These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

The administration of the NASA space tracking system and the NASA space tracking system in Australia  

NASA Technical Reports Server (NTRS)

The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

Hollander, N.

1973-01-01

2

NASA Research at Station  

NSDL National Science Digital Library

This NASA website offers information on past, present, and future projects at the International Space Station. Users can view the many experiments and facilities by time periods or topic. The research areas include bioastronautics, physical sciences, fundamental space biology, and space product development. For each experiment, students and researchers can find information on the significance of the project, descriptions of the operations, its results, and much more. The website provides flight schedules and information on facilities. Throughout the site, visitors can enjoy numerous images from space.

3

NASA directory of observation station locations, volume 1  

NASA Technical Reports Server (NTRS)

Geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs is presented. A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems. The principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes are discussed. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Observation stations in the NASA Geodetic Satellites Program are included along with stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.

1973-01-01

4

NASA directory of observation station locations, volume 1  

NASA Technical Reports Server (NTRS)

Geodetic information is presented for NASA tracking stations and observation stations in the NASA geodetic satellites program. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.

1971-01-01

5

Techniques for analyzing and utilizing the rain gauges at the NASA White Sands Test Facility. [Tracking and Data Relay Satellite System ground station  

NASA Technical Reports Server (NTRS)

Ten tipping bucket rain gauges have been installed at the NASA WSTF for the purpose of determining rainfall characteristics in this area which may affect the performance of the NASA Tracking and Data Relay Satellite System. A plan is presented for analyzing and utilizing the data which will be obtained during the course of this experiment. Also included is a description of a computer program which has been written to aid in the analysis.

Kalagher, R. J.

1973-01-01

6

78 FR 77502 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-154)] NASA International Space Station Advisory Committee; Meeting...announces a meeting of the NASA International Space Station (ISS) Advisory...

2013-12-23

7

78 FR 49296 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-091] NASA International Space Station Advisory Committee; Meeting...announces a meeting of the NASA International Space Station (ISS) Advisory...

2013-08-13

8

XTP for the NASA space station  

NASA Technical Reports Server (NTRS)

The NASA Space Station is a truly international effort; therefore, its communications systems must conform to established international standards. Thus, NASA is requiring that each network-interface unit implement a full suite of ISO protocols. However, NASA is understandably concerned that a full ISO stack will not deliver performance consistent with the real-time demands of Space Station control systems. Therefore, as a research project, the suitability of the Xpress transfer protocol (XTP) is investigated along side a full ISO stack. The initial plans for implementing XTP and comparing its performance to ISO TP4 are described.

Weaver, Alfred C.

1990-01-01

9

77 FR 2765 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Notice (12-003)] NASA International Space Station Advisory Committee; Meeting...open meeting of the NASA International Space Station (ISS) Advisory Committee...six-person crew aboard the International Space Station, including...

2012-01-19

10

75 FR 51852 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Notice (10-090)] NASA International Space Station Advisory Committee; Meeting...open meeting of the NASA International Space Station Advisory Committee. The...six-person crew aboard the International Space Station, including...

2010-08-23

11

77 FR 41203 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Notice 12-057] NASA International Space Station Advisory Committee; Meeting...open meeting of the NASA International Space Station (ISS) Advisory Committee...six-person crew aboard the International Space Station, including...

2012-07-12

12

77 FR 66082 - NASA International Space Station Advisory Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Notice 12-090] NASA International Space Station Advisory Committee; Meeting...open meeting of the NASA International Space Station (ISS) Advisory Committee...six-person crew aboard the International Space Station, including...

2012-11-01

13

The ACTS NASA Ground Station/Master Control Station  

NASA Technical Reports Server (NTRS)

Two of the major components of the ACTS Ground Segment are the NASA Ground Station (NGS) and the Master Control Station (MCS), colocated at the NASA Lewis Research Center. Essentially, the NGS provides the communications links by which the MCS performs its various network control and monitoring functions. The NGS also provides telecommunications links capable of transmission/reception of up to approximately 70 Mbit/s of digital telephonic traffic. Operating as a system, the entire complex of equipment is referred to as the NGS/MCS. This paper provides an 'as-built' description of the NGS/MCS as a system.

Meadows, David N.

1992-01-01

14

NASA's Plum Brook Station Water Systems  

NASA Technical Reports Server (NTRS)

Plum Brook Station's water systems were built in the 1940s to support a World War II ordnance production complex. Because the systems had not been analyzed for current NASA usage, it was unknown if they could meet current requirements and codes or if they were efficient for current use. NASA wanted to determine what improvements would be needed or advisable to support its research projects, so it contracted a hydraulic analysis of the raw and domestic water systems. Burgess and Niple determined current water demands and water flow, developed and calibrated models of the two water systems, and evaluated efficiency improvements and cost-cutting options. They recommended replacing some water mains, installing a new service connection, and removing some high-maintenance items (an underground reservoir, some booster pumps, and a tower).

Puzak, Robert M.; Kimpton, Arthur

2006-01-01

15

NASA/TP2009213146REVISION A International Space Station  

E-print Network

NASA/TP­2009­213146­REVISION A International Space Station Science Research Accomplishments During of the International Space Station Program Scientist NASA Johnson Space Center, Houston, Texas Judy Tate-Brown, Tracy­213146­REVISION A International Space Station Science Research Accomplishments During the Assembly Years

16

76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter  

Federal Register 2010, 2011, 2012, 2013

...Committee; Renewal of NASA's International Space Station Advisory Committee Charter...amendment of the Charter of the International Space Station Advisory Committee...determined that a renewal of the International Space Station Advisory Committee is...

2011-10-17

17

NASA tracking ship navigation systems  

NASA Technical Reports Server (NTRS)

The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

Mckenna, J. J.

1976-01-01

18

DISTRIBUTION STATION IN FOREGROUND, TRACK FOOTINGS AT LEFT CENTER, WATER ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

DISTRIBUTION STATION IN FOREGROUND, TRACK FOOTINGS AT LEFT CENTER, WATER TOWER (BLDG. 0516) IN BACKGROUND. Looking northeast - Edwards Air Force Base, South Base Sled Track, Electrical Distribution Station, South side of Sled Track, Lancaster, Los Angeles County, CA

19

Goldstone. [Tracking/Communications Station  

NASA Technical Reports Server (NTRS)

Goldstone is a complex of deep space communications antennas that command and receive information from satellites or receive information from satellites or about distant stars and galaxies. The video feature discusses the Goldstone complex and its 30 plus years of service to NASA.

1991-01-01

20

International Space Station Utilization: Tracking Investigations from Objectives to Results  

NASA Technical Reports Server (NTRS)

Since the first module was assembled on the International Space Station (ISS), on-orbit investigations have been underway across all scientific disciplines. The facilities dedicated to research on ISS have supported over 1100 investigations from over 900 scientists representing over 60 countries. Relatively few of these investigations are tracked through the traditional NASA grants monitoring process and with ISS National Laboratory use growing, the ISS Program Scientist s Office has been tasked with tracking all ISS investigations from objectives to results. Detailed information regarding each investigation is now collected once, at the first point it is proposed for flight, and is kept in an online database that serves as a single source of information on the core objectives of each investigation. Different fields are used to provide the appropriate level of detail for research planning, astronaut training, and public communications. http://www.nasa.gov/iss-science/. With each successive year, publications of ISS scientific results, which are used to measure success of the research program, have shown steady increases in all scientific research areas on the ISS. Accurately identifying, collecting, and assessing the research results publications is a challenge and a priority for the ISS research program, and we will discuss the approaches that the ISS Program Science Office employs to meet this challenge. We will also address the online resources available to support outreach and communication of ISS research to the public. Keywords: International Space Station, Database, Tracking, Methods

Ruttley, T. M.; Mayo, Susan; Robinson, J. A.

2011-01-01

21

1. View down tracks from front of station; passenger canopy ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

1. View down tracks from front of station; passenger canopy to right. (photocopy) - Erie Railway, Cambridge Springs Station, Northwest side of U.S. 6/19, opposite Railroad Street, Cambridge Springs, Crawford County, PA

22

76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting  

Federal Register 2010, 2011, 2012, 2013

...NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics...NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel. The purpose of this meeting is...

2011-08-19

23

NASA and the Legacy of the International Space Station Sam Scimemi  

E-print Network

NASA and the Legacy of the International Space Station Sam Scimemi Director, International for private initiative 4 #12;5 2 0 1 3 #12;The International Space Station Today International Space Station NASA Headquarters NASA Advisory Council HEO Committee July 29, 2013 #12

Waliser, Duane E.

24

Congress Examines NASA Budget, Space Station, and Relations With Russia  

NASA Astrophysics Data System (ADS)

Concerns about recent Russian activities related to Ukraine loomed over an 8 April congressional hearing focusing on NASA's fiscal year (FY) 2015 budget request. Rep. Frank Wolf (R-Va.), chair of the House of Representatives Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies, and several other committee members questioned NASA administrator Charles Bolden about the agency's contingency plans if tensions between Russia and the United States cause key joint scientific endeavors between the two countries to break off. That concern is particularly critical given the countries' longtime partnership on the International Space Station (ISS) and with the United States currently relying on Russian transport to and from the station until U.S. commercial vehicles are ready to transport astronauts back and forth.

Showstack, Randy

2014-04-01

25

NASA-GSFC ionospheric corrections to satellite tracking data  

NASA Technical Reports Server (NTRS)

An overview is presented of the development, verification, and recent implementation of the NASA-GSFC ionospheric model for satellite tracking data corrections. This model was incorporated into the Goddard Trajectory Determination System which is providing continuous trajectory computation support for the lunar orbiting Radio Astronomy Explorer-B launched on 10 June 1973.

Schmid, P. E.; Bent, R. B.; Llewellyn, S. K.; Nesterczuk, G.; Rangaswamy, S.

1971-01-01

26

IET distant contextual view of coupling station, tracks and retaining ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

IET distant contextual view of coupling station, tracks and retaining wall. experiment shack on left side of coupling station remains from snaptran tests. Camera facing northerly. INEEL negative no. HD-21-7-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

27

COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station  

E-print Network

Overview of the International Space Station 17 Overview of NASA's COTS Program 19 SpaceX Company Overview Officer International Space Station Program Lead NASA Johnson Space Center 281-483-5111 Michael Braukus that a commercial company will attempt to send a spacecraft to the International Space Station, something only a few

Waliser, Duane E.

28

Supply support of NASA tracking networks  

NASA Technical Reports Server (NTRS)

The extent which supply support for Jet Propulsion Laboratory's Deep Space Network and Goddard Space Flight Center's Space Flight Tracking and Data Network should be consolidated is considered along with the Identification of opportunities for improvements in each of the supply systems without regard to consolidation. There is a considerable amount of commonality between the items in the stock catalogs at the two network depots, 58% for federal stock number items and 30% overall. The workload at the DSIF Supply Depot (DSD) is small (less than 20%) compared to the Network Logistics Depot (NLD). A number of important benefits in supply support would result from a consolidation of DSD into NLD. LMI found that a consolidation as is, without any changes in inventory management techniques, would reduce annual operating costs by from $208,000 to $358,000. However, if the consolidation were coupled with a change to use of economic order quantities, the annual operating cost reduction would range from $930,000 to $1,078,000.

1973-01-01

29

Space station tracking requirements feasibility study, volume 1  

NASA Technical Reports Server (NTRS)

The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JCS. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 1, containing the main body and Appendices A through J.

Udalov, Sergei; Dodds, James

1988-01-01

30

Geoid undulation computations at laser tracking stations  

NASA Technical Reports Server (NTRS)

Geoid undulation computations were performed at 29 laser stations distributed around the world using a combination of terrestrial gravity data within a cap of radius 2 deg and a potential coefficient set up to 180 deg. The traditional methods of Stokes' and Meissl's modification together with the Molodenskii method and the modified Sjoberg method were applied. Performing numerical tests based on global error assumptions regarding the terrestrial data and the geopotential set it was concluded that the modified Sjoberg method is the most accurate and promising technique for geoid undulation computations. The numerical computations for the geoid undulations using all the four methods resulted in agreement with the ellipsoidal minus orthometric value of the undulations on the order of 60 cm or better for most of the laser stations in the eastern United States, Australia, Japan, Bermuda, and Europe. A systematic discrepancy of about 2 meters for most of the western United States stations was detected and verified by using two relatively independent data sets. For oceanic laser stations in the western Atlantic and Pacific oceans that have no terrestrial data available, the adjusted GEOS-3 and SEASAT altimeter data were used for the computation of the geoid undulation in a collocation method.

Despotakis, Vasilios K.

1987-01-01

31

Autonomous antenna tracking system for mobile symphonie ground stations  

NASA Technical Reports Server (NTRS)

The implementation of a satellite tracking and antenna control system is described. Due to the loss of inclination control for the symphonie satellites, it became necessary to equip the parabolic antennas of the mobile Symphonie ground station with tracking facilities. For the relatively low required tracking accuracy of 0.5 dB, a low cost, step track system was selected. The step track system developed for this purpose and tested over a long period of time in 7 ground stations is based on a search step method with subsequent parabola interpolation. As compared with the real search step method, the system has the advantage of a higher pointing angle resolution, and thus a higher tracking accuracy. When the pilot signal has been switched off for a long period of time, as for instance after the eclipse, the antenna is repointed towards the satellite by an automatically initiated spiral search scan. The function and design of the tracking system are detailed, while easy handling and tracking results.

Ernsberger, K.; Lorch, G.; Waffenschmidt, E.

1982-01-01

32

Publications from Ames Airborne Tracking Sunphotometers Background. Since 1985 the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and  

E-print Network

Publications from Ames Airborne Tracking Sunphotometers Background. Since 1985 the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14) have made extensive measurements of atmospheric constituents via their effect on the Sun's direct-beam transmission through the atmosphere. Constituents

33

29. "TEST TRACK, STATION '0' THROUGH '200' AREA." Specifications No. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

29. "TEST TRACK, STATION '0' THROUGH '200' AREA." Specifications No. ENG-OC-1-57-75, Drawing No. AF-6009-15, sheet 53 of 96, D.O. Series No. AF 1394/73, Rev. C. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 5296 Rev. C, Date: 19 NOV 59. Drawing includes plan, section, and details of track. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

34

Space station interior design: Results of the NASA/AIA space station interior national design competition  

NASA Technical Reports Server (NTRS)

The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.

Haines, R. F.

1975-01-01

35

The OSU 275 system of satellite tracking station coordinates  

NASA Technical Reports Server (NTRS)

A brief review of the methods and data used in the OSU 275 geodetic system is given along with the summary of the results. Survey information regarding the tracking stations in the system is given in tabular form along with the geodetic and geophysical parameters, origin and orientation, Cartisian coordinates, and systematic differences with global and nonglobal geodetic systems.

Mueller, I. I.; Kumar, M.

1975-01-01

36

Space Station communications and tracking systems modeling and RF link simulation  

NASA Technical Reports Server (NTRS)

In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort.

Tsang, Chit-Sang; Chie, Chak M.; Lindsey, William C.

1986-01-01

37

www.nasa.gov INTERNATIONAL SPACE STATION (ISS) INTERACTIVE REFERENCE GUIDE National Aeronautics and Space Administration  

E-print Network

www.nasa.gov INTERNATIONAL SPACE STATION (ISS) INTERACTIVE REFERENCE GUIDE National Aeronautics Node 2 and the Truss is mounted on top of the US Lab. The Canadian Station Remote Manipulator is above the Kibo ELM-PS. Serves as the control Station for the Kibo Remote Manipulator 1 Release grapple

38

Open solutions to distributed control in ground tracking stations  

NASA Technical Reports Server (NTRS)

The advent of high speed local area networks has made it possible to interconnect small, powerful computers to function together as a single large computer. Today, distributed computer systems are the new paradigm for large scale computing systems. However, the communications provided by the local area network is only one part of the solution. The services and protocols used by the application programs to communicate across the network are as indispensable as the local area network. And the selection of services and protocols that do not match the system requirements will limit the capabilities, performance, and expansion of the system. Proprietary solutions are available but are usually limited to a select set of equipment. However, there are two solutions based on 'open' standards. The question that must be answered is 'which one is the best one for my job?' This paper examines a model for tracking stations and their requirements for interprocessor communications in the next century. The model and requirements are matched with the model and services provided by the five different software architectures and supporting protocol solutions. Several key services are examined in detail to determine which services and protocols most closely match the requirements for the tracking station environment. The study reveals that the protocols are tailored to the problem domains for which they were originally designed. Further, the study reveals that the process control model is the closest match to the tracking station model.

Heuser, William Randy

1994-01-01

39

NASA space station automation: AI-based technology review  

NASA Technical Reports Server (NTRS)

Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

1985-01-01

40

ERDA/NASA 100 kilowatt mod-o wind turbine operations and performance. [at the NASA Plum Brook Station, Ohio  

NASA Technical Reports Server (NTRS)

The ERDA/NASA 100 kW Mod-0 wind turbine is operating at the NASA Plum Brook Station near Sandusky, Ohio. The operation of the wind turbine has been fully demonstrated and includes start-up, synchronization to the utility network, blade pitch control for control of power and speed, and shut-down. Also, fully automatic operation has been demonstrated by use of a remote control panel, 50 miles from the site, similar to what a utility dispatcher might use. The operation systems and experience with the wind turbine loads, electrical power and aerodynamic performance obtained from testing are described.

Thomas, R. L.; Richards, T. R.

1977-01-01

41

Acoustic emissions applications on the NASA Space Station  

SciTech Connect

Acoustic emission is being investigated as a way to continuously monitor the space station Freedom for damage caused by space debris impact and seal failure. Experiments run to date focused on detecting and locating simulated and real impacts and leakage. These were performed both in the laboratory on a section of material similar to a space station shell panel and also on the full-scale common module prototype at Boeing's Huntsville facility. A neural network approach supplemented standard acoustic emission detection and analysis techniques. 4 refs., 5 figs., 1 tab.

Friesel, M.A.; Dawson, J.F.; Kurtz, R.J.; Barga, R.S.; Hutton, P.H.; Lemon, D.K.

1991-08-01

42

Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)  

NASA Technical Reports Server (NTRS)

NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth orbit, including dedicated science missions and lunar support/cargo vehicles; earth/moon transit; lunar in-situ operations; and other missions within approximately 2 million km of earth (e.g., at the sun/earth libration points). Given that the NER is an evolution of TDRSS, one element of this NASA-wide architecture development activity is a trade study of future NER architecture candidates. The present paper focuses on trade study aspects associated with the NER, highlights study elements, and provides representative interim results.

Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

2006-01-01

43

NASA's Accident Precursor Analysis Process and the International Space Station  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the implementation of Accident Precursor Analysis (APA), as well as the evaluation of In-Flight Investigations (IFI) and Problem Reporting and Corrective Action (PRACA) data for the identification of unrecognized accident potentials on the International Space Station.

Groen, Frank; Lutomski, Michael

2010-01-01

44

Prototype ventilator and alarm algorithm for the NASA space station  

Microsoft Academic Search

An alarm algorithm was developed to monitor the ventilator on the National Aeronautics and Space Administration space station. The algorithm automatically identifies and interprets critical events so that an untrained user can manage the mechanical ventilation of a critically injured crew member. The algorithm was tested in two healthy volunteers by simulating 260 critical events in each volunteer while the

Josef X. Brunner; Dwayne R. Westenskow; Paul Zelenkov

1988-01-01

45

NASA space station automation: AI-based technology review  

SciTech Connect

The research and development projects in automation technology described in this report can yield the following essential advantages of crew safety, productivity, increased autonomy, and augmented capability that will ensure successful, maximally efficient operation of the space station. Many of the research projects also have extremely promising potential for innovative results that can be applied directly to terrestrial automation.

Firschein, O.; Georgeff, M.P.; Park, W.; Cheeseman, P.C.; Goldberg, J.; Neumann, P.; Kautz, W.H.; Levitt, K.N.; Rom, R.J.; Poggio, A.A.

1985-04-01

46

Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program  

NASA Technical Reports Server (NTRS)

Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

Gavert, Raymond B.

1990-01-01

47

Managing NASA's International Space Station Logistics and Maintenance Program  

NASA Technical Reports Server (NTRS)

The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.

Butina, Anthony

2001-01-01

48

An Array Feed Radial Basis Function Tracking System for NASA's Deep Space Network Antennas  

E-print Network

to mechanical antenna distortions at high frequencies (32 GHz or higher) have been described in [2-4]. The sevenAn Array Feed Radial Basis Function Tracking System for NASA's Deep Space Network Antennas R. Mukai Grove Dr., MS 238-343 Pasadena, CA 91109­8099 USA {mukai, payman, vic}@dsp.jpl.nasa.gov Abstract

Arabshahi, Payman

49

Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document  

NASA Technical Reports Server (NTRS)

NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

1990-01-01

50

Could You Choose Just One? Top International Space Station Research Results In this A Lab Aloft NASA Blog series International Space Station Chief Scientist Julie  

E-print Network

Could You Choose Just One? Top International Space Station Research Results Countdown In this A Lab Aloft NASA Blog series International Space Station Chief Scientist Julie Robinson, Ph.D., counts down her top research results from the space station, which she presented at the International

Waliser, Duane E.

51

NASA UTILIZATION OF THE INTERNATIONAL SPACE STATION AND THE VISION FOR SPACE EXPLORATION  

NASA Technical Reports Server (NTRS)

Under U.S. President Bush s Vision for Space Exploration (January 14, 2004), NASA has refocused its utilization plans for the International Space Station (ISS). This use will now focus on: (1) the development of countermeasures that will protect crews from the hazards of the space environment, (2) testing and validating technologies that will meet information and systems needs for future exploration missions.

Robinson, Julie A.; Thomas, Donald A.

2006-01-01

52

NASA Human Research Program (HRP). International Space Station Medical Project (ISSMP)  

NASA Technical Reports Server (NTRS)

This viewgraph presentation describes the various flight investigations performed on the International Space Station as part of the NASA Human Research Program (HRP). The evaluations include: 1) Stability; 2) Periodic Fitness Evaluation with Oxygen Uptake Measurement; 3) Nutrition; 4) CCISS; 5) Sleep; 6) Braslet; 7) Integrated Immune; 8) Epstein Barr; 9) Biophosphonates; 10) Integrated cardiovascular; and 11) VO2 max.

Sams, Clarence F.

2009-01-01

53

Applicability of NASA Polar Technologies to British Antarctic Survey Halley VI Research Station  

NASA Technical Reports Server (NTRS)

From 1993 through 1997 NASA and the National Science Foundation (NSF), developed a variety of environmental infrastructure technologies for use at the Amundsen-Scott South Pole Station. The objective of this program was to reduce the cost of operating the South Pole Station, reduce the environmental impact of the Station, and to increase the quality of life for Station inhabitants. The result of this program was the development of a set of sustainability technologies designed specifically for Polar applications. In the intervening eight years many of the technologies developed through this program have been commercialized and tested in extreme environments and are now available for use throughout Antarctica and circumpolar north. The objective of this document is to provide information covering technologies that might also be applicable to the British Antarctic Survey s (BAS) proposed new Halley VI Research Station. All technologies described are commercially available.

Flynn, Michael

2005-01-01

54

NASA Earth Observations Track the Gulf Oil Spill  

NASA Technical Reports Server (NTRS)

The NASA Applied Sciences Program created the Gulf of Mexico Initiative (GOMI) in 2007 "to enhance the region s ability to recover from the devastating hurricanes of 2005 and to address its coastal management issues going into the future." The GOMI utilizes NASA Earth science assets to address regional priorities defined by the Gulf of Mexico Alliance, a partnership formed by the states of Alabama, Florida, Louisiana, Mississippi, and Texas, along with 13 federal agencies and 4 regional organizations to promote regional collaboration and enhance the ecological and economic health of the Gulf of Mexico. NASA's GOMI is managed by the Applied Science and Technology Project Office at Stennis Space Center and has awarded over $18 million in Gulf of Mexico research since 2008. After the Deepwater Horizon oil spill, GOMI personnel assisted members of the Gulf of Mexico Alliance with obtaining NASA remote sensing data for use in their oil spill response efforts.

Jones, Jason B.; Childs, Lauren

2010-01-01

55

Psychological Selection of NASA Astronauts for International Space Station Missions  

NASA Technical Reports Server (NTRS)

During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

Galarza, Laura

1999-01-01

56

75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project  

Federal Register 2010, 2011, 2012, 2013

...Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National Aeronautics...EIS) for the NASA GRC Plum Brook Station Wind Farm Project located near Sandusky, Ohio...comments on construction and operation of the wind farm. The purpose of constructing...

2010-08-25

57

NASA utilization of the International Space Station and the Vision for Space Exploration  

NASA Astrophysics Data System (ADS)

In response to the US President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for International Space Station (ISS) to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long-duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of ISS. We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015 2020), research on and operation of the ISS is fundamental to the success of NASA's Exploration Vision.

Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

2007-06-01

58

The management approach to the NASA space station definition studies at the Manned Spacecraft Center  

NASA Technical Reports Server (NTRS)

The overall management approach to the NASA Phase B definition studies for space stations, which were initiated in September 1969 and completed in July 1972, is reviewed with particular emphasis placed on the management approach used by the Manned Spacecraft Center. The internal working organizations of the Manned Spacecraft Center and its prime contractor, North American Rockwell, are delineated along with the interfacing techniques used for the joint Government and industry study. Working interfaces with other NASA centers, industry, and Government agencies are briefly highlighted. The controlling documentation for the study (such as guidelines and constraints, bibliography, and key personnel) is reviewed. The historical background and content of the experiment program prepared for use in this Phase B study are outlined and management concepts that may be considered for future programs are proposed.

Heberlig, J. C.

1972-01-01

59

Effects of varying environmental parameters on trace contaminant concentrations in the NASA Space Station Reference Configuration  

NASA Technical Reports Server (NTRS)

An evaluation is made of the NASA Space Station Reference Configuration trace contaminant production and depletion level effects of CO2, O2, humidity, temperature, and pressure variations, on the basis of a computer model of the Reference Configuration's chemical reactions and physical processes as functions of time. The effects of changes in the initial concentrations of such contaminants as nonmethane hydrocarbons and nitrogen oxides are also examined, and these are found to result in more significant changes in the concentration levels of trace contaminants than pressure and humidity variations. O2 and CO2 changes are found to have negligible effects on trace contaminant concentrations.

Brewer, Dana A.; Hall, John B., Jr.

1986-01-01

60

NASA uses Eclipse RCP Applications for Experiments on the International Space Station  

NASA Technical Reports Server (NTRS)

Eclipse is going to space for the first time in 2013! The International Space Station (ISS) is used as a site for experiments any software developed as part of these experiments has to comply with extensive and strict user interface guidelines. NASA Ames Research Center's Intelligent Robotics Group is doing 2 sets of experiments, both with astronauts using Eclipse RCP applications to remotely control robots. One experiment will control SPHERES with an Android Smartphone on the ISS the other experiment will control a K10 rover on Earth.

Cohen, Tamar

2013-01-01

61

On LEO Debris Orbit Prediction Performance Using Tracking Data from a Single Station  

NASA Astrophysics Data System (ADS)

Debris laser ranging during terminator time periods has become routine practice for some tracking stations. Processing tracking data from Mt Stromlo has shown that an orbit prediction accuracy of 20 arc seconds in the along-track direction for the next 24 hours was achievable for low Earth orbiting (LEO) debris using 2 passes of debris laser ranging data from a single station, separated by about 24 hours. The radial prediction error was in the order of tens of meter, for the Mt Stromlo and Shanghai tracking stations, respectively. The accuracies were determined by comparing the predicted orbits with subsequent tracking data from the same station. This accuracy assessment might be over-optimistic for other parts of orbits far away from the station because the generated orbit is only constrained by the data above the tracking station. Therefore, a verification is needed to confirm the achievability of the debris orbit prediction accuracy using the accurate debris laser data from a single station. In this paper, the verification results using satellite laser ranging (SLR) data from a single tracking station are presented. Starlette and Larets are chosen for this study and they have perigee altitudes of 815km and 690km, respectively. The SLR data is downloaded from the website of International Laser Ranging Service (ILRS) Network. The similar data scenario is assumed. That is, SLR data of only two passes separated by about 24 hours is used to determine the orbits and then the orbits are propagated forward for 7 days. The SLR data is corrupted with random errors of 1m standard deviation to reflect realistic debris laser ranging accuracy. The predicted orbits are then compared with the accurate Consolidated Prediction Format (CPF) orbits generated by the ILRS data centers. The study confirms that accuracy of 20 arc seconds in the along-track direction for 1-2 day orbit predictions, and tens of meter in the radial direction, are achievable. For the lower Larets satellite, 1000m accuracy for 7-day orbit predictions is obtained. This paper also presents a concept of prediction error assessment using the difference between backward propagated orbits and earlier tracking data. In principle, the forward orbit prediction error and the backward orbit propagation error would be similar if the times of forward prediction and backward propagation are about the same. Experiments show this concept is valid, and it could be used to estimate reliable orbit prediction errors, which are vital to make orbit conjunction warnings more accurate and robust.

Sang, J.

2014-09-01

62

Prototype fault-diagnosis system for NASA space station power management and control. Master's thesis  

SciTech Connect

The Power Management and Distribution System (PMAD) Prototype utilizes a computer graphics interface with a computer expert system running transparent to the user and a computer communications interface that links the two together, all enabling the diagnosis of PMAD system faults. The prototype design is based on the concept that an astronaut on a space station will instruct an expert system through a graphic interface to run a system or component check on the PMAD system. The graphics interface determines which type of evaluations was requested and sends that information through the communications interface to the expert system. The expert system receives the information and, based on the type of evaluation requested, executes the appropriate rules in the knowledge base and sends the resulting status back to the graphics interface and the astronaut. The PMAD System Prototype serves as a proposed training tool for NASA to use in the training of new personnel who will be designing and developing the NASA Space station expert systems.

Hester, G.L.

1988-09-01

63

Error analysis for station position from tracking of the Lageos satellite  

NASA Technical Reports Server (NTRS)

The earth physics satellite systems error analysis program was applied to the problem of predicting the relative accuracy of station position determinations under varying orbital and observing geometries. The reference case consists of nine ground stations extending over 1500 km which lasers ranged to a LAGEOS satellite, with simultaneous Doppler tracking from a geosynchronous satellite for 16 days. Eleven variations from the reference case were tested. The results showed little sensitivity to whether the LAGEOS altitude is 3700 or 5690 km. More significant were the high inclination, and that LAGEOS was tracked by a geosynchronous satellite.

Parmenter, M. E.; Kaula, W. M.

1974-01-01

64

Reports on work in support of NASA's tracking and communication division  

NASA Technical Reports Server (NTRS)

This is a report on the research conducted during the period October 1, 1991 through December 31, 1991. The research is divided into two primary areas: (1) generalization of the Fault Isolation using Bit Strings (FIBS) technique to permit fuzzy information to be used to isolate faults in the tracking and communications system of the Space Station; and (2) a study of the activity that should occur in the on board systems in order to attempt to recover from failures that are external to the Space Station.

Feagin, Terry; Lekkos, Anthony

1991-01-01

65

Track and capture of the orbiter with the space station remote manipulator system  

NASA Technical Reports Server (NTRS)

Results of the first study using the real-time, man-in-the-loop Systems Engineering Simulator (SES) for track and capture of the Space Shuttle Orbiter with the space station manipulator are presented. The objectives include evaluation of the operational coordination required between the orbiter pilot and the space station manipulator operator, evaluation of the locations and required number of closed-circuit television cameras, and evaluation of the orbiter grapple fixture clearance geometry. The SES is a premium quality real-time facility with full fidelity orbiter and space station crew workstations and cockpits.

Bains, E. M.; Price, C. R.; Walter, L. M.

1987-01-01

66

The International Space Station: Improving Life On Earth and In Space: The NASA Research Plan, An Overview  

NSDL National Science Digital Library

This National Aeronautics and Space Administration (NASA) report describes how the International Space Station (ISS) will be used to further NASA's mission of scientific research and exploration of space. The research plan is divided into five sections with the heart of the report contained in Putting Space to Work the World Over. This section is subdivided into categories dealing with the benefits offered by the ISS. The other four sections are: Excerpts From the Research Agenda for the International Space Station, Serving Our Customers, Research Capability Evolution, and an Appendix of Additional Reading. The document is filled with a wealth of information on how the ISS benefits society, from engineering to biotechnology.

1998-01-01

67

Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station  

NASA Technical Reports Server (NTRS)

The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

Woodling, Mark A.

2000-01-01

68

Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts  

NASA Technical Reports Server (NTRS)

The paper addresses the sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts. The significant components of the Space Station pertaining to the SARJ control are described, and the tracking control system design is presented. Finite element models representing two evolutionary concepts, Enhanced Operations Capability (EOC) and Extended Operations Capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration.

Lim, Tae W.; Cooper, Paul A.; Ayers, J. K.

1992-01-01

69

Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts  

NASA Technical Reports Server (NTRS)

The sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts are addressed. The significant components of the space station pertaining to the SARJ control are described and the tracking control system design is presented. Finite element models representing two evolutionary concepts, enhanced operations capability (EOC) and extended operations capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration. Performance limitations caused by the low frequency of the dominant flexible mode are discussed.

