Science.gov

Sample records for nasa tracking stations

  1. Operational stability of rubidium and cesium frequency standards. [analysis of equipment performance at NASA tracking stations

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1972-01-01

    In the course of testing various rubidium and cesium frequency standards under operational conditions for use in NASA tracking stations, about 55 unit-years of relative frequency measurements for averaging times from 10 to 10 to the 7th power have been accumulated at Goddard Space Flight Center (GSFC). Statistics on the behavior of rubidium and cesium standards under controlled laboratory conditions have been published, but it was not known to what extent the lesser controlled environments of NASA tracking stations affected the performance of the standards. The purpose of this report is to present estimates of the frequency stability of rubidium and cesium frequency standards under operational conditions based on the data accumulated at GSFC.

  2. Consolidation of NASA tracking stations into a single ground network in the TDRSS era

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Mcclure, D. H.; Yeater, M. L.

    1981-01-01

    NASA has operated two separate worldwide ground-based tracking and data acquisition networks for support of its various missions. The Spaceflight Tracking and Data Network (STDN) has provided support to all NASA earth orbiting spacecraft. The Deep Space Network (DSN) supports almost exclusively those unmanned exploratory spacecraft which have been sent far from earth. The Tracking and Data Relay Satellite System (TDRSS), which is conceptually a part of the STDN, will soon be added to the first two networks. The TDRSS will consist of two geosynchronous satellites together with a single ground terminal in White Sands, New Mexico. The TDRSS was conceived as a means of providing improved tracking and data relay service for a large class of the earth orbiting satellites. An investigation was conducted with the objective to reduce the costs of providing support to those spacecraft which were not TDRS-compatible. It was recommended that the core sites of the Ground segment of the STDN (GSTDN) be consolidated into the DSN

  3. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  4. NASA directory of observation station locations, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs is presented. A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems. The principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes are discussed. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Observation stations in the NASA Geodetic Satellites Program are included along with stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.

  5. NASA directory of observation station locations, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Geodetic information is presented for NASA tracking stations and observation stations in the NASA geodetic satellites program. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.

  6. NASA directory of observation station locations, volume 2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The directory documents geodetic information for NASA tracking stations and observation stations in the NASA Geodetic Satellites Program, including stations participating in the National Geodetic Satellite Program. Station positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.

  7. Techniques for analyzing and utilizing the rain gauges at the NASA White Sands Test Facility. [Tracking and Data Relay Satellite System ground station

    NASA Technical Reports Server (NTRS)

    Kalagher, R. J.

    1973-01-01

    Ten tipping bucket rain gauges have been installed at the NASA WSTF for the purpose of determining rainfall characteristics in this area which may affect the performance of the NASA Tracking and Data Relay Satellite System. A plan is presented for analyzing and utilizing the data which will be obtained during the course of this experiment. Also included is a description of a computer program which has been written to aid in the analysis.

  8. NASA, Rockets, and the International Space Station

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon

    2015-01-01

    General overview of NASA, Launch Services Program, and the Slosh experiment aboard the International Space Station. This presentation is designed to be presented in front of university level students in hopes of inspiring them to go into STEM careers.

  9. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the... Administration announces a meeting of the NASA International Space Station (ISS) Advisory Committee. The...

  10. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting. SUMMARY: In accordance with the... Administration announces an open meeting of the NASA International Space Station (ISS) Advisory Committee....

  11. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the... Administration announces an open meeting of the NASA International Space Station (ISS) Advisory Committee....

  12. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the... Administration announces an open meeting of the NASA International Space Station (ISS) Advisory Committee....

  13. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting. SUMMARY: In accordance with the... Administration announces a meeting of the NASA International Space Station (ISS) Advisory Committee. The...

  14. 75 FR 51852 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee; Meeting AGENCY: National... Administration announces an open meeting of the NASA International Space Station Advisory Committee. The purpose... the International Space Station, including transportation, crew rotation, training, and...

  15. The ACTS NASA Ground Station/Master Control Station

    NASA Technical Reports Server (NTRS)

    Meadows, David N.

    1992-01-01

    Two of the major components of the ACTS Ground Segment are the NASA Ground Station (NGS) and the Master Control Station (MCS), colocated at the NASA Lewis Research Center. Essentially, the NGS provides the communications links by which the MCS performs its various network control and monitoring functions. The NGS also provides telecommunications links capable of transmission/reception of up to approximately 70 Mbit/s of digital telephonic traffic. Operating as a system, the entire complex of equipment is referred to as the NGS/MCS. This paper provides an 'as-built' description of the NGS/MCS as a system.

  16. Space station overrun ires NASA, Congress

    NASA Astrophysics Data System (ADS)

    White, M. Catherine

    With a new administration in place, future funding for the space station seems promising. In mid-February, the Clinton administration announced that it will seek $2.25 billion for the station in the fiscal year 1994 budget. But at a House Subcommittee on Space hearing on March 3, members divided on the station issue questioned NASA, McDonnell Douglas, and IBM witnesses as to why budget projections for the project's next 3 years have grown by about $500 million.Although subcommittee chairman Ralph M. Hall (D-Tex.) voiced support for NASA and urged, “We all want the same thing, a space station of reasonable cost,” there seemed to be little consensus among other members who feel the science capability has been cut to a point that will make the project, as one member put it, “a floating whistlestop in the sky.”

  17. Could You Build a Satellite Tracking Station?

    ERIC Educational Resources Information Center

    Martin, Helen E.

    1987-01-01

    Reviews the procedures and activities involved in establishing a weather satellite tracking station. Discusses how the students and community participated in the project. Highlights the activities resulting from student efforts in the project. (ML)

  18. NASA satellite to track North Pole expedition

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The proposed expedition of a lone explorer and the use of Nimbus 6 (NASA meteorological research satellite) to track his journey is reported. The journey is scheduled to start March 4, 1978, and will cover a distance of 6.000 Km (3,728 miles) from northern Canada to the North Pole and return, traveling the length of Greenland's isolated interior. The mode of transportation for the explorer will be by dog sled. Instrumentation and tracking techniques are discussed.

  19. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  20. Distributed operating system for NASA ground stations

    NASA Technical Reports Server (NTRS)

    Doyle, John F.

    1987-01-01

    NASA ground stations are characterized by ever changing support requirements, so application software is developed and modified on a continuing basis. A distributed operating system was designed to optimize the generation and maintenance of those applications. Unusual features include automatic program generation from detailed design graphs, on-line software modification in the testing phase, and the incorporation of a relational database within a real-time, distributed system.

  1. NASA's GPS tracking system for Aristoteles

    NASA Astrophysics Data System (ADS)

    Davis, E. S.; Hajj, G.; Kursinski, E. R.; Kyriacou, C.; Meehan, T. K.; Melbourne, William G.; Neilan, R. E.; Young, L. E.; Yunck, Thomas P.

    1991-12-01

    NASA 's Global Positioning System (GPS) tracking system for Artistoteles receivers and a GPS flight receiver aboard Aristoteles is described. It will include a global network of GPS ground receivers and a GPS flight receiver aboard Aristoteles. The flight receiver will operate autonomously; it will provide real time navigation solutions for Aristoteles and tracking data needed by ESOC for operational control of the satellite. The GPS flight and ground receivers will currently and continuously track all visible GPS satellites. These observations will yield high accuracy differential positions and velocities of Aristoteles in a terrestrial frame defined by the locations of the globally distributed ground work. The precise orbits and tracking data will be made available to science investigators as part of the geophysical data record. The characteristics of the GPS receivers, both flight and ground based, that NASA will be using to support Aristoteles are described. The operational aspects of the overall tracking system, including the data functions and the resulting data products are summarized. The expected performance of the tracking system is compared to Aristoteles requirements and the need to control key error sources such as multipath is identified.

  2. DISTRIBUTION STATION IN FOREGROUND, TRACK FOOTINGS AT LEFT CENTER, WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DISTRIBUTION STATION IN FOREGROUND, TRACK FOOTINGS AT LEFT CENTER, WATER TOWER (BLDG. 0516) IN BACKGROUND. Looking northeast - Edwards Air Force Base, South Base Sled Track, Electrical Distribution Station, South side of Sled Track, Lancaster, Los Angeles County, CA

  3. NASA's Plum Brook Station Water Systems

    NASA Technical Reports Server (NTRS)

    Puzak, Robert M.; Kimpton, Arthur

    2006-01-01

    Plum Brook Station's water systems were built in the 1940s to support a World War II ordnance production complex. Because the systems had not been analyzed for current NASA usage, it was unknown if they could meet current requirements and codes or if they were efficient for current use. NASA wanted to determine what improvements would be needed or advisable to support its research projects, so it contracted a hydraulic analysis of the raw and domestic water systems. Burgess and Niple determined current water demands and water flow, developed and calibrated models of the two water systems, and evaluated efficiency improvements and cost-cutting options. They recommended replacing some water mains, installing a new service connection, and removing some high-maintenance items (an underground reservoir, some booster pumps, and a tower).

  4. NASA Alternate Access to Station Service Concept

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle D.; Crumbly, Chris

    2001-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research - and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply with existing technologies, not only will a new category of autonomous vehicles deliver cargo, but a commercial business base will be incubated that will improve the likelihood of commercial convergence with the next generation of RLVs. Traditional paradigms in government management and acquisition philosophy are being challenged in order to bring about the objective of the AAS project. The phased procurement approach is proving to be the most questionable aspect to date. This work addresses the fresh approach AAS is adopting in management and procurement through a study of the AAS history, current solutions, key technologies, procurement complications, and an incremental forward plan leading to the purchase of a service to deliver goods to ISS. Included in this work is a discussion of the Commercial Space Act of 1998 and how it affects government purchase of space launch and space vehicle services. Industry should find these topics pertinent to their current state of business.

  5. NASA Alternate Access to Station Service Concept

    NASA Astrophysics Data System (ADS)

    Bailey, M. D.; Crumbly, C.

    2002-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply with existing technologies, not only will a new category of autonomous vehicles deliver cargo, but a commercial business base will be incubated that will improve the likelihood of commercial convergence with the next generation of RLVs. Traditional paradigms in government management and acquisition philosophy are being challenged in order to bring about the objective of the AAS project. The phased procurement approach is proving to be the most questionable aspect to date. This work addresses the fresh approach AAS is adopting in management and procurement through a study of the AAS history, current solutions, key technologies, procurement complications, and an incremental forward plan leading to the purchase of a service to deliver goods to ISS. Included in this work is a discussion of the Commercial Space Act of 1998 and how it affects government purchase of space launch and space vehicle services. Industry should find these topics pertinent to their current state of business.

  6. International Space Station Utilization: Tracking Investigations from Objectives to Results

    NASA Technical Reports Server (NTRS)

    Ruttley, T. M.; Mayo, Susan; Robinson, J. A.

    2011-01-01

    Since the first module was assembled on the International Space Station (ISS), on-orbit investigations have been underway across all scientific disciplines. The facilities dedicated to research on ISS have supported over 1100 investigations from over 900 scientists representing over 60 countries. Relatively few of these investigations are tracked through the traditional NASA grants monitoring process and with ISS National Laboratory use growing, the ISS Program Scientist s Office has been tasked with tracking all ISS investigations from objectives to results. Detailed information regarding each investigation is now collected once, at the first point it is proposed for flight, and is kept in an online database that serves as a single source of information on the core objectives of each investigation. Different fields are used to provide the appropriate level of detail for research planning, astronaut training, and public communications. http://www.nasa.gov/iss-science/. With each successive year, publications of ISS scientific results, which are used to measure success of the research program, have shown steady increases in all scientific research areas on the ISS. Accurately identifying, collecting, and assessing the research results publications is a challenge and a priority for the ISS research program, and we will discuss the approaches that the ISS Program Science Office employs to meet this challenge. We will also address the online resources available to support outreach and communication of ISS research to the public. Keywords: International Space Station, Database, Tracking, Methods

  7. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... SPACE ADMINISTRATION NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal... imposed on NASA by law. The renewed Charter is for a one-year period ending September 30, 2012. It...

  8. The NASA Space Station program plans

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1984-01-01

    The design of a permanently manned space station is discussed. The role of the space shuttle, planning guidelines, international cooperation, and commercial possibilities are among the topics discussed.

  9. IET. Coupling station and track foundations under construction. Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Coupling station and track foundations under construction. Camera facing northerly. Four-rail track foundations lead to coupling station. Service leads from there will go through opening for "quick connects" below. Retaining wall under construction will separate earthen shielding of control building (out of view to right) from coupling station and track. Date: October 20, 1954. INEEL negative no. 12550 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  10. The management of energy utilization in a spacecraft tracking station and its industrial applications

    NASA Technical Reports Server (NTRS)

    Reynolds, R.; White, R. L.; Hume, P.

    1978-01-01

    The mission of a tracking station within the NASA/Jet Propulsion Deep Space Network is characterized by a wide diversity of spacecraft types, communications ranges, and data accuracy requirements. In the present paper, the system architecture, communications techniques, and operators interfaces for a utility controller are described. The control equipment as designed and installed is meant to be a tool to study applications of automated control in the dynamic environment of a tracking station. It allows continuous experimenting with new technology without disruption of the tracking activities.

  11. 5. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  12. 4. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  13. 1. VIEW WEST SOUTHWEST, UPPER STATION. INCLINE PLANE TRACK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW WEST SOUTHWEST, UPPER STATION. INCLINE PLANE TRACK AND LOWER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  14. NASA domestic satellite Earth Station complex at JSC

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The NASA domestic satellite Earth Station complex at JSC is in the center of this aerial photograph taken from a low-flying NASA aircraft in 1978. The vibration and acoustic test facility is in extreme upper left hand corner. Parking area for the technical services facility and mockup and integration lab is in the lower right corner.

  15. Intercomparison of satellite laser ranging accuracy of three NASA stations through collocation

    NASA Technical Reports Server (NTRS)

    Varghese, T.; Husson, V.; Wetzel, S.; Degnan, J. J.; Zagwodzki, T.

    1988-01-01

    The accuracy of laser ranging has been evaluated through comparisons of simultaneous LAGEOS satellite-borne laser ranging data received at three NASA tracking stations in support of the Crustal Dynamics project. Single-shot satellite ranging precisions of 8, 14, and 30 mm have been demonstrated at the three ground stations, with a stability better than 3 mm. The data-processing software used were POLYQUICK and GEODYN; a consistent degree of agreement between the three stations of less than 1 cm is obtained.

  16. The Concept of Photonics-Based Virtual Ground Tracking Station

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Cong, B.; Nie, Y. M.; He, J.; Wang, X. Q.

    2016-02-01

    In this paper, we propose the concept of virtual ground tracking station for space missions. Based on microwave photonics, the virtual tracking station can realize spatial diversity, antenna arraying, dynamic resource allocation and distributed signal processing. Compared with conventional design, the flexibility, efficiency and performance can be significantly improved.

  17. Surface refractivity measurements at NASA spacecraft tracking sites

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.

  18. 76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... SPACE ADMINISTRATION NASA International Space Station Advisory Committee and the Aerospace Safety... International Space Station Advisory Committee and the Aerospace Safety Advisory Panel. The purpose of this... consideration by NASA for Commercial Resupply Services for the International Space Station (ISS),...

  19. NASA Facts, Spacecraft Tracking and Communication.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The various systems for communicating with manned and unmanned spacecraft are described in this pamphlet written for general science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review questions, suggested activities, and

  20. IET distant contextual view of coupling station, tracks and retaining ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET distant contextual view of coupling station, tracks and retaining wall. experiment shack on left side of coupling station remains from snaptran tests. Camera facing northerly. INEEL negative no. HD-21-7-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  1. NASA science utilization plans for the Space Station

    NASA Technical Reports Server (NTRS)

    Reeves, E. M.; Cressy, P. J. Jr

    1995-01-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  2. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program. PMID:11541110

  3. Congress Examines NASA Budget, Space Station, and Relations With Russia

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-04-01

    Concerns about recent Russian activities related to Ukraine loomed over an 8 April congressional hearing focusing on NASA's fiscal year (FY) 2015 budget request. Rep. Frank Wolf (R-Va.), chair of the House of Representatives Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies, and several other committee members questioned NASA administrator Charles Bolden about the agency's contingency plans if tensions between Russia and the United States cause key joint scientific endeavors between the two countries to break off. That concern is particularly critical given the countries' longtime partnership on the International Space Station (ISS) and with the United States currently relying on Russian transport to and from the station until U.S. commercial vehicles are ready to transport astronauts back and forth.

  4. Supply support of NASA tracking networks

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The extent which supply support for Jet Propulsion Laboratory's Deep Space Network and Goddard Space Flight Center's Space Flight Tracking and Data Network should be consolidated is considered along with the Identification of opportunities for improvements in each of the supply systems without regard to consolidation. There is a considerable amount of commonality between the items in the stock catalogs at the two network depots, 58% for federal stock number items and 30% overall. The workload at the DSIF Supply Depot (DSD) is small (less than 20%) compared to the Network Logistics Depot (NLD). A number of important benefits in supply support would result from a consolidation of DSD into NLD. LMI found that a consolidation as is, without any changes in inventory management techniques, would reduce annual operating costs by from $208,000 to $358,000. However, if the consolidation were coupled with a change to use of economic order quantities, the annual operating cost reduction would range from $930,000 to $1,078,000.

  5. Geoid undulation computations at laser tracking stations

    NASA Technical Reports Server (NTRS)

    Despotakis, Vasilios K.

    1987-01-01

    Geoid undulation computations were performed at 29 laser stations distributed around the world using a combination of terrestrial gravity data within a cap of radius 2 deg and a potential coefficient set up to 180 deg. The traditional methods of Stokes' and Meissl's modification together with the Molodenskii method and the modified Sjoberg method were applied. Performing numerical tests based on global error assumptions regarding the terrestrial data and the geopotential set it was concluded that the modified Sjoberg method is the most accurate and promising technique for geoid undulation computations. The numerical computations for the geoid undulations using all the four methods resulted in agreement with the ellipsoidal minus orthometric value of the undulations on the order of 60 cm or better for most of the laser stations in the eastern United States, Australia, Japan, Bermuda, and Europe. A systematic discrepancy of about 2 meters for most of the western United States stations was detected and verified by using two relatively independent data sets. For oceanic laser stations in the western Atlantic and Pacific oceans that have no terrestrial data available, the adjusted GEOS-3 and SEASAT altimeter data were used for the computation of the geoid undulation in a collocation method.

  6. Space station tracking requirements feasibility study, volume 2

    NASA Technical Reports Server (NTRS)

    Udalov, Sergei; Dodds, James

    1988-01-01

    The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches should be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JSC. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 2, containing Appendices K through U.

  7. Space station tracking requirements feasibility study, volume 1

    NASA Technical Reports Server (NTRS)

    Udalov, Sergei; Dodds, James

    1988-01-01

    The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JCS. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 1, containing the main body and Appendices A through J.

  8. CAMERA Expert System for Space Station communications and tracking system management

    NASA Astrophysics Data System (ADS)

    Crone, Michael; Julich, Paul

    This paper describes research into the use of expert system technology for the management of the communications and tracking system for the Space Station. The CAMERA (Control and Monitor Equipment Resource Allocation) Expert System was developed to minimize crew workload in managing the communications of the Space Station. The system has been implemented (under NASA contract) for use on a testbed at JSC. The system utilizes a state-of-the-art man-machine interface to allow high-level end-to-end service requests.

  9. Automatic satellite tracking system for the NASA Satellite Photometric Observatory

    NASA Technical Reports Server (NTRS)

    Mucklow, Glenn H.

    1980-01-01

    The development of an Automatic TV Tracking System for NASA's mobile 61 cm aperture Satellite Photometric Observatory is described. The analysis techniques used to match the FOV and resolutions to changing seeing conditions are covered in details. Theoretical reasons for such matching of general interest are discussed. It is shown that the energy density in a satellite image is 11 times greater during good seeing conditions than during typical seeing conditions. The Z7987 image tube is shown to be able to detect 16th magnitude objects under ideal seeing conditions using only 8 percent of the light collected by the main telescope. Experimental results show that the SPO equipped with a Z7987 camera can track a satellite at any orbital velocity with less than 0.14 mr accuracy using the DBA Series 606 TV Tracker. The manual system used prior to the installation of the Automatic TV Tracking System could maintain track at 1.1 mr accuracy for comparison.

  10. Polarization Tracking Study of Earth Station in Satellite Communications

    NASA Astrophysics Data System (ADS)

    Ma, Lihua; Hu, Chao; Pei, Jun

    2016-01-01

    Satellite communications, in telecommunications, the use of satellite can provide communications links between various points on the earth. Typical satellite communication is composed of a communication satellite, a signal transmitter and a signal receiver. As the signal transmitter or the signal receiver, an earth station plays a vital role in the satellite communications. Accurately adjustment of antenna azimuth, elevation and polarization angles on the earth station is the key to satellite communications. In the present paper, a study of polarization tracking of earth station is presented, and a detailed adjustment procession of the polarization angle is given. Combing with observation series of MEASAT-2 satellite in geostationary orbit, the polarization tracking accuracy is verified. The method can be embeded into computer program of antenna polarization adjustment in earth station.

  11. Autonomous antenna tracking system for mobile symphonie ground stations

    NASA Technical Reports Server (NTRS)

    Ernsberger, K.; Lorch, G.; Waffenschmidt, E.

    1982-01-01

    The implementation of a satellite tracking and antenna control system is described. Due to the loss of inclination control for the symphonie satellites, it became necessary to equip the parabolic antennas of the mobile Symphonie ground station with tracking facilities. For the relatively low required tracking accuracy of 0.5 dB, a low cost, step track system was selected. The step track system developed for this purpose and tested over a long period of time in 7 ground stations is based on a search step method with subsequent parabola interpolation. As compared with the real search step method, the system has the advantage of a higher pointing angle resolution, and thus a higher tracking accuracy. When the pilot signal has been switched off for a long period of time, as for instance after the eclipse, the antenna is repointed towards the satellite by an automatically initiated spiral search scan. The function and design of the tracking system are detailed, while easy handling and tracking results.

  12. A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station

    NASA Technical Reports Server (NTRS)

    Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne

    1989-01-01

    This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.

  13. 29. "TEST TRACK, STATION '0' THROUGH '200' AREA." Specifications No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. "TEST TRACK, STATION '0' THROUGH '200' AREA." Specifications No. ENG-OC-1-57-75, Drawing No. AF-6009-15, sheet 53 of 96, D.O. Series No. AF 1394/73, Rev. C. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 5296 Rev. C, Date: 19 NOV 59. Drawing includes plan, section, and details of track. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  14. Site evaluation for laser satellite-tracking stations

    NASA Technical Reports Server (NTRS)

    Mao, N. H.; Mohr, P. A.

    1976-01-01

    Twenty-six locations for potential laser satellite-tracking stations, four of them actually already occupied in this role, are reviewed in terms of their known local and regional geology and geophysics. The sites are also considered briefly in terms of weather and operational factors. Fifteen of the sites qualify as suitable for a stable station whose motions are likely to reflect only gross plate motion. The others, including two of the present laser station sites (Arequipa and Athens), fail to qualify unless extra monitoring schemes can be included, such as precise geodetic surveying of ground deformation.

  15. Perspectives on NASA flight software development - Apollo, Shuttle, Space Station

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    Flight data systems' software development is chronicled for the period encompassing NASA's Apollo, Space Shuttle, and (ongoing) Space Station Freedom programs, with attention to the methodologies and 'development tools' employed in each case and their mutual relationships. A dominant concern in all three programs has been the accommodation of software change; it has also been noted that any such long-term program carries the additional challenge of identifying which elements of its software-related 'institutional memory' are most critical, in order to preclude their loss through the retirement, promotion, or transfer of its 'last expert'.

  16. The OSU 275 system of satellite tracking station coordinates

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Kumar, M.

    1975-01-01

    A brief review of the methods and data used in the OSU 275 geodetic system is given along with the summary of the results. Survey information regarding the tracking stations in the system is given in tabular form along with the geodetic and geophysical parameters, origin and orientation, Cartisian coordinates, and systematic differences with global and nonglobal geodetic systems.

  17. Space Station communications and tracking systems modeling and RF link simulation

    NASA Technical Reports Server (NTRS)

    Tsang, Chit-Sang; Chie, Chak M.; Lindsey, William C.

    1986-01-01

    In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort.

  18. Managing NASA's International Space Station Logistics and Maintenance program

    NASA Astrophysics Data System (ADS)

    Butina, Anthony J.

    2001-02-01

    The International Space Station will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines-it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally complete in April of 2006. Space logistics is a new concept that will have wide reaching consequences for both space travel and life on Earth. What is it like to do something that no one has done before? What challenges do you face? What kind of organization do you put together to perform this type of task? How do you optimize your resources to procure what you need? How do you change a paradigm within a space agency? How do you coordinate and manage a one of a kind system with approximately 5,700 Orbital Replaceable Units (ORUs)? How do you plan for preventive and corrective maintenance, when you need to procure spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors? How do you transport large sections of ISS hardware around the country? These are some of the topics discussed in this paper. From conception to operation, the ISS requires a unique approach in all aspects of development and operation. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station and only time will tell if we did it right. This paper discusses some of the experiences of the author after working 12 years on the International Space Station's integrated logistics & maintenance program. From his early days as a contractor supportability engineer and manager, to the NASA manager responsible for the entire ISS Logistics and Maintenance program. .

  19. NASA to launch R2 to join Space Station Crew - Duration: 4 minutes, 52 seconds.

    NASA Video Gallery

    NASA will launch the first human-like robot to space this year to become a permanent resident of the International Space Station. Robonaut 2, or R2, was developed jointly by NASA and General Motors...

  20. Open solutions to distributed control in ground tracking stations

    NASA Technical Reports Server (NTRS)

    Heuser, William Randy

    1994-01-01

    The advent of high speed local area networks has made it possible to interconnect small, powerful computers to function together as a single large computer. Today, distributed computer systems are the new paradigm for large scale computing systems. However, the communications provided by the local area network is only one part of the solution. The services and protocols used by the application programs to communicate across the network are as indispensable as the local area network. And the selection of services and protocols that do not match the system requirements will limit the capabilities, performance, and expansion of the system. Proprietary solutions are available but are usually limited to a select set of equipment. However, there are two solutions based on 'open' standards. The question that must be answered is 'which one is the best one for my job?' This paper examines a model for tracking stations and their requirements for interprocessor communications in the next century. The model and requirements are matched with the model and services provided by the five different software architectures and supporting protocol solutions. Several key services are examined in detail to determine which services and protocols most closely match the requirements for the tracking station environment. The study reveals that the protocols are tailored to the problem domains for which they were originally designed. Further, the study reveals that the process control model is the closest match to the tracking station model.

  1. NASA's Biological Crystal Growth Program on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.

    1999-01-01

    NASA's Biological Crystal Growth Program (BCG) on the International Space Station (ISS) will consist of two phases. The first phase is during assembly of the ISS and will accommodate generic payloads that currently fly in the orbiter middeck. The second phase is after assembly of the ISS is complete and BCG payloads will occupy part of the Biotechnology Facility aboard the ISS. During both phases of the program, there will be two types of BCG payloads. One type will emphasize the production of crystals for structure determination back on Earth and will have high capacity for screening crystallization conditions. The second type of payload will be designed to study the crystallization process with the primary aim of developing new methods to further optimize the use of the microgravity environment. Beginning immediately, access to the BCG program for Guest Investigators is simplified. Access to all BCG hardware for Guest Investigators will be coordinated through one office at NASA's Marshall Space Flight Center. Details of how to obtain access to microgravity, the hardware available, and the operational aspects of the program will be described.

  2. Space station interior design: Results of the NASA/AIA space station interior national design competition

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1975-01-01

    The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.

  3. Results of a Television Station Managers' Telephone Survey of NASA's Destination Tomorrow(Trademark)

    NASA Technical Reports Server (NTRS)

    Endo, Scott; Pinelli, Thomas E.; Caton, Randall H.

    2005-01-01

    We conducted a television station managers' telephone survey concerning NASA's Destination Tomorrow. On a 10-point scale, survey participants rated the overall technical quality of NASA's Destination Tomorrow highly (mean = 9.48), and the educational value of the series slightly more highly (mean = 9.56). Ninety one percent of the participants reported that the technical quality of NASA's Destination Tomorrow was higher compared to other educational programming that airs on their station. Most stations (81 percent) indicated that NASA's Destination Tomorrow was well received by their audiences, and 97 percent indicated that they had recommended or would recommend the series to a colleague. Lastly, using a 10-point scale, survey participants indicated that (1) the series successfully educates people about what NASA does (mean = 9.23), (2) the information contained in NASA's Destination Tomorrow is credible (mean = 9.53), and (3) the series is successful in educating the public about what NASA does (mean = 9.23).

  4. NASA space station automation: AI-based technology review

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  5. NASA Now: Materials Science: International Space Station Testing - Duration: 5 minutes, 57 seconds.

    NASA Video Gallery

    The Materials International Space Station Experiment, or MISSE, provides NASA with a means to study the effects of long-term exposure to space on various materials, computer components and electron...

  6. NASA/FAA North Texas Research Station Overview

    NASA Technical Reports Server (NTRS)

    Borchers, Paul F.

    2012-01-01

    NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.

  7. NASA Tests Transfer Device for Space Station - Duration: 80 seconds.

    NASA Video Gallery

    Inside the Space Vehicle Mockup Facility at Johnson Space Center in Houston, NASA tests the Japanese Experiment Module ORU Transfer Interface, or JOTI. This device would allow astronauts to transfe...

  8. From 2001 to 1994: Political environment and the design of NASA's Space Station system

    NASA Technical Reports Server (NTRS)

    Fries, Sylvia Doughty

    1988-01-01

    The U.S. civilian space station, a hope of numerous NASA engineers since before the agency was founded in 1958 and promoted by NASA as the country's 'next logical step' into space, provides an excellent case study of the way public-sector research and development agencies continuously redefine new technologies in the absence of the market discipline that governs private-sector technological development. The number of space station design studies conducted since 1959, both internally by NASA or contracted by the agency to the aerospace industry, easily exceeds a hundred. Because of this, three clearly distinguishable examples are selected from the almost thirty-year history of space station design in NASA. Together these examples illustrate the difficulty of defining a new technological system in the public sector as that system becomes increasingly subject, for its development, to the vagaries of federal research and development politics.

  9. Tracking Performance of Upgraded "Polished Panel" Optical Receiver on NASA's 34 Meter Research Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor

    2013-01-01

    There has been considerable interest in developing and demonstrating a hybrid "polished panel" optical receiver concept that would replace the microwave panels on the Deep Space Network's (DSN) 34 meter antennas with highly polished aluminum panels, thus enabling simultaneous opticaland microwave reception. A test setup has been installed on the 34 meter research antenna at DSS-13 (Deep Space Station 13) at NASA's Goldstone Deep Space Communications Complex in California in order to assess the feasibility of this concept. Here we describe the results of a recent effort todramatically reduce the dimensions of the point-spread function (PSF) generated by a custom polished panel, thus enabling improved optical communications performance. The latest results are compared to the previous configuration in terms of quantifiable PSF improvement. In addition, the performance of acquisition and tracking algorithms designed specifically for the polished panel PSF are evaluated and compared, based on data obtained from real-time tracking of planets and bright stars with the 34 meter research antenna at DSS-13.

  10. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth orbit, including dedicated science missions and lunar support/cargo vehicles; earth/moon transit; lunar in-situ operations; and other missions within approximately 2 million km of earth (e.g., at the sun/earth libration points). Given that the NER is an evolution of TDRSS, one element of this NASA-wide architecture development activity is a trade study of future NER architecture candidates. The present paper focuses on trade study aspects associated with the NER, highlights study elements, and provides representative interim results.

  11. Prototype space station automation system delivered and demonstrated at NASA

    NASA Technical Reports Server (NTRS)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support System (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of Space Station subsystems. The hierarchical and distributed real time controls system places the required controls authority at every level of the automation system architecture. As a demonstration of the automation technique, the ASCLSS system automated the Air Revitalization Group (ARG) of the Space Station regenerative Environmental Control and Life Support System (ECLSS) using real-time, high fidelity simulators of the ARG processess. This automation system represents an early flight prototype and an important test bed for evaluating Space Station controls technology including future application of ADA software in real-time control and the development and demonstration of embedded artificial intelligence and expert systems (AI/ES) in distributed automation and controls systems.

  12. Acoustic emissions applications on the NASA Space Station

    NASA Astrophysics Data System (ADS)

    Friesel, M. A.; Barga, R. S.; Dawson, J. F.; Hutton, P. H.; Kurtz, R. J.; Lemon, D. K.

    Acoustic emission is being investigated as a way to continuously monitor the Space Station Freedom for damage caused by space debris impact and seal failure. Experiments run to date focused on detecting and locating simulated and real impacts and leakage. These were performed both in the laboratory on a section of material similar to a space station shell panel and also on the full scale common module prototype at Boeing's Huntsville facility. A neural network approach supplemented standard acoustic emission detection and analysis techniques.

  13. Acoustic emissions applications on the NASA Space Station

    SciTech Connect

    Friesel, M.A.; Dawson, J.F.; Kurtz, R.J.; Barga, R.S.; Hutton, P.H.; Lemon, D.K.

    1991-08-01

    Acoustic emission is being investigated as a way to continuously monitor the space station Freedom for damage caused by space debris impact and seal failure. Experiments run to date focused on detecting and locating simulated and real impacts and leakage. These were performed both in the laboratory on a section of material similar to a space station shell panel and also on the full-scale common module prototype at Boeing's Huntsville facility. A neural network approach supplemented standard acoustic emission detection and analysis techniques. 4 refs., 5 figs., 1 tab.

  14. Verification and Validation of the GNSS Stations at the Prototype Core Site for NASA's Next Generation Space Geodesy Network

    NASA Astrophysics Data System (ADS)

    Desai, S. D.; Gross, J.; Haines, B. J.; Stowers, D. A.

    2013-12-01

    Two operational GNSS stations, GODN and GODS, were established within 100 m of each other at the prototype core site of NASA's next generation Space Geodesy Network. The planned network will co-locate each of the four space geodetic techniques, GNSS, SLR, VLBI, and DORIS, with the goal of meeting modern requirements for the International Terrestrial Reference Frame. This prototype site is located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center. The two GNSS stations at the prototype site have been producing tracking data from the GPS, GLONASS, and Galileo constellations since January 17, 2012. We present results from the verification and validation of these two stations, focusing in particular on GPS-based positioning of these two sites to monitor their relative baseline vector. We compare baseline recovery from independent precise point positioning of each station to a network-based approach. We also show the impact on the baseline as well as station repeatability from various improvements to our processing approach, namely the application of empirical antenna calibrations, elevation-dependent weighting, and site-specific troposphere modeling. Together, these approaches have resulted in a factor of two improvement in the precision of the baseline length. The standard deviation of the baseline vector, when using independent precise positioning of each station, is 0.5, 0.4, 1.6, and 0.4 mm in the east, north, up, and length components. The difference between the GPS-based baseline length and that from an independent local tie survey is < 1 mm.

  15. ERDA/NASA 100 kilowatt mod-o wind turbine operations and performance. [at the NASA Plum Brook Station, Ohio

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Richards, T. R.

    1977-01-01

    The ERDA/NASA 100 kW Mod-0 wind turbine is operating at the NASA Plum Brook Station near Sandusky, Ohio. The operation of the wind turbine has been fully demonstrated and includes start-up, synchronization to the utility network, blade pitch control for control of power and speed, and shut-down. Also, fully automatic operation has been demonstrated by use of a remote control panel, 50 miles from the site, similar to what a utility dispatcher might use. The operation systems and experience with the wind turbine loads, electrical power and aerodynamic performance obtained from testing are described.

