was launched on April 15th, 1999 and has been in operation for over nine years. It has six reflective solar spectral bands located in the visible and shortwave infrared part of the electromagnetic spectrum (0.5 - 2.5 micron) at a spatial resolution of 30 m. The on-board calibrators are used to monitor the on-orbit sensor system changes. The ETM+ performs solar calibrations using on-board Full Aperture Solar Calibrator (FASC) and the Partial Aperture Solar Calibrator (PASC). The Internal Calibrator Lamp (IC) lamps, a blackbody and shutter optics constitute the on-orbit calibration mechanism for ETM+. On 31 May 2003, a malfunction of the scan-line corrector (SLC) mirror assembly resulted in the loss of approximately 22% of the normal scene area. The missing data affects most of the image with scan gaps varying in width from one pixel or less near the centre of the image to 14 pixels along the east and west edges of the image, creating a wedge-shaped pattern. However, the SLC failure has no impacts on the radiometric performance of the valid pixels. On December 18, 1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) Proto-Flight Model (PFM) was launched on-board the NASA's EOS Terra spacecraft. Terra MODIS has 36 spectral bands with wavelengths ranging from 0.41 to 14.5 micron and collects data over a wide field of view angle (+/-55 deg) at three nadir spatial resolutions of 250 m, 500 in 1 km for bands 1 to 2, 3 to 7, and 8 to 36, respectively. It has 20 reflective solar bands (RSB) with spectral wavelengths from 0.41 to 2.1 micron. The RSB radiometric calibration is performed by using on-board solar diffuser (SD), solar diffuser stability monitor (SDSM), space-view (SV), and spectro-radiometric calibration assembly (SRCA). Through the SV port, periodic lunar observations are used to track radiometric response changes at different angles of incidence (AOI) of the scan mirror. As a part of the AM

  6. EOS MLS Level 1B Data Processing Software. Version 3

    NASA Technical Reports Server (NTRS)

    Perun, Vincent S.; Jarnot, Robert F.; Wagner, Paul A.; Cofield, Richard E., IV; Nguyen, Honghanh T.; Vuu, Christina

    2011-01-01

    This software is an improvement on Version 2, which was described in EOS MLS Level 1B Data Processing, Version 2.2, NASA Tech Briefs, Vol. 33, No. 5 (May 2009), p. 34. It accepts the EOS MLS Level 0 science/engineering data, and the EOS Aura spacecraft ephemeris/attitude data, and produces calibrated instrument radiances and associated engineering and diagnostic data. This version makes the code more robust, improves calibration, provides more diagnostics outputs, defines the Galactic core more finely, and fixes the equator crossing. The Level 1 processing software manages several different tasks. It qualifies each data quantity using instrument configuration and checksum data, as well as data transmission quality flags. Statistical tests are applied for data quality and reasonableness. The instrument engineering data (e.g., voltages, currents, temperatures, and encoder angles) is calibrated by the software, and the filter channel space reference measurements are interpolated onto the times of each limb measurement with the interpolates being differenced from the measurements. Filter channel calibration target measurements are interpolated onto the times of each limb measurement, and are used to compute radiometric gain. The total signal power is determined and analyzed by each digital autocorrelator spectrometer (DACS) during each data integration. The software converts each DACS data integration from an autocorrelation measurement in the time domain into a spectral measurement in the frequency domain, and estimates separately the spectrally, smoothly varying and spectrally averaged components of the limb port signal arising from antenna emission and scattering effects. Limb radiances are also calibrated.

  7. Science Requirements Document for OMI-EOS. 2

    NASA Technical Reports Server (NTRS)

    Levelt, P. F.; vanderA, R.; Bhartia, P. K.; Boersma, F.; Brinksma, E.; Carpay, J.; Chance, K.; deHaan, J.; Hilsenrath, E.; Isaksen, I.