Lim, Tae W.; Cooper, Paul A.; Ayers, J. Kirk

1992-01-01

70

A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station  

NASA Technical Reports Server (NTRS)

A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

Bloomfield, H. S.; Heller, J. A.

1986-01-01

71

Large scale state estimation algorithms for DSN tracking station location determination  

NASA Technical Reports Server (NTRS)

Estimation of precise tracking station locations for deep space navigation is based on combining state estimates derived from a multitude of planetary encounter missions with planet direction information provided by the planetary ephemeris. Procedures for reducing the dimensionality of the station location estimation problem and for analytically correcting estimates for ephemeris updates have been developed. Using Householder transforms the large scale state estimation problem is decomposed into a sequence of dynamically uncoupled problems of lower dimension. The effect of an ephemeris update is shown to be adequately approximated by Brouwer-Clemence Set III perturbations for the earth-moon barycenter and the target planet for each mission.

Ellis, J.

1979-01-01

72

Space Station Astrometric Telescope tracking for the detection of planetary systems  

NASA Technical Reports Server (NTRS)

The paper presents a comprehensive star observation and tracking strategy, which uses a computer simulation of the Space Station orbital mechanics, system constraints, and Astrometric Telescope Facility (ATF) tracking maneuvers over a long observational period. This approach may be used to obtain data which may assist in the preliminary systems definition of the ATF. Results are given for an analysis which uses a restricted target set in order to demonstrate the disproportionate effect of the galactic-photon-rate index on the observation times for each star.

Mascy, Alfred C.; Sobeck, Charlie K.; Jorgensen, Helen

1988-01-01

73

NASA Glenn Research Center's Materials International Space Station Experiments (MISSE 1-7)  

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center (Glenn) has 39 individual materials flight experiments (>540 samples) flown as part of the Materials International Space Station Experiment (MISSE) to address long duration environmental durability of spacecraft materials in low Earth orbit (LEO). MISSE is a series of materials flight experiments consisting of trays, called Passive Experiment Carriers (PECs) that are exposed to the space environment on the exterior of the International Space Station (ISS). MISSE 1-5 have been successfully flown and retrieved and were exposed to the space environment from one to four years. MISSE 6A & 6B were deployed during the STS-123 shuttle mission in March 2008, and MISSE 7A & 7B are being prepared for launch in 2009. The Glenn MISSE experiments address atomic oxygen (AO) effects such as erosion and undercutting of polymers, AO scattering, stress effects on AO erosion, and in-situ AO fluence monitoring. Experiments also address solar radiation effects such as radiation induced polymer shrinkage, stress effects on radiation degradation of polymers, and radiation degradation of indium tin oxide (ITO) coatings and spacesuit fabrics. Additional experiments address combined AO and solar radiation effects on thermal control films, paints and cermet coatings. Experiments with Orion Crew Exploration Vehicle (CEV) seals and UltraFlex solar array materials are also being flown. Several experiments were designed to provide ground-facility to in-space calibration data thus enabling more accurate in-space performance predictions based on ground-laboratory testing. This paper provides an overview of Glenn s MISSE 1-7 flight experiments along with a summary of results from Glenn s MISSE 1 & 2 experiments.

deGroh, Kim K.; Banks, Bruce a.; Dever, Joyce A.; Jaworske, Donald A.; Miller, Sharon K.; Sechkar, Edward A.; Panko, Scott R.

2008-01-01

74

Smithsonian Astrophysical Observatory's minicomputer vs. the laser. [computer predictions for laser tracking stations  

NASA Technical Reports Server (NTRS)

Review of some of the problems encountered in replacing a CDC 6400, that was used for supplying a network of laser tracking stations with predictions, by an 8K Data General 1200 minicomputer with a teletype for I/O. Before the replacement, the predictions were expensive to compute and to transmit, and were clumsy logistically. The achieved improvements are described, along with every step it took to accomplish them, and the incurred costs.

Cherniack, J. R.

1973-01-01

75

Data Acquisition System Architecture and Capabilities At NASA GRC Plum Brook Station's Space Environment Test Facilities  

NASA Technical Reports Server (NTRS)

Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

Evans, Richard K.; Hill, Gerald M.

2012-01-01

76

Preliminary design, analysis, and costing of a dynamic scale model of the NASA space station  

NASA Technical Reports Server (NTRS)

The difficulty of testing the next generation of large flexible space structures on the ground places an emphasis on other means for validating predicted on-orbit dynamic behavior. Scale model technology represents one way of verifying analytical predictions with ground test data. This study investigates the preliminary design, scaling and cost trades for a Space Station dynamic scale model. The scaling of nonlinear joint behavior is studied from theoretical and practical points of view. Suspension system interaction trades are conducted for the ISS Dual Keel Configuration and Build-Up Stages suspended in the proposed NASA/LaRC Large Spacecraft Laboratory. Key issues addressed are scaling laws, replication vs. simulation of components, manufacturing, suspension interactions, joint behavior, damping, articulation capability, and cost. These issues are the subject of parametric trades versus the scale model factor. The results of these detailed analyses are used to recommend scale factors for four different scale model options, each with varying degrees of replication. Potential problems in constructing and testing the scale model are identified, and recommendations for further study are outlined.

Gronet, M. J.; Pinson, E. D.; Voqui, H. L.; Crawley, E. F.; Everman, M. R.

1987-01-01

77

Data Acquisition System Architecture and Capabilities at NASA GRC Plum Brook Station's Space Environment Test Facilities  

NASA Technical Reports Server (NTRS)

Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

Evans, Richard K.; Hill, Gerald M.

2014-01-01

78

Analysis of a Four-Station Doppler Tracking Method Using a Simple CW Beacon  

NASA Technical Reports Server (NTRS)

A Doppler tracking method is presented in which a very small, simple CW beacon transmitter is used with four Doppler receiving stations to obtain the position and velocity of a space research vehicle. The exact transmitter frequency need not be known, but an initial position is required, and Doppler frequencies must be measured with extreme accuracy. The errors in the system are analyzed and general formulas are derived for position and velocity errors. The proper location of receiving stations is discussed, a rule for avoiding infinite errors is given, and error charts for ideal station configurations are presented. The effect of the index of refraction is also investigated. The system is capable of determining transmitter position within 1,000 feet at a range of 200 miles.

Fricke, Clifford L.; Watkins, Carl W. L.

1961-01-01

79

NASA philosophy concerning space stations as operations centers for construction and maintenance of large orbiting energy systems  

NASA Technical Reports Server (NTRS)

Future United States plans for manned space-flight activities are summarized, emphasizing the long-term goals of achieving permanent occupancy and limited self-sufficiency in space. NASA-sponsored studies of earth-orbiting Space Station concepts are reviewed along with lessons learned from the Skylab missions. Descriptions are presented of the Space Transportation System, the Space Construction Base, and the concept of space industrialization (the processing and manufacturing of goods in space). Future plans for communications satellites, solar-power satellites, terrestrial observations from space stations, and manned orbital-transfer vehicles are discussed.

Freitag, R. F.

1976-01-01

80

NASA Now: International Space Station Payload Operations - Duration: 6:56.  

NASA Video Gallery

In this episode of NASA Now, you??ll hear Katie Presson of the Payload Operations Integration team at NASA's Marshall Space Flight Center in Huntsville, Ala., discuss investigations being conducte...

81

NASA Human Spaceflight  

NSDL National Science Digital Library

The NASA Human Spaceflight site provides information on all crewed NASA missions, especially the Space Shuttle and International Space Station. Materials include realtime data and tracking information, updates for ongoing missions, press releases, videos and photos, and daily news and events from the various NASA centers. There is also information on historic crewed missions, and fact sheets on astronauts, shuttle missions, first flights, and scientific research facilities. Users may also subscribe to an e-mail service to receive status reports, news releases, and other current information.

2002-01-01

82

Tracking the Relative Motion of Four Space Payloads Launched From a Sub-Orbital NASA Rocket  

NASA Technical Reports Server (NTRS)

One problem, which is comparatively new in the field of GPS applications, is the determination of the relative trajectories of space vehicles. Applications include the docking of spacecraft, collision avoidance in the area of space stations, and trajectory reconstruction of multiple payloads. The required precision in any of these applications will vary, according to the requirements of the task and abilities of GPS to cope with the environment and the dynamics. This paper describes the post-mission reconstruction of the relative trajectories of four GPS receivers attached to four payloads jettisoned from a rocket in a sub-orbital NASA science mission. It is shown that the sub-decimetre level were achieved with single frequency GPS receivers.

Martel, Hugh; Bull, Barton

1999-01-01

83

Knowledge-based vision for space station object motion detection, recognition, and tracking  

NASA Technical Reports Server (NTRS)

Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed.

Symosek, P.; Panda, D.; Yalamanchili, S.; Wehner, W., III

1987-01-01

84

Use of scented sugar bait stations to track mosquito-borne arbovirus transmission in California.  

PubMed

Laboratory and field research was conducted to determine if Culex tarsalis Coquillett expectorated West Nile virus (WNV) during sugar feeding and if a lure or bait station could be developed to exploit this behavior for WNV surveillance. Experimentally infected Cx. tarsalis repeatedly expectorated WNV onto filter paper strips and into vials with wicks containing sucrose that was readily detectable by a quantitative reverse transcriptase-polymerase chain reaction assay. Few females (33%, n = 27) became infected by imbibing sugar solutions spiked with high concentrations (10(7) plaque forming units/ml) of WNV, indicating sugar feeding stations probably would not be a source of WNV infection. In nature, sugar bait stations scented with the floral attractant phenyl acetaldehyde tracked WNV transmission activity in desert but not urban or agricultural landscapes in California. When deployed in areas of the Coachella Valley with WNV activity during the summer of 2011, 27 of 400 weekly sugar samples (6.8%) tested positive for WNV RNA by reverse transcriptase-polymerase chain reaction. Prevalence of positives varied spatially, but positive sugar stations were detected before concurrent surveillance measures of infection (mosquito pools) or transmission (sentinel chicken seroconversions). In contrast, sugar bait stations deployed in urban settings in Los Angeles or agricultural habits near Bakersfield in Kern County supporting WNV activity produced 1 of 90 and 0 of 60 positive weekly sugar samples, respectively. These results with sugar bait stations will require additional research to enhance bait attractancy and to understand the relationship between positive sugar stations and standard metrics of arbovirus surveillance. PMID:23270177

Lothrop, Hugh D; Wheeler, Sarah S; Fang, Ying; Reisen, William K

2012-11-01

85

Use of Scented Sugar Bait Stations to Track Mosquito-Borne Arbovirus Transmission in California  

PubMed Central

Laboratory and field research was conducted to determine if Culex tarsalis Coquillett expectorated West Nile virus (WNV) during sugar feeding and if a lure or bait station could be developed to exploit this behavior for WNV surveillance. Experimentally infected Cx. tarsalis repeatedly expectorated WNV onto filter paper strips and into vials with wicks containing sucrose that was readily detectable by a quantitative reverse transcriptase-polymerase chain reaction assay. Few females (33%, n = 27) became infected by imbibing sugar solutions spiked with high concentrations (107 plaque forming units/ml) of WNV, indicating sugar feeding stations probably would not be a source of WNV infection. In nature, sugar bait stations scented with the floral attractant phenyl acetaldehyde tracked WNV transmission activity in desert but not urban or agricultural landscapes in California. When deployed in areas of the Coachella Valley with WNV activity during the summer of 2011, 27 of 400 weekly sugar samples (6.8%) tested positive for WNV RNA by reverse transcriptase-polymerase chain reaction. Prevalence of positives varied spatially, but positive sugar stations were detected before concurrent surveillance measures of infection (mosquito pools) or transmission (sentinel chicken seroconversions). In contrast, sugar bait stations deployed in urban settings in Los Angeles or agricultural habits near Bakersfield in Kern County supporting WNV activity produced 1 of 90 and 0 of 60 positive weekly sugar samples, respectively. These results with sugar bait stations will require additional research to enhance bait attractancy and to understand the relationship between positive sugar stations and standard metrics of arbovirus surveillance. PMID:23270177

LOTHROP, HUGH D.; WHEELER, SARAH S.; FANG, YING; REISEN, WILLIAM K.

2012-01-01

86

Tracking and data relay satellite system configuration and tradeoff study. Volume 5: User impact and ground station design, part 1  

NASA Technical Reports Server (NTRS)

The configuration of the user transponder on the Tracking and Data Relay satellite is described. The subjects discussed are: (1) transponder concepts and trades, (2) ground station design, (3) antenna configurations for ground equipment, (4) telemetry facilities, (5) signal categories, and (6) satellite tracking.

Hill, T. E.

1972-01-01

87

A New Direction for NASA Materials Science Research Using the International Space Station  

NASA Technical Reports Server (NTRS)

NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.

Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

2001-01-01

88

A New Direction for the NASA Materials Science Research Using the International Space Station  

NASA Technical Reports Server (NTRS)

In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

2002-01-01

89

Automation of PCXMC and ImPACT for NASA Astronaut Medical Imaging Dose and Risk Tracking  

NASA Technical Reports Server (NTRS)

To automate astronaut organ and effective dose calculations from occupational X-ray and computed tomography (CT) examinations incorporating PCXMC and ImPACT tools and to estimate the associated lifetime cancer risk per the National Council on Radiation Protection & Measurements (NCRP) using MATLAB(R). Methods: NASA follows guidance from the NCRP on its operational radiation safety program for astronauts. NCRP Report 142 recommends that astronauts be informed of the cancer risks from reported exposures to ionizing radiation from medical imaging. MATLAB(R) code was written to retrieve exam parameters for medical imaging procedures from a NASA database, calculate associated dose and risk, and return results to the database, using the Microsoft .NET Framework. This code interfaces with the PCXMC executable and emulates the ImPACT Excel spreadsheet to calculate organ doses from X-rays and CTs, respectively, eliminating the need to utilize the PCXMC graphical user interface (except for a few special cases) and the ImPACT spreadsheet. Results: Using MATLAB(R) code to interface with PCXMC and replicate ImPACT dose calculation allowed for rapid evaluation of multiple medical imaging exams. The user inputs the exam parameter data into the database and runs the code. Based on the imaging modality and input parameters, the organ doses are calculated. Output files are created for record, and organ doses, effective dose, and cancer risks associated with each exam are written to the database. Annual and post-flight exposure reports, which are used by the flight surgeon to brief the astronaut, are generated from the database. Conclusions: Automating PCXMC and ImPACT for evaluation of NASA astronaut medical imaging radiation procedures allowed for a traceable and rapid method for tracking projected cancer risks associated with over 12,000 exposures. This code will be used to evaluate future medical radiation exposures, and can easily be modified to accommodate changes to the risk calculation procedure.

Bahadori, Amir; Picco, Charles; Flores-McLaughlin, John; Shavers, Mark; Semones, Edward

2011-01-01

90

SeaTrack: Ground station orbit prediction and planning software for sea-viewing satellites  

NASA Technical Reports Server (NTRS)

An orbit prediction software package (Sea Track) was designed to assist High Resolution Picture Transmission (HRPT) stations in the acquisition of direct broadcast data from sea-viewing spacecraft. Such spacecraft will be common in the near future, with the launch of the Sea viewing Wide Field-of-view Sensor (SeaWiFS) in 1994, along with the continued Advanced Very High Resolution Radiometer (AVHRR) series on NOAA platforms. The Brouwer-Lyddane model was chosen for orbit prediction because it meets the needs of HRPT tracking accuracies, provided orbital elements can be obtained frequently (up to within 1 week). Sea Track requires elements from the U.S. Space Command (NORAD Two-Line Elements) for the satellite's initial position. Updated Two-Line Elements are routinely available from many electronic sources (some are listed in the Appendix). Sea Track is a menu-driven program that allows users to alter input and output formats. The propagation period is entered by a start date and end date with times in either Greenwich Mean Time (GMT) or local time. Antenna pointing information is provided in tabular form and includes azimuth/elevation pointing angles, sub-satellite longitude/latitude, acquisition of signal (AOS), loss of signal (LOS), pass orbit number, and other pertinent pointing information. One version of Sea Track (non-graphical) allows operation under DOS (for IBM-compatible personal computers) and UNIX (for Sun and Silicon Graphics workstations). A second, graphical, version displays orbit tracks, and azimuth-elevation for IBM-compatible PC's, but requires a VGA card and Microsoft FORTRAN.

Lambert, Kenneth S.; Gregg, Watson W.; Hoisington, Charles M.; Patt, Frederick S.

1993-01-01

91

A Real Time Differential GPS Tracking System for NASA Sounding Rockets  

NASA Technical Reports Server (NTRS)

Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

Bull, Barton; Bauer, Frank (Technical Monitor)

2000-01-01

92

Overview of NASARTI (NASA Radiation Track Image) Program: Highlights of the Model Improvement and the New Results  

NASA Technical Reports Server (NTRS)

This presentation summarizes several years of research done by the co-authors developing the NASARTI (NASA Radiation Track Image) program and supporting it with scientific data. The goal of the program is to support NASA mission to achieve a safe space travel for humans despite the perils of space radiation. The program focuses on selected topics in radiation biology that were deemed important throughout this period of time, both for the NASA human space flight program and to academic radiation research. Besides scientific support to develop strategies protecting humans against an exposure to deep space radiation during space missions, and understanding health effects from space radiation on astronauts, other important ramifications of the ionizing radiation were studied with the applicability to greater human needs: understanding the origins of cancer, the impact on human genome, and the application of computer technology to biological research addressing the health of general population. The models under NASARTI project include: the general properties of ionizing radiation, such as particular track structure, the effects of radiation on human DNA, visualization and the statistical properties of DSBs (DNA double-strand breaks), DNA damage and repair pathways models and cell phenotypes, chromosomal aberrations, microscopy data analysis and the application to human tissue damage and cancer models. The development of the GUI and the interactive website, as deliverables to NASA operations teams and tools for a broader research community, is discussed. Most recent findings in the area of chromosomal aberrations and the application of the stochastic track structure are also presented.

Ponomarev, Artem L.; Plante, I.; George, Kerry; Cornforth, M. N.; Loucas, B. D.; Wu, Honglu

2014-01-01

93

NASA Tests Transfer Device for Space Station - Duration: 1:20.  

NASA Video Gallery

Inside the Space Vehicle Mockup Facility at Johnson Space Center in Houston, NASA tests the Japanese Experiment Module ORU Transfer Interface, or JOTI. This device would allow astronauts to transfe...

94

ISS Update: How Canada and NASA Work Together to Support the Station - Duration: 9:20.  

NASA Video Gallery

NASA Public Affairs Officer Kelly Humphries interviews Tim Braithwaite, Canadian Space Agency (CSA) Liaison Office Manager. The CSA Liaison Office is a small office at the Johnson Space Center (JSC...

95

The Mothball, Sustainment, and Proposed Reactivation of the Hypersonic Tunnel Facility (HTF) at NASA Glenn Research Center Plum Brook Station  

NASA Technical Reports Server (NTRS)

The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart

Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.

2010-01-01

96

Orbital Debris Detection and Tracking Strategies for the NASA/AFRL Meter Class Autonomous Telescope (MCAT)  

NASA Technical Reports Server (NTRS)

MCAT (Meter-Class Autonomous Telescope) is a 1.3m f/4 Ritchey-Chr tien on a double horseshoe equatorial mount that will be deployed in early 2011 to the western pacific island of Legan in the Kwajalein Atoll to perform orbital debris observations. MCAT will be capable of tracking earth orbital objects at all inclinations and at altitudes from 200 km to geosynchronous. MCAT s primary objective is the detection of new orbital debris in both low-inclination low-earth orbits (LEO) and at geosynchronous earth orbit (GEO). MCAT was thus designed with a fast focal ratio and a large unvignetted image circle able to accommodate a detector sized to yield a large field of view. The selected primary detector is a close-cycle cooled 4Kx4K 15um pixel CCD camera that yields a 0.9 degree diagonal field. For orbital debris detection in widely spaced angular rate regimes, the camera must offer low read-noise performance over a wide range of framing rates. MCAT s 4-port camera operates from 100 kHz to 1.5 MHz per port at 2 e- and 10 e- read noise respectively. This enables low-noise multi-second exposures for GEO observations as well as rapid (several frames per second) exposures for LEO. GEO observations will be performed using a counter-sidereal time delay integration (TDI) technique which NASA has used successfully in the past. For MCAT the GEO survey, detection, and follow-up prediction algorithms will be automated. These algorithms will be detailed herein. For LEO observations two methods will be employed. The first, Orbit Survey Mode (OSM), will scan specific orbital inclination and altitude regimes, detect new orbital debris objects against trailed background stars, and adjust the telescope track to follow the detected object. The second, Stare and Chase Mode (SCM), will perform a stare, then detect and track objects that enter the field of view which satisfy specific rate and brightness criteria. As with GEO, the LEO operational modes will be fully automated and will be described herein. The automation of photometric and astrometric processing (thus streamlining data collection for environmental modeling) will also be discussed.

Mulrooney, M.; Hickson, P.; Stansbery, Eugene G.

2010-01-01

97

Operational radio interferometry observation network (ORION) mobile VLBI station. [for NASA Crustal Dynamics Project  

NASA Technical Reports Server (NTRS)

The design and current status of the ORION mobile VLBI station is described. The station consists of a five-meter antenna, a receiving and recording system installed in a mobile antenna transporter, and an electronics transporter. The station is designed for field operation by a two-person crew at the rate of two sites per week. The various subsystems are described in detail, including the antenna, housing facilities for electronics and crew, microwave equipment, receiver, data acquisition subsystem, frequency and timing subsystem, phase calibration, monitoring and control, water vapor radiometer, and communications.

Renzetti, N. A.; Vegos, C. J.; Parks, G. S.; Sniffin, R. W.; Gannon, D. L.; Nishimura, H. G.; Clements, P. A.; Mckinney, R. P.; Menninger, F. J.; Vandenberg, N. R.

1983-01-01

98

GPS Sounding Rocket Development at NASA with Simultaneous Multi-Payload Tracking Application  

NASA Technical Reports Server (NTRS)

An inverse differential GPS system has been developed for Sounding Rocket use which includes the flight unit and a ground station capable of extracting GPS data from sounding rocket telemetry, performing a real time differential solution and graphically displaying the rocket's path relative to a predicted trajectory plot. Accuracy has been proven to within less than 10 meters. Postprocessing has increased the precision to within 10 - 20 centimeters. The system has been successfully flown several times and delivered to the Sounding Program Office for routine field use. In addition to providing position, velocity and time GPS data has been used on sounding rockets for vehicle performance analysis, effecting a one hundred fold improvement in data time tagging, and steering an optical tracking device to intercept payloads launched from over the horizon. Precise velocity separation information and timing has been provided to multiple payload systems. Future plans include its use for Range Safety and enabling of interferometric techniques. The technology and software developed also has potential application to small satellite navigation and formation flying.

Bull, Barton; Martel, Hugh

2000-01-01

99

Evaluation of solid state nuclear track detector stacks exposed on the international space station.  

PubMed

The aim of the study was to investigate the contribution of secondary neutrons to the total dose inside the International Space Station (ISS). For this purpose solid-state nuclear track detector (SSNTD) stacks were used. Each stack consisted of three CR-39 sheets. The first and second sheets were separated by a Ti plate, and the second and third sheets sandwiched a Lexan polycarbonate foil. The neutron and proton responses of each sheet were studied through MC calculations and experimentally, utilising monoenergetic protons. Seven stacks were exposed in 2001 for 249 days at different locations of the Russian segment 'Zvezda'. The total storage time before and after the exposure onboard was estimated to be seven months. Another eight stacks were exposed at the CERF high-energy neutron field for calibration purposes. The CR-39 detectors were evaluated in four steps: after 2, 6, 12 and 20 h etching in 6 N NaOH at 70 degrees C (VB = 1.34 microm h(-1)). All the individual tracks were investigated and recorded using an image analyser. The stacks provided the averaged neutron ambient dose equivalent (H*) between 200 keV and 20 MeV, and the values varied from 39 to 73 microSv d(-1), depending on the location. The Lexan detectors were used to detect the dose originating from high-charge and high-energy (HZE) particles. These results will be published elsewhere. PMID:15353680

Plfalvi, J K; Akatov, Yu; Szab, J; Saj-Bohus, L; Erdgh, I

2004-01-01

100

Space station needs, attributes and architectural options. Volume 1: Executive summary NASA  

NASA Technical Reports Server (NTRS)

The uses alignment plan was implemented. The existing data bank was used to define a large number of station requirements. Ten to 20 valid mission scenarios were developed. Architectural options as they are influenced by communications operations, subsystem evolvability, and required technology growth are defined. Costing of evolutionary concepts, alternative approaches, and options, was based on minimum design details.

1983-01-01

101

The NASA-Lewis terrestrial photovoltaics program. [solar cell power system for weather station  

NASA Technical Reports Server (NTRS)

Research and technology efforts on solar cells and arrays having relevance to terrestrial uses are outline. These include raising cell efficiency, developing the FEP-covered module concept, and exploring low cost cell concepts. Solar cell-battery power systems for remote weather stations have been built to demonstrate the capabilities of solar cells for terrestrial applications.

Bernatowicz, D. T.

1973-01-01

102

Design, fabrication and test of a prototype double gimbal control moment gyroscope for the NASA Space Station  

NASA Technical Reports Server (NTRS)

Recognizing the need to develop future technologies in support of the Space Station, NASA's Advanced Development Program (ADP) placed as its goal the design and fabrication of a prototype 4750 Newton-meter-second (3500 ft-lb-sec) Control Moment Gyroscope (CMG). The CMG uses the principle of momentum exchange to impart control torques for counteracting vehicle disturbances. This paper addresses the selection of the double gimbal CMG over the single gimbal and describes the major subassemblies of the prototype design. Particular attention is given to the choice of the materials, fabrication and design details dictated by the man-rated mission requirement. Physical characteristics and the results of functional testing are presented to demonstrate the level of system performance obtained. Comparisons are made of the measured system responses against design goals and predictions generated by computer simulation.

Blondin, Joseph; Hahn, Eric; Kolvek, John; Cook, Lewis; Golley, Paul

1989-01-01

103

International Space Station Bus Regulation With NASA Glenn Research Center Flywheel Energy Storage System Development Unit  

NASA Technical Reports Server (NTRS)

An experimental flywheel energy storage system is described. This system is being used to develop a flywheel based replacement for the batteries on the International Space Station (ISS). Motor control algorithms which allow the flywheel to interface with a simplified model of the ISS power bus, and function similarly to the existing ISS battery system, are described. Results of controller experimental verification on a 300 W-hr flywheel are presented.

Kascak, Peter E.; Kenny, Barbara H.; Dever, Timothy P.; Santiago, Walter; Jansen, Ralph H.

2001-01-01

104

Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 5: Study analysis report  

NASA Technical Reports Server (NTRS)

The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be on-board the Freedom Space Station. The further analysis performed on the SCS study as part of task 2-Perform Studies and Parametric Analysis-of the SCS study contract is summarized. These analyses were performed to resolve open issues remaining after the completion of task 1, and the publishing of the SCS study issues report. The results of these studies provide inputs into SCS task 3-Develop and present SCS requirements, and SCS task 4-develop SCS conceptual designs. The purpose of these studies is to resolve the issues into usable requirements given the best available information at the time of the study. A list of all the SCS study issues is given.

1989-01-01

105

Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites  

NASA Technical Reports Server (NTRS)

Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

1974-01-01

106

The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations  

NASA Technical Reports Server (NTRS)

The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

Aller, R. O.

1985-01-01

107

The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations  

NASA Astrophysics Data System (ADS)

The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

Aller, R. O.

1985-10-01

108

A Technical, Financial, and Policy Analysis of the RAMSES RFID Inventory Management System for NASA's International Space Station: Prospects for SBIR/STTR Technology Infusion  

E-print Network

's International Space Station: Prospects for SBIR/STTR Technology Infusion by Abraham T. Grindle Honors B for SBIR/STTR Technology Infusion by Abraham T. Grindle Honors B.S. Aerospace Engineering Saint Louis that might be unique to SBIR/STTR technologies that are successfully infused into the mainstream NASA

109

A review of NASA international programs  

NASA Technical Reports Server (NTRS)

A synoptic overview of NASA's international activities to January 1979 is presented. The cooperating countries and international organizations are identified. Topics covered include (1) cooperative arrangements for ground-based, spaceborne, airborne, rocket-borne, and balloon-borne ventures, joint development, and aeronautical R & D; (2) reimbursable launchings; (3) tracking and data acquisition; and (4) personnel exchanges. International participation in NASA's Earth resources investigations is summarized in the appendix. A list of automatic picture transmission stations is included.

1979-01-01

110

NASA's plans for life sciences research facilities on a Space Station  

NASA Technical Reports Server (NTRS)

A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.

Arno, R.; Heinrich, M.; Mascy, A.

1984-01-01

111

Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Concept document  

NASA Technical Reports Server (NTRS)

The Simulation Computer System (SCS) concept document describes and establishes requirements for the functional performance of the SCS system, including interface, logistic, and qualification requirements. The SCS is the computational communications and display segment of the Marshall Space Flight Center (MSFC) Payload Training Complex (PTC). The PTC is the MSFC facility that will train onboard and ground operations personnel to operate the payloads and experiments on board the international Space Station Freedom. The requirements to be satisfied by the system implementation are identified here. The SCS concept document defines the requirements to be satisfied through the implementation of the system capability. The information provides the operational basis for defining the requirements to be allocated to the system components and enables the system organization to assess whether or not the completed system complies with the requirements of the system.

1989-01-01

112

NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting  

NASA Technical Reports Server (NTRS)

The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

2003-01-01

113

NASA Human Space Flight Realtime Data  

NSDL National Science Digital Library

Wondering when that spacecraft will be cruising over your city during the next ten days? Visit the NASA Human Space Flight Realtime Data page to find out. Satellite sighting information by city is provided by NASA's Johnson Space Center. Visitors to the site can choose a city from the list provided or enter their location using the nifty NASA Skywatch Java applet. Other highlights of the NASA Human Space Flight Realtime Data page include maps of Space Shuttle landing tracks (.gif) and deorbit parameters, and Space Shuttle and Space Station orbital tracking information that includes altitude, location coordinates, speed, and more. Definitions and illustrations of orbital tracking elements and coordinate system terminology make the site accessible to general audiences.

114

The NASA/JPL 64-meter-diameter antenna at Goldstone, California: Project report, technical staff, tracking and data acquisition organization  

NASA Technical Reports Server (NTRS)

The significant management and technical aspects of the JPL Project to develop and implement a 64-meter-diameter antenna at the Goldstone Deep Space Communications Complex in California, which was the first of the Advanced Antenna Systems of the National Aeronautics and Space Administration/Jet Propulsion Laboratory Deep Space Network are described. The original need foreseen for a large-diameter antenna to accomplish communication and tracking support of NASA's solar system exploration program is reviewed, and the translation of those needs into the technical specification of an appropriate ground station antenna is described. The antenna project is delineated by phases to show the key technical and managerial skills and the technical facility resources involved. There is a brief engineering description of the antenna and its closely related facilities. Some difficult and interesting engineering problems, then at the state-of-the-art level, which were met in the accomplishment of the Project, are described. The key performance characteristics of the antenna, in relation to the original specifications and the methods of their determination, are stated.

1974-01-01

115

Analysis and evaluation of the NASA\\/JPL TOPSAR across-track interferometric SAR system  

Microsoft Academic Search

The authors have evaluated the accuracy of digital elevation models (DEMs) generated by the JPL\\/NASA TOPSAR synthetic aperture radar interferometer instrument by acquiring topographic radar data in the summer of 1992 over the National Training Center, near Ft. Irwin, California, and comparing the measurements to a very accurate digital elevation model derived for this area by the U.S. Army Topographic

Soren Ngrvang Madsen; Jan M. Martin; Howard A. Zebker

1995-01-01

116

Establishing a communications-intensive network to resolve artificial intelligence issues within NASA's Space Station Freedom research centers community  

NASA Technical Reports Server (NTRS)

MITRE Corporation's, A Review of Space Station Freedom Program Capabilities for the Development and Application of Advanced Automation, cites as a critical issue the following situation, extant at the NASA facilities visited in the course of preparing the review: The major issues noted with regard to design and research facilities deal with cooperative problem solving, technology transfer, and communication between these facilities. While the authors were visiting lab and test beds to collect information, personnel at many of these facilities were interested in any information they could collect on activities at other facilities. A formal means of gathering this information could not be identified by these personnel. While communication between some facilities was taking place or was planned, for technology transfer or coordination of schedules (e.g., for SADP demonstrations), poor communication between these facilities could lead to a lack of technical standards, duplication of effort, poorly defined interfaces, scheduling problems, and increased cost. Formal mechanisms by which effective communication and cooperative problem solving can take place, and information can be disseminated, must be defined. A solution is proposed for the communications aspects of the issues addressed above; and offered at the same time a solution which can prove effective in dealing with some of the problems being encountered with expertise being lost via retirement or defection to the private sector. The proffered recommendations are recognizably cost-effective and tap the rising sector of expert knowledge being produced by the American academic community.