  16. NASA's Accident Precursor Analysis Process and the International Space Station

    NASA Technical Reports Server (NTRS)

    Groen, Frank; Lutomski, Michael

    2010-01-01

    This viewgraph presentation reviews the implementation of Accident Precursor Analysis (APA), as well as the evaluation of In-Flight Investigations (IFI) and Problem Reporting and Corrective Action (PRACA) data for the identification of unrecognized accident potentials on the International Space Station.

  17. Psychological Selection of NASA Astronauts for International Space Station Missions

    NASA Technical Reports Server (NTRS)

    VanderArk, Steve; Curtis, Kelly D.

    1999-01-01

    During the relatively short-duration Space Shuffle missions, a psychological support program for the astronauts has not been required. Such missions primarily require providing occasional communication with family members by means of audio, video or e-mail, and some diversions such as CD players. During the NASA-Mir Program, conducted from March 1995 through June 1998, mission duration increased to 4-6 months. As a result of these changes it was necessary for NASA to establish an operational Human Behavior and Performance Group (HBPG) to develop and implement a comprehensive program of psychological support. The Mir experience provided the opportunity to develop and implement a psychological support program for long-duration space missions. Many factors influence the support program, including individual preferences, mission duration, and environmental factors such as habitable and personal areas. Lessons learned from the Mir experience are being applied to improve the ISS psychological support program plan. This presentation will address which includes various preflight, in-flight, and post-flight support activities and tools that NASA's HBPG will provide to astronauts and their families for ISS missions.

  18. NASA Earth Observations Track the Gulf Oil Spill

    NASA Technical Reports Server (NTRS)

    Jones, Jason B.; Childs, Lauren

    2010-01-01

    The NASA Applied Sciences Program created the Gulf of Mexico Initiative (GOMI) in 2007 "to enhance the region s ability to recover from the devastating hurricanes of 2005 and to address its coastal management issues going into the future." The GOMI utilizes NASA Earth science assets to address regional priorities defined by the Gulf of Mexico Alliance, a partnership formed by the states of Alabama, Florida, Louisiana, Mississippi, and Texas, along with 13 federal agencies and 4 regional organizations to promote regional collaboration and enhance the ecological and economic health of the Gulf of Mexico. NASA's GOMI is managed by the Applied Science and Technology Project Office at Stennis Space Center and has awarded over $18 million in Gulf of Mexico research since 2008. After the Deepwater Horizon oil spill, GOMI personnel assisted members of the Gulf of Mexico Alliance with obtaining NASA remote sensing data for use in their oil spill response efforts.

  19. Managing NASA's International Space Station Logistics and Maintenance Program

    NASA Technical Reports Server (NTRS)

    Butina, Anthony

    2001-01-01

    The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.

  20. Expert system technology for the Space Station communications and tracking system

    NASA Astrophysics Data System (ADS)

    Crone, M. S.; Julich, P. M.; Dash, E. G.; Wavering, W. D.

    1987-01-01

    This paper describes research into the use of expert system technology for the management of the Communications and Tracking System for the Space Station. The CAMERA (control and monitoring equipment resource allocation) expert system was developed under a NASA contract with JSC to minimize crew workload in managing the communications of the Space Station. It provides for automatic management of communications resources, diagnosis of faults, and reconfiguration to restore communications automatically. The system utilizes a state-of-the-art man-machine interface to allow high level end-to-end service requests. The expert system interprets the requests, determines the equipment required to implement the service, and assigns the appropriate equipment to the service. The expert system then establishes the service automatically at the time requested and monitors the operation of the simulated system to diagnose faults and determine the appropriate procedures to restore the service. A graphical design tool allows the operator to define new services from existing service primitives. Graphical, hierarchical equipment schematics support both the simulation of faults as well as the diagnostic process. Symbolic models for the equipment and measurements are represented in an object-oriented manner.

  1. High-resolution robot tracking and direction finding for space station environment

    NASA Astrophysics Data System (ADS)

    Shahrabi, Kamal

    1993-03-01

    In the past few years the problem of location finding and tracking of extravehicular robots in space station environment, and the related problem of estimating the parameters of signals in noise, have attracted considerable interest. Conventional direction finding, tracking, and locating techniques such as maximum likelihood (ML) and multiple signal characterization (MUSIC) are proving inadequate to support the full and effective utilization of robotics in a space station environment. The scope of this work is to provide a new and more efficient signal processing technique for a space station robotic tracking system which overcomes existing technical limitations such as radio transmission multipath, station reflections, the number of robots, space station environment, stringent resolution requirements, and space station architecture. In general, this work contains block level design and study of a communication system for a space station involving spread spectrum and digital processing of signal techniques that achieves as space station robotic tracking implementation. This report contains an extensive analysis of the system performance from the following points of view: utilization of a chirp signal, which, in conjunction with a polling procedure, allows for individual robot identification, location and tracking; estimate the number of antennae; determine the location of the antennae on the space station; generate a detailed block diagram design; and perform an overall system analysis that considers the effects of signal multipath.

  2. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  3. NASA-6 atmospheric measuring station. [calibration, functional checks, and operation of measuring instruments

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Information required to calibrate, functionally check, and operate the Instrumentation Branch equipment on the NASA-6 aircraft is provided. All procedures required for preflight checks and in-flight operation of the NASA-6 atmospheric measuring station are given. The calibration section is intended for only that portion of the system maintained and calibrated by IN-MSD-12 Systems Operation contractor personnel. Maintenance is not included.

  4. NASA Office of Space Sciences and Applications study on Space Station attached payload pointing

    NASA Technical Reports Server (NTRS)

    Laskin, R. A.; Estus, J. M.; Lin, Y. H.; Spanos, J. T.; Satter, C. M.

    1988-01-01

    A study has been conducted to determine the articulated-pointing requirements of a suite of instruments carried by the NASA Space Station, and define a pointing system architecture accomodating those requirements. It is found that these pointing requirements are sufficiently exacting, and the Space Station's disturbance environment sufficiently severe, to preclude the successful use of a conventional gimbal-pointing system; a gimbaled system incorporating an isolation stage is judged capable of furnishing the requisite levels of pointing performance.

  5. Integrated receiver for NASA tracking and data relay satellite system

    NASA Technical Reports Server (NTRS)

    Bricker, P.; Luecke, J.; Herr, D.

    1990-01-01

    The tracking and data relay satellite system (TDRSS) provides a flexible communications system for low-earth-orbit spacecraft and a source of tracking data to permit the location of the many orbital platforms to be accessed. Central to the TDRSS ground terminal is the integrated receiver which provides data demodulation, decoding, and deinterleaving over the range of 100 sps to 12 Msps, and all the tracking services in a single high-performance design. The requirements and design of the integrated receiver (IR), as well as an unbalanced quadriphase shift keying (UQPSK) receiver/demodulator under development for use in the TDRSS are discussed. The top level architecture of the IR is presented, and the implementation of the primary functions in the receiver is described. A single IR replaces the 12 different chassis currently required to support a single S-band single-access service. This approach has proven to be successful.

  6. Accuracy Evaluation of Tracking Equipment Based on Star- Station- Difference Technique

    NASA Astrophysics Data System (ADS)

    Zhao, LiJian; Huang, XiaoJuan; Pan, Liang; Xu, RuXiang

    2016-02-01

    An approach based on the star station difference technology is proposed for accuracy evaluation of tracking and controlling shipboard equipments in this paper. The proposed method has the advantages of simple equipment, convenient measurement, and low requirements on environmental conditions.

  7. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  8. NASA Human Research Program (HRP). International Space Station Medical Project (ISSMP)

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2009-01-01

    This viewgraph presentation describes the various flight investigations performed on the International Space Station as part of the NASA Human Research Program (HRP). The evaluations include: 1) Stability; 2) Periodic Fitness Evaluation with Oxygen Uptake Measurement; 3) Nutrition; 4) CCISS; 5) Sleep; 6) Braslet; 7) Integrated Immune; 8) Epstein Barr; 9) Biophosphonates; 10) Integrated cardiovascular; and 11) VO2 max.

  9. NASA UTILIZATION OF THE INTERNATIONAL SPACE STATION AND THE VISION FOR SPACE EXPLORATION

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thomas, Donald A.

    2006-01-01

    Under U.S. President Bush s Vision for Space Exploration (January 14, 2004), NASA has refocused its utilization plans for the International Space Station (ISS). This use will now focus on: (1) the development of countermeasures that will protect crews from the hazards of the space environment, (2) testing and validating technologies that will meet information and systems needs for future exploration missions.

  10. Psychological Selection of NASA Astronauts for International Space Station Missions

    NASA Technical Reports Server (NTRS)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  11. Applicability of NASA Polar Technologies to British Antarctic Survey Halley VI Research Station

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    From 1993 through 1997 NASA and the National Science Foundation (NSF), developed a variety of environmental infrastructure technologies for use at the Amundsen-Scott South Pole Station. The objective of this program was to reduce the cost of operating the South Pole Station, reduce the environmental impact of the Station, and to increase the quality of life for Station inhabitants. The result of this program was the development of a set of sustainability technologies designed specifically for Polar applications. In the intervening eight years many of the technologies developed through this program have been commercialized and tested in extreme environments and are now available for use throughout Antarctica and circumpolar north. The objective of this document is to provide information covering technologies that might also be applicable to the British Antarctic Survey s (BAS) proposed new Halley VI Research Station. All technologies described are commercially available.

  12. Use of a Closed-Loop Tracking Algorithm for Orientation Bias Determination of an S-Band Ground Station

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Schrage, Dean S.; Piasecki, Marie T.

    2015-01-01

    The Space Communications and Navigation (SCaN) Testbed project completed installation and checkout testing of a new S-Band ground station at the NASA Glenn Research Center in Cleveland, Ohio in 2015. As with all ground stations, a key alignment process must be conducted to obtain offset angles in azimuth (AZ) and elevation (EL). In telescopes with AZ-EL gimbals, this is normally done with a two-star alignment process, where telescope-based pointing vectors are derived from catalogued locations with the AZ-EL bias angles derived from the pointing vector difference. For an antenna, the process is complicated without an optical asset. For the present study, the solution was to utilize the gimbal control algorithms closed-loop tracking capability to acquire the peak received power signal automatically from two distinct NASA Tracking and Data Relay Satellite (TDRS) spacecraft, without a human making the pointing adjustments. Briefly, the TDRS satellite acts as a simulated optical source and the alignment process proceeds exactly the same way as a one-star alignment. The data reduction process, which will be discussed in the paper, results in two bias angles which are retained for future pointing determination. Finally, the paper compares the test results and provides lessons learned from the activity.

  13. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  14. Microgravity research results and experiences from the NASA/MIR space station program

    NASA Astrophysics Data System (ADS)

    Schlagheck, R. A.; Trach, B. L.

    2003-12-01

    The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings.

  15. Microgravity research results and experiences from the NASA/MIR space station program.

    PubMed

    Schlagheck, R A; Trach, B L

    2003-12-01

    The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. PMID:14503490

  16. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  17. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  18. Read You Loud and Clear! The Story of NASA's Spaceflight Tracking and Data Network

    NASA Technical Reports Server (NTRS)

    Tsiao, Sunny

    2008-01-01

    A historical account is provided of NASA's Spaceflight Tracking and Data Network (STDN), starting with its formation in the late 1950s to what it is today in the first decade of the 21st century. It traces the roots of the tracking network from its beginnings at the White Sands Missile Range in New Mexico to the Tracking and Data Relay Satellite System space-based constellation of today. The story spans the early days of satellite tracking using the Minitrack Network, through the expansion of the Satellite Tracking and Data Acquisition Network and the Manned Space Flight Network, and finally, to the Space and Ground networks of today. These accounts tell how international goodwill and foreign cooperation were crucial to the operation of the network and why the space agency chose to build the STDN as it did.

  19. Tracking 2012 Atlantic Hurricanes Using NASA's GEOS-5 AGCM

    NASA Astrophysics Data System (ADS)

    Cordero-Fuentes, M.; Partyka, G. S.; Smith, E. B.

    2014-12-01

    On average, the Atlantic Hurricane Season consists of 11 named storms, including six hurricanes. However, the 2012 hurricane season tied with the 1887, 1995, 2010, and 2011 seasons for having the third-most named storms on record, with 19 named storms, 10 of which were hurricanes. Seven of these systems made landfall in North America, including Hurricane Isaac and "Super-Storm" Sandy. This active season also included Hurricane Nadine, the fourth longest-lived Atlantic hurricane on record. The structure and life cycle of these severe storms can be viewed through the detailed meteorological analyses and forecasts that the Global Modeling and Assimilation Office (GMAO) conducts on a routine basis with our GEOS-5 Atmospheric General Circulation Model (AGCM) system. GMAO routinely produces five-day forecasts twice daily, at 0000 and 1200 UTC, using the GEOS-5 AGCM. The GEOS-5 atmospheric data assimilation system is used to generate near real-time analyses of the atmosphere over the globe every six hours. These analyses provide the initial conditions for the GEOS-5 forecasts. Following the abnormally active 2012 Atlantic hurricane season, one focus has been on the skill of the GEOS-5 forecasts of tropical storms in the Atlantic, East Pacific, and West Pacific. In this presentation it's shown the results for two of the most destructive storms of the Atlantic season: Hurricanes Isaac and Sandy, and the 2012 Season's Track Forecast Error. The primary impetus for investigating these two storms was the opportunity to test the ability of the model to reproduce their track and intensity forecast. We observe several features associated with the morphology and inner core of these storms indicative of the capability of the model to reproduce these tropical systems. GEOS-5 predicted Sandy's intensity to within a few hectopascals over much of the life of the storm. The model also predicted some of the finer details of Sandy's evolution. The forecast from 12z 26Oct2012 appeared to perform the best at forecasting Sandy's intensity. This same forecast correctly predicted the location of Sandy's landfall. Furthermore, this study also shows how the model rapidly creates a closed circulation from a tropical wave up to 24 hours before these TCs are detectible in nature, without any vortex relocation information.

  20. Impact of tracking station distribution structure on BeiDou satellite orbit determination

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Zhang, Qin; Huang, Guanwen; Wang, Le; Qu, Wei

    2015-11-01

    The racking station distribution structure plays an important role in GNSS satellite orbit determination. Due to the current satellite distribution of the BeiDou satellite navigation system (BDS), the problem how to construct a reasonable distribution of tracking stations to obtain BDS satellite orbits with high precision has become a highly imperative issue. Based on the theory of dynamic orbit determination, two different station distributions were analyzed to study their impact on BDS precise and real-time orbit determination. Subsequently, the impact of Satellite Position Dilution of Precision (SPDOP) values on orbit determination was analyzed. Finally, an improved scheme for the tracking station distribution was designed based on the original scheme. The numerical results show that the SPDOP value can be used to evaluate the contribution of the tracking stations distribution on the BDS IGSO and MEO satellites orbit determination. In addition, the tracking stations which focus on the Asia-Pacific region play a key role in current BDS orbit determination.

  1. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    NASA Technical Reports Server (NTRS)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  2. On LEO Debris Orbit Prediction Performance Using Tracking Data from a Single Station

    NASA Astrophysics Data System (ADS)

    Sang, J.

    2014-09-01

    Debris laser ranging during terminator time periods has become routine practice for some tracking stations. Processing tracking data from Mt Stromlo has shown that an orbit prediction accuracy of 20 arc seconds in the along-track direction for the next 24 hours was achievable for low Earth orbiting (LEO) debris using 2 passes of debris laser ranging data from a single station, separated by about 24 hours. The radial prediction error was in the order of tens of meter, for the Mt Stromlo and Shanghai tracking stations, respectively. The accuracies were determined by comparing the predicted orbits with subsequent tracking data from the same station. This accuracy assessment might be over-optimistic for other parts of orbits far away from the station because the generated orbit is only constrained by the data above the tracking station. Therefore, a verification is needed to confirm the achievability of the debris orbit prediction accuracy using the accurate debris laser data from a single station. In this paper, the verification results using satellite laser ranging (SLR) data from a single tracking station are presented. Starlette and Larets are chosen for this study and they have perigee altitudes of 815km and 690km, respectively. The SLR data is downloaded from the website of International Laser Ranging Service (ILRS) Network. The similar data scenario is assumed. That is, SLR data of only two passes separated by about 24 hours is used to determine the orbits and then the orbits are propagated forward for 7 days. The SLR data is corrupted with random errors of 1m standard deviation to reflect realistic debris laser ranging accuracy. The predicted orbits are then compared with the accurate Consolidated Prediction Format (CPF) orbits generated by the ILRS data centers. The study confirms that accuracy of 20 arc seconds in the along-track direction for 1-2 day orbit predictions, and tens of meter in the radial direction, are achievable. For the lower Larets satellite, 1000m accuracy for 7-day orbit predictions is obtained. This paper also presents a concept of prediction error assessment using the difference between backward propagated orbits and earlier tracking data. In principle, the forward orbit prediction error and the backward orbit propagation error would be similar if the times of forward prediction and backward propagation are about the same. Experiments show this concept is valid, and it could be used to estimate reliable orbit prediction errors, which are vital to make orbit conjunction warnings more accurate and robust.

  3. Acoustical measurements of DOE/NASA MOD-0 wind turbine at Plum Brook Station, Ohio

    SciTech Connect

    Etter, C.L.; Kelley, N.D.; McKenna, H.E.; Linn, C.; Garrelts, R.

    1983-06-01

    This report documents the evaluation of low-frequency acoustic emissions associated with the operation of the DOE/NASA MOD-0 wind turbine generator located at Plum Brook Station, Ohio. These measurements were taken as part of a joint SERI/NASA Brook Station, Ohio. These measurements were taken as part of a joint SERI/NASA effort to study acoustic noise generation by utility-sized wind turbines. The machine-operating conditions closely simulated the operation of the larger DOE/NASA MOD-1 wind turbine installed near Boone, NC, in both its design downwind configuration and theoretical upwind mode. Measurement results indicated that acoustic impulses characteristic of the MOD-1 turbine were detectable only with a downwind configuration and a 35-rpm rotor speed, a situation which parallels a 23-rpm rotor speed operation on the MOD-1. Under the available meteorological conditions, no impulses were detected during downwind 23 rpm or by wind-induced noise, indicating a severe limitation of the microphone configuration used in these tests.

  4. NASA Growth Space Station missions and candidate nuclear/solar power systems

    NASA Technical Reports Server (NTRS)

    Heller, Jack A.; Nainiger, Joseph J.

    1987-01-01

    A brief summary is presented of a NASA study contract and in-house investigation on Growth Space Station missions and appropriate nuclear and solar space electric power systems. By the year 2000 some 300 kWe will be needed for missions and housekeeping power for a 12 to 18 person Station crew. Several Space Station configurations employing nuclear reactor power systems are discussed, including shielding requirements and power transmission schemes. Advantages of reactor power include a greatly simplified Station orientation procedure, greatly reduced occultation of views of the earth and deep space, near elimination of energy storage requirements, and significantly reduced station-keeping propellant mass due to very low drag of the reactor power system. The in-house studies of viable alternative Growth Space Station power systems showed that at 300 kWe a rigid silicon solar cell array with NiCd batteries had the highest specific mass at 275 kg/kWe, with solar Stirling the lowest at 40 kg/kWe. However, when 10 year propellant mass requirements are factored in, the 300 kWe nuclear Stirling exhibits the lowest total mass.

  5. Station position results using concentrated C-band tracking of GEOS-3

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Martin, C. F.

    1978-01-01

    Station positions for the GEOS 3 C Band tracking network were estimated using C Band and laser data taken during a two-week concentrated tracking period. The C Band stations are located primarily in the continental United States and on Western Atlantic islands. The network, however, included stations in Hawaii, in West Germany, and on Kwajalein atoll. Estimated accuracies for the recovered positions are 2 m for the continental U. S. and Atlantic sites, 5 m for Hawaii, and 10 m for Kwajalein. The dominant contributor to these uncertainties is geopotential model error. Thus, the C Band/laser data set could be used for more accurate center-of-mass positioning of a continental network of stations.

  6. Modifications to the NASA Ames Space Station Proximity Operations (PROX OPS) Simulator

    NASA Technical Reports Server (NTRS)

    Brody, Adam

    1988-01-01

    As the United States is approaching an operational space station era, flight simulators are required to investigate human design and performance aspects associated with orbital operations. Among these are proximity operations (PROX OPS), those activities occurring within a 1-km sphere of Space Station including rendezvous, docking, rescue, and repair. The Space Station Proximity Operations Simulator at NASA Ames Research Center was modified to provide the capability for investigations into human performance aspects of proximity operations. Accurate flight equations of motion were installed to provide the appropriate visual scene to test subjects performing simulated missions. Also, the flight control system was enhanced by enabling pilot control over thruster acceleration values. Currently, research is under way to examine human performance in a variety of mission scenarios.

  7. Simultaneous observation solutions for NASA-MOTS and SPEOPT station positions on the North American datum

    NASA Technical Reports Server (NTRS)

    Reece, J. S.; Marsh, J.

    1973-01-01

    Simultaneous observations of the GEOS-I and II flashing lamps by the NASA MOTS and SPEOPT cameras on the North American Datum (NAD) were analyzed using geometrical techniques to provide an adjustment of the station coordinates. Two separate adjustments were obtained. An optical data only solution was computed in which the solution scale was provided by the Rosman-Mojave distance obtained from a dynamic station solution. In a second adjustment, scaling was provided by processing simultaneous laser ranging data from Greenbelt and Wallops Island in a combined optical-laser solution. Comparisons of these results with previous GSFC dynamical solutions indicate an rms agreement on the order of 4 meters or better in each coordinate. Comparison with a detailed gravimetric geoid of North America yields agreement of 3 meters or better for mainland U.S. stations and 7 and 3 meters, respectively, for Bermuda and Puerto Rico.

  8. Microgravity Research Results and Experiences from the NASA Mir Space Station Program

    NASA Technical Reports Server (NTRS)

    Schagheck, R. A.; Trach, B.

    2000-01-01

    The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Most importantly this paper highlights the various disciplines of microgravity research conducted during the International Space Station, Phase 1 Program onboard the Mir Station. A capsulation of significant research and the applicability of our findings are provided. In addition, a brief discussion of how future microgravity science gathering capabilities, hardware development and payload operations techniques have enhanced our ability to conduct long duration microgravity research.

  9. The effects of tracking station coordinate uncertainties on GEOS-2 orbital accuracy

    NASA Technical Reports Server (NTRS)

    Glazer, J.; Kahn, W. D.

    1972-01-01

    Laser and minitrack observational data from GEOS-2 collected during the period April 23, 1971 to May 1971, have been used for the purpose of assessing the influence of tracking station location on the accuracy of orbit determination. These data were processed using a unified set of coordinates for the tracking station locations. Concurrently, these data were processed using nonunified station locations referred to a variety of geodetic datums. The resultant orbits based on the two different sets of station locations were compared and relative differences in the position of the satellite were determined. Differences between the two groups of orbits fitted over four-day data spans ranged from 250 meters to 500 meters for orbits derived from laser data only. For orbits observed from Minitrack data alone the relative differences in GEOS-2 spacecraft position ranged from 50 meters to 190 meters. Utilizing the laser data alone in each arc, definitive orbits were computed using the unified and nonunified station location coordinates. The differences in the satellite position in the overlap region when using the unified laser station coordinates ranged from 25 meters to 150 meters, whereas when using the nonunified laser station coordinates the differences in position ranges from 180 to 650 meters.

  10. Reports on work in support of NASA's tracking and communication division

    NASA Technical Reports Server (NTRS)

    Feagin, Terry; Lekkos, Anthony

    1991-01-01

    This is a report on the research conducted during the period October 1, 1991 through December 31, 1991. The research is divided into two primary areas: (1) generalization of the Fault Isolation using Bit Strings (FIBS) technique to permit fuzzy information to be used to isolate faults in the tracking and communications system of the Space Station; and (2) a study of the activity that should occur in the on board systems in order to attempt to recover from failures that are external to the Space Station.

  11. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  12. NASA utilization of the International Space Station and the Vision for Space Exploration

    NASA Astrophysics Data System (ADS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2007-06-01

    In response to the US President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for International Space Station (ISS) to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long-duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of ISS. We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015 2020), research on and operation of the ISS is fundamental to the success of NASA's Exploration Vision.

  13. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2007-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  14. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2006-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  15. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thomas, Donald A.; Thumm, Tracy L.

    2006-01-01

    In response to the U.S. President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  16. The management approach to the NASA space station definition studies at the Manned Spacecraft Center

    NASA Technical Reports Server (NTRS)

    Heberlig, J. C.

    1972-01-01

    The overall management approach to the NASA Phase B definition studies for space stations, which were initiated in September 1969 and completed in July 1972, is reviewed with particular emphasis placed on the management approach used by the Manned Spacecraft Center. The internal working organizations of the Manned Spacecraft Center and its prime contractor, North American Rockwell, are delineated along with the interfacing techniques used for the joint Government and industry study. Working interfaces with other NASA centers, industry, and Government agencies are briefly highlighted. The controlling documentation for the study (such as guidelines and constraints, bibliography, and key personnel) is reviewed. The historical background and content of the experiment program prepared for use in this Phase B study are outlined and management concepts that may be considered for future programs are proposed.

  17. Permanent change of station: The NASA employee's guide to an easier move

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This guide is for the NASA employee preparing to make a permanent change of station. Whether a transferee or a new appointee, this guide contains information that will help a Government-authorized move go more smoothly from start to finish. The guide outlines the allowances and expense reimbursements one is entitled to under Federal Travel Regulations (FTR). It provides samples of forms one may need to fill out to start the transfer rolling and to claim reimbursements. However, it is important to note that this guide is not a copy of the FTR. Information in the FTR and the NASA Travel Regulations, FMM 9760, is far more detailed and is always updated and correct.

  18. NASA uses Eclipse RCP Applications for Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cohen, Tamar

    2013-01-01

    Eclipse is going to space for the first time in 2013! The International Space Station (ISS) is used as a site for experiments any software developed as part of these experiments has to comply with extensive and strict user interface guidelines. NASA Ames Research Center's Intelligent Robotics Group is doing 2 sets of experiments, both with astronauts using Eclipse RCP applications to remotely control robots. One experiment will control SPHERES with an Android Smartphone on the ISS the other experiment will control a K10 rover on Earth.

  19. Along-Track Products from NASA's Operation IceBridge Flight Line Data

    NASA Astrophysics Data System (ADS)

    Rogers, S. R.; Scambos, T. A.; Raup, B. H.; Haran, T. M.; Kaminski, M. L.

    2011-12-01

    A set of value-added data products (VAPs)is being developed at the National Snow and Ice Data Center (NSIDC) from the along-flight multi-sensor data sets gathered during the IceBridge flights of the DC-8 and P-3 NASA aircraft. These new products co-locate data from the IceBridge sensor suite and derive useful analysis parameters using one or more of the data streams. There are two along-track data sets being developed at NSIDC, one intended to facilitate ice sheet dynamics investigations, and one to characterize ice sheet surface and near-surface processes. Ice dynamics along-track products currently incorporate data from the Airborne Topographic Mapper (ATM), Sanders Gravimeter, Multi-Channel Coherent Depth Sounder (MCORDS) ice-penetrating radar system, and Digital Mapping System (DMS) camera. Derived products currently include regional slope (four hundred meter horizontal scale) and driving stress. Ice-dynamics along-track products currently under development focus on comparisons of the gravity and ice thickness data, as well as more detailed ice flow analysis. The along-track IceBridge data will be integrated with existing ice-sheet-wide data sets (for Greenland and Antarctica) such as DEMs, bed elevation and ice thickness, free-air anomaly from satellite data, and balance velocity. Ice sheet surface properties along-track products combine co-located data from the ATM, snow radar or accumulation radar, and DMS instrument, extracting roughness data, layer depth for radar reflections and images along with basic instrument measurement values. In addition to scientific parameters, various data vetting parameters determine how well aligned the sensors are for a given flight line point. A related product for sea ice properties, sea ice freeboard, and estimated sea ice thickness is being developed by NASA-GSFC personnel. The along-track VAPs are formatted into comma-separated values files for easy access by the science community. They are being integrated into the NSIDC Operation IceBridge data portal to facilitate browsing and preliminary analysis of areas overflown by Operation IceBridge. Development directions for the IceBridge along-track products are: combining airborne gravity and ice thickness measurements to generate an estimated sub-glacial rock density, more extensive layer-tracking software, and parameters leading to along-flight estimates of snow accumulation (or surface net mass balance) from the shallow radars. NSIDC will also seek to integrate the emerging gridded VAP from the IceBridge Science Team with the along-track products we develop.

  20. Results of a Telephone Survey of Television Station Managers Concerning the NASA SCI Files(TM) and NASA CONNECT(TM)

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Perry, Jeannine

    2004-01-01

    A telephone survey of television station managers concerning 2 instructional television programs, the NASA SCI Files(TM) and NASA CONNECT(TM), offered by the NASA Langley Center for Distance Learning (CDL) was conducted. Using a 4-point scale, with 4 being very satisfied, survey participants reported that they were either very satisfied (77.1 percent) or satisfied (19.9 percent) with the overall (educational and technical) quality of the NASA SCI Files(TM). Using a 4-point scale, with 4 being very satisfied, survey participants reported that they were either very satisfied (77.9 percent) or satisfied (19.1 percent) with the overall (educational and technical) quality of NASA CONNECT(TM) .

  1. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 6: Study issues report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload specialists and mission specialists to operate the wide variety of experiments that will be on-board the Freedom Space Station. This simulation Computer System (SCS) study issues report summarizes the analysis and study done as task 1-identify and analyze the CSC study issues- of the SCS study contract.This work was performed over the first three months of the SCS study which began in August of 1988. First issues were identified from all sources. These included the NASA SOW, the TRW proposal, and working groups which focused the experience of NASA and the contractor team performing the study-TRW, Essex, and Grumman. The final list is organized into training related issues, and SCS associated development issues. To begin the analysis of the issues, a list of all the functions for which the SCS could be used was created, i.e., when the computer is turned on, what will it be doing. Analysis was continued by creating an operational functions matrix of SCS users vs. SCS functions to insure all the functions considered were valid, and to aid in identification of users as the analysis progressed. The functions will form the basis for the requirements, which are currently being developed under task 3 of the SCS study.

  2. Prototype fault-diagnosis system for NASA space station power management and control. Master's thesis

    SciTech Connect

    Hester, G.L.

    1988-09-01

    The Power Management and Distribution System (PMAD) Prototype utilizes a computer graphics interface with a computer expert system running transparent to the user and a computer communications interface that links the two together, all enabling the diagnosis of PMAD system faults. The prototype design is based on the concept that an astronaut on a space station will instruct an expert system through a graphic interface to run a system or component check on the PMAD system. The graphics interface determines which type of evaluations was requested and sends that information through the communications interface to the expert system. The expert system receives the information and, based on the type of evaluation requested, executes the appropriate rules in the knowledge base and sends the resulting status back to the graphics interface and the astronaut. The PMAD System Prototype serves as a proposed training tool for NASA to use in the training of new personnel who will be designing and developing the NASA Space station expert systems.

  3. Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hasbrook, Pete

    2016-01-01

    The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging systems mounted on ISS as well as other orbiting spacecraft to improve our understanding of the Earth and its climate. NASA and Roscosmos continue to encourage international scientific cooperation and expanded use of the ISS Laboratory. "Long-term", larger collaborations will achieve scientific objectives that no single national science team or agency can achieve on its own. The joint accomplishments achieved so far have paved the way for a stronger international scientific community and improved results and benefits from ISS.

  4. New Directions in NASA's Biological Crystal Growth Program on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.

    2000-01-01

    NASA's Biological Crystal Growth Program (BCG) on the International Space Station (ISS) is changing direction from the study of crystallization to an emphasis on producing crystals for structure determination in leading problems in structural biology. The program will consist of two phases. The first phase is during assembly of the ISS and will primarily utilize payloads that currently fly in the orbiter middeck but can be adapted for ISS. The second phase begins after assembly of the ISS is complete and BCG payloads will occupy part of the Biotechnology Facility aboard the ISS. Two types of BCG payloads will be flown. One will emphasize the production of crystals for structure determination back on Earth. These types of payloads will allow hundreds of crystallization conditions to be tested. The second type of payload will be designed to study the crystallization process with the primary aim of assisting the structural biology efforts. Access to these facilities will be through the NASA BCG Guest Investigators program, the NASA Research Announcement, and other opportunities currently being formulated. Details of the crystallization hardware, the application procedures, and the operational aspects of the program will be described.

  5. NASA systems autonomy demonstration project: Advanced automation demonstration of Space Station Freedom thermal control system

    NASA Technical Reports Server (NTRS)

    Dominick, Jeffrey; Bull, John; Healey, Kathleen J.

    1990-01-01

    The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.

  6. Second Shuttle Join NASA's STS Fleet: Challenger Launches First New Tracking Satellite

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA made a major stride in readying a second delivery vehicle for its Space Transportation System (STS) fleet with the perfect landing of Shuttle Orbiter Challenger at Edwards Air Force Base, California, April 9, 1983. Besides being the first flight test of Challenger's performance, the mission marked the orbiting of the first spacecraft in NASA's new Tracking and Data Relay Satellite System (TDRSS). The new family of orbiting space communications platforms is essential to serve future Shuttle missions. Although the Inertial Upper Stage (IUS) second stage engine firing failed to place TDRS in its final 35,888 kilometer (22,300 mile) geosynchronous orbit, its release from the orbiter cargo bay went as planned. Launch officials were confident they can achieve its planned orbit in a matter of weeks.

  7. Smithsonian Astrophysical Observatory's minicomputer vs. the laser. [computer predictions for laser tracking stations

    NASA Technical Reports Server (NTRS)

    Cherniack, J. R.

    1973-01-01

    Review of some of the problems encountered in replacing a CDC 6400, that was used for supplying a network of laser tracking stations with predictions, by an 8K Data General 1200 minicomputer with a teletype for I/O. Before the replacement, the predictions were expensive to compute and to transmit, and were clumsy logistically. The achieved improvements are described, along with every step it took to accomplish them, and the incurred costs.

  8. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these new waveforms requires a waveform build environment for the particular SDR, helps assess the usefulness of the platform provider documentation, and exercises the objectives of STRS Standard and the SCaN Testbed. There is considerable interest in conducting experiments using the SCaN Testbed from NASA, academia, commercial companies, and other space agencies. There are approximately 25 experiments or activities supported by the project underway or in development, with more proposals ready, as time and funding allow, and new experiment solicitations available. NASA continues development of new waveforms and applications in communications, networking, and navigation, the first university experimenters are beginning waveform development, which will support the next generation of communications engineers, and international interest is beginning with space agency partners from European Space Agency (ESA) and the Centre National d'Etudes Spatiales (CNES). This paper will provide an overview of the SCaN Testbed and discuss its recent accomplishments and experiment activities.Its recent successes in Ka-band operations, reception of the newest GPS signals, SDR reconfigurations, and STRS demonstration in space when combined with the future experiment portfolio have positioned the SCaN Testbed to enable future space communications and navigation capabilities for exploration and science.

  9. Analysis of a Four-Station Doppler Tracking Method Using a Simple CW Beacon

    NASA Technical Reports Server (NTRS)

    Fricke, Clifford L.; Watkins, Carl W. L.