    2000-01-01

    A Dutch-Finnish scientific and industrial consortium is supplying the Ozone Monitoring Instrument (OMI) for Earth Observing System-Aura (EOS-Aura). EOS-Aura is the next NASA mission to study the Earth's atmosphere extensively, and successor to the highly successful UARS (Upper Atmospheric Research Satellite) mission. The 'Science Requirements Document for OMI-EOS' presents an overview of the Aura and OMI mission objectives. It describes how OMI fits into the Aura mission and it reviews the synergy with the other instruments onboard Aura to fulfill the mission. This evolves in the Scientific Requirements for OMI (Chapter 3), stating which trace gases have to be measured with what necessary accuracy, in order for OMI to meet Aura's objectives. The most important data product of OMI, the ozone vertical column, densities shall have a better accuracy and an improved global coverage than the predecessor instruments TOMS (Total Ozone Monitoring Spectrometer) and GOME (Global Ozone Monitoring Experiment), which is a.o. achieved by a better signal to noise ratio, improved calibration and a wide field-of-view. Moreover, in order to meet its role on Aura, OMI shall measure trace gases, such as NO2, OClO, BrO, HCHO and SO2, aerosols, cloud top height and cloud coverage. Improved accuracy, better coverage, and finer ground grid than has been done in the past are goals for OMI. After the scientific requirements are defined, three sets of subordinate requirements are derived. These are: the algorithm requirements, i.e. what do the algorithms need in order to meet the scientific requirements; the instrument and calibration requirements, i.e. what has to be measured and how accurately in order to provide the quality of data necessary for deriving the data products; and the validation requirements, i.e. a strategy of how the OMI program will assure that its data products are valid in the atmosphere, at least to the required accuracy.

  8. Enabling the Continuous EOS-SNPP Satellite Data Record thru EOSDIS Services

    NASA Astrophysics Data System (ADS)

    Hall, A.; Behnke, J.; Ho, E. L.

    2015-12-01

    Following Suomi National Polar-Orbiting Partnership (SNPP) launch of October 2011, the role of the NASA Science Data Segment (SDS) focused primarily on evaluation of the sensor data records (SDRs) and environmental data records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program as to their suitability for Earth system science. The evaluation has been completed for Visible Infrared Imager Radiometer Suite (VIIRS), Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), and Ozone Mapper/Profiler Suite (OMPS) Nadir instruments. Since launch, the SDS has also been processing, archiving and distributing data from the Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments and this work is planned to continue through the life of the mission. As NASA transitions to the production of standard, Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP, the Suomi NPP Science Team (ST) will need data processing and production facilities to produce the new science products they develop. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean. Atmosphere, Ozone, and Sounder will produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products and provide the products to the NASA's Distributed Active Archive Centers (DAACs) for distribution to the user community. The SIPS will ingest EOS compatible Level 0 data from EOS Data Operations System (EDOS) for their data processing. A key feature is the use of Earth Observing System Data and Information System (EOSDIS) services for the continuous EOS-SNPP satellite data record. This allows users to use the same tools and interfaces on SNPP as they would on the entire NASA Earth Science data collection in EOSDIS.

  9. Review of Terra MODIS thermal emissive band L1B radiometric performance

    NASA Astrophysics Data System (ADS)

    Moeller, Chris; Menzel, W. P.; Quinn, Greg

    2014-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) on NASA's Earth Observing System Terra satellite, launched into orbit on 18 December 1999, will have a "first light" 15th anniversary on 24 February 2015. For nearly 15 years the MODIS instrument has provided radiances in all spectral bands. Though some detectors have fallen below SNR thresholds, the vast majority of spectral bands continue to provide high quality L1B measurements for use in L2 science algorithms supporting global climate research. Radiometric accuracy of the Terra MODIS thermal emissive bands (TEBs) in the C6 L1B product has been assessed using various approaches over the nearly 15 year Terra MODIS data record, including comparisons with instruments on the ground, in aircraft under-flights, and on other satellites. All of these approaches contribute to the understanding of the Terra MODIS radiometric L1B performance. Early in the lifetime of Terra, ground-based measurements and NASA ER-2 aircraft under-flights revealed that TEBs in the infrared window ("window" bands) are well calibrated and performing within accuracy specifications. The ER-2 under-flights also suggested that many atmospheric bands may be performing outside of specification, especially LWIR CO2 sensitive bands that are subject to optical crosstalk, although analysis uncertainties are larger for atmospheric bands. Beginning in 2007, MetOp-A IASI observations were used to evaluate Terra MODIS TEB performance through Simultaneous Nadir Overpass (SNO) comparisons. These inter-satellite comparisons largely affirm the early aircraft and ground-based evaluations, showing that all Terra MODIS window bands have small biases, minimal trending, and minor detector and mirror side striping over the 2007-2013 timeframe. Most atmospheric bands are performing satisfactorily near to specification; however, biases, striping and trending are large and significantly out of specification in the water vapor sensitive band 27 and ozone sensitive