Howard, E. Davis, III

1990-01-01

117

The Santa Maria Ground Station Technical Parameters with Trainee Operation for CubeSat Tracking - Capacity Building  

NASA Astrophysics Data System (ADS)

This paper aims to describe the technical parameters of the NANOSATC-BR1's Ground Station (GS) installed at the Southern Regional Space Research Center - CRS/INPE-MCTI, Santa Maria, RS, Southern of Brazil, (29.4245S, 53.4303W) which is being operated by two UFSM' trainee students financed by the Brazilian Space Agency (AEB), from the INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program (CBP). The NANOSATC-BR - CubeSats development Project, consists of two CubeSats, NANOSATC-BR 1 (1U) & 2 (2U) and is expected to operate in orbit for at least 12 months each. The NANOSATC-BR 1 & 2 - CubeSats spaces stations communication subsystems will make the radio down and up data links with the NANOSATC-BR Ground Stations Network. The Ground Station is compatible with on board NANOSAC-BR 1 & 2 systems and also with the GENSO (Global Educational Network for Satellite Operations). It was projected to track LEO (Low Earth Orbit) nanosatellites operating in the IARU (International Amateur Radio Union) VHF and UHF bandwidths and also at S-band frequency. The Program with its NANOSATC-BR Brazilian Ground Stations Network are presented and it has support from The Brazilian Space Agency (AEB).

Manica, Thales Ramos; Schuch, Nelson Jorge; Moro, Pietro Fernando; Cupertino Durao, Otavio S.; Farias, Tiago Travi; Mozzaquatro Wendt, Joo Francisco

118

Coping with data from Space Station Freedom  

NASA Technical Reports Server (NTRS)

The volume of data from future NASA space missions will be phenomenal. Here, we examine the expected data flow from the Space Station Freedom and describe techniques that are being developed to transport and process that data. Networking in space, the Tracking and Data Relay Satellite System (TDRSS), recommendations of the Consultative Committee for Space Data systems (CCSDS), NASA institutional ground support, communications system architecture, and principal data types and formats are discussed.

Johnson, Marjory J.

1991-01-01

119

Modelling the performance of the tapered artery heat pipe design for use in the radiator of the solar dynamic power system of the NASA Space Station  

NASA Technical Reports Server (NTRS)

The paper presents a computer program developed to model the steady-state performance of the tapered artery heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station. The program solves six governing equations to ascertain which one is limiting the maximum heat transfer rate of the heat pipe. The present model appeared to be slightly better than the LTV model in matching the 1-g data for the standard 15-ft test heat pipe.

Evans, Austin Lewis

1988-01-01

120

NASA RFID Applications  

NASA Technical Reports Server (NTRS)

This viewgraph document reviews some potential uses for Radio Frequency Identification in space missions. One of these is inventory management in space, including the methods used in Apollo, the Space Shuttle, and Space Station. The potential RFID uses in a remote human outpost are reviewed. The use of Ultra-Wideband RFID for tracking are examined such as that used in Sapphire DART The advantages of RFID in passive, wireless sensors in NASA applications are shown such as: Micrometeoroid impact detection and Sensor measurements in environmental facilities The potential for E-textiles for wireless and RFID are also examined.

Fink, Patrick, Ph.D.; Kennedy, Timothy, Ph.D; Powers, Anne; Haridi, Yasser; Chu, Andrew; Lin, Greg; Yim, Hester; Byerly, Kent, Ph.D.; Barton, Richard, Ph.D.; Khayat, Michael, Ph.D.; Studor, George; Brocato, Robert; Ngo, Phong; Arndt, G. D., Ph.D.; Gross, Julia; Phan, Chau; Ni, David, Ph.D.; Dusl, John; Dekome, Kent

2007-01-01

121

Expert Water Quality Panel Review of Responses to the NASA Request for Information for the International Space Station On-Board Environmental Monitoring System  

NASA Technical Reports Server (NTRS)

On August 9, 2003, NASA, with the cooperative support of the Vehicle Office of the International Space Station Program, the Advanced Human Support Technology Program, and the Johnson Space Center Habitability and Environmental Factors Office released a Request for Information, or RFI, to identify next-generation environmental monitoring systems that have demonstrated ability or the potential to meet defined requirements for monitoring air and water quality onboard the International Space Station. This report summarizes the review and analysis of the proposed solutions submitted to meet the water quality monitoring requirements. Proposals were to improve upon the functionality of the existing Space Station Total Organic Carbon Analyzer (TOCA) and monitor additional contaminants in water samples. The TOCA is responsible for in-flight measurement of total organic carbon, total inorganic carbon, total carbon, pH, and conductivity in the Space Station potable water supplies. The current TOCA requires hazardous reagents to accomplish the carbon analyses. NASA is using the request for information process to investigate new technologies that may improve upon existing capabilities, as well as reduce or eliminate the need for hazardous reagents. Ideally, a replacement for the TOCA would be deployed in conjunction with the delivery of the Node 3 water recovery system currently scheduled for November 2007.

Fishman, Julianna L.; Mudgett, Paul D.; Packham, Nigel J.; Schultz, John R.; Straub, John E., II

2005-01-01

122

ISS Update: Keeping Track of Station Inventory ?? 03.14.13 - Duration: 5:08.  

NASA Video Gallery

Public Affairs Officer Dan Huot interviews Rob Adams, Inventory and Stowage Officer, inside the Mission Control Center. Adams and his team keep track of the gear aboard the International Space Stat...

123

NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station  

NASA Technical Reports Server (NTRS)

The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

1999-01-01

124

NASA's post-Challenger safety program - Themes and thrusts  

NASA Technical Reports Server (NTRS)

The range of managerial, technical, and procedural initiatives implemented by NASA's post-Challenger safety program is reviewed. The recommendations made by the Rogers Commission, the NASA post-Challenger review of Shuttle design, the Congressional investigation of the accident, the National Research Council, the Aerospace Safety Advisory Panel, and NASA internal advisory panels and studies are summarized. NASA safety initiatives regarding improved organizational accountability for safety, upgraded analytical techniques and methodologies for risk assessment and management, procedural initiatives in problem reporting and corrective-action tracking, ground processing, maintenance documentation, and improved technologies are discussed. Safety issues relevant to the planned Space Station are examined.

Rodney, G. A.

1988-01-01

125

GLGM-3: A degree-150 lunar gravity model from the historical tracking data of NASA Moon orbiters  

NASA Astrophysics Data System (ADS)

In preparation for the radio science experiment of the Lunar Reconnaissance Orbiter (LRO) mission, we analyzed the available radio tracking data of previous NASA lunar orbiters. Our goal was to use these historical observations in combination with the new low-altitude data to be obtained by LRO. We performed Precision Orbit Determination on trajectory arcs from Lunar Orbiter 1 in 1966 to Lunar Prospector in 1998, using the GEODYN II program developed at NASA Goddard Space Flight Center. We then created a set of normal equations and solved for the coefficients of a spherical harmonics expansion of the lunar gravity potential up to degree and order 150. The GLGM-3 solution obtained with a global Kaula constraint (2.5 10-4l-2) shows good agreement with model LP150Q from the Jet Propulsion Laboratory, especially over the nearside. The levels of data fit with both gravity models are very similar (Doppler RMS of 0.2 and 1-2 mm/s in the nominal and extended phases, respectively). Orbit overlaps and uncertainties estimated from the covariance matrix also agree well. GLGM-3 shows better correlation with lunar topography and admittance over the nearside at high degrees of expansion (l > 100), particularly near the poles. We also present three companion solutions, obtained with the same data set but using alternate inversion strategies that modify the power law constraint and expectation of the individual spherical harmonics coefficients. We give a detailed discussion of the performance of this family of gravity field solutions in terms of observation fit, orbit quality, and geophysical consistency.

Mazarico, E.; Lemoine, F. G.; Han, Shin-Chan; Smith, D. E.

2010-05-01

126

GLGM-3: A Degree-ISO Lunar Gravity Model from the Historical Tracking Data of NASA Moon Orbiters  

NASA Technical Reports Server (NTRS)

In preparation for the radio science experiment of the Lunar Reconnaissance Orbiter (LRO) mission, we analyzed the available radio tracking data of previous NASA lunar orbiters. Our goal was to use these historical observations in combination with the new low-altitude data to be obtained by LRO. We performed Precision Orbit Determination on trajectory arcs from Lunar Orbiter 1 in 1966 to Lunar Prospector in 1998, using the GEODYN II program developed at NASA Goddard Space Flight Center. We then created a set of normal equations and solved for the coefficients of a spherical harmonics expansion of the lunar gravity potential up to degree and order 150. The GLGM-3 solution obtained with a global Kaula constraint (2.5 x 10(exp -4)/sq l) shows good agreement with model LP150Q from the Jet Propulsion Laboratory, especially over the nearside. The levels of data fit with both gravity models are very similar (Doppler RMS of approx.0.2 and approx. 1-2 mm/s in the nominal and extended phases, respectiVely). Orbit overlaps and uncertainties estimated from the covariance matrix also agree well. GLGM-3 shows better correlation with lunar topography and admittance over the nearside at high degrees of expansion (l > 100), particularly near the poles. We also present three companion solutions, obtained with the same data set but using alternate inversion strategies that modify the power law constraint and expectation of the individual spherical harmonics coefficients. We give a detailed discussion of the performance of this family of gravity field solutions in terms of observation fit, orbit quality, and geophysical consistency.

Mazarico, E.; Lemoine, F. G.; Han, Shin-Chan; Smith, D. E.

2010-01-01

127

A determination of the radio-planetary frame tie and the DSN tracking station locations  

NASA Technical Reports Server (NTRS)

The orientation of the reference frame of radio source catalogs relative to that of planetary ephemerides is uncertain by 30 mas (150 nrad). At this level of uncertainty this orientation offset, or 'frame tie', can be a major systematic error source for interplanetary spacecraft orbit determination. This work presents a method of determining the radio-planetary frame tie from a comparison of Very Long Baseline Interferometry (VLBI) and Lunar Laser Ranging (LLR) station coordinate and earth orientation parameter estimates. Preliminary results are presented which indicate that accuracies of 5 mas or better may be achieved with this method. An important by-product of this method of frame tie determination is a set of Deep Space Network (DSN) station locations with 10 cm per component accuracy. This station set is in a geocentric coordinate system with known orientation relative to the radio and planetary frames.

Finger, Mark H.; Folkner, William M.

1990-01-01

128

Fast Track Lunar NTR Systems Assessment for NASA's First Lunar Outpost and Its Evolvability to Mars  

NASA Technical Reports Server (NTRS)

Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. A 'standardized' set of engine and stage components are identified and used in a 'building block' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I(sub sp)) of 900 seconds, and an engine thrust-to-weight ratio of 4. 3. For the National Aeronautics and Space Administrations (NASA) First Lunar Outpost (FLO) mission, and expendable NTR stage powered by two such engines can deliver approximately 96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH2) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH2 capacity to approximately 20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The 'modular' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions.

Borowski, Stanley K.; Alexander, Stephen W.

1995-01-01

129

Fast Track NTR Systems Assessment for NASA's First Lunar Outpost Scenario  

NASA Technical Reports Server (NTRS)

Integrated systems and mission study results are presented which quantify the rationale and benefits for developing and using nuclear thermal rocket (NTR) technology for returning humans to the moon in the early 2000's. At present, the Exploration Program Office (ExPO) is considering chemical propulsion for its 'First Lunar Outpost' (FLO) mission, and NTR propulsion for the more demanding Mars missions to follow. The use of an NTR-based lunar transfer stage, capable of evolving to Mars mission applications, could result in an accelerated schedule, reduced cost approach to moon/Mars exploration. Lunar mission applications would also provide valuable operational experience and serve as a 'proving ground' for NTR engine and stage technologies. In terms of performance benefits, studies indicate that an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to trans-lunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 199 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.8 m length, and 68 t LH2 capacity. The NTR utilizes a 'graphite' fuel form consisting of coated UC2 particles in a graphite substrate, and has a specific impulse capability of approximately 870 s, and an engine thrust-to-weight ratio of approximately 4.8. The NTR stage and its piloted FLO lander has a total length of approximately 38 m and can be launched by a single Saturn V-derived heavy lift launch vehicle (HLLV) in the 200 to 250 t-class range. The paper summarizes NASA's First Lunar Outpost scenario, describes characteristics for representative engine/stage configurations, and examines the impact on engine selection and vehicle design resulting from a consideration of alternative NTR fuel forms and lunar mission profiles.

Borowski, Stanley K.; Alexander, Stephen W.

1994-01-01

130

A critical analysis of grounding practices for railroad tracks in electric utility stations  

SciTech Connect

A railroad spur is often routed into a large substation or generating plant to facilitate installation of large power transformers or other large pieces of equipment and to transport fuel to the plant. Because the metal rails may transfer hazardous potentials into or out of the switchyard area during ground faults, precautions must be taken to limit the hazardous voltages. This analysis looks for common trends of voltages along railroad tracks in a controlled model of a substation grounding system during a ground fault. Current practices to limit these transferred potentials are based on crude approximations and engineering judgment. Recently developed computer programs allow a much better model of the grounding system, track and the hazardous scenarios to which a person might be subject. Several cases were used to illustrate some of the most common techniques used to limit hazardous voltages, and some of these techniques were found to be quite ineffective. Except for the cases where the tracks near the substation were removed, the potential transferred along the tracks produced several scenarios with touch and/or step voltages exceeding the tolerable limits.

Garrett, D.L.; Wallace, K.A. (Southern Co. Services, Birmingham, AL (United States))

1993-01-01

131

A brief review of ionospheric scintillation fading effects as observed in NASA satellite tracking and data acquisition networks.  

NASA Technical Reports Server (NTRS)

Discussion of some results of the effects of ionospheric irregularities on NASA satellite tracking and data acquisition operations. Ionospheric scintillation fading produced by irregularities has been observed at 136 MHz (vhf), 400 MHz (uhf), 1550 MHz (L-band) and 1700 to 2200 MHz (S-band). Details of these observations are presented. Vhf scintillation effects are evident in both auroral and equatorial regions. Fading effects decrease with increasing radio frequency in the auroral region. The same frequency dependence for fading is not observed in the equatorial region. Although there is a seasonal and diurnal character to scintillation in the equatorial region, fading effects are usually more severe than in the auroral region for a given radio frequency. Space diversity measurements indicate that reasonable solutions for vhf telemetry problems are available for either region. Space diversity should provide a solution for microwave frequencies as well. Ionospheric fading amplitude for 1700 MHz is relatively small in the auroral region. In the equatorial region amplitude fading levels for 1550-MHz signals from ATS-5 are often much larger than expected. Observations of the Apollo Lunar Surface Experiment Package (ALSEP) operating at 2300 MHz observed near the geomagnetic equator show fading peaks in excess of 15 dB.

Golden, T. S.

1972-01-01

132

Using ATCOM to enhance long-range imagery collected by NASA's flight test tracking cameras at Armstrong Flight Research Center  

NASA Astrophysics Data System (ADS)

Located at Edwards Air Force Base, Armstrong Flight Research Center (AFRC) is NASA's premier site for aeronautical research and operates some of the most advanced aircraft in the world. As such, flight tests for advanced manned and unmanned aircraft are regularly performed there. All such tests are tracked through advanced electro-optic imaging systems to monitor the flight status in real-time and to archive the data for later analysis. This necessitates the collection of imagery from long-range camera systems of fast moving targets from a significant distance away. Such imagery is severely degraded due to the atmospheric turbulence between the camera and the object of interest. The result is imagery that becomes blurred and suffers a substantial reduction in contrast, causing significant detail in the video to be lost. In this paper, we discuss the image processing techniques located in the ATCOM software, which uses a multi-frame method to compensate for the distortions caused by the turbulence.

Paolini, Aaron; Tow, David; Kelmelis, Eric

2014-06-01

133

NASA Goddard Space Flight Center  

NASA Technical Reports Server (NTRS)

The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.

Carter, David; Wetzel, Scott

2000-01-01

134

The ESA-NASA 'CHOICE' Study: Winterover at Concordia Station, Interior Antarctica, as an Analog for Spaceflight-Associated Immune Dysregu1ation  

NASA Technical Reports Server (NTRS)

For ground-based space physiological research, the choice of analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assess innate and adaptive immunity, viral reactivataion and stress factors during Concordia winter-over deployment. To date, not all samples have been analyzed. Here, only data will be preliminary presented for those parameters where sample/data analysis is completed (i.e., Leukocyte subsets, T cell function, and intracellular/secreted cytokine profiles.)

Crucian, Brian E,; Feuerecker, M.; Salam, A. P.; Rybka, A.; Stowe, R. P.; Morrels, M.; Mehta, S. K.; Quiriarte, H.; Quintens, Roel; Thieme, U.; Kaufmann, I.; Baatout, D. S.; Pierson, D. L.; Sams, C. F.; Chouker, A.

2011-01-01

135

NASA ADVISORY COUNCIL SPACE OPERATIONS COMMITTEE  

E-print Network

.................................................................................................... 10 International Space Station--SOMD/Mark Uhran. Space Station. Meanwhile, the International Space Station (ISS) is undergoing an unbelievably busy timeNASA ADVISORY COUNCIL SPACE OPERATIONS COMMITTEE February 8, 2011 NASA Headquarters Washington, DC

Waliser, Duane E.

136

NASA Human Spaceflight  

NSDL National Science Digital Library

This site provides information on the International Space Station, space shuttle missions, and future human missions to Mars; current NASA news, NASA TV schedules, and information on spacecraft sighting opportunities; and descriptions of past NASA missions. There is a gallery of images, videos, and audio from NASA missions; outreach information on high school, college, teacher and faculty programs and resources; and a form to send questions to a space shuttle crew, space station crew, or mission control center.

2007-12-12

137

NASA Vision  

NASA Technical Reports Server (NTRS)

This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

Fenton, Mary (Editor); Wood, Jennifer (Editor)

2003-01-01

138

Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications  

NASA Technical Reports Server (NTRS)

The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

Borden, C. S.; Schwartz, D. L.

1984-01-01

139

AUTOMATIC FISH TRACKING SYSTEM FOR THE U.S. E.P.A.'S (ENVIRONMENTAL PROTECTION AGENCY'S) MONTICELLO ECOLOGICAL RESEARCH STATION  

EPA Science Inventory

An automatic tracking system controlled by an RCA 1802 microprocessor was developed to locate fish in a 400 m outdoor experimental stream channel at the U.S. EPA Monticello Ecological Research Station. The monitoring network consisted of 12 horizontally polarized antennas spaced ...

140

NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985. [Space Stations and Their Environments  

NASA Technical Reports Server (NTRS)

The 1985 NASA/ASEE Summer Faculty Fellowship Research Program was conducted by Texas A&M University and the Johnson Space Center. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The faculty fellows spent the time at JSC engaged in research projects commensurate with their interests and background and worked in collaboration with NASA/JSC colleagues. This document is a compilation of the final reports of their research during the summer of 1985.

Chilton, R. G. (editor); Williams, C. E. (editor)

1986-01-01

141

Applicability of 100kWe-class of space reactor power systems to NASA manned space station missions  

NASA Technical Reports Server (NTRS)

An assessment is made of a manned space station operating with sufficiently high power demands to require a multihundred kilowatt range electrical power system. The nuclear reactor is a competitor for supplying this power level. Load levels were selected at 150kWe and 300kWe. Interactions among the reactor electrical power system, the manned space station, the space transportation system, and the mission were evaluated. The reactor shield and the conversion equipment were assumed to be in different positions with respect to the station; on board, tethered, and on a free flyer platform. Mission analyses showed that the free flyer concept resulted in unacceptable costs and technical problems. The tethered reactor providing power to an electrolyzer for regenerative fuel cells on the space station, results in a minimum weight shield and can be designed to release the reactor power section so that it moves to a high altitude orbit where the decay period is at least 300 years. Placing the reactor on the station, on a structural boom is an attractive design, but heavier than the long tethered reactor design because of the shield weight for manned activity near the reactor.

Silverman, S. W.; Willenberg, H. J.; Robertson, C.

1985-01-01

142

Advanced ground station architecture  

NASA Technical Reports Server (NTRS)

This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.

Zillig, David; Benjamin, Ted

1994-01-01

143

An AI Approach to Ground Station Autonomy for Deep Space Communications  

NASA Technical Reports Server (NTRS)

This paper describes an architecture for an autonomous deep space tracking station (DS-T). The architecture targets fully automated routine operations encompassing scheduling and resource allocation, antenna and receiver predict generation. track procedure generation from service requests, and closed loop control and error recovery for the station subsystems. This architecture has been validated by the construction of a prototype DS-T station, which has performed a series of demonstrations of autonomous ground station control for downlink services with NASA's Mars Global Surveyor (MGS).

Fisher, Forest; Estlin, Tara; Mutz, Darren; Paal, Leslie; Law, Emily; Stockett, Mike; Golshan, Nasser; Chien, Steve

1998-01-01

144

Evaluation of Kapton pyrolysis, arc tracking, and flashover on SiO(x)-coated polyimide insulated samples of flat flexible current carriers for Space Station Freedom  

NASA Technical Reports Server (NTRS)

Kapton polyimide wiring insulation was found to be vulnerable to pyrolization, arc tracking, and flashover when momentary short-circuit arcs have occurred on aircraft power systems. Short-circuit arcs between wire pairs can pyrolize the polyimide resulting in a conductive char between conductors that may sustain the arc (arc tracking). Furthermore, the arc tracking may spread (flashover) to other wire pairs within a wire bundle. Polyimide Kapton will also be used as the insulating material for the flexible current carrier (FCC) of Space Station Freedom (SSF). The FCC, with conductors in a planar type geometric layout as opposed to bundles, is known to sustain arc tracking at proposed SSF power levels. Tests were conducted in a vacuum bell jar that was designed to conduct polyimide pyrolysis, arc tracking, and flashover studies on samples of SSF's FCC. Test results will be reported concerning the minimal power level needed to sustain arc tracking and the FCC susceptibility to flashover. Results of the FCC arc tracking tests indicate that only 22 volt amps were necessary to sustain arc tracking (proposed SSF power level is 400 watts). FCC flashover studies indicate that the flashover event is highly unlikely.

Stueber, Thomas J.; Mundson, Chris

1993-01-01

145

Functions and Statistics: International Space Station: Up to Us. NASA Connect: Program 5 in the 2000-2001 Series.  

ERIC Educational Resources Information Center

This teaching unit is designed to help students in grades 5 to 8 explore the concepts of functions and statistics in the context of the International Space Station (ISS). The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each

National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

146

The ESA-NASA CHOICE Study: Winterover at Concordia Station, Interior Antarctica, A Potential Analog for Spaceflight-Associated Immune Dysregulation  

NASA Technical Reports Server (NTRS)

For ground-based space physiological research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a superior ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assesses innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. Initial data obtained from the first study deployment (2009 mission; 'n' of 6) will be presented, and logistical challenges regarding analog usage for biological studies will also be discussed. The total WBC increased, and alterations in some peripheral leukocyte populations were observed during winterover at Concordia Station. Percentages of lymphocytes and monocytes increased, and levels of senescent CD8+ T cells were increased during deployment. Transient increases in constitutively activated T cell subsets were observed, at mission time points associated with endemic disease outbreaks. T cell function (early blastogenesis response) was increased near the entry/exit deployment phases, and production of most measured cytokines increased during deployment. Salivary cortisol demonstrated high variability during winterover, but was generally increased. A 2-point circadian rhythm of cortisol measurement (morning/evening) was unaltered during winterover. Perceived stress was mildly elevated during winterover. Other measures, including in-vitro DTH assessment, viral specific T cell number/function and latent herpesvirus reactivation have not yet been completed for the 2009 winterover subjects. Based on the preliminary data, alterations in immune cell distribution and function appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Based on the initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune changes.

Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Quiriarte, H.; Pierson, D L.; Sams, C. F.

2010-01-01

147

News and Views: NASA puts JWST back on track, but ExoMars collaboration looks unlikely; Marsquakes happening yesterday, geologically; UFOs from black holes control shape of galaxies  

NASA Astrophysics Data System (ADS)

NASA's funding plans put the James Webb Space Telescope firmly on track for a launch in 2018, to widespread relief, but the essentially flat funding settlement for 2013 overall means something has to go. Planetary science seems hardest hit, with the especial blow for European planetary scientists of NASA pulling out of ExoMars, the ESA-led mission to look for signs of life on Mars. Images from the High Resolution Imaging Science Experiment have shown boulders displaced by seismic activity on Mars in the past few million years, and possibly much more recently than that. The bigger the supermassive black hole at the centre of a galaxy, the faster the stars in the galactic bulge rotate. Why this should be so has been something of a puzzle, but now a mechanism that is both powerful and common enough to do the job has been identified.

2012-04-01

148

[Reply to ``Space Station?'' by L. H. Meredith] Way station  

Microsoft Academic Search

I agree with Les Meredith's statement of valid and nonvalid objectives for the space station. The problem with the space station that NASA is proposing is that it is designed to a nonvalid objective, specifically microgravity experimentation. I would support a space station that addressed the valid objective of a way station, but I cannot support NASA's current design.Meredith states

Jeffrey L. Warner

1987-01-01

149

A feasibility assessment of installation, operation and disposal options for nuclear reactor power system concepts for a NASA growth space station  

NASA Technical Reports Server (NTRS)

A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth space station architecture was conducted to address a variety of installation, operational disposition, and safety issues. A previous NASA sponsored study, which showed the advantages of space station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide the feasibility of each combination.

Bloomfield, Harvey S.; Heller, Jack A.

1987-01-01

150

Space station  

NASA Technical Reports Server (NTRS)

The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

Stewart, Donald F.; Hayes, Judith

1989-01-01

151

Reducing antenna mechanical noise in precision spacecraft tracking  

Microsoft Academic Search

Doppler tracking of deep space probes is central to spacecraft navigation and many radio science investigations. The most sensitive Doppler observations to date were taken using the NASA\\/JPL Deep Space Network antenna DSS 25 (a 34 m diameter beam-waveguide station instrumented with simultaneous X- and Ka-band uplink and tropospheric scintillation calibration equipment) tracking the Cassini spacecraft. Those observations achieved Doppler

J. W. Armstrong; F. B. Estabrook; S. W. Asmar; L. Iess; P. Tortora

2008-01-01

152

Reducing Antenna Mechanical Noise in Precision Doppler Tracking  

Microsoft Academic Search

Precision Doppler tracking of deep-space probes is central to spacecraft naviga- tion and many radio science investigations. The most sensitive Doppler observa- tions to date have been taken using the NASA\\/JPL Deep Space Network (DSN) antenna DSS 25a 34-m-diameter beam-waveguide station especially instrumented with simultaneous X-band (?8.4-GHz) and Ka-band (?32-GHz) links and tropo- spheric scintillation calibration equipmenttracking the Cassini spacecraft.

J. W. Armstrong; F. B. Estabrook; S. W. Asmar; L. Iess; P. Tortora

2006-01-01

153

Aerospace crew station design  

NASA Technical Reports Server (NTRS)

Consideration is given to spacecraft cockpits and work stations, commercial aircraft cockpits and crew stations, high performance aircraft cockpits and crew stations, and space stations and habitat crew stations. Particular attention is given to an historical review of NASA manned spacecraft crew stations, ESA spacelab crew stations, the evolution of commercial aircraft flight station design, Boeing 757/767 flight deck, a historical review of Concorde flight deck design, trends in the cockpit design of new European fighters, and state-of-the-art applications for Space Station crew interface design.

Carr, Gerald P. (editor); Montemerlo, Melvin D. (editor)

1984-01-01

154

Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 3: Refined conceptual design report  

NASA Technical Reports Server (NTRS)

The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.

1989-01-01

155

NASA: Data on the Web.  

ERIC Educational Resources Information Center

Provides an annotated bibliography of selected NASA Web sites for K-12 math and science teachers: the NASA Lewis Research Center Learning Technologies K-12 Home Page, Spacelink, NASA Quest, Basic Aircraft Design Page, International Space Station, NASA Shuttle Web Site, LIFTOFF to Space Education, Telescopes in Education, and Space Educator's

Galica, Carol

1997-01-01

156

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

1998-01-01

157

Evaluation of Kapton pyrolysis, arc tracking, and arc propagation on the Space Station Freedom (SSF) solar array flexible current carrier (FCC)  

NASA Technical Reports Server (NTRS)

Recent studies involving the use of polyimide Kapton coated wires indicate that if a momentary electrical short circuit occurs between two wires, sufficient heating of the Kapton can occur to themally chlar (pyrolyze) the Kapton. Such charred Kapton has sufficient electricxl conductivity to create an arc which tracks down the wires and possibly propagates to adjoining wires. These studies prompted an invetigation to ascertain the likelihood of Kapton pyrolysis, arc tracking and propagation phenomena, and the magnitude of destruction conceivably inflicted on Space Station Freedom's (SSF's) Flexible Current Carrier (FCC) for the photovoltaic array. The geometric layout of the FCC, having a planar-type orientation as opposed to bundles, may reduce the probability of sustaining an arc. An experimental investigation was conducted to simulate conditions under which an arc can occur on the FCC of the SSF, and the consequences of arc initiation.

Stueber, Thomas J.

1991-01-01

158

Application of motion sensors for beam-tracking of mobile stations in mmWave communication systems.  

PubMed

In a millimeter wave (mmWave) communication system with transmit/receive (Tx/Rx) beamforming antennas, small variation in device behavior or an environmental change can destroy beam alignment, resulting in power loss in the received signal. In this situation, the beam-tracking technique purely based on the received signal is not effective because both behavioral changes (rotation, displacement) and environmental changes (blockage) result in power loss in the received signal. In this paper, a motion sensor based on microelectromechanical systems (MEMS) as well as an electrical signal is used for beam tracking to identify the cause of beam error, and an efficient beam-tracking technique is proposed. The motion sensors such as accelerometers, gyroscopes, and geo-magnetic sensor are composed of an attitude heading reference system (AHRS) and a zero-velocity detector (ZVD). The AHRS estimates the rotation angle and the ZVD detects whether the device moves. The proposed technique tracks a beam by handling the specific situation depending on the cause of beam error, minimizing the tracking overhead. The performance of the proposed beam-tracking technique is evaluated by simulations in three typical scenarios. PMID:25333293

Shim, Duk-Sun; Yang, Cheol-Kwan; Kim, Jae Hwan; Han, Joo Pyo; Cho, Yong Soo

2014-01-01

159

Application of Motion Sensors for Beam-Tracking of Mobile Stations in mmWave Communication Systems  

PubMed Central

In a millimeter wave (mmWave) communication system with transmit/receive (Tx/Rx) beamforming antennas, small variation in device behavior or an environmental change can destroy beam alignment, resulting in power loss in the received signal. In this situation, the beam-tracking technique purely based on the received signal is not effective because both behavioral changes (rotation, displacement) and environmental changes (blockage) result in power loss in the received signal. In this paper, a motion sensor based on microelectromechanical systems (MEMS) as well as an electrical signal is used for beam tracking to identify the cause of beam error, and an efficient beam-tracking technique is proposed. The motion sensors such as accelerometers, gyroscopes, and geo-magnetic sensor are composed of an attitude heading reference system (AHRS) and a zero-velocity detector (ZVD). The AHRS estimates the rotation angle and the ZVD detects whether the device moves. The proposed technique tracks a beam by handling the specific situation depending on the cause of beam error, minimizing the tracking overhead. The performance of the proposed beam-tracking technique is evaluated by simulations in three typical scenarios. PMID:25333293

Shim, Duk-Sun; Yang, Cheol-Kwan; Kim, Jae Hwan; Han, Joo Pyo; Cho, Yong Soo

2014-01-01

160

North Station North Station  

E-print Network

North Station North Station North Station East Station ... ... North Station Water Tower Elysian, and so on. She then hides the renamed map and the permutation table in a safe. Next, Virgil tosses a coin

Chazelle, Bernard

161

Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 1. Laser Doppler wake vortex tracking at Kennedy Airport  

NASA Technical Reports Server (NTRS)

Test operations of the Scanning Laser Doppler System (SLDS) at Kennedy International Airport (KIA) during August 1974 through June 1975 are reported. A total of 1,619 data runs was recorded with a totally operational system during normal landing operations at KIA. In addition, 53 data runs were made during cooperative flybys with the C880 for a grand total of 1672 recorded vortex tracks. Test crews were in attendance at KIA for 31 weeks, of which 25 weeks were considered operational and the other six were packing, unpacking, setup and check out. Although average activity equates to 67 recorded landing operations per week, two periods of complete runway inactivity spanned 20 days and 13 days, respectively. The operation frequency therefore averaged about 88 operations per week.

Krause, M. C.; Wilson, D. J.; Howle, R. E.; Edwards, B. B.; Craven, C. E.; Jetton, J. L.