    1961-01-01

    A Doppler tracking method is presented in which a very small, simple CW beacon transmitter is used with four Doppler receiving stations to obtain the position and velocity of a space research vehicle. The exact transmitter frequency need not be known, but an initial position is required, and Doppler frequencies must be measured with extreme accuracy. The errors in the system are analyzed and general formulas are derived for position and velocity errors. The proper location of receiving stations is discussed, a rule for avoiding infinite errors is given, and error charts for ideal station configurations are presented. The effect of the index of refraction is also investigated. The system is capable of determining transmitter position within 1,000 feet at a range of 200 miles.

  10. Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Woodling, Mark A.

    2000-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

  11. Behavioral Health Support of NASA Astronauts for International Space Station Missions

    NASA Technical Reports Server (NTRS)

    Sipes, Walter

    2000-01-01

    Two areas of focus for optimizing behavioral health and human performance during International Space Station missions are 1) sleep and circadian assessment and 2) behavioral medicine. The Mir experience provided the opportunity to examine the use and potential effectiveness of tools and procedures to support the behavioral health of the crew. The experience of NASA has shown that on-orbit performance can be better maintained if behavioral health, sleep, and circadian issues are effectively monitored and properly addressed. For example, schedules can be tailored based upon fatigue level of crews and other behavioral and cognitive indicators to maximize performance. Previous research and experience with long duration missions has resulted in the development and upgrade of tools used to monitor fatigue, stress, cognitive function, and behavioral health. Self-assessment and objective tools such as the Spaceflight Cognitive Assessment Tool have been developed and refined to effectively address behavioral medicine countermeasures in space.

  12. Freedom is an international partnership. [foreign contributions to NASA Space Station project

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard H.

    1990-01-01

    The NASA Space Station Freedom (SSF) project initiated in 1984 is a collaborative one among the U.S., Japan, Canada, and the 10 nations participating in ESA. The SSF partners have over the last six years defined user requirements, decided on the hardware to be manufactured, and constructed a framework for long-term cooperation. SSF will be composed of user elements furnished by the foreign partners and a U.S.-supplied infrastructure encompassing the truss assembly, electrical power system, and crew living quarters. The U.S. will also furnish a lab and a polar-orbit platform; ESA, a second lab and the coorbiting Free-Flying Laboratory, as well as a second polar platform. Japan's Japanese Experiment Module shall include an Exposed Facility and an Experimental Logistics module. Canada will contribute the Mobile Servicing System robotic assembler/maintainer for the whole of SFF.

  13. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  14. Use of scented sugar bait stations to track mosquito-borne arbovirus transmission in California.

    PubMed

    Lothrop, Hugh D; Wheeler, Sarah S; Fang, Ying; Reisen, William K

    2012-11-01

    Laboratory and field research was conducted to determine if Culex tarsalis Coquillett expectorated West Nile virus (WNV) during sugar feeding and if a lure or bait station could be developed to exploit this behavior for WNV surveillance. Experimentally infected Cx. tarsalis repeatedly expectorated WNV onto filter paper strips and into vials with wicks containing sucrose that was readily detectable by a quantitative reverse transcriptase-polymerase chain reaction assay. Few females (33%, n = 27) became infected by imbibing sugar solutions spiked with high concentrations (10(7) plaque forming units/ml) of WNV, indicating sugar feeding stations probably would not be a source of WNV infection. In nature, sugar bait stations scented with the floral attractant phenyl acetaldehyde tracked WNV transmission activity in desert but not urban or agricultural landscapes in California. When deployed in areas of the Coachella Valley with WNV activity during the summer of 2011, 27 of 400 weekly sugar samples (6.8%) tested positive for WNV RNA by reverse transcriptase-polymerase chain reaction. Prevalence of positives varied spatially, but positive sugar stations were detected before concurrent surveillance measures of infection (mosquito pools) or transmission (sentinel chicken seroconversions). In contrast, sugar bait stations deployed in urban settings in Los Angeles or agricultural habits near Bakersfield in Kern County supporting WNV activity produced 1 of 90 and 0 of 60 positive weekly sugar samples, respectively. These results with sugar bait stations will require additional research to enhance bait attractancy and to understand the relationship between positive sugar stations and standard metrics of arbovirus surveillance. PMID:23270177

  15. Knowledge-based vision for space station object motion detection, recognition, and tracking

    NASA Technical Reports Server (NTRS)

    Symosek, P.; Panda, D.; Yalamanchili, S.; Wehner, W., III

    1987-01-01

    Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed.

  16. Tracking and data relay satellite system configuration and tradeoff study. Volume 5: User impact and ground station design, part 1

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1972-01-01

    The configuration of the user transponder on the Tracking and Data Relay satellite is described. The subjects discussed are: (1) transponder concepts and trades, (2) ground station design, (3) antenna configurations for ground equipment, (4) telemetry facilities, (5) signal categories, and (6) satellite tracking.

  17. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... Wind Farm Project AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Intent to... GRC Plum Brook Station Wind Farm Project located near Sandusky, Ohio, pursuant to the National... and operation of the wind farm. The purpose of constructing and operating the wind farm is for NASA...

  18. SeaTrack: Ground station orbit prediction and planning software for sea-viewing satellites

    NASA Technical Reports Server (NTRS)

    Lambert, Kenneth S.; Gregg, Watson W.; Hoisington, Charles M.; Patt, Frederick S.

    1993-01-01

    An orbit prediction software package (Sea Track) was designed to assist High Resolution Picture Transmission (HRPT) stations in the acquisition of direct broadcast data from sea-viewing spacecraft. Such spacecraft will be common in the near future, with the launch of the Sea viewing Wide Field-of-view Sensor (SeaWiFS) in 1994, along with the continued Advanced Very High Resolution Radiometer (AVHRR) series on NOAA platforms. The Brouwer-Lyddane model was chosen for orbit prediction because it meets the needs of HRPT tracking accuracies, provided orbital elements can be obtained frequently (up to within 1 week). Sea Track requires elements from the U.S. Space Command (NORAD Two-Line Elements) for the satellite's initial position. Updated Two-Line Elements are routinely available from many electronic sources (some are listed in the Appendix). Sea Track is a menu-driven program that allows users to alter input and output formats. The propagation period is entered by a start date and end date with times in either Greenwich Mean Time (GMT) or local time. Antenna pointing information is provided in tabular form and includes azimuth/elevation pointing angles, sub-satellite longitude/latitude, acquisition of signal (AOS), loss of signal (LOS), pass orbit number, and other pertinent pointing information. One version of Sea Track (non-graphical) allows operation under DOS (for IBM-compatible personal computers) and UNIX (for Sun and Silicon Graphics workstations). A second, graphical, version displays orbit tracks, and azimuth-elevation for IBM-compatible PC's, but requires a VGA card and Microsoft FORTRAN.

  19. Tracking the Relative Motion of Four Space Payloads Launched from a Sub-Orbital NASA Rocket

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Martell, Hugh

    1999-01-01

    One problem, which is comparatively new in the field of GPS (Global Positioning System) applications, is the determination of the relative trajectories of space vehicles. Applications include the docking of spacecraft, collision avoidance in the area of space stations, and trajectory reconstruction of multiple payloads. The required precision in any of these applications will vary, according to the requirements of the task and abilities of GPS to cope with the environment and the dynamics. This paper describes the post-mission reconstruction of the relative trajectories of four GPS receivers attached to four payloads jettisoned from a Black Brant XII rocket. This vehicle was launched by the National Aeronautics and Space Administration (NASA) in January 1999 from the Poker Flats Research Range near Fairbanks, Alaska. The Black Brant XII is a sub-orbital rocket designed to carry payloads of 100 to 500 kg into the upper atmosphere. Flight time is generally in the order of 10 - 20 minutes.

  20. Tracking the Relative Motion of Four Space Payloads Launched From a Sub-Orbital NASA Rocket

    NASA Technical Reports Server (NTRS)

    Martel, Hugh; Bull, Barton

    1999-01-01

    One problem, which is comparatively new in the field of GPS applications, is the determination of the relative trajectories of space vehicles. Applications include the docking of spacecraft, collision avoidance in the area of space stations, and trajectory reconstruction of multiple payloads. The required precision in any of these applications will vary, according to the requirements of the task and abilities of GPS to cope with the environment and the dynamics. This paper describes the post-mission reconstruction of the relative trajectories of four GPS receivers attached to four payloads jettisoned from a rocket in a sub-orbital NASA science mission. It is shown that the sub-decimetre level were achieved with single frequency GPS receivers.

  1. NASA Glenn Research Center's Materials International Space Station Experiments (MISSE 1-7)

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce a.; Dever, Joyce A.; Jaworske, Donald A.; Miller, Sharon K.; Sechkar, Edward A.; Panko, Scott R.

    2008-01-01

    NASA Glenn Research Center (Glenn) has 39 individual materials flight experiments (>540 samples) flown as part of the Materials International Space Station Experiment (MISSE) to address long duration environmental durability of spacecraft materials in low Earth orbit (LEO). MISSE is a series of materials flight experiments consisting of trays, called Passive Experiment Carriers (PECs) that are exposed to the space environment on the exterior of the International Space Station (ISS). MISSE 1-5 have been successfully flown and retrieved and were exposed to the space environment from one to four years. MISSE 6A & 6B were deployed during the STS-123 shuttle mission in March 2008, and MISSE 7A & 7B are being prepared for launch in 2009. The Glenn MISSE experiments address atomic oxygen (AO) effects such as erosion and undercutting of polymers, AO scattering, stress effects on AO erosion, and in-situ AO fluence monitoring. Experiments also address solar radiation effects such as radiation induced polymer shrinkage, stress effects on radiation degradation of polymers, and radiation degradation of indium tin oxide (ITO) coatings and spacesuit fabrics. Additional experiments address combined AO and solar radiation effects on thermal control films, paints and cermet coatings. Experiments with Orion Crew Exploration Vehicle (CEV) seals and UltraFlex solar array materials are also being flown. Several experiments were designed to provide ground-facility to in-space calibration data thus enabling more accurate in-space performance predictions based on ground-laboratory testing. This paper provides an overview of Glenn s MISSE 1-7 flight experiments along with a summary of results from Glenn s MISSE 1 & 2 experiments.

  2. Automation of PCXMC and ImPACT for NASA Astronaut Medical Imaging Dose and Risk Tracking

    NASA Technical Reports Server (NTRS)

    Bahadori, Amir; Picco, Charles; Flores-McLaughlin, John; Shavers, Mark; Semones, Edward

    2011-01-01

    To automate astronaut organ and effective dose calculations from occupational X-ray and computed tomography (CT) examinations incorporating PCXMC and ImPACT tools and to estimate the associated lifetime cancer risk per the National Council on Radiation Protection & Measurements (NCRP) using MATLAB(R). Methods: NASA follows guidance from the NCRP on its operational radiation safety program for astronauts. NCRP Report 142 recommends that astronauts be informed of the cancer risks from reported exposures to ionizing radiation from medical imaging. MATLAB(R) code was written to retrieve exam parameters for medical imaging procedures from a NASA database, calculate associated dose and risk, and return results to the database, using the Microsoft .NET Framework. This code interfaces with the PCXMC executable and emulates the ImPACT Excel spreadsheet to calculate organ doses from X-rays and CTs, respectively, eliminating the need to utilize the PCXMC graphical user interface (except for a few special cases) and the ImPACT spreadsheet. Results: Using MATLAB(R) code to interface with PCXMC and replicate ImPACT dose calculation allowed for rapid evaluation of multiple medical imaging exams. The user inputs the exam parameter data into the database and runs the code. Based on the imaging modality and input parameters, the organ doses are calculated. Output files are created for record, and organ doses, effective dose, and cancer risks associated with each exam are written to the database. Annual and post-flight exposure reports, which are used by the flight surgeon to brief the astronaut, are generated from the database. Conclusions: Automating PCXMC and ImPACT for evaluation of NASA astronaut medical imaging radiation procedures allowed for a traceable and rapid method for tracking projected cancer risks associated with over 12,000 exposures. This code will be used to evaluate future medical radiation exposures, and can easily be modified to accommodate changes to the risk calculation procedure.

  3. Comparisons of the NASA ER-2 meteorological measurement system with radar tracking and radiosonde data

    NASA Technical Reports Server (NTRS)

    Gaines, Steven E.; Bowen, Stuart W.; Hipskind, R. S.; Bui, T. P.; Chan, K. R.

    1992-01-01

    Measurements of aircraft longitude, latitude, and velocity, and measurements of atmospheric pressure, temperature, and horizontal wind from the meteorological measurement system (MMS) on board the NASA ER-2 aircraft were compared with independent measurements of these quantities from radiosondes and radar tracking of both the ER-2 and radiosonde balloons. In general, the comparisons were good and within the expected measurement accuracy and natural variability of the meteorological parameters. Radar tracking of the ER-2 resolved the velocity and position drift of the inertial navigation system (INS). The rms errors in the horizontal velocity components of the ER-2, due to INS errors, were found to be 0.5 m/s. The magnitude of the drift in longitude and latitude depends on the sign and magnitude of the corresponding component velocity drift and can be a few hundredths of a degree. The radar altitudes of the ER-2 and radiosondes were used as the basis for comparing measurements of atmospheric pressure, temperature, and horizontal wind from these two platforms. The uncertainty in the MMS horizontal wind measurement is estimated to be +/- 2.5 m/s. The accuracy of the MMS pressure and temperature measurements were inferred to be +/- 0.3 hPa and +/- 0.3 K.

  4. Determining nest predators of the Least Bell's Vireo through point counts, tracking stations, and video photography

    USGS Publications Warehouse

    Peterson, B.L.; Kus, B.E.; Deutschman, D.H.

    2004-01-01

    We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.

  5. Data Acquisition System Architecture and Capabilities At NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2012-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  6. Identification and status of design improvements to the NASA shuttle EMU for International Space Station application

    NASA Astrophysics Data System (ADS)

    Wilde, Richard C.; Mcbarron, James W.; Faszcza, Jeffrey J.

    1997-06-01

    To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modification to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.

  7. Preliminary design, analysis, and costing of a dynamic scale model of the NASA space station

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Pinson, E. D.; Voqui, H. L.; Crawley, E. F.; Everman, M. R.

    1987-01-01

    The difficulty of testing the next generation of large flexible space structures on the ground places an emphasis on other means for validating predicted on-orbit dynamic behavior. Scale model technology represents one way of verifying analytical predictions with ground test data. This study investigates the preliminary design, scaling and cost trades for a Space Station dynamic scale model. The scaling of nonlinear joint behavior is studied from theoretical and practical points of view. Suspension system interaction trades are conducted for the ISS Dual Keel Configuration and Build-Up Stages suspended in the proposed NASA/LaRC Large Spacecraft Laboratory. Key issues addressed are scaling laws, replication vs. simulation of components, manufacturing, suspension interactions, joint behavior, damping, articulation capability, and cost. These issues are the subject of parametric trades versus the scale model factor. The results of these detailed analyses are used to recommend scale factors for four different scale model options, each with varying degrees of replication. Potential problems in constructing and testing the scale model are identified, and recommendations for further study are outlined.

  8. Data Acquisition System Architecture and Capabilities at NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2014-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  9. A Real Time Differential GPS Tracking System for NASA Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Bauer, Frank (Technical Monitor)

    2000-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

  10. Modeling and analysis of selected space station communications and tracking subsystems

    NASA Technical Reports Server (NTRS)

    Richmond, Elmer Raydean

    1993-01-01

    The Communications and Tracking System on board Space Station Freedom (SSF) provides space-to-ground, space-to-space, audio, and video communications, as well as tracking data reception and processing services. Each major category of service is provided by a communications subsystem which is controlled and monitored by software. Among these subsystems, the Assembly/Contingency Subsystem (ACS) and the Space-to-Ground Subsystem (SGS) provide communications with the ground via the Tracking and Data Relay Satellite (TDRS) System. The ACS is effectively SSF's command link, while the SGS is primarily intended as the data link for SSF payloads. The research activities of this project focused on the ACS and SGS antenna management algorithms identified in the Flight System Software Requirements (FSSR) documentation, including: (1) software modeling and evaluation of antenna management (positioning) algorithms; and (2) analysis and investigation of selected variables and parameters of these antenna management algorithms i.e., descriptions and definitions of ranges, scopes, and dimensions. In a related activity, to assist those responsible for monitoring the development of this flight system software, a brief summary of software metrics concepts, terms, measures, and uses was prepared.

  11. NASA Historical Data Book. Volume 6; NASA Space Applications, Aeronautics and Space Research and Technology, Tracking and Data Acquisition/Support Operations, Commercial Programs and

    NASA Technical Reports Server (NTRS)

    Rumerman, Judy A.

    2000-01-01

    This sixth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of several critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the space applications effort, the development and operation of aeronautics and space research and technology programs, tracking and data acquisition/space operations, commercial programs, facilities and installations, personnel, and finances and procurement during this era. Special thanks are owed to the student research assistants who gathered and input much of the tabular material-a particularly tedious undertaking. There are numerous people at NASA associated with historical study, technical information, and the mechanics of publishing who helped in myriad ways in the preparation of this historical data book.

  12. Tracking the Relative Motion of Four Space Payloads Launched from a Sub-Orbital NASA Rocket

    NASA Technical Reports Server (NTRS)

    Martell, Hugh; Bull, Barton

    1999-01-01

    One problem, which is comparatively new in the field of GPS applications, is the determination of the relative trajectories of space vehicles. Applications include the docking of spacecraft, collision avoidance in the area of space stations, and trajectory reconstruction of multiple payloads. The required precision in any of these applications will vary, according to the requirements of the task and abilities of GPS to cope with the environment and the dynamics. This paper describes the post-mission reconstruction of the relative trajectories of four GPS receivers attached to four payloads jettisoned from a Black Brant XII rocket. This vehicle was launched by the National Aeronautics and Space Administration (NASA) in January 1999 from the Poker Flats Research Range near Fairbanks, Alaska. The Black Brant XII is a sub-orbital rocket designed to carry payloads of 100 to 500 kg into the upper atmosphere. Flight time is generally in the order of 10-20 minutes. In this experiment, a GPS receiver and antenna was attached to each of the four payloads. One of the GPS receivers was assigned as the "base station", while the other 3 receivers were designated as remotes. GPS time, code and phase measurements were telemetered to a ground station for real-time processing and storage. The object of the mission was to re-compute the position and velocity of the remote units with respect to the base station during the launch phase and after the payloads separated. During the launch segment the 3 baseling distances between the 4 antennas are known from plans and are constant values until each payload is released. On the fly ambiguity determination was used to establish local coordinates from the base antenna to each of the other 3 GPS units during flight. Distance computations were made from the GPS-derived coordinates and compared to plan distances. Using this methodology an error analysis of the relative GPS accuracies has been presented and in addition a description given of the respective payload behaviour following separation from the vehicle.

  13. K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Densmore, Art; Jamnejad, Vahraz; Wu, T. K.; Woo, Ken

    1993-01-01

    This paper describes the development of the K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for NASA's ACTS Mobile Terminal (AMT) project. ACTS is NASA's Advanced Communications Technology Satellites. The AMT project will make the first experimental use of ACTS soon after the satellite is operational, to demonstrate mobile communications via the satellite from a van on the road. The AMT antenna system consists of a mechanically steered small reflector antenna, using a shared aperture for both frequency bands and fitting under a radome of 23 cm diameter and 10 cm height, and a microprocessor controlled antenna controller that tracks the satellite as the vehicle moves about. The RF and mechanical characteristics of the antenna and the antenna tracking control system are discussed. Measurements of the antenna performance are presented.

  14. NASA Now: International Space Station Payload Operations - Duration: 6 minutes, 56 seconds.

    NASA Video Gallery

    In this episode of NASA Now, you’ll hear Katie Presson of the Payload Operations Integration team at NASA's Marshall Space Flight Center in Huntsville, Ala., discuss investigations being conducte...

  15. NASA philosophy concerning space stations as operations centers for construction and maintenance of large orbiting energy systems

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1976-01-01

    Future United States plans for manned space-flight activities are summarized, emphasizing the long-term goals of achieving permanent occupancy and limited self-sufficiency in space. NASA-sponsored studies of earth-orbiting Space Station concepts are reviewed along with lessons learned from the Skylab missions. Descriptions are presented of the Space Transportation System, the Space Construction Base, and the concept of space industrialization (the processing and manufacturing of goods in space). Future plans for communications satellites, solar-power satellites, terrestrial observations from space stations, and manned orbital-transfer vehicles are discussed.

  16. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.

  17. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.

  18. A comparison and evaluation of satellite derived positions of tracking stations

    NASA Technical Reports Server (NTRS)

    Vincent, S. F.; Strange, W. E.; Marsh, J. G.

    1971-01-01

    A comparison is presented of sets of satellite tracking station coordinate values published in the past few years by a number of investigators, i.e. Goddard Space Flight Center, Smithsonian Astrophysical Observatory, Ohio State University, The Naval Weapons Laboratory, Air Force Cambridge Research Laboratories, and Wallops Island. The comparisons have been made in terms of latitude, longitude and height. The results of the various solutions have been compared directly and also with external standards such as local survey data and gravimetrically derived geoid heights. After taking into account systematic rotations, latitude and longitude agreement on a global basis is generally 15 meters or better, on the North American Datum agreement is generally better than 10 meters. Allowing for scale differences (of the order of 2 ppm) radial agreement is generally of the order of 10 meters.

  19. Overview of NASARTI (NASA Radiation Track Image) Program: Highlights of the Model Improvement and the New Results

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Plante, I.; George, Kerry; Cornforth, M. N.; Loucas, B. D.; Wu, Honglu

    2014-01-01

    This presentation summarizes several years of research done by the co-authors developing the NASARTI (NASA Radiation Track Image) program and supporting it with scientific data. The goal of the program is to support NASA mission to achieve a safe space travel for humans despite the perils of space radiation. The program focuses on selected topics in radiation biology that were deemed important throughout this period of time, both for the NASA human space flight program and to academic radiation research. Besides scientific support to develop strategies protecting humans against an exposure to deep space radiation during space missions, and understanding health effects from space radiation on astronauts, other important ramifications of the ionizing radiation were studied with the applicability to greater human needs: understanding the origins of cancer, the impact on human genome, and the application of computer technology to biological research addressing the health of general population. The models under NASARTI project include: the general properties of ionizing radiation, such as particular track structure, the effects of radiation on human DNA, visualization and the statistical properties of DSBs (DNA double-strand breaks), DNA damage and repair pathways models and cell phenotypes, chromosomal aberrations, microscopy data analysis and the application to human tissue damage and cancer models. The development of the GUI and the interactive website, as deliverables to NASA operations teams and tools for a broader research community, is discussed. Most recent findings in the area of chromosomal aberrations and the application of the stochastic track structure are also presented.

  20. Orbital Debris Detection and Tracking Strategies for the NASA/AFRL Meter Class Autonomous Telescope (MCAT)

    NASA Technical Reports Server (NTRS)

    Mulrooney, M.; Hickson, P.; Stansbery, Eugene G.

    2010-01-01

    MCAT (Meter-Class Autonomous Telescope) is a 1.3m f/4 Ritchey-Chr tien on a double horseshoe equatorial mount that will be deployed in early 2011 to the western pacific island of Legan in the Kwajalein Atoll to perform orbital debris observations. MCAT will be capable of tracking earth orbital objects at all inclinations and at altitudes from 200 km to geosynchronous. MCAT s primary objective is the detection of new orbital debris in both low-inclination low-earth orbits (LEO) and at geosynchronous earth orbit (GEO). MCAT was thus designed with a fast focal ratio and a large unvignetted image circle able to accommodate a detector sized to yield a large field of view. The selected primary detector is a close-cycle cooled 4Kx4K 15um pixel CCD camera that yields a 0.9 degree diagonal field. For orbital debris detection in widely spaced angular rate regimes, the camera must offer low read-noise performance over a wide range of framing rates. MCAT s 4-port camera operates from 100 kHz to 1.5 MHz per port at 2 e- and 10 e- read noise respectively. This enables low-noise multi-second exposures for GEO observations as well as rapid (several frames per second) exposures for LEO. GEO observations will be performed using a counter-sidereal time delay integration (TDI) technique which NASA has used successfully in the past. For MCAT the GEO survey, detection, and follow-up prediction algorithms will be automated. These algorithms will be detailed herein. For LEO observations two methods will be employed. The first, Orbit Survey Mode (OSM), will scan specific orbital inclination and altitude regimes, detect new orbital debris objects against trailed background stars, and adjust the telescope track to follow the detected object. The second, Stare and Chase Mode (SCM), will perform a stare, then detect and track objects that enter the field of view which satisfy specific rate and brightness criteria. As with GEO, the LEO operational modes will be fully automated and will be described herein. The automation of photometric and astrometric processing (thus streamlining data collection for environmental modeling) will also be discussed.

  1. NASA space station automation: AI-based technology review. Executive summary

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.

  2. Investigation of Techniques for Simulating Communications and Tracking Subsystems on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Deacetis, Louis A.

    1991-01-01

    The need to reduce the costs of Space Station Freedom has resulted in a major redesign and downsizing of the Station in general, and its Communications and Tracking (C&T) components in particular. Earlier models and simulations of the C&T Space-to-Ground Subsystem (SGS) in particular are no longer valid. There thus exists a general need for updated, high fidelity simulations of C&T subsystems. This project explored simulation techniques and methods that might be used in developing new simulations of C&T subsystems, including the SGS. Three requirements were placed on the simulations to be developed: (1) they run on IBM PC/XT/AT compatible computers; (2) they be written in Ada as much as possible; and (3) since control and monitoring of the C&T subsystems will involve communication via a MIL-STD-1553B serial bus, that the possibility of commanding the simulator and monitoring its sensors via that bus be included in the design of the simulator. The result of the project is a prototype of a simulation of the Assembly/Contingency Transponder of the SGS, written in Ada, which can be controlled from another PC via a MIL-STD-1553B bus.

  3. GPS Sounding Rocket Development at NASA with Simultaneous Multi-Payload Tracking Application

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Martel, Hugh

    2000-01-01

    An inverse differential GPS system has been developed for Sounding Rocket use which includes the flight unit and a ground station capable of extracting GPS data from sounding rocket telemetry, performing a real time differential solution and graphically displaying the rocket's path relative to a predicted trajectory plot. Accuracy has been proven to within less than 10 meters. Postprocessing has increased the precision to within 10 - 20 centimeters. The system has been successfully flown several times and delivered to the Sounding Program Office for routine field use. In addition to providing position, velocity and time GPS data has been used on sounding rockets for vehicle performance analysis, effecting a one hundred fold improvement in data time tagging, and steering an optical tracking device to intercept payloads launched from over the horizon. Precise velocity separation information and timing has been provided to multiple payload systems. Future plans include its use for Range Safety and enabling of interferometric techniques. The technology and software developed also has potential application to small satellite navigation and formation flying.

  4. NASA

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The guiding principles for US exploration of air and space have remained remarkably consistent for more than 80 years. In 1915, Congress created an organization that would `supervise and direct the scientific study of the problems of flight, with a view to their practical solutions'. That organization, the National Advisory Committee for Aeronautics (NACA), evolved into NASA four decades later....

  5. The Mothball, Sustainment, and Proposed Reactivation of the Hypersonic Tunnel Facility (HTF) at NASA Glenn Research Center Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.

    2010-01-01

    The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart

  6. Using NASA's Giovanni System to Simulate Time-Series Stations in the Outflow Region of California's Eel River

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Shen, Suhung; Leptoukh, Gregory G.; Lee, Zhongping

    2012-01-01

    Oceanographic time-series stations provide vital data for the monitoring of oceanic processes, particularly those associated with trends over time and interannual variability. There are likely numerous locations where the establishment of a time-series station would be desirable, but for reasons of funding or logistics, such establishment may not be feasible. An alternative to an operational time-series station is monitoring of sites via remote sensing. In this study, the NASA Giovanni data system is employed to simulate the establishment of two time-series stations near the outflow region of California s Eel River, which carries a high sediment load. Previous time-series analysis of this location (Acker et al. 2009) indicated that remotely-sensed chl a exhibits a statistically significant increasing trend during summer (low flow) months, but no apparent trend during winter (high flow) months. Examination of several newly-available ocean data parameters in Giovanni, including 8-day resolution data, demonstrates the differences in ocean parameter trends at the two locations compared to regionally-averaged time-series. The hypothesis that the increased summer chl a values are related to increasing SST is evaluated, and the signature of the Eel River plume is defined with ocean optical parameters.

  7. Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

  8. NASA Network

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

  9. NASA Education Activities on the International Space Station: A National Laboratory for Inspiring, Engaging, Educating and Employing the Next Generation

    NASA Technical Reports Server (NTRS)

    Severance, Mark T.; Tate-Brown, Judy; McArthur, Cynthia L.

    2010-01-01

    The International Space Station (ISS) National Lab Education Project has been created as a part of the ISS National Lab effort mandated by the U.S. Congress The project seeks to expand ISS education of activities so that they reach a larger number of students with clear educational metrics of accomplishments. This paper provides an overview of several recent ISS educational payloads and activities. The expected outcomes of the project, consistent with those of the NASA Office of Education, are also described. NASA performs numerous education activities as part of its ISS program. These cover the gamut from formal to informal educational opportunities in grades Kindergarten to grade 12, Higher Education (undergraduate and graduate University) and informal educational venues (museums, science centers, exhibits). Projects within the portfolio consist of experiments performed onboard the ISS using onboard resources which require no upmass, payloads flown to ISS or integrated into ISS cargo vehicles, and ground based activities that follow or complement onboard activities. Examples include ground based control group experiments, flight or experiment following lesson plans, ground based activities involving direct interaction with ISS or ground based activities considering ISS resources in their solution set. These projects range from totally NASA funded to projects which partner with external entities. These external agencies can be: other federal, state or local government agencies, commercial entities, universities, professional organizations or non-profit organizations. This paper will describe the recent ISS education activities and discuss the approach, outcomes and metrics associated with the projects.

  10. Space station needs, attributes and architectural options. Volume 1: Executive summary NASA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The uses alignment plan was implemented. The existing data bank was used to define a large number of station requirements. Ten to 20 valid mission scenarios were developed. Architectural options as they are influenced by communications operations, subsystem evolvability, and required technology growth are defined. Costing of evolutionary concepts, alternative approaches, and options, was based on minimum design details.

  11. The NASA-Lewis terrestrial photovoltaics program. [solar cell power system for weather station

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1973-01-01

    Research and technology efforts on solar cells and arrays having relevance to terrestrial uses are outline. These include raising cell efficiency, developing the FEP-covered module concept, and exploring low cost cell concepts. Solar cell-battery power systems for remote weather stations have been built to demonstrate the capabilities of solar cells for terrestrial applications.

  12. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Astrophysics Data System (ADS)

    Aller, R. O.

    1985-10-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  13. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  14. Tracking and data relay satellite operations in the 1980's

    NASA Astrophysics Data System (ADS)

    Sade, R. S.; Deerkoski, L.

    NASA near-earth orbit tracking and data acquisition activities are evolving from a network of ground tracking stations located in the U.S. and around the world, to a network of two, in synchronous orbit, tracking and data relay satellites plus an in orbit spare. This paper discusses the elements that make up this evolving Tracking and Data Relay Satellite System (TDRSS) Network, that will provide the basis for the tracking and data relay satellite (TDRS) operations in the 1980's.

  15. International Space Station Bus Regulation With NASA Glenn Research Center Flywheel Energy Storage System Development Unit

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E.; Kenny, Barbara H.; Dever, Timothy P.; Santiago, Walter; Jansen, Ralph H.

    2001-01-01

    An experimental flywheel energy storage system is described. This system is being used to develop a flywheel based replacement for the batteries on the International Space Station (ISS). Motor control algorithms which allow the flywheel to interface with a simplified model of the ISS power bus, and function similarly to the existing ISS battery system, are described. Results of controller experimental verification on a 300 W-hr flywheel are presented.

  16. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 4: Conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.

  17. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 5: Study analysis report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be on-board the Freedom Space Station. The further analysis performed on the SCS study as part of task 2-Perform Studies and Parametric Analysis-of the SCS study contract is summarized. These analyses were performed to resolve open issues remaining after the completion of task 1, and the publishing of the SCS study issues report. The results of these studies provide inputs into SCS task 3-Develop and present SCS requirements, and SCS task 4-develop SCS conceptual designs. The purpose of these studies is to resolve the issues into usable requirements given the best available information at the time of the study. A list of all the SCS study issues is given.

  18. Design, fabrication and test of a prototype double gimbal control moment gyroscope for the NASA Space Station

    NASA Technical Reports Server (NTRS)

    Blondin, Joseph; Hahn, Eric; Kolvek, John; Cook, Lewis; Golley, Paul

    1989-01-01

    Recognizing the need to develop future technologies in support of the Space Station, NASA's Advanced Development Program (ADP) placed as its goal the design and fabrication of a prototype 4750 Newton-meter-second (3500 ft-lb-sec) Control Moment Gyroscope (CMG). The CMG uses the principle of momentum exchange to impart control torques for counteracting vehicle disturbances. This paper addresses the selection of the double gimbal CMG over the single gimbal and describes the major subassemblies of the prototype design. Particular attention is given to the choice of the materials, fabrication and design details dictated by the man-rated mission requirement. Physical characteristics and the results of functional testing are presented to demonstrate the level of system performance obtained. Comparisons are made of the measured system responses against design goals and predictions generated by computer simulation.

  19. The Santa Maria Ground Station Technical Parameters with Trainee Operation for CubeSat Tracking - Capacity Building

    NASA Astrophysics Data System (ADS)

    Manica, Thales Ramos; Schuch, Nelson Jorge; Moro, Pietro Fernando; Cupertino Durao, Otavio S.; Farias, Tiago Travi; Mozzaquatro Wendt, João Francisco

    This paper aims to describe the technical parameters of the NANOSATC-BR1's Ground Station (GS) installed at the Southern Regional Space Research Center - CRS/INPE-MCTI, Santa Maria, RS, Southern of Brazil, (29.4245ºS, 53.4303ºW) which is being operated by two UFSM' trainee students financed by the Brazilian Space Agency (AEB), from the INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program (CBP). The NANOSATC-BR - CubeSats development Project, consists of two CubeSats, NANOSATC-BR 1 (1U) & 2 (2U) and is expected to operate in orbit for at least 12 months each. The NANOSATC-BR 1 & 2 - CubeSats spaces stations communication subsystems will make the radio down and up data links with the NANOSATC-BR Ground Stations Network. The Ground Station is compatible with on board NANOSAC-BR 1 & 2 systems and also with the GENSO (Global Educational Network for Satellite Operations). It was projected to track LEO (Low Earth Orbit) nanosatellites operating in the IARU (International Amateur Radio Union) VHF and UHF bandwidths and also at S-band frequency. The Program with its NANOSATC-BR Brazilian Ground Stations Network are presented and it has support from The Brazilian Space Agency (AEB).

  20. An historical overview of NASA manned spacecraft and their crew stations

    NASA Technical Reports Server (NTRS)

    Loftus, J. P.

    1985-01-01

    The first generation of manned spacecraft demonstrated all the types of mission activity planned for the future. Development of these spacecraft and execution of their missions have provided the experience base for the design of current and future spacecraft systems. This paper summarizes the crew station characteristics of the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Space Shuttle spacecraft and the design strategies that dictated those characteristics. Also included are some comparisons with current and planned spacecraft and an assessment of the lessons learned as they might be applied in future spacecraft designs.