  10. Web-based Dissemination of TRMM Data via TerraFly

    NASA Astrophysics Data System (ADS)

    Rishe, N. D.; Teng, B.; Rui, H.; Graham, S. C.; Gutierrez, M. E.

    2004-12-01

    Florida International University's High Performance Database Research Center (FIU HPDRC) is collaborating with the Goddard Earth Sciences Data and Information Service Center's Distributed Active Archive Center (GES DISC DAAC) to provide an easy-to-use and powerful Web-based interface to Tropical Rainfall Measuring Mission (TRMM) and other satellite data from NASA's Earth Science Enterprise (ESE). The collaboration uses FIU's TerraFly data dissemination tools to make TRMM and other data available to a wider audience of users. TerraFly is a Web-enabled system (http://terrafly.fiu.edu) designed to aid in the visualization of spatial and remote sensed imagery. This system allows one to "fly" over the Earth's surface and explore spatial data such as aerial photography, satellite imagery, street maps, and locale information. Internet capability allows the system to access numerous data sets without the installation of any specialized GIS programs. Designed for users of all levels and unlike other geographic information systems, TerraFly runs via standard Web browsers, with no need to download software or data prior to visualization. TerraFly can be delivered as a standalone application or a Web-based tool. FIU's technology of streaming incremental tiles to a Java applet allows the user to "fly" even via modem connections. While "flying" over imagery in TerraFly, the user can see various overlays, such as road names, application-relevant points that are hyperlinked to more information, and shaded zones that depict thematic map layers. The user can also view multi-spectral data by assigning bands to the RGB display and by visualizing the application of various algorithms and filters on multiple spectral bands or multiple data sets. The user can thus compare imagery of the same area acquired at different times or different imagery of the same area acquired concurrently and apply advanced visualization algorithms to the data. The FIU-GES DISC DAAC project aims to make TRMM

  11. DETAIL OF ORNAMENTAL TERRA COTTA FRIEZE ABOVE GROUND FLOOR AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF ORNAMENTAL TERRA COTTA FRIEZE ABOVE GROUND FLOOR AND TYPICAL TERRA COTTA WINDOW SILL. CORNER OF CLAY AND 15TH STREETS - John Breuner & Company Building, 1515 Clay Street, Oakland, Alameda County, CA

  12. Cratered terrain in Terra Meridiani

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 30 April 2002) The Science This THEMIS visible image shows a region in Terra Meridiani near -12o S, 358o W (2o E). An old, heavily degraded channel can be seen from the lower (southern) portion of the image toward the top. This channel appears to terminate abruptly at the rim of a 10 km diameter crater. This apparent 'superposition' of the crater on top of the channel suggests that the impact crater was created after the channel was formed. This crater has two 3-km sized blocks of material that have slumped off from the lower left segment of the original crater rim. These immense blocks must have moved as a single unit because the rock layers that can be seen in the original wall of the crater can still be seen in these detached blocks. The walls of several craters in this image show vague hints of possible gully formation at the bottom of pronounced rock layers, with the suggestion of alcoves above the individual gullies. Well-developed gullies that were imaged by the Mars Orbiter Camera (MOC) on Mars Global Surveyor have been suggested to form by seepage and runoff of a fluid. The MOC has observed these gullies in numerous craters and channels further south, but they are uncommon at latitudes this close to the equator. Several sections of the crater walls appear to have ridges and troughs formed by the dry avalanche of loose rock, and a similar process of dry avalanche may account for the gullies seen in this THEMIS image. Patches of lighter material, possibly small dunes ripples, can be seen in several places throughout this image. The Story When the walls come tumbling down! Take a closer look at the bright linear ridges within a deep crater near the center of this image (bottom, left-hand side of the crater). Almost 2 miles long, these chunks of material slumped off the crater side in one fell swoop. Phoozhj! Down they came as one massive unit. You can tell, because the rock layers seen in the original wall of the crater are also still there in the