1976-01-01

162

Lasercom test and evaluation station (LTES) development: an update  

Microsoft Academic Search

Pre-launch integrated system characterization of a lasercom terminal's (LCT's) communications and acquisition\\/tracking subsystems can provide a quantitative evaluation of the terminal and afford a better rigorous assessment of the benefits of any demonstration. The lasercom test and evaluation station developed at NASA\\/JPL is a high quality optical system that possesses the unique capabilities required to provide laboratory measurements of the

Abhijit Biswas; Keith E. Wilson; Norman A. Page

1998-01-01

163

Orbital Debris Studies at NASA  

NASA Technical Reports Server (NTRS)

Any discussion of expanding the capabilities of Space Surveillance Networks to include tracking and cataloging smaller objects will require a good understanding of orbital debris. In the current U.S. catalog of over 11,000 objects, more than 50% are classified as "debris" to include fragmentation debris, operational debris, liquid metal coolant, and Westford needles. If the catalog is increased to 100,000 objects by lowering the tracked object size threshold, almost all of the additional objects will be orbital debris. The Orbital Debris Program Office has been characterizing the small orbital debris environment through measurements and modeling for many years. This presentation will specifically discuss two different studies conducted at NASA. The first study was done in 1992 and examined the requirements and produced a conceptual design for a Collision Avoidance Network to protect the Space Station Freedom from centimeter sized orbital debris while minimizing maneuvers. The second study was conducted last year and produced NASA s estimate of the orbital population for the years 2015 and 2030 for objects 2 cm and larger.

Stansbery, Gene; Krisko, Paula; Whitlock, Dave

2007-01-01

164

Volume 1 Issue 12 www.nasa.gov/centers/stennis December 2006 STS-116 hard-wiring the International Space Station  

E-print Network

and prepared for docking with the International Space Station. Docking preparations included checkout Space Station Discovery lights up the night sky Space Shuttle Discovery lifted off at 7:47 p.m. CST to the holi- day season. This is one of the most ambitious Interna- tional Space Station missions to date

165

Volume 4 Issue 12 www.nasa.gov/centers/stennis December 2009 Space shuttle Atlantis crewmembers began their STS-129 mission to the International Space Station  

E-print Network

began their STS-129 mission to the International Space Station with a perfect, on-time launch Nov. 16, other equipment and supplies to the International Space Station. The STS-129 mission featured three. Space Shuttle Main Engines tested here lifted four shuttle missions to the space station, plus the final

166

ARC Scientist (5-year non-tenure-track Associate Professor or Assistant Professor), NAOJ Chile Observatory, stationed at Mitaka)  

E-print Network

Observatory, stationed at Mitaka) The National Astronomical Observatory of Japan (NAOJ) has been conducting, Tokyo 3. Specialized field: radio astronomy 4. Job Description: Join the EA-ARC team as a support with interest using radio astronomy instruments - Can join, discuss and collaborate in an English-speaking team

Ito, Atsushi

167

ARC Scientist (5-year non-tenure-track Associate Professor or Assistant Professor), NAOJ Chile Observatory, stationed at Mitaka  

E-print Network

Observatory, stationed at Mitaka The National Astronomical Observatory of Japan (NAOJ) has been conducting: Mitaka, Tokyo 3. Specialized field: radio astronomy 4. Job Description: Join the EA-ARC team as a support with interest using radio astronomy instruments - Can join, discuss and collaborate in an English-speaking team

Ito, Atsushi

168

International Space Station: Testing times  

Microsoft Academic Search

Preparing astronauts for a journey to the red planet has become NASA's research priority for the International Space Station. But such experiments will need more than the skeleton crew now running the station. Tony Reichhardt reports.

Tony Reichhardt

2005-01-01

169

UWB Tracking System Design for Free-Flyers  

NASA Technical Reports Server (NTRS)

This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.

Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John

2004-01-01

170

Compilation and Analysis of 20 and 30 GHz Rain Fade Events at the ACTS NASA Ground Station: Statistics and Model Assessment  

NASA Technical Reports Server (NTRS)

The purpose of the propagation studies within the ACTS Project Office is to acquire 20 and 30 GHz rain fade statistics using the ACTS beacon links received at the NGS (NASA Ground Station) in Cleveland. Other than the raw, statistically unprocessed rain fade events that occur in real time, relevant rain fade statistics derived from such events are the cumulative rain fade statistics as well as fade duration statistics (beyond given fade thresholds) over monthly and yearly time intervals. Concurrent with the data logging exercise, monthly maximum rainfall levels recorded at the US Weather Service at Hopkins Airport are appended to the database to facilitate comparison of observed fade statistics with those predicted by the ACTS Rain Attenuation Model. Also, the raw fade data will be in a format, complete with documentation, for use by other investigators who require realistic fade event evolution in time for simulation purposes or further analysis for comparisons with other rain fade prediction models, etc. The raw time series data from the 20 and 30 GHz beacon signals is purged of non relevant data intervals where no rain fading has occurred. All other data intervals which contain rain fade events are archived with the accompanying time stamps. The definition of just what constitutes a rain fade event will be discussed later. The archived data serves two purposes. First, all rain fade event data is recombined into a contiguous data series every month and every year; this will represent an uninterrupted record of the actual (i.e., not statistically processed) temporal evolution of rain fade at 20 and 30 GHz at the location of the NGS. The second purpose of the data in such a format is to enable a statistical analysis of prevailing propagation parameters such as cumulative distributions of attenuation on a monthly and yearly basis as well as fade duration probabilities below given fade thresholds, also on a monthly and yearly basis. In addition, various subsidiary statistics such as attenuation rate probabilities are derived. The purged raw rain fade data as well as the results of the analyzed data will be made available for use by parties in the private sector upon their request. The process which will be followed in this dissemination is outlined in this paper.

Manning, Robert M.

1996-01-01

171

High-Efficiency Envelope-Tracking W-CDMA Base-Station Amplifier Using GaN HFETs  

Microsoft Academic Search

A high-efficiency wideband code-division multiple-access (W-CDMA) base-station amplifier is presented using high-performance GaN heterostructure field-effect transistors to achieve high gain and efficiency with good linearity. For high efficiency, class J\\/E operation was employed, which can attain up to 80% efficiency over a wide range of input powers and power supply voltages. For nonconstant envelope input, the average efficiency is further

Donald F. Kimball; Jinho Jeong; Chin Hsia; Paul Draxler; Sandro Lanfranco; W. Nagy; K. Linthicum; L. E. Larson; P. M. Asbeck

2006-01-01

172

SLR tracking of GPS-35  

NASA Technical Reports Server (NTRS)

An experiment was designed to launch a corner cube retroreflector array on one of the Global Positioning Satellites (GPS). The launch on Aug. 31, 1993 ushered in the era of SLR tracking of GPS spacecraft. Once the space operations group finished the check-out procedures for the new satellite, the agreed upon SLR sites were allowed to track it. The first site to acquire GPS-35 was the Russian system at Maidanak and closely after the MLRS system at McDonald Observatory, Texas. The laser tracking network is currently tracking the GPS spacecraft known as GPS-35 or PRN 5 with great success. From the NASA side there are five stations that contribute data regularly and nearly as many from the international partners. Upcoming modifications to the ground receivers will allow for a further increase in the tracking capabilities of several additional sites and add some desperately needed southern hemisphere tracking. We are analyzing the data and are comparing SLR-derived orbits to those determined on the basis of GPS radiometric data.

Pavlis, Erricos C.

1994-01-01

173

Dishing Up the Data: The Role of Australian Space Tracking and Radioastronomy Facilities in the Exploration of the Solar System  

NASA Astrophysics Data System (ADS)

The recent Australian film, The Dish, highlighted the role played by the Parkes Radio Telescope in tracking and communicating with the Apollo 11 mission. However the events depicted in this film represent only a single snapshot of the role played by Australian radio astronomy and space tracking facilities in the exploration of the Solar System. In 1960, NASA established its first deep space tracking station outside the United States at Island Lagoon, near Woomera in South Australia. From 1961 until 1972, this station was an integral part of the Deep Space Network, responsible for tracking and communicating with NASA's interplanetary spacecraft. It was joined in 1965 by the Tidbinbilla tracking station, located near Canberra in eastern Australia, a major DSN facility that is still in operation today. Other NASA tracking facilities (for the STADAN and Manned Space Flight networks) were also established in Australia during the 1960s, making this country home to the largest number of NASA tracking facilities outside the United States. At the same time as the Island Lagoon station was being established in South Australia, one of the world's major radio telescope facilities was being established at Parkes, in western New South Wales. This 64-metre diameter dish, designed and operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), was also well-suited for deep space tracking work: its design was, in fact, adapted by NASA for the 64-metre dishes of the Deep Space Network. From Mariner II in 1962 until today, the Parkes Radio Telescope has been contracted by NASA on many occasions to support interplanetary spacecraft, as well as the Apollo lunar missions. This paper will outline the role played by both the Parkes Radio Telescope and the NASA facilities based in Australia in the exploration of the Solar System between 1960 and 1976, when the Viking missions landed on Mars. It will outline the establishment and operation of the Deep Space Network in Australia and consider the joint US-Australian agreement under which it was managed. It will also discuss the relationship of the NASA stations to the Parkes Radio Telescope and the integration of Parkes into the NASA network to support specific space missions. The particular involvement of Australian facilities in significant space missions will be highlighted and assessed.

Dougherty, K.; Sarkissian, J.

2002-01-01

174

Space information systems in the Space Station era; Proceedings of the AIAA/NASA International Symposium on Space Information Systems, Washington, DC and Greenbelt, MD, June 22, 23, 1987  

NASA Technical Reports Server (NTRS)

Technological and planning issues for data management, processing, and communication on Space Station Freedom are discussed in reviews and reports by U.S., European, and Japanese experts. The space-information-system strategies of NASA, ESA, and NASDA are discussed; customer needs are analyzed; and particular attention is given to communication and data systems, standards and protocols, integrated system architectures, software and automation, and plans and approaches being developed on the basis of experience from past programs. Also included are the reports from workshop sessions on design to meet customer needs, the accommodation of growth and new technologies, and system interoperability.

Gerard, Mireille (editor); Edwards, Pamela W. (editor)

1988-01-01

175

A NASA initiative: Software engineering for reliable complex systems  

NASA Technical Reports Server (NTRS)

The objective is the development of methods, technology, and skills that will enable NASA to cost-effectively specify, build, and manage reliable software which can evolve and be maintained over an extended period. The need for such software is rooted in the increasing integration of software and computing components into NASA systems. Current NASA Software Engineering expertise was applied toward some of the largest reliable systems including: shuttle launch; ground support; shuttle simulation; minor control; satellite tracking; and scientific data systems. Unfortunately, no theory exists for reliable complex software systems. NASA is seeking to fill this theoretical gap through a number of approaches. One such approach is to conduct research on theoretical foundations for managing complex software systems. It includes: communication models, new and modified paradigms, and life-cycle models. Another approach is research in the theoretical foundations for reliable software development and validation. It focuses upon formal specifications, programming languages, software engineering systems, software reuse, formal verification, and software safety. Further approaches involve benchmarking a NASA software environment, experimentation within the NASA context, evolution of present NASA methodology, and transfer of technology to the space station software support environment.

Holcomb, Lee B.

1987-01-01

176

Micro Weather Station  

NASA Technical Reports Server (NTRS)

Improved in situ meteorological measurements in the troposphere and stratosphere are needed for studies of weather and climate, both as a primary data source and as validation for remote sensing instruments. Following the initial development and successful flight validation of the surface acoustic wave (SAW) hygrometer, the micro weather station program was directed toward the development of an integrated instrument, capable of accurate, in situ profiling of the troposphere, and small enough to fly on a radiosonde balloon for direct comparison with standard radiosondes. On April 23, 1998, working with Frank Schmidlin and Bob Olson of Wallops Island Flight Facility, we flew our instrument in a dual payload experiment, for validation and direct comparison with a Vaisala radiosonde. During that flight, the SAW dewpoint hygrometer measured frostpoint down to -76T at 44,000 feet. Using a laptop computer in radio contact with the balloon, we monitored data in real time, issued the cutdown command, and recovered the payload less than an hour after landing in White Sands Missile Range, 50 miles from the launch site in Hatch, New Mexico. Future flights will extend the intercomparison, and attempt to obtain in situ meteorological profiles from the surface through the tropopause. The SAW hygrometer was successfully deployed on the NASA DC8 as part of NASA's Third Convection and Moisture Experiment (CAMEX-3) during August and September, 1998. This field campaign was devoted to the study of hurricane tracking and intensification using NASA-funded aircraft. In situ humidity data from the SAW hygrometer are currently being analyzed and compared with data from other instruments on the DC8 and ER2 aircraft. Additional information is contained in the original.

Hoenk, Michael E.

1999-01-01

177

Hybrid Ground Station Technology for RF and Optical Communication Links  

NASA Technical Reports Server (NTRS)

To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

2012-01-01

178

The Space Station  

Microsoft Academic Search

The configuration of the Space Station under design studies by NASA is limited only by the capabilities of the Shuttle and the purposes to which it is applied. Once the standard interlocks, launch vibration modes, and pallet designs are fixed, all other assembly of modular components, testing, and trim will be performed in space. The Station will serve for long-term

R. Sharples; J. Hieatt

1984-01-01

179

Tracking Data Certification for the Lunar Reconnaissance Orbiter  

NASA Technical Reports Server (NTRS)

This paper details the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) tracking data certification effort of the Lunar Reconnaissance Orbiter (LRO) Space Communications Network (SCN) complement of tracking stations consisting of the NASA White Sands 1 antenna (WS1), and the commercial provider Universal Space Network (USN) antennas at South Point, Hawaii; Dongara Australia; Weilheim, Germany; and Kiruna, Sweden. Certification assessment required the cooperation and coordination of parties not under the control of either the LRO project or ground stations as uplinks on cooperating spacecraft were necessary. The LRO range-tracking requirement of 10m 1 sigma could be satisfactorily demonstrated using any typical spacecraft capable of range tracking. Though typical Low Earth Orbiting (LEO) or Geosynchronous Earth Orbiting (GEO) spacecraft may be adequate for range certification, their measurement dynamics and noise would be unacceptable for proper Doppler certification of 1-3mm/sec 1 sigma. As LRO will orbit the Moon, it was imperative that a suitable target spacecraft be utilized which can closely mimic the expected lunar orbital Doppler dynamics of +/-1.6km/sec and +/-1.5m/sq sec to +/-0.15m/sq sec, is in view of the ground stations, supports coherent S-Band Doppler tracking measurements, and can be modeled by the FDF. In order to meet the LRO metric tracking data specifications, the SCN ground stations employed previously uncertified numerically controlled tracking receivers. Initial certification testing revealed certain characteristics of the units that required resolution before being granted certification.

Morinelli, Patrick J.; Socoby, Joseph; Hendry, Steve; Campion, Richard

2010-01-01

180

A technical, financial, and policy analysis of the RAMSES RFID inventory management system for NASA's International Space Station: prospects for SBIR/STTR technology infusion  

E-print Network

Engineering, management, and social science methodologies have been employed to analyze a new asset tracking and management system for human spaceflight applications. The Massachusetts Institute of Technology and Aurora ...

Grindle, Abraham T

2010-01-01

181

77 FR 53920 - NASA Federal Advisory Committees  

Federal Register 2010, 2011, 2012, 2013

...duties as the NASA Administrator may request. International Space Station (ISS) Advisory Committee--The ISS Advisory...Exploration and Operations Mission Directorate. International Space Station (ISS) National Laboratory Advisory...

2012-09-04

182

47 CFR 25.172 - Requirements for reporting space station control arrangements.  

...prior to commencing operation with U.S. earth stations. (1) The information required...any telemetry, tracking, and command earth station(s) communicating with the space...any telemetry, tracking, and command earth station that communicates with the...

2014-10-01

183

NASA Quest.  

ERIC Educational Resources Information Center

Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

Ashby, Susanne

2000-01-01

184

Space station automation and robotics study. Operator-systems interface  

NASA Technical Reports Server (NTRS)

This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

1984-01-01

185

Utilization of satellite-satellite tracking data for determination of the geocentric gravitational constant (GM)  

NASA Technical Reports Server (NTRS)

Range rate tracking of GEOS 3 through the ATS 6 satellite was used, along with ground tracking of GEOS 3, to estimate the geocentric gravitational constant (GM). Using multiple half day arcs, a GM of 398600.52 + or - 0.12 cu km/sq sec was estimated using the GEM 10 gravity model, based on speed of light of 299792.458 km/sec. Tracking station coordinates were simultaneously adjusted, leaving geopotential model error as the dominant error source. Baselines between the adjusted NASA laser sites show better than 15 cm agreement with multiple short arc GEOS 3 solutions.

Martin, C. F.; Oh, I. H.

1979-01-01

186

A Brief History of NASA  

NSDL National Science Digital Library

This brief history of the National Aeronautics and Space Administration (NASA) begins with the agency's origins during the Cold War and recounts the early manned and unmanned missions (Mercury, Gemini, Pioneer, Voyager, and others), the landmark Apollo Moon missions, and NASA's later projects, such as the Space Shuttle, the Hubble telecope, and the International Space Station.

187

Station 13 revisited  

NASA Astrophysics Data System (ADS)

The article I wrote on the somewhat mysterious tracking station at Babsfontein in Gauteng (MNASSA Vol. 11 nos 3&4, April 2012) resulted in some correspondence, enabling me to get into contact with people who had worked at the station. This made it necessary to update the original article.

Roberts, G.

2012-10-01

188

International Space Station: Update  

NSDL National Science Digital Library

In November 1998, Zarya was launched into space, ushering in the era of the International Space Station (featured in the November 25, 1998 Scout Report for Science & Engineering). This month, the docking of the Zvezda Service Module marks the beginning of yet another phase -- in which Zvezda will serve as living quarters to the first ever resident crew (Expedition One), scheduled to arrive at the International Space Station in early November. This site from NASA provides updated information on the International Space Station, including recent news, planned missions, and a virtual tour of the (yet-to-be-completed) station.

189

Madrid space station  

NASA Technical Reports Server (NTRS)

The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

Fahnestock, R. J.; Renzetti, N. A.

1975-01-01

190

77 FR 38680 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...the National Aeronautics and Space Administration (NASA) announces...Time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building...Mission Directorate --Status of International Space Station --Space Launch...

2012-06-28

191

SPACE STATION RESEARCH Issue Date Title Link  

E-print Network

International Space Station Benefits For Humanity View PDF (11 Mb) 2011 Fall 2011 International Space Station Utilization Statistics View PDF (10.5 Mb) Feb. 2011 International Space Station Overview: Research and On-Orbit Facilities Non-Partner Participation View PDF (4.6 Mb) Feb. 2011 International Space Station NASA Research

192

Space Station Live: Station Communications Upgrade - Duration: 8:11.  

NASA Video Gallery

NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

193

Space Station Information System - Concepts and international issues  

NASA Technical Reports Server (NTRS)

The Space Station Information System (SSIS) is outlined in terms of its functions and probable physical facilities. The SSIS includes flight element systems as well as existing and planned institutional systems such as the NASA Communications System, the Tracking and Data Relay Satellite System, and the data and communications networks of the international partners. The SSIS strives to provide both a 'user friendly' environment and a software environment which will allow for software transportability and interoperability across the SSIS. International considerations are discussed as well as project management, software commonality, data communications standards, data security, documentation commonality, transaction management, data flow cross support, and key technologies.

Williams, R. B.; Pruett, David; Hall, Dana L.

1987-01-01

194

NASA Advisory Council Space Operations Committee September 2010  

E-print Network

. Leroy Chiao ­ Former NASA Astronaut and International Space Station Commander · Mr. Tommy Holloway ­ Former Space Shuttle and International Space Station Program Manager · Mr. Glynn Lunney ­ Former NASA (Neumann) · Space Shuttle Program Update (Casper) · International Space Station Program Update (Suffredini

Waliser, Duane E.

195

National Aeronautics and Space Administration www.nasa.gov  

E-print Network

the country is headed to the International Space Station aboard Orbital Sciences Corp.'s Cygnus spacecraft during reentry in Earth's atmosphere. The International Space Station is a convergence of sci- ence to the International Space Station. Photo credit: NASA/Brea Reeves GoddardView The Weekly ­ 2 NASA Cargo Launches

Christian, Eric

196

NASA Advisory Council Space Operations Committee July 2010  

E-print Network

. Leroy Chiao Former NASA Astronaut and International Space Station Commander Mr. Tommy Holloway Former Space Shuttle and International Space Station Program Manager Mr. Glynn Lunney Former NASA Flight) International Space Station Logistics Plan KSC Site Visit · · · · · · Space Life Sciences Lab, Launch Complexes

Waliser, Duane E.

197

ISS Update: Becoming an International Space Station Program Scientist - Duration: 13:20.  

NASA Video Gallery

NASA Public Affairs Officer Dan Huot interviews Tara Ruttley, Associate International Space Station Program Scientist, about her educational path and her career activities at NASA. She also discuss...

198

ISS Update: Earth Observations From Space Station - Duration: 14:38.  

NASA Video Gallery

NASA Public Affairs Officer Amiko Kauderer interviews Cynthia Evans, Space Station Associate Program Scientist for Earth Observations, as NASA prepares to celebrate Earth Day. Evans discusses the t...

199

ISS Update: Preparing to Leave the Station - Duration: 28:57.  

NASA Video Gallery

NASA Public Affairs Officer Amiko Kauderer interviews NASA astronaut Mike Fossum about his time as commander of the International Space Station's Expedition 29 crew, including his preparations for ...

200

Environmental Radiation Measurements on the Mir Space Station. Program 1; Internal Experiment Program  

NASA Technical Reports Server (NTRS)

As part of the NASA/Mir Phase 1B Science Program, the ionizing radiation environment inside and outside the Russian Mir's Space Station was monitored using a combination of Thermoluminescent Detectors (TLD) and CR-39 Plastic Nuclear Track Detectors (PNTD). Radiation measurements inside the Mir station were carried out using six Area Passive Dosimeters (APD), four located inside the Mir Base Block and two located inside the Kvant 2 module, during the NASA-2/Mir-21, NASA-3/Mir-22 and NASA-4/Mir-23 missions. The radiation environment under low shielding was measured using an External Dosimeter Array (EDA) mounted on the outer surface of the Kvant 2 module. The external radiation environment and a location inside the Kvant 2 roughly corresponding to the location of the EDA were monitored for 130 days during the NASA- 4/Mir-23 and NASA-5/Mir-24 missions. Dose rates measured by APD TLDs ranged from 271 to 407 microGy/d during the NASA-2/Mir-21 mission, from 265 to 378 microGy/d during the NASA-3/Mir-22 mission, and from 287 to 421 microGy/d during the NASA-4/Mir-23 mission. APD PNTDs have been analyzed and LET spectra have been Cenerated for the five APDs exposed on the NASA-2/Mir-21 mission and for two APD PNTDs exposed on the NASA-3/Mir-22 mission. Dose equivalent rates on the NASA-2/Mir-21 mission ranged from 513 microSv/d in the Kvant 2 module to 710 microSv/d on the floor of the Base Block. Dose as a function of shielding depth in TLDs has been measured in the thin TLD stacks including in the EDA. EDA dose range from 72.5 Gy under 0.0146 g/sq cm to 0.093 Gy under 3.25 g/sq cm of shielding. Readout and analysis of the reaming PNTDs form the NASA-3/Mir-22 mission and PNTDs from the NASA-4/Mir-23 mission (including those from the EDA) is ongoing and will be completed during the final year of this experiment. Dose equivalent rates for the NASA-3/Mir-22 and NASA-4/Mir-23 APDs will then be determined and comparisons will be made with both model calculations and with results from similar measurements.

Benton, E. V.; Frank, A. L.; Benton, E. R.

1998-01-01

201

76 FR 52016 - NASA Federal Advisory Committees; Nominations and Self-Nominations  

Federal Register 2010, 2011, 2012, 2013

...the NASA Administrator may request. International Space Station (ISS) Advisory Committee--The ISS...by the NASA Associate Administrator for Space Operations. International Space Station (ISS) National Laboratory Advisory...

2011-08-19

202

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

1998-01-01

203

Large Meteor Tracked over Northeast Alabama - Duration: 0:07.  

NASA Video Gallery

On the evening of May 18, NASA all-sky meteor cameras located at NASA?s Marshall Space Flight Center and at the Walker County Science Center near Chickamauga, Ga. tracked the entry of a large meteo...

204

[Assessment of the Space Station Program  

NASA Technical Reports Server (NTRS)

This letter report by the National Research Council's (NRC's) Aeronautics and Space Engineering Board addresses comments on NASA's response to the Board's 1993 letter report, NASA's response to technical and management recommendations from previous NRC technical reports on the Space Station, and an assessment of the current International Space Station Alpha (ISSA) program.

Kerrebrock, Jack L.

1994-01-01

205

NASA program plan  

NASA Technical Reports Server (NTRS)

Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

1980-01-01

206

Analysis and Quality Assurance of the SKYMAP 4.0 Guidance and Tracking Star Catalog: The NASA SKY2000 Spacecraft Attitude Determination Star Catalog  

NASA Technical Reports Server (NTRS)

An updated and improved NASA spacecraft attitude determination catalog, now called SKY2000, Version 3, has been prepared and quality assured. The highest priority goals were to replace the astrometric (positions and motions) and photometric (brightnesses and colors) data with the most recent and accurate data available. Quality assurance has been performed in a fairly straightforward manner, i.e., without extensive data checking and analysis, and many errors and Inconsistencies were corrected. Additional work should eventually be done on the variability and multiple-star data In the catalog, while certain other data can be significantly Improved. The current version of the catalog can be found at the GSFC Flight Dynamics website: http://cheli.gsfc.nasa.gov/dist/attitude/skymap.html. Supporting information and reference materials (published papers, format and data descriptions, etc.) can also be found at the website.

Warren, Wayne H., Jr.

2001-01-01

207

The space station  

NASA Technical Reports Server (NTRS)

Conceived since the beginning of time, living in space is no longer a dream but rather a very near reality. The concept of a Space Station is not a new one, but a redefined one. Many investigations on the kinds of experiments and work assignments the Space Station will need to accommodate have been completed, but NASA specialists are constantly talking with potential users of the Station to learn more about the work they, the users, want to do in space. Present configurations are examined along with possible new ones.

Munoz, Abraham

1988-01-01

208

NASA's Photon-Counting SLR2000 Satellite Laser Ranging System: Progress and Applications  

NASA Technical Reports Server (NTRS)

NASA's new unmanned SLR2000 system is designed to track, with millimeter precision and using single photon returns, a constellation of roughly 24 retroreflector-equipped satellites, which range in altitude from about 300 km to 20,000 km. Totally autonomous operation and a common engineering configuration are expected to greatly reduce station operations costs relative to NASA's current manned systems. The system has also been designed with a goal of significantly lowering replication costs. All of the prototype components and subsystems have been completed and tested and have substantially met the original specifications. The prototype system is presently undergoing final integration and testing in a dedicated shelter with an azimuth tracking dome synchronized to the optical tracking mount. The facility also features a number of security features such as security cameras and sensors designed to detect power or thermal control problems or entry by unauthorized personnel. Field tests are in progress. The present paper provides an overview of the various subsystems and test results to date. The meteorological subsystem, which has operated successfully in the field for almost three years, consists of several sensors which measure: (1) pressure, temperature, and relative humidity; (2) wind speed and direction; (3) ground visibility and precipitation; and (4) local cloud cover as a function of station azimuth and elevation (day and night). A "pseudo-operator" software program interprets the sensor readings and modifies satellite tracking priorities based on local meteorological conditions.

Degnan, John J.; McGarry, Jan; Zagwodzki, Thomas; Donovan, Howard; Patterson, Don; Steggerda, Charles; Mallama, Anthony; Cheek, Jack

2002-01-01

209

78 FR 10213 - NASA Advisory Council; Commercial Space Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory...includes the following topics: --International Space Station Utilization Status and...

2013-02-13

210

The determination of maximum deep space station slew rates for a high Earth orbiter  

NASA Technical Reports Server (NTRS)

As developing national and international space ventures, which seek to employ NASA's Deep Space Network (DSN) for tracking and data acquisition, evolve, it is essential for navigation and tracking system analysts to evaluate the operational capability of Deep Space Station antennas. To commission the DSN for use in tracking a highly eccentric Earth orbiter could quite possibly yield the greatest challenges in terms of slewing capability; certainly more so than with a deep-space probe. The focus here is on the determination of the maximum slew rates needed to track a specific high Earth orbiter, namely the Japanese MUSES-B spacecraft of the Very Long Baseline Interferometry Space Observatory Program. The results suggest that DSN 34-m antennas are capable of meeting the slew rate requirements for the nominal MUSES-B orbital geometries currently being considered.

Estefan, J. A.

1990-01-01

211

A comparison of scent-station surveys and track counts for surveying furbearer populations in the Big Thicket National Preserve, Texas  

E-print Network

counts and scent-station surveys on all study units of BITH. 31 LIST OF TABLES Table Page Mean daily visitation (%) to scent stations by furbearers during 5 quarters (Jan 1987, Apr 1987, Jul 1987, Oct 1987, and Jan 1988) on Beech Creek Unit, BITH.... Furbearer categories are dog-like canid, fox-like canid, raccoon, opossum, and bobcat. 18 Mean daily visitation (%) to scent stations by furbearers during 5 quarters (Jan 1987, Apr 1987, Jul 1987, Oct 1987, and Jan 1988) on Big Sandy Unit, BITH...

Stapper, Reginald John

1989-01-01

212

Sub-nanosecond clock synchronization and precision deep space tracking  

NASA Technical Reports Server (NTRS)

Interferometric spacecraft tracking is accomplished at the NASA Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals to ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3 ns error in clock synchronization resulting in an 11 nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock synchronization and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft observations without near-simultaneous quasar-based calibrations. Solutions are presented for a global network of GPS receivers in which the formal errors in clock offset parameters are less than 0.5 ns. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry and the examination of clock closure suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

Dunn, Charles; Lichten, Stephen; Jefferson, David; Border, James S.

1992-01-01

213

Space Campers Speak With Station Science Communication Coordinator - Duration: 24:41.  

NASA Video Gallery

From NASA's International Space Station Mission Control Center, International Space Station Science Communication Coordinator Liz Warren participates in a Digital Learning Network (DLN) event with ...

214

Space Station - The next logical step  

NASA Technical Reports Server (NTRS)

NASA is committed to the development of a permanently manned Space Station within a decade, in concert with European and Japanese space agencies. In addition to continuing scientific research, the Space Station will proceed with applied science and industrialization experiments. International cooperation opportunities arise within the Space Station program for users (in the definition of missions), for builders (in the development of station resources and capabilities), and operators (in the orbital maintenance of the Space Station).

Finn, T. T.; Hodge, J. D.

1984-01-01

215

Space Station Freedom media handbook  

NASA Technical Reports Server (NTRS)

This handbook explains in lay terms, the work that is going on at the NASA Centers and contractors' plants in designing and developing the Space Station Freedom. It discusses the roles, responsibilities, and tasks required to build the Space Station Freedom's elements, systems, and components. New, required ground facilities are described, organized by NASA Center in order to provide a local angle for the media. Included are information on the historical perspective, international aspects, the utilization of the Space Station Freedom, a look at future possibilities, a description of the program, its management, program phases and milestones, and considerable information on the role of various NASA Centers, contractors and international partners. A list of abbreviations, a four-page glossary, and a list of NASA contacts are contained in the appendices.

1989-01-01

216

NASA Exploration Design Challenge - Duration: 2:15.  

NASA Video Gallery

From the International Space Station, astronaut Sunita Williams welcomes participants to the NASA Exploration Design Challenge and explains the uncertainties about the effects of space radiation on...

217

Lasercom test and evaluation station (LTES) development: an update  

NASA Astrophysics Data System (ADS)

Pre-launch integrated system characterization of a lasercom terminal's (LCT's) communications and acquisition/tracking subsystems can provide a quantitative evaluation of the terminal and afford a better rigorous assessment of the benefits of any demonstration. The lasercom test and evaluation station developed at NASA/JPL is a high quality optical system that possesses the unique capabilities required to provide laboratory measurements of the key characteristics of lasercom terminals operating over the visible and near- infrared spectral region. Over the past year LTES has been used to provide pre-flight testing of the STRV-2 lasercom terminal developed by AstroTerra Corporation of San Diego, CA, and is currently being used for testing of the Optical Communication Demonstrator (OCD) developed by NASA/JPL. Discussions of performance validation tests carried out on LTES and its diverse capabilities are reported in this paper.

Biswas, Abhijit; Wilson, Keith E.; Page, Norman A.

1998-05-01

218

NASA Advisory Council Space Operations Committee September 13 & 14, 2010  

E-print Network

..................................................................................................................................... 3 INTERNATIONAL SPACE STATION UPDATES (FACA)--MIKE SUFFREDINI ........................ 3 SPACE with the allotted resources, this committee's emphasis being space operations. International Space Station UpdatesNASA Advisory Council Space Operations Committee September 13 & 14, 2010 Johnson Space Center

Waliser, Duane E.