  1. VON and Its Use in NASA's International Space Station Science Operation

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Chamberlain, Jim

    1999-01-01

    This presentation will provide a brief overview of a International Space Station (ISS) remote user (scientist/experimenter) operation. Specifically, the presentation will show how Voice over IP (VoIP) is integrated into the ISS science payload operation and in the mission voice system. Included will be the details on how a scientist, using VON, will talk to the ISS onboard crew and ground based cadre from a scientist's home location (lab, office or garage) over tile public Internet and science nets. Benefit(s) to tile ISS Program (and taxpayer) and of VoIP versus other implementations also will be presented.

  2. Space Station: NASA's software development approach increases safety and cost risks. Report to the Chairman, Committee on Science, Space, and Technology, House of Representatives

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The House Committee on Science, Space, and Technology asked NASA to study software development issues for the space station. How well NASA has implemented key software engineering practices for the station was asked. Specifically, the objectives were to determine: (1) if independent verification and validation techniques are being used to ensure that critical software meets specified requirements and functions; (2) if NASA has incorporated software risk management techniques into program; (3) whether standards are in place that will prescribe a disciplined, uniform approach to software development; and (4) if software support tools will help, as intended, to maximize efficiency in developing and maintaining the software. To meet the objectives, NASA proceeded: (1) reviewing and analyzing software development objectives and strategies contained in NASA conference publications; (2) reviewing and analyzing NASA, other government, and industry guidelines for establishing good software development practices; (3) reviewing and analyzing technical proposals and contracts; (4) reviewing and analyzing software management plans, risk management plans, and program requirements; (4) reviewing and analyzing reports prepared by NASA and contractor officials that identified key issues and challenges facing the program; (5) obtaining expert opinions on what constitutes appropriate independent V-and-V and software risk management activities; (6) interviewing program officials at NASA headquarters in Washington, DC; at the Space Station Program Office in Reston, Virginia; and at the three work package centers; Johnson in Houston, Texas; Marshall in Huntsville, Alabama; and Lewis in Cleveland, Ohio; and (7) interviewing contractor officials doing work for NASA at Johnson and Marshall. The audit work was performed in accordance with generally accepted government auditing standards, between April 1991 and May 1992.

  3. The NASA/JPL 64-meter-diameter antenna at Goldstone, California: Project report, technical staff, tracking and data acquisition organization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The significant management and technical aspects of the JPL Project to develop and implement a 64-meter-diameter antenna at the Goldstone Deep Space Communications Complex in California, which was the first of the Advanced Antenna Systems of the National Aeronautics and Space Administration/Jet Propulsion Laboratory Deep Space Network are described. The original need foreseen for a large-diameter antenna to accomplish communication and tracking support of NASA's solar system exploration program is reviewed, and the translation of those needs into the technical specification of an appropriate ground station antenna is described. The antenna project is delineated by phases to show the key technical and managerial skills and the technical facility resources involved. There is a brief engineering description of the antenna and its closely related facilities. Some difficult and interesting engineering problems, then at the state-of-the-art level, which were met in the accomplishment of the Project, are described. The key performance characteristics of the antenna, in relation to the original specifications and the methods of their determination, are stated.

  4. Applying a Space-Based Security Recovery Scheme for Critical Homeland Security Cyberinfrastructure Utilizing the NASA Tracking and Data Relay (TDRS) Based Space Network

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.; McLaughlin, Brian; Stocklin, Frank; Fortin, Andre; Israel, David; Dissanayake, Asoka; Gilliand, Denise; LaFontaine, Richard; Broomandan, Richard; Hyunh, Nancy

    2015-01-01

    Protection of the national infrastructure is a high priority for cybersecurity of the homeland. Critical infrastructure such as the national power grid, commercial financial networks, and communications networks have been successfully invaded and re-invaded from foreign and domestic attackers. The ability to re-establish authentication and confidentiality of the network participants via secure channels that have not been compromised would be an important countermeasure to compromise of our critical network infrastructure. This paper describes a concept of operations by which the NASA Tracking and Data Relay (TDRS) constellation of spacecraft in conjunction with the White Sands Complex (WSC) Ground Station host a security recovery system for re-establishing secure network communications in the event of a national or regional cyberattack. Users would perform security and network restoral functions via a Broadcast Satellite Service (BSS) from the TDRS constellation. The BSS enrollment only requires that each network location have a receive antenna and satellite receiver. This would be no more complex than setting up a DIRECTTV-like receiver at each network location with separate network connectivity. A GEO BSS would allow a mass re-enrollment of network nodes (up to nationwide) simultaneously depending upon downlink characteristics. This paper details the spectrum requirements, link budget, notional assets and communications requirements for the scheme. It describes the architecture of such a system and the manner in which it leverages off of the existing secure infrastructure which is already in place and managed by the NASAGSFC Space Network Project.

  5. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Concept document

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) concept document describes and establishes requirements for the functional performance of the SCS system, including interface, logistic, and qualification requirements. The SCS is the computational communications and display segment of the Marshall Space Flight Center (MSFC) Payload Training Complex (PTC). The PTC is the MSFC facility that will train onboard and ground operations personnel to operate the payloads and experiments on board the international Space Station Freedom. The requirements to be satisfied by the system implementation are identified here. The SCS concept document defines the requirements to be satisfied through the implementation of the system capability. The information provides the operational basis for defining the requirements to be allocated to the system components and enables the system organization to assess whether or not the completed system complies with the requirements of the system.

  6. NASA's plans for life sciences research facilities on a Space Station

    NASA Technical Reports Server (NTRS)

    Arno, R.; Heinrich, M.; Mascy, A.

    1984-01-01

    A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.

  7. NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

    2003-01-01

    The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

  8. Evaluation of Kapton pyrolysis, arc tracking, and arc propagation on the Space Station Freedom (SSF) solar array Flexible Carrier (FCC)

    SciTech Connect

    Stueber, T.J.

    1991-11-01

    Recent studies involving the use of polyimide Kapton coated wires indicate that if a momentary electrical short circuit occurs between two wires, sufficient heating of the Kapton can occur to thermally char (pyrolyze) the Kapton. Such charred Kapton has sufficient electrical conductivity to create an arc which tracks down the wires and possibly propagates to adjoining wires. These studies prompted an investigation to ascertain the likelihood of the Kapton pyrolysis, arc tracking and propagation phenomena, and the magnitude of destruction conceivably inflicted on Space Station Freedom's (SSF) Flexible Current Carrier (FCC) for the photovoltaic array. The geometric layout of the FCC, having a planar-type orientation as opposed to bundles, may reduce the probability of sustaining an arc. An experimental investigation was conducted to simulate conditions under which an arc can occur on the FCC of SSF, and the consequences of arc initiation.

  9. NASA Docking System (NDS) Users Guide: International Space Station Program. Type 4

    NASA Technical Reports Server (NTRS)

    Tabakman, Alexander

    2010-01-01

    The NASA Docking System (NDS) Users Guide provides an overview of the basic information needed to integrate the NDS onto a Host Vehicle (HV). This Users Guide is intended to provide a vehicle developer with a fundamental understanding of the NDS technical and operations information to support their program and engineering integration planning. The Users Guide identifies the NDS Specification, Interface Definition or Requirement Documents that contain the complete technical details and requirements that a vehicle developer must use to design, develop and verify their systems will interface with NDS. This Guide is an initial reference and must not be used as a design document. In the event of conflict between this Users Guide and other applicable interface definition or requirements documents; the applicable document will take precedence. This Users Guide is organized in three main sections. Chapter 1 provides an overview of the NDS and CDA hardware and the operations concepts for the NDS. Chapter 2 provides information for Host Vehicle Program integration with the NDS Project Office. Chapter 2 describes the NDS Project organization, integration and verification processes, user responsibilities, and specification and interface requirement documents. Chapter 3 provides a summary of basic technical information for the NDS design. Chapter 3 includes NDS hardware component descriptions, physical size and weight characteristics, and summary of the capabilities and constraints for the various NDS sub-systems.

  10. Orthostatic Hypotension After Long-Duration Space Flight: NASA's Experiences from the International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Feiveson, Alan H.; Stenger, Michael B.; Stein, Sydney P.; Platts, Steven H.

    2011-01-01

    Our laboratory previously reported that the incidence of orthostatic hypotension (OH) was greater after long- than short-duration spaceflight in astronauts who participated in Mir Space Station and Space Shuttle missions. To confirm and extend these findings, we retrospectively examined tilt test data from International Space Station (ISS) and Shuttle astronauts. We anticipated that the proportion of ISS astronauts experiencing OH would be high on landing day and the number of days to recover greater after long- than short-duration missions. Methods: Twenty ISS and 66 Shuttle astronauts participated in 10-min 80? head-up tilt tests 10 d before launch (L-10), on landing day (R+0) or 1 d after landing (R+1). Data from 5 ISS astronauts tested on R+0 or R+1 who used non-standard countermeasures were excluded. Many astronauts repeated the test 3 d (R+3) after landing. Fisher?s Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the tilt test on R+0. Cox regression was used to identify cardiovascular parameters that were associated with test completion across all tests, and mixed model analysis was used to compare the change and recovery rates between ISS and Shuttle astronauts. In these analyses, ISS data from R+0 and R+1 were pooled to provide sufficient statistical power. Results: The proportion of astronauts who completed the tilt test on R+0 without OH was less in ISS than in Shuttle astronauts (p=0.03). On R+0, only 2 of 6 ISS astronauts completed the test compared to 53 of 66 (80%) Shuttle astronauts. However, 8 of 9 ISS astronauts completed the test on R+1. On R+3, 13 of 15 (87%) of the ISS and 19 of 19 (100%) of the Shuttle astronauts completed the 10-min test. An index comprised of stroke volume and diastolic blood pressure provided a very good prediction of overall tilt survival. This index was altered by spaceflight similarly for both groups soon after landing (pooled R+0 and R+ 1), but ISS astronauts did not recover at the same rate as Shuttle astronauts (p=0.007). Conclusions: The proportion of ISS astronauts who could not complete the tilt test on R+0 due to OH (4 of 6) is similar to that reported in astronauts who flew on Mir (5 of 6). Further, cardiovascular parameters most closely associated with OH recover more slowly after long- compared to short-duration spaceflight.

  11. Fast-Tracked Soyuz Docks to Station - Duration: 3 minutes, 37 seconds.

    NASA Video Gallery

    The Soyuz TMA-08M spacecraft carrying three new Expedition 35 crew members docks with the International Space Station at 10:28 p.m. EDT Thursday, completing its accelerated journey to the orbiting ...

  12. A determination of the radio-planetary frame tie and the DSN tracking station locations

    NASA Technical Reports Server (NTRS)

    Finger, Mark H.; Folkner, William M.

    1990-01-01

    The orientation of the reference frame of radio source catalogs relative to that of planetary ephemerides is uncertain by 30 mas (150 nrad). At this level of uncertainty this orientation offset, or 'frame tie', can be a major systematic error source for interplanetary spacecraft orbit determination. This work presents a method of determining the radio-planetary frame tie from a comparison of Very Long Baseline Interferometry (VLBI) and Lunar Laser Ranging (LLR) station coordinate and earth orientation parameter estimates. Preliminary results are presented which indicate that accuracies of 5 mas or better may be achieved with this method. An important by-product of this method of frame tie determination is a set of Deep Space Network (DSN) station locations with 10 cm per component accuracy. This station set is in a geocentric coordinate system with known orientation relative to the radio and planetary frames.

  13. Optoelectronic sensors to measure velocity and level for Moscow Metro rail track monitoring station

    NASA Astrophysics Data System (ADS)

    Larionov, Sergei V.; Kabov, Serge F.; Popov, Dmitry V.; Titov, Evgeny V.

    2002-04-01

    The contact-free photon system of measurement of a rail track contains the subsystem of level measurement of an inclination of a rail track monitoring car, velocity of driving and sample of pickets. This subsystem is implemented on the basis of optoelectronic sensors and Complex Programmable Logic Device (CPLD). The format of the transmitted data surveyed the calculation of parameters for a given accuracy and speed range is reduced. The outcomes and structure of the subsystem is shown. The value of a velocity is determined in notebook by an amount of going impulses from the optoelectronic sensor.

  14. A review of NASA international programs

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A synoptic overview of NASA's international activities to January 1979 is presented. The cooperating countries and international organizations are identified. Topics covered include (1) cooperative arrangements for ground-based, spaceborne, airborne, rocket-borne, and balloon-borne ventures, joint development, and aeronautical R & D; (2) reimbursable launchings; (3) tracking and data acquisition; and (4) personnel exchanges. International participation in NASA's Earth resources investigations is summarized in the appendix. A list of automatic picture transmission stations is included.

  15. Establishing a communications-intensive network to resolve artificial intelligence issues within NASA's Space Station Freedom research centers community

    NASA Technical Reports Server (NTRS)

    Howard, E. Davis, III

    1990-01-01

    MITRE Corporation's, A Review of Space Station Freedom Program Capabilities for the Development and Application of Advanced Automation, cites as a critical issue the following situation, extant at the NASA facilities visited in the course of preparing the review: The major issues noted with regard to design and research facilities deal with cooperative problem solving, technology transfer, and communication between these facilities. While the authors were visiting lab and test beds to collect information, personnel at many of these facilities were interested in any information they could collect on activities at other facilities. A formal means of gathering this information could not be identified by these personnel. While communication between some facilities was taking place or was planned, for technology transfer or coordination of schedules (e.g., for SADP demonstrations), poor communication between these facilities could lead to a lack of technical standards, duplication of effort, poorly defined interfaces, scheduling problems, and increased cost. Formal mechanisms by which effective communication and cooperative problem solving can take place, and information can be disseminated, must be defined. A solution is proposed for the communications aspects of the issues addressed above; and offered at the same time a solution which can prove effective in dealing with some of the problems being encountered with expertise being lost via retirement or defection to the private sector. The proffered recommendations are recognizably cost-effective and tap the rising sector of expert knowledge being produced by the American academic community.

  16. Historics of the Space Tracking And Data Acquisition Network (STADAN), the Manned Space Flight Network (MSFN), and the NASA Communications Network (NASCOM)

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1974-01-01

    The historical and technical aspects of the major networks which comprise the NASA tracking and data acquisition system are considered in a complete reference work which traces the origin and growth of STADAN, MSFN, and NASCOM up to mid-1971. The roles of these networks in both the Gemini and Apollo programs are discussed, and the separate developmental trends are identified for each network.

  17. NASA Radiation Track Image GUI for Assessing Space Radiation Biological Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Cucinotta, Francis A.

    2006-01-01

    The high-charge high-energy (HZE) ion components of the galactic cosmic rays when compared to terrestrial forms of radiations present unique challenges to biological systems. In this paper we present a deoxyribonucleic acid (DNA) breakage model to visualize and analyze the impact of chromatin domains and DNA loops on clustering of DNA damage from X rays, protons, and HZE ions. Our model of DNA breakage is based on a stochastic process of DNA double-strand break (DSB) formulation that includes the amorphous model of the radiation track and a polymer model of DNA packed in the cell nucleus. Our model is a Monte-Carlo simulation based on a randomly located DSB cluster formulation that accomodates both high- and low-linear energy transfer radiations. We demonstrate that HZE ions have a strong impact on DSB clustering, both along the chromosome length and in the nucleus volume. The effects of chromosomal domains and DNA loops on the DSB fragment-size distribution and the spatial distribution of DSB in the nucleus were studied. We compare our model predictions with the spatial distribution of DSB obtained from experiments. The implications of our model predictions for radiation protection are discussed.

  18. Fast Track Lunar NTR Systems Assessment for NASA's First Lunar Outpost and Its Evolvability to Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Alexander, Stephen W.

    1995-01-01

    Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. A 'standardized' set of engine and stage components are identified and used in a 'building block' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I(sub sp)) of 900 seconds, and an engine thrust-to-weight ratio of 4. 3. For the National Aeronautics and Space Administrations (NASA) First Lunar Outpost (FLO) mission, and expendable NTR stage powered by two such engines can deliver approximately 96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH2) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH2 capacity to approximately 20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The 'modular' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions.

  19. Fast Track NTR Systems Assessment for NASA's First Lunar Outpost Scenario

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Alexander, Stephen W.

    1994-01-01

    Integrated systems and mission study results are presented which quantify the rationale and benefits for developing and using nuclear thermal rocket (NTR) technology for returning humans to the moon in the early 2000's. At present, the Exploration Program Office (ExPO) is considering chemical propulsion for its 'First Lunar Outpost' (FLO) mission, and NTR propulsion for the more demanding Mars missions to follow. The use of an NTR-based lunar transfer stage, capable of evolving to Mars mission applications, could result in an accelerated schedule, reduced cost approach to moon/Mars exploration. Lunar mission applications would also provide valuable operational experience and serve as a 'proving ground' for NTR engine and stage technologies. In terms of performance benefits, studies indicate that an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to trans-lunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 199 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.8 m length, and 68 t LH2 capacity. The NTR utilizes a 'graphite' fuel form consisting of coated UC2 particles in a graphite substrate, and has a specific impulse capability of approximately 870 s, and an engine thrust-to-weight ratio of approximately 4.8. The NTR stage and its piloted FLO lander has a total length of approximately 38 m and can be launched by a single Saturn V-derived heavy lift launch vehicle (HLLV) in the 200 to 250 t-class range. The paper summarizes NASA's First Lunar Outpost scenario, describes characteristics for representative engine/stage configurations, and examines the impact on engine selection and vehicle design resulting from a consideration of alternative NTR fuel forms and lunar mission profiles.

  20. ``Fast track'' lunar NTR systems assessment for NASA's first lunar outpost and its evolvability to Mars

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Alexander, Stephen W.

    1993-01-01

    Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportion system (STS) based on nuclear thermal rocket (NTR) technology. A ``standardized'' set of engine and stage components are identified and used in a ``building block'' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (Isp) of 900 seconds, and an engine thrust-to-weight ratio of 4.3. For the National Aeronautics and Space Administration's (NASA) First Lunar Outpost (FLO) mission, an expendable NTR stage powered by two such engines can deliver ~96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of ~198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH2) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH2 capacity to ~20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The ``modular'' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions.

  1. Fast Track lunar NTR systems assessment for NASA's first lunar outpost and its evolvability to Mars

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Alexander, Stephen W.

    1995-10-01

    Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. A 'standardized' set of engine and stage components are identified and used in a 'building block' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I(sub sp)) of 900 seconds, and an engine thrust-to-weight ratio of 4. 3. For the National Aeronautics and Space Administrations (NASA) First Lunar Outpost (FLO) mission, and expendable NTR stage powered by two such engines can deliver approximately 96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH2) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH2 capacity to approximately 20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The 'modular' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions.

  2. Traversing Microphone Track Installed in NASA Lewis' Aero-Acoustic Propulsion Laboratory Dome

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.; Perusek, Gail P.

    1999-01-01

    The Aero-Acoustic Propulsion Laboratory is an acoustically treated, 65-ft-tall dome located at the NASA Lewis Research Center. Inside this laboratory is the Nozzle Acoustic Test Rig (NATR), which is used in support of Advanced Subsonics Technology (AST) and High Speed Research (HSR) to test engine exhaust nozzles for thrust and acoustic performance under simulated takeoff conditions. Acoustic measurements had been gathered by a far-field array of microphones located along the dome wall and 10-ft above the floor. Recently, it became desirable to collect acoustic data for engine certifications (as specified by the Federal Aviation Administration (FAA)) that would simulate the noise of an aircraft taking off as heard from an offset ground location. Since nozzles for the High-Speed Civil Transport have straight sides that cause their noise signature to vary radially, an additional plane of acoustic measurement was required. Desired was an arched array of 24 microphones, equally spaced from the nozzle and each other, in a 25 off-vertical plane. The various research requirements made this a challenging task. The microphones needed to be aimed at the nozzle accurately and held firmly in place during testing, but it was also essential that they be easily and routinely lowered to the floor for calibration and servicing. Once serviced, the microphones would have to be returned to their previous location near the ceiling. In addition, there could be no structure could between the microphones and the nozzle, and any structure near the microphones would have to be designed to minimize noise reflections. After many concepts were considered, a single arched truss structure was selected that would be permanently affixed to the dome ceiling and to one end of the dome floor.

  3. Three-Station Three-dimensional Bolus-Chase MR Angiography with Real-time Fluoroscopic Tracking

    PubMed Central

    Johnson, Casey P.; Weavers, Paul T.; Borisch, Eric A.; Grimm, Roger C.; Hulshizer, Thomas C.; LaPlante, Christine C.; Rossman, Phillip J.; Glockner, James F.; Young, Phillip M.

    2014-01-01

    Purpose To determine the feasibility of using real-time fluoroscopic tracking for bolus-chase magnetic resonance (MR) angiography of peripheral vasculature to image three stations from the aortoiliac bifurcation to the pedal arteries. Materials and Methods This prospective study was institutional review board approved and HIPAA compliant. Eight healthy volunteers (three men; mean age, 48 years; age range, 30–81 years) and 13 patients suspected of having peripheral arterial disease (five men; mean age, 67 years; age range, 47–81 years) were enrolled and provided informed consent. All subjects were imaged with the fluoroscopic tracking MR angiographic protocol. Ten patients also underwent a clinical computed tomographic (CT) angiographic runoff examination. Two readers scored the MR angiographic studies for vessel signal intensity and sharpness and presence of confounding artifacts and venous contamination at 35 arterial segments. Mean aggregate scores were assessed. The paired MR angiographic and CT angiographic studies also were scored for visualization of disease, reader confidence, and overall diagnostic quality and were compared by using a Wilcoxon signed rank test. Results Real-time fluoroscopic tracking performed well technically in all studies. Vessel segments were scored good to excellent in all but the following categories: For vessel signal intensity and sharpness, the abdominal aorta, iliac arteries, distal plantar arteries, and plantar arch were scored as fair to good; and for presence of confounding artifacts, the abdominal aorta and iliac arteries were scored as fair. The MR angiograms and CT angiograms did not differ significantly in any scoring category (reader 1: P = .50, .39, and .39; reader 2: P = .41, .61, and .33, respectively). CT scores were substantially better in 20% (four of 20) and 25% (five of 20) of the pooled evaluations for the visualization of disease and overall image quality categories, respectively, versus 5% (one of 20) for MR scores in both categories. Conclusion Three-station bolus-chase MR angiography with real-time fluoroscopic tracking provided high-spatial-resolution arteriograms of the peripheral vasculature, enabled precise triggering of table motion, and compared well with CT angiograms. © RSNA, 2014 Online supplemental material is available for this article. PMID:24635676

  4. GLGM-3: A Degree-ISO Lunar Gravity Model from the Historical Tracking Data of NASA Moon Orbiters

    NASA Technical Reports Server (NTRS)

    Mazarico, E.; Lemoine, F. G.; Han, Shin-Chan; Smith, D. E.

    2010-01-01

    In preparation for the radio science experiment of the Lunar Reconnaissance Orbiter (LRO) mission, we analyzed the available radio tracking data of previous NASA lunar orbiters. Our goal was to use these historical observations in combination with the new low-altitude data to be obtained by LRO. We performed Precision Orbit Determination on trajectory arcs from Lunar Orbiter 1 in 1966 to Lunar Prospector in 1998, using the GEODYN II program developed at NASA Goddard Space Flight Center. We then created a set of normal equations and solved for the coefficients of a spherical harmonics expansion of the lunar gravity potential up to degree and order 150. The GLGM-3 solution obtained with a global Kaula constraint (2.5 x 10(exp -4)/sq l) shows good agreement with model LP150Q from the Jet Propulsion Laboratory, especially over the nearside. The levels of data fit with both gravity models are very similar (Doppler RMS of approx.0.2 and approx. 1-2 mm/s in the nominal and extended phases, respectiVely). Orbit overlaps and uncertainties estimated from the covariance matrix also agree well. GLGM-3 shows better correlation with lunar topography and admittance over the nearside at high degrees of expansion (l > 100), particularly near the poles. We also present three companion solutions, obtained with the same data set but using alternate inversion strategies that modify the power law constraint and expectation of the individual spherical harmonics coefficients. We give a detailed discussion of the performance of this family of gravity field solutions in terms of observation fit, orbit quality, and geophysical consistency.

  5. GLGM-3: A degree-150 lunar gravity model from the historical tracking data of NASA Moon orbiters

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Lemoine, F. G.; Han, Shin-Chan; Smith, D. E.

    2010-05-01

    In preparation for the radio science experiment of the Lunar Reconnaissance Orbiter (LRO) mission, we analyzed the available radio tracking data of previous NASA lunar orbiters. Our goal was to use these historical observations in combination with the new low-altitude data to be obtained by LRO. We performed Precision Orbit Determination on trajectory arcs from Lunar Orbiter 1 in 1966 to Lunar Prospector in 1998, using the GEODYN II program developed at NASA Goddard Space Flight Center. We then created a set of normal equations and solved for the coefficients of a spherical harmonics expansion of the lunar gravity potential up to degree and order 150. The GLGM-3 solution obtained with a global Kaula constraint (2.5 × 10-4l-2) shows good agreement with model LP150Q from the Jet Propulsion Laboratory, especially over the nearside. The levels of data fit with both gravity models are very similar (Doppler RMS of ˜0.2 and ˜1-2 mm/s in the nominal and extended phases, respectively). Orbit overlaps and uncertainties estimated from the covariance matrix also agree well. GLGM-3 shows better correlation with lunar topography and admittance over the nearside at high degrees of expansion (l > 100), particularly near the poles. We also present three companion solutions, obtained with the same data set but using alternate inversion strategies that modify the power law constraint and expectation of the individual spherical harmonics coefficients. We give a detailed discussion of the performance of this family of gravity field solutions in terms of observation fit, orbit quality, and geophysical consistency.

  6. NASA's space program - Space Station: A status report and a view of its value for space science

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1986-01-01

    The current status of the Space Station program and the proposed configuration, operation, and evolution of the Space Station are described. The Space Station is to be composed of a manned base and two unmanned platforms; the configuration of the Station is dual keel, and the baseline system includes a hybrid power system with photovoltaics providing 25 kW and solar dynamics providing 50 kW. International participation in the development and use of the Space Station, in particular the design of the pressurized modules, is discussed. Intended scientific uses of the Space Station Complex are considered.

  7. Coping with data from Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1991-01-01

    The volume of data from future NASA space missions will be phenomenal. Here, we examine the expected data flow from the Space Station Freedom and describe techniques that are being developed to transport and process that data. Networking in space, the Tracking and Data Relay Satellite System (TDRSS), recommendations of the Consultative Committee for Space Data systems (CCSDS), NASA institutional ground support, communications system architecture, and principal data types and formats are discussed.

  8. Modelling the performance of the tapered artery heat pipe design for use in the radiator of the solar dynamic power system of the NASA Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Austin Lewis

    1988-01-01

    The paper presents a computer program developed to model the steady-state performance of the tapered artery heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station. The program solves six governing equations to ascertain which one is limiting the maximum heat transfer rate of the heat pipe. The present model appeared to be slightly better than the LTV model in matching the 1-g data for the standard 15-ft test heat pipe.

  9. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    NASA Technical Reports Server (NTRS)

    Borden, C. S.; Schwartz, D. L.

    1984-01-01

    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

  10. Expert Water Quality Panel Review of Responses to the NASA Request for Information for the International Space Station On-Board Environmental Monitoring System

    NASA Technical Reports Server (NTRS)

    Fishman, Julianna L.; Mudgett, Paul D.; Packham, Nigel J.; Schultz, John R.; Straub, John E., II

    2005-01-01

    On August 9, 2003, NASA, with the cooperative support of the Vehicle Office of the International Space Station Program, the Advanced Human Support Technology Program, and the Johnson Space Center Habitability and Environmental Factors Office released a Request for Information, or RFI, to identify next-generation environmental monitoring systems that have demonstrated ability or the potential to meet defined requirements for monitoring air and water quality onboard the International Space Station. This report summarizes the review and analysis of the proposed solutions submitted to meet the water quality monitoring requirements. Proposals were to improve upon the functionality of the existing Space Station Total Organic Carbon Analyzer (TOCA) and monitor additional contaminants in water samples. The TOCA is responsible for in-flight measurement of total organic carbon, total inorganic carbon, total carbon, pH, and conductivity in the Space Station potable water supplies. The current TOCA requires hazardous reagents to accomplish the carbon analyses. NASA is using the request for information process to investigate new technologies that may improve upon existing capabilities, as well as reduce or eliminate the need for hazardous reagents. Ideally, a replacement for the TOCA would be deployed in conjunction with the delivery of the Node 3 water recovery system currently scheduled for November 2007.

  11. NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station

    NASA Technical Reports Server (NTRS)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    1999-01-01

    The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

  12. NASA RFID Applications

    NASA Technical Reports Server (NTRS)

    Fink, Patrick, Ph.D.; Kennedy, Timothy, Ph.D; Powers, Anne; Haridi, Yasser; Chu, Andrew; Lin, Greg; Yim, Hester; Byerly, Kent, Ph.D.; Barton, Richard, Ph.D.; Khayat, Michael, Ph.D.; Studor, George; Brocato, Robert; Ngo, Phong; Arndt, G. D., Ph.D.; Gross, Julia; Phan, Chau; Ni, David, Ph.D.; Dusl, John; Dekome, Kent

    2007-01-01

    This viewgraph document reviews some potential uses for Radio Frequency Identification in space missions. One of these is inventory management in space, including the methods used in Apollo, the Space Shuttle, and Space Station. The potential RFID uses in a remote human outpost are reviewed. The use of Ultra-Wideband RFID for tracking are examined such as that used in Sapphire DART The advantages of RFID in passive, wireless sensors in NASA applications are shown such as: Micrometeoroid impact detection and Sensor measurements in environmental facilities The potential for E-textiles for wireless and RFID are also examined.

  13. AUTOMATIC FISH TRACKING SYSTEM FOR THE U.S. E.P.A.'S (ENVIRONMENTAL PROTECTION AGENCY'S) MONTICELLO ECOLOGICAL RESEARCH STATION

    EPA Science Inventory

    An automatic tracking system controlled by an RCA 1802 microprocessor was developed to locate fish in a 400 m outdoor experimental stream channel at the U.S. EPA Monticello Ecological Research Station. The monitoring network consisted of 12 horizontally polarized antennas spaced ...

  14. Integration of communications and tracking data processing simulation for space station

    NASA Technical Reports Server (NTRS)

    Lacovara, Robert C.

    1987-01-01

    A simplified model of the communications network for the Communications and Tracking Data Processing System (CTDP) was developed. It was simulated by use of programs running on several on-site computers. These programs communicate with one another by means of both local area networks and direct serial connections. The domain of the model and its simulation is from Orbital Replaceable Unit (ORU) interface to Data Management Systems (DMS). The simulation was designed to allow status queries from remote entities across the DMS networks to be propagated through the model to several simulated ORU's. The ORU response is then propagated back to the remote entity which originated the request. Response times at the various levels were investigated in a multi-tasking, multi-user operating system environment. Results indicate that the effective bandwidth of the system may be too low to support expected data volume requirements under conventional operating systems. Instead, some form of embedded process control program may be required on the node computers.

  15. Biophysics of NASA radiation quality factors.

    PubMed

    Cucinotta, Francis A

    2015-09-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. PMID:25883309

  16. Evaluation of Kapton pyrolysis, arc tracking, and flashover on SiO(x)-coated polyimide insulated samples of flat flexible current carriers for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Stueber, Thomas J.; Mundson, Chris

    1993-04-01

    Kapton polyimide wiring insulation was found to be vulnerable to pyrolization, arc tracking, and flashover when momentary short-circuit arcs have occurred on aircraft power systems. Short-circuit arcs between wire pairs can pyrolize the polyimide resulting in a conductive char between conductors that may sustain the arc (arc tracking). Furthermore, the arc tracking may spread (flashover) to other wire pairs within a wire bundle. Polyimide Kapton will also be used as the insulating material for the flexible current carrier (FCC) of Space Station Freedom (SSF). The FCC, with conductors in a planar type geometric layout as opposed to bundles, is known to sustain arc tracking at proposed SSF power levels. Tests were conducted in a vacuum bell jar that was designed to conduct polyimide pyrolysis, arc tracking, and flashover studies on samples of SSF's FCC. Test results will be reported concerning the minimal power level needed to sustain arc tracking and the FCC susceptibility to flashover. Results of the FCC arc tracking tests indicate that only 22 volt amps were necessary to sustain arc tracking (proposed SSF power level is 400 watts). FCC flashover studies indicate that the flashover event is highly unlikely.

  17. Evaluation of Kapton pyrolysis, arc tracking, and flashover on SiO(x)-coated polyimide insulated samples of flat flexible current carriers for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Mundson, Chris

    1993-01-01

    Kapton polyimide wiring insulation was found to be vulnerable to pyrolization, arc tracking, and flashover when momentary short-circuit arcs have occurred on aircraft power systems. Short-circuit arcs between wire pairs can pyrolize the polyimide resulting in a conductive char between conductors that may sustain the arc (arc tracking). Furthermore, the arc tracking may spread (flashover) to other wire pairs within a wire bundle. Polyimide Kapton will also be used as the insulating material for the flexible current carrier (FCC) of Space Station Freedom (SSF). The FCC, with conductors in a planar type geometric layout as opposed to bundles, is known to sustain arc tracking at proposed SSF power levels. Tests were conducted in a vacuum bell jar that was designed to conduct polyimide pyrolysis, arc tracking, and flashover studies on samples of SSF's FCC. Test results will be reported concerning the minimal power level needed to sustain arc tracking and the FCC susceptibility to flashover. Results of the FCC arc tracking tests indicate that only 22 volt amps were necessary to sustain arc tracking (proposed SSF power level is 400 watts). FCC flashover studies indicate that the flashover event is highly unlikely.

  18. ISS Update: How Canada and NASA Work Together to Support the Station - Duration: 9 minutes, 20 seconds.

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Tim Braithwaite, Canadian Space Agency (CSA) Liaison Office Manager. The CSA Liaison Office is a small office at the Johnson Space Center (JSC...

  19. Motion Tracking System

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Integrated Sensors, Inc. (ISI), under NASA contract, developed a sensor system for controlling robot vehicles. This technology would enable a robot supply vehicle to automatically dock with Earth-orbiting satellites or the International Space Station. During the docking phase the ISI-developed sensor must sense the satellite's relative motion, then spin so the robot vehicle can adjust its motion to align with the satellite and slowly close until docking is completed. ISI used the sensing/tracking technology as the basis of its OPAD system, which simultaneously tracks an object's movement in six degrees of freedom. Applications include human limb motion analysis, assembly line position analysis and auto crash dummy motion analysis. The NASA technology is also the basis for Motion Analysis Workstation software, a package to simplify the video motion analysis process.

  20. The ESA-NASA 'CHOICE' Study: Winterover at Concordia Station, Interior Antarctica, as an Analog for Spaceflight-Associated Immune Dysregu1ation

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E,; Feuerecker, M.; Salam, A. P.; Rybka, A.; Stowe, R. P.; Morrels, M.; Mehta, S. K.; Quiriarte, H.; Quintens, Roel; Thieme, U.; Kaufmann, I.; Baatout, D. S.; Pierson, D. L.; Sams, C. F.; Chouker, A.

    2011-01-01

    For ground-based space physiological research, the choice of analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assess innate and adaptive immunity, viral reactivataion and stress factors during Concordia winter-over deployment. To date, not all samples have been analyzed. Here, only data will be preliminary presented for those parameters where sample/data analysis is completed (i.e., Leukocyte subsets, T cell function, and intracellular/secreted cytokine profiles.)

  1. NASA's post-Challenger safety program - Themes and thrusts

    NASA Technical Reports Server (NTRS)

    Rodney, G. A.