  13. EOS distributed planning and scheduling prototype

    NASA Astrophysics Data System (ADS)

    Hull, Larry G.; Peters, Stephen F.; Davis, Randy

    Some of the more significant lessons learned during the development of the Earth Observing System (EOS) Distributed Planning and Scheduling Prototype are presented. The need for a central scheduler is not demonstrated. A mapping of scheduling and conflict-resolution responsibility across the nodes of the EOS distributed scheduling system is developed and shown to be both feasible and appropriate. Complex instrument scheduling is mostly accomplished at the ICC/IST (instrument control center/instrumental support terminal) with 'slidable' flexibility for slews and some kinds of calibrations resolved at the EOS Operations Center (EOC). All nodes have full visibility interinstrument contention for resource and environmental rights, e.g., vibration, thermal, and electromagnetic. The EOC assigns, by activity, initial action responsibility for conflict resolution to a node which is party to the conflict. Most interinstrument conflicts are resolved by the ICCs and ISTs during an intermediate scheduling phase while the EOC is negotiating a TDRS schedule with the NCC.

  14. ASY-EOS experiment at GSI

    NASA Astrophysics Data System (ADS)

    Russotto, P.; Acosta, L.; Adamczyk, M.; Al-Ajlan, A.; Al-Garawi, M.; Al-Homaidhi, S.; Amorini, F.; Auditore, L.; Aumann, T.; Ayyad, Y.; Baran, V.; Basrak, Z.; Benlliure, J.; Boiano, C.; Boisjoli, C.; Boretzky, K.; Brzychczyk, J.; Budzanowski, A.; Cardella, G.; Cammarata, P.; Cavallaro, S.; Chajecki, Z.; Chartier, M.; Chbihi, A.; Colonna, M.; Czech, B.; De Filippo, E.; Di Toro, M.; Famiano, M.; Le Fevre, A.; Gašsparić, A.; Geraci, E.; Grassi, L.; Greco, V.; Guazzoni, C.; Guazzoni, P.; Heil, M.; Heilborn, L.; Introzzi, R.; Isobe, T.; Kezzar, K.; Kiš, M.; Kupny, S.; Kurz, N.; La Guidara, E.; Lanzalone, G.; Lasko, P.; Leifels, Y.; Lemmon, R.; Li, Q.; Lombardo, I.; Loria, D.; Lukasik, J.; Lynch, W. G.; Marini, P.; Matthews, Z.; May, L.; Minniti, T.; Mostazo, M.; Pagano, A.; Papa, M.; Pawlowski, P.; Petrovici, M.; Pirrone, S.; Politi, G.; Porto, F.; Reifarth, R.; Reisdorf, W.; Riccio, F.; Rizzo, F.; Rosato, E.; Rossi, D.; Santoro, S.; Simon, H.; Skwirczynska, I.; Sosin, Z.; Trautmann, W.; Trifirò, A.; Trimarchi, M.; Tsang, B.; Veselsky, M.; Verde, G.; Vigilante, M.; Wieloch, A.; Wigg, P.; Wilczynski, J.; Wolter, H. H.; Wu, P.; Yennello, S.; Zambon, P.; Zetta, L.; Zoric, M.

    2012-07-01

    The elliptic-flow ratio of neutrons with respect to protons in reactions of neutron rich Heavy-Ion at intermediate energies has been recently proposed as an observable sensitive to the strength of the symmetry term in the nuclear equation of state (EOS) at supra-saturation densities. The recent results obtained from the existing FOPI/LAND data for 197Au+197Au collisions at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate of the symmetry term of the EOS but suffer from a considerable statistical uncertainty. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration in May 2011.