219

NASA shuffle  

NASA Astrophysics Data System (ADS)

Samuel W. Keller, an experienced official of the National Aeronautics and Space Administration with a background in engineering, has been named by NASA Administrator Richard Truly to succeed Noel Hinners as Associate Deputy Administrator of NASA, the agency's third-highest position. Most of the duties of Hinners' other job as NASA Chief Scientist will fall to Lennard Fisk, head of the Office of Space Science arid Applications.Keller's responsibilities will include management of NASA field centers, employees, renovating facilities, and other institutional matters. Everything but the program is it's usually characterized, Keller said of the job in an interview.

Maggs, William Ward

220

GPS Tracks Ground Deformation  

USGS Multimedia Gallery

USGS Field Engineer Ben Pauk records site and equipment information for the Global Positioning System (GPS) installed at the North Rim station in the Newberry National Volcanic Monument. The GPS records the precise position of the station, including latitude, longitude and elevation. Tracking subtle...

221

SPACE STATION RESEARCH Issue Date Title Link  

E-print Network

View PDF (5.1 Mb) Mar. 2012 International Space Station Benefits For Humanity View PDF (11 Mb) 2011 Fall 2011 International Space Station Utilization Statistics View PDF (10.5 Mb) Feb. 2011 International. 2011 International Space Station NASA Research: Outreach Seminar on the ISS, United Nations View PDF (1

222

Environmental Public Health Tracking: Health and Environment Linked for Information Exchange-Atlanta (HEXIX-Atlanta: A cooperative Program Between CDC and NASA for Development of an Environmental Public Health Tracking Network in the Atlanta Metropolitan Area  

NASA Technical Reports Server (NTRS)

The Centers for Disease Control and Prevention (CDC) is coordinating HELIX- Atlanta to provide information regarding the five-county Metropolitan Atlanta Area (Clayton, Cobb, DeKalb, Fulton, and Gwinett) via a network of integrated environmental monitoring and public health data systems so that all sectors can take action to prevent and control environmentally related health effects. The HELIX-Atlanta Network is a tool to access interoperable information systems with optional information technology linkage functionality driven by scientific rationale. HELIX-Atlanta is a collaborative effort with local, state, federal, and academic partners, including the NASA Marshall Space Flight Center. The HELIX-Atlanta Partners identified the following HELIX-Atlanta initial focus areas: childhood lead poisoning, short-latency cancers, developmental disabilities, birth defects, vital records, respiratory health, age of housing, remote sensing data, and environmental monitoring, HELIX-Atlanta Partners identified and evaluated information systems containing information on the above focus areas. The information system evaluations resulted in recommendations for what resources would be needed to interoperate selected information systems in compliance with the CDC Public Health Information Network (PHIN). This presentation will discuss the collaborative process of building a network that links health and environment data for information exchange, including NASA remote sensing data, for use in HELIX-Atlanta.

Quattrochi, Dale A.; Niskar, Amanda Sue

2005-01-01

223

www.nasa.gov Fiscal Year  

E-print Network

's progress toward achieving the challenging mission of space exploration, scientific discovery four successful Space Shuttle launches to the International Space Station (ISS) since last Novemberwww.nasa.gov Fiscal Year PERFORMANCE AND ACCOUNTABILITY REPORT 2010 National Aeronautics and Space

224

NASA Advisory Council Space Operations Committee February 2011  

E-print Network

Holloway Former Space Shuttle and International Space Station Program Manager Dr. John Grunsfeld Former Administrator for Space Shuttle · International Space Station and ISS Non-Profit Organization · Mark Uhran Station 8 #12;NASA Advisory Council Space Operations Committee February 2011 International Space Station 9

Waliser, Duane E.

225

National Aeronautics and Space Administration www.nasa.gov  

E-print Network

National Aeronautics and Space Administration www.nasa.gov The International Space Station is huge than 330 cars put together! The International Space Station is a home in space to astronauts? This is a Soyuz vehicle from the International Space Station. Try to find the Station-related words in the puzzle

Waliser, Duane E.

226

Fast Track Study  

NASA Technical Reports Server (NTRS)

The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints.

1996-01-01

227

ISS Asset Tracking Using SAW RFID Technology  

NASA Technical Reports Server (NTRS)

A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.

Schellhase, Amy; Powers, Annie

2004-01-01

228

Station Change of Command Ceremony - Duration: 6:56.  

NASA Video Gallery

The reins of the International Space Station were passed from Expedition 29 Commander Mike Fossum of NASA to his NASA colleague, newly arrived Expedition 30 Commander Dan Burbank in a ceremony on t...

229

Space Station Live! Tour - Duration: 2:07.  

NASA Video Gallery

NASA is using the Internet and smartphones to provide the public with a new inside look at what happens aboard the International Space Station and in the Mission Control Center. NASA Public Affairs...

230

$425 million for space station  

NASA Astrophysics Data System (ADS)

The Space Station will funded at only about half of the $767 million requested in the 1988 budget for the National Aeronautics and Space Administration (NASA), and overall the agency will receive $8,856 billion for the current fiscal year (FY) in the deficit-reduction package passed by Congress in late December. Despite an earlier complaint that reductions in the space station budget would kill the program and an apparent lack of support from the White House, NASA's official reaction was full of good cheer.NASA will be able to use the $425 million in two installments, $200 million now and $225 million in June. In October, NASA administrator James Fletcher stated in a letter to Senator Jake Garn (R-Utah) that if the space station received no more than $440 million, he would recommend termination of the program. But after the budget was approved, NASA said that the $425 million reflected the strong commitment of the President and the Congress to proceed with the development of a space station. A recent request to President Reagan from congressional proponents of the station for a letter of support for the multibillion dollar project was declined.

Maggs, William Ward

231

The NASA Fireball Network Database  

NASA Technical Reports Server (NTRS)

The NASA Meteoroid Environment Office (MEO) has been operating an automated video fireball network since late-2008. Since that time, over 1,700 multi-station fireballs have been observed. A database containing orbital data and trajectory information on all these events has recently been compiled and is currently being mined for information. Preliminary results are presented here.

Moser, Danielle E.

2011-01-01

232

NASA's Great Observatories: Paper Model.  

ERIC Educational Resources Information Center

This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

National Aeronautics and Space Administration, Washington, DC.

233

NASA OFFICE OF INSPECTOR GENERAL  

E-print Network

NASA'sactivities in a way not seen since the final Space Shuttle flight. Similarly, successful commercial resupply missions and performance challenges: (1) The Future of U.S. Human Space Flight, (2) Project Management, (3) Infrastructure Engine Test Stand at Stennis International Space Station in orbit Space Exploration Technologies' Falcon

234

Life Sciences in NASA's Mission  

NASA Technical Reports Server (NTRS)

The topics of agency and enterprise goals, OLMSA organization, life sciences relationship to NASA/HEDS strategic plans, budget allocated by the HEDS strategic plan goals, 1998 successes, exploration and the International Space Station, congressional budgets, OLMSA grants, biomedical research and countermeasures, medical care, biologically inspired technologies, and publication, education and outreach are all presented in viewgraph form.

Nicogossian, Arnauld E.

1999-01-01

235

The evolution of the Tracking and Data Relay Satellite System /TDRSS/  

NASA Technical Reports Server (NTRS)

Certain limitations of a ground-based network of remote tracking stations for communications with spacecraft are to be overcome by making use of a space-based network. Studies related to the development of a Tracking and Data Relay Satellite System (TDRSS) are discussed. The TDRSS is to function as an integral part of the post-1980 NASA Spaceflight Tracking and Data Network (STDN). The TDRSS will consist of two operational Tracking and Data Relay (TDR) spacecraft separated by at least 130 deg in longitude. According to current planning, the STDN will also include five ground-based sites, for support of users with orbital altitudes greater than approximately 2000 km, and two launch support sites.

Godfrey, R. D.

1975-01-01

236

NASA Quest  

NSDL National Science Digital Library

NASA Quest provides interactive and hands-on materials intended to bring NASA personnel and science to classrooms through the internet. These materials include Quest Challenges--interactive explorations designed to engage students in scientific and engineering processes related to actual missions. A typical challenge begins with students receiving a mission-related question. They work on preliminary solutions, based on research, as NASA experts provide critique. Final designs, developed after feedback and encouragement, are presented in live webcasts. Other Quest products include online tools and resources such as web-based and printed lesson plans; educator guides and workbooks; interactive features; and software for students at all levels.

2001-02-06

237

NASA Wavelength  

NSDL National Science Digital Library

NASA Wavelength is your pathway into a digital collection of Earth and space science resources for educators of all levels - from elementary to college, to out-of-school programs. These resources, developed through funding of the NASA Science Mission Directorate (SMD), have undergone a peer-review process through which educators and scientists ensure the content is accurate and useful in an educational setting. Use NASA Wavelength to quickly and easily locate resources, connect them to other websites using atom feeds, and even share the resources you discover with others through social media and email.

2014-04-07

238

Issues in NASA program and project management  

NASA Technical Reports Server (NTRS)

This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.

Hoban, Francis T. (editor)

1989-01-01

239

Cutting Edge RFID Technologies for NASA Applications  

NASA Technical Reports Server (NTRS)

This viewgraph document reviews the use of Radio-frequency identification (RFID) for NASA applications. Some of the uses reviewed are: inventory management in space; potential RFID uses in a remote human outpost; Ultra-Wideband RFID for tracking; Passive, wireless sensors in NASA applications such as Micrometeoroid impact detection and Sensor measurements in environmental facilities; E-textiles for wireless and RFID.

Fink, Patrick W.

2007-01-01

240

Application of Tracking and Data Relay Satellite (TDRS) Differenced One-Way Doppler (DOWD) Tracking Data for Orbit Determination and Station Acquisition Support of User Spacecraft Without TDRS Compatible Transponders  

NASA Technical Reports Server (NTRS)

Many spacecraft are launched today with only an omni-directional (omni) antenna and do not have an onboard Tracking and Data Relay Satellite (TDRS) transponder that is capable of coherently returning a carrier signal through TDRS. Therefore, other means of tracking need to be explored and used to adequately acquire the spacecraft. Differenced One-Way Doppler (DOWD) tracking data are very useful in eliminating the problems associated with the instability of the onboard oscillators when using strictly one-way Doppler data. This paper investigates the TDRS DOWD tracking data received by the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) during the launch and early orbit phases for the the Interplanetary Physics Laboratory (WIND) and the National Oceanographic and Atmospheric Administration (NOAA)-J missions. In particular FDF personnel performed an investigation of the data residuals and made an assessment of the acquisition capabilities of DOWD-based solutions. Comparisons of DOWD solutions with existing data types were performed and analyzed in this study. The evaluation also includes atmospheric editing of the DOWD data and a study of the feasibility of solving for Doppler biases in an attempt to minimize error. Furthermore, by comparing the results from WIND and NOAA-J, an attempt is made to show the limitations involved in using DOWD data for the two different mission profiles. The techniques discussed in this paper benefit the launches of spacecraft that do not have TDRS transponders on board, particularly those launched into a low Earth orbit. The use of DOWD data is a valuable asset to missions which do not have a stable local oscillator to enable high-quality solutions from the one-way/return-link Doppler tracking data.

Olszewski, A. D., Jr.; Wilcox, T. P.; Beckman, Mark

1996-01-01

241

Station Commander Congratulates New Flight Directors - Duration: 2:34.  

NASA Video Gallery

Aboard the International Space Station, Expedition 29 Commander Mike Fossum congratulates Judd Frieling, Tomas Gonzalez-Torres and Greg Whitney on being selected as NASA's newest flight directors. ...

242

Astronaut 'Checks In' From Space Station - Duration: 1:07.  

NASA Video Gallery

NASA astronaut and International Space Station Commander Doug Wheelock became the first person to "check in" from space Friday using the mobile social networking application Foursquare. Wheelock's ...

243

Station Crew Celebrates Christmas - Duration: 14:51.  

NASA Video Gallery

Aboard the orbiting International Space Station, Expedition 34 Commander Kevin Ford, Russian Flight Engineers Oleg Novitskiy, Evgeny Tarelkin and Roman Romanenko, NASA Flight Engineer Tom Marshburn...

244

Space Station Live: Robotic Refueling Mission - Duration: 5:11.  

NASA Video Gallery

NASA Public Affairs Officer Dan Huot speaks with Robert Pickle, Robotic Refueling Mission ROBO lead, about the International Space Station demonstration of the tools, technologies and techniques to...

245

The role of tethers on space station  

NASA Technical Reports Server (NTRS)

The results of research and development that addressed the usefulness of tether applications in space, particularly for space station are described. A well organized and structured effort of considerable magnitude involving NASA, industry and academia have defined the engineering and technological requirements of space tethers and their broad range of economic and operational benefits. The work directed by seven NASA Field Centers is consolidated and structured to cover the general and specific roles of tethers in space as they apply to NASA's planned space station. This is followed by a description of tether systems and operations. A summary of NASA's plans for tether applications in space for years to come is given.

Vontiesenhausen, G. (editor)

1985-01-01

246

Introduction to Space Station Freedom  

NASA Technical Reports Server (NTRS)

NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station Freedom in FY 92 was appropriated. For FY 93, NASA is seeking $2.25 billion for the program; the planned budget for FY 94 is $2.5 billion. Further alterations to the hardware configuration for Freedom would be a serious setback; NASA intends 'to stick with the current baseline' and continue planning for utilization.

Kohrs, Richard

1992-01-01

247

NASA's Microgravity Research Program  

NASA Technical Reports Server (NTRS)

This fiscal year (FY) 1997 annual report describes key elements of the NASA Microgravity Research Program (MRP) as conducted by the Microgravity Research Division (MRD) within NASA's Office of Life and Microgravity, Sciences and Applications. The program's goals, approach taken to achieve those goals, and program resources are summarized. All snapshots of the program's status at the end of FY 1997 and a review of highlights and progress in grounds and flights based research are provided. Also described are major space missions that flew during FY 1997, plans for utilization of the research potential of the International Space Station, the Advanced Technology Development (ATD) Program, and various educational/outreach activities. The MRP supports investigators from academia, industry, and government research communities needing a space environment to study phenomena directly or indirectly affected by gravity.

Woodard, Dan

1998-01-01

248

NASA ASRS (Pub. 35) NASA ASRS (Pub. 35)  

E-print Network

NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS (Pub. 35) #12;NASA ASRS

249

NASA ASRS (Pub. 34) NASA ASRS (Pub. 34)  

E-print Network

NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS (Pub. 34) #12;NASA ASRS

250

NASA ASRS (Pub. 33) NASA ASRS (Pub. 33)  

E-print Network

NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS (Pub. 33) #12;NASA ASRS

251

Space Station evolution study  

NASA Technical Reports Server (NTRS)

This is the Space Station Freedom (SSF) Evolution Study 1993 Final Report, performed under NASA Contract NAS8-38783, Task Order 5.1. This task examined: (1) the feasibility of launching current National Space Transportation System (NSTS) compatible logistics elements on expendable launch vehicles (ELV's) and the associated modifications, and (2) new, non-NSTS logistics elements for launch on ELV's to augment current SSF logistics capability.

Evans, David B.

1993-01-01

252

Space station data flow  

NASA Technical Reports Server (NTRS)

The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

1972-01-01

253

NORTH SIDE FACING TRACK, SHOWING ELECTRICAL BOX AND CONCRETE VAULT ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

NORTH SIDE FACING TRACK, SHOWING ELECTRICAL BOX AND CONCRETE VAULT - Edwards Air Force Base, South Base Sled Track, Electrical Distribution Station, South side of Sled Track, Lancaster, Los Angeles County, CA

254

NASA: Year in Review 2004  

NSDL National Science Digital Library

Through the use of Macromedia Flash Player, this NASA website revisits the key NASA space exploration events and missions of 2004. Users can view videos illustrating the Vision for Space Exploration and articles describing the advances to help make the vision a reality. The website discusses the redesigning of the Shuttle External Fuel Tank and its significance in flight missions. Visitors can find out about the newest NASA research, watch a photo essay of the Cassini mission to Saturn, drive a Mars rover to explore the geology of that planet, learn about the next generation of NASA astronauts, and much more. Individuals can view photos, hear accounts, and read articles about the three crews that lived on the International Space Station in 2004.

255

Lightning from a storm system extending from Argentina to southern Brazil on the evening of April 23, 2003. (Photograph from the International Space Station, NASA Image Exchange, image number ISS006-E-48196.)  

E-print Network

Mapper Sensor for GOES-M » NASA EOS TRMM/LIS, OTD · NASA Lead Role for Instrument » NOAA Funded » RFP;3 Acknowledgements · EOS TRMM/LIS Instrument Team · GLM AWG/R3 Lightning Applications Team · LMATC » Dr. Hugh J

Kuligowski, Bob

256

The NASA data systems standardization program - Radio frequency and modulation  

NASA Technical Reports Server (NTRS)

The modifications being considered by the NASA-ESA Working Group (NEWG) for space-data-systems standardization to maximize the commonality of the NASA and ESA RF and modulation systems linking spaceborne scientific experiments with ground stations are summarized. The first phase of the NEWG project shows that the NASA MK-IVA Deep Space Network and Shuttle Interrogator (SI) systems in place or planned for 1985 are generally compatible with the ESA Network, but that communications involving the Tracking and Data Relay Satellite (TDRS) are incompatible due to its use of spread-spectrum modulation, pseudonoise ranging, multiple-access channels, and Mbit/s data rates. Topics under study for the post-1985 period include low-bit-rate capability for the ESA Network, an optional 8-kHz command subcarrier for the SI, fixing the spacecraft-transponder frequency-multiplication ratios for possible X-band uplinks or X-band nondeep-space downlinks, review of incompatible TDRS features, and development of the 32-GHz band.

Martin, W. L.

1983-01-01

257

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

258

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

259

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

260

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

261

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

262

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

263

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

264

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

265

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1996-01-01

266

The space station power system  

NASA Technical Reports Server (NTRS)

The manned space station is the next major NASA program. It presents many challenges to the power system designers. The power system in turn is a major driver on the overall configuration. In this paper, the major requirements and guidelines that affect the station configuration and the power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts, both fanciful and feasible, are described and linked to the present concept. The recently completed Phase B trade study selections of photovoltaic system technologies are described in detail. A summary of the present solar dynamic and power management and distribution systems is also given for completeness.

Baraona, C. R.

1986-01-01

267

The Western Aeronautical Test Range of NASA Ames Research Center  

NASA Technical Reports Server (NTRS)

An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

Moore, A. L.

1984-01-01

268

The NASA Spacecraft Transponding Modem  

NASA Technical Reports Server (NTRS)

A new deep space transponder is being developed by the Jet Propulsion Laboratory for NASA. The Spacecraft Transponding Modem (STM) implements the standard transponder functions and the channel service functions that have previously resided in spacecraft Command/Data Subsystems. The STM uses custom ASICs, MMICs, and MCMs to reduce the active device parts count to 70, mass to I kg, and volume to 524 cc. The first STMs will be flown on missions launching in the 2003 time frame. The STM tracks an X-band uplink signal and provides both X-band and Ka-band downlinks, either coherent or non-coherent with the uplink. A NASA standard Command Detector Unit is integrated into the STM, along with a codeblock processor and a hardware command decoder. The decoded command codeblocks are output to the spacecraft command/data subsystem. Virtual Channel 0 (VC-0) (hardware) commands are processed and output as critical controller (CRC) commands. Downlink telemetry is received from the spacecraft data subsystem as telemetry frames. The STM provides the following downlink coding options: the standard CCSDS (7-1/2) convolutional coding, ReedSolomon coding with interleave depths one and five, (15-1/6) convolutional coding, and Turbo coding with rates 1/3 and 1/6. The downlink symbol rates can be linearly ramped to match the G/T curve of the receiving station, providing up to a 1 dB increase in data return. Data rates range from 5 bits per second (bps) to 24 Mbps, with three modulation modes provided: modulated subcarrier (3 different frequencies provided), biphase-L modulated direct on carrier, and Offset QPSK. Also, the capability to generate one of four non-harmonically related telemetry beacon tones is provided, to allow for a simple spacecraft status monitoring scheme for cruise phases of missions. Three ranging modes are provided: standard turn around ranging, regenerative pseudo-noise (PN) ranging, and Differential One-way Ranging (DOR) tones. The regenerative ranging provides the capability of increasing the ground received ranging SNR by up to 30 dB. Two different avionics interfaces to the command/data subsystem's data bus are provided: a MIL STD 1553B bus or an industry standard PCI interface. Digital interfaces provide the capability to control antenna selection (e.g., switching between high gain and low gain antennas) and antenna pointing (for future steered Ka-band antennas).

Berner, Jeff B.; Kayalar, Selahattin; Perret, Jonathan D.

2000-01-01

269

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1998-01-01

270

Destination Station Atlanta - Duration: 1:01.  

NASA Video Gallery

Destination Station was recently in Atlanta from April 15 through April 21. During the week, NASA visited schools, hospitals, museums, and the city??s well known Atlanta Science Tavern Meet Up gro...

271

GEOS-3 Doppler difference tracking  

NASA Technical Reports Server (NTRS)

The Doppler difference method as applied to track the GEOS 3 spacecraft is discussed. In this method a pair of 2 GHz ground tracking stations simultaneously track a spacecraft beacon to generate an observable signal in which bias and instability of the carrier frequency cancel. The baselines are formed by the tracking sites at Bermuda, Rosman, and Merritt Island. Measurements were made to evaluate the effectiveness of the Doppler differencing procedure in tracking a beacon target with the high dynamic rate of the GEOS 3 orbit. Results indicate the precision of the differenced data to be at a level comparable to the conventional precise two way Doppler tracking.

Rosenbaum, B.

1977-01-01

272

The organized Space Station  

NASA Astrophysics Data System (ADS)

Space Station organization designers should consider the onboard stowage system to be an integral part of the environment structured for productive working conditions. In order to achieve this, it is essential to use an efficient inventory control system able to track approximately 50,000 items over a 90-day period, while maintaining peak crew performance. It is noted that a state-of-the-art bar-code inventory management system cannot satisfy all Space Station requirements, such as the location of a critical missing item.

Lew, Leong W.

273

The organized Space Station  

NASA Technical Reports Server (NTRS)

Space Station organization designers should consider the onboard stowage system to be an integral part of the environment structured for productive working conditions. In order to achieve this, it is essential to use an efficient inventory control system able to track approximately 50,000 items over a 90-day period, while maintaining peak crew performance. It is noted that a state-of-the-art bar-code inventory management system cannot satisfy all Space Station requirements, such as the location of a critical missing item.

Lew, Leong W.

1988-01-01

274

Space Station Laboratory Module Exhibit  

NASA Technical Reports Server (NTRS)

Engineers from NASA's Glenn Research Center demonstrate the access to one of the experiment racks planned for the U.S. Destiny laboratory module on the International Space Station (ISS). This mockup has the full diameter, full corridor width, and half the length of the module. The mockup includes engineering mockups of the Fluids and Combustion Facility being developed by NASA's Glenn Research Center. (The full module will be six racks long; the mockup is three racks long). Listening at center is former astronaut Brewster Shaw (center), now a program official with the Boeing Co., the ISS prime contractor. Photo credit: NASA/Marshall Space Flight Center (MSFC)

2000-01-01

275

NASA: Kids  

NSDL National Science Digital Library

Through this NASA website, kids will enjoy learning about astronomy through fun games, articles, and activities. Through online storybooks, users can learn about ancient sundials and our sun. The website offers matching games, a short video about Earth's daily cycle, and crossword puzzles. Students can learn how to make sundials, models of planets, solar oven, and many other space science-related tools and phenomena. The website furnishes links to kids' websites for many of NASA's missions, where users can find numerous additional activities, interesting stories, and fun facts.

276

Telerobot for space station  

NASA Technical Reports Server (NTRS)

The Flight Telerobotic Servicer (FTS), a multiple arm dexterous manipulation system, will aid in the assembly, maintenance, and servicing of the space station. Fundamental ideas and basic conceptual designs for a shuttle-based telerobot system have been produced. Recent space station studies provide additional concepts that should aid in the accomplishment of mission requirements. Currently, the FTS is in contractual source selection for a Phase B preliminary design. At the same time, design requirements are being developed through a series of robotic assessment tasks being performed at NASA and commercial installations. A number of the requirements for remote operation on the space station, necessary to supplement extravehicular activity (EVA), will be met by the FTS. Finally, technology developed for telerobotics will advance the state of the art of remote operating systems, enhance operator productivity, and prove instrumental in the evolution of an adaptive, intelligent autonomous robot.

Jenkins, Lyle M.

1987-01-01

277

Space mission support by NASA Space Network  

NASA Technical Reports Server (NTRS)

Normal NASA operational considerations and Phase 1 of Space Network (SN) interoperability foresees S band cross support between user spacecraft and space networks or partnering agencies. A typical interoperable scenario for an S band user spacecraft of a partner space agency with the NASA SN is presented. ESA's Hermes Manned Spaceplane exemplifies a typical interoperable user. In order to demonstrate the support potential of the NASA SN, the internal and external interfaces of the TDRSS (Tracking and Data Relay Satellite System), ATDRSS (Advanced TDRSS), and supporting elements are examined. Communications and operational requirements for a typical mission supported by the NASA SN are discussed.

Godfrey, Robert

1991-01-01

278

NASA Academy Program Descriptions  

E-print Network

NASA Academy Program Descriptions October 2010 #12;NASA Academy Program Descriptions 2011 October 11, 2010 1/5 NASA Academy at ARC, GRC, GSFC, and MSFC Websites: Ames: http://academy.arc.nasa.gov Glenn: http://academy.grc.nasa.gov Goddard: http://academy.gsfc.nasa.gov Marshall: http://academy.msfc.nasa

Wang, Z. Jane

279

NASA Education  

NSDL National Science Digital Library

Educators and students can find a variety of materials designed for support in the areas of science, mathematics, and technology. Resources are available on NASA education programs including specific areas for kids, students and educators at the elementary, secondary, higher and informal education arenas.

280

NASA Astrophysics Technology Needs  

NASA Technical Reports Server (NTRS)

July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

Stahl, H. Philip

2012-01-01

281

Autonomous Navigation With Ground Station One-Way Forward-Link Doppler Data  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has spent several years developing operational onboard navigation systems (ONS's) to provide real time autonomous, highly accurate navigation products for spacecraft using NASA's space and ground communication systems. The highly successful Tracking and Data Relay Satellite (TDRSS) ONS (TONS) experiment on the Explorer Platform/Extreme Ultraviolet (EP/EUV) spacecraft, launched on June 7, 1992, flight demonstrated the ONS for high accuracy navigation using TDRSS forward link communication services. In late 1994, a similar ONS experiment was performed using EP/EUV flight hardware (the ultrastable oscillator and Doppler extractor card in one of the TDRSS transponders) and ground system software to demonstrate the feasibility of using an ONS with ground station forward link communication services. This paper provides a detailed evaluation of ground station-based ONS performance of data collected over a 20 day period. The ground station ONS (GONS) experiment results are used to project the expected performance of an operational system. The GONS processes Doppler data derived from scheduled ground station forward link services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination. Analysis of the GONS experiment performance indicates that real time onboard position accuracies of better than 125 meters (1 sigma) are achievable with two or more 5-minute contacts per day for the EP/EUV 525 kilometer altitude, 28.5 degree inclination orbit. GONS accuracy is shown to be a function of the fidelity of the onboard propagation model, the frequency/geometry of the tracking contacts, and the quality of the tracking measurements. GONS provides a viable option for using autonomous navigation to reduce operational costs for upcoming spacecraft missions with moderate position accuracy requirements.

Horstkamp, G. M.; Niklewski, D. J.; Gramling, C. J.

1996-01-01

282

National Aeronautics and Space Administration The National Aeronautics and Space Administration (NASA)  

E-print Network

(NASA) Research and Utilization Plan for the International Space Station (ISS) A Report to the Committee of the International Space Station (ISS), and describes the scientific investigations, strategic research, commercial in their publication, Review of NASA Plans for the International Space Station (2006). Those items will be addressed

Waliser, Duane E.

283

www.nasa.gov SpaceX CRS-1 Mission Press Kit  

E-print Network

Knotts Public Affairs Officer International Space Station NASA Johnson Space Center 281-483-5111 George Officer International Space Station NASA Johnson Space Center 281-483-5111 #12;2 HIGH RESOLUTION PHOTOS flight to the International Space Station in May, SpaceX is set to launch its next Dragon resupply

284

NASA Records Database  

NASA Technical Reports Server (NTRS)

The NASA Records Database, comprising a Web-based application program and a database, is used to administer an archive of paper records at Stennis Space Center. The system begins with an electronic form, into which a user enters information about records that the user is sending to the archive. The form is smart : it provides instructions for entering information correctly and prompts the user to enter all required information. Once complete, the form is digitally signed and submitted to the database. The system determines which storage locations are not in use, assigns the user s boxes of records to some of them, and enters these assignments in the database. Thereafter, the software tracks the boxes and can be used to locate them. By use of search capabilities of the software, specific records can be sought by box storage locations, accession numbers, record dates, submitting organizations, or details of the records themselves. Boxes can be marked with such statuses as checked out, lost, transferred, and destroyed. The system can generate reports showing boxes awaiting destruction or transfer. When boxes are transferred to the National Archives and Records Administration (NARA), the system can automatically fill out NARA records-transfer forms. Currently, several other NASA Centers are considering deploying the NASA Records Database to help automate their records archives.

Callac, Christopher; Lunsford, Michelle

2005-01-01

285

NASA Advisory Council Space Operations Committee May 2011  

E-print Network

Not attending: Dr. Leroy Chiao Former NASA Astronaut and International Space Station Commander Mr. Tommy Holloway Former Space Shuttle and International Space Station Program Manager Dr. John Grunsfeld Former safety and viability of astronauts on the International Space Station (ISS), which has been extended

Waliser, Duane E.

286

Space station rotary joint mechanisms  

NASA Technical Reports Server (NTRS)

The mechanism which will be used on the space station to position the solar arrays and radiator panels for Sun pointing and Sun avoidance is described. The unique design features will be demonstrated on advanced development models of two of the joints being fabricated under contract to NASA-MSFC.

Driskill, Glen W.

1986-01-01

287

Station Models  

NSDL National Science Digital Library

This project will allow users to become acquainted with station models that are found on weather maps. Students will study the various atmospheric variables that are depicted on a station model and then practice on an interactive station model program. Part 1 - Being able to read and interpret weather maps is a very important skill in meteorology. One of the most basic skills of predicting the weather is being able to interpret a station model of a given location. A station model is a bundle of information that ...

Ertl, Mr.

2007-11-03

288

NASA Exhibits  

NASA Technical Reports Server (NTRS)

A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.

Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick; Biegel, Bryan (Technical Monitor)

2001-01-01

289

NASA Earth science missions  

NASA Astrophysics Data System (ADS)

NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its space missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. Through partnerships with national and international agencies, NASA enables the application of this understanding. The ESD's Flight Program provides the spacebased observing systems and supporting ground segment infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth system science research and modeling activities. The Flight Program currently has 15 operating Earth observing space missions, including the recently launched Landsat-8/Landsat Data Continuity Mission (LDCM). The ESD has 16 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key data sets needed for climate science and applications, and small-sized competitively selected orbital missions and instrument missions of opportunity utilizing rideshares that are part of the Earth Venture (EV) Program. The recently selected Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument are examples. In addition, the International Space Station (ISS) is being increasingly used to host NASA Earth observing science instruments. An overview of plans and current status will be presented.

Neeck, Steven P.; Volz, Stephen M.

2013-10-01

290

ILRS Station Reporting  

NASA Technical Reports Server (NTRS)

Network stations provided system configuration documentation upon joining the ILRS. This information, found in the various site and system log files available on the ILRS website, is essential to the ILRS analysis centers, combination centers, and general user community. Therefore, it is imperative that the station personnel inform the ILRS community in a timely fashion when changes to the system occur. This poster provides some information about the various documentation that must be maintained. The ILRS network consists of over fifty global sites actively ranging to over sixty satellites as well as five lunar reflectors. Information about these stations are available on the ILRS website (http://ilrs.gsfc.nasa.gov/network/stations/index.html). The ILRS Analysis Centers must have current information about the stations and their system configuration in order to use their data in generation of derived products. However, not all information available on the ILRS website is as up-to-date as necessary for correct analysis of their data.

Noll, Carey E.; Pearlman, Michael Reisman; Torrence, Mark H.

2013-01-01

291

NASA Telescience Testbed Pilot Program  

NASA Technical Reports Server (NTRS)

The Universities Space Research Association (USRA), under sponsorship from the NASA Office of Space Science and Applications, is conducting a Telescience Testbed Pilot Program. Fifteen universities, under subcontract to USRA, are conducting a variety of scientific experiments using advanced technology to determine the requirements and evaluate the tradeoffs for the information system of the Space Station era. An interim set of recommendations based on the experiences of the first six months of the pilot program is presented.

Leiner, B. M.

1989-01-01

292

NASA Astronaut Mike Fossum Talks With Students - Duration: 23:56.  

NASA Video Gallery

From NASA's International Space Station Mission Control Center, NASA Astronaut Mike Fossum participates in a Digital Learning Network (DLN) event with students from Clark Creek STEM Academy in Ackw...