    1988-01-01

    The range of managerial, technical, and procedural initiatives implemented by NASA's post-Challenger safety program is reviewed. The recommendations made by the Rogers Commission, the NASA post-Challenger review of Shuttle design, the Congressional investigation of the accident, the National Research Council, the Aerospace Safety Advisory Panel, and NASA internal advisory panels and studies are summarized. NASA safety initiatives regarding improved organizational accountability for safety, upgraded analytical techniques and methodologies for risk assessment and management, procedural initiatives in problem reporting and corrective-action tracking, ground processing, maintenance documentation, and improved technologies are discussed. Safety issues relevant to the planned Space Station are examined.

  2. Modernization of the first-generation Intercosmos laser rangefinder at the Zvenigorod experimental satellite-tracking station of the Astronomical Council of the USSR Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Matveev, D. T.; Chepurnov, B. D.

    Test results obtained during 1980-1981 at the Zvenigorod station are presented for the Intercosmos laser rangefinder which was modified in various ways: e.g., optical components of the laser were replaced, and the mechanical Q-switch of the laser resonator was replaced by a phototropic Q-switch. Improved reliability was noted, and the ranging accuracy was increased by 1.5-2 times. It is concluded that the Zvenigorod tests indicate that the first-generation Intercosmos laser rangefinder can be effectively modernized at other Intercosmos tracking stations.

  3. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985. [Space Stations and Their Environments

    NASA Technical Reports Server (NTRS)

    Chilton, R. G. (Editor); Williams, C. E. (Editor)

    1986-01-01

    The 1985 NASA/ASEE Summer Faculty Fellowship Research Program was conducted by Texas A&M University and the Johnson Space Center. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The faculty fellows spent the time at JSC engaged in research projects commensurate with their interests and background and worked in collaboration with NASA/JSC colleagues. This document is a compilation of the final reports of their research during the summer of 1985.

  4. Applicability of 100kWe-class of space reactor power systems to NASA manned space station missions

    NASA Technical Reports Server (NTRS)

    Silverman, S. W.; Willenberg, H. J.; Robertson, C.

    1985-01-01

    An assessment is made of a manned space station operating with sufficiently high power demands to require a multihundred kilowatt range electrical power system. The nuclear reactor is a competitor for supplying this power level. Load levels were selected at 150kWe and 300kWe. Interactions among the reactor electrical power system, the manned space station, the space transportation system, and the mission were evaluated. The reactor shield and the conversion equipment were assumed to be in different positions with respect to the station; on board, tethered, and on a free flyer platform. Mission analyses showed that the free flyer concept resulted in unacceptable costs and technical problems. The tethered reactor providing power to an electrolyzer for regenerative fuel cells on the space station, results in a minimum weight shield and can be designed to release the reactor power section so that it moves to a high altitude orbit where the decay period is at least 300 years. Placing the reactor on the station, on a structural boom is an attractive design, but heavier than the long tethered reactor design because of the shield weight for manned activity near the reactor.

  5. NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.

  6. News and Views: NASA puts JWST back on track, but ExoMars collaboration looks unlikely; Marsquakes happening yesterday, geologically; UFOs from black holes control shape of galaxies

    NASA Astrophysics Data System (ADS)

    2012-04-01

    NASA's funding plans put the James Webb Space Telescope firmly on track for a launch in 2018, to widespread relief, but the essentially flat funding settlement for 2013 overall means something has to go. Planetary science seems hardest hit, with the especial blow for European planetary scientists of NASA pulling out of ExoMars, the ESA-led mission to look for signs of life on Mars. Images from the High Resolution Imaging Science Experiment have shown boulders displaced by seismic activity on Mars in the past few million years, and possibly much more recently than that. The bigger the supermassive black hole at the centre of a galaxy, the faster the stars in the galactic bulge rotate. Why this should be so has been something of a puzzle, but now a mechanism that is both powerful and common enough to do the job has been identified.

  7. Functions and Statistics: International Space Station: Up to Us. NASA Connect: Program 5 in the 2000-2001 Series.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    This teaching unit is designed to help students in grades 5 to 8 explore the concepts of functions and statistics in the context of the International Space Station (ISS). The units in the series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each…

  8. NASA Vision

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

  9. Space Station planning

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1985-01-01

    An overview of NASA Space Station planning activities is given. Among the specific topics addressed are: the role of private contractors in the construction and operation of Space Station; international cooperation in planning Space Station configurations; and optimum management strategies for Space Station planning activities. The division of work packages for the preliminary design definition phase of the Space Station program is described.

  10. Advanced ground station architecture

    NASA Technical Reports Server (NTRS)

    Zillig, David; Benjamin, Ted

    1994-01-01

    This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.

  11. An AI Approach to Ground Station Autonomy for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Estlin, Tara; Mutz, Darren; Paal, Leslie; Law, Emily; Stockett, Mike; Golshan, Nasser; Chien, Steve

    1998-01-01

    This paper describes an architecture for an autonomous deep space tracking station (DS-T). The architecture targets fully automated routine operations encompassing scheduling and resource allocation, antenna and receiver predict generation. track procedure generation from service requests, and closed loop control and error recovery for the station subsystems. This architecture has been validated by the construction of a prototype DS-T station, which has performed a series of demonstrations of autonomous ground station control for downlink services with NASA's Mars Global Surveyor (MGS).

  12. The ESA-NASA CHOICE Study: Winterover at Concordia Station, Interior Antarctica, A Potential Analog for Spaceflight-Associated Immune Dysregulation

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Quiriarte, H.; Pierson, D L.; Sams, C. F.

    2010-01-01

    For ground-based space physiological research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a superior ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assesses innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. Initial data obtained from the first study deployment (2009 mission; 'n' of 6) will be presented, and logistical challenges regarding analog usage for biological studies will also be discussed. The total WBC increased, and alterations in some peripheral leukocyte populations were observed during winterover at Concordia Station. Percentages of lymphocytes and monocytes increased, and levels of senescent CD8+ T cells were increased during deployment. Transient increases in constitutively activated T cell subsets were observed, at mission time points associated with endemic disease outbreaks. T cell function (early blastogenesis response) was increased near the entry/exit deployment phases, and production of most measured cytokines increased during deployment. Salivary cortisol demonstrated high variability during winterover, but was generally increased. A 2-point circadian rhythm of cortisol measurement (morning/evening) was unaltered during winterover. Perceived stress was mildly elevated during winterover. Other measures, including in-vitro DTH assessment, viral specific T cell number/function and latent herpesvirus reactivation have not yet been completed for the 2009 winterover subjects. Based on the preliminary data, alterations in immune cell distribution and function appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Based on the initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune changes.

  13. Interferometric tracking system for the tracking and data relay satellite

    NASA Technical Reports Server (NTRS)

    Effland, John E.; Knight, Curtis A.; Webber, John C.

    1993-01-01

    This report documents construction and testing of the Interferometric Tracking System project developed under the NASA SBIR contract NAS5-30313. Manuals describing the software and hardware, respectively entitled: 'Field Station Guide to Operations' and 'Field Station Hardware Manual' are included as part of this final report. The objective of this contract was to design, build, and operate a system of three ground stations using Very Long Baseline Interferometry techniques to measure the TDRS orbit. The ground stations receive signals from normal satellite traffic, store these signals in co-located computers, and transmit the information via phone lines to a central processing site which correlates the signals to determine relative time delays. Measurements from another satellite besides TDRS are used to determine clock offsets. A series of such measurements will ultimately be employed to derive the orbital parameters, yielding positions accurate to within 50 meters or possibly better.

  14. Modelling the performance of the monogroove with screen heat pipe for use in the radiator of the solar dynamic power system of the NASA Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Austin Lewis

    1987-01-01

    A computer code to model the steady-state performance of a monogroove heat pipe for the NASA Space Station is presented, including the effects on heat pipe performance of a screen in the evaporator section which deals with transient surges in the heat input. Errors in a previous code have been corrected, and the new code adds additional loss terms in order to model several different working fluids. Good agreement with existing performance curves is obtained. From a preliminary evaluation of several of the radiator design parameters it is found that an optimum fin width could be achieved but that structural considerations limit the thickness of the fin to a value above optimum.

  15. A feasibility assessment of installation, operation and disposal options for nuclear reactor power system concepts for a NASA growth space station

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.; Heller, Jack A.

    1987-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth space station architecture was conducted to address a variety of installation, operational disposition, and safety issues. A previous NASA sponsored study, which showed the advantages of space station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide the feasibility of each combination.

  16. 77 FR 6949 - Tracking and Data Relay Satellite System (TDRSS) Rates for Non-U.S. Government Customers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ...This direct final rule makes non-substantive changes to the policy governing the Tracking and Data Relay Satellite System (TDRSS) services provided to non-U.S. Government users and the reimbursement for rendering such services. TDRSS, also known as the Space Network, provides command, tracking, data, voice, and video services to the International Space Station, NASA's space and Earth science......

  17. Evaluation of Kapton pyrolysis, arc tracking, and arc propagation on the Space Station Freedom (SSF) solar array flexible current carrier (FCC)

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.

    1991-01-01

    Recent studies involving the use of polyimide Kapton coated wires indicate that if a momentary electrical short circuit occurs between two wires, sufficient heating of the Kapton can occur to themally chlar (pyrolyze) the Kapton. Such charred Kapton has sufficient electricxl conductivity to create an arc which tracks down the wires and possibly propagates to adjoining wires. These studies prompted an invetigation to ascertain the likelihood of Kapton pyrolysis, arc tracking and propagation phenomena, and the magnitude of destruction conceivably inflicted on Space Station Freedom's (SSF's) Flexible Current Carrier (FCC) for the photovoltaic array. The geometric layout of the FCC, having a planar-type orientation as opposed to bundles, may reduce the probability of sustaining an arc. An experimental investigation was conducted to simulate conditions under which an arc can occur on the FCC of the SSF, and the consequences of arc initiation.

  18. Evaluation of Kapton pyrolysis, arc tracking, and arc propagation on the Space Station Freedom (SSF) solar array Flexible Current Carrier (FCC)

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.

    1991-01-01

    Recent studies involving the use of polyimide Kapton coated wires indicate that if a momentary electrical short circuit occurs between two wires, sufficient heating of the Kapton can occur to thermally char (pyrolyze) the Kapton. Such charred Kapton has sufficient electrical conductivity to create an arc which tracks down the wires and possibly propagates to adjoining wires. These studies prompted an investigation to ascertain the likelihood of the Kapton pyrolysis, arc tracking and propagation phenomena, and the magnitude of destruction conceivably inflicted on Space Station Freedom's (SSF) Flexible Current Carrier (FCC) for the photovoltaic array. The geometric layout of the FCC, having a planar-type orientation as opposed to bundles, may reduce the probability of sustaining an arc. An experimental investigation was conducted to simulate conditions under which an arc can occur on the FCC of SSF, and the consequences of arc initiation.

  19. ISS Update: Keeping Track of Station Inventory – 03.14.13 - Duration: 5 minutes, 8 seconds.

    NASA Video Gallery

    Public Affairs Officer Dan Huot interviews Rob Adams, Inventory and Stowage Officer, inside the Mission Control Center. Adams and his team keep track of the gear aboard the International Space Stat...

  20. Application of Motion Sensors for Beam-Tracking of Mobile Stations in mmWave Communication Systems

    PubMed Central

    Shim, Duk-Sun; Yang, Cheol-Kwan; Kim, Jae Hwan; Han, Joo Pyo; Cho, Yong Soo

    2014-01-01

    In a millimeter wave (mmWave) communication system with transmit/receive (Tx/Rx) beamforming antennas, small variation in device behavior or an environmental change can destroy beam alignment, resulting in power loss in the received signal. In this situation, the beam-tracking technique purely based on the received signal is not effective because both behavioral changes (rotation, displacement) and environmental changes (blockage) result in power loss in the received signal. In this paper, a motion sensor based on microelectromechanical systems (MEMS) as well as an electrical signal is used for beam tracking to identify the cause of beam error, and an efficient beam-tracking technique is proposed. The motion sensors such as accelerometers, gyroscopes, and geo-magnetic sensor are composed of an attitude heading reference system (AHRS) and a zero-velocity detector (ZVD). The AHRS estimates the rotation angle and the ZVD detects whether the device moves. The proposed technique tracks a beam by handling the specific situation depending on the cause of beam error, minimizing the tracking overhead. The performance of the proposed beam-tracking technique is evaluated by simulations in three typical scenarios. PMID:25333293

  1. Space station

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.; Hayes, Judith

    1989-01-01

    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

  2. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 3: Refined conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.

  3. Space Station: Delays in dealing with space debris may reduce safety and increase costs

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The majority of NASA's current designs for protecting the space station and crew from debris are outdated and its overall debris protection strategy is insufficient. NASA's contractors have designed the station using a 1984 model of the space environment that is obsolete, significantly underestimating the increasing amount of debris that the station will encounter during its 30-year lifetime. In February 1992, NASA directed its space centers to incorporate an updated 1991 model into their designs. However, the agency has not yet made critical decisions on how to implement this change. Preliminary evaluations show that incorporating the 1991 model using currently established safety criteria could entail a major redesign of some components, with significant cost impact and schedule delays. NASA's overall protection strategy for space debris is insufficient. While NASA has concentrated its protection on shielding the space station from small debris and plans to augment this initial shielding in orbit, it has not yet developed designs or studied the cost and operational impact of augmenting its protection with additional shielding. Further, current designs do not provide the capability of warning or protecting the crew from imminent collision with mid-size debris. Finally, although some capabilities exist for maneuvering the station away from large debris, the agency lacks collision-avoidance plans and debris-tracking equipment. In developing a comprehensive strategy to protect the station from the more severe debris environment, NASA cannot avoid some difficult decisions. These decisions involve tradeoffs between how much the agency is willing to pay to protect the station, the schedule delays it may incur, and the risk to station safety it is willing to accept. It is important that these decisions be made before NASA completes its critical design reviews in early 1993. At that time key designs will be made final and manufacturing will begin. Without a comprehensive strategy, NASA will have decided to build the station, knowing the consequences of this decision on station and crew safety, and on life-cycle station cost.

  4. Space Station - Toward Station operability

    NASA Astrophysics Data System (ADS)

    Bennett, Gregory R.; Paddock, Stephen G.

    1988-11-01

    Systematic operations engineering and the development of an automated operations management system (OMS) are presented as key elements of NASA's Space Station design development effort. The OMS software, which will take care of routine Space Station operations, encompasses on-board and ground-based components. Flight profiles, resource-utilization plans, crew training plans, flight-support operations, flight rules, and crew timelines all inform the OMS data base.

  5. DETERMINATION OF POLYBROMINATED DIPHENYL ETHER SOIL LEVELS AT A FIRE FIGHTER TRAINING STATION AND ALONG RAILROAD TRACKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of the PBDE content of soils from remote rural areas along railroad tracks and from a fire fighter training site demonstrated contamination of the soil, particularly at the latter site where BDE-47, -99, -100, -153, and -154, were found at considerable levels. The remote sites, along old r...

  6. Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 1. Laser Doppler wake vortex tracking at Kennedy Airport

    NASA Technical Reports Server (NTRS)

    Krause, M. C.; Wilson, D. J.; Howle, R. E.; Edwards, B. B.; Craven, C. E.; Jetton, J. L.

    1976-01-01

    Test operations of the Scanning Laser Doppler System (SLDS) at Kennedy International Airport (KIA) during August 1974 through June 1975 are reported. A total of 1,619 data runs was recorded with a totally operational system during normal landing operations at KIA. In addition, 53 data runs were made during cooperative flybys with the C880 for a grand total of 1672 recorded vortex tracks. Test crews were in attendance at KIA for 31 weeks, of which 25 weeks were considered operational and the other six were packing, unpacking, setup and check out. Although average activity equates to 67 recorded landing operations per week, two periods of complete runway inactivity spanned 20 days and 13 days, respectively. The operation frequency therefore averaged about 88 operations per week.

  7. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  8. Validating Above-cloud Aerosol Optical Depth Retrieved from MODIS using NASA Ames Airborne Sun-Tracking Photometric and Spectrometric (AATS and 4STAR) Measurements

    NASA Astrophysics Data System (ADS)

    Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.

    2014-12-01

    Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of satellite-based ACA retrievals requires equivalent field measurements particularly over the regions where ACA are often observed from satellites, i.e., south-eastern Atlantic Ocean, tropical Atlantic Ocean, northern Arabian Sea, South-East and North-East Asia.

  9. NASA: Data on the Web.

    ERIC Educational Resources Information Center

    Galica, Carol

    1997-01-01

    Provides an annotated bibliography of selected NASA Web sites for K-12 math and science teachers: the NASA Lewis Research Center Learning Technologies K-12 Home Page, Spacelink, NASA Quest, Basic Aircraft Design Page, International Space Station, NASA Shuttle Web Site, LIFTOFF to Space Education, Telescopes in Education, and Space Educator's…

  10. NASA Langley Open House 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Fire Station (building 1248): Live demonstrations included Tower 8, a multipurpose aerial platform that functions as both a ladder truck and a pumper. Other demonstrations included the Medic 8 showing NASA LaRC's emergency medical treatment capabilities.

  11. Evapotranspiration from Airborne Simulators as a Proxy Datasets for NASA's ECOSTRESS mission - A new Thermal Infrared Instrument on the International Space Station

    NASA Astrophysics Data System (ADS)

    Guillevic, P. C.; Hulley, G. C.; Hook, S. J.; Olioso, A.; Sanchez, J. M.; Drewry, D.; Running, S. W.; Fisher, J. B.

    2014-12-01

    Surface evapotranspiration (ET) represents the loss of water from the Earth's surface both by soil evaporation and vegetation transpiration processes. ET is a key climate variable linking the water, carbon, and energy cycles, and is very sensitive to changes in atmospheric forcing and soil water content. The response of ET to water and heat stress directly affects the surface energy balance and temperature which can be measured by thermal infrared remote sensing observations. The NASA ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will be deployed in 2019 to address critical questions on plant-water dynamics, ecosystem productivity and future ecosystem changes with climate through an optimal combination of thermal infrared measurements in 5 spectral bands between 8-12 µm with pixel sizes of 38×57 m and an average revisit of 5 days over the contiguous United States at varying times of day. Two instruments capable of providing proxy datasets are the MODIS/ASTER (MASTER) airborne simulator and Hyperspectral Thermal Emissions Spectrometer (HyTES). This study is focused on estimating evapotranspiration using shortwave and thermal infrared remote sensing observations from these instruments. The thermal infrared data from MASTER/HyTES is used as a proxy dataset for ECOSTRESS to demonstrate the capability of the future spaceborne system to derive ET and water stress information from thermal based retrievals of land surface temperature. MASTER and HyTES data collected from 2004 to present over the Western United States at different seasons are used to test and evaluate different ET algorithms using ground-based measurements. Selected algorithms are 1) explicitly based on surface energy budget calculation or 2) based on the Penman-Monteith equation and use information on land surface temperature to estimate the surface resistance to convective fluxes. We use ground data from the Fluxnet and Ameriflux networks, and from permanent validation stations over an agricultural landscape in California operated by the Jet Propulsion Laboratory. The impact of different error sources associated with both the input data or the parameterization of the different models is quantified and used to assess the uncertainty of the future operational spaceborne ET products.

  12. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications. Issue study

    SciTech Connect

    Borden, C.S.; Schwartz, D.L.

    1984-12-31

    The purpose of this study is to assess the relative economic potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R and D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options. The results of this study provide the first comprehensive assessment of PV concentrator collector manufacturing costs in combination with those of flat-plate modules, both projected to their commercial potentials in the mid-1990's.

  13. FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station).

    PubMed

    Martín-Redondo, M Paz; Martínez, Eduardo Sebastian; Sampedro, M Teresa Fernández; Armiens, Carlos; Gómez-Elvira, Javier; Martinez-Frias, Jesus

    2009-07-01

    The Rover Environmental Monitoring Station (REMS) is one of NASA/MSL's instruments, which has been designed for measuring ambient pressure, humidity, wind speed and direction, UV radiation, and air and ground temperature (GT). The GT-sensor is dedicated to measure the real temperature of the Martian surface, integrating the IR energy coming from the ground. The existing IR spectral data of Martian dust, rocks and sediments allow for comparing the Martian spectra with the spectra of different terrestrial minerals and lithologies, and those of their alteration and weathering products. The FTIR reflectance of a set of selected astrobiologically significant minerals (including oxides, oxi/hydroxides, sulfates, chlorides, opal and clays) and basalt (as the main and most widespread volcanic Martian rock) was measured, considering different mixing amounts, and covering the specific working wavelength range of the REMS' GT-sensor. The results obtained show important percentage increases or decreases of reflectance in the entire wavelength range (e.g. basalt-hematite vs. basalt-magnetite) and specific variations limited to some spectral bands (e.g. basalt-smectite vs. basalt-jasper). The basalt reflectance percentage increases or decreases, even up to 100%, depending on the mixing of the different minerals. This unequivocally confirms the need for considering the chemical-mineralogical assemblages (and their textures) for any investigation and interpretation of Mars surface environment. Some complementary applications of this research on our planet, either in relation to the specific performances and characteristics of the GT-sensor autonomous recalibration system, or those oriented to carrying out similar studies on different types of terrestrial environmental settings, are also described. PMID:20449234

  14. UWB Tracking System Design for Free-Flyers

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John

    2004-01-01

    This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.

  15. NASA Information Summaries.

    ERIC Educational Resources Information Center

    Mar, May 1987, 1988

    1988-01-01

    This document consists of 11 "NASA Information Summaries" grouped together: (1) "Our Planets at a Glance" (PMS-010); (2) "Space Shuttle Mission Summary: 1985-1986" (PMS-005); (3) "Astronaut Selection and Training" (PMS-019); (4) "Space Station" (PMS-008); (5) "Materials Processing in Space" (PMS-026); (6) "Countdown!: NASA Launch Vehicles and…

  16. Compilation and Analysis of 20 and 30 GHz Rain Fade Events at the ACTS NASA Ground Station: Statistics and Model Assessment

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1996-01-01

    The purpose of the propagation studies within the ACTS Project Office is to acquire 20 and 30 GHz rain fade statistics using the ACTS beacon links received at the NGS (NASA Ground Station) in Cleveland. Other than the raw, statistically unprocessed rain fade events that occur in real time, relevant rain fade statistics derived from such events are the cumulative rain fade statistics as well as fade duration statistics (beyond given fade thresholds) over monthly and yearly time intervals. Concurrent with the data logging exercise, monthly maximum rainfall levels recorded at the US Weather Service at Hopkins Airport are appended to the database to facilitate comparison of observed fade statistics with those predicted by the ACTS Rain Attenuation Model. Also, the raw fade data will be in a format, complete with documentation, for use by other investigators who require realistic fade event evolution in time for simulation purposes or further analysis for comparisons with other rain fade prediction models, etc. The raw time series data from the 20 and 30 GHz beacon signals is purged of non relevant data intervals where no rain fading has occurred. All other data intervals which contain rain fade events are archived with the accompanying time stamps. The definition of just what constitutes a rain fade event will be discussed later. The archived data serves two purposes. First, all rain fade event data is recombined into a contiguous data series every month and every year; this will represent an uninterrupted record of the actual (i.e., not statistically processed) temporal evolution of rain fade at 20 and 30 GHz at the location of the NGS. The second purpose of the data in such a format is to enable a statistical analysis of prevailing propagation parameters such as cumulative distributions of attenuation on a monthly and yearly basis as well as fade duration probabilities below given fade thresholds, also on a monthly and yearly basis. In addition, various subsidiary statistics such as attenuation rate probabilities are derived. The purged raw rain fade data as well as the results of the analyzed data will be made available for use by parties in the private sector upon their request. The process which will be followed in this dissemination is outlined in this paper.

  17. Orbital Debris Studies at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Krisko, Paula; Whitlock, Dave

    2007-01-01

    Any discussion of expanding the capabilities of Space Surveillance Networks to include tracking and cataloging smaller objects will require a good understanding of orbital debris. In the current U.S. catalog of over 11,000 objects, more than 50% are classified as "debris" to include fragmentation debris, operational debris, liquid metal coolant, and Westford needles. If the catalog is increased to 100,000 objects by lowering the tracked object size threshold, almost all of the additional objects will be orbital debris. The Orbital Debris Program Office has been characterizing the small orbital debris environment through measurements and modeling for many years. This presentation will specifically discuss two different studies conducted at NASA. The first study was done in 1992 and examined the requirements and produced a conceptual design for a Collision Avoidance Network to protect the Space Station Freedom from centimeter sized orbital debris while minimizing maneuvers. The second study was conducted last year and produced NASA s estimate of the orbital population for the years 2015 and 2030 for objects 2 cm and larger.

  18. STDN in the TDRSS and Shuttle Era. [Spaceflight Tracking and Data Networks and Tracking and Data Relay Satellite System

    NASA Technical Reports Server (NTRS)

    Schwartz, J. J.; Feinberg, E. J.

    1978-01-01

    NASA presently maintains a worldwide system of ground tracking stations to provide communication support (tracking, telemetry and command) to all authorized user spacecraft missions. The set of ground stations supporting earth orbiting missions, and their supporting communication links (called NASCOM) to various NASA centers, is designated as the Spaceflight Tracking and Data Network (STDN). Major users of the STDN in the 1980's include LANDSAT-D, SEASAT-B and the Shuttle, all of which are capable of generating data at rates that cannot be handled by the present STDN ground stations. The expanded capabilities of the STDN in the 1980's to provide support to these missions and other users is addressed. The newest asset of the STDN, the Tracking and Data Relay Satellite System (TDRSS) is described, as are the remaining STDN ground stations (called the GSTDN). The Shuttle communications support is not only for the Shuttle itself, but also for the Spacelab, attached payloads (within the Shuttle bay), and detached payloads being either deployed or retrieved by Shuttle. The specific communications support being provided by STDN (both by TDRSS and by the GSTDN) to the Shuttle is also described.

  19. Automated Planning for a Deep Space Communications Station

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Fisher, Forest; Mutz, Darren; Chien, Steve

    1999-01-01

    This paper describes the application of Artificial Intelligence planning techniques to the problem of antenna track plan generation for a NASA Deep Space Communications Station. Me described system enables an antenna communications station to automatically respond to a set of tracking goals by correctly configuring the appropriate hardware and software to provide the requested communication services. To perform this task, the Automated Scheduling and Planning Environment (ASPEN) has been applied to automatically produce antenna trucking plans that are tailored to support a set of input goals. In this paper, we describe the antenna automation problem, the ASPEN planning and scheduling system, how ASPEN is used to generate antenna track plans, the results of several technology demonstrations, and future work utilizing dynamic planning technology.

  20. Space Station Software Recommendations

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor)

    1985-01-01

    Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.

  1. Tracking Data Certification for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick J.; Socoby, Joseph; Hendry, Steve; Campion, Richard

    2010-01-01

    This paper details the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) tracking data certification effort of the Lunar Reconnaissance Orbiter (LRO) Space Communications Network (SCN) complement of tracking stations consisting of the NASA White Sands 1 antenna (WS1), and the commercial provider Universal Space Network (USN) antennas at South Point, Hawaii; Dongara Australia; Weilheim, Germany; and Kiruna, Sweden. Certification assessment required the cooperation and coordination of parties not under the control of either the LRO project or ground stations as uplinks on cooperating spacecraft were necessary. The LRO range-tracking requirement of 10m 1 sigma could be satisfactorily demonstrated using any typical spacecraft capable of range tracking. Though typical Low Earth Orbiting (LEO) or Geosynchronous Earth Orbiting (GEO) spacecraft may be adequate for range certification, their measurement dynamics and noise would be unacceptable for proper Doppler certification of 1-3mm/sec 1 sigma. As LRO will orbit the Moon, it was imperative that a suitable target spacecraft be utilized which can closely mimic the expected lunar orbital Doppler dynamics of +/-1.6km/sec and +/-1.5m/sq sec to +/-0.15m/sq sec, is in view of the ground stations, supports coherent S-Band Doppler tracking measurements, and can be modeled by the FDF. In order to meet the LRO metric tracking data specifications, the SCN ground stations employed previously uncertified numerically controlled tracking receivers. Initial certification testing revealed certain characteristics of the units that required resolution before being granted certification.

  2. Space station proposed

    NASA Astrophysics Data System (ADS)

    In his State of the Union address on January 25, President Ronald Reagan announced that he was directing the National Aeronautics and Space Administration (NASA) to “develop a permanently manned space station, and to do it within a decade.”Included in the NASA budget proposal sent to Congress the following week was $150 million for the station. This is the first request of many; expected costs will total roughly $8 billion by the early 1990's.

  3. Space information systems in the Space Station era; Proceedings of the AIAA/NASA International Symposium on Space Information Systems, Washington, DC and Greenbelt, MD, June 22, 23, 1987

    NASA Technical Reports Server (NTRS)

    Gerard, Mireille (Editor); Edwards, Pamela W. (Editor)

    1988-01-01

    Technological and planning issues for data management, processing, and communication on Space Station Freedom are discussed in reviews and reports by U.S., European, and Japanese experts. The space-information-system strategies of NASA, ESA, and NASDA are discussed; customer needs are analyzed; and particular attention is given to communication and data systems, standards and protocols, integrated system architectures, software and automation, and plans and approaches being developed on the basis of experience from past programs. Also included are the reports from workshop sessions on design to meet customer needs, the accommodation of growth and new technologies, and system interoperability.

  4. Micro Weather Station

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.

    1999-01-01

    Improved in situ meteorological measurements in the troposphere and stratosphere are needed for studies of weather and climate, both as a primary data source and as validation for remote sensing instruments. Following the initial development and successful flight validation of the surface acoustic wave (SAW) hygrometer, the micro weather station program was directed toward the development of an integrated instrument, capable of accurate, in situ profiling of the troposphere, and small enough to fly on a radiosonde balloon for direct comparison with standard radiosondes. On April 23, 1998, working with Frank Schmidlin and Bob Olson of Wallops Island Flight Facility, we flew our instrument in a dual payload experiment, for validation and direct comparison with a Vaisala radiosonde. During that flight, the SAW dewpoint hygrometer measured frostpoint down to -76T at 44,000 feet. Using a laptop computer in radio contact with the balloon, we monitored data in real time, issued the cutdown command, and recovered the payload less than an hour after landing in White Sands Missile Range, 50 miles from the launch site in Hatch, New Mexico. Future flights will extend the intercomparison, and attempt to obtain in situ meteorological profiles from the surface through the tropopause. The SAW hygrometer was successfully deployed on the NASA DC8 as part of NASA's Third Convection and Moisture Experiment (CAMEX-3) during August and September, 1998. This field campaign was devoted to the study of hurricane tracking and intensification using NASA-funded aircraft. In situ humidity data from the SAW hygrometer are currently being analyzed and compared with data from other instruments on the DC8 and ER2 aircraft. Additional information is contained in the original.

  5. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  6. Hybrid Ground Station Technology for RF and Optical Communication Links

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

    2012-01-01

    To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

  7. Space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1987-01-01

    The major requirements and guidelines that affect the space station configuration and power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. Trade study selections of photovoltaic system technologies are described in detail. A summary of present solar dynamic and power management and distribution systems is also given.

  8. Technology for space station

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Carlisle, R. F.

    1984-01-01

    Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.

  9. Space Station: The next iteration

    NASA Astrophysics Data System (ADS)

    Foley, Theresa M.

    1995-01-01

    NASA's international space station is nearing the completion stage of its troublesome 10-year design phase. With a revised design and new management team, NASA is tasked to deliver the station on time at a budget acceptable to both Congress and the White House. For the next three years, NASA is using tried-and-tested Russian hardware as the technical centerpiece of the station. The new station configuration consists of eight pressurized modules in which the crew can live and work; a long metal truss to connect the pieces; a robot arm for exterior jobs; a solar power system; and propelling the facility in space.

  10. ISS Update: Earth Observations From Space Station - Duration: 14 minutes.

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Cynthia Evans, Space Station Associate Program Scientist for Earth Observations, as NASA prepares to celebrate Earth Day. Evans discusses the t...

  11. ISS Update: Preparing to Leave the Station - Duration: 28 minutes.

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews NASA astronaut Mike Fossum about his time as commander of the International Space Station's Expedition 29 crew, including his preparations for ...

  12. Environmental Radiation Measurements on the MIR Space Station

    NASA Astrophysics Data System (ADS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.

    1998-05-01

    As part of the NASA/Mir Phase 1B Science Program, the ionizing radiation environment inside and outside the Russian Mir's Space Station was monitored using a combination of Thermoluminescent Detectors (TLD) and CR-39 Plastic Nuclear Track Detectors (PNTD). Radiation measurements inside the Mir station were carried out using six Area Passive Dosimeters (APD), four located inside the Mir Base Block and two located inside the Kvant 2 module, during the NASA-2/Mir-21, NASA-3/Mir-22 and NASA-4/Mir-23 missions. The radiation environment under low shielding was measured using an External Dosimeter Array (EDA) mounted on the outer surface of the Kvant 2 module. The external radiation environment and a location inside the Kvant 2 roughly corresponding to the location of the EDA were monitored for 130 days during the NASA- 4/Mir-23 and NASA-5/Mir-24 missions. Dose rates measured by APD TLDs ranged from 271 to 407 microGy/d during the NASA-2/Mir-21 mission, from 265 to 378 microGy/d during the NASA-3/Mir-22 mission, and from 287 to 421 microGy/d during the NASA-4/Mir-23 mission. APD PNTDs have been analyzed and LET spectra have been Cenerated for the five APDs exposed on the NASA-2/Mir-21 mission and for two APD PNTDs exposed on the NASA-3/Mir-22 mission. Dose equivalent rates on the NASA-2/Mir-21 mission ranged from 513 microSv/d in the Kvant 2 module to 710 microSv/d on the floor of the Base Block. Dose as a function of shielding depth in TLDs has been measured in the thin TLD stacks including in the EDA. EDA dose range from 72.5 Gy under 0.0146 g/sq cm to 0.093 Gy under 3.25 g/sq cm of shielding. Readout and analysis of the reaming PNTDs form the NASA-3/Mir-22 mission and PNTDs from the NASA-4/Mir-23 mission (including those from the EDA) is ongoing and will be completed during the final year of this experiment. Dose equivalent rates for the NASA-3/Mir-22 and NASA-4/Mir-23 APDs will then be determined and comparisons will be made with both model calculations and with results from similar measurements.

  13. The results of a limited study of approaches to the design, fabrication, and testing of a dynamic model of the NASA IOC space station. Executive summary

    NASA Technical Reports Server (NTRS)

    Brooks, George W.

    1985-01-01

    The options for the design, construction, and testing of a dynamic model of the space station were evaluated. Since the definition of the space station structure is still evolving, the Initial Operating Capacity (IOC) reference configuration was used as the general guideline. The results of the studies treat: general considerations of the need for and use of a dynamic model; factors which deal with the model design and construction; and a proposed system for supporting the dynamic model in the planned Large Spacecraft Laboratory.

  14. Tracking of the ATS-3 synchronous satellite by the Very Long Baseline Interferometer (VLBI) technique

    NASA Technical Reports Server (NTRS)

    Ramasastry, J.; Rosenbaum, B.; Michelini, R. D.; Frost, D.; Ross, S.; Boornazian, A.

    1972-01-01

    During 1971, a series of very long baseline interferometer observations were made of the C-band (6 cm) radio signals from the ATS-3 communications satellite which is in a synchronous, near-equatorial orbit. The first series of observations were conducted during May-June 1971 from Rosman, North Carolina (NASA/ATS Station 85' dish) and Mojave, California (NASA/ATS Station, 40' dish). The second series of observations were conducted during August-September, 1971 from Rosman, North Carolina (NASA/ATS Station, 85' dish), Owens Valley, California (Cal Tech, 130' dish) and Agassiz, Massachusetts (SAO Agassiz Radio Observatory, 84' dish). The ATS-3 Spacecraft position was determined with a precision of 70-100 meters and its velocity with a precision of less than a mm/sec. The ATS-3 orbital elements were computed using the GEODYN program and the derived values are consistent with those derived from conventional tracking data.