  15. EOS distributed planning and scheduling prototype

    NASA Technical Reports Server (NTRS)

    Hull, Larry G.; Peters, Stephen F.; Davis, Randy

    1993-01-01

    Some of the more significant lessons learned during the development of the Earth Observing System (EOS) Distributed Planning and Scheduling Prototype are presented. The need for a central scheduler is not demonstrated. A mapping of scheduling and conflict-resolution responsibility across the nodes of the EOS distributed scheduling system is developed and shown to be both feasible and appropriate. Complex instrument scheduling is mostly accomplished at the ICC/IST (instrument control center/instrumental support terminal) with 'slidable' flexibility for slews and some kinds of calibrations resolved at the EOS Operations Center (EOC). All nodes have full visibility interinstrument contention for resource and environmental rights, e.g., vibration, thermal, and electromagnetic. The EOC assigns, by activity, initial action responsibility for conflict resolution to a node which is party to the conflict. Most interinstrument conflicts are resolved by the ICCs and ISTs during an intermediate scheduling phase while the EOC is negotiating a TDRS schedule with the NCC.

  16. EO-1 Prototyping for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Campbell, P. K.; Middleton, E.; Ungar, S.; Zhang, Q.; Ong, L.; Huemmrich, K. F.

    2009-12-01

    The Earth Observing One (EO-1) Mission, launched in November, 2000 as part of NASA’s New Millennium Program, is in it’s eight year of operation. From the start it was recognized that a key criteria for evaluating the EO-1 technology and outlining future Earth science mission needs is the ability of the technology to characterize terrestrial surface state and processes. EO-1 is participating in a broad range of investigations, demonstrating the utility of imaging spectroscopy in applications relating to forestry, agriculture, species discrimination, invasive species, desertification, land-use, vulcanization, fire management, homeland security, natural and anthropogenic hazards and disaster assessments and has provided characterization for a variety of instruments on EOS platforms. By generating a high spectral and spatial resolution data set for the corral reefs and islands, it is contributing for realizing the goals of the National Decadal survey and providing an excellent platform for testing strategies to be employed in the HyspIRI mission. The EO1 Mission Science Office (MSO) is developing tools and prototypes for new science products, addressing the HyspIRI goals to assess vegetation status and health and provide vegetation spectral bio-indicators and biophysical parameters such as LAI and fAPAR at <100 m spatial resolution. These are being used to resolve variability in heterogeneous areas (e.g. agriculture, narrow shapes, urban and developed lands) and for managed ecosystems less than 10 km2. A set of invariable reference targets (e.g. sun, moon, deserts, Antarctica) are being characterised to allow cross-calibration of current and future EO sensors, comparison of land products generated by multiple sensors and retroactive processing of time series data. Such products are needed to develop Science Requirements for the next generation of hyperspectral satellite sensors and to address global societal needs.

  17. ES4 Terra-Xtrk Ed3

    Atmospheric Science Data Center

    2016-06-08

    ... Order:  Reverb   Reverb Tutorial Order Data:  Reverb:  Order Data Guide Documents:  ... for Terra and Aqua; Edition2 for TRMM) are approved for science publications.  Additional Info:  b SCAR-B ...

  18. Sedimentary Rocks and Methane - Southwest Arabia Terra

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.; Venechuk, Elizabeth M.

    2006-01-01

    We propose to land the Mars Science Laboratory in southwest Arabia Terra to study two key aspects of martian history the extensive record of sedimentary rocks and the continuing release of methane. The results of this exploration will directly address the MSL Scientific Objectives regarding biological potential, geology and geochemistry, and past habitability.

  19. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  20. Compressive sensing in the EO/IR.

    PubMed

    Gehm, M E; Brady, D J

    2015-03-10

    We investigate the utility of compressive sensing (CS) to electro-optic and infrared (EO/IR) applications. We introduce the field through a discussion of historical antecedents and the development of the modern CS framework. Basic economic arguments (in the broadest sense) are presented regarding the applicability of CS to the EO/IR and used to draw conclusions regarding application areas where CS would be most viable. A number of experimental success stories are presented to demonstrate the overall feasibility of the approaches, and we conclude with a discussion of open challenges to practical adoption of CS methods. PMID:25968399

  1. Radiometric cross-calibration of Terra ASTER and MODIS

    NASA Astrophysics Data System (ADS)