293

NASA Home Page  

NSDL National Science Digital Library

The Guide to NASA Online Resources showcases NASA and NASA-related scientific, educational and government resources of interest to both general Internet users and the NASA science community: JPL Information Archive, Space Telescope Science Institute (home of the Hubble Space Telescope Data Archive), NASA Spacelink, the NASA/NREN K-12 gopher along with pointers to image databases and software archives.

294

Discussion of the design of satellite-laser measurement stations in the eastern Mediterranean under the geological aspect. Contribution to the earthquake prediction research by the Wegener Group and to NASA's Crustal Dynamics Project  

NASA Technical Reports Server (NTRS)

Research conducted for determining the location of stations for measuring crustal dynamics and predicting earthquakes is discussed. Procedural aspects, the extraregional kinematic tendencies, and regional tectonic deformation mechanisms are described.

Paluska, A.; Pavoni, N.

1983-01-01

295

Identifying Communities of Vulnerability: Using NASA's Multiangle Imaging Spectroradiometer to Enhance Public Health Tracking of Particle Exposure in Los Angeles - An Empirical Approach to Examining L1 MISR Radiance Measurements and PM2.5 Relationships  

NASA Astrophysics Data System (ADS)

Los Angeles is consistently ranked as one of the most polluted cities in the United States, exhibiting high levels of both ozone and particulate matter. Particulate matter with an aerodynamic diameter of 2.5 microns or less, or PM2.5, is of special concern for health professionals, since it is fine enough to be inhaled into the lungs. Additionally, studies show that it is associated with respiratory disease risks such as asthma. Remote sensing technologies have the potential to be useful in air pollution health studies, but have so far been sparsely implemented. Satellite-derived measurements would be especially useful in air pollution studies, since the concentrations of interest can change by orders of magnitude over small distances. However, with current remote sensing technologies, it is difficult to predict pollution levels within small areas. This study utilizes remote sensing information in combination with a ground-based network of data to create a more comprehensive approach to tracking public health concerns. According to the 2007 NRC Decadal Survey, there is a continued need for research that establishes the relationship between remotely sensed data and predicting public health risks related to environmental factors. For this study, we conducted linear regression models using Multi-Angle Imaging SpectroRadiometer (MISR) L1 radiance data and ground-based PM2.5 measurements from 13 EPA stations within the Los Angeles Metropolitan Statistical Area. MISR senses in 4 bands (visible blue, green, red and near infrared) and 9 separate angles, producing a total of 36 bands. Using all 36 bands, we generated models for each station individually and for all stations combined. Two time periods were assessed: June, July and August from 2000 - 2009, and all months from 2009. Summer months were looked at specifically, since pollution levels tend to be higher than other parts of the year due to strong inversion layers and low rainfall levels. Generally, the models performed well, suggesting that MISR radiances are able to accurately predict levels of PM2.5. For 2009 data, all models had R-squared values over 0.93. For summer month data, the model R-square values were markedly lower and more varied than for the 2009 data, ranging from 0.33 - 0.92. When looking at the 2009 data, non-summer month models performed better than did summer-month models. A brief analysis of temperature data indicates that temperature and deviation from the norm are not associated with model predictability. All 36 MISR channels were plotted against their weights for each model, but no band combination obviously weighed more than other bands. Further research needs to be conducted to understand why models were able to predict 2009 PM2.5 levels, but were unable to accurately fit summer data from 2000 - 2009.

Laygo, K.; Kontgis, C.; Hollins, A.

2011-12-01

296

Space Station Freedom Utilization Conference: Executive summary  

NASA Astrophysics Data System (ADS)

From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.

297

Space Station Freedom Utilization Conference. Executive summary  

NASA Technical Reports Server (NTRS)

The Space Station Freedom Utilization Conference was held on 3-6 Aug. 1992 in Huntsville, Alabama. The purpose of the conference was to bring together prospective space station researchers and the people in NASA and industry with whom they would be working to exchange information and discuss plans and opportunities for space station research. Topics covered include: research capabilities; research plans and opportunities; life sciences research; technology research; and microgravity research and biotechnology.

1993-01-01

298

Space Station Freedom Utilization Conference: Executive summary  

NASA Technical Reports Server (NTRS)

From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.

1992-01-01

299

The Capabilities of Space Stations  

NASA Technical Reports Server (NTRS)

Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

1995-01-01

300

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1998-01-01

301

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101824 for a version with labels, and No. 0103180 for an operational schematic.

1998-01-01

302

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

1998-01-01

303

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

1998-01-01

304

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

1998-01-01

305

NASA Bioreactor  

NASA Technical Reports Server (NTRS)

Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101816 for a version without labels, and No. 0103180 for an operational schematic.

1998-01-01

306

Space Station Laboratory Module Exhibit  

NASA Technical Reports Server (NTRS)

Engineers from NASA's Glenn Research Center demonstrate the access to one of the experiment racks planned for the U.S. Destiny laboratory module on the International Space Station (ISS). This mockup has the full diameter, full corridor width, and half the length of the module. The mockup includes engineering mockups of the Fluids and Combustion Facility being developed by NASA's Glenn Research Center. (The full module will be six racks long; the mockup is three racks long). Listening at left (coat and patterned tie) is John-David Bartoe, ISS research manager at NASA's Johnson Space Center and a payload specialist on Spacelab 2 mission (1985). Photo credit: NASA/Marshall Space Flight Center (MSFC)

2000-01-01

307

Space Station automation and robotics  

NASA Technical Reports Server (NTRS)

A group of fifteen students in the Electrical Engineering Department at the University of Maryland, College Park, has been involved in a design project under the sponsorship of NASA Headquarters, NASA Goddard Space Flight Center and the Systems Research Center (SRC) at UMCP. The goal of the NASA/USRA project was to first obtain a refinement of the design work done in Spring 1986 on the proposed Mobile Remote Manipulator System (MRMS) for the Space Station. This was followed by design exercises involving the OMV and two armed service vehicle. Three students worked on projects suggested by NASA Goddard scientists for ten weeks this past summer. The knowledge gained from the summer design exercise has been used to improve our current design of the MRMS. To this end, the following program was undertaken for the Fall semester 1986: (1) refinement of the MRMS design; and (2) addition of vision capability to our design.

1987-01-01

308

The International Space Station Program's Response to the Columbia Accident Investigation Board's Report February 15, 2005  

E-print Network

#12;#12;The International Space Station Program's Response to the Columbia Accident Investigation Board's Report February 15, 2005 NASA's Implementation Plan for International Space Station Continuing at http://www.nasa.gov/news/highlights/returntoflight.html #12;The International Space Station Program

309

127Shipping Cargo to the International Space Station It takes a lot of supplies to  

E-print Network

127Shipping Cargo to the International Space Station It takes a lot of supplies to keep the International Space Station going! On February 21, 2014, NASA asked commercial launch services, such as Space;127Answer Key NASA Seeks U.S. Industry Feedback on Options for Future Space Station Cargo Services February

Christian, Eric

310

78 FR 42110 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...AGENCY: National Aeronautics and Space Administration. ACTION: Notice...the National Aeronautics and Space Administration (NASA) announces...Systems Development --Status of International Space Station --Status of Commercial...

2013-07-15

311

78 FR 70963 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...Time. ADDRESSES: NASA Kennedy Space Center, Headquarters Building, Room 2229, Kennedy Space Center, FL 32899. FOR FURTHER...Systems Development --Status of International Space Station --Update on Capability...

2013-11-27

312

International Space Station  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the research on the International Space Station (ISS), including the sponsorship of payloads by country and within NASA. Included is a description of the space available for research, the Laboratory "Rack" facilities, the external research facilities and those available from the Japanese Experiment Module (i.e., Kibo), and highlights the investigations that JAXA has maintained. There is also a review of the launch vehicles and spacecraft that are available for payload transportation to the ISS, including cargo capabilities of the spacecraft.

Wahlberg, Jennifer; Gordon, Randy

2010-01-01

313

NASA Customer Data and Operations System  

NASA Technical Reports Server (NTRS)

In addition to the currently provided NASA services such as Communications and Tracking and Data Relay Satellite System services, the NASA's Customer Data and Operations System (CDOS) will provide the following services to the user: Data Delivery Service, Data Archive Service, and CDOS Operations Management Service. This paper describes these services in detail and presents respective block diagrams. The CDOS services will support a variety of multipurpose missions simultaneously with centralized and common hardware and software data-driven systems.

Butler, Madeline J.; Stallings, William H.

1991-01-01

314

Configuration Management at NASA  

NASA Technical Reports Server (NTRS)

NASA programs are characterized by complexity, harsh environments and the fact that we usually have one chance to get it right. Programs last decades and need to accept new hardware and technology as it is developed. We have multiple suppliers and international partners Our challenges are many, our costs are high and our failures are highly visible. CM systems need to be scalable, adaptable to new technology and span the life cycle of the program (30+ years). Multiple Systems, Contractors and Countries added major levels of complexity to the ISS program and CM/DM and Requirements management systems center dot CM Systems need to be designed for long design life center dot Space Station Design started in 1984 center dot Assembly Complete in 2012 center dot Systems were developed on a task basis without an overall system perspective center dot Technology moves faster than a large project office, try to make sure you have a system that can adapt

Doreswamy, Rajiv

2013-01-01

315

UWB Tracking Software Development  

NASA Technical Reports Server (NTRS)

An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

2006-01-01

316

NASA: Rocket Activities  

NSDL National Science Digital Library

There are many things in this world that are described as not being as difficult as rocket science. Then, of course, there is the actual science behind rockets. Understandably, this can be difficult for budding space scientists to grasp. Fortunately, NASA has created these fun and interactive activities which relate both to the science and math of rocketry. These particular activities are taken from the "Rocket Educators Guide", and they include activities related to altitude tracking, the world of pinwheels, balloon staging, and of course the construction of an actual paper rocket. Each activity comes complete with instructions, diagrams, and information on the necessary materials. Taken as a whole, these activities could be equally fun whether outside on a brisk fall day as in a classroom setting.

317

NASA Technical Management Report (533Q)  

NASA Technical Reports Server (NTRS)

The objective of this task is analytical support of the NASA Satellite Laser Ranging (SLR) program in the areas of SLR data analysis, software development, assessment of SLR station performance, development of improved models for atmospheric propagation and interpretation of station calibration techniques, and science coordination and analysis functions for the NASA led Central Bureau of the International Laser Ranging Service (ILRS). The contractor shall in each year of the five year contract: (1) Provide software development and analysis support to the NASA SLR program and the ILRS. Attend and make analysis reports at the monthly meetings of the Central Bureau of the ILRS covering data received during the previous period. Provide support to the Analysis Working Group of the ILRS including special tiger teams that are established to handle unique analysis problems. Support the updating of the SLR Bibliography contained on the ILRS web site; (2) Perform special assessments of SLR station performance from available data to determine unique biases and technical problems at the station; (3) Develop improvements to models of atmospheric propagation and for handling pre- and post-pass calibration data provided by global network stations; (4) Provide review presentation of overall ILRS network data results at one major scientific meeting per year; (5) Contribute to and support the publication of NASA SLR and ILRS reports highlighting the results of SLR analysis activity.

Klosko, S. M.; Sanchez, B. (Technical Monitor)

2001-01-01

318

Logistics Lessons Learned in NASA Space Flight  

NASA Technical Reports Server (NTRS)

The Vision for Space Exploration sets out a number of goals, involving both strategic and tactical objectives. These include returning the Space Shuttle to flight, completing the International Space Station, and conducting human expeditions to the Moon by 2020. Each of these goals has profound logistics implications. In the consideration of these objectives,a need for a study on NASA logistics lessons learned was recognized. The study endeavors to identify both needs for space exploration and challenges in the development of past logistics architectures, as well as in the design of space systems. This study may also be appropriately applied as guidance in the development of an integrated logistics architecture for future human missions to the Moon and Mars. This report first summarizes current logistics practices for the Space Shuttle Program (SSP) and the International Space Station (ISS) and examines the practices of manifesting, stowage, inventory tracking, waste disposal, and return logistics. The key findings of this examination are that while the current practices do have many positive aspects, there are also several shortcomings. These shortcomings include a high-level of excess complexity, redundancy of information/lack of a common database, and a large human-in-the-loop component. Later sections of this report describe the methodology and results of our work to systematically gather logistics lessons learned from past and current human spaceflight programs as well as validating these lessons through a survey of the opinions of current space logisticians. To consider the perspectives on logistics lessons, we searched several sources within NASA, including organizations with direct and indirect connections with the system flow in mission planning. We utilized crew debriefs, the John Commonsense lessons repository for the JSC Mission Operations Directorate, and the Skylab Lessons Learned. Additionally, we searched the public version of the Lessons Learned Information System (LLIS) and verified that we received the same result using the internal version of LLIS for our logistics lesson searches. In conducting the research, information from multiple databases was consolidated into a single spreadsheet of 300 lessons learned. Keywords were applied for the purpose of sorting and evaluation. Once the lessons had been compiled, an analysis of the resulting data was performed, first sorting it by keyword, then finding duplication and root cause, and finally sorting by root cause. The data was then distilled into the top 7 lessons learned across programs, centers, and activities.

Evans, William A.; DeWeck, Olivier; Laufer, Deanna; Shull, Sarah

2006-01-01

319

NASA's Microgravity Science Program  

NASA Technical Reports Server (NTRS)

Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

Salzman, Jack A.

1994-01-01

320

Integrated Network Architecture for NASA's Orion Missions  

NASA Technical Reports Server (NTRS)

NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five phases of a mission: pre-launch, launch from T0 to T+6.5 min, launch from T+6.5 min to 12 min, in LEO for rendezvous and docking with ISS, and return to Earth. The network of networks that supports the mission during each of these phases and the concepts of operations during those phases are developed as a high level operational concepts graphic called OV-1, an architecture diagram type described in the Department of Defense Architecture Framework (DoDAF). Additional operational views on organizational relationships (OV-4), operational activities (OV-5), and operational node connectivity (OV-2) are also discussed. The system interfaces view (SV-1) that provides the communication and navigation services to Orion is also included and described. The challenges of architecting integrated network architecture for the NASA Orion missions are highlighted.

Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

2008-01-01

321

Current and Future Parts Management at NASA  

NASA Technical Reports Server (NTRS)

This presentation provides a high level view of current and future electronic parts management at NASA. It describes a current perspective of the new human space flight direction that NASA is beginning to take and how that could influence parts management in the future. It provides an overview of current NASA electronic parts policy and how that is implemented at the NASA flight Centers. It also describes some of the technical challenges that lie ahead and suggests approaches for their mitigation. These challenges include: advanced packaging, obsolescence and counterfeits, the global supply chain and Commercial Crew, a new direction by which NASA will utilize commercial launch vehicles to get astronauts to the International Space Station.

Sampson, Michael J.

2011-01-01

322

NASA Resources for Educators and Public  

NASA Technical Reports Server (NTRS)

A variety of NASA Classroom Activities, Educator Guides, Lithographs, Posters and more are available to Pre ]service and In ]service Educators through Professional Development Workshops. We are here for you to engage, demonstrate, and facilitate the use of educational technologies, the NASA Website, NASA Education Homepage and more! We are here for you to inspire you by providing in-service and pre- service training utilizing NASA curriculum support products. We are here for you to partner with your local, state, and regional educational organizations to better educate ALL! NASA AESP specialists are experienced professional educators, current on education issues and familiar with the curriculum frameworks, educational standards, and systemic architecture of the states they service. These specialists provide engaging and inspiring student presentations and teacher training right at YOUR school at no cost to you! Experience free out-of-this-world interactive learning with NASA's Digital Learning Network. Students of all ages can participate in LIVE events with NASA Experts and Education Specialists. The Exploration Station provides NASA educational programs that introduce the application of Science, Technology, Engineering, & Mathematics, to students. Students participate in a variety of hands-on activities that compliment related topics taught by the classroom teacher. NASA KSC ERC can create Professional Development Workshops for teachers in groups of fifteen or more. Education/Information Specialists also assist educators in developing lessons to meet Sunshine State and national curriculum standards.

Morales, Lester

2012-01-01

323

Space station: A step into the future  

NASA Technical Reports Server (NTRS)

The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.

Stofan, Andrew J.

1989-01-01

324

NASA Now: Expedition 26 - Duration: 7:10.  

NASA Video Gallery

In this installment of NASA Now, meet associate International Space Station program scientist Tara Ruttley, who talks about the complexity of conducting research from this one-of-a-kind orbiting sc...

325

NASA: Reaching for New Heights - Duration: 4:08.  

NASA Video Gallery

At NASA, we've been a little busy: landing on Mars, developing new human spacecraft, going to the space station, working with commercial partners, observing the Earth and the Sun, exploring our sol...

326

78 FR 42111 - NASA Advisory Council; Commercial Space Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...announces a meeting of the Commercial Space Committee of the NASA Advisory...Collaborations for Commercial Space Capabilities --Aeronautics Research...Learned --Use of Prizes --International Space Station Utilization Status and...

2013-07-15

327

Space Station Crew Welcomes World's First Commercial Cargo Craft - Duration: 14:19.  

NASA Video Gallery

Aboard the International Space Station, Expedition 31 Flight Engineer Don Pettit of NASA, Flight Engineer Andre Kuipers of the European Space Agency and Flight Engineer Joe Acaba of NASA grappled a...

328

Space Station Live: Veteran Astronaut Talks Crew Orientation - Duration: 12:32.  

NASA Video Gallery

NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with NASA astronaut Cady Coleman, who lived aboard the International Space Station as Expedition 27/27 crew member from December...

329

Issues in NASA Program and Project Management. Special Report: 1997 Conference. Project Management Now and in the New Millennium  

NASA Technical Reports Server (NTRS)

Topics Considered Include: NASA's Shared Experiences Program; Core Issues for the Future of the Agency; National Space Policy Strategic Management; ISO 9000 and NASA; New Acquisition Initiatives; Full Cost Initiative; PM Career Development; PM Project Database; NASA Fast Track Studies; Fast Track Projects; Earned Value Concept; Value-Added Metrics; Saturn Corporation Lessons Learned; Project Manager Credibility.

Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

1997-01-01

330

Final Tier 2 Environmental Impact Statement for International Space Station  

NASA Technical Reports Server (NTRS)

The Final Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA!s participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.

1996-01-01

331

The NASA radar entomology program at Wallops Flight Center  

NASA Technical Reports Server (NTRS)

NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

Vaughn, C. R.

1979-01-01

332

NASA, Building Tomorrow's Future  

NASA Technical Reports Server (NTRS)

We, as NASA, continue to Dare Mighty Things. Here we are in October. In my country, the United States of America, we celebrate the anniversary of Christopher Columbus's arrival in the Americas, which occurred on October 12, 1492. His story, although happening over 500 years ago, is still very valid today. It is a part of the American spirit; part of the international human spirit. Columbus is famous for discovering the new world we now call America, but he probably never envisioned what great discoveries would be revealed many generations later. But in order for Columbus to begin his great adventure, he needed a business plan. Ho would he go about obtaining the funds and support necessary to build, supply, and man the ships required for his travels? He had a lot of obstacles and distractions. He needed a strong, internal drive to achieve his plans and recruit a willing crew of explorers also ready to risk their all for the unknown journey ahead. As Columbus set sail, he said "By prevailing over all obstacles and distractions, one may unfailingly arrive at his chosen goal or destination." Columbus may not have known he was on a journey for all human exploration. Recently, Charlie Bolden, the NASA Administrator, said, "Human exploration is and has always been about making life better for humans on Earth." Today, NASA and the U.S. human spaceflight program hold many of the same attributes as did Columbus and his contemporaries - a willing, can-do spirit. We are on the threshold of exciting new times in space exploration. Like Columbus, we need a business plan to take us into the future. We need to design the best ships and utilize the best designers, with their past knowledge and experience, to build those ships. We need funding and support from governments to achieve these goals of space exploration into the unknown. NASA does have that business plan, and it is an ambitious plan for human spaceflight and exploration. Today, we have a magnificent spaceflight laboratory, built over many years by the United States and other nations. Last month, the last man to step off the moon, Gene Cernan, told the U.S. Congress, "Today the International Space Station, the assembly of which may well go down in history as man's greatest engineering accomplishment of all time, circles the globe sixteen times every day - all in keeping with JFK's challenge to do the other things." The International Space Station (ISS) is a ship which provides an outstanding platform 'for performing spaceborne scientific, engineering, and Earth studies. Numerous nations utilize this unique cooperative partnership by sending scientists, engineers, astronauts, and cosmonauts to the ISS to spend time aboard the station in order to further scientific research, truly an asset for the entire planet.

Mango, Edward

2011-01-01

333

Near-Earth Asteroid Tracking Home Page  

NSDL National Science Digital Library

This site provides information related to the recently discovered asteroid 1997XF11. NASA's Near Earth Asteroid Tracking (NEAT) is an observatory in Maui, Hawaii. The site provides images and information about newly discovered asteroids, comets, and other unusual objects.

1998-01-01

334

NASA/Ames Research Center DC-8 data system  

NASA Technical Reports Server (NTRS)

In-flight facility data acquisition, distribution, and recording on the NASA Ames Research Center (ARC) DC-8 are performed by the Data Acquisition and Distribution System (DADS). Navigational and environmental data collected by the DADS are converted to engineering units and distributed real-time to investigator stations once per second. Selected engineering units data are printed and displayed on closed circuit television monitors throughout flights. An in-flight graphical display of the DC-8 flight track (with barbs indicating wind direction and magnitude) has recently been added to the DADS capabilities. Logging of data run starts/stops and commentary from the mission director are also provided. All data are recorded to hard disk in-flight and archived to tape medium post-flight. Post-flight, hard copies of the track map and mission director's log are created by the DADS. The DADS is a distributed system consisting of a data subsystem, an Avionic Serial Data-to-VMEbus (ASD2VME) subsystem, and a host subsystem. Each subsystem has a dedicated central processing unit (CPU) and is capable of stand-alone operation. All three subsystems are housed in a single 20-slot VME chassis and communicate with each other over the VMEbus. The data and host subsystems are briefly discussed, and the DC-8 DADS internal configuration and system block diagram are presented.

Cherniss, S. C.; Scofield, C. P.

1991-01-01

335

ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned  

NASA Technical Reports Server (NTRS)

The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with the ACTS satellite. The ACTS experiment's program proposed to validate Ka-band satellite and ground station technology. demonstrate future telecommunication services. demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals (Part 1) and the lessons learned throughout their six year operation including the inclined orbit phase of operations (Full Report). An overview of the Ka-band technology and components developed for the ACTS ground stations is presented. Next. the performance of the ground station technology and its evolution during the ACTS campaign are discussed to illustrate the technical tradeoffs made during the program and highlight technical advances by industry to support the ACTS experiments program and terminal operations. Finally. lessons learned during development and operation of the user terminals are discussed for consideration of commercial adoption into future Ka-band systems. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector based offset-fed antenna systems ranging in size from 0.35m to 3.4m antenna diameter. Gateway earth stations included two systems, referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET). The NGS provides tracking, telemetry, and control (TT&C) and Time Division Multiple Access (TDMA) network control functions. The LET supports technology verification and high data rate experiments. The ground stations successfully demonstrated many services and applications at Ka-band in three different modes of operation: circuit switched TDMA using the satellite on-board processor, satellite switched SS-TDMA applications using the on-board Microwave Switch Matrix (MSM), and conventional transponder (bent-pipe) operation. Data rates ranged from 4.8 kbps up to 622 Mbps. Experiments included: 1) low rate (4.8- 1 00's kbps) remote data acquisition and control using small earth stations, 2) moderate rate (1-45 Mbps) experiments included full duplex voice and video conferencing and both full duplex and asymmetric data rate protocol and network evaluation using mid-size ground stations, and 3) link characterization experiments and high data rate (155-622 Mbps) terrestrial and satellite interoperability application experiments conducted by a consortium of experimenters using the large transportable ground stations.

Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

2000-01-01

336

Integrated photovoltaic central station conceptual design  

Microsoft Academic Search

Black and Veatch has developed the conceptual designs of 100 MW photovoltaic central stations using fixed, one-axis tracking, and two-axis tracking flat plate and two-axis tracking high concentration collectors. Designs were established for sites in the southwestern and southeastern United States, and were predicated on mid-1990 plant start-up. Estimates of system energy generation and balanceof-system cost were developed. These estimates

L. E. Stoddard; S. L. Levy

1984-01-01

337

Working at NASA  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the author's educational and work background prior to working at NASA. It then presents an overview of NASA Dryden, a brief review of the author's projects while working at NASA, and some closing thoughts.

Harding, Adam

2010-01-01

338

Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission  

NASA Technical Reports Server (NTRS)

The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

1973-01-01

339

Station-keeping guidance  

NASA Technical Reports Server (NTRS)

The station-keeping guidance system is described, which is designed to automatically keep one orbiting vehicle within a prescribed zone fixed with respect to another orbiting vehicle. The active vehicle, i.e. the one performing the station-keeping maneuvers, is referred to as the shuttle. The other passive orbiting vehicle is denoted as the workshop. The passive vehicle is assumed to be in a low-eccentricity near-earth orbit. The primary navigation sensor considered is a gimballed tracking radar located on board the shuttle. It provides data on relative range and range rate between the two vehicles. Also measured are the shaft and trunnion axes gimbal angles. An inertial measurement unit (IMU) is provided on board the orbiter. The IMU is used at all times to provide an attitude reference for the vehicle. The IMU accelerometers are used periodically to monitor the velocity-correction burns applied to the shuttle during the station-keeping mode. The guidance system is capable of station-keeping the shuttle in any arbitrary position with respect to the workshop by periodically applying velocity-correction pulses to the shuttle.

Gustafson, D. E.; Kriegsman, B. A.

1972-01-01

340

Concrete: Potential material for Space Station  

NASA Technical Reports Server (NTRS)

To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

Lin, T. D.

1992-01-01

341

Selling to NASA  

NASA Technical Reports Server (NTRS)

This handbook is designed to promote a better understanding of NASA's interests and the process of doing business with NASA. The document is divided into the following sections: (1) this is NASA; (2) the procurement process; (3) marketing your capabilities; (4) special assistance programs; (5) NASA field installations; (6) sources of additional help; (7) listing of NASA small/minority business personnel; and (8) NASA organization chart.

1990-01-01

342

OSSA Space Station waste inventory  

NASA Technical Reports Server (NTRS)

NASA's Office of Space Science and Applications has compiled an inventory of the types and quantities of the wastes that will be generated by the Space Station's initial operational phase in 35 possible mission scenarios. The objective of this study was the definition of waste management requirements for both the Space Station and the Space Shuttles servicing it. All missions, when combined, will produce about 5350 kg of gaseous, liquid and solid wastes every 90 days. A characterization has been made of the wastes in terms of toxicity, corrosiveness, and biological activity.

Rasmussen, Daryl N.; Johnson, Catherine C.; Bosley, John J.; Curran, George L.; Mains, Richard

1987-01-01

343

NASA Software Engineering Benchmarking Study  

NASA Technical Reports Server (NTRS)

To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths was its software assurance practices, which seemed to rate well in comparison to the other organizational groups and also seemed to include a larger scope of activities. An unexpected benefit of the software benchmarking study was the identification of many opportunities for collaboration in areas including metrics, training, sharing of CMMI experiences and resources such as instructors and CMMI Lead Appraisers, and even sharing of assets such as documented processes. A further unexpected benefit of the study was the feedback on NASA practices that was received from some of the organizations interviewed. From that feedback, other potential areas where NASA could improve were highlighted, such as accuracy of software cost estimation and budgetary practices. The detailed report contains discussion of the practices noted in each of the topic areas, as well as a summary of observations and recommendations from each of the topic areas. The resulting 24 recommendations from the topic areas were then consolidated to eliminate duplication and culled into a set of 14 suggested actionable recommendations. This final set of actionable recommendations, listed below, are items that can be implemented to improve NASA's software engineering practices and to help address many of the items that were listed in the NASA top software engineering issues. 1. Develop and implement standard contract language for software procurements. 2. Advance accurate and trusted software cost estimates for both procured and in-house software and improve the capture of actual cost data to facilitate further improvements. 3. Establish a consistent set of objectives and expectations, specifically types of metrics at the Agency level, so key trends and models can be identified and used to continuously improve software processes and each software development effort. 4. Maintain the CMMI Maturity Level requirement for critical NASA projects and use CMMI to measure organizations developing software for NASA. 5.onsolidate, collect and, if needed, develop common processes principles and other assets across t

Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

2013-01-01

344

ISS Update: ISTAR -- International Space Station Testbed for Analog Research - Duration: 9:17.  

NASA Video Gallery

NASA Public Affairs Officer Kelly Humphries interviews Sandra Fletcher, EVA Systems Flight Controller. They discuss the International Space Station Testbed for Analog Research (ISTAR) activity that...

345

Space Station Live: Fluids and Combustion Facility - Duration: 10:16.  

NASA Video Gallery

NASA Public Affairs Officer Brandi Dean speaks with Robert Corban, Fluids and Combustion Facility Manager, about the research being performed aboard the International Space Station using this state...

346

Station Crew Training Integrator Talks With Students - Duration: 24:13.  

NASA Video Gallery

From NASA's International Space Station Mission Control Center, Expedition 34/35 Training Integrator Alicia Simpson participates in a Digital Learning Network (DLN) event with students from Christ ...

347

Space Station Live: ISS Communications Unit Upgrade - Duration: 11:20.  

NASA Video Gallery

NASA Public Affairs Officer Nicole Cloutier-Lemasters interviews International Space Station Flight Director Mike Lammers about the recent Ku communications unit upgrade work taking place aboard th...

348

ISS Update: Science Aboard the Station ?? 10.26.12 - Duration: 19:46.  

NASA Video Gallery

NASA Public Affairs Officer Amiko Kauderer talks with Tara Ruttley, Associate Program Scientist for International Space Station, about some of the science experiments performed by the Expedition 33...

349

Photocopy of drawing. ALTITUDE CHAMBERS ?L? & ?R? STRUCTURES. NASA, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Photocopy of drawing. ALTITUDE CHAMBERS ?L? & ?R? STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. CHAMBER ?L? ELEVATION. Sheet 3 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

350

Photocopy of drawing. ALTITUDE CHAMBERS ?L? & ?R? STRUCTURES. NASA, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Photocopy of drawing. ALTITUDE CHAMBERS ?L? & ?R? STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, March, 1971. DOOR LATCH MECHANISM & DOOR LATCHING RATCHET. Sheet 14 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

351

Photocopy of drawing. ALTITUDE CHAMBERS ?L? & ?R? STRUCTURES. NASA, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Photocopy of drawing. ALTITUDE CHAMBERS ?L? & ?R? STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. CHAMBER ?R? ELEVATION. Sheet 4 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

352

Photocopy of drawing. ALTITUDE CHAMBERS ?L? & ?R? STRUCTURES. NASA, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Photocopy of drawing. ALTITUDE CHAMBERS ?L? & ?R? STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. WORK PLATFORM DETAIL. Sheet 6 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

353

Photocopy of drawing. VEHICLE ASSEMBLY BUILDING. NASA John F. Kennedy ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Photocopy of drawing. VEHICLE ASSEMBLY BUILDING. NASA John F. Kennedy Space Center, Florida. File Number 79K06740, NASA, November 1975. SPACE & WEIGHT ALLOCATION, ORBITER PATH IN TRANSFER AISLE. Sheet 6 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

354

Payload Flight Assignments: NASA Mixed Fleet  

NASA Technical Reports Server (NTRS)

This manifest summarizes the missions planned by NASA for the Space Shuttle and Expendable Launch Vehicles (ELV's) as of the date of publication. Space Shuttle and ELV missions are shown through calendar year 2003. Space Shuttle missions for calendar years 2002-2003 are under review pending the resolution of details in the assembly sequence of the International Space Station (ISS).

Parker, Robert A. R.

1997-01-01

355

www.nasa.gov Fiscal Year  

E-print Network

toward achieving the challenging mission of space exploration, scientific discovery, and aeronautics Space Shuttle launches to the International Space Station (ISS) since last November, to complete itswww.nasa.gov Fiscal Year PERFORMANCE AND ACCOUNTABILITY REPORT 2010 National Aeronautics and Space

356

The Status of the NASA All Sky Fireball Network  

NASA Technical Reports Server (NTRS)

Established by the NASA Meteoroid Environment Office, the NASA All Sky Fireball Network consists of 6 meteor video cameras in the southern United States, with plans to expand to 15 cameras by 2013. As of mid-2011, the network had detected 1796 multi-station meteors, including meteors from 43 different meteor showers. The current status of the NASA All Sky Fireball Network is described, alongside preliminary results.

Cooke, William J.; Moser, Danielle E.

2011-01-01

357

Space station automation study. Volume I. Executive summary. Autonomous systems and assembly. Final report  

SciTech Connect

The purpose of the Space Station Automation Study (SSAS) was to develop informed technical guidance for NASA personnel in the use of autonomy and autonomous systems to implement Space Station functions.

Not Available

1984-11-01

358

Space station automation study. Volume 1: Executive summary. Autonomous systems and assembly  

NASA Technical Reports Server (NTRS)

The purpose of the Space Station Automation Study (SSAS) was to develop informed technical guidance for NASA personnel in the use of autonomy and autonomous systems to implement space station functions.