  15. Advanced tracking and data relay satellite system

    NASA Technical Reports Server (NTRS)

    Stern, Daniel

    1992-01-01

    The purpose of this communication satellite system are as follows: to provide NASA needs for satellite tracking and communications through the year 2012; to maintain and augment the current TDRS system when available satellite resources are expended in the latter part of the decade; to provide the necessary ground upgrade to support the augmented services; and to introduce new technology to reduce the system life cycle cost. It is concluded that no ATDRS spacecraft requirement for new modulation techniques, that data rate of 650 MBps is required, and that Space Station Freedom requirement is for 650 MBps data some time after the year 2000.

  16. Space Station Freedom media handbook

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Work underway at NASA to design and develop Space Station Freedom is described in this handbook. The roles, responsibilities, and tasks at NASA are discussed in order to provide information for the media. Ground facilities are described with a look towards future possibilities and requirements. Historical perspectives, international cooperation, and the responsibilities of specific NASA centers are also examined.

  17. Utilization of satellite-satellite tracking data for determination of the geocentric gravitational constant (GM)

    NASA Technical Reports Server (NTRS)

    Martin, C. F.; Oh, I. H.

    1979-01-01

    Range rate tracking of GEOS 3 through the ATS 6 satellite was used, along with ground tracking of GEOS 3, to estimate the geocentric gravitational constant (GM). Using multiple half day arcs, a GM of 398600.52 + or - 0.12 cu km/sq sec was estimated using the GEM 10 gravity model, based on speed of light of 299792.458 km/sec. Tracking station coordinates were simultaneously adjusted, leaving geopotential model error as the dominant error source. Baselines between the adjusted NASA laser sites show better than 15 cm agreement with multiple short arc GEOS 3 solutions.

  18. Space-based, multi-wavelength solid-state lasers for NASA's Cloud Aerosol Transport System for International Space Station (CATS-ISS)

    NASA Astrophysics Data System (ADS)

    Chuang, Ti; Burns, Patrick; Walters, E. Brooke; Wysocki, Ted; Deely, Tim; Losse, Andy; Le, Khoa; Drumheller, Bill; Schum, Tom; Hart, Mark; Puffenburger, Kent; Ziegler, Bill; Hovis, Floyd

    2013-03-01

    Fibertek has designed and is building two space-based lasers for NASA's CATS-ISS mission. This space-based lidar system requires lasers capable of provide 4-5 kHz output at 1064 nm, 532 nm and 355 nm with each wavelength having ~2-2.5 mJ pulse energy. The lasers will be based on the ISS for a mission lasting up to 3 years.

  19. Space stations - A historical perspective

    NASA Technical Reports Server (NTRS)

    Logsdon, J. M.

    1983-01-01

    This paper discusses the historical evolution of the space station concept, with particular attention to NASA plans in the 1960-1980 period. Emphasis is given to the changing justification presented for station development during that period and to the political context within which station proposals were evaluated.

  20. Space Station commercial user development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The commercial utilization of the space station is investigated. The interest of nonaerospace firms in the use of the space station is determined. The user requirements are compared to the space station's capabilities and a feasibility analysis of a commercial firm acting as an intermediary between NASA and the private sector to reduce costs is presented.

  1. Space station automation and robotics study. Operator-systems interface

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  2. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  3. Health and Environment Linked for Information Exchange (HELIX)-Atlanta: A CDC-NASA Joint Environmental Public Health Tracking Collaborative Project

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Luvall, Jeff; Crosson, Bill; Estes, Maury; Limaye, Ashutosh; Quattrochi, Dale; Rickman, Doug

    2008-01-01

    HELIX-Atlanta was developed to support current and future state and local EPHT programs to implement data linking demonstration projects which could be part of the CDC EPHT Network. HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter. NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance. The use of NASA technology creates value added geospatial products from existing environmental data sources to facilitate public health linkages. Proving the feasibility of the approach is the main objective

  4. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    NASA Technical Reports Server (NTRS)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge for the AITT-4STAR project has been conducting it simultaneously with preparations for, and execution of, ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment), a NASA airborne science deployment (unplanned when AITT-4STAR was selected for funding) in which 4STAR will deploy to Thule, Greenland, and Fairbanks, Alaska, on the NASA C- 130. This presentation describes progress to date in accomplishing AITT-4STAR goals, and plans for project completion.

  5. Communications and tracking - Light and IR will help carry high traffic

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1983-01-01

    The space station currently under consideration by NASA must simultaneously track and communicate with the many vehicles and objects surrounding it in orbit. While the Space Shuttle has 23 antennas, more than 50 will be required by the space station. In addition to Shuttle-compatible equipment at P, L, C, S, and Ku bands, the station system will probably incorporate Ka, W, IR and optical frequency equipment for tracking and communications. A major design challenge is foreseen in the placement of separate antennas, lenses and reflectors over the station's external geometry in order to give both the overlapping fields of view required for spherical coverage and the radiation of unambiguous navigation guide beams and markers. Adaptive distributed element arrays are under consideration. Another approach to spherical coverage involves the use of omnidirectional antennas which both transmit and receive RF energy over a wide range of angles.

  6. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  7. NASA International Environmental Partnerships

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie; Valek, Susan

    2010-01-01

    For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.

  8. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  9. High Output Maximum Efficiency Resonator (HOMER) Laser for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar Mission

    NASA Technical Reports Server (NTRS)

    Stysley, Paul; Coyle, Barry; Clarke, Greg; Poulios, Demetrios; Kay, Richard

    2015-01-01

    The Global Ecosystems Dynamics Investigation (GEDI) is a planned mission sending a LIDAR instrument to the International Space Station that will employ three NASA laser transmitters. This instrument will produce parallel tracks on the Earth's surface that will provide global 3D vegetation canopy measurements. To meet the mission goals a total of 5 High Output Maximum Efficiency Resonator lasers will to be built (1 ETU + 3 Flight + 1 spare) in-house at NASA-GSFC. This presentation will summarize the HOMER design, the testing the design has completed in the past, and the plans to successfully build the units needed for the GEDI mission.

  10. NASA Robotics for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fischer, RIchard T.

    2007-01-01

    This presentation focuses on NASA's use of robotics in support of space exploration. The content was taken from public available websites in an effort to minimize any ITAR or EAR issues. The agenda starts with an introduction to NASA and the "Vision for Space Exploration" followed by NASA's major areas of robotic use: Robotic Explorers, Astronaut Assistants, Space Vehicle, Processing, and In-Space Workhorse (space infrastructure). Pictorials and movies of NASA robots in use by the major NASA programs: Space Shuttle, International Space Station, current Solar Systems Exploration and Mars Exploration, and future Lunar Exploration are throughout the presentation.

  11. NASA highlights, 1986 - 1988

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Highlights of NASA research from 1986 to 1988 are discussed. Topics covered include Space Shuttle flights, understanding the Universe and its origins, understanding the Earth and its environment, air and space transportation, using space to make America more competitive, using space technology an Earth, strengthening America's education in science and technology, the space station, and human exploration of the solar system.

  12. Analysis and Quality Assurance of the SKYMAP 4.0 Guidance and Tracking Star Catalog: The NASA SKY2000 Spacecraft Attitude Determination Star Catalog

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.

    2001-01-01

    An updated and improved NASA spacecraft attitude determination catalog, now called SKY2000, Version 3, has been prepared and quality assured. The highest priority goals were to replace the astrometric (positions and motions) and photometric (brightnesses and colors) data with the most recent and accurate data available. Quality assurance has been performed in a fairly straightforward manner, i.e., without extensive data checking and analysis, and many errors and Inconsistencies were corrected. Additional work should eventually be done on the variability and multiple-star data In the catalog, while certain other data can be significantly Improved. The current version of the catalog can be found at the GSFC Flight Dynamics website: http://cheli.gsfc.nasa.gov/dist/attitude/skymap.html. Supporting information and reference materials (published papers, format and data descriptions, etc.) can also be found at the website.

  13. Lunar gravity field recovery: sensitivity studies from simulated tracking data

    NASA Astrophysics Data System (ADS)

    Maier, A.; Baur, O.

    2012-04-01

    The lunar gravity field is essential for understanding the structure and the thermal evolution of the Moon. Typically, the gravity field is inferred from tracking data to satellites orbiting the Moon. Due to the fact that the Moon is in the state of synchronous rotation with the Earth, direct tracking to the farside is impossible. NASA's Lunar Reconnaissance Orbiter (LRO), launched in 2009, is equipped with various instruments whose purpose is to prepare for save robotic returns to the Moon. To geolocate LRO, the spacecraft is tracked by means of radiometric techniques (ranges, range rates, angles) and optical laser (laser ranges). We analyzed tracking data to LRO with respect to various aspects, such as the number of observations, their spatial distribution on the lunar surface, and the present noise level. We used these real-data characteristics to simulate tracking data to LRO. We generated three different simulation scenarios: observations were simulated (1) during the exact time spans when LRO was tracked from a specific ground station, (2) whenever the spacecraft was in view from a station, and (3) for the nearside as well as for the farside of the Moon. Based on the resulting trajectories, we estimated three sets of spherical harmonic coefficients representing the lunar gravity field. Moreover, we varied the maximum degree of estimated coefficients and investigated the effect of noise on the estimated parameters. Observation simulation and parameter estimation was accomplished with the software packages GEODYN and SOLVE.

  14. Station Crew Celebrates Christmas - Duration: 14 minutes.

    NASA Video Gallery

    Aboard the orbiting International Space Station, Expedition 34 Commander Kevin Ford, Russian Flight Engineers Oleg Novitskiy, Evgeny Tarelkin and Roman Romanenko, NASA Flight Engineer Tom Marshburn...

  15. GPS Tracks Ground Deformation

    USGS Field Engineer Ben Pauk records site and equipment information for the Global Positioning System (GPS) installed at the North Rim station in the Newberry National Volcanic Monument. The GPS records the precise position of the station, including latitude, longitude and elevation. Tracking subtle...

  16. Space Station - early

    NASA Technical Reports Server (NTRS)

    2002-01-01

    'North American selected this space station design in 1962 for final systems analysis. Incorporating all the advantages of a wheel configuration, it had rigid cylindrical modules arranged in a hexagonal shape with three rigid telescoping spokes. This configuration eliminated the need for exposed flexible fabric.' Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 284.

  17. Doppler tracking

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher Jacob

    This study addresses the development of a methodology using the Doppler Effect for high-resolution, short-range tracking of small projectiles and vehicles. Minimal impact on the design of the moving object is achieved by incorporating only a transmitter in it and using ground stations for all other components. This is particularly useful for tracking objects such as sports balls that have configurations and materials that are not conducive to housing onboard instrumentation. The methodology developed here uses four or more receivers to monitor a constant frequency signal emitted by the object. Efficient and accurate schemes for filtering the raw signals, determining the instantaneous frequencies, time synching the frequencies from each receiver, smoothing the synced frequencies, determining the relative velocity and radius of the object and solving the nonlinear system of equations for object position in three dimensions as a function of time are developed and described here.

  18. Environmental Public Health Tracking: Health and Environment Linked for Information Exchange-Atlanta (HEXIX-Atlanta: A cooperative Program Between CDC and NASA for Development of an Environmental Public Health Tracking Network in the Atlanta Metropolitan Area

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Niskar, Amanda Sue

    2005-01-01

    The Centers for Disease Control and Prevention (CDC) is coordinating HELIX- Atlanta to provide information regarding the five-county Metropolitan Atlanta Area (Clayton, Cobb, DeKalb, Fulton, and Gwinett) via a network of integrated environmental monitoring and public health data systems so that all sectors can take action to prevent and control environmentally related health effects. The HELIX-Atlanta Network is a tool to access interoperable information systems with optional information technology linkage functionality driven by scientific rationale. HELIX-Atlanta is a collaborative effort with local, state, federal, and academic partners, including the NASA Marshall Space Flight Center. The HELIX-Atlanta Partners identified the following HELIX-Atlanta initial focus areas: childhood lead poisoning, short-latency cancers, developmental disabilities, birth defects, vital records, respiratory health, age of housing, remote sensing data, and environmental monitoring, HELIX-Atlanta Partners identified and evaluated information systems containing information on the above focus areas. The information system evaluations resulted in recommendations for what resources would be needed to interoperate selected information systems in compliance with the CDC Public Health Information Network (PHIN). This presentation will discuss the collaborative process of building a network that links health and environment data for information exchange, including NASA remote sensing data, for use in HELIX-Atlanta.

  19. Application of Tracking and Data Relay Satellite (TDRS) Differenced One-Way Doppler (DOWD) Tracking Data for Orbit Determination and Station Acquisition Support of User Spacecraft Without TDRS Compatible Transponders

    NASA Technical Reports Server (NTRS)

    Olszewski, A. D., Jr.; Wilcox, T. P.; Beckman, Mark

    1996-01-01

    Many spacecraft are launched today with only an omni-directional (omni) antenna and do not have an onboard Tracking and Data Relay Satellite (TDRS) transponder that is capable of coherently returning a carrier signal through TDRS. Therefore, other means of tracking need to be explored and used to adequately acquire the spacecraft. Differenced One-Way Doppler (DOWD) tracking data are very useful in eliminating the problems associated with the instability of the onboard oscillators when using strictly one-way Doppler data. This paper investigates the TDRS DOWD tracking data received by the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) during the launch and early orbit phases for the the Interplanetary Physics Laboratory (WIND) and the National Oceanographic and Atmospheric Administration (NOAA)-J missions. In particular FDF personnel performed an investigation of the data residuals and made an assessment of the acquisition capabilities of DOWD-based solutions. Comparisons of DOWD solutions with existing data types were performed and analyzed in this study. The evaluation also includes atmospheric editing of the DOWD data and a study of the feasibility of solving for Doppler biases in an attempt to minimize error. Furthermore, by comparing the results from WIND and NOAA-J, an attempt is made to show the limitations involved in using DOWD data for the two different mission profiles. The techniques discussed in this paper benefit the launches of spacecraft that do not have TDRS transponders on board, particularly those launched into a low Earth orbit. The use of DOWD data is a valuable asset to missions which do not have a stable local oscillator to enable high-quality solutions from the one-way/return-link Doppler tracking data.

  20. Space Station Information System - Concepts and international issues

    NASA Technical Reports Server (NTRS)

    Williams, R. B.; Pruett, David; Hall, Dana L.

    1987-01-01

    The Space Station Information System (SSIS) is outlined in terms of its functions and probable physical facilities. The SSIS includes flight element systems as well as existing and planned institutional systems such as the NASA Communications System, the Tracking and Data Relay Satellite System, and the data and communications networks of the international partners. The SSIS strives to provide both a 'user friendly' environment and a software environment which will allow for software transportability and interoperability across the SSIS. International considerations are discussed as well as project management, software commonality, data communications standards, data security, documentation commonality, transaction management, data flow cross support, and key technologies.

  1. The space station

    NASA Technical Reports Server (NTRS)

    Munoz, Abraham

    1988-01-01

    Conceived since the beginning of time, living in space is no longer a dream but rather a very near reality. The concept of a Space Station is not a new one, but a redefined one. Many investigations on the kinds of experiments and work assignments the Space Station will need to accommodate have been completed, but NASA specialists are constantly talking with potential users of the Station to learn more about the work they, the users, want to do in space. Present configurations are examined along with possible new ones.

  2. Fast Track Study

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints.

  3. Demonstration of a joint US-Russian very long baseline interferometry tracking capability

    NASA Technical Reports Server (NTRS)

    Kroger, P. M.; Iijima, B. A.; Edwards, C. D.; Altunin, V.; Alexeev, V.; Lipatov, B.; Molotov, E.

    1992-01-01

    This article discusses results of the first very long baseline interferometric (VLBI) measurements between antennas of the NASA DSN and the Russian three-station spacecraft tracking network. The VLBI systems of the U.S. and Russian tracking networks are described, and their compatibility for joint U.S.-Russian measurements is discussed. The results of a series of VLBI measurements involving Deep Space Stations and Russian tracking antennas are presented. The purpose of these first observations is to establish the compatibility of the two VLBI recording systems and verify that data recorded on these systems can be successfully correlated. The delay and delay rate observables produced by correlation of the recorded data are then used to estimate the locations of the Russian tracking stations relative to the Deep Space Stations. These first experiments, carried out at 1.7 GHz, are precursors to a future series of observations at 2 and 8 GHz, which will provide far more accurate station location estimates. The capability of the VLBI systems for joint U.S.-Russian spacecraft navigation measurements is also discussed.

  4. California Natural Disasters - Using NASA Earth Observations to Assess Smoke Emissions, Fuel Loading, Moisture Content, and Vegetation Loss due to the 2009 Station Fire in the Angeles National Forest

    NASA Astrophysics Data System (ADS)

    Jones, M. L.; Reedy, J.; Moustafa, S.; Brundage, D.; Anderson, K.; Ferrare, R. A.; Swanson, A. J.; Yang, M. M.

    2010-12-01

    Wildfires are a normal occurrence in the state of California. Evidence of this can be seen in the Station Fire of 2009 (26 August - 16 October), a fire which destroyed over 154,000 acres of the Angeles National Forest and the combined summer fires of 2008 (22 May-29 August), which burned over 1,500,000 acres. In order to understand these fires it is important to consider several factors, including fire suppression, fuel loading, and the California climate. NDVI and NDMI maps for Angeles National forest were developed using Landsat 5 TM. The trend in live vegetation moisture content and vegetation condition for 2009 was found using these maps of Angeles National Forest. The NDMI maps were analyzed to understand changes in live vegetation moisture content that preceded the forest fires. Fuel for the Station fire was mapped using land classification through Landsat 5 TM and ASTER. This classification, along with moisture content levels, allowed for a method to map change in vegetation distribution, condition, and fuel load. The fuel load from these fires produces harmful emissions. These emissions contain large amounts of PM, including PM2.5, which are 2.5 micrometers in diameter and smaller (PM2.5). HYSPLIT trajectories were used to follow emissions from the 2008 summer fires to correlate with ARCTAS CARB data. HYSPLIT dispersion models were also used to show the deposition of particles in surrounding counties. Terra’s ASTER, MODIS, as well as data from EPA’s AirNow system, CARB AQMIS, and ARCTAS CARB flights were used to observe air quality factors such as PM2.5 levels, AOD, trace gases, and UV aerosol index. The results obtained from this study will demonstrate the feasibility of current and future NASA satellites to offer California policy makers assistance with more informed decision making.

  5. NEIS (NASA Environmental Information System)

    NASA Technical Reports Server (NTRS)

    Cook, Beth

    1995-01-01

    The NASA Environmental Information System (NEIS) is a tool to support the functions of the NASA Operational Environment Team (NOET). The NEIS is designed to provide a central environmental technology resource drawing on all NASA centers' capabilities, and to support program managers who must ultimately deliver hardware compliant with performance specifications and environmental requirements. The NEIS also tracks environmental regulations, usages of materials and processes, and new technology developments. It has proven to be a useful instrument for channeling information throughout the aerospace community, NASA, other federal agencies, educational institutions, and contractors. The associated paper will discuss the dynamic databases within the NEIS, and the usefulness it provides for environmental compliance efforts.

  6. 13. VIEW FROM POTOMAC RIVER BRIDGE PLATFORM WEST TOWARDS STATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW FROM POTOMAC RIVER BRIDGE PLATFORM WEST TOWARDS STATION. HARPERS FERRY DEPOT IS ON LEFT, NORTH TRACK WAITING STATION IS ON RIGHT. - Baltimore & Ohio Railroad, Harpers Ferry Station, Potomac Street, Harpers Ferry, Jefferson County, WV

  7. ISS Asset Tracking Using SAW RFID Technology

    NASA Technical Reports Server (NTRS)

    Schellhase, Amy; Powers, Annie

    2004-01-01

    A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  9. NASA program plan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

  10. The determination of maximum deep space station slew rates for a high Earth orbiter

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.

    1990-01-01

    As developing national and international space ventures, which seek to employ NASA's Deep Space Network (DSN) for tracking and data acquisition, evolve, it is essential for navigation and tracking system analysts to evaluate the operational capability of Deep Space Station antennas. To commission the DSN for use in tracking a highly eccentric Earth orbiter could quite possibly yield the greatest challenges in terms of slewing capability; certainly more so than with a deep-space probe. The focus here is on the determination of the maximum slew rates needed to track a specific high Earth orbiter, namely the Japanese MUSES-B spacecraft of the Very Long Baseline Interferometry Space Observatory Program. The results suggest that DSN 34-m antennas are capable of meeting the slew rate requirements for the nominal MUSES-B orbital geometries currently being considered.

  11. Tracks 'Seam' Like Airbags

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Bearing a striking resemblance to a cluster of paper lanterns, these inflated airbags show a pattern of seams exactly like those left in the martian soil by the Mars Exploration Rover Opportunity during landing at Meridiani Planum, Mars. This image was taken during airbag testing at NASA's Plum Brook Station, located about 50 miles west of Cleveland in Sandusky, Ohio and operated by NASA's Glenn Research Center.

  12. NASA's Photon-Counting SLR2000 Satellite Laser Ranging System: Progress and Applications

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; McGarry, Jan; Zagwodzki, Thomas; Donovan, Howard; Patterson, Don; Steggerda, Charles; Mallama, Anthony; Cheek, Jack

    2002-01-01

    NASA's new unmanned SLR2000 system is designed to track, with millimeter precision and using single photon returns, a constellation of roughly 24 retroreflector-equipped satellites, which range in altitude from about 300 km to 20,000 km. Totally autonomous operation and a common engineering configuration are expected to greatly reduce station operations costs relative to NASA's current manned systems. The system has also been designed with a goal of significantly lowering replication costs. All of the prototype components and subsystems have been completed and tested and have substantially met the original specifications. The prototype system is presently undergoing final integration and testing in a dedicated shelter with an azimuth tracking dome synchronized to the optical tracking mount. The facility also features a number of security features such as security cameras and sensors designed to detect power or thermal control problems or entry by unauthorized personnel. Field tests are in progress. The present paper provides an overview of the various subsystems and test results to date. The meteorological subsystem, which has operated successfully in the field for almost three years, consists of several sensors which measure: (1) pressure, temperature, and relative humidity; (2) wind speed and direction; (3) ground visibility and precipitation; and (4) local cloud cover as a function of station azimuth and elevation (day and night). A "pseudo-operator" software program interprets the sensor readings and modifies satellite tracking priorities based on local meteorological conditions.

  13. ISS Update: Becoming an International Space Station Program Scientist - Duration: 13 minutes.

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot interviews Tara Ruttley, Associate International Space Station Program Scientist, about her educational path and her career activities at NASA. She also discuss...

  14. Environmental Radiation Measurements on the Mir Space Station. Program 1; Internal Experiment Program

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.

    1998-01-01

    As part of the NASA/Mir Phase 1B Science Program, the ionizing radiation environment inside and outside the Russian Mir's Space Station was monitored using a combination of Thermoluminescent Detectors (TLD) and CR-39 Plastic Nuclear Track Detectors (PNTD). Radiation measurements inside the Mir station were carried out using six Area Passive Dosimeters (APD), four located inside the Mir Base Block and two located inside the Kvant 2 module, during the NASA-2/Mir-21, NASA-3/Mir-22 and NASA-4/Mir-23 missions. The radiation environment under low shielding was measured using an External Dosimeter Array (EDA) mounted on the outer surface of the Kvant 2 module. The external radiation environment and a location inside the Kvant 2 roughly corresponding to the location of the EDA were monitored for 130 days during the NASA- 4/Mir-23 and NASA-5/Mir-24 missions. Dose rates measured by APD TLDs ranged from 271 to 407 microGy/d during the NASA-2/Mir-21 mission, from 265 to 378 microGy/d during the NASA-3/Mir-22 mission, and from 287 to 421 microGy/d during the NASA-4/Mir-23 mission. APD PNTDs have been analyzed and LET spectra have been Cenerated for the five APDs exposed on the NASA-2/Mir-21 mission and for two APD PNTDs exposed on the NASA-3/Mir-22 mission. Dose equivalent rates on the NASA-2/Mir-21 mission ranged from 513 microSv/d in the Kvant 2 module to 710 microSv/d on the floor of the Base Block. Dose as a function of shielding depth in TLDs has been measured in the thin TLD stacks including in the EDA. EDA dose range from 72.5 Gy under 0.0146 g/sq cm to 0.093 Gy under 3.25 g/sq cm of shielding. Readout and analysis of the reaming PNTDs form the NASA-3/Mir-22 mission and PNTDs from the NASA-4/Mir-23 mission (including those from the EDA) is ongoing and will be completed during the final year of this experiment. Dose equivalent rates for the NASA-3/Mir-22 and NASA-4/Mir-23 APDs will then be determined and comparisons will be made with both model calculations and with results from similar measurements.

  15. Space Station - The next logical step

    NASA Technical Reports Server (NTRS)

    Finn, T. T.; Hodge, J. D.

    1984-01-01

    NASA is committed to the development of a permanently manned Space Station within a decade, in concert with European and Japanese space agencies. In addition to continuing scientific research, the Space Station will proceed with applied science and industrialization experiments. International cooperation opportunities arise within the Space Station program for users (in the definition of missions), for builders (in the development of station resources and capabilities), and operators (in the orbital maintenance of the Space Station).

  16. Space Station Freedom media handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This handbook explains in lay terms, the work that is going on at the NASA Centers and contractors' plants in designing and developing the Space Station Freedom. It discusses the roles, responsibilities, and tasks required to build the Space Station Freedom's elements, systems, and components. New, required ground facilities are described, organized by NASA Center in order to provide a local angle for the media. Included are information on the historical perspective, international aspects, the utilization of the Space Station Freedom, a look at future possibilities, a description of the program, its management, program phases and milestones, and considerable information on the role of various NASA Centers, contractors and international partners. A list of abbreviations, a four-page glossary, and a list of NASA contacts are contained in the appendices.

  17. 76 FR 52016 - NASA Federal Advisory Committees; Nominations and Self-Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... Administrator may request. International Space Station (ISS) Advisory Committee--The ISS Advisory Committee... interest identified by the NASA Associate Administrator for Space Operations. International Space Station... SPACE ADMINISTRATION NASA Federal Advisory Committees; Nominations and Self- Nominations...

  18. AI applications for the space station

    NASA Technical Reports Server (NTRS)

    Boarnet, Marlon; Culbert, Chris; Savely, Robert T.

    1987-01-01

    NASA is currently developing a space station for long-term usage of space. This space station presents NASA with numerous problems which may be best handled by effective use of expert systems. The authors outline some of the benefits expert systems will provide, some of the issues involved in choosing appropriate applications, and the impact expert systems will have on the design of the space station.

  19. Space Campers Speak With Station Science Communication Coordinator - Duration: 24 minutes.

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, International Space Station Science Communication Coordinator Liz Warren participates in a Digital Learning Network (DLN) event with ...

  20. 3. NORTH FRONT, BULLET GLASS OBSERVATION WINDOWS FACE SLED TRACK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTH FRONT, BULLET GLASS OBSERVATION WINDOWS FACE SLED TRACK. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA

  1. NORTH SIDE FACING TRACK, SHOWING ELECTRICAL BOX AND CONCRETE VAULT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SIDE FACING TRACK, SHOWING ELECTRICAL BOX AND CONCRETE VAULT - Edwards Air Force Base, South Base Sled Track, Electrical Distribution Station, South side of Sled Track, Lancaster, Los Angeles County, CA

  2. Small Orbital Stereo Tracking Camera Technology Development

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; MacLeod, T.

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASAs Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  3. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  4. 78 FR 42111 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... --International Space Station Utilization Status and Plans --Description of NASA's Agency Level Commercialization... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the...

  5. NASA Astronaut Mike Fossum Talks With Students - Duration: 23 minutes.

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, NASA Astronaut Mike Fossum participates in a Digital Learning Network (DLN) event with students from Clark Creek STEM Academy in Ackw...

  6. Innovation @ NASA

    NASA Technical Reports Server (NTRS)

    Roman, Juan A.

    2014-01-01

    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  7. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  8. Space Station Food System

    NASA Technical Reports Server (NTRS)

    Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.

    1986-01-01

    A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.

  9. NASA Exploration Design Challenge - Duration: 2 minutes, 15 seconds.

    NASA Video Gallery

    From the International Space Station, astronaut Sunita Williams welcomes participants to the NASA Exploration Design Challenge and explains the uncertainties about the effects of space radiation on...

  10. Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations I: COMS simulation case

    NASA Astrophysics Data System (ADS)

    Son, Ju Young; Jo, Jung Hyun; Choi, Jin

    2015-09-01

    To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI) is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.

  11. $425 million for space station

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    The Space Station will funded at only about half of the $767 million requested in the 1988 budget for the National Aeronautics and Space Administration (NASA), and overall the agency will receive $8,856 billion for the current fiscal year (FY) in the deficit-reduction package passed by Congress in late December. Despite an earlier complaint that reductions in the space station budget would kill the program and an apparent lack of support from the White House, NASA's official reaction was full of good cheer.NASA will be able to use the $425 million in two installments, $200 million now and $225 million in June. In October, NASA administrator James Fletcher stated in a letter to Senator Jake Garn (R-Utah) that if the space station received no more than $440 million, he would “recommend termination” of the program. But after the budget was approved, NASA said that the $425 million “reflected the strong commitment of the President and the Congress to proceed with the development of a space station.” A recent request to President Reagan from congressional proponents of the station for a letter of support for the multibillion dollar project was declined.

  12. Space station data flow

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

  13. NASA budget increases for 1994

    NASA Astrophysics Data System (ADS)

    Leath, Audrey T.

    The fiscal year 1994 budget request for NASA is $15.3 billion, an increase of $934.6 million, or 6.5%, above the 1993 appropriation of $14.3 billion. Within this first budget request developed under NASA Administrator Daniel Goldin, the emphasis has changed and some details remain unresolved. At the agency's budget briefing, Goldin echoed Clinton's mantra for change and increased investment in new technologies. Saying that NASA was “too much into human space flight,” Goldin has proposed increased funding for technology development at the expense of the space station. He has also made reductions in some existing programs and increased funding for others.

  14. Space Station Live! Tour - Duration: 2 minutes, 7 seconds.

    NASA Video Gallery

    NASA is using the Internet and smartphones to provide the public with a new inside look at what happens aboard the International Space Station and in the Mission Control Center. NASA Public Affairs...

  15. Station Change of Command Ceremony - Duration: 6 minutes, 56 seconds.

    NASA Video Gallery

    The reins of the International Space Station were passed from Expedition 29 Commander Mike Fossum of NASA to his NASA colleague, newly arrived Expedition 30 Commander Dan Burbank in a ceremony on t...

  16. Space Station evolution study

    NASA Technical Reports Server (NTRS)

    Evans, David B.

    1993-01-01

    This is the Space Station Freedom (SSF) Evolution Study 1993 Final Report, performed under NASA Contract NAS8-38783, Task Order 5.1. This task examined: (1) the feasibility of launching current National Space Transportation System (NSTS) compatible logistics elements on expendable launch vehicles (ELV's) and the associated modifications, and (2) new, non-NSTS logistics elements for launch on ELV's to augment current SSF logistics capability.

  17. Tracking and data relay satellite system (TDRSS) - A worldwide view from space

    NASA Technical Reports Server (NTRS)

    Macoughtry, W. O.; Harris, D. W.

    1983-01-01

    The development, performance levels, and operational use of the TDRSS satellite system are outlined. The TDRSS spacecraft were conceived in the mid-1960s by NASA as a means of using GEO-positioned satellites to eliminate existing ground stations. The main ground terminal becomes Goddard Space Flight Center, through which users other than the Shuttle can also gain access. The TDRSS functions as a relay vehicle, with very little on-board processing except for status reports inserted into the data stream. Use of the TDRSS system by nonNASA agencies currently costs $110/min for forwards, return, and tracking, $24/min for forward service alone, and $8/min for return service only. The spacecraft can store data on board and dump it to the ground station during the limited hours of operation.

  18. The organized Space Station

    NASA Astrophysics Data System (ADS)

    Lew, Leong W.

    Space Station organization designers should consider the onboard stowage system to be an integral part of the environment structured for productive working conditions. In order to achieve this, it is essential to use an efficient inventory control system able to track approximately 50,000 items over a 90-day period, while maintaining peak crew performance. It is noted that a state-of-the-art bar-code inventory management system cannot satisfy all Space Station requirements, such as the location of a critical missing item.

  19. The organized Space Station

    NASA Technical Reports Server (NTRS)

    Lew, Leong W.

    1988-01-01

    Space Station organization designers should consider the onboard stowage system to be an integral part of the environment structured for productive working conditions. In order to achieve this, it is essential to use an efficient inventory control system able to track approximately 50,000 items over a 90-day period, while maintaining peak crew performance. It is noted that a state-of-the-art bar-code inventory management system cannot satisfy all Space Station requirements, such as the location of a critical missing item.

  20. Space tracking in the Army

    NASA Astrophysics Data System (ADS)

    Chin, Johnson

    1992-03-01

    The Tracking, Command, Control, and Communications (TRACC3) system, which is developed to evaluate the tracking approach to managing the flow of logistics on a global scale, is described. TRACC3 is an autonomous system that transmits its location periodically through INMARSAT. The TRACC3 system consists of three interrelated segments: the space and ground segments, and the monitor station.

  1. The role of tethers on space station

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. (Editor)

    1985-01-01

    The results of research and development that addressed the usefulness of tether applications in space, particularly for space station are described. A well organized and structured effort of considerable magnitude involving NASA, industry and academia have defined the engineering and technological requirements of space tethers and their broad range of economic and operational benefits. The work directed by seven NASA Field Centers is consolidated and structured to cover the general and specific roles of tethers in space as they apply to NASA's planned space station. This is followed by a description of tether systems and operations. A summary of NASA's plans for tether applications in space for years to come is given.

  2. NASA reports

    NASA Technical Reports Server (NTRS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    1992-01-01

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  3. The NASA Fireball Network Database

    NASA Technical Reports Server (NTRS)

    Moser, Danielle E.

    2011-01-01

    The NASA Meteoroid Environment Office (MEO) has been operating an automated video fireball network since late-2008. Since that time, over 1,700 multi-station fireballs have been observed. A database containing orbital data and trajectory information on all these events has recently been compiled and is currently being mined for information. Preliminary results are presented here.