    Yuan, Karen; Thome, Kurt; McCorkel, Joel

    2015-09-01

    Calibration and validation play an essential role during the acquisition and processing of satellite data for Earth Observing System satellites in addition to being an integral part of maintaining scientific values of archived satellite data. The Advanced Spaceborne Thermal Emission and Reflection and Radiometer (ASTER) and Moderate Resolution Imaging Spectroradiometer (MODIS) are two of five sensors onboard the Terra platform. ASTER has a swath width of 60 km with 8 spectral bands in the visible and near infrared (VNIR) and thermal infrared (TIR) spectral range with a spatial resolution of 15-m (bands 1-3) and 90-m (bands 10-14), respectively while MODIS has a swath width of 2300 km with 36 spectral bands from visible to infrared spectral range with a spatial resolution of 250 m (bands 1-2), 500 m (bands 3-7), and 1 km (bands 8-36). ASTER is the `zoom' lens and MODIS is the `keystone' instrument for Terra; they provide quantitative measurements of various earth system variables to the scientific and to the broader community. The simultaneous view of the sensors simplifies the intercomparison between them and the current work relies on the use of the Railroad Valley Playa test site to reduce uncertainties caused by spatial heterogeneity and spectral differences in the sensors. The fact that Railroad Valley is a calibration test site for ASTER ensures that ASTER was tasked at a higher rate over this area providing more scenes for an intercomparison. The study compares ASTER L1B data for the three VNIR bands reprocessed with recent calibration updates and MODIS 02 Collection 6 data products for the similar bands. No correction for geometry angle is needed and coincident 3-km by 3-km regions are used to reduce the impact of spatial heterogeneity. A correction for spectral differences between the sensors is applied based on seasonal averages of EO-1 Hyperion spectral range. Results indicate that the calibrated radiance products from the two sensors agree to within the

  2. Terra Populus and DataNet Collaboration

    NASA Astrophysics Data System (ADS)

    Kugler, T.; Ruggles, S.; Fitch, C. A.; Clark, P. D.; Sobek, M.; Van Riper, D.

    2012-12-01

    Terra Populus, part of NSF's new DataNet initiative, is developing organizational and technical infrastructure to integrate, preserve, and disseminate data describing changes in the human population and environment over time. Terra Populus will incorporate large microdata and aggregate census datasets from the United States and around the world, as well as land use, land cover, climate and other environmental datasets. These data are widely dispersed, exist in a variety of data structures, have incompatible or inadequate metadata, and have incompatible geographic identifiers. Terra Populus is developing methods of integrating data from different domains and translating across data structures based on spatio-temporal linkages among data contents. The new infrastructure will enable researchers to identify and merge data from heterogeneous sources to study the relationships between human behavior and the natural world. Terra Populus will partner with data archives, data producers, and data users to create a sustainable international organization that will guarantee preservation and access over multiple decades. Terra Populus is also collaborating with the other projects in the DataNet initiative - DataONE, the DataNet Federation Consortium (DFC) and Sustainable Environment-Actionable Data (SEAD). Taken together, the four projects address aspects of the entire data lifecycle, including planning, collection, documentation, discovery, integration, curation, preservation, and collaboration; and encompass a wide range of disciplines including earth sciences, ecology, social sciences, hydrology, oceanography, and engineering. The four projects are pursuing activities to share data, tools, and expertise between pairs of projects as well as collaborating across the DataNet program on issues of cyberinfrastructure and community engagement. Topics to be addressed through program-wide collaboration include technical, organizational, and financial sustainability; semantic

  3. Spatial and Temporal Distribution of Clouds as Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Menzel, Paul; Ackerman, Steven A.

    2006-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and Aqua spacecraft on May 4, 2002. It achieved its final orbit and began Earth observations on February 24,2000 for Terra and June 24,2002 for Aqua. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate change studies, climate modeling, numerical weather prediction, and fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Over the last year, extensive improvements and enhancements in the global cloud products have been implemented, and reprocessing of all MODIS data on Terra has commenced since first light in February 2000. In the cloud mask algorithm, the most extensive improvements were in distinguishing clouds at nighttime, including the challenging polar darkness regions of the world. Additional improvements have been made to properly distinguish sunglint from clouds in the tropical ocean regions, and to improve the identification of clouds from snow during daytime in Polar Regions. We will show global monthly mean cloud fraction for both Terra and Aqua, and show how similar the global daytime cloud fraction is from these morning and afternoon orbits, respectively. We will also show the zonal distribution of cloud fraction over land and ocean regions for both Terra and Aqua, and show the time series of global cloud fraction from July 2002 through June 2006.