1984-01-01

359

2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

360

NASA Oceanic Processes Program, fiscal year 1983  

NASA Technical Reports Server (NTRS)

Accomplishments, activities, and plans are highlighted for studies of ocean circulation, air sea interaction, ocean productivity, and sea ice. Flight projects discussed include TOPEX, the ocean color imager, the advanced RF tracking system, the NASA scatterometer, and the pilot ocean data system. Over 200 papers generated by the program are listed.

Nelson, R. M. (editor); Pieri, D. C. (editor)

1984-01-01

361

Background and architecture for an autonomous ground station controller  

NASA Technical Reports Server (NTRS)

The Deep Space Station Controller (DSSC) is state of the art ground station control architecture being developed at JPL. During the past few years the technology development program at JPL demonstrated a series of increasingly competent automated ground station prototypes of which the DSSC is the latest. It has been designed for robust closed loop control of ground stations utilized for forward and return link communications with NASA's deep space exploration missions.

Paal, L.; Golshan, N.; Fisher, F.; James, M.

2001-01-01

362

Stennis hosts NASA Night in Oxford  

NASA Technical Reports Server (NTRS)

A young visitor to the Powerhouse Community Arts and Cultural Center in Oxford, Miss., enjoys a balloon rocket transportation activity during a NASA Night in the Neighborhood on March 29. NASA's John C. Stennis Space Center near Bay St. Louis visited the center with a variety of space-related displays and educational activities. Events targeted for children included moon phasers and build-your-own rocket transportation exercises, as well as an astronaut ice cream tasting station. Visitors also were able to take photos in the astronaut suit display. Displays focused on the 40th anniversaries of the Apollo 11 and Apollo 13 lunar missions, the International Space Station, and various aspects of Stennis work. The event was sponsored by the NASA Office of External Affairs and Education at Stennis.

2010-01-01

363

Telerobot operator control station requirements  

NASA Technical Reports Server (NTRS)

The operator control station of a telerobot system has unique functional and human factors requirements. It has to satisfy the needs of a truly interactive and user-friendly complex system, a telerobot system being a hybrid between a teleoperated and an autonomous system. These functional, hardware and software requirements are discussed, with explicit reference to the design objectives and constraints of the JPL/NASA Telerobot Demonstrator System.

Kan, Edwin P.

1988-01-01

364

Space station ventilation study  

NASA Technical Reports Server (NTRS)

A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

Colombo, G. V.; Allen, G. E.

1972-01-01

365

Lewis Investigates Frequency Sharing Between Future NASA Space Systems and Local Multipoint Distribution Systems in the 27-GHz Band  

NASA Technical Reports Server (NTRS)

At the request of the Federal Communications Commission (FCC), the NASA Lewis Research Center undertook an intensive study to examine the feasibility of frequency sharing between future NASA space services and proposed Local Multipoint Distribution Systems (LMDS) in the 25.25- to 27.5-GHz band. This follows NASA's earlier involvement in the FCC's 1994 Negotiated Rule Making Committee which studied frequency sharing between Ka-band Fixed Satellite Services and LMDS in the 27.5- to 29.5-GHz band. LMDS is a terrestrial, cellular, wireless communication service primarily intended to provide television distribution from hub stations located within relatively small cells to fixed subscriber receivers. Some proposed systems, however, also plan to offer interactive services via subscriber-to-hub transmissions. LMDS providers anticipate that their systems will be a cost-effective alternative to cable television systems, especially in urban areas. LMDS proponents have expressed an interest in using frequencies below 27.5 GHz. NASA, however, plans to operate three types of space systems below 27.5 GHz. The H, I, and J follow-on satellites for the Tracking and Data Relay Satellite System (TDRSS), which are planned for launch beginning in 1999, are designed to receive high-data-rate transmissions (up to 800 Mbps) from low-Earth orbiting "user" spacecraft in the 25.25- to 27.5-GHz band. In this case, the potential interference is the aggregate interference from LMDS transmitters (both hubs and subscribers) into the TDRSS tracking receive beams as they sweep over the Earth's surface while tracking lower altitude user spacecraft.

1997-01-01

366

Gongguan Metro Station NTU Hospital Metro Station  

E-print Network

Gongguan Metro Station NTU Hospital Metro Station 3 2 1 2 3 4 SE61 SE1 S71 SE63 SE74 SE73 SE72 SE Railway Station Taipei Railway Station To Shandao Temple Metro Station To Daan Park Sec. 3, Jianguo S. Rd. To Jianguo Expressway Sec. 2, Fuxing S. Rd. To Technology Building Metro Station

Hung, Shih-Hao

367

NASA evolution of exploration architectures  

NASA Technical Reports Server (NTRS)

A series of charts and diagrams is used to provide a detailed overview of the evolution of NASA space exploration architectures. The pre-Apollo programs including the Werner von Braun feasibility study are discussed and the evolution of the Apollo program itself is treated in detail. The post-Apollo era is reviewed and attention is given to the resurgence of strategic planning exemplified by both ad hoc and formal efforts at planning. Results of NASA's study of the main elements of the Space Exploration Initiative which examined technical scenarios, science opportunities, required technologies, international considerations, institutional strengths and needs, and resource estimates are presented. The 90-day study concludes that, among other things, major investments in challenging technologies are required, the scientific opportunities provided by the program are considerable, current launch capabilities are inadequate, and Space Station Freedom is essential.

Roberts, Barney B.

1991-01-01

368

NASA space information systems overview  

NASA Technical Reports Server (NTRS)

A major objective of NASA space missions is the gathering of information that when analyzed, compared, and interpreted furthers man's knowledge of his planet and surrounding universe. A space information system is the combination of data gathering, data processing, and data transport capabilities that interact to provide the underlying services that enable that advancement in understanding. Past space projects have been characterized by rather disjoint data systems that often did not satisfy user requirements. NASA has learned from those experiences, however, and now is conceptualizing a new generation of sophisticated, integrated space information systems suitable to the wide range of near future space endeavors. This paper examines the characteristics of recent data systems and, based upon that characterization, outlines the scope and attributes of future systems. A description if offered of the information system for the Space Station Program as one real example of such advanced capabilities.

Hall, Dana L.

1987-01-01

369

Continuous Risk Management at NASA  

NASA Technical Reports Server (NTRS)

NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions. This risk management structure of functions has been taught to projects at all NASA Centers and is being successfully implemented on many projects. This presentation will give project managers the information they need to understand if risk management is to be effectively implemented on their projects at a cost they can afford.

Hammer, Theodore F.; Rosenberg, Linda

1999-01-01

370

Spirit Leaves Telling Tracks  

NASA Technical Reports Server (NTRS)

Scientists have found clues about the nature of martian soil through analyzing wheel marks from the Mars Exploration Rover Spirit in this image. The image was taken by Spirit's rear hazard-identification camera just after the rover drove approximately 1 meter (3 feet) northwest off the Columbia Memorial Station (lander platform) early Thursday morning. That the wheel tracks are shallow indicates the soil has plenty of strength to support the moving rover. The well-defined track characteristics suggest the presence of very fine particles in the martian soil (along with larger particles). Scientists also think the soil may have some cohesive properties.

2004-01-01

371

Photocopy of drawing. OPERATIONS SUPPORT BUILDING. NASA, Cape Canaveral Air ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Photocopy of drawing. OPERATIONS SUPPORT BUILDING. NASA, Cape Canaveral Air Force Station, Florida. Drawing 86K01547, Maurice H. Connell & Associates, February, 1961. OPERATIONS SUPPORT BUILDING SITE PLAN. Sheet 2 of 34 - Cape Canaveral Air Force Station, Launch Complex 34, Operations Support Building, Freedom Road, Southwest of Launch Stand CX-34, Cape Canaveral, Brevard County, FL

372

Charles Bolden, NASA Administrator ASCAN Class of 2013 Application Event  

E-print Network

to travel to the International Space Station aboard U.S. commercial space craft. Some of the astronauts we of the International Space Station in the coming years. #12;6 As NASA Administrator, one of my greatest challenges orbit. As a result, we are beginning to transition transport to and from the International Space

Waliser, Duane E.

373

Charles Bolden, NASA Administrator COMSTAC Advisory Committee Public Meeting  

E-print Network

. It gave us the ability to build the International Space Station; it launched satellites like Hubble's commercial space industry to take over transport to the International Space Station so that NASA can do what to include the first rendezvous and berthing of a private industry-owned capsule to the International Space

Waliser, Duane E.

374

NASA's Current Earth Science Program  

NASA Technical Reports Server (NTRS)

NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

Charles, Leslie Bermann

1998-01-01

375

Engineering Research and Technology Development on the Space Station  

NASA Technical Reports Server (NTRS)

This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

1996-01-01

376

Injury Surveillance Among NASA Astronauts Using the Barell Injury Diagnosis Matrix  

NASA Technical Reports Server (NTRS)

Astronauts perform physically demanding tasks and risk incurring musculoskeletal injuries during both groundbased training and missions. Increased injury rates throughout the history of the U.S. space program have been attributed to numerous factors, including an aging astronaut corps, increased Weightless Environment Training Facility (WETF) and Neutral Buoyancy Laboratory (NBL) training to construct the International Space Station, and improved clinical operations that promote injury prevention and reporting. With NASA program changes through the years (including retirement of the Shuttle program) and an improved training environment (including a new astronaut gym), there is no surveillance program to systematically track injury rates. A limited number of research projects have been conducted over the past 20 years to evaluate musculoskeletal injuries: (1) to evaluate orthopedic injuries from 1987 to 1995, (2) to describe upper extremity injuries, (3) to evaluate EVA spacesuit training related injuries, and (4) to evaluate in-flight musculoskeletal injuries. Nevertheless, there has been no consistently performed comprehensive assessment of musculoskeletal injuries among astronauts. The Barell Injury Diagnosis Matrix was introduced at the 2001 meeting of the International Collaborative Effort (ICE) on Injury Statistics. The Matrix proposes a standardized method of classifying body region by nature of injury. Diagnoses are coded using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) coding system. The purpose of this study is to assess the usefulness and complexity of the Barell Injury Diagnosis Matrix to classify and track musculoskeletal injuries among NASA astronauts.

Murray, J. D.; Laughlin, M. S.; Eudy, D. L.; Wear, M. L.; VanBaalen, M. G.

2014-01-01

377

NASA ISS EarthKam  

NSDL National Science Digital Library

ISS EarthKam (Earth Knowledge Acquired by Middle school students) "is a NASA sponsored program that provides stunning, high quality photographs of our planet taken" by middle-school students from the Space Shuttle and International Space Station. Visitors can view Macromedia Flash Player and PowerPoint slide shows displaying the highlights of the program and a collection of amazing images. The website offers summaries of the latest, past, and future station missions. Users can explore the thousands of images collected by EarthKam via an online database or by a sequence of image collections. Educators and students will discover many activities, tutorials, guides, and other instructional materials that use EarthKam images to address scientific concepts.

378

Railroad track repairs are complete at KSC  

NASA Technical Reports Server (NTRS)

Railroad track repairs have been completed at Kennedy Space Center. This section of track is located on KSC property, just north of the NASA Causeway in the KSC Industrial Area. The repairs were required following the minor derailment of two solid rocket booster segment cars on July 18.

2000-01-01

379

21-cm Observations with the NASA ADAS 18-meter Antenna System: Baseline Astronomical Observations and Measurements of Performance Characteristics  

NASA Astrophysics Data System (ADS)

Herein we report astronomical observations made with the NASA Advanced Data Acquisition System (ADAS). The NASA ADAS antenna, located at NASA Goddard Spaceflight Center's Wallops Flight Facility, Virginia, is an 18-meter X-band antenna system that has been primarily used for satellite tracking and served as the telecommunication station for the NASA IUE satellite until ca. 1997. A joint NASA-Morehead State University (MSU)-Kentucky NSF EPSCoR venture has been initiated to upgrade and relocate the antenna system to MSU's Astrophysics Laboratory where it will provide a research instrument and active laboratory for undergraduate students as well as be engaged in satellite tracking missions. As part of the relocation efforts, many systems will be upgraded including replacement of a hydrostatic azimuth bearing with a high-precision electromechanical bearing, a new servo system, and Ku-capable reflector surface. It is widely believed that there are still contributions that small aperture centimeter-wave instruments can make utilizing three primary observing strategies: 1.) longitudinal studies of RF variations in cosmic phenomena, 2.) surveys of large areas of sky, and 3.) fast reactions to transient phenomena. MSU faculty and staff along with NASA engineers re-outfitted the ADAS system with RF systems and upgraded servo controllers during the spring and summer of 2001. Empirical measurements of primary system performance characteristics were made including G/T (at S- and L bands), noise figures, pointing and tracking accuracies, and drive speeds and accelerations. Baseline astronomical observations were made with the MSU L-band receiver using a 6 MHz bandwidth centered at 1420 MHz (21-cm) and observing over a range of frequencies (up to 2.5 MHz, tunable over the 6 MHz window) with a 2048-channel back-end spectrometer, providing up to 1 KHz frequency resolution. Baseline observations of radio sources herein reported include Cygnus A, 3C 157, 3C 48 and the Andromeda Galaxy. After its transition to Morehead State University (which is expected to be completed in 2004), the 18-meter will be available for use by students and faculty from all U.S. institutions for astronomical observations. Transitioning of the 18-meter antenna is made possible by NASA, and the Kentucky NSF EPSCoR program and by grants from the U.S. Small Business Administration.

Malphrus, B. K.; Combs, M. S.; Kruth, J.

2001-12-01

380

NASA Report to Education, Volume 9  

NASA Technical Reports Server (NTRS)

This is an edition of 'NASA Report to Education' covering NASA's Educational Workshop, Lewis Research Center's T-34 and the Space Exploration Initiative. The first segment shows NASA Education Workshop program (NEWEST - NASA Educational Workshops for Elementary School Teachers). Highlights of the 14 days of intense training, lectures, fieldtrips and simple projects that the educators went through to teach the program are included. Participants are shown working on various projects such as the electromagnetic spectrum, living in Space Station Freedom, experience in T-34, tour of tower at the Federal Aviation Administrative Facilities, conducting an egg survival system and an interactive video conference with astronaut Story Musgrave. Participants share impressions of the workshop. The second segment tells how Lewis Research Center's T-34 aircraft is used to promote aerospace education in several Cleveland schools and excite students.

1991-01-01

381

Tailoring the space station for mission operations  

NASA Astrophysics Data System (ADS)

The evolution of space station concepts is briefly discussed, taking into account Tsiolkovskii's work, von Braun's wheel-shaped space station, and NASA's Manned Orbiting Research Laboratory. Operations are discussed as a design driver. It is pointed out that Skylab, Space Shuttle, and Spacelab have demonstrated the operational utility of people in space. A description of space station mission operations is presented. It is found that science and applications missions for a space station can be divided into observational and experimental missions. Service operations are operations in which the space station does not conduct end-use missions, but instead provides services to those missions. In April of 1984, the Solar Max spacecraft was restored to full scientific operation after drifting in orbit without precision attitude control. A permanent space station provides the capability to carry out such servicing and repair missions when needed in a routine manner.

Hager, R. W.; Woodcock, G. R.

1984-10-01

382

Raising the AIQ of the Space Station  

NASA Technical Reports Server (NTRS)

Expert systems and robotics technologies are to be significantly advanced during the Space Station program. Artificial intelligence systems (AI) on the Station will include 'scars', which will permit upgrading the AI capabilities as the Station evolves to autonomy. NASA-Ames is managing the development of the AI systems through a series of demonstrations, the first, controlling a single subsystem, to be performed in 1988. The capabilities being integrated into the first demonstration are described; however, machine learning and goal-driven natural language understanding will not reach a prototype stage until the mid-1990s. Steps which will be taken to endow the computer systems with the ability to move from heuristic reasoning to factual knowledge, i.e., learning from experience, are explored. It is noted that the development of Space Station expert systems depends on the development of experts in Station operations, which will not happen until the Station has been used extensively by crew members.

Lum, Henry; Heer, Ewald

1987-01-01

383

Draft Tier 2 Environmental Impact Statement for International Space Station  

NASA Technical Reports Server (NTRS)

The Draft Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA's participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop a human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.

1995-01-01

384

The NASA Fireball Network  

NASA Technical Reports Server (NTRS)

In the summer of 2008, the NASA Meteoroid Environments Office (MEO) began to establish a video fireball network, based on the following objectives: (1) determine the speed distribution of cm size meteoroids, (2) determine the major sources of cm size meteoroids (showers/sporadic sources), (3) characterize meteor showers (numbers, magnitudes, trajectories, orbits), (4) determine the size at which showers dominate the meteor flux, (5) discriminate between re-entering space debris and meteors, and 6) locate meteorite falls. In order to achieve the above with the limited resources available to the MEO, it was necessary that the network function almost fully autonomously, with very little required from humans in the areas of upkeep or analysis. With this in mind, the camera design and, most importantly, the ASGARD meteor detection software were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN), as NASA has a cooperative agreement with Western's Meteor Physics Group. 15 cameras have been built, and the network now consists of 8 operational cameras, with at least 4 more slated for deployment in calendar year 2013. The goal is to have 15 systems, distributed in two or more groups east of automatic analysis; every morning, this server also automatically generates an email and a web page (http://fireballs.ndc.nasa.gov) containing an automated analysis of the previous night's events. This analysis provides the following for each meteor: UTC date and time, speed, start and end locations (longitude, latitude, altitude), radiant, shower identification, light curve (meteor absolute magnitude as a function of time), photometric mass, orbital elements, and Tisserand parameter. Radiant/orbital plots and various histograms (number versus speed, time, etc) are also produced. After more than four years of operation, over 5,000 multi-station fireballs have been observed, 3 of which potentially dropped meteorites. A database containing data on all these events, including the videos and calibration information, has been developed and is being modified to include data from the SOMN and other camera networks.

Cooke, William J.

2013-01-01

385

Space Station Live: EarthKAM - Duration: 11:30.  

NASA Video Gallery

Space Station Live commentator Pat Ryan interviews Brion Au, EarthKAM Payload Developer. The NASA education program enables middle school students to take pictures of the Earth from the Internation...

386

Station Commander Sends Holiday Greetings - Duration: 3:21.  

NASA Video Gallery

Aboard the International Space Station, Expedition 30 Commander Dan Burbank of NASA sends season's greetings to the world and shares his thoughts about being in orbit aboard the space-based laborat...

387

Students Speak With Station Capcom - Duration: 24:45.  

NASA Video Gallery

From NASA's International Space Station Mission Control Center, ISS capcom Hal Getzelman participates in a Digital Learning Network (DLN) event with students at Colvin Run Elementary School in Vien...

388

Space Station-Baseline Configuration  

NASA Technical Reports Server (NTRS)

In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

1989-01-01

389

NASA/TM-2012-217357 Probability of Causation for Space Radiation  

E-print Network

NASA/TM-2012-217357 Probability of Causation for Space Radiation Carcinogenesis following International Space Station, Near Earth Asteroid, and Mars Missions Francis A. Cucinotta NASA Lyndon B. Johnson Sciences Houston, Texas February 2012 #12;THE NASA STI PROGRAM OFFICE . . . IN PROFILE Since its founding

Rathbun, Julie A.

390

Ship Tracks South of Alaska  

NSDL National Science Digital Library

This page from NASA's Earth Observatory shows images of visible tracks made in the Earth's atmosphere from clouds forming around ship exhaust particles. One of these images shows the relative sizes of the particles, and the text relates the relative sizes to the relative brightness of the clouds that are formed.

2009-05-27

391

NASA wiring for space applications program  

NASA Technical Reports Server (NTRS)

An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

Schulze, Norman

1995-01-01

392

Observation Station  

ERIC Educational Resources Information Center

This article describes how a teacher integrates science observations into the writing center. At the observation station, students explore new items with a science theme and use their notes and questions for class writings every day. Students are exposed to a variety of different topics and motivated to write in different styles all while

Rutherford, Heather

2011-01-01

393

Tracking Electromagnetic Energy With SQUIDs  

NASA Technical Reports Server (NTRS)

A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.

2005-01-01

394

An approach to design knowledge capture for the space station  

NASA Technical Reports Server (NTRS)

The design of NASA's space station has begun. During the design cycle, and after activation of the space station, the reoccurring need will exist to access not only designs, but also deeper knowledge about the designs, which is only hinted in the design definition. Areas benefiting from this knowledge include training, fault management, and onboard automation. NASA's Artificial Intelligence Office at Johnson Space Center and The MITRE Corporation have conceptualized an approach for capture and storage of design knowledge.

Wechsler, D. B.; Crouse, K. R.

1986-01-01

395

Boeing: International Space Station  

NSDL National Science Digital Library

Boeing, the prime contractor for the International Space Station (ISS), has developed this website to provide information on the technology of the program. The ISS will be more than four times as large as the Russian Mir when completed, and is "the largest, most complex international scientific project in history and our largest adventure into space to date." Boeing is responsible for the design, development, construction and integration of the ISS and assisting NASA in operating the orbital outpost. They provide an overview of the status of the project and describes the current configuration, components, structure, and systems with more detailed information on some sections. Visitors can follow links to also read more about the scientific research conducted by the expedition crew.

396

NASA EarthKAM  

NSDL National Science Digital Library

NASA EarthKAM (Earth Knowledge Acquired by Middle schools) enables students, teachers, and the public to learn about Earth via photographs taken from space. This growing collection of Earth images come from middle school students around the world who used the Internet to target areas of Earth to be photographed with a digital camera onboard the Space Shuttle and International Space Station. These images are available to everyone through a user-friendly data system. Users can search for images of the earth by geographic area, feature, country, mission or school. The collection is wide reaching, and includes land features, water, atmospheric systems, and human impacts. Middle schools (grades 5-8) can apply to join the EarthKAM Community. Community schools use the EarthKAM images in inquiry-based investigations and can even become Flight Certified, which enables them to take their own images of Earth from space. Also included is a section for educators, which provides tips and guides on how to incorporate these images into daily lessons.

Edwards, Teon

2000-09-01

397

High Speed A/D DSP Interface for Carrier Doppler Tracking  

NASA Technical Reports Server (NTRS)

As on-board satellite systems continue to increase in ability to perform self diagnostic checks, it will become more important for satellites to initiate ground communications contact. Currently, the NASA Space Network requires users to pre-arranged times for satellite communications links through the Tracking and Data Relay Satellite (TDRS). One of the challenges in implementing an on-demand access protocol into the Space Network, is the fact that a low Earth orbiting (LEO) satellite's communications will be subject to a doppler shift which is outside the capability of the NASA ground station to lock onto. In a prearranged system, the satellite's doppler is known a priori, and the ground station is able to lock onto the satellite's signal. This paper describes the development of a high speed analog to digital interface into a Digital Signal Processor (DSP). This system will be used for identifying the doppler shift of a LEO satellite through the Space Network, and aiding the ground station equipment in locking onto the signal. Although this interface is specific to one application, it can be used as a basis for interfacing other devices with a DSP.

Baggett, Timothy

1998-01-01

398

NASA Systems Engineering Handbook  

NASA Technical Reports Server (NTRS)

This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

1995-01-01

399

Space Station Technology Summary  

NASA Technical Reports Server (NTRS)

The completion of the Space Station Propulsion Advanced Technology Programs established an in-depth data base for the baseline gaseous oxygen/gaseous hydrogen thruster, the waste gas resistojet, and the associated system operations. These efforts included testing of a full end-to-end system at National Aeronautics and Space Administration (NASA)-Marshall Space Flight Center (MSFC) in which oxygen and hydrogen were generated from water by electrolysis at 6.89 MPa (1,000 psia), stored and fired through the prototype thruster. Recent end-to-end system tests which generate the oxygen/hydrogen propellants by electrolysis of water at 20.67 MPa (3,000 psia) were completed on the Integrated Propulsion Test Article (IPTA) at NASA-Johnson Space Center (JSC). Resistojet testing has included 10,000 hours of life testing, plume characterization, and electromagnetic interference (EMI) testing. Extensive 25-lbf thruster testing was performed defining operating performance characteristics across the required mixture ratio and thrust level ranges. Life testing has accumulated 27 hours of operation on the prototype thruster. A total of seven injectors and five thrust chambers were fabricated to the same basic design. Five injectors and three thrust chambers designed to incorporate improved life, performance, and producibility characteristics are ready for testing. Five resistojets were fabricated and tested, with modifications made to improve producibility. The lessons learned in the area of producibility for both the O2/H2 thrusters and for the resistojet have resolved critical fabrication issues. The test results indicate that all major technology issues for long life and reliability for space station application were resolved.

Iacabucci, R.; Evans, S.; Briley, G.; Delventhal, R. A.; Braunscheidel, E.

1989-01-01

400

today@nasa.gov  

NSDL National Science Digital Library

Today@nasa.gov, contains the latest information and news releases from NASA missions. Visitors can also find out information about NASA's four strategic enterprises: Aeronautics, Human Exploration and Development of Space, Mission to Planet Earth, and Space Science. NASA related sites describe current happenings at NASA and also provide homepages of NASA missions including the Cassini space probe, the Mars Global Surveyor and, most recently, the launch of the Columbia space shuttle. Space exploration provides clues to how the solar system was formed, why life exists on earth and not on other known planets, and what the structures of the universe, matter, and energy are.

1998-01-01

401

International Polar Year Observations From the International Space Station  

NASA Astrophysics Data System (ADS)

Astronauts aboard the International Space Station (ISS) have several opportunities each day to observe and document high-latitude phenomena. Although lighting conditions, ground track and other viewing parameters change with orbital precessions and season, the 51.6 degree orbital inclination and 400 km altitude of the ISS provide the crew an excellent vantage point for collecting image-based data for IPY investigators. To date, the database of imagery acquired by the Crew Earth Observations (CEO) experiment aboard the ISS (http://eol.jsc.nasa.gov) contains more than 12,000 images of high latitude (above 50 degrees) events such as aurora, mesospheric clouds, sea-ice, high-latitude plankton blooms, volcanic eruptions, and snow cover. The ISS Program will formally participate in IPY through an activity coordinated through CEO entitled "Synchronized Observations of Polar Mesospheric Clouds, Aurora and Other Large-scale Polar Phenomena from the ISS and Ground Sites". The activity will augment the existing collection of Earth images taken from the ISS by focusing astronaut observations on polar phenomena. NASA's CEO experiment will solicit requests by IPY investigators for ISS observations that are coordinated with or complement ground-based polar studies. The CEO imagery website (http://eol.jsc.nasa.gov) will provide an on-line form for IPY investigators to interact with CEO scientists and define their imagery requests. This information will be integrated into daily communications with the ISS crews about their Earth Observations targets. All data collected will be cataloged and posted on the website for downloading and assimilation into IPY projects.

Evans, C. A.; Pettit, D. R.; Runco, S.; Byrne, G.; Willis, K.; Heydorn, J.; Stefanov, W. L.; Wilkinson, M. J.; Trenchard, M.

2006-12-01

402

International Polar Year Observations From the International Space Station  

NASA Technical Reports Server (NTRS)

Astronauts aboard the International Space Station (ISS) have several opportunities each day to observe and document high-latitude phenomena. Although lighting conditions, ground track and other viewing parameters change with orbital precessions and season, the 51.6 degree orbital inclination and 400 km altitude of the ISS provide the crew an excellent vantage point for collecting image-based data for IPY investigators. To date, the database of imagery acquired by the Crew Earth Observations (CEO) experiment aboard the ISS (http://eol.jsc.nasa.gov) contains more than 12,000 images of high latitude (above 50 degrees) events such as aurora, mesospheric clouds, sea-ice, high-latitude plankton blooms, volcanic eruptions, and snow cover. The ISS Program will formally participate in IPY through an activity coordinated through CEO entitled Synchronized Observations of Polar Mesospheric Clouds, Aurora and Other Large-scale Polar Phenomena from the ISS and Ground Sites. The activity will augment the existing collection of Earth images taken from the ISS by focusing astronaut observations on polar phenomena. NASA s CEO experiment will solicit requests by IPY investigators for ISS observations that are coordinated with or complement ground-based polar studies. The CEO imagery website (http://eol.jsc.nasa.gov) will provide an on-line form for IPY investigators to interact with CEO scientists and define their imagery requests. This information will be integrated into daily communications with the ISS crews about their Earth Observations targets. All data collected will be cataloged and posted on the website for downloading and assimilation into IPY projects.

Pettit, Donald R.; Runco, Susan; Byrne, Gregory; Willis, Kim; Heydorn, James; Stefanov, William L.; Wilkinson, M. Justin; Trenchard, Michael

2006-01-01

403

Conceptual design and evaluation of selected Space Station concepts, volume 1  

NASA Technical Reports Server (NTRS)

Space Station configuration concepts are defined to meet the NASA Headquarters Concept Development Group (CDG) requirements. Engineering and programmatic data are produced on these concepts suitable for NASA and industry dissemination. A data base is developed for input to the CDG's evaluation of generic Space Station configurations and for use in the critique of the CDG's generic configuration evaluation process.

1983-01-01

404

Experiments Program for NASA's Space Communications Testbed  

NASA Technical Reports Server (NTRS)

NASA developed a testbed for communications and navigation that was launched to the International Space Station in 2012. The testbed promotes new software defined radio (SDR) technologies and addresses associated operational concepts for space-based SDRs, enabled by this first flight of NASA's Space Telecommunications Radio System (STRS) architecture standard. The experiments program consists of a mix of in-house and external experiments from partners in industry, academia, and government. The experiments will investigate key challenges in communications, networking, and global positioning system navigation both on the ground and on orbit. This presentation will discuss some of the key opportunities and challenges for the testbed experiments program.

Chelmins, David; Reinhart, Richard

2012-01-01

405

Serving the Marshall Space Flight Center Community www.nasa.gov/centers/marshall/about/star/index.html June 5, 2013 Inside This Issue  

E-print Network

By Jessica Eagan "Did you know there's a science laboratory called the International Space Station flying at Blossomwood Elementary School in Huntsville about science aboard in the International Space Station. (NASA aboard the International Space Station is leading to benefits for people on Earth. (NASA

406

Space program: Space debris a potential threat to Space Station and shuttle  

NASA Technical Reports Server (NTRS)

Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed.

Schwartz, Stephen A.; Beers, Ronald W.; Phillips, Colleen M.; Ramos, Yvette

1990-01-01

407

International Space Station Radiation Shielding Model Development  

Microsoft Academic Search

The projected radiation levels within the International Space Station (ISS) have been criticized by the Aerospace Safety Advisory Panel in their report to the NASA Administrator. Methods for optimal reconfig- uration and augmentation of the ISS shielding are now being developed. The initial steps are to develop reconfigurable and realistic radiation shield models of the ISS modules, develop computational procedures

G. D. Qualls; J. W. Wilson; C. Sandridge; F. A. Cucinotta; J. E. Nealy; J. H. Heinbockel; C. P. Hugger; J. Verhage; B. M. Anderson; W. Atwell

408

Remote sensing from the International Space Station  

Microsoft Academic Search

The time has come to give serious thought to the use of the International Space Station (ISS) as a space platform to advance remote sensing research in several scientific disciplines. The European scientific community has been developing instrumentation for deployment on the ISS for some time now. Recently, NASA opened competitions for scientific programs to be supported as ``Missions of

A. Lyle Broadfoot

2001-01-01

409

Aeronomy from the International Space Station  

Microsoft Academic Search

The lessons learned with The Remote Atmospheric and Ionospheric Detection System (RAIDS) a new NASA experiment studying the Earth's thermosphere and ionosphere from a vantage point on the International Space Station (ISS) will be reviewed. The RAIDS mission focuses on the coupling and transition from the coldest part of the atmosphere, the mesopause near 85 km, up to the hottest

A. B. Christensen; S. A. Budzien; R. L. Bishop; A. W. Stephan

2010-01-01

410

Remote sensing from the International Space Station  

Microsoft Academic Search

The time has come to give serious thought to the use of the International Space Station (ISS) as a space platform to advance remote sensing research in several scientific disciplines. The European scientific community has been developing instrumentation for deployment on the ISS for some time now. Recently, NASA opened competitions for scientific programs to be supported as Missions of

A. Lyle Broadfoot

2001-01-01

411

NASA announced Sept. 30 that John C. Stennis Space Center Director  

E-print Network

; and as commander of Endeavour on STS-88 ­ the first International Space Station assembly mission ­ in 1998. Before of international operations of the International Space Station Program; director of NASA's Human Flight Program in Russia; deputy director of the International Space Station Program; and director of Flight Crew

412

NASA strategic plan  

NASA Technical Reports Server (NTRS)

The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

1994-01-01

413

Building 1100--NASA  

NASA Technical Reports Server (NTRS)

Building 1100 is the NASA administrative building. Services located in this building include two banks, a post office, barber shop, cafeteria, snack bar, travel agency, dry cleaners, the NASA Exchange retail store and medical facilities for employees.

1996-01-01

414

NASA Aeronautics Research Onboard  

NSDL National Science Digital Library

In this interactive activity from NASA, learn some of the ways in which NASA's research has improved the safety, efficiency, and performance of aviation aircraftfrom cockpit designs to the grooves on the runway.

2011-10-06

415

NASA Television Schedules  

NSDL National Science Digital Library

This online television schedule provides listings of NASA's televised programming, including mission coverage, educational shows, and historical programs. A link is provided to a list of organizations that transmit NASA television to the World Wide Web.

416

Number Tracks  

NSDL National Science Digital Library

This problem provides an opportunity for children to explore and visualize number patterns and sequences and to reinforce key number concepts and vocabulary such as odd and even, factors and multiples. Students cut consecutive number tracks into equal length pieces in several ways and investigate the patterns that emerge among the sums of the tracks. The Teachers' Notes page explains number tracks and offers suggestions for implementation, discussion questions, a printable sheet of number tracks (pdf), and ideas for extension and support.

417

Makin' Tracks  

NSDL National Science Digital Library

In this activity, learners make plaster casts of an animal track to learn more about animals and animal behavior. Learners can use real animal tracks found outdoors or rubber track molds if conducted indoors. This lesson guide includes discussion questions, extensions/simplifications, and helpful hints.

Paula Rogers Huff

2005-01-01

418

Firefighters from Mayport Naval Station train at CCAFS  

NASA Technical Reports Server (NTRS)

During training exercises at Cape Canaveral Air Force Station Pad 30, firefighters with the Fire and Emergency Services at the Naval Station Mayport, Fla., wait while the NASA/USAF water carrier truck directs its water cannon toward a burning simulated aircraft (out of view).

2000-01-01

419

Advanced Capabilities Division International Space Station (ISS) Science Portfolio  

E-print Network

i Advanced Capabilities Division International Space Station (ISS) Science Portfolio Determination and Management #12;ii Advanced Capabilities Division International Space Station (ISS) Science Portfolio ..........................................................................................................3 2.4 NASA Internal Analyses for ISS Utilization for Implementing the Vision for Space Exploration

Waliser, Duane E.

420

NASA's educational programs  

NASA Technical Reports Server (NTRS)

The educational programs of NASA's Educational Affairs Division are examined. The problem of declining numbers of science and engineering students is reviewed. The various NASA educational programs are described, including programs at the elementary and secondary school levels, teacher education programs, and undergraduate, graduate, and university faculty programs. The coordination of aerospace education activities and future plans for increasing NASA educational programs are considered.

Brown, Robert W.

1990-01-01

421

Doing business with NASA  

NASA Technical Reports Server (NTRS)

A brochure that was designed to encourage contractors to do business with NASA is presented. The brochure is divided into six sections: (1) This is NASA; (2) The procurement process; (3) Marketing your capabilities; (4) Special assistance programs; (5) NASA field installations; and (6) Sources of additional help.

1991-01-01

422

NASA replanning efforts continue  

Microsoft Academic Search

A task force of the National Aeronautics and Space Administration (NASA) is producing new launch schedules for NASA's three remaining space shuttle orbiters, possibly supplemented by expendable launch vehicles. In the wake of the explosion of the space shuttle Challenger on January 28, 1986, the task force is assuming a delay of 12-18 months before resumption of shuttle flights.NASA's Headquarters

Judith A. Katzoff

1986-01-01

423

VLBI2010 in NASA's Space Geodesy Project  

NASA Technical Reports Server (NTRS)

In the summer of 20 11 NASA approved the proposal for the Space Geodesy Project (SGP). A major element is developing at the Goddard Geophysical and Astronomical Observatory a prototype of the next generation of integrated stations with co-located VLBI, SLR, GNSS and DORIS instruments as well as a system for monitoring the vector ties. VLBI2010 is a key component of the integrated station. The objectives ofSGP, the role of VLBI20 lOin the context of SGP, near term plans and possible future scenarios will be discussed.

Ma, Chopo

2012-01-01

424

Sky Station  

NSDL National Science Digital Library

While satellites are the current backbone of telecommunications and wireless infrastructure, the company that maintains this Web site envisions a completely new technology. The Stratospheric Telecommunications Service (STS) relies on "lighter-than-air platforms which are held in a geo-stationary position in the stratosphere (approximately 21Km) over a major metropolitan area." The Sky Station company documents much of the STS theory online, as well as maintaining news and information articles about the progress of the system's development. US and international organizations have already reserved some of the radio frequency spectrum for stratospheric platforms, and it seems to have considerable support from important agencies.

1997-01-01

425

NASA Biological Specimen Repository  

NASA Technical Reports Server (NTRS)

The NASA Biological Specimen Repository (NBSR) has been established to collect, process, annotate, store, and distribute specimens under the authority of the NASA/JSC Committee for the Protection of Human Subjects. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The NBSR is a secure controlled storage facility that is used to maintain biological specimens over extended periods of time, under well-controlled conditions, for future use in approved human spaceflight-related research protocols. The repository supports the Human Research Program, which is charged with identifying and investigating physiological changes that occur during human spaceflight, and developing and implementing effective countermeasures when necessary. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can validate clinical hypotheses, study space-flight related changes, and investigate physiological markers All samples collected require written informed consent from each long duration crewmember. The NBSR collects blood and urine samples from all participating long duration ISS crewmembers. These biological samples are collected pre-flight at approximately 45 days prior to launch, during flight on flight days 15, 30, 60 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days following landing. The number of inflight sessions is dependent on the duration of the mission. Operations began in 2007 and as of October 2009, 23 USOS crewmembers have completed or agreed to participate in this project. As currently planned, these human biological samples will be collected from crewmembers covering multiple ISS missions until the end of U.S. presence on the ISS or 2017. The NBSR will establish guidelines for sample distribution that are consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. A NBSR Advisory Board composed of representatives of all participating agencies will be established to evaluate each request by an investigator for use of the samples to ensure the request reflects the mission of the NBSR.

Pietrzyk, Robert; McMonigal, K. A.; Sams, C. F.; Johnson, M. A.

2009-01-01

426

Microbiology on Space Station Freedom  

NASA Technical Reports Server (NTRS)

This panel discussion convened in Houston, Texas, at the Lunar and Planetary Institute, on November 6 to 8, 1989, to review NASA's plans for microbiology on Space Station Freedom. A panel of distinguished scientists reviewed, validated, and recommended revisions to NASA's proposed acceptability standards for air, water, and internal surfaces on board Freedom. Also reviewed were the proposed microbiology capabilities and monitoring plan, disinfection procedures, waste management, and clinical issues. In the opinion of this advisory panel, ensuring the health of the Freedom's crews requires a strong goal-oriented research effort to determine the potential effects of microorganisms on the crewmembers and on the physical environment of the station. Because there are very few data addressing the fundamental question of how microgravity influences microbial function, the panel recommended establishing a ground-based microbial model of Freedom, with subsequent evaluation using in-flight shuttle data. Sampling techniques and standards will be affected by both technological advances in microgravity-compatible instrumentation, and by changes in the microbial population over the life of the station.

Pierson, Duane L. (editor); Mcginnis, Michael R. (editor); Mishra, S. K. (editor); Wogan, Christine F. (editor)

1991-01-01

427

[Reply to ``Space Station?'' by L.H. Meredith] Space station?colon; Microgravity design is best first step  

Microsoft Academic Search

Les Meredith's recent statement in Eos (September 29, p. 770) on objectives and uses of NASA's proposed space station argues that microgravity research, manufacturing, space physics, astrophysics, and Earth observations are not good justifications for the present zero-gravity design of the station. In my view, he is correct for the general issues of remote sensing, whether it is toward Earth

D. James Baker

1987-01-01

428

NASA's Education Program  

NASA Technical Reports Server (NTRS)

NASA's current education programs, which will be examined under its Strategic Plan for Education are presented. It is NASA's first goal to maintain this base - revising, expanding, or eliminating programs as necessary. Through NASA's second goal, new education reform initiatives will be added which specifically address NASA mission requirements, national educational reform, and Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) priorities. The chapters in this publication are divided by educational levels, with additional sections on programs to improve the technological competence of students and on an array of NASA published materials to supplement programs. The resource section lists NASA's national and regional Teacher Resource Centers and introduces the reader to NASA's Central Operation of Resources for Educators (CORE), which distributes materials in audiovisual format.

1993-01-01

429

The NASA-Lewis terrestrial photovoltaics program  

NASA Technical Reports Server (NTRS)

Those parts of the present NASA-Lewis research and technology effort on solar cells and arrays having relevance to terrestrial uses are outlined. These include raising cell efficiency, developing the FEP-covered module concept, and exploring low-cost cell concepts. Solar cell-battery power systems for remote weather stations have been built to demonstrate the capabilities of solar cells for terrestrial applications.

Bernatowicz, D. T.

1974-01-01

430

Work/control stations in Space Station weightlessness  

NASA Technical Reports Server (NTRS)

An ergonomic integration of controls, displays, and associated interfaces with an operator, whose body geometry and dynamics may be altered by the state of weightlessness, is noted to rank in importance with the optimal positioning of controls relative to the layout and architecture of 'body-ported' work/control stations applicable to the NASA Space Station Freedom. A long-term solution to this complex design problem is envisioned to encompass the following features: multiple imaging, virtual optics, screen displays controlled by a keyboard ergonomically designed for weightlessness, cursor control, a CCTV camera, and a hand-controller featuring 'no-grip' vernier/tactile positioning. This controller frees all fingers for multiple-switch actuations, while retaining index/register determination with the hand controller. A single architectural point attachment/restraint may be used which requires no residual muscle tension in either brief or prolonged operation.

Willits, Charles

1990-01-01

431

Animal Tracks  

NSDL National Science Digital Library

For those of us living in Northern climates, when winter snow covers the landscape it provides great conditions to search for animal tracks. The following websites provide an abundance of information and resources about the ancient art of animal tracking.The first site(1 ), Beartracker's Animal Tracks Den, is an excellent comprehensive "online field guide to tracks and tracking." The site includes animal track images, photos, as well as information about mammals, reptiles, birds, insects, amphibians, and other tracking resources. The second site (2), is an article by Jon C. Boren, Extension Wildlife Specialist and Byron D. Wright, Agricultural Specialist both from the University of New Mexico entitled Identifying and Preserving Wildlife Tracks. The third site (3), on Tracking and Stalking Wildlife, comes from The Virtual Cub Scout Leader's Handbook and provides short information pages on a variety on animals including photos and images of tracks. The fourth site (4) is a well-organized lesson plan with activities on Animal Signs from Eagle Bluff Environmental Learning Center. The fifth site (5) is the Outdoor Action Guide to Animal Tracking by Rick Curtis of Princeton University. This website provides solid and detailed information on many aspects of animal tracking including parts of a track, pattern classification, aging tracks, and more. The sixth site (6) is an article by veteran tracker Jim Halfpenny, Ph.D. about how to determine the accurate track size for an animal. Site visitors can link from this article to the homepage for A Naturalist's World which has information about tracking classes offered in various North American locations. For anyone interested in developing their animal tracking skills, the final two websites also offer courses from very experienced trackers in different regions of North America. The seventh site (7), Tom Brown's Tracker School is the largest school of its kind with locations in New Jersey, California, and Florida. The eighth site, (8) Wilderness Awareness School is located in Washington but offers courses in other regions as well. This website also provides an extensive list of links for many other tracking resources.

432

Advanced tracking systems design and analysis  

NASA Technical Reports Server (NTRS)

The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

1989-01-01

433

New directions in the NASA program  

NASA Technical Reports Server (NTRS)

This paper reports on the current activities of the U.S. National Aeronautics and Space Administration (NASA), and discusses several new directions in NASA's program. The Space Transportation System (STS) is operational and is now performing a wide variety of missions, including repair of spacecraft on orbit. A family of upper stages are available for missions requiring higher energy than the Shuttle alone can provide. With routine access to space assured by the STS, the U.S. is ready to take its next logical step into space with development of a permanently manned Space Station. In addition, NASA is supporting a program for increased commercial development of space through a government-industry partnership.

Sakss, U. J.; Clark, H. J.

1984-01-01

434

Continuous Risk Management: A NASA Program Initiative  

NASA Technical Reports Server (NTRS)

NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions.

Hammer, Theodore F.; Rosenberg, Linda

1999-01-01

435

Orbit determination of the Lunar Reconnaissance Orbiter using laser ranging and radiometric tracking data  

NASA Astrophysics Data System (ADS)

The Lunar Reconnaissance Orbiter (LRO) launched in 2009 by the National Aeronautics and Space Administration (NASA) still orbits the Moon in a polar orbit at an altitude of 50 kilometers and below. Its main objective is the detailed exploration of the Moon's surface by means of the Lunar Orbiter Laser Altimeter (LOLA) and three high resolution cameras bundled in the Lunar Reconnaissance Orbiter Camera (LROC) unit. Referring these observations to a Moon-fixed reference frame requires the computation of highly accurate and consistent orbits. For this task only Earth-based observations are available, primarily radiometric tracking data from stations in the United States, Australia and Europe. In addition, LRO is prepared for one-way laser measurements from specially adapted sites. Currently, 10 laser stations participate more or less regularly in this experiment. For operational reasons, the official LRO orbits from NASA only include radiometric data so far. In this presentation, we investigate the benefit of the laser ranging data by feeding both types of observations in an integrated orbit determination process. All computations are performed by an in-house software development based on a dynamical approach improving orbit and force parameters in an iterative way. Special attention is paid to the determination of bias parameters, in particular of timing biases between radio and laser stations and the drift and aging of the LRO spacecraft clock. The solutions from the combined data set will be compared to radio- and laser-only orbits as well as to the NASA orbits. Further results will show how recent gravity field models from the GRAIL mission can improve the accuracy of the LRO orbits.

Lcher, Anno; Kusche, Jrgen

2014-05-01

436

Base Station Walk-Back  

NSDL National Science Digital Library

In this activity, learners will train to improve lung, heart, and other muscle endurance as they walk a progressive, measured distance. Learners measure out a course according to specific distances, walk/jog/run the distance, and record and graph their observations. This activity simulates how astronauts must train before missions in order to build up the endurance required to move in space. An embedded video on this page showcases the activity. Learners can complete this activity as part of NASA's Fit Explorer Challenge, in which learners train like astronauts, set goals, track their progress, and accumulate points to progress through Exploration Levels and earn certificates.

Center, Nasa J.

2012-06-26

437

Fraction Track  

NSDL National Science Digital Library

This interactive applet provides a visual model to help students compare fractions and understand equivalent fractions. The applet displays eight fraction tracks (unit number lines) divided into fractional increments from halves to twelfths. The user turns over cards displaying fractions and moves sliders on the tracks a distance equal to or less than the target fractions. The goal is to move all the sliders to the end of each fraction track in the least number of moves.

2009-01-01

438

NASA's Orbital Debris Conjuction Assessment and Collision Avoidance Strategy  

NASA Technical Reports Server (NTRS)

NASA has successfully used debris avoidance maneuvers to protect our spacecraft for more than 20 . years. This process which started out using parametric data and maneuver boxes has seen considerable evolution and now allows us to continue nominal operations for all but the most threatening objects. This has greatly reduced the interruptions to the critical mission objectives being pursued by NASA s Space Station, Space Shuttle, and robotic satellites.

Gavin, Richard T.

2010-01-01

439

NASA's approach to commercial cargo and crew transportation  

Microsoft Academic Search

To stimulate the commercial space industry and potentially serve the logistics needs of the International Space Station (ISS) in the post-Space Shuttle era, the National Aeronautics and Space Administration (NASA) in 2006 began the Commercial Orbital Transportation Services (COTS) initiative. NASA entered into agreements with two U.S. firms, Rocketplane Kistler and Space Exploration Technologies to share up to 485,000,000 USD

Dennis Stone; Alan Lindenmoyer; George French; Elon Musk; David Gump; Chirinjeev Kathuria; Charles Miller; Mark Sirangelo; Tom Pickens

2008-01-01

440

NASA OAST and its role in space technology development  

NASA Technical Reports Server (NTRS)

Several new programs, efforts in space research and technology, are introduced that the Office of Aeronautics and Space Technology has begun to support. The four key issues that currently are consuming NASA's energies and should be of great concern are listed. NASA is placing its emphasis in space on: (1) reconstituting the Shuttle capability; (2) maintaining the space station momentum; (3) resolving the current science mission backlog; and (4) rebuilding the technology base. Ways of implementing and funding these issues are discussed.

Romero, J.

1986-01-01

441

High temperature superconducting magnetic energy storage for future NASA missions  

NASA Technical Reports Server (NTRS)

Several NASA sponsored studies based on 'conventional' liquid helium temperature level superconductivity technology have concluded that superconducting magnetic energy storage has considerable potential for space applications. The advent of high temperature superconductivity (HTSC) may provide additional benefits over conventional superconductivity technology, making magnetic energy storage even more attractive. The proposed NASA space station is a possible candidate for the application of HTSC energy storage. Alternative energy storage technologies for this and other low Earth orbit missions are compared.

Faymon, Karl A.; Rudnick, Stanley J.

1988-01-01

442

Spatial Planning for International Space Station Crew Operations Bradley J. Clement*, Javier Barreiro**,  

E-print Network

Spatial Planning for International Space Station Crew Operations Bradley J. Clement*, Javier of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage on scenarios taken from actual operations of the International Space Station. 1 Introduction Planning for NASA

Schaffer, Steven

443

Throughout a distinguished career of monitoring the health of astronauts in the International Space Station, research  

E-print Network

in the International Space Station, research in microgravity environments, and missions with U.S. astronauts in Russia travel. Even just getting up to International Space Station is a challenge. NASA doctor hopes students-FOCUSIN-FOCUS Letters&Science #12;November Newsletter 2014L&S 2 "The Space Station is not really that far overhead. It

Saldin, Dilano

444

The International Space Station (ISS) is an impressive home away from home with a  

E-print Network

1 The International Space Station (ISS) is an impressive home away from home with a structure the International Space Station. In addition, I will give an update on Commercial Crew Development and NASA's plan training. Currently, Dr. Auñón serves in the International Space Station Operations Branch to handle

Maranas, Costas

445

INTERNATIONAL SPACE STATION AND NASAAdvisory Council/Human Exploration and Operations Committee  

E-print Network

INTERNATIONAL SPACE STATION AND ROBOTICS NASAAdvisory Council/Human Exploration and Operations Committee 7 March, 2012 Ron Ticker International Space Station Division NASA Headquarters Washington, DC #12/ultrasound beacons Crew setup/monitoring/stow First launch 2006 6 #12;International Space Station SPHERES Integrated

Waliser, Duane E.

446

NASA Video Catalog  

NASA Technical Reports Server (NTRS)

This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

2006-01-01

447

NASA is My Playground  

NSDL National Science Digital Library

NASA has long maintained a considerable Web presence, offering data, photos, and news for astronomers and scientists, as well as the curious general user. The agency has also created a fair number of sites aimed at younger users, but like the rest of NASA's sites, they have been widely scattered and attached to various different projects. This new metasite from NASA brings together these kids' sites in one convenient location. Divided into six sections (Airplanes, Earth, Planets, Stars and Galaxies, Space Travel, and Other), NASA is My Playground links to a wide variety of online activities and educational content aimed at younger users. Some of these include the Adventure of Echo the Bat, Build your own Martian spacecraft, Near Earth Asteroid Rendezvous Quiz, and NASA Rocket Classroom Activities, among many others. A number of links to other NASA sites and projects are also provided.

448

NASA electrothermal auxiliary propulsion technology  

NASA Technical Reports Server (NTRS)

Electrothermal auxiliary propulsion systems provide high performance options which can have major mission benefits. There are several electrothermal concepts which offer a range of characteristics and benefits. Resistojets are the highest thrust to power option and are currently operational at mission average values of specific impulse, I sub sp approximately 295 sec. Long life, multipropellant resistojets are being developed for the space station, and resistojet technology advancements are being pursued to improve the I sub sp by more than 20 percent for resistojets used in satellite applications. Direct current arcjets have the potential of I sub sp over 400 sec with storable propellants and should provide over 1000 sec with hydrogen. Advanced concepts are being investigated to provide high power density options and possible growth to primary propulsion applications. Broad based experimental and analytical research and technology programs of NASA are summarized and recent significant advances are reviewed.

Stone, J. R.

1986-01-01

449

17. INTERIOR NORTH BAY DETAIL VIEW, FACING EAST. TRACKS FOR ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

17. INTERIOR NORTH BAY DETAIL VIEW, FACING EAST. TRACKS FOR MOVEMENT OF MATERIALS, STORAGE BINS ABANDONED ON SITE. - NASA Industrial Plant, Missile Research Laboratory, 12214 Lakewood Boulevard, Downey, Los Angeles County, CA

450

18. INTERIOR NORTH BAY DETAIL VIEW, FACING WEST. TRACKS FOR ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

18. INTERIOR NORTH BAY DETAIL VIEW, FACING WEST. TRACKS FOR MOVEMENT OF MATERIALS, STORAGE BINS ABANDONED ON SITE. - NASA Industrial Plant, Missile Research Laboratory, 12214 Lakewood Boulevard, Downey, Los Angeles County, CA

451

NASA Technology Portal  

NSDL National Science Digital Library

This is the newly redesigned Technology Portal Web site from NASA, which serves as a hub for virtually all technology related developments in which NASA is involved. The portal is continually updated with news and event information, and a Streaming Media Center plays both live and archived video from NASA TV. Visitors can browse technology features for commercial and educational applications. A Just for Kids section has many resources for children, such as multimedia activities and basic space concepts.

2007-12-12

452

NASA Hazard Analysis Process  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews The NASA Hazard Analysis process. The contents include: 1) Significant Incidents and Close Calls in Human Spaceflight; 2) Subsystem Safety Engineering Through the Project Life Cycle; 3) The Risk Informed Design Process; 4) Types of NASA Hazard Analysis; 5) Preliminary Hazard Analysis (PHA); 6) Hazard Analysis Process; 7) Identify Hazardous Conditions; 8) Consider All Interfaces; 9) Work a Preliminary Hazard List; 10) NASA Generic Hazards List; and 11) Final Thoughts

Deckert, George

2010-01-01

453

M Station, Austin  

E-print Network

Station 9081 108 ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station 9081 10849 $0.00/sf Planning ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station 9081 10849 $0.00/sf... Planning Location ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station 9081 10849 $0.00/sf Planning Location Transportation ID LL SS WE EA MR EQ AE LEED Platinum (Standard) LEED Platinum (M Station) M Station...

Mathon, S.

2011-01-01

454

NASA agenda for tomorrow  

NASA Technical Reports Server (NTRS)

Key elements of national policy, NASA goals and objectives, and other materials that comprise the framework for NASA planning are included. The contents are expressed as they existed through much of 1988; thus they describe the strategic context employed by NASA in planning both the FY 1989 program just underway and the proposed FY 1990 program. NASA planning will continue to evolve in response to national policy requirements, a changing environment, and new opportunities. Agenda for Tomorrow provides a status report as of the time of its publication.

1988-01-01

455

NASA's Next Generation Space Geodesy Network  

NASA Technical Reports Server (NTRS)

NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; Pavlis, E. C.; Pearlman, M. R.; Stowers, D. A.; Webb, F. H.

2012-01-01

456

NASA/CP--2006214202 NASA Space Exploration Logistics Workshop  

E-print Network

NASA/CP--2006­214202 NASA Space Exploration Logistics Workshop Proceedings January 17-18, 2006 Washington, DC April 2006 #12;NASA STI Program ... in Profile Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program

de Weck, Olivier L.

457

NASA Integrated Space Communications Network  

NASA Technical Reports Server (NTRS)

The NASA Integrated Network for Space Communications and Navigation (SCaN) has been in the definition phase since 2010. It is intended to integrate NASA s three existing network elements, i.e., the Space Network, Near Earth Network, and Deep Space Network, into a single network. In addition to the technical merits, the primary purpose of the Integrated Network is to achieve a level of operating cost efficiency significantly higher than it is today. Salient features of the Integrated Network include (a) a central system element that performs service management functions and user mission interfaces for service requests; (b) a set of common service execution equipment deployed at the all stations that provides return, forward, and radiometric data processing and delivery capabilities; (c) the network monitor and control operations for the entire integrated network are conducted remotely and centrally at a prime-shift site and rotating among three sites globally (a follow-the-sun approach); (d) the common network monitor and control software deployed at all three network elements that supports the follow-the-sun operations.

Tai, Wallace; Wright, Nate; Prior, Mike; Bhasin, Kul

2012-01-01

458

Automatic electronic fish tracking system  

NASA Technical Reports Server (NTRS)

A newly developed electronic fish tracking system to automatically monitor the movements and migratory habits of fish is reported. The system is aimed particularly at studies of effects on fish life of industrial facilities which use rivers or lakes to dump their effluents. Location of fish is acquired by means of acoustic links from the fish to underwater Listening Stations, and by radio links which relay tracking information to a shore-based Data Base. Fish over 4 inches long may be tracked over a 5 x 5 mile area. The electronic fish tracking system provides the marine scientist with electronics which permit studies that were not practical in the past and which are cost-effective compared to manual methods.

Osborne, P. W.; Hoffman, E.; Merriner, J. V.; Richards, C. E.; Lovelady, R. W.

1976-01-01

459

Monitors Track Vital Signs for Fitness and Safety  

NASA Technical Reports Server (NTRS)

Have you ever felt nauseous reading a book in the back seat of a car? Or woken from a deep sleep feeling disoriented, unsure which way is up? Momentary mixups like these happen when the sensory systems that track the body's orientation in space become confused. (In the case of the backseat bookworm, the conflict arises when the reader s inner ear, part of the body s vestibular system, senses the car s motion while her eyes are fixed on the stationary pages of the book.) Conditions like motion sickness are common on Earth, but they also present a significant challenge to astronauts in space. Human sensory systems use the pull of gravity to help determine orientation. In the microgravity environment onboard the International Space Station, for example, the body experiences a period of confusion before it adapts to the new circumstances. (In space, even the body s proprioceptive system, which tells the brain where the arms and legs are oriented without the need for visual confirmation, goes haywire, meaning astronauts sometimes lose track of where their limbs are when they are not moving them.) This Space Adaptation Syndrome affects a majority of astronauts, even experienced ones, causing everything from mild disorientation to nausea to severe vomiting. "It can be quite debilitating," says William Toscano, a research scientist in NASA s Ames Research Center Psychophysiology Laboratory, part of the Center s Human Systems Integration Division. "When this happens, as you can imagine, work proficiency declines considerably." Since astronauts cannot afford to be distracted or incapacitated during critical missions, NASA has explored various means for preventing and countering motion sickness in space, including a range of drug treatments. Many effective motion sickness drugs, however, cause undesirable side effects, such as drowsiness. Toscano and his NASA colleague, Patricia Cowings, have developed a different approach: Utilizing biofeedback training methods, the pair can teach astronauts, military pilots, and others susceptible to motion sickness to self-regulate their own physiological responses and suppress the unpleasant symptoms. This NASA-patented method invented by Cowings is called the Autogenic Feedback Training Exercise (ATFE), and several studies have demonstrated its promise

2012-01-01

460

Overview of NASA's Environmental Control and Life Support Systems  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews NASA's Environmental Control and Life Support Systems (ECLSS) on the International Space Station. A look inside of the International Space Station detailing ECLSS processes of controlling atmospheric pressure, conditioning the atmosphere, responding to emergency conditions, controlling internal carbon dioxide and contaminants and providing water are described. A detailed description of ISS Regenerative Environmental Control and Life Support System is also presented.

Roman, Monserrate

2009-01-01

461

Space station needs, attributes, and architectural options: Technology development  

NASA Technical Reports Server (NTRS)

The technology development of the space station is examined as it relates to space station growth and equipment requirements for future missions. Future mission topics are refined and used to establish a systems data base. Technology for human factors engineering, space maintenance, satellite design, and laser communications and tracking is discussed.

Robert, A. C.

1983-01-01

462

International Space Station Alpha (ISSA) Integrated Traffic Model  

NASA Technical Reports Server (NTRS)

The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements and crew rotation via spread sheets provide adequate benchmarks to assess cargo vehicle design and performance characteristics.

Gates, R. E.

1995-01-01

463

Flight- and Ground-Based Materials Science Programs at NASA  

NASA Technical Reports Server (NTRS)

The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

Gillies, Donald C.

1999-01-01

464

International Space Station (ISS) Laboratory Module Exhibit  

NASA Technical Reports Server (NTRS)

Thomas Turk, an engineer with NASA's Glenn Research Center, waits for more visitors at a mockup of part of Destiny, the U.S. laboratory module that will be attached to the International Space Station (ISS) in Year 2001. Visible behind Turk are engineering models of the three racks that will make up the Fluids and Combustion Facility (FCF) in the module. The mockup is full scale, although Destiny will be twice as long to accomodate six experiment racks along each side. The exhibit was part of the NASA outreach activity at AirVenture 2000 sponsored by the Expeprimental Aircraft Association in Oshkosh, WI.

2000-01-01

465

Intelligent Virtual Station (IVS)  

NASA Technical Reports Server (NTRS)

The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

2002-01-01

466

NASA and CD Radio's TDRSS industrial test program  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) has embarked on a joint test program with CD Radio Inc. The program will demonstrate spatial diversity techniques in support of industrial development of a new satellite direct broadcast national radio service called Satellite Radio. Satellite Radio will operate in the FCC approved frequency band 2310-2360 MHz which is close to NASA's Tracking and Data Relay System (TDRSS) satellites' high power transmit frequency near 2110 MHz. The cooperative test program in which NASA provides use of a TDRSS satellite and CD Radio provides the measurement equipped vehicle is described as well as its current status. Some initial measurement data are presented.

Briskman, Robert D.; Hollansworth, James E.

1995-01-01

467

The work request system of a NASA Q1 package  

NASA Technical Reports Server (NTRS)

A computer package is described which can be used to track any type of work that is controlled on the basis of work requests and purchase orders/contracts. Run on any NASA Ql, using floppy disks only, the system can handle about 1,200 requests per year, and provides performance and summary reports for management. The milestones tracked at Goddard are described as well as directions for installing the system. Sample reports and operator instructions are included.

1979-01-01

468

2006 NASA Seal/Secondary Air System Workshop; Volume 1  

NASA Technical Reports Server (NTRS)

The 2006 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of NASA s new fundamental aeronautics technology project; (iii) Overview of NASA Glenn Research Center s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakages as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed seal technologies employed by the Apollo command module that serve as an excellent basis for seals for NASA s new Crew Exploration Vehicle (CEV).

Steinetz, Bruce, M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert (Editor)

2007-01-01

469

Students Speak With NASA Astronaut Mike Foreman - Duration: 24:23.  

NASA Video Gallery

From NASA??s International Space Station Mission Control Center NASA astronaut Mike Foreman participates in a Digital Learning Network (DLN) event with fifth grade students at Berry Elementary Sch...

470

Students Speak With NASA Astronaut Dottie Metcalf-Lindenburger - Duration: 26:50.  

NASA Video Gallery

From NASA??s International Space Station Mission Control Center NASA astronaut Dottie Metcalf-Lindenburger participates in a Digital Learning Network (DLN) event with students at Heritage Middle S...

471

Students Speak With NASA Astronaut Mario Runco - Duration: 27:02.  

NASA Video Gallery

From NASA??s International Space Station Mission Control Center, NASA astronaut Mario Runco participates in a Digital Learning Network (DLN) event with students in the Newell School District in Ne...

472

Increased Cancer Mortality Risk for NASA's ISS Astronauts: The Contribution of Diagnostic Radiological Examinations  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the radiation exposures and risks associated with long-term spaceflight on the International Space Station. NASA's risk model of cancer mortality is also presented.

Dodge, C.W.; Picco, C. E.; Gonzalez, S. M.; Johnston, S. L.; Van Baalen, M.; Shavers, M.R.

2009-01-01

473

NASA Now: Human Research on the ISS - Duration: 6:54.  

NASA Video Gallery

Liz Warren, NASA Johnson Space Center operations lead for the International Space Station Medical Project, discusses why exercise and nutrition are important to maintaining good health on Earth and...

474

77 FR 66082 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting  

Federal Register 2010, 2011, 2012, 2013

...the National Aeronautics and Space Administration (NASA) announces...Headquarters, 300 E Street SW., Space Operations Center, Room 7C61...Development Programs and Integration --International Space Station Status --Outreach...

2012-11-01

475

NASA's Systems Engineering Approaches for Addressing Public Health Surveillance Requirements  

NASA Technical Reports Server (NTRS)

NASA's systems engineering has its heritage in space mission analysis and design, including the end-to-end approach to managing every facet of the extreme engineering required for successful space missions. NASA sensor technology, understanding of remote sensing, and knowledge of Earth system science, can be powerful new tools for improved disease surveillance and environmental public health tracking. NASA's systems engineering framework facilitates the match between facilitates the match between partner needs and decision support requirements in the areas of 1) Science/Data; 2) Technology; 3) Integration. Partnerships between NASA and other Federal agencies are diagrammed in this viewgraph presentation. NASA's role in these partnerships is to provide systemic and sustainable solutions that contribute to the measurable enhancement of a partner agency's disease surveillance efforts.

Vann, Timi

2003-01-01

476