  4. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  5. Geophysical Monitoring Station (GEMS)

    NASA Astrophysics Data System (ADS)

    Banerdt, B.; Dehant, V. M.; Lognonne, P.; Smrekar, S. E.; Spohn, T.; GEMS Mission Team

    2011-12-01

    GEMS (GEophysical Monitoring Station) is one of three missions undergoing Phase A development for possible selection by NASA's Discovery Program. If selected, GEMS will perform the first comprehensive surface-based geophysical investigation of Mars, filling a longstanding gap in the scientific exploration of the solar system. It will illuminate the fundamental processes of terrestrial planet formation and evolution, providing unique and critical information about the initial accretion of the planet, the formation and differentiation of the core and crust, and the subsequent evolution of the interior. The scientific goals of GEMS are to understand the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars and to determine its present level of tectonic activity and impact flux. A straightforward set of scientific objectives address these goals: 1) Determine the size, composition and physical state of the core; 2) Determine the thickness and structure of the crust; 3) Determine the composition and structure of the mantle; 4) Determine the thermal state of the interior; 5) Measure the rate and distribution of internal seismic activity; and 6) Measure the rate of impacts on the surface. To accomplish these objectives, GEMS carries a tightly-focused payload consisting of 3 investigations: 1) SEIS, a 6-component, very-broad-band seismometer, with careful thermal compensation/control and a sensitivity comparable to the best terrestrial instruments across a frequency range of 1 mHz to 50 Hz; 2) HP3 (Heat Flow and Physical Properties Package), an instrumented self-penetrating mole system that trails a string of temperature sensors to measure the thermal gradient and conductivity of the upper several meters, and thus the planetary heat flux; and 3) RISE (Rotation and Interior Structure Experiment), which would use the spacecraft X-band communication system to provide precision tracking for planetary dynamical studies. The two instruments are moved from the lander deck to the martian surface by an Instrument Deployment Arm, with an appropriate location identified using an Instrument Deployment Camera. In order to ensure low risk within the tight Discovery cost limits, GEMS reuses the successful Lockheed Martin Phoenix spacecraft design, with a cruise and EDL system that has demonstrated capability for safe landing on Mars with well-understood costs. To take full advantage of this approach, all science requirements (such as instrument mass and power, landing site, and downlinked data volume) strictly conform to existing, demonstrated capabilities of the spacecraft and mission system. It is widely believed that multiple landers making simultaneous measurements (a network) are required to address the objectives for understanding terrestrial planet interiors. Nonetheless, comprehensive measurements from a single geophysical station are extremely valuable, because observations constraining the structure and processes of the deep interior of Mars are virtually nonexistent. GEMS would utilize sophisticated analysis techniques specific to single-station measurements to determine crustal thickness, mantle structure, core state and size, and heat flow, providing our first real look deep beneath the surface of Mars.

  6. Environmental Radiation Measurements on MIR Station. Program 1; Internal Experiment

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.

    1997-01-01

    Environmental radiation levels on the Russian space station Mir are being monitored under differing shielding conditions by a series of six area passive dosimeters (APDs) placed at individual locations inside the Core and Kvant 2 modules, and by an External Dosimeter Array (EDA) to be-deployed on the exterior surface of the Kvant 2 module. Each APD and the EDA contains CR-39 plastic nuclear track detectors (PNTDs) for measurement of LET spectra and TLDs for absorbed dose measurements. Two of the missions, NASA-2/Mir-21 and NASA-3/Mir-22 have been completed and the six APDs from each mission returned to Earth from Mir. This report covers progress to date on the analysis of TLDs and PNTDs from these two missions. For NASA-2/Mir-21, average mission absorbed dose rates varied from 271 to 407 micro-Gy/d at the APDS. For NASA-3/Mir-22, average mission absorbed dose rates varied from 265 to 421 micro-Gy/d.

  7. Space Station Live: Fluids and Combustion Facility - Duration: 10 minutes.

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean speaks with Robert Corban, Fluids and Combustion Facility Manager, about the research being performed aboard the International Space Station using this state...

  8. Astronaut 'Checks In' From Space Station - Duration: 67 seconds.

    NASA Video Gallery

    NASA astronaut and International Space Station Commander Doug Wheelock became the first person to "check in" from space Friday using the mobile social networking application Foursquare. Wheelock's ...

  9. Station Crew Training Integrator Talks With Students - Duration: 24 minutes.

    NASA Video Gallery

    From NASA's International Space Station Mission Control Center, Expedition 34/35 Training Integrator Alicia Simpson participates in a Digital Learning Network (DLN) event with students from Christ ...

  10. Station Crew Opens Dragon's Hatch - Duration: 2 minutes, 3 seconds.

    NASA Video Gallery

    The hatch between the newly arrived SpaceX Dragon spacecraft and the Harmony module of the International Space Station was opened by NASA Astronaut Don Pettit at 5:53 am EDT as the station flew 253...

  11. Cutting Edge RFID Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2007-01-01

    This viewgraph document reviews the use of Radio-frequency identification (RFID) for NASA applications. Some of the uses reviewed are: inventory management in space; potential RFID uses in a remote human outpost; Ultra-Wideband RFID for tracking; Passive, wireless sensors in NASA applications such as Micrometeoroid impact detection and Sensor measurements in environmental facilities; E-textiles for wireless and RFID.

  12. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1989-01-01

    This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.

  13. UWB Tracking Software Development

    NASA Technical Reports Server (NTRS)

    Gross, Julia; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    An Ultra-Wideband (UWB) two-cluster Angle of Arrival (AOA) tracking prototype system is currently being developed and tested at NASA Johnson Space Center for space exploration applications. This talk discusses the software development efforts for this UWB two-cluster AOA tracking system. The role the software plays in this system is to take waveform data from two UWB radio receivers as an input, feed this input into an AOA tracking algorithm, and generate the target position as an output. The architecture of the software (Input/Output Interface and Algorithm Core) will be introduced in this talk. The development of this software has three phases. In Phase I, the software is mostly Matlab driven and calls C++ socket functions to provide the communication links to the radios. This is beneficial in the early stage when it is necessary to frequently test changes in the algorithm. Phase II of the development is to have the software mostly C++ driven and call a Matlab function for the AOA tracking algorithm. This is beneficial in order to send the tracking results to other systems and also to improve the tracking update rate of the system. The third phase is part of future work and is to have the software completely C++ driven with a graphics user interface. This software design enables the fine resolution tracking of the UWB two-cluster AOA tracking system.

  14. NASA's Space Geodesy Project

    NASA Astrophysics Data System (ADS)

    Merkowitz, S.; Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; Mcgarry, J.; Murphy, D.; Noll, C. E.; Pavlis, E. C.; Pearlman, M. R.; Stowers, D. A.; Webb, F.

    2013-12-01

    NASA's Space Geodesy Project (SGP) recently completed a prototype core site as the basis for a next generation Space Geodetic Network that is part of NASA's contribution to the Global Geodetic Observing System (GGOS). This system is designed to produce the higher quality data required to establish and maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and future generation of Earth Observing spacecraft. The prototype core site is at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center and includes co-located, state of-the-art, systems from all four space geodetic observing techniques: Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). A system for monitoring of the "ties" between these four systems is an integral part of the core site development concept and this specific prototype. When fully implemented, this upgraded global network will benefit in addition to the ITRF, all other network products (e.g. Precision Orbit Determination, local & regional deformation, astrometry, etc.), which will also be improved by at least an order of magnitude, with concomitant benefits to the supported and tracked missions, science projects, and engineering applications. We present the results of the prototype site demonstration and describe the NASA plans for implementing its next generation network.

  15. NASA mobile satellite program

    NASA Astrophysics Data System (ADS)

    Knouse, G.; Weber, W.

    1985-04-01

    A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.

  16. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1998-01-01

    This fiscal year (FY) 1997 annual report describes key elements of the NASA Microgravity Research Program (MRP) as conducted by the Microgravity Research Division (MRD) within NASA's Office of Life and Microgravity, Sciences and Applications. The program's goals, approach taken to achieve those goals, and program resources are summarized. All snapshots of the program's status at the end of FY 1997 and a review of highlights and progress in grounds and flights based research are provided. Also described are major space missions that flew during FY 1997, plans for utilization of the research potential of the International Space Station, the Advanced Technology Development (ATD) Program, and various educational/outreach activities. The MRP supports investigators from academia, industry, and government research communities needing a space environment to study phenomena directly or indirectly affected by gravity.

  17. The space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1986-01-01

    The manned space station is the next major NASA program. It presents many challenges to the power system designers. The power system in turn is a major driver on the overall configuration. In this paper, the major requirements and guidelines that affect the station configuration and the power system are explained. The evolution of the space station power system from the NASA program development-feasibility phase through the current preliminary design phase is described. Several early station concepts, both fanciful and feasible, are described and linked to the present concept. The recently completed Phase B trade study selections of photovoltaic system technologies are described in detail. A summary of the present solar dynamic and power management and distribution systems is also given for completeness.

  18. Telerobot for space station

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1987-01-01

    The Flight Telerobotic Servicer (FTS), a multiple arm dexterous manipulation system, will aid in the assembly, maintenance, and servicing of the space station. Fundamental ideas and basic conceptual designs for a shuttle-based telerobot system have been produced. Recent space station studies provide additional concepts that should aid in the accomplishment of mission requirements. Currently, the FTS is in contractual source selection for a Phase B preliminary design. At the same time, design requirements are being developed through a series of robotic assessment tasks being performed at NASA and commercial installations. A number of the requirements for remote operation on the space station, necessary to supplement extravehicular activity (EVA), will be met by the FTS. Finally, technology developed for telerobotics will advance the state of the art of remote operating systems, enhance operator productivity, and prove instrumental in the evolution of an adaptive, intelligent autonomous robot.

  19. Astrometry of Comets at USNO Flagstaff Station

    NASA Astrophysics Data System (ADS)

    Monet, A. K. B.; Stone, R. C.; Harris, H. C.; Tilleman, T.; Monet, D. G.; Levine, S. E.; Canzian, B.

    2005-12-01

    The optical astrometry group at the Flagstaff Station of the US Naval Observatory has, since 1994, provided astrometric positions to NASA/JPL for a series of comets that were targets of various space missions. Among these have been Shoemaker-Levy 9, Wild 2, Schwassman-Wachmann 3, and Tempel 1. All astrometry has been done with meter-class or smaller telescopes, equipped with single-chip CCD cameras. Comet positions were computed using stellar reference catalogs produced at USNO, including USNO-A1.0 (for the earliest observations), USNO-B1.0, and UCAC 1 and 2. In the course of these astrometric campaigns, it has become clear that obtaining accurate positions of comets depends on certain key factors. These include proper pixelization, a field of view large enough to emcompass a good distribution of background reference stars, a suitable reference catalog, and integrations long enough to average out seeing effects. In this report, we will discuss each of these factors and how they can be optimized. The application of what we consider ``best practices'' in tracking comet Tempel 1 for the Deep Impact mission will be presented. Support for this work has been provided by a series of NASA/JPL contracts and grants, the latest of which is NRA/AO 4ZSS001N.

  20. The challenge of the US Space Station

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.

    1985-01-01

    The U.S. Space Station program is described. The objectives of the present national space policy are reviewed. International involvement and commercial use of space are the two strategies involved in the development of the Space Station. The Space Station is to be a multifunctional, modular, permanent facility with manned and unmanned platforms. The functions of the Space Station for space research projects, such as material processing and electrophoresis, are examined. The infrastructure required for commercialization of space is analyzed. NASA's space policy aimed at stimulating space commerce is discussed. NASA's plans to reduce the financial, institutional, and technical risks of space research are studied.

  1. Communications and tracking technology discipline

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert

    1990-01-01

    Viewgraphs on communications and tracking technology discipline for Space Station Freedom are presented. The objective is to develop devices, components, and analytical methods to enhance and enable technology to meet space station evolutionary requirements for multiple access (proximity) communications, space-to-ground communications, and tracking as it pertains to rendezvous and docking as well as potential orbital debris warning systems. Topics covered include: optical communications and tracking; monolithic microwave integrated circuit systems; traveling wave tube technology; advanced modulation and coding; and advanced automation.

  2. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified...

  3. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified...

  4. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified...

  5. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified...

  6. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified...

  7. NASA Enterprise Visual Analysis

    NASA Technical Reports Server (NTRS)

    Lopez-Tellado, Maria; DiSanto, Brenda; Humeniuk, Robert; Bard, Richard, Jr.; Little, Mia; Edwards, Robert; Ma, Tien-Chi; Hollifield, Kenneith; White, Chuck

    2007-01-01

    NASA Enterprise Visual Analysis (NEVA) is a computer program undergoing development as a successor to Launch Services Analysis Tool (LSAT), formerly known as Payload Carrier Analysis Tool (PCAT). NEVA facilitates analyses of proposed configurations of payloads and packing fixtures (e.g. pallets) in a space shuttle payload bay for transport to the International Space Station. NEVA reduces the need to use physical models, mockups, and full-scale ground support equipment in performing such analyses. Using NEVA, one can take account of such diverse considerations as those of weight distribution, geometry, collision avoidance, power requirements, thermal loads, and mechanical loads.

  8. Resources: NASA for entrepreneurs

    NASA Technical Reports Server (NTRS)

    Jannazo, Mary Ann

    1988-01-01

    The services of NASA's Technology Utilization Program are detailed and highlights of spinoff products in various stages of completion are described. Areas discussed include: Stirling engines for automotive applications, klystron tubes used to reduce power costs at UHF television stations, sports applications of riblet film (e.g., boat racing), reinforced plastic for high-temperature applications, coating technology appropriate for such applications similar to the renovation of the Statue of Liberty, and medical uses of fuel pump technology (e.g., heart pumps).

  9. NASA Communications Augmentation network

    NASA Astrophysics Data System (ADS)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-09-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  10. NASA Communications Augmentation network

    NASA Technical Reports Server (NTRS)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  11. Identifying Communities of Vulnerability: Using NASA's Multiangle Imaging Spectroradiometer to Enhance Public Health Tracking of Particle Exposure in Los Angeles - An Empirical Approach to Examining L1 MISR Radiance Measurements and PM2.5 Relationships

    NASA Astrophysics Data System (ADS)

    Laygo, K.; Kontgis, C.; Hollins, A.

    2011-12-01

    Los Angeles is consistently ranked as one of the most polluted cities in the United States, exhibiting high levels of both ozone and particulate matter. Particulate matter with an aerodynamic diameter of 2.5 microns or less, or PM2.5, is of special concern for health professionals, since it is fine enough to be inhaled into the lungs. Additionally, studies show that it is associated with respiratory disease risks such as asthma. Remote sensing technologies have the potential to be useful in air pollution health studies, but have so far been sparsely implemented. Satellite-derived measurements would be especially useful in air pollution studies, since the concentrations of interest can change by orders of magnitude over small distances. However, with current remote sensing technologies, it is difficult to predict pollution levels within small areas. This study utilizes remote sensing information in combination with a ground-based network of data to create a more comprehensive approach to tracking public health concerns. According to the 2007 NRC Decadal Survey, there is a continued need for research that establishes the relationship between remotely sensed data and predicting public health risks related to environmental factors. For this study, we conducted linear regression models using Multi-Angle Imaging SpectroRadiometer (MISR) L1 radiance data and ground-based PM2.5 measurements from 13 EPA stations within the Los Angeles Metropolitan Statistical Area. MISR senses in 4 bands (visible blue, green, red and near infrared) and 9 separate angles, producing a total of 36 bands. Using all 36 bands, we generated models for each station individually and for all stations combined. Two time periods were assessed: June, July and August from 2000 - 2009, and all months from 2009. Summer months were looked at specifically, since pollution levels tend to be higher than other parts of the year due to strong inversion layers and low rainfall levels. Generally, the models performed well, suggesting that MISR radiances are able to accurately predict levels of PM2.5. For 2009 data, all models had R-squared values over 0.93. For summer month data, the model R-square values were markedly lower and more varied than for the 2009 data, ranging from 0.33 - 0.92. When looking at the 2009 data, non-summer month models performed better than did summer-month models. A brief analysis of temperature data indicates that temperature and deviation from the norm are not associated with model predictability. All 36 MISR channels were plotted against their weights for each model, but no band combination obviously weighed more than other bands. Further research needs to be conducted to understand why models were able to predict 2009 PM2.5 levels, but were unable to accurately fit summer data from 2000 - 2009.

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  15. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. Destination Station Atlanta - Duration: 61 seconds.

    NASA Video Gallery

    Destination Station was recently in Atlanta from April 15 through April 21. During the week, NASA visited schools, hospitals, museums, and the city’s well known Atlanta Science Tavern Meet Up gro...

  2. The issue is leadership. [Space Station program

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.

    1985-01-01

    Four NASA Phase B centers (NASA-Johnson, NASA-Marshall, NASA-Goddard, and NASA-Lewis) are responsible for construction, assembly, servicing, habitat, and other particular tasks and functions of the Space Station. The project has been joined by the aerospace programs of Canada, Japan, and the European Space Agency, ensuring technological and financial support, and cooperative use by the participants. Some of the future uses of the Space Station include biomedical research and applications; experiments in solar-terrestrial physics and astronomy; building, maintenance, and launching of space instruments and planetary missions; manufacturing and processing of materials that call for the conditions of microgravity and weightlessness; supporting communication operations; and improving earth and atmospheric observations. The political significance of the Space Station as a symbol of leadership and of friendly cooperation is noted.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. The NASA data systems standardization program - Radio frequency and modulation

    NASA Technical Reports Server (NTRS)

    Martin, W. L.

    1983-01-01

    The modifications being considered by the NASA-ESA Working Group (NEWG) for space-data-systems standardization to maximize the commonality of the NASA and ESA RF and modulation systems linking spaceborne scientific experiments with ground stations are summarized. The first phase of the NEWG project shows that the NASA MK-IVA Deep Space Network and Shuttle Interrogator (SI) systems in place or planned for 1985 are generally compatible with the ESA Network, but that communications involving the Tracking and Data Relay Satellite (TDRS) are incompatible due to its use of spread-spectrum modulation, pseudonoise ranging, multiple-access channels, and Mbit/s data rates. Topics under study for the post-1985 period include low-bit-rate capability for the ESA Network, an optional 8-kHz command subcarrier for the SI, fixing the spacecraft-transponder frequency-multiplication ratios for possible X-band uplinks or X-band nondeep-space downlinks, review of incompatible TDRS features, and development of the 32-GHz band.

  5. In Brief: NASA's Phoenix spacecraft lands on Mars

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Kumar, Mohi

    2008-06-01

    After a 9.5-month, 679-million-kilometer flight from Florida, NASA's Phoenix spacecraft made a soft landing in Vastitas Borealis in Mars's northern polar region on 25 May. The lander, whose camera already has returned some spectacular images, is on a 3-month mission to examine the area and dig into the soil of this site-chosen for its likelihood of having frozen water near the surface-and analyze samples. In addition to a robotic arm and robotic arm camera, the lander's instruments include a surface stereo imager; thermal and evolved-gas analyzer; microscopy, electrochemistry, and conductivity analyzer; and a meteorological station that is tracking daily weather and seasonal changes.

  6. ILRS Station Reporting

    NASA Technical Reports Server (NTRS)

    Noll, Carey E.; Pearlman, Michael Reisman; Torrence, Mark H.

    2013-01-01

    Network stations provided system configuration documentation upon joining the ILRS. This information, found in the various site and system log files available on the ILRS website, is essential to the ILRS analysis centers, combination centers, and general user community. Therefore, it is imperative that the station personnel inform the ILRS community in a timely fashion when changes to the system occur. This poster provides some information about the various documentation that must be maintained. The ILRS network consists of over fifty global sites actively ranging to over sixty satellites as well as five lunar reflectors. Information about these stations are available on the ILRS website (http://ilrs.gsfc.nasa.gov/network/stations/index.html). The ILRS Analysis Centers must have current information about the stations and their system configuration in order to use their data in generation of derived products. However, not all information available on the ILRS website is as up-to-date as necessary for correct analysis of their data.

  7. Replacing NASA's Shuttle

    NASA Astrophysics Data System (ADS)

    Robertson, Donald F.

    1990-02-01

    The latest NASA Shuttle II proposal for an Advanced Manned Launch System (AMLS) is reviewed. It could achieve total reusability, with a glide-back booster stage and no solid rockets. The propellant load would be divided between the booster and orbiter stages. The AMLS payload of just over nine tons will be limited to crew and 'high-value' cargo, carried in the dorsal pod. Bulky freight and satellites will rely on expendable launchers. AMLS will be a Space Station ferry only and would not be used for on-orbit experiments. The operational history of the Space Shuttle program is shown, as well as its programmed future undertakings. Beyond the proposed Shuttle II, some insight is offered on the conceptual vehicle named Shuttle Z that could be the mainstay of Lunar-Base or Mars expeditions. Needed technologies and key features of a proposed AMLS orbiter are also mentioned. In addition, NASA proposals for a rescue vehicle for Space Station Freedom that will serve to return stranded or injured astronauts to earth is presented. One such proposed crew rescue vehicle would carry four people plus 450 kg of supplies, for a gross mass of 7146 kg.

  8. America in Space, the First Decade - Space Physics and Astronomy, Man in Space, Exploring the Moon and Planets, Putting Satellites to Work, NASA Spacecraft, Spacecraft Tracking, Linking Man and Spacecraft.

    ERIC Educational Resources Information Center

    Corliss, William R.; Anderton, David A.

    Included are seven booklets, part of a series published on the occasion of the tenth anniversary of the National Aeronautics and Space Administration (NASA). The publications are intended as overviews of some important activities, programs, and events of NASA. They are written for the layman and cover several science disciplines. Each booklet…

  9. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  10. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  11. Space Station Freedom commercial infrastructure

    NASA Technical Reports Server (NTRS)

    Barquinero, Kevin; Cassidy, Jeff

    1989-01-01

    NASA policy concerning the commercial infrastructure of the Space Station is examined. Plans for receiving and evaluating unsolicited proposals to provide commercial infrastructure are outlined. The guidelines for development of the commercial infrastructure and examples of opportunities for industry are listed. Also, a program for industry feedback concerning the commercial infrastructure policy is discussed.

  12. Discussion of the design of satellite-laser measurement stations in the eastern Mediterranean under the geological aspect. Contribution to the earthquake prediction research by the Wegener Group and to NASA's Crustal Dynamics Project

    NASA Technical Reports Server (NTRS)

    Paluska, A.; Pavoni, N.

    1983-01-01

    Research conducted for determining the location of stations for measuring crustal dynamics and predicting earthquakes is discussed. Procedural aspects, the extraregional kinematic tendencies, and regional tectonic deformation mechanisms are described.

  13. Spirit Leaves Telling Tracks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Scientists have found clues about the nature of martian soil through analyzing wheel marks from the Mars Exploration Rover Spirit in this image. The image was taken by Spirit's rear hazard-identification camera just after the rover drove approximately 1 meter (3 feet) northwest off the Columbia Memorial Station (lander platform) early Thursday morning. That the wheel tracks are shallow indicates the soil has plenty of strength to support the moving rover. The well-defined track characteristics suggest the presence of very fine particles in the martian soil (along with larger particles). Scientists also think the soil may have some cohesive properties.

  14. NASA Records Database

    NASA Technical Reports Server (NTRS)

    Callac, Christopher; Lunsford, Michelle

    2005-01-01

    The NASA Records Database, comprising a Web-based application program and a database, is used to administer an archive of paper records at Stennis Space Center. The system begins with an electronic form, into which a user enters information about records that the user is sending to the archive. The form is smart : it provides instructions for entering information correctly and prompts the user to enter all required information. Once complete, the form is digitally signed and submitted to the database. The system determines which storage locations are not in use, assigns the user s boxes of records to some of them, and enters these assignments in the database. Thereafter, the software tracks the boxes and can be used to locate them. By use of search capabilities of the software, specific records can be sought by box storage locations, accession numbers, record dates, submitting organizations, or details of the records themselves. Boxes can be marked with such statuses as checked out, lost, transferred, and destroyed. The system can generate reports showing boxes awaiting destruction or transfer. When boxes are transferred to the National Archives and Records Administration (NARA), the system can automatically fill out NARA records-transfer forms. Currently, several other NASA Centers are considering deploying the NASA Records Database to help automate their records archives.

  15. Laser transmitter development for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar

    NASA Astrophysics Data System (ADS)

    Coyle, D. B.; Stysley, Paul R.; Poulios, Demetrios; Clarke, Greg B.; Kay, Richard B.

    2015-09-01

    The Global Ecosystems Dynamics Investigation (GEDI) Lidar, to be installed aboard the International Space Station in early 2018, will use 3 NASA laser transmitters to produce 14 parallel tracks of 25 m footprints on the Earth's surface. A global set of systematic canopy measurements will be derived, the most important of which are vegetation canopy top heights and the vertical distribution of canopy structure. Every digitized laser pulse waveform will provide 3-D biomass information for the duration of the mission. A total of 5 GEDI-HOMER lasers are to be built (1 ETU + 3 Flight + 1 spare) in-house at NASA-GSFC, and is based on a well-studied architecture, developed over several years in the Lasers and Electro-Optics Branch.

  16. The NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.; Bozek, J.

    1984-01-01

    The potential cost and performance advantages of welding was understood but ignored by solar panel manufacturers in the U.S. Although NASA, DOD and COMSAT have supported welding development efforts, soldering remains the only U.S. space qualified method for interconnecting solar cells. The reason is that no U.S. satellite prime contractor found it necessary, due to mission requirements, to abandon the space proven soldering process. It appears that the proposed NASA space station program will provide an array requirement, a 10 year operation in a low Earth orbital environment, that mandates welding. The status of welding technology in the U.S. is assessed.

  17. The Capabilities of Space Stations

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

  18. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  19. A customer-friendly Space Station

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1984-01-01

    This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.

  20. NASA Exhibits

    NASA Technical Reports Server (NTRS)

    Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.

  1. 48 CFR 1812.301 - Solicitation provisions and contract clauses for the acquisition of commercial items. (NASA...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Space Station Activities. (M) 1852.228-78, Cross-Waiver of Liability for NASA Expendable Launch Vehicles...)(i) * * * (L) 1852.228-76, Cross-Waiver of Liability for International Space Station Activities. (M... International Space Station....

  2. Telescoping Space-Station Modules

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1986-01-01

    New telescoping-space-station design involves module within a module. After being carried to orbit within payload bay of Space Shuttle orbiter, outer module telescopically deployed to achieve nearly twice as much usable space-station volume per Space Shuttle launch. Closed-loop or "race-track" space-station configurations possible with this concept and provide additional benefits. One benefit involves making one of modules double-walled haven safe from debris, radiation, and like. Module accessible from either end, and readily available to all positions in space station. Concept also provides flexibility in methods in which Space Shuttle orbiter docked or berthed with space station and decrease chances of damage.

  3. International Space Station (ISS) Payload Information Source

    NASA Technical Reports Server (NTRS)

    Griswold, Tom

    2002-01-01

    The International Space Station Payload Information Source CD is a joint effort of NASA and United Space Alliance. It is an introduction to the Space Station's capabilities, payload accommodations and the payload integration process. The CD is designed for use in conjunction with the station payloads website. The outline for the website includes fields of research, getting on board, international partners, about the ISS, basic accommodations, specialized facilities, payload integration, payload processing, payload operations, and reference documents.

  4. Status of space station power system

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.; Sheibley, Dean W.

    1987-01-01

    The major requirements and guidelines that affect the manned space station configuration and the power systems are explained. The evolution of the space station power system from the NASA program development feasibility phase through the current preliminary design phase is described. Several early station concepts are described and linked to the present concept. The recently completed phase B tradeoff study selections of photovoltaic system technologies are described. The present solar dynamic and power management and distribution systems are also summarized for completeness.

  5. Space Station Freedom Utilization Conference: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.

  6. Space Station Freedom Utilization Conference. Executive summary

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Freedom Utilization Conference was held on 3-6 Aug. 1992 in Huntsville, Alabama. The purpose of the conference was to bring together prospective space station researchers and the people in NASA and industry with whom they would be working to exchange information and discuss plans and opportunities for space station research. Topics covered include: research capabilities; research plans and opportunities; life sciences research; technology research; and microgravity research and biotechnology.

  7. Maintainability planning for the Space Station

    NASA Technical Reports Server (NTRS)

    Egan, G. R.

    1986-01-01

    The planned NASA Space Station, which is expected to have many years of on-orbit operation, for the first time confronts spacecraft designers with major questions of maintainability in design. A Maintainability Guidelines Document has been distributed to all Space Station Definition and Preliminary Design personnel of the Space Station Program Office. Trade studies are being performed to determine the most economical balance between initial (reliability) cost and life cycle cost (crew time and replacement hardware) costs.

  8. Panel on Space Station utilization benefits

    NASA Technical Reports Server (NTRS)

    Rubenstein, Sy Z.; Drake, Frank; White, Stanley C.; Taranik, James V.; Jordan, Hermann; Arnold, Ray

    1987-01-01

    An account is given of recent changes in the NASA Space Station, under the guidance of updated user community payload requirements. The user communities are those of astronomy, the life sciences, earth observation, and international applications. Attention is given to the resolutions that will be achievable by astronomical instruments aboard the Space Station, the testing of prototype earth observation instruments aboard the Station's manned module, and the microgravity research efforts planned in conjunction with ESA.

  9. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  10. International Space Station

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer; Gordon, Randy

    2010-01-01

    This slide presentation reviews the research on the International Space Station (ISS), including the sponsorship of payloads by country and within NASA. Included is a description of the space available for research, the Laboratory "Rack" facilities, the external research facilities and those available from the Japanese Experiment Module (i.e., Kibo), and highlights the investigations that JAXA has maintained. There is also a review of the launch vehicles and spacecraft that are available for payload transportation to the ISS, including cargo capabilities of the spacecraft.

  11. 2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  12. Space Station Live: Station Communications Upgrade - Duration: 8 minutes, 11 seconds.

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with Penny Roberts, one of the leads for the International Space Station Avionics and Software group, about the upgrade of the K...

  13. Science in space with the Space Station

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.

    1987-01-01

    The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.

  14. Stokes examines NASA program management

    NASA Astrophysics Data System (ADS)

    Leath, Audrey T.

    As NASA gears up for another attempt at redesigning Space Station Freedom, some in Congress are wondering whether the space agency has learned any lessons from a number of costly past mistakes. Louis Stokes (D-Ohio), the new chairman of the House Appropriations Veterans Affairs, Housing and Urban Development, and Independent Agencies Subcommittee, held a hearing on March 17 to examine unanticipated cost growth in a variety of projects, including the space toilet, the advanced turbo pump for the shuttle, and the Mars Observer, as well as the space station. Stokes seemed well-suited to this oversight role, asking well-informed and probing questions rather than accusatory ones. The witnesses, NASA head Daniel Goldin and many of his top managers (most of whom were not in their present positions when the projects were initiated), analyzed past errors and offered useful measures for avoiding similar problems in the future.

  15. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  16. Marshall's George Hopson Recieves NASA's Highest Honors

    NASA Technical Reports Server (NTRS)

    2003-01-01

    After four decades of contribution to America's space program, George Hopson, manager of the Space Shuttle Main Engine Project at Marshall Space Flight Center, accepted NASA's Distinguished Service Medal. Awarded to those who, by distinguished ability or courage, have made a personal contribution to the NASA mission, NASA's Distinguished Service Medal is the highest honor NASA confers. Hopson's contributions to America's space program include work on the country's first space station, Skylab; the world's first reusable space vehicle, the Space Shuttle; and the International Space Station. Hopson joined NASA's Marshall team as chief of the Fluid and Thermal Systems Branch in the Propulsion Division in 1962, and later served as chief of the Engineering Analysis Division of the Structures and Propulsion Laboratory. In 1979, he was named director of Marshall's Systems Dynamics Laboratory. In 1981, he was chosen to head the Center's Systems Analysis and Integration. Seven years later, in 1988, Hopson was appointed associate director for Space Transportation Systems and one year later became the manager of the Space Station Projects Office at Marshall. In 1994, Hopson was selected as deputy director for Space Systems in the Science and Engineering Directorate at Marshall where he supervised the Chief Engineering Offices of both marned and unmanned space systems. He was named manager of the Space Shuttle Main Engine Project in 1997. In addition to the Distinguished Service Medal, Hopson has also been recognized with the NASA Outstanding Leadership Medal and NASA's Exceptional Service Medal.

  17. Space Station automation and robotics

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A group of fifteen students in the Electrical Engineering Department at the University of Maryland, College Park, has been involved in a design project under the sponsorship of NASA Headquarters, NASA Goddard Space Flight Center and the Systems Research Center (SRC) at UMCP. The goal of the NASA/USRA project was to first obtain a refinement of the design work done in Spring 1986 on the proposed Mobile Remote Manipulator System (MRMS) for the Space Station. This was followed by design exercises involving the OMV and two armed service vehicle. Three students worked on projects suggested by NASA Goddard scientists for ten weeks this past summer. The knowledge gained from the summer design exercise has been used to improve our current design of the MRMS. To this end, the following program was undertaken for the Fall semester 1986: (1) refinement of the MRMS design; and (2) addition of vision capability to our design.

  18. NASA Telescience Testbed Pilot Program

    NASA Technical Reports Server (NTRS)

    Leiner, B. M.

    1989-01-01

    The Universities Space Research Association (USRA), under sponsorship from the NASA Office of Space Science and Applications, is conducting a Telescience Testbed Pilot Program. Fifteen universities, under subcontract to USRA, are conducting a variety of scientific experiments using advanced technology to determine the requirements and evaluate the tradeoffs for the information system of the Space Station era. An interim set of recommendations based on the experiences of the first six months of the pilot program is presented.

  19. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Brophy, John R.; Bennett, Gary L.

    1993-01-01

    NASA has defined and undertaken an evolutionary technology program for high performance electric propulsion systems, which could greatly affect the logistics weight requirements for such large space structures as Space Station Freedom. Attention is presently given to the development status of hydrazine and high power arcjets, resistojets, the characterization of rocket flows and plumes, electrostatic and electromagnetic propulsion systems, and development programs aimed at the determination of opportune technology-insertion activities.

  20. Space Station concept development group studies

    NASA Technical Reports Server (NTRS)

    Powell, L. E.

    1984-01-01

    The NASA study activities in preparation for a Space Station began in the early 1970's. The early studies included many in-house NASA and contracted studies. A group of representatives from all the NASA Centers, titled the Space Station Concept Development Group (CDG) was involved in the studies which led to the initiation of the Space Station Program. The CDG studies were performed over a period of approximately one year and consisted of four phases. The initial phase had the objective to determine the functions required of the station as opposed to a configuration. The activities of the second phase were primarily concerned with a sizing of the facilities required for payloads and the resources necessary to support these mission payloads. The third phase of studies was designed to develop a philosophical approach to a number of areas related to autonomy, maintainability, operations and logistics, and verification. The fourth phase of the study was to be concerned with configuration assessment activities.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101816 for a version without labels, and No. 0103180 for an operational schematic.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  6. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101824 for a version with labels, and No. 0103180 for an operational schematic.

  7. Sheshan VLBI Station Report for 2012

    NASA Technical Reports Server (NTRS)

    Xia, Bo; Shen, Zhiqiang; Hong, Xiaoyu; Fan, Qingyuan

    2013-01-01

    This report summarizes the observing activities at the Sheshan station (SESHAN25) in 2012. It includes international VLBI observations for astrometry, geodesy, and astrophysics and domestic observations for satellite tracking. We also report on updates and on development of the facilities at the station.

  8. Student Tracking.

    ERIC Educational Resources Information Center

    Donovan, Kevin

    1996-01-01

    This report explains how student tracking systems work and why they are important. It is designed for British funding bodies, further education (FE) colleges, college staff, and software developers to introduce and support systems of student tracking. Chapter 1 provides background information on tracking and the FE sector. Chapter 2 discusses the

  9. Performance of the NASA Beacon Receiver for the Alphasat Aldo Paraboni TDP5 Propagation Experiment

    NASA Technical Reports Server (NTRS)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2015-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 gigahertz band. NASA GRC has developed and installed a K/Q-band (20/40 gigahertz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 gigahertz signals broadcast from the Alphasat Aldo Paraboni Technology Demonstration Payload (TDP) no. 5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since June 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 gigahertz beacon signals. The system consists of a 1.2-meter K-band and a 0.6-meter Q-band Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 hertz sampling rate is implemented to characterize scintillation effects, with a 1-hertz measurement bandwidth dynamic range of 45 decibels. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  10. Preliminary Results of the NASA Beacon Receiver for Alphasat Aldo Paraboni TDP5 Propagation Experiment

    NASA Technical Reports Server (NTRS)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2014-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 GHz band. NASA GRC has developed and installed a K/Q-band (20/40 GHz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 GHz signals broadcast from the Alphasat Aldo Paraboni TDP#5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since May 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 GHz beacon signals. The system consists of a 1.2-m K-band and a 0.6-m Qband Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 Hz sampling rate is implemented to characterize scintillation effects, with a 1-Hz measurement bandwidth dynamic range of 45 dB. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  11. Neutral Buoyancy Simulator - Space Station

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.

  12. NASA News

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The launch of NOAA E, an advanced TIROS N (ATN) environmental monitoring satellite, carrying special search and rescue instrumentation is announced. NOAA E carries instrumentation for a demonstration to search and rescue (SAR) mission agencies for evaluation of a satellite aided SAR system that may lead to the establishment of an operational capability. The ability of a spaceborne system to acquire, track and locate existing Emergency Locator Transmitters (ELTs) and Emergency Position Indicating Radio Beacons (EPIRBs) that are being used aboard general aviation and other aircraft, and ships, and are operating on 121.5 and 243 Megahertz frequencies is demonstrated.

  13. 11. STATION "0" ELECTRICAL SUBSTATION SITE AT EAST END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. STATION "0" ELECTRICAL SUBSTATION SITE AT EAST END OF TRACK. Looking north from top of berm to Fire Station No. 3 (Survival School, Building 0510). - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  14. 1. STATION "50" AREA OVERVIEW, BUILDING 0512 AT FAR LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. STATION "50" AREA OVERVIEW, BUILDING 0512 AT FAR LEFT, AND PADS FOR SHOP AND STORAGE BUILDINGS IN CENTER. Looking northeast. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA

  15. Orbital Debris Research at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Eugene G.

    2009-01-01

    The United States has one of the most active programs of research of the orbital debris environment in the world. Much of the research is conducted by NASA s Orbital Debris Program Office at the Johnson Space Center. Past work by NASA has led to the development of national space policy which seeks to limit the growth of the debris population and limit the risk to spacecraft and humans in space and on the Earth from debris. NASA has also been instrumental in developing consistent international policies and standards. Much of NASA's efforts have been to measure and characterize the orbital debris population. The U.S. Department of Defense tracks and catalogs spacecraft and large debris with it's Space Surveillance Network while NASA concentrates on research on smaller debris. In low Earth orbit, NASA has utilized short wavelength radars such as Haystack, HAX, and Goldstone to statistically characterize the population in number, size, altitude, and inclination. For higher orbits, optical telescopes have been used. Much effort has gone into the understanding and removal of observational biases from both types of measurements. NASA is also striving to understand the material composition and shape characteristics of debris to assess these effects on the risk to operational spacecraft. All of these measurements along with data from ground tests provide the basis for near- and long-term modeling of the environment. NASA also develops tools used by spacecraft builders and operators to evaluate spacecraft and mission designs to assess compliance with debris standards and policies which limit the growth of the debris environment.

  16. Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission

    NASA Technical Reports Server (NTRS)

    Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

    1973-01-01

    The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

  17. Configuration Management at NASA

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv

    2013-01-01

    NASA programs are characterized by complexity, harsh environments and the fact that we usually have one chance to get it right. Programs last decades and need to accept new hardware and technology as it is developed. We have multiple suppliers and international partners Our challenges are many, our costs are high and our failures are highly visible. CM systems need to be scalable, adaptable to new technology and span the life cycle of the program (30+ years). Multiple Systems, Contractors and Countries added major levels of complexity to the ISS program and CM/DM and Requirements management systems center dot CM Systems need to be designed for long design life center dot Space Station Design started in 1984 center dot Assembly Complete in 2012 center dot Systems were developed on a task basis without an overall system perspective center dot Technology moves faster than a large project office, try to make sure you have a system that can adapt

  18. Space station automation study. Volume 1: Executive summary. Autonomous systems and assembly

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The space station automation study (SSAS) was to develop informed technical guidance for NASA personnel in the use of autonomy and autonomous systems to implement space station functions. The initial step taken by NASA in organizing the SSAS was to form and convene a panel of recognized expert technologists in automation, space sciences and aerospace engineering to produce a space station automation plan.

  19. Space station: A step into the future

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1989-01-01

    The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.

  20. Logistics Lessons Learned in NASA Space Flight

    NASA Technical Reports Server (NTRS)

    Evans, William A.; DeWeck, Olivier; Laufer, Deanna; Shull, Sarah

    2006-01-01

    The Vision for Space Exploration sets out a number of goals, involving both strategic and tactical objectives. These include returning the Space Shuttle to flight, completing the International Space Station, and conducting human expeditions to the Moon by 2020. Each of these goals has profound logistics implications. In the consideration of these objectives,a need for a study on NASA logistics lessons learned was recognized. The study endeavors to identify both needs for space exploration and challenges in the development of past logistics architectures, as well as in the design of space systems. This study may also be appropriately applied as guidance in the development of an integrated logistics architecture for future human missions to the Moon and Mars. This report first summarizes current logistics practices for the Space Shuttle Program (SSP) and the International Space Station (ISS) and examines the practices of manifesting, stowage, inventory tracking, waste disposal, and return logistics. The key findings of this examination are that while the current practices do have many positive aspects, there are also several shortcomings. These shortcomings include a high-level of excess complexity, redundancy of information/lack of a common database, and a large human-in-the-loop component. Later sections of this report describe the methodology and results of our work to systematically gather logistics lessons learned from past and current human spaceflight programs as well as validating these lessons through a survey of the opinions of current space logisticians. To consider the perspectives on logistics lessons, we searched several sources within NASA, including organizations with direct and indirect connections with the system flow in mission planning. We utilized crew debriefs, the John Commonsense lessons repository for the JSC Mission Operations Directorate, and the Skylab Lessons Learned. Additionally, we searched the public version of the Lessons Learned Information System (LLIS) and verified that we received the same result using the internal version of LLIS for our logistics lesson searches. In conducting the research, information from multiple databases was consolidated into a single spreadsheet of 300 lessons learned. Keywords were applied for the purpose of sorting and evaluation. Once the lessons had been compiled, an analysis of the resulting data was performed, first sorting it by keyword, then finding duplication and root cause, and finally sorting by root cause. The data was then distilled into the top 7 lessons learned across programs, centers, and activities.

  1. NASA Customer Data and Operations System

    NASA Technical Reports Server (NTRS)

    Butler, Madeline J.; Stallings, William H.

    1991-01-01

    In addition to the currently provided NASA services such as Communications and Tracking and Data Relay Satellite System services, the NASA's Customer Data and Operations System (CDOS) will provide the following services to the user: Data Delivery Service, Data Archive Service, and CDOS Operations Management Service. This paper describes these services in detail and presents respective block diagrams. The CDOS services will support a variety of multipurpose missions simultaneously with centralized and common hardware and software data-driven systems.

  2. Tracking Electromagnetic Energy With SQUIDs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.

  3. NASA's Microgravity Science Program

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

  4. NASA Technical Management Report (533Q)

    NASA Technical Reports Server (NTRS)

    Klosko, S. M.; Sanchez, B. (Technical Monitor)

    2001-01-01

    The objective of this task is analytical support of the NASA Satellite Laser Ranging (SLR) program in the areas of SLR data analysis, software development, assessment of SLR station performance, development of improved models for atmospheric propagation and interpretation of station calibration techniques, and science coordination and analysis functions for the NASA led Central Bureau of the International Laser Ranging Service (ILRS). The contractor shall in each year of the five year contract: (1) Provide software development and analysis support to the NASA SLR program and the ILRS. Attend and make analysis reports at the monthly meetings of the Central Bureau of the ILRS covering data received during the previous period. Provide support to the Analysis Working Group of the ILRS including special tiger teams that are established to handle unique analysis problems. Support the updating of the SLR Bibliography contained on the ILRS web site; (2) Perform special assessments of SLR station performance from available data to determine unique biases and technical problems at the station; (3) Develop improvements to models of atmospheric propagation and for handling pre- and post-pass calibration data provided by global network stations; (4) Provide review presentation of overall ILRS network data results at one major scientific meeting per year; (5) Contribute to and support the publication of NASA SLR and ILRS reports highlighting the results of SLR analysis activity.

  5. ISS Update: Bruce Manners, NASA COTS Project Executive for Orbital Sciences - Duration: 6 minutes, 31 seconds.

    NASA Video Gallery

    ISS Update commentator Josh Byerly interviews Bruce Manners, NASA COTS Project Executive, about Orbital Sciences and the Cygnus rocket. Cygnus will deliver cargo to the International Space Station ...

  6. Space Station personal hygiene study

    NASA Technical Reports Server (NTRS)

    Prejean, Stephen E.; Booher, Cletis R.

    1986-01-01

    A personal hygiene system is currently under development for Space Station application that will provide capabilities equivalent to those found on earth. This paper addresses the study approach for specifying both primary and contingency personal hygiene systems and provisions for specified growth. Topics covered are system definition and subsystem descriptions. Subsystem interfaces are explored to determine which concurrent NASA study efforts must be monitored during future design phases to stay up-to-date on critical Space Station parameters. A design concept for a three (3) compartment personal hygiene facility is included as a baseline for planned test and verification activities.

  7. Space Station ECLSS Integration Analysis

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) contract with NASA MSFC covered the time frame from 9 May 1985 to 31 Dec. 1992. The contract roughly covered the period of Space Station Freedom (SSF) development from early Phase B through Phase C/D Critical Design Review (CDR). During this time, McDonnell Douglas Aerospace-Huntsville (formerly McDonnell Douglas Space Systems Company) performed an analytical support role to MSFC for the development of analytical math models and engineering trade studies related to the design of the ECLSS for the SSF.

  8. OSSA Space Station waste inventory

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Johnson, Catherine C.; Bosley, John J.; Curran, George L.; Mains, Richard

    1987-01-01

    NASA's Office of Space Science and Applications has compiled an inventory of the types and quantities of the wastes that will be generated by the Space Station's initial operational phase in 35 possible mission scenarios. The objective of this study was the definition of waste management requirements for both the Space Station and the Space Shuttles servicing it. All missions, when combined, will produce about 5350 kg of gaseous, liquid and solid wastes every 90 days. A characterization has been made of the wastes in terms of toxicity, corrosiveness, and biological activity.

  9. Space Station - Risks and vision

    NASA Technical Reports Server (NTRS)

    Pedersen, K.

    1986-01-01

    In assessing the prospects of the NASA Space Station program, it is important to take account of the long term perspective embodied in the proposal; its international participants are seen as entering a complex web of developmental and operational interdependence of indefinite duration. It is noted to be rather unclear, however, to what extent this is contemplated by such potential partners as the ESA, which has its own program goals. These competing hopes for eventual autonomy in space station operations will have considerable economic, technological, and political consequences extending well into the next century.

  10. Integrated Network Architecture for NASA's Orion Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five phases of a mission: pre-launch, launch from T0 to T+6.5 min, launch from T+6.5 min to 12 min, in LEO for rendezvous and docking with ISS, and return to Earth. The network of networks that supports the mission during each of these phases and the concepts of operations during those phases are developed as a high level operational concepts graphic called OV-1, an architecture diagram type described in the Department of Defense Architecture Framework (DoDAF). Additional operational views on organizational relationships (OV-4), operational activities (OV-5), and operational node connectivity (OV-2) are also discussed. The system interfaces view (SV-1) that provides the communication and navigation services to Orion is also included and described. The challenges of architecting integrated network architecture for the NASA Orion missions are highlighted.

  11. Space station needs, attributes, and architectural options: Space station program cost analysis

    NASA Technical Reports Server (NTRS)

    Cowls, R. S.; Goodwin, A. J.

    1983-01-01

    This report documents the principal cost results (Task 3) derived from the Space Station Needs, Attributes, and Architectural Options study conducted for NASA by the McDonnell Douglas Astronautics Company. The determined costs were those of Architectural Options (Task 2) defined to satisfy Mission Requirements (Task 1) developed within the study. A major feature of this part of the study was the consideration of realistic NASA budget constraints on the recommended architecture. Thus, the space station funding requirements were adjusted by altering schedules until they were consistent with current NASA budget trends.

  12. NASA's Microgravity Materials Science Program

    NASA Astrophysics Data System (ADS)

    Gillies, Donald C.

    1997-07-01

    The Microgravity Research Division of NASA funds materials science research through biannual research programs known as NASA Research Announcements (NRA). Selection is via external peer review with proposals being categorized for ground based research or flight definition status. Topics of special interest to NASA are described in the NRAs and guidelines for successful proposals are outlined. The procedure for progressing from selection to a manifested flight experiment will involve further reviews of the science and also of the engineering needed to complete the experiment successfully. The topics of interest to NASA within the NRAs cover a comprehensive range of subjects, but with the common denominator that the proposed work must necessitate access to the microgravity environment for successful completion. Understanding of the fundamental nature of microstructure and its effects on properties is a major part of the program because it applies to almost all fields of materials science. Other important aspects of the program include non-linear optical materials, glasses and ceramics, metal and alloys and the need to develop materials science specifically to support NASA's Human Exploration and Development of Space (HEDS) enterprise. The transition to the International Space Station (ISS) represents the next stage of the Materials Science program.

  13. Concrete: Potential material for Space Station

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1992-01-01

    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

  14. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with the ACTS satellite. The ACTS experiment's program proposed to validate Ka-band satellite and ground station technology. demonstrate future telecommunication services. demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals (Part 1) and the lessons learned throughout their six year operation including the inclined orbit phase of operations (Full Report). An overview of the Ka-band technology and components developed for the ACTS ground stations is presented. Next. the performance of the ground station technology and its evolution during the ACTS campaign are discussed to illustrate the technical tradeoffs made during the program and highlight technical advances by industry to support the ACTS experiments program and terminal operations. Finally. lessons learned during development and operation of the user terminals are discussed for consideration of commercial adoption into future Ka-band systems. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector based offset-fed antenna systems ranging in size from 0.35m to 3.4m antenna diameter. Gateway earth stations included two systems, referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET). The NGS provides tracking, telemetry, and control (TT&C) and Time Division Multiple Access (TDMA) network control functions. The LET supports technology verification and high data rate experiments. The ground stations successfully demonstrated many services and applications at Ka-band in three different modes of operation: circuit switched TDMA using the satellite on-board processor, satellite switched SS-TDMA applications using the on-board Microwave Switch Matrix (MSM), and conventional transponder (bent-pipe) operation. Data rates ranged from 4.8 kbps up to 622 Mbps. Experiments included: 1) low rate (4.8- 1 00's kbps) remote data acquisition and control using small earth stations, 2) moderate rate (1-45 Mbps) experiments included full duplex voice and video conferencing and both full duplex and asymmetric data rate protocol and network evaluation using mid-size ground stations, and 3) link characterization experiments and high data rate (155-622 Mbps) terrestrial and satellite interoperability application experiments conducted by a consortium of experimenters using the large transportable ground stations.

  15. Space station ventilation study

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Allen, G. E.

    1972-01-01

    A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

  16. Final Tier 2 Environmental Impact Statement for International Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Final Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA!s participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.

  17. Satellite time transfer via Tracking and Data Relay Satellite System (TDRSS) and applications

    NASA Technical Reports Server (NTRS)

    Chi, A. R.

    1979-01-01

    With two geosynchronous relay satellites the tracking and data relay satellite system (TDRSS) can provide nearly worldwide coverage for communication between all near orbiting satellites and the satellite control center at Goddard Space Flight Center. Each future NASA satellite will carry a TDRSS transponder with which the satellite can communicate through a TDRSS to the ground station at White Sands, New Mexico. It is using this system that the ground station master clock time signal can be transmitted to the near Earth orbiting satellite in which a clock may be maintained independently to the accuracy required by the experimenters. The satellite time transfer terminal design concept and the application of the time signal in autonomously operated spacecraft clock are discussed. Some pertinent TDRSS parameters and corrections for the propagation delay measurement as well as the time code used to transfer the time signal are given.

  18. NASA, Building Tomorrow's Future

    NASA Technical Reports Server (NTRS)

    Mango, Edward

    2011-01-01

    We, as NASA, continue to Dare Mighty Things. Here we are in October. In my country, the United States of America, we celebrate the anniversary of Christopher Columbus's arrival in the Americas, which occurred on October 12, 1492. His story, although happening over 500 years ago, is still very valid today. It is a part of the American spirit; part of the international human spirit. Columbus is famous for discovering the new world we now call America, but he probably never envisioned what great discoveries would be revealed many generations later. But in order for Columbus to begin his great adventure, he needed a business plan. Ho would he go about obtaining the funds and support necessary to build, supply, and man the ships required for his travels? He had a lot of obstacles and distractions. He needed a strong, internal drive to achieve his plans and recruit a willing crew of explorers also ready to risk their all for the unknown journey ahead. As Columbus set sail, he said "By prevailing over all obstacles and distractions, one may unfailingly arrive at his chosen goal or destination." Columbus may not have known he was on a journey for all human exploration. Recently, Charlie Bolden, the NASA Administrator, said, "Human exploration is and has always been about making life better for humans on Earth." Today, NASA and the U.S. human spaceflight program hold many of the same attributes as did Columbus and his contemporaries - a willing, can-do spirit. We are on the threshold of exciting new times in space exploration. Like Columbus, we need a business plan to take us into the future. We need to design the best ships and utilize the best designers, with their past knowledge and experience, to build those ships. We need funding and support from governments to achieve these goals of space exploration into the unknown. NASA does have that business plan, and it is an ambitious plan for human spaceflight and exploration. Today, we have a magnificent spaceflight laboratory, built over many years by the United States and other nations. Last month, the last man to step off the moon, Gene Cernan, told the U.S. Congress, "Today the International Space Station, the assembly of which may well go down in history as man's greatest engineering accomplishment of all time, circles the globe sixteen times every day - all in keeping with JFK's challenge to do the other things." The International Space Station (ISS) is a ship which provides an outstanding platform 'for performing spaceborne scientific, engineering, and Earth studies. Numerous nations utilize this unique cooperative partnership by sending scientists, engineers, astronauts, and cosmonauts to the ISS to spend time aboard the station in order to further scientific research, truly an asset for the entire planet.

  19. NASA/Ames Research Center DC-8 data system

    NASA Technical Reports Server (NTRS)

    Cherniss, S. C.; Scofield, C. P.

    1991-01-01

    In-flight facility data acquisition, distribution, and recording on the NASA Ames Research Center (ARC) DC-8 are performed by the Data Acquisition and Distribution System (DADS). Navigational and environmental data collected by the DADS are converted to engineering units and distributed real-time to investigator stations once per second. Selected engineering units data are printed and displayed on closed circuit television monitors throughout flights. An in-flight graphical display of the DC-8 flight track (with barbs indicating wind direction and magnitude) has recently been added to the DADS capabilities. Logging of data run starts/stops and commentary from the mission director are also provided. All data are recorded to hard disk in-flight and archived to tape medium post-flight. Post-flight, hard copies of the track map and mission director's log are created by the DADS. The DADS is a distributed system consisting of a data subsystem, an Avionic Serial Data-to-VMEbus (ASD2VME) subsystem, and a host subsystem. Each subsystem has a dedicated central processing unit (CPU) and is capable of stand-alone operation. All three subsystems are housed in a single 20-slot VME chassis and communicate with each other over the VMEbus. The data and host subsystems are briefly discussed, and the DC-8 DADS internal configuration and system block diagram are presented.

  20. 9. VIEW OF CAMERA STATIONS UNDER CONSTRUCTION INCLUDING CAMERA CAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF CAMERA STATIONS UNDER CONSTRUCTION INCLUDING CAMERA CAR ON RAILROAD TRACK AND FIXED CAMERA STATION 1400 (BUILDING NO. 42021) ABOVE, ADJACENT TO STATE HIGHWAY 39, LOOKING WEST, March 23, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  1. Observation Station

    ERIC Educational Resources Information Center

    Rutherford, Heather

    2011-01-01

    This article describes how a teacher integrates science observations into the writing center. At the observation station, students explore new items with a science theme and use their notes and questions for class writings every day. Students are exposed to a variety of different topics and motivated to write in different styles all while…

  2. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  3. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  4. Current and Future Parts Management at NASA

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2011-01-01

    This presentation provides a high level view of current and future electronic parts management at NASA. It describes a current perspective of the new human space flight direction that NASA is beginning to take and how that could influence parts management in the future. It provides an overview of current NASA electronic parts policy and how that is implemented at the NASA flight Centers. It also describes some of the technical challenges that lie ahead and suggests approaches for their mitigation. These challenges include: advanced packaging, obsolescence and counterfeits, the global supply chain and Commercial Crew, a new direction by which NASA will utilize commercial launch vehicles to get astronauts to the International Space Station.

  5. Space Station Live: Veteran Astronaut Talks Crew Orientation - Duration: 12 minutes.

    NASA Video Gallery

    NASA Public Affairs Officer Nicole Cloutier-Lemasters recently spoke with NASA astronaut Cady Coleman, who lived aboard the International Space Station as Expedition 27/27 crew member from December...

  6. Space Station Crew Welcomes World's First Commercial Cargo Craft - Duration: 14 minutes.

    NASA Video Gallery

    Aboard the International Space Station, Expedition 31 Flight Engineer Don Pettit of NASA, Flight Engineer Andre Kuipers of the European Space Agency and Flight Engineer Joe Acaba of NASA grappled a...

  7. The NASA radar entomology program at Wallops Flight Center

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R.

    1979-01-01

    NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

  8. NASA Now: Expedition 26 - Duration: 7 minutes, 10 seconds.

    NASA Video Gallery

    In this installment of NASA Now, meet associate International Space Station program scientist Tara Ruttley, who talks about the complexity of conducting research from this one-of-a-kind orbiting sc...

  9. Students Speak With NASA Astronaut Mike Foreman - Duration: 24 minutes.

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center NASA astronaut Mike Foreman participates in a Digital Learning Network (DLN) event with fifth grade students at Berry Elementary Sch...

  10. NASA: Reaching for New Heights - Duration: 4 minutes, 8 seconds.

    NASA Video Gallery

    At NASA, we've been a little busy: landing on Mars, developing new human spacecraft, going to the space station, working with commercial partners, observing the Earth and the Sun, exploring our sol...

  11. 75 FR 11200 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... cargo; space operations associated with the Space Shuttle and the International Space Station; and... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Meeting. SUMMARY: In accordance with the...

  12. 75 FR 51853 - NASA Advisory Council; Space Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ..., Micrometeoroid Orbital Debris and Radiation Protection, International Space Station and Space Shuttle Program... SPACE ADMINISTRATION NASA Advisory Council; Space Operations Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: In accordance with the...

  13. Students Speak With NASA Astronaut Scott Kelly - Duration: 23 minutes.

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Scott Kelly participates in a Digital Learning Network (DLN) event with students in the Galena Park Independent Scho...

  14. Students Speak With NASA Astronaut Mario Runco - Duration: 27 minutes.

    NASA Video Gallery

    From NASA’s International Space Station Mission Control Center, NASA astronaut Mario Runco participates in a Digital Learning Network (DLN) event with students in the Newell School District in Ne...

  15. Telerobot operator control station requirements

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.

    1988-01-01

    The operator control station of a telerobot system has unique functional and human factors requirements. It has to satisfy the needs of a truly interactive and user-friendly complex system, a telerobot system being a hybrid between a teleoperated and an autonomous system. These functional, hardware and software requirements are discussed, with explicit reference to the design objectives and constraints of the JPL/NASA Telerobot Demonstrator System.

  16. Satellite Tracking System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Researchers at the Center for Aerospace Sciences of the University of North Dakota (UND), Grand Forks, used three NASA Computer programs (SANDTRACKS, ODG, NORAD) to develop a Satellite Tracking System for real time utilization of TIROS weather/environment satellite information. SANDTRACKS computes the satellite's position relative to the Earth. ODG allows plotting a view of Earth as seen by the satellite. NORAD computes sight direction, visibility times and maximum elevation angle during each orbit. With the system, UND's Earth System Science Institute will be able to routinely monitor agricultural and environmental conditions of the Northern Plains.

  17. Tracking disease outbreaks

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Scientists have come one step closer to tracking outbreaks of bartonellosis, a potentially fatal vector-borne disease. Outbreaks of the disease, which was once thought to be found primarily in the high Andes Mountains of Peru, Ecuador, and Colombia, may be related to El Ni˜no events, according to researchers with NASA and the U.S. military.In findings reported on 17 January, climatology and disease prevention researchers said a study conducted in two regions in Peru points to a strong potential link between the 1997-1998 El Niño and an increase in sand flies, which are thought to be the disease host carriers.

  18. NASA Resources for Educators and Public

    NASA Technical Reports Server (NTRS)

    Morales, Lester

    2012-01-01

    A variety of NASA Classroom Activities, Educator Guides, Lithographs, Posters and more are available to Pre ]service and In ]service Educators through Professional Development Workshops. We are here for you to engage, demonstrate, and facilitate the use of educational technologies, the NASA Website, NASA Education Homepage and more! We are here for you to inspire you by providing in-service and pre- service training utilizing NASA curriculum support products. We are here for you to partner with your local, state, and regional educational organizations to better educate ALL! NASA AESP specialists are experienced professional educators, current on education issues and familiar with the curriculum frameworks, educational standards, and systemic architecture of the states they service. These specialists provide engaging and inspiring student presentations and teacher training right at YOUR school at no cost to you! Experience free out-of-this-world interactive learning with NASA's Digital Learning Network. Students of all ages can participate in LIVE events with NASA Experts and Education Specialists. The Exploration Station provides NASA educational programs that introduce the application of Science, Technology, Engineering, & Mathematics, to students. Students participate in a variety of hands-on activities that compliment related topics taught by the classroom teacher. NASA KSC ERC can create Professional Development Workshops for teachers in groups of fifteen or more. Education/Information Specialists also assist educators in developing lessons to meet Sunshine State and national curriculum standards.

  19. Issues in NASA Program and Project Management. Special Report: 1997 Conference. Project Management Now and in the New Millennium

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1997-01-01

    Topics Considered Include: NASA's Shared Experiences Program; Core Issues for the Future of the Agency; National Space Policy Strategic Management; ISO 9000 and NASA; New Acquisition Initiatives; Full Cost Initiative; PM Career Development; PM Project Database; NASA Fast Track Studies; Fast Track Projects; Earned Value Concept; Value-Added Metrics; Saturn Corporation Lessons Learned; Project Manager Credibility.

  20. Tandem tracking

    Biologist Sabrina Davenport tandem tracks the Lower Missouri River during high water on June 2, 2011.  Two boats (note boat out window) tracking in tandem can detect fish effectively across a wider river and can turn to search behind wing dikes and sandbars where sturgeon can hide during h...

  1. Background and architecture for an autonomous ground station controller

    NASA Technical Reports Server (NTRS)

    Paal, L.; Golshan, N.; Fisher, F.; James, M.

    2001-01-01

    The Deep Space Station Controller (DSSC) is state of the art ground station control architecture being developed at JPL. During the past few years the technology development program at JPL demonstrated a series of increasingly competent automated ground station prototypes of which the DSSC is the latest. It has been designed for robust closed loop control of ground stations utilized for forward and return link communications with NASA's deep space exploration missions.

  2. Space Station - Infrastructure for radiation measurements in low earth orbit

    NASA Technical Reports Server (NTRS)

    Meredith, B. D.

    1989-01-01

    The general configuration, development schedule, and capabilities of the NASA International Space Station are reviewed, with an emphasis on the possibilities for long-term measurements of high-energy cosmic and secondary radiation from the main Station spacecraft, coorbiting or polar-orbit platforms, or Station-supported GEO satellites. Also outlined are the organizational structure and the application procedures to be followed by potential users of the Station facilities. Diagrams and drawings are provided.

  3. Space Station - An overview of current U.S. activities

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1984-01-01

    The National Aeronautics and Space Administration (NASA) has begun developing a permanently manned Space Station as mandated by President Reagan. The Space Station will be operational within a decade and is the 'Next Logical Step' in America's space program. This paper presents a summary of the Space Station status, current planning guidelines, and the possibilities for international participation in the program. The conceptual architecture and evolutionary development options for the Space Station are also briefly discussed.

  4. NASA Strategic Roadmap Summary Report

    NASA Technical Reports Server (NTRS)

    Wilson, Scott; Bauer, Frank; Stetson, Doug; Robey, Judee; Smith, Eric P.; Capps, Rich; Gould, Dana; Tanner, Mike; Guerra, Lisa; Johnston, Gordon

    2005-01-01

    In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees.

  5. Working at NASA

    NASA Technical Reports Server (NTRS)

    Harding, Adam

    2010-01-01

    This slide presentation reviews the author's educational and work background prior to working at NASA. It then presents an overview of NASA Dryden, a brief review of the author's projects while working at NASA, and some closing thoughts.

  6. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This handbook is designed to promote a better understanding of NASA's interests and the process of doing business with NASA. The document is divided into the following sections: (1) this is NASA; (2) the procurement process; (3) marketing your capabilities; (4) special assistance programs; (5) NASA field installations; (6) sources of additional help; (7) listing of NASA small/minority business personnel; and (8) NASA organization chart.

  7. ISS Update: ISTAR -- International Space Station Testbed for Analog Research - Duration: 9 minutes, 17 seconds.

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Sandra Fletcher, EVA Systems Flight Controller. They discuss the International Space Station Testbed for Analog Research (ISTAR) activity that...

  8. Space Station Live: Robotic Refueling Mission - Duration: 5 minutes, 11 seconds.

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot speaks with Robert Pickle, Robotic Refueling Mission ROBO lead, about the International Space Station demonstration of the tools, technologies and techniques to...

  9. ISS Update: Station Command and Data Handling System - Duration: 6 minutes, 25 seconds.

    NASA Video Gallery

    NASA Public Affairs Officer Kylie Clem interviews ODIN flight controller Amy Brezinski, who monitors and commands the Command and Data Handling System for the International Space Station. Brezinski...

  10. Space Station Crew Sends Greetings to President Obama - Duration: 2 minutes, 49 seconds.

    NASA Video Gallery

    International Space Station Commander Koichi Wakata from the Japanese space agency joins NASA astronauts Rick Mastracchio and Steve Swanson in a welcome message from orbit during President Obama's ...

  11. Space station automation study. Volume I. Executive summary. Autonomous systems and assembly. Final report

    SciTech Connect

    Not Available

    1984-11-01

    The purpose of the Space Station Automation Study (SSAS) was to develop informed technical guidance for NASA personnel in the use of autonomy and autonomous systems to implement Space Station functions.

  12. Earth Views From the International Space Station - Duration: 5 minutes, 2 seconds.

    NASA Video Gallery

    In celebration of Earth Day, NASA presents images of Earth captured by cameras aboard the International Space Station. Traveling at an approximate speed of 17,500 miles per hour, the space station ...

  13. NASA metrication activities

    NASA Technical Reports Server (NTRS)

    Vlannes, P. N.

    1978-01-01

    NASA's organization and policy for metrification, history from 1964, NASA participation in Federal agency activities, interaction with nongovernmental metrication organizations, and the proposed metrication assessment study are reviewed.

  14. NASA Oceanic Processes Program, fiscal year 1983

    NASA Technical Reports Server (NTRS)

    Nelson, R. M. (Editor); Pieri, D. C. (Editor)

    1984-01-01

    Accomplishments, activities, and plans are highlighted for studies of ocean circulation, air sea interaction, ocean productivity, and sea ice. Flight projects discussed include TOPEX, the ocean color imager, the advanced RF tracking system, the NASA scatterometer, and the pilot ocean data system. Over 200 papers generated by the program are listed.

  15. Space Images for NASA/JPL

    NASA Technical Reports Server (NTRS)

    Boggs, Karen; Gutheinz, Sandy C.; Watanabe, Susan M.; Oks, Boris; Arca, Jeremy M.; Stanboli, Alice; Peez, Martin; Whatmore, Rebecca; Kang, Minliang; Espinoza, Luis A.

    2010-01-01

    Space Images for NASA/JPL is an Apple iPhone application that allows the general public to access featured images from the Jet Propulsion Laboratory (JPL). A back-end infrastructure stores, tracks, and retrieves space images from the JPL Photojournal Web server, and catalogs the information into a streamlined rating infrastructure.

  16. NASA Data Acquisitions System (NDAS) Software Architecture

    NASA Technical Reports Server (NTRS)

    Davis, Dawn; Duncan, Michael; Franzl, Richard; Holladay, Wendy; Marshall, Peggi; Morris, Jon; Turowski, Mark

    2012-01-01

    The NDAS Software Project is for the development of common low speed data acquisition system software to support NASA's rocket propulsion testing facilities at John C. Stennis Space Center (SSC), White Sands Test Facility (WSTF), Plum Brook Station (PBS), and Marshall Space Flight Center (MSFC).

  17. Payload Flight Assignments: NASA Mixed Fleet

    NASA Technical Reports Server (NTRS)

    Parker, Robert A. R.

    1997-01-01

    This manifest summarizes the missions planned by NASA for the Space Shuttle and Expendable Launch Vehicles (ELV's) as of the date of publication. Space Shuttle and ELV missions are shown through calendar year 2003. Space Shuttle missions for calendar years 2002-2003 are under review pending the resolution of details in the assembly sequence of the International Space Station (ISS).

  18. Joining forces in space - NASA's view

    NASA Technical Reports Server (NTRS)

    Pedersen, K. S.

    1985-01-01

    The NASA history of international cooperation is briefly reviewed. The evolving nature of the international space environment is discussed. The proposed international Space Station is described as an example of the continuing cooperative spirit and of the need to adapt to changed circumstances as they arise.

  19. High Speed A/D DSP Interface for Carrier Doppler Tracking

    NASA Technical Reports Server (NTRS)

    Baggett, Timothy

    1998-01-01

    As on-board satellite systems continue to increase in ability to perform self diagnostic checks, it will become more important for satellites to initiate ground communications contact. Currently, the NASA Space Network requires users to pre-arranged times for satellite communications links through the Tracking and Data Relay Satellite (TDRS). One of the challenges in implementing an on-demand access protocol into the Space Network, is the fact that a low Earth orbiting (LEO) satellite's communications will be subject to a doppler shift which is outside the capability of the NASA ground station to lock onto. In a prearranged system, the satellite's doppler is known a priori, and the ground station is able to lock onto the satellite's signal. This paper describes the development of a high speed analog to digital interface into a Digital Signal Processor (DSP). This system will be used for identifying the doppler shift of a LEO satellite through the Space Network, and aiding the ground station equipment in locking onto the signal. Although this interface is specific to one application, it can be used as a basis for interfacing other devices with a DSP.

  20. Raising the AIQ of the Space Station

    NASA Technical Reports Server (NTRS)

    Lum, Henry; Heer, Ewald

    1987-01-01

    Expert systems and robotics technologies are to be significantly advanced during the Space Station program. Artificial intelligence systems (AI) on the Station will include 'scars', which will permit upgrading the AI capabilities as the Station evolves to autonomy. NASA-Ames is managing the development of the AI systems through a series of demonstrations, the first, controlling a single subsystem, to be performed in 1988. The capabilities being integrated into the first demonstration are described; however, machine learning and goal-driven natural language understanding will not reach a prototype stage until the mid-1990s. Steps which will be taken to endow the computer systems with the ability to move from heuristic reasoning to factual knowledge, i.e., learning from experience, are explored. It is noted that the development of Space Station expert systems depends on the development of experts in Station operations, which will not happen until the Station has been used extensively by crew members.