Sample records for nasa tracking stations

  1. Time synchronization of NASA tracking stations via LORAN-C

    NASA Technical Reports Server (NTRS)

    Mazur, W. E., Jr.

    1973-01-01

    A report is presented of the results observed in comparison between LORAN-C and accurate portable clocks carried to the stations of NASA's world-wide space tracking and data network. It is believed that such information can provide a meaningful determination of the accuracy of the LORAN-C technique. The investigation shows the need for the employment of portable clocks during, or shortly after the installation of LORAN-C receivers.

  2. NASA directory of observation station locations, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs is presented. A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems. The principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes are discussed. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Observation stations in the NASA Geodetic Satellites Program are included along with stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.

  3. The administration of the NASA space tracking system and the NASA space tracking system in Australia

    NASA Technical Reports Server (NTRS)

    Hollander, N.

    1973-01-01

    The international activities of the NASA space program were studied with emphasis on the development and maintenance of tracking stations in Australia. The history and administration of the tracking organization and the manning policies for the stations are discussed, and factors affecting station operation are appraised. A field study of the Australian tracking network is included.

  4. NASA directory of observation station locations, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Geodetic information is presented for NASA tracking stations and observation stations in the NASA geodetic satellites program. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.

  5. NASA directory of observation station locations, volume 2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The directory documents geodetic information for NASA tracking stations and observation stations in the NASA Geodetic Satellites Program, including stations participating in the National Geodetic Satellite Program. Station positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.

  6. International Space Station Utilization: Tracking Investigations from Objectives to Results

    NASA Technical Reports Server (NTRS)

    Ruttley, T. M.; Mayo, Susan; Robinson, J. A.

    2011-01-01

    Since the first module was assembled on the International Space Station (ISS), on-orbit investigations have been underway across all scientific disciplines. The facilities dedicated to research on ISS have supported over 1100 investigations from over 900 scientists representing over 60 countries. Relatively few of these investigations are tracked through the traditional NASA grants monitoring process and with ISS National Laboratory use growing, the ISS Program Scientist s Office has been tasked with tracking all ISS investigations from objectives to results. Detailed information regarding each investigation is now collected once, at the first point it is proposed for flight, and is kept in an online database that serves as a single source of information on the core objectives of each investigation. Different fields are used to provide the appropriate level of detail for research planning, astronaut training, and public communications. http://www.nasa.gov/iss-science/. With each successive year, publications of ISS scientific results, which are used to measure success of the research program, have shown steady increases in all scientific research areas on the ISS. Accurately identifying, collecting, and assessing the research results publications is a challenge and a priority for the ISS research program, and we will discuss the approaches that the ISS Program Science Office employs to meet this challenge. We will also address the online resources available to support outreach and communication of ISS research to the public. Keywords: International Space Station, Database, Tracking, Methods

  7. NASA space station software standards issues

    NASA Technical Reports Server (NTRS)

    Tice, G. D., Jr.

    1985-01-01

    The selection and application of software standards present the NASA Space Station Program with the opportunity to serve as a pacesetter for the United States software in the area of software standards. The strengths and weaknesses of each of the NASA defined software standards issues are summerized and discussed. Several significant standards issues are offered for NASA consideration. A challenge is presented for the NASA Space Station Program to serve as a pacesetter for the U.S. Software Industry through: (1) Management commitment to software standards; (2) Overall program participation in software standards; and (3) Employment of the best available technology to support software standards

  8. 4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EASTBOUND VIEW. NORTH TRACK WAITING STATION ON LEFT. STATION ON RIGHT. NOTE TUNNEL IN BACKGROUND. - Baltimore & Ohio Railroad, Harpers Ferry Station, Potomac Street, Harpers Ferry, Jefferson County, WV

  9. Space Station communications and tracking systems modeling and RF link simulation

    NASA Technical Reports Server (NTRS)

    Tsang, Chit-Sang; Chie, Chak M.; Lindsey, William C.

    1986-01-01

    In this final report, the effort spent on Space Station Communications and Tracking System Modeling and RF Link Simulation is described in detail. The effort is mainly divided into three parts: frequency division multiple access (FDMA) system simulation modeling and software implementation; a study on design and evaluation of a functional computerized RF link simulation/analysis system for Space Station; and a study on design and evaluation of simulation system architecture. This report documents the results of these studies. In addition, a separate User's Manual on Space Communications Simulation System (SCSS) (Version 1) documents the software developed for the Space Station FDMA communications system simulation. The final report, SCSS user's manual, and the software located in the NASA JSC system analysis division's VAX 750 computer together serve as the deliverables from LinCom for this project effort.

  10. NASA Live Tweetup Event with International Space Station

    NASA Image and Video Library

    2009-10-21

    Former NASA astronaut Tom Jones shows off a sleeping bag used by astronauts living aboard the International Space Station during a NASA Tweetup event at NASA Headquarters in Washington, Wednesday, Oct. 21, 2009. Photo Credit: (NASA/Carla Cioffi)

  11. Earth observations taken from Mir Space Station during NASA 7 mission

    NASA Image and Video Library

    2016-08-29

    NASA7-726-049 (May 1998) --- This view of a sunrise was taken as the Russia's Mir Space Station was on a descending track toward Johnston Island, in the central Pacific (18.1 degrees north latitude and 176.6 degrees west longitude). Sunrises and sunsets are seen by the astronauts and cosmonauts approximately every 45 minutes and differ in structure, since the tropopause altitude and atmospheric lamina temperatures vary with time of day, season, and latitude. From accounts by the astronauts, true replication of human vision is not possible using present film. Some have said there are many more layers in the atmosphere than what the film is recording.

  12. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-095)] NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the Charter of the International...

  13. Autonomous antenna tracking system for mobile symphonie ground stations

    NASA Technical Reports Server (NTRS)

    Ernsberger, K.; Lorch, G.; Waffenschmidt, E.

    1982-01-01

    The implementation of a satellite tracking and antenna control system is described. Due to the loss of inclination control for the symphonie satellites, it became necessary to equip the parabolic antennas of the mobile Symphonie ground station with tracking facilities. For the relatively low required tracking accuracy of 0.5 dB, a low cost, step track system was selected. The step track system developed for this purpose and tested over a long period of time in 7 ground stations is based on a search step method with subsequent parabola interpolation. As compared with the real search step method, the system has the advantage of a higher pointing angle resolution, and thus a higher tracking accuracy. When the pilot signal has been switched off for a long period of time, as for instance after the eclipse, the antenna is repointed towards the satellite by an automatically initiated spiral search scan. The function and design of the tracking system are detailed, while easy handling and tracking results.

  14. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-003)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  15. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-154)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  16. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-057] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  17. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-090] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  18. 75 FR 51852 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-090)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  19. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-091] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  20. A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station

    NASA Technical Reports Server (NTRS)

    Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne

    1989-01-01

    This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.

  1. Surface refractivity measurements at NASA spacecraft tracking sites

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.

  2. Goldstone Tracking the Echo Satelloon.

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. This photograph shows the first pass of Echo 1, NASA's first communications satellite, over the Goldstone Tracking Station managed by NASA's Jet Propulsion Laboratory, in Pasadena, California, in the early morning of Aug. 12, 1960. The movement of the antenna, star trails (shorter streaks), and Echo 1 (the long streak in the middle) are visible in this image. Project Echo bounced radio signals off a 10-story-high, aluminum-coated balloon orbiting the Earth. This form of "passive" satellite communication -- which mission managers dubbed a "satelloon" -- was an idea conceived by an engineer from NASA's Langley Research Center in Hampton, Virginia, and was a project managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. JPL's role involved sending and receiving signals through two of its 85-foot-diameter (26-meter-diameter) antennas at the Goldstone Tracking Station in California's Mojave Desert. The Goldstone station later became part of NASA's Deep Space Network. JPL, a division of Caltech in Pasadena, California, manages the Deep Space Network for NASA. http://photojournal.jpl.nasa.gov/catalog/PIA21114

  3. Use of a Closed-Loop Tracking Algorithm for Orientation Bias Determination of an S-Band Ground Station

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Piasecki, Marie T.; Schrage, Dean S.

    2015-01-01

    The Space Communications and Navigation (SCaN) Testbed project completed installation and checkout testing of a new S-Band ground station at the NASA Glenn Research Center in Cleveland, Ohio in 2015. As with all ground stations, a key alignment process must be conducted to obtain offset angles in azimuth (AZ) and elevation (EL). In telescopes with AZ-EL gimbals, this is normally done with a two-star alignment process, where telescope-based pointing vectors are derived from catalogued locations with the AZ-EL bias angles derived from the pointing vector difference. For an antenna, the process is complicated without an optical asset. For the present study, the solution was to utilize the gimbal control algorithms closed-loop tracking capability to acquire the peak received power signal automatically from two distinct NASA Tracking and Data Relay Satellite (TDRS) spacecraft, without a human making the pointing adjustments. Briefly, the TDRS satellite acts as a simulated optical source and the alignment process proceeds exactly the same way as a one-star alignment. The data reduction process, which will be discussed in the paper, results in two bias angles which are retained for future pointing determination. Finally, the paper compares the test results and provides lessons learned from the activity.

  4. Smoked aluminum track stations record flying squirrel occurrence

    Treesearch

    Martin G. Raphael; Cathy A. Taylor; Reginald H. Barrett

    1986-01-01

    Smoked aluminum track stations are a useful technique for studying patterns of abundance and distribution of northern flying squirrel (Glaucomys sabrinus). They are easily transported to remote field sites, allow permanent preservation of tracks, and yield frequency-of-occurrence information. A study in Douglas-fir (Pseseudotsuga menziesii...

  5. Space debris tracking at San Fernando laser station

    NASA Astrophysics Data System (ADS)

    Catalán, M.; Quijano, M.; Pazos, A.; Martín Davila, J.; Cortina, L. M.

    2016-12-01

    For years to come space debris will be a major issue for society. It has a negative impact on active artificial satellites, having implications for future missions. Tracking space debris as accurately as possible is the first step towards controlling this problem, yet it presents a challenge for science. The main limitation is the relatively low accuracy of the methods used to date for tracking these objects. Clearly, improving the predicted orbit accuracy is crucial (avoiding unnecessary anti-collision maneuvers). A new field of research was recently instituted by our satellite laser ranging station: tracking decommissioned artificial satellites equipped with retroreflectors. To this end we work in conjunction with international space agencies which provide increasing attention to this problem. We thus proposed to share our time-schedule of use of the satellite laser ranging station for obtaining data that would make orbital element predictions far more accurate (meter accuracy), whilst maintaining our tracking routines for active satellites. This manuscript reports on the actions carried out so far.

  6. NASA's ECOSTRESS Investigation Being Installed on the International Space Station (Artist's Concept)

    NASA Image and Video Library

    2018-04-17

    NASA's ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) will be installed on International Space Station's Japanese Experiment Module - External Facility (JEM-EF) site 10. The investigation will take advantage of the space station's orbit to measure plant surface temperatures at different times of day, allowing scientists to see how plants respond to water stress throughout the day. https://photojournal.jpl.nasa.gov/catalog/PIA22415

  7. NASA, Rockets, and the International Space Station

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon

    2015-01-01

    General overview of NASA, Launch Services Program, and the Slosh experiment aboard the International Space Station. This presentation is designed to be presented in front of university level students in hopes of inspiring them to go into STEM careers.

  8. The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Webb, W. A.

    1978-01-01

    The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.

  9. Distinguishing tracks of marten and fisher at track-plate stations

    Treesearch

    William J. Zielinski; Richard L. Truex

    1995-01-01

    Managing and conserving uncommon mammals, such as fisher (Martes pennanti) and American marten (M. americana), depend upon a reliable mechanism to index their populations. In parts of their ranges where these species are not commercially harvested, baited track stations provide an alternative means to collect data on distribution...

  10. NASA satellite to track North Pole expedition

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The proposed expedition of a lone explorer and the use of Nimbus 6 (NASA meteorological research satellite) to track his journey is reported. The journey is scheduled to start March 4, 1978, and will cover a distance of 6.000 Km (3,728 miles) from northern Canada to the North Pole and return, traveling the length of Greenland's isolated interior. The mode of transportation for the explorer will be by dog sled. Instrumentation and tracking techniques are discussed.

  11. Results of a Television Station Managers' Telephone Survey of NASA's Destination Tomorrow(Trademark)

    NASA Technical Reports Server (NTRS)

    Endo, Scott; Pinelli, Thomas E.; Caton, Randall H.

    2005-01-01

    We conducted a television station managers' telephone survey concerning NASA's Destination Tomorrow. On a 10-point scale, survey participants rated the overall technical quality of NASA's Destination Tomorrow highly (mean = 9.48), and the educational value of the series slightly more highly (mean = 9.56). Ninety one percent of the participants reported that the technical quality of NASA's Destination Tomorrow was higher compared to other educational programming that airs on their station. Most stations (81 percent) indicated that NASA's Destination Tomorrow was well received by their audiences, and 97 percent indicated that they had recommended or would recommend the series to a colleague. Lastly, using a 10-point scale, survey participants indicated that (1) the series successfully educates people about what NASA does (mean = 9.23), (2) the information contained in NASA's Destination Tomorrow is credible (mean = 9.53), and (3) the series is successful in educating the public about what NASA does (mean = 9.23).

  12. Site evaluation for laser satellite-tracking stations

    NASA Technical Reports Server (NTRS)

    Mao, N. H.; Mohr, P. A.

    1976-01-01

    Twenty-six locations for potential laser satellite-tracking stations, four of them actually already occupied in this role, are reviewed in terms of their known local and regional geology and geophysics. The sites are also considered briefly in terms of weather and operational factors. Fifteen of the sites qualify as suitable for a stable station whose motions are likely to reflect only gross plate motion. The others, including two of the present laser station sites (Arequipa and Athens), fail to qualify unless extra monitoring schemes can be included, such as precise geodetic surveying of ground deformation.

  13. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  14. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Skip Owen of NASA Launch Services, left and Scott Messer, United Launch Alliance program manager for NASA missions speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  15. 4. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  16. 5. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  17. Inter-observer variation in identifying mammals from their tracks at enclosed track plate stations

    Treesearch

    William J. Zielinski; Fredrick V. Schlexer

    2009-01-01

    Enclosed track plate stations are a common method to detect mammalian carnivores. Studies rely on these data to make inferences about geographic range, population status and detectability. Despite their popularity, there has been no effort to document inter-observer variation in identifying the species that leave their tracks. Four previous field crew leaders...

  18. Function, form, and technology - The evolution of Space Station in NASA

    NASA Technical Reports Server (NTRS)

    Fries, S. D.

    1985-01-01

    The history of major Space Station designs over the last twenty-five years is reviewed. The evolution of design concepts is analyzed with respect to the changing functions of Space Stations; and available or anticipated technology capabilities. Emphasis is given to the current NASA Space Station reference configuration, the 'power tower'. Detailed schematic drawings of the different Space Station designs are provided.

  19. 1. VIEW WEST SOUTHWEST, UPPER STATION. INCLINE PLANE TRACK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW WEST SOUTHWEST, UPPER STATION. INCLINE PLANE TRACK AND LOWER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  20. Tracking and data relay satellite system - NASA's new spacecraft data acquisition system

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Garman, A. A.

    1979-01-01

    This paper describes NASA's new spacecraft acquisition system provided by the Tracking and Data Relay Satellite System (TDRSS). Four satellites in geostationary orbit and a ground terminal will provide complete tracking, telemetry, and command service for all of NASA's orbital satellites below a 12,000 km altitude. Western Union will lease the system, operate the ground terminal and provide operational satellite control. NASA's network control center will be the focal point for scheduling user services and controlling the interface between TDRSS and the NASA communications network, project control centers, and data processing. TDRSS single access user spacecraft data systems will be designed for time shared data relay support, and reimbursement policy and rate structure for non-NASA users are being developed.

  1. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    NASA astronauts Nicole Mann, left, and Steve Bowen speak to members of social media in the Kennedy Space Center’s Press Site auditorium. With them on the right is Emily Furfaro of the NASA Social Media Team. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  2. Tracking Performance of Upgraded "Polished Panel" Optical Receiver on NASA's 34 Meter Research Antenna

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor

    2013-01-01

    There has been considerable interest in developing and demonstrating a hybrid "polished panel" optical receiver concept that would replace the microwave panels on the Deep Space Network's (DSN) 34 meter antennas with highly polished aluminum panels, thus enabling simultaneous opticaland microwave reception. A test setup has been installed on the 34 meter research antenna at DSS-13 (Deep Space Station 13) at NASA's Goldstone Deep Space Communications Complex in California in order to assess the feasibility of this concept. Here we describe the results of a recent effort todramatically reduce the dimensions of the point-spread function (PSF) generated by a custom polished panel, thus enabling improved optical communications performance. The latest results are compared to the previous configuration in terms of quantifiable PSF improvement. In addition, the performance of acquisition and tracking algorithms designed specifically for the polished panel PSF are evaluated and compared, based on data obtained from real-time tracking of planets and bright stars with the 34 meter research antenna at DSS-13.

  3. JPL-20180620-ECOSTRf-0001-NASAs ECOSTRESS on Space Station video file

    NASA Image and Video Library

    2018-06-25

    NASA's ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is a new instrument that will provide a unique, space-based measurement of how plants respond to changes in water availability. ECOSTRESS will launch from Cape Canveral Air Force Station in Florida no earlier than June 29, 2018 and will be installed on the International Space Station.

  4. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Social media gather in Kennedy Space Center’s Press Site auditorium for a briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18. NASA Social Media Team includes: Emily Furfaro and Amber Jacobson. Guest speakers include: Badri Younes, Deputy Associate Administrator for Space Communications and Navigation at NASA Headquarters in Washington; Dave Littmann, Project Manager for TDRS-M at NASA’s Goddard Space Flight Center; Neil Mallik, NASA Deputy Network Director for Human Spaceflight; Nicole Mann, NASA Astronaut; Steve Bowen, NASA Astronaut; Skip Owen, NASA Launch Services; Scott Messer, United Launch Alliance Program Manager for NASA Missions.

  5. Tracks of a Giant

    NASA Image and Video Library

    2010-08-25

    The giant, 70-meter-wide antenna at NASA Deep Space Network complex in Goldstone, Calif., tracks a spacecraft on Nov. 17, 2009. This antenna, officially known as Deep Space Station 14, is also nicknamed the Mars antenna.

  6. NASA's Plum Brook Station Water Systems

    NASA Technical Reports Server (NTRS)

    Puzak, Robert M.; Kimpton, Arthur

    2006-01-01

    Plum Brook Station's water systems were built in the 1940s to support a World War II ordnance production complex. Because the systems had not been analyzed for current NASA usage, it was unknown if they could meet current requirements and codes or if they were efficient for current use. NASA wanted to determine what improvements would be needed or advisable to support its research projects, so it contracted a hydraulic analysis of the raw and domestic water systems. Burgess and Niple determined current water demands and water flow, developed and calibrated models of the two water systems, and evaluated efficiency improvements and cost-cutting options. They recommended replacing some water mains, installing a new service connection, and removing some high-maintenance items (an underground reservoir, some booster pumps, and a tower).

  7. Artificial intelligence - NASA. [robotics for Space Station

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  8. Techniques for analyzing and utilizing the rain gauges at the NASA White Sands Test Facility. [Tracking and Data Relay Satellite System ground station

    NASA Technical Reports Server (NTRS)

    Kalagher, R. J.

    1973-01-01

    Ten tipping bucket rain gauges have been installed at the NASA WSTF for the purpose of determining rainfall characteristics in this area which may affect the performance of the NASA Tracking and Data Relay Satellite System. A plan is presented for analyzing and utilizing the data which will be obtained during the course of this experiment. Also included is a description of a computer program which has been written to aid in the analysis.

  9. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Neil Mallik, NASA deputy network director for Human Spaceflight, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  10. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Emily Furfaro of the NASA Social Media Team speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  11. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Amber Jacobson of the NASA TDRS Social Media Team speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  12. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    NASA astronaut Nicole Mann speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  13. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    NASA astronaut Steve Bowen speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  14. An AI Approach to Ground Station Autonomy for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Estlin, Tara; Mutz, Darren; Paal, Leslie; Law, Emily; Stockett, Mike; Golshan, Nasser; Chien, Steve

    1998-01-01

    This paper describes an architecture for an autonomous deep space tracking station (DS-T). The architecture targets fully automated routine operations encompassing scheduling and resource allocation, antenna and receiver predict generation. track procedure generation from service requests, and closed loop control and error recovery for the station subsystems. This architecture has been validated by the construction of a prototype DS-T station, which has performed a series of demonstrations of autonomous ground station control for downlink services with NASA's Mars Global Surveyor (MGS).

  15. Space station tracking requirements feasibility study, volume 2

    NASA Technical Reports Server (NTRS)

    Udalov, Sergei; Dodds, James

    1988-01-01

    The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches should be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JSC. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 2, containing Appendices K through U.

  16. Space station tracking requirements feasibility study, volume 1

    NASA Technical Reports Server (NTRS)

    Udalov, Sergei; Dodds, James

    1988-01-01

    The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JCS. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 1, containing the main body and Appendices A through J.

  17. Distributed operating system for NASA ground stations

    NASA Technical Reports Server (NTRS)

    Doyle, John F.

    1987-01-01

    NASA ground stations are characterized by ever changing support requirements, so application software is developed and modified on a continuing basis. A distributed operating system was designed to optimize the generation and maintenance of those applications. Unusual features include automatic program generation from detailed design graphs, on-line software modification in the testing phase, and the incorporation of a relational database within a real-time, distributed system.

  18. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  19. Congress Examines NASA Budget, Space Station, and Relations With Russia

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-04-01

    Concerns about recent Russian activities related to Ukraine loomed over an 8 April congressional hearing focusing on NASA's fiscal year (FY) 2015 budget request. Rep. Frank Wolf (R-Va.), chair of the House of Representatives Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies, and several other committee members questioned NASA administrator Charles Bolden about the agency's contingency plans if tensions between Russia and the United States cause key joint scientific endeavors between the two countries to break off. That concern is particularly critical given the countries' longtime partnership on the International Space Station (ISS) and with the United States currently relying on Russian transport to and from the station until U.S. commercial vehicles are ready to transport astronauts back and forth.

  20. Tracking Data Certification for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick J.; Socoby, Joseph; Hendry, Steve; Campion, Richard

    2010-01-01

    This paper details the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) tracking data certification effort of the Lunar Reconnaissance Orbiter (LRO) Space Communications Network (SCN) complement of tracking stations consisting of the NASA White Sands 1 antenna (WS1), and the commercial provider Universal Space Network (USN) antennas at South Point, Hawaii; Dongara Australia; Weilheim, Germany; and Kiruna, Sweden. Certification assessment required the cooperation and coordination of parties not under the control of either the LRO project or ground stations as uplinks on cooperating spacecraft were necessary. The LRO range-tracking requirement of 10m 1 sigma could be satisfactorily demonstrated using any typical spacecraft capable of range tracking. Though typical Low Earth Orbiting (LEO) or Geosynchronous Earth Orbiting (GEO) spacecraft may be adequate for range certification, their measurement dynamics and noise would be unacceptable for proper Doppler certification of 1-3mm/sec 1 sigma. As LRO will orbit the Moon, it was imperative that a suitable target spacecraft be utilized which can closely mimic the expected lunar orbital Doppler dynamics of +/-1.6km/sec and +/-1.5m/sq sec to +/-0.15m/sq sec, is in view of the ground stations, supports coherent S-Band Doppler tracking measurements, and can be modeled by the FDF. In order to meet the LRO metric tracking data specifications, the SCN ground stations employed previously uncertified numerically controlled tracking receivers. Initial certification testing revealed certain characteristics of the units that required resolution before being granted certification.

  1. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Badri Younes, deputy associate administrator for Space Communications and Navigation at NASA Headquarters in Washington, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  2. From 2001 to 1994: Political environment and the design of NASA's Space Station system

    NASA Technical Reports Server (NTRS)

    Fries, Sylvia Doughty

    1988-01-01

    The U.S. civilian space station, a hope of numerous NASA engineers since before the agency was founded in 1958 and promoted by NASA as the country's 'next logical step' into space, provides an excellent case study of the way public-sector research and development agencies continuously redefine new technologies in the absence of the market discipline that governs private-sector technological development. The number of space station design studies conducted since 1959, both internally by NASA or contracted by the agency to the aerospace industry, easily exceeds a hundred. Because of this, three clearly distinguishable examples are selected from the almost thirty-year history of space station design in NASA. Together these examples illustrate the difficulty of defining a new technological system in the public sector as that system becomes increasingly subject, for its development, to the vagaries of federal research and development politics.

  3. Space Station Cargo Contracts on This Week @NASA – January 15, 2016

    NASA Image and Video Library

    2016-01-15

    On Jan. 14, NASA announced it has awarded three cargo contracts to ensure the critical science, research and technology demonstrations that are informing the agency’s journey to Mars are delivered to the International Space Station (ISS) from 2019 through 2024. The agency unveiled its selection of Orbital ATK; Sierra Nevada Corporation; and SpaceX to continue building on the initial resupply partnerships with two American companies. Also, Space station spacewalk, Juno breaks distance record, New Ceres images reveal details, Space Launch System progress and NASA-developed software in self-driving cars!

  4. Space Station communications and tracking system

    NASA Technical Reports Server (NTRS)

    Dietz, Reinhold H.

    1987-01-01

    A comprehensive description of the existing Space Station communications and tracking system requirements, architecture, and design concepts is provided. Areas which will require innovative solutions to provide cost-effective flight systems are emphasized. Among these are the space-to-space links, the differential global positioning system for determining relative position with free-flying vehicles, multitarget radar, packet/isochronous signal processing, and laser docking systems. In addition, the importance of advanced development, tests, and analyses is summarized.

  5. Tracking and data relay satellite system: NASA's new spacecraft data acquisition system

    NASA Astrophysics Data System (ADS)

    Schneider, W. C.; Garman, A. A.

    The growth in NASA's ground network complexity and cost triggered a search for an alternative. Through a lease service contract, Western Union will provide to NASA 10 years of space communications services with a Tracking and Data Relay Satellite System (TDRSS). A constellation of four operating satellites in geostationary orbit and a single ground terminal will provide complete tracking, telemetry and command service for all of NASA's Earth orbital satellites below an altitude of 12,000 km. The system is shared: two satellites will be dedicated to NASA service; a third will provide backup as a shared spare; the fourth satellite will be dedicated to Western Union's Advanced Westar commercial service. Western Union will operate the ground terminal and provide operational satellite control. NASA's Network Control Center will provide the focal point for scheduling user services and controlling the interface between TDRSS and the rest of the NASA communications network, project control centers and data processing facilities. TDRSS single access user spacecraft data systems should be designed for efficient time shared data relay support. Reimbursement policy and rate structure for non-NASA users are currently being developed.

  6. 76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-074)] NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel...

  7. Anti-Runaway Prevention System with Wireless Sensors for Intelligent Track Skates at Railway Stations.

    PubMed

    Jiang, Chaozhe; Xu, Yibo; Wen, Chao; Chen, Dilin

    2017-12-19

    Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS) based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication.

  8. Anti-Runaway Prevention System with Wireless Sensors for Intelligent Track Skates at Railway Stations

    PubMed Central

    Jiang, Chaozhe; Xu, Yibo; Chen, Dilin

    2017-01-01

    Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS) based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication. PMID:29257108

  9. NASA-ARC 91.5-cm airborne infrared telescope. [tracking mechanism

    NASA Technical Reports Server (NTRS)

    Mobley, R. E.; Brown, T. M.

    1979-01-01

    A 91.5 cm aperture telescope installed aboard NASA-Lockheed C-141A aircraft for the performance of infrared astronomy is described. A unique feature of the telescope is that its entire structure is supported by a 41 cm spherical air bearing which effectively uncouples it from aircraft angular motion, and with inertial stabilization and star tracking, limits tracking errors to less than 1 arc second in most applications. A general description of the system, a summary of its performance, and a detailed description of an offset tracking mechanism is presented.

  10. Open solutions to distributed control in ground tracking stations

    NASA Technical Reports Server (NTRS)

    Heuser, William Randy

    1994-01-01

    The advent of high speed local area networks has made it possible to interconnect small, powerful computers to function together as a single large computer. Today, distributed computer systems are the new paradigm for large scale computing systems. However, the communications provided by the local area network is only one part of the solution. The services and protocols used by the application programs to communicate across the network are as indispensable as the local area network. And the selection of services and protocols that do not match the system requirements will limit the capabilities, performance, and expansion of the system. Proprietary solutions are available but are usually limited to a select set of equipment. However, there are two solutions based on 'open' standards. The question that must be answered is 'which one is the best one for my job?' This paper examines a model for tracking stations and their requirements for interprocessor communications in the next century. The model and requirements are matched with the model and services provided by the five different software architectures and supporting protocol solutions. Several key services are examined in detail to determine which services and protocols most closely match the requirements for the tracking station environment. The study reveals that the protocols are tailored to the problem domains for which they were originally designed. Further, the study reveals that the process control model is the closest match to the tracking station model.

  11. 29. "TEST TRACK, STATION '0' THROUGH '200' AREA." Specifications No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. "TEST TRACK, STATION '0' THROUGH '200' AREA." Specifications No. ENG-OC-1-57-75, Drawing No. AF-6009-15, sheet 53 of 96, D.O. Series No. AF 1394/73, Rev. C. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 5296 Rev. C, Date: 19 NOV 59. Drawing includes plan, section, and details of track. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  12. Space Station Power Upgrade on This Week @NASA – January 6, 2017

    NASA Image and Video Library

    2017-01-06

    On Jan. 6, Expedition 50 Commander Shane Kimbrough and Flight Engineer Peggy Whitson of NASA conducted the first of two planned spacewalks outside the International Space Station to upgrade the station’s power system. Kimbrough and Whitson began installation of adapter plates and completing electrical connections for six new lithium-ion batteries, which arrived in December. Kimbrough will venture outside the station again on Jan. 13 with Flight Engineer Thomas Pesquet of ESA (European Space Agency) to continue and complete the upgrade. Also, New Discovery Missions, NASA Astrophysics Mission Discussed at AAS, and Tracing the 2017 Solar Eclipse!

  13. NASA Alternate Access to Station Service Concept

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle D.; Crumbly, Chris

    2001-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research - and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply

  14. NASA Alternate Access to Station Service Concept

    NASA Astrophysics Data System (ADS)

    Bailey, M. D.; Crumbly, C.

    2002-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply

  15. Tracking on non-active collaborative objects from San Fernando Laser station

    NASA Astrophysics Data System (ADS)

    Catalán, Manuel; Quijano, Manuel; Cortina, Luis M.; Pazos, Antonio A.; Martín-Davila, José

    2016-04-01

    The Royal Observatory of the Spanish Navy (ROA) works on satellite geodesy from the early days of the space age, when the first artificial satellite tracking telescope was installed in 1958: the Baker-Nunn camera. In 1975 a French satellite Laser ranging (SLR) station was installed and operated at ROA . Since 1980, ROA has been operating this instrument which was upgraded to a third generation and it is still keep into a continuous update to reach the highest level of operability. Since then ROA has participated in different space geodesy campaigns through the International Laser Service Stations (ILRS) or its European regional organization (EUROLAS), tracking a number of artificial satellites types : ERS, ENVISAT, LAGEOS, TOPEX- POSEIDON to name but a few. Recently we opened a new field of research: space debris tracking, which is receiving increasing importance and attention from international space agencies. The main problem is the relatively low accuracy of common used methods. It is clear that improving the predicted orbit accuracy is necessary to fulfill our aims (avoiding unnecessary anti-collision maneuvers,..). Following results obtained by other colleagues (Austria, China, USA,...) we proposed to share our time-schedule using our satellite ranging station to obtain data which will make orbital elements predictions far more accurate (sub-meter accuracy), while we still keep our tracking routines over active satellites. In this communication we report the actions fulfill until nowadays.

  16. Dishing Up the Data: The Role of Australian Space Tracking and Radioastronomy Facilities in the Exploration of the Solar System

    NASA Astrophysics Data System (ADS)

    Dougherty, K.; Sarkissian, J.

    2002-01-01

    The recent Australian film, The Dish, highlighted the role played by the Parkes Radio Telescope in tracking and communicating with the Apollo 11 mission. However the events depicted in this film represent only a single snapshot of the role played by Australian radio astronomy and space tracking facilities in the exploration of the Solar System. In 1960, NASA established its first deep space tracking station outside the United States at Island Lagoon, near Woomera in South Australia. From 1961 until 1972, this station was an integral part of the Deep Space Network, responsible for tracking and communicating with NASA's interplanetary spacecraft. It was joined in 1965 by the Tidbinbilla tracking station, located near Canberra in eastern Australia, a major DSN facility that is still in operation today. Other NASA tracking facilities (for the STADAN and Manned Space Flight networks) were also established in Australia during the 1960s, making this country home to the largest number of NASA tracking facilities outside the United States. At the same time as the Island Lagoon station was being established in South Australia, one of the world's major radio telescope facilities was being established at Parkes, in western New South Wales. This 64-metre diameter dish, designed and operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), was also well-suited for deep space tracking work: its design was, in fact, adapted by NASA for the 64-metre dishes of the Deep Space Network. From Mariner II in 1962 until today, the Parkes Radio Telescope has been contracted by NASA on many occasions to support interplanetary spacecraft, as well as the Apollo lunar missions. This paper will outline the role played by both the Parkes Radio Telescope and the NASA facilities based in Australia in the exploration of the Solar System between 1960 and 1976, when the Viking missions landed on Mars. It will outline the establishment and operation of the Deep Space Network

  17. Space station communications and tracking equipment management/control system

    NASA Technical Reports Server (NTRS)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  18. Results of a Telephone Survey of Television Station Managers Concerning the NASA SCI Files(TM) and NASA CONNECT(TM)

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Perry, Jeannine

    2004-01-01

    A telephone survey of television station managers concerning 2 instructional television programs, the NASA SCI Files(TM) and NASA CONNECT(TM), offered by the NASA Langley Center for Distance Learning (CDL) was conducted. Using a 4-point scale, with 4 being very satisfied, survey participants reported that they were either very satisfied (77.1 percent) or satisfied (19.9 percent) with the overall (educational and technical) quality of the NASA SCI Files(TM). Using a 4-point scale, with 4 being very satisfied, survey participants reported that they were either very satisfied (77.9 percent) or satisfied (19.1 percent) with the overall (educational and technical) quality of NASA CONNECT(TM) .

  19. Determining the gender of American martens and fishers at track plate stations

    Treesearch

    Keith M. Slauson; Richard L. Truex; William J. Zielinski

    2008-01-01

    Determining the gender of American martens (Martes americana) and fishers (M. pennanti) from track plate stations would significantly augment the information currently gathered from this simple and inexpensive survey method. We used track-plate impressions collected from captured individual martens and fishers of known gender to...

  20. Expedition 52-52 Launches to the Space Station on This Week @NASA - April 21, 2017

    NASA Image and Video Library

    2017-04-21

    On April 20, Expedition 51-52 Flight Engineer Jack Fischer of NASA and Soyuz Commander Fyodor Yurchikhin of the Russian Space Agency, Roscosmos launched to the International Space Station aboard a Soyuz spacecraft, from the Baikonur Cosmodrome in Kazakhstan. About six-hours later, the pair arrived at the orbital outpost and were greeted by station Commander Peggy Whitson of NASA and other members of the crew. Fischer and Yurchikhin will spend four and a half months conducting research aboard the station. Also, U.S. Resupply Mission Heads to the Space Station, Time Magazine Recognizes Planet-Hunting Scientists, Landslides on Ceres Reflect Ice Content, Mars Rover Opportunity Leaves 'Tribulation', and Earth Day in the Nation’s Capital!

  1. A review of NASA international programs

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A synoptic overview of NASA's international activities to January 1979 is presented. The cooperating countries and international organizations are identified. Topics covered include (1) cooperative arrangements for ground-based, spaceborne, airborne, rocket-borne, and balloon-borne ventures, joint development, and aeronautical R & D; (2) reimbursable launchings; (3) tracking and data acquisition; and (4) personnel exchanges. International participation in NASA's Earth resources investigations is summarized in the appendix. A list of automatic picture transmission stations is included.

  2. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; NASA Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National Aeronautics and Space... Environmental Impact Statement (EIS) for the NASA GRC Plum Brook Station Wind Farm Project located near Sandusky... obtain public comments on construction and operation of the wind farm. The purpose of constructing and...

  3. STS-6 - PREFLIGHT - PAYLOADS - SHUTTLE (TRACKING DATA & RELAY SATELLITE [TDRS]) - KSC

    NASA Image and Video Library

    1982-12-09

    S82-41171 (29 Nov. 1982) --- NASA?s tracking and data relay satellite (TDRS) is gently mated to its inertial upper stage (IUS), which will propel the satellite to a higher geosynchronous orbit after it is ejected from the Challenger?s cargo bay during STS-6. Another TDRS will be placed in orbit on a later shuttle mission. The two will provide communications between orbiting shuttle mission craft and the ground, resulting in increased real-time communication and eliminating the need for much of NASA?s extensive world-wide system of ground tracking stations. A more distant plan is to launch other TDRS to be used for commercial telecommunications and for handling peak loads. Photo credit: NASA

  4. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    NASA Technical Reports Server (NTRS)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  5. Coping with data from Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1991-01-01

    The volume of data from future NASA space missions will be phenomenal. Here, we examine the expected data flow from the Space Station Freedom and describe techniques that are being developed to transport and process that data. Networking in space, the Tracking and Data Relay Satellite System (TDRSS), recommendations of the Consultative Committee for Space Data systems (CCSDS), NASA institutional ground support, communications system architecture, and principal data types and formats are discussed.

  6. Automated Planning for a Deep Space Communications Station

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Fisher, Forest; Mutz, Darren; Chien, Steve

    1999-01-01

    This paper describes the application of Artificial Intelligence planning techniques to the problem of antenna track plan generation for a NASA Deep Space Communications Station. Me described system enables an antenna communications station to automatically respond to a set of tracking goals by correctly configuring the appropriate hardware and software to provide the requested communication services. To perform this task, the Automated Scheduling and Planning Environment (ASPEN) has been applied to automatically produce antenna trucking plans that are tailored to support a set of input goals. In this paper, we describe the antenna automation problem, the ASPEN planning and scheduling system, how ASPEN is used to generate antenna track plans, the results of several technology demonstrations, and future work utilizing dynamic planning technology.

  7. New Crew Journeys to the Space Station on This Week @NASA – October 21, 2016

    NASA Image and Video Library

    2016-10-21

    On Oct. 19, NASA astronaut Shane Kimbrough and his Expedition 49-50 crewmates, Sergey Ryzhikov and Andrey Borisenko, of the Russian Space Agency Roscosmos, launched aboard a Soyuz spacecraft to the International Space Station from the Baikonur Cosmodrome in Kazakhstan. Two days later, when the trio arrived at the orbiting laboratory, they were welcomed aboard by station Commander Anatoly Ivanishin of Roscosmos, Kate Rubins of NASA and Takuya Onishi of the Japan Aerospace Exploration Agency – bringing the space station back to its full complement of six crew members. Also, ISS Cargo Mission Launches from Wallops, Juno Mission and Science Update, and Drone Air Traffic Management Test!

  8. NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.

  9. Microgravity Research Results and Experiences from the NASA Mir Space Station Program

    NASA Technical Reports Server (NTRS)

    Schagheck, R. A.; Trach, B.

    2000-01-01

    The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this

  10. The OSU 275 system of satellite tracking station coordinates

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Kumar, M.

    1975-01-01

    A brief review of the methods and data used in the OSU 275 geodetic system is given along with the summary of the results. Survey information regarding the tracking stations in the system is given in tabular form along with the geodetic and geophysical parameters, origin and orientation, Cartisian coordinates, and systematic differences with global and nonglobal geodetic systems.

  11. NASA's post-Challenger safety program - Themes and thrusts

    NASA Technical Reports Server (NTRS)

    Rodney, G. A.

    1988-01-01

    The range of managerial, technical, and procedural initiatives implemented by NASA's post-Challenger safety program is reviewed. The recommendations made by the Rogers Commission, the NASA post-Challenger review of Shuttle design, the Congressional investigation of the accident, the National Research Council, the Aerospace Safety Advisory Panel, and NASA internal advisory panels and studies are summarized. NASA safety initiatives regarding improved organizational accountability for safety, upgraded analytical techniques and methodologies for risk assessment and management, procedural initiatives in problem reporting and corrective-action tracking, ground processing, maintenance documentation, and improved technologies are discussed. Safety issues relevant to the planned Space Station are examined.

  12. NASA Systems Autonomy Demonstration Program - A step toward Space Station automation

    NASA Technical Reports Server (NTRS)

    Starks, S. A.; Rundus, D.; Erickson, W. K.; Healey, K. J.

    1987-01-01

    This paper addresses a multiyear NASA program, the Systems Autonomy Demonstration Program (SADP), whose main objectives include the development, integration, and demonstration of automation technology in Space Station flight and ground support systems. The role of automation in the Space Station is reviewed, and the main players in SADP and their roles are described. The core research and technology being promoted by SADP are discussed, and a planned 1988 milestone demonstration of the automated monitoring, operation, and control of a complete mission operations subsystem is addressed.

  13. Going EVA Outside the Space Station on This Week @NASA – January 26, 2018

    NASA Image and Video Library

    2018-01-26

    The first space station spacewalk of the new year, launching GOLD to study Earth’s near-space environment, and – read all about it … there’s NASA tech you probably use every day … a few of the stories to tell you about – This Week at NASA!

  14. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Concept document

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station Payload of experiments that will be onboard the Space Station Freedom. The simulation will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  15. Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.; Cooper, Paul A.; Ayers, J. Kirk

    1992-01-01

    The sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts are addressed. The significant components of the space station pertaining to the SARJ control are described and the tracking control system design is presented. Finite element models representing two evolutionary concepts, enhanced operations capability (EOC) and extended operations capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration. Performance limitations caused by the low frequency of the dominant flexible mode are discussed.

  16. NASA Space Station Astronaut Discusses Life in Space with Washington State Students

    NASA Image and Video Library

    2017-12-12

    Aboard the International Space Station, Expedition 53 Flight Engineer Mark Vande Hei of NASA discussed life and work aboard the complex during an in-flight question and answer session Dec. 12 with a variety of students representing schools in Washington, including students from the Steve Luther Elementary School in Lakebay, Washington. Vande Hei is in the midst of a five-month mission on the station, conducting research involving hundreds of experiments from international investigators.

  17. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  18. NASA-6 atmospheric measuring station. [calibration, functional checks, and operation of measuring instruments

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Information required to calibrate, functionally check, and operate the Instrumentation Branch equipment on the NASA-6 aircraft is provided. All procedures required for preflight checks and in-flight operation of the NASA-6 atmospheric measuring station are given. The calibration section is intended for only that portion of the system maintained and calibrated by IN-MSD-12 Systems Operation contractor personnel. Maintenance is not included.

  19. Space station interior design: Results of the NASA/AIA space station interior national design competition

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1975-01-01

    The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.

  20. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth

  1. Object tracking with robotic total stations: Current technologies and improvements based on image data

    NASA Astrophysics Data System (ADS)

    Ehrhart, Matthias; Lienhart, Werner

    2017-09-01

    The importance of automated prism tracking is increasingly triggered by the rising automation of total station measurements in machine control, monitoring and one-person operation. In this article we summarize and explain the different techniques that are used to coarsely search a prism, to precisely aim at a prism, and to identify whether the correct prism is tracked. Along with the state-of-the-art review, we discuss and experimentally evaluate possible improvements based on the image data of an additional wide-angle camera which is available for many total stations today. In cases in which the total station's fine aiming module loses the prism, the tracked object may still be visible to the wide-angle camera because of its larger field of view. The theodolite angles towards the target can then be derived from its image coordinates which facilitates a fast reacquisition of the prism. In experimental measurements we demonstrate that our image-based approach for the coarse target search is 4 to 10-times faster than conventional approaches.

  2. Reports on work in support of NASA's tracking and communication division

    NASA Technical Reports Server (NTRS)

    Feagin, Terry; Lekkos, Anthony

    1991-01-01

    This is a report on the research conducted during the period October 1, 1991 through December 31, 1991. The research is divided into two primary areas: (1) generalization of the Fault Isolation using Bit Strings (FIBS) technique to permit fuzzy information to be used to isolate faults in the tracking and communications system of the Space Station; and (2) a study of the activity that should occur in the on board systems in order to attempt to recover from failures that are external to the Space Station.

  3. Expedition 50/51 Launches to Space Station on This Week @NASA – November 18, 2016

    NASA Image and Video Library

    2016-11-18

    The Expedition 50/51 crew, including NASA astronaut Peggy Whitson, launched aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan Nov. 17 eastern time, to begin a two-day flight to the International Space Station. Whitson, Oleg Novitskiy of the Russian space agency Roscosmos and Thomas Pesquet of ESA (European Space Agency) are scheduled to join Expedition 50 commander Shane Kimbrough of NASA and Roscosmos cosmonauts Sergey Ryzhikov and Andrey Borisenko, who all have been aboard the orbiting laboratory since October. Whitson will assume command of the station in February – making her the first woman to command the space station twice. Whitson and her Expedition 50 crewmates are scheduled to return to Earth next spring. Also, Supermoon Shines Bright, Newman Participates in Operation IceBridge, and Advanced Weather Satellite Mission Previewed!

  4. NASA Growth Space Station missions and candidate nuclear/solar power systems

    NASA Technical Reports Server (NTRS)

    Heller, Jack A.; Nainiger, Joseph J.

    1987-01-01

    A brief summary is presented of a NASA study contract and in-house investigation on Growth Space Station missions and appropriate nuclear and solar space electric power systems. By the year 2000 some 300 kWe will be needed for missions and housekeeping power for a 12 to 18 person Station crew. Several Space Station configurations employing nuclear reactor power systems are discussed, including shielding requirements and power transmission schemes. Advantages of reactor power include a greatly simplified Station orientation procedure, greatly reduced occultation of views of the earth and deep space, near elimination of energy storage requirements, and significantly reduced station-keeping propellant mass due to very low drag of the reactor power system. The in-house studies of viable alternative Growth Space Station power systems showed that at 300 kWe a rigid silicon solar cell array with NiCd batteries had the highest specific mass at 275 kg/kWe, with solar Stirling the lowest at 40 kg/kWe. However, when 10 year propellant mass requirements are factored in, the 300 kWe nuclear Stirling exhibits the lowest total mass.

  5. An operations management system for the Space Station

    NASA Astrophysics Data System (ADS)

    Savage, Terry R.

    A description is provided of an Operations Management System (OMS) for the planned NASA Space Station. The OMS would be distributed both in space and on the ground, and provide a transparent interface to the communications and data processing facilities of the Space Station Program. The allocation of OMS responsibilities has, in the most current Space Station design, been fragmented among the Communications and Tracking Subsystem (CTS), the Data Management System (DMS), and a redefined OMS. In this current view, OMS is less of a participant in the real-time processing, and more an overseer of the health and management of the Space Station operations.

  6. NASA Hosts News Conference with Crew Launching to Space Station in June

    NASA Image and Video Library

    2018-02-14

    NASA astronaut Serena Auñón-Chancellor, along with Alexander Gerst of ESA (European Space Agency), and Sergey Prokopyev of the Russian space agency Roscosmos, participated in a news conference Feb. 14, at NASA’s Johnson Space Center in Houston. The trio is scheduled to launch to the International Space Station in June and will be part of Expeditions 56 and 57. This will be the first trip to the space station for Auñón-Chancellor and Prokopyev, and the second for Gerst.

  7. UWB Tracking System Design for Free-Flyers

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Phan, Chan; Ngo, Phong; Gross, Julia; Dusl, John

    2004-01-01

    This paper discusses an ultra-wideband (UWB) tracking system design effort for Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A tracking algorithm TDOA (Time Difference of Arrival) that operates cooperatively with the UWB system is developed in this research effort. Matlab simulations show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. Lab experiments demonstrate the UWB tracking capability with fine resolution.

  8. ERDA/NASA 100 kilowatt mod-o wind turbine operations and performance. [at the NASA Plum Brook Station, Ohio

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Richards, T. R.

    1977-01-01

    The ERDA/NASA 100 kW Mod-0 wind turbine is operating at the NASA Plum Brook Station near Sandusky, Ohio. The operation of the wind turbine has been fully demonstrated and includes start-up, synchronization to the utility network, blade pitch control for control of power and speed, and shut-down. Also, fully automatic operation has been demonstrated by use of a remote control panel, 50 miles from the site, similar to what a utility dispatcher might use. The operation systems and experience with the wind turbine loads, electrical power and aerodynamic performance obtained from testing are described.

  9. Commercial crew astronauts on This Week @NASA – July 10, 2015

    NASA Image and Video Library

    2015-07-10

    NASA has selected four astronauts to work closely with two U.S. commercial companies that will return human spaceflight launches to Florida’s Space Coast. NASA named veteran astronauts and experienced test pilots Robert Behnken, Eric Boe, Douglas Hurley and Sunita Williams to work closely with Boeing and SpaceX. NASA contracted with Boeing and SpaceX to develop crew transportation systems and provide crew transportation services to and from the International Space Station. The agency will select the commercial crew astronauts from this group of four for the first test, which is scheduled for 2017. Also, NASA’s newest astronauts, New Horizons still on track, Benefits for Humanity, Cargo ship arrives at space station, Training continues for next ISS crew and more!

  10. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  11. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Dave Littmann, project manager for TDRS-M at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  12. NASA's Aqua Satellite Tracking Super Typhoon Vongfong

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument aboard NASA's Aqua satellite captured this visible image of Super Typhoon Vongfong on Oct. 9 at 04:25 UTC (12:25 a.m. EDT as it moved north through the Philippine Sea. Credit: NASA Goddard MODIS Rapid Response Team --- Vongfong weakened to a Category 4 typhoon on the Saffir-Simpson scale on Thursday, October 9, with maximum sustained winds near 130 knots (149.6 mph/240.8 kph), down from a Category 5 typhoon on Oct. 8. Forecasters at the Joint Typhoon Warning Center predict slow weakening over the next several days. Vongfong was centered near 20.6 north and 129.5 east, about 384 nautical miles south-southeast of Kadena Air Base, Okinawa, Japan. It is moving to the north-northwest at 7 knots (8 mph/12.9 kph) and generating 44 foot (13.4 meter) high seas. For warnings and watches, visit the Japan Meteorological Agency website at: www.jma.go.jp/en/typh/. Vongfong is forecast to continue moving north through the Philippine Sea and is expected to pass just to the east of Kadena Air Base, then track over Amami Oshima before making landfall in Kyushu and moving over the other three big islands of Japan. Residents of all of these islands should prepare for typhoon conditions beginning on October 10. Read more: 1.usa.gov/1s0CCQy NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Phased development plan

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  14. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Operations concept report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  15. NASA Human Research Program (HRP). International Space Station Medical Project (ISSMP)

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2009-01-01

    This viewgraph presentation describes the various flight investigations performed on the International Space Station as part of the NASA Human Research Program (HRP). The evaluations include: 1) Stability; 2) Periodic Fitness Evaluation with Oxygen Uptake Measurement; 3) Nutrition; 4) CCISS; 5) Sleep; 6) Braslet; 7) Integrated Immune; 8) Epstein Barr; 9) Biophosphonates; 10) Integrated cardiovascular; and 11) VO2 max.

  16. Space Station Crew Returns Safely on This Week @NASA – March 5, 2018

    NASA Image and Video Library

    2018-03-05

    A safe return from the International Space Station, a new weather satellite launched into orbit, and our next mission to Mars moves closer to launch … a few of the stories to tell you about – This Week at NASA!

  17. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (The International Space Station)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from The International Space Station.

  18. Microgravity research results and experiences from the NASA/MIR space station program.

    PubMed

    Schlagheck, R A; Trach, B L

    2003-12-01

    The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Published by Elsevier Ltd.

  19. Expedition 50-51 Arrives Safely at the Space Station on This Week @NASA – November 25, 2016

    NASA Image and Video Library

    2016-11-25

    On Nov. 19 Eastern time, two days after launching aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan, the Expedition 50-51 crew, including NASA astronaut Peggy Whitson arrived safely at the International Space Station. A few hours after docking, Whitson and Expedition 50-51 crewmates, Oleg Novitskiy of the Russian space agency Roscosmos, and Thomas Pesquet of the European Space Agency, were greeted by space station Commander Shane Kimbrough of NASA and Sergey Ryzhikov and Andrey Borisenko of Roscosmos. The arriving crew members, who are scheduled to remain on the space station until next spring, will contribute to more than 250 research experiments while onboard the orbital laboratory. Also, Cygnus Cargo Spacecraft Leaves the Space Station, Advanced Weather Satellite Launched into Orbit, SLS Hardware Installed in Test Stand, C-Level Platforms Installed in Vehicle Assembly Building, and Giving Thanks from Space!

  20. Biophysics of NASA radiation quality factors.

    PubMed

    Cucinotta, Francis A

    2015-09-01

    NASA has implemented new radiation quality factors (QFs) for projecting cancer risks from space radiation exposures to astronauts. The NASA QFs are based on particle track structure concepts with parameters derived from available radiobiology data, and NASA introduces distinct QFs for solid cancer and leukaemia risk estimates. The NASA model was reviewed by the US National Research Council and approved for use by NASA for risk assessment for International Space Station missions and trade studies of future exploration missions to Mars and other destinations. A key feature of the NASA QFs is to represent the uncertainty in the QF assessments and evaluate the importance of the QF uncertainty to overall uncertainties in cancer risk projections. In this article, the biophysical basis for the probability distribution functions representing QF uncertainties was reviewed, and approaches needed to reduce uncertainties were discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Automated tracking for advanced satellite laser ranging systems

    NASA Astrophysics Data System (ADS)

    McGarry, Jan F.; Degnan, John J.; Titterton, Paul J., Sr.; Sweeney, Harold E.; Conklin, Brion P.; Dunn, Peter J.

    1996-06-01

    NASA's Satellite Laser Ranging Network was originally developed during the 1970's to track satellites carrying corner cube reflectors. Today eight NASA systems, achieving millimeter ranging precision, are part of a global network of more than 40 stations that track 17 international satellites. To meet the tracking demands of a steadily growing satellite constellation within existing resources, NASA is embarking on a major automation program. While manpower on the current systems will be reduced to a single operator, the fully automated SLR2000 system is being designed to operate for months without human intervention. Because SLR2000 must be eyesafe and operate in daylight, tracking is often performed in a low probability of detection and high noise environment. The goal is to automatically select the satellite, setup the tracking and ranging hardware, verify acquisition, and close the tracking loop to optimize data yield. TO accomplish the autotracking tasks, we are investigating (1) improved satellite force models, (2) more frequent updates of orbital ephemerides, (3) lunar laser ranging data processing techniques to distinguish satellite returns from noise, and (4) angular detection and search techniques to acquire the satellite. A Monte Carlo simulator has been developed to allow optimization of the autotracking algorithms by modeling the relevant system errors and then checking performance against system truth. A combination of simulator and preliminary field results will be presented.

  2. Applicability of NASA Polar Technologies to British Antarctic Survey Halley VI Research Station

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    From 1993 through 1997 NASA and the National Science Foundation (NSF), developed a variety of environmental infrastructure technologies for use at the Amundsen-Scott South Pole Station. The objective of this program was to reduce the cost of operating the South Pole Station, reduce the environmental impact of the Station, and to increase the quality of life for Station inhabitants. The result of this program was the development of a set of sustainability technologies designed specifically for Polar applications. In the intervening eight years many of the technologies developed through this program have been commercialized and tested in extreme environments and are now available for use throughout Antarctica and circumpolar north. The objective of this document is to provide information covering technologies that might also be applicable to the British Antarctic Survey s (BAS) proposed new Halley VI Research Station. All technologies described are commercially available.

  3. Code of conduct for the International Space Station Crew. National Aeronautics and Space Administration (NASA). Interim final rule.

    PubMed

    2000-12-21

    NASA is issuing new regulations entitled "International Space Station Crew," to implement certain provisions of the International Space Station (ISS) Intergovernmental Agreement (IGA) regarding ISS crewmembers' observance of an ISS Code of Conduct.

  4. Space Station: Delays in dealing with space debris may reduce safety and increase costs

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The majority of NASA's current designs for protecting the space station and crew from debris are outdated and its overall debris protection strategy is insufficient. NASA's contractors have designed the station using a 1984 model of the space environment that is obsolete, significantly underestimating the increasing amount of debris that the station will encounter during its 30-year lifetime. In February 1992, NASA directed its space centers to incorporate an updated 1991 model into their designs. However, the agency has not yet made critical decisions on how to implement this change. Preliminary evaluations show that incorporating the 1991 model using currently established safety criteria could entail a major redesign of some components, with significant cost impact and schedule delays. NASA's overall protection strategy for space debris is insufficient. While NASA has concentrated its protection on shielding the space station from small debris and plans to augment this initial shielding in orbit, it has not yet developed designs or studied the cost and operational impact of augmenting its protection with additional shielding. Further, current designs do not provide the capability of warning or protecting the crew from imminent collision with mid-size debris. Finally, although some capabilities exist for maneuvering the station away from large debris, the agency lacks collision-avoidance plans and debris-tracking equipment. In developing a comprehensive strategy to protect the station from the more severe debris environment, NASA cannot avoid some difficult decisions. These decisions involve tradeoffs between how much the agency is willing to pay to protect the station, the schedule delays it may incur, and the risk to station safety it is willing to accept. It is important that these decisions be made before NASA completes its critical design reviews in early 1993. At that time key designs will be made final and manufacturing will begin. Without a comprehensive

  5. Following the movement of Earth’s water on This Week @NASA – May 25, 2018

    NASA Image and Video Library

    2018-05-25

    Tracking the movement of Earth’s water, resupplying the International Space Station, and our Administrator testifies about the agency’s proposed budget – a few of the stories to tell you about – This Week at NASA!

  6. NASA RFID Applications

    NASA Technical Reports Server (NTRS)

    Fink, Patrick, Ph.D.; Kennedy, Timothy, Ph.D; Powers, Anne; Haridi, Yasser; Chu, Andrew; Lin, Greg; Yim, Hester; Byerly, Kent, Ph.D.; Barton, Richard, Ph.D.; Khayat, Michael, Ph.D.; hide

    2007-01-01

    This viewgraph document reviews some potential uses for Radio Frequency Identification in space missions. One of these is inventory management in space, including the methods used in Apollo, the Space Shuttle, and Space Station. The potential RFID uses in a remote human outpost are reviewed. The use of Ultra-Wideband RFID for tracking are examined such as that used in Sapphire DART The advantages of RFID in passive, wireless