  4. TERRA Battery Thermal Control Anomaly - Simulation and Corrective Actions

    NASA Technical Reports Server (NTRS)

    Grob, Eric W.

    2010-01-01

    The TERRA spacecraft was launched in December 1999 from Vandenberg Air Force Base, becoming the flagship of NASA's Earth Observing System program to gather data on how the planet's processes create climate. Originally planned as a 5 year mission, it still provides valuable science data after nearly 10 years on orbit. On October 13th, 2009 at 16:23z following a routine inclination maneuver, TERRA experienced a battery cell failure and a simultaneous failure of several battery heater control circuits used to maintain cell temperatures and gradients within the battery. With several cells nearing the minimum survival temperature, preventing the electrolyte from freezing was the first priority. After several reset attempts and power cycling of the control electronics failed to reestablish control authority on the primary side of the controller, it was switched to the redundant side, but anomalous performance again prevented full heater control of the battery cells. As the investigation into the cause of the anomaly and corrective action continued, a battery thermal model was developed to be used in determining the control ability remaining and to simulate and assess corrective actions. Although no thermal model or detailed reference data of the battery was available, sufficient information was found to allow a simplified model to be constructed, correlated against pre-anomaly telemetry, and used to simulate the thermal behavior at several points after the anomaly. It was then used to simulate subsequent corrective actions to assess their impact on cell temperatures. This paper describes the rapid development of this thermal model, including correlation to flight data before and after the anomaly., along with a comparative assessment of the analysis results used to interpret the telemetry to determine the extent of damage to the thermal control hardware, with near-term corrective actions and long-term operations plan to overcome the anomaly.

  5. Enhanced EOS photovoltaic power system capability with InP solar cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  6. Data links for the EOS TPC

    SciTech Connect

    Bieser, F.; Jones, R.; McParland, C.

    1990-10-01

    We report on the design and performance of high speed data links and slower configuration control links used between the EOS TPC detector and the data processing electronics. Data rates of 5MBytes/s/link are maintained over 30m with optical isolation. Pedestal subtraction, hit detection, and data reordering are performed online. 3 refs., 1 fig.

  7. Tactical E-O Reconnaissance Results

    NASA Astrophysics Data System (ADS)

    Lawson, William E.

    1987-02-01

    Through several series of demonstration flights, all recorded on magnetic tape, a wide range of electro-optical camera capabilities has been displayed. Significant insight has been made possible relative to the attributes, as well as difficiencies, of tactical EO technology.

  8. Shuttle user analysis (study 2.2). Volume 3: Business risk and value of operations in space (BRAVO). Part 5: Analysis of GSFC Earth Observation Satellite (EOS) system mission model using BRAVO techniques

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost comparisons were made between three modes of operation (expend, ground refurbish, and space resupply) for the Earth Observation System (EOS-B) to furnish data to NASA on alternative ways to use the shuttle/EOS. Results of the analysis are presented in tabular form.

  9. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Cassano, John J.; Seefeldt, Mark W.; Palo, Scott; Knuth, Shelley L.; Bradley, Alice C.; Herrman, Paul D.; Kernebone, Peter A.; Logan, Nick J.

    2016-03-01

    In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, to explore the details of air-sea ice-ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aerial systems (UAS) sampling the atmosphere over Terra Nova Bay on 5 different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low-level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynya. A data set containing the atmospheric and surface data as well as operational aircraft data have been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (nasa.gov/getdif.htm?NSF-ANT10-43657" target="_blank">http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).

  10. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica using unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Cassano, J. J.; Seefeldt, M. W.; Palo, S.; Knuth, S. L.; Bradley, A. C.; Herrman, P. D.; Kernebone, P. A.; Logan, N. J.

    2015-12-01

    In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, to explore the details of air - sea ice - ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aircraft systems (UAS) sampling the atmosphere over Terra Nova Bay on five different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynya. A dataset containing the atmospheric and surface data as well as operational aircraft data has been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (nasa.gov/getdif.htm?NSF-ANT10-43657" target="_blank">http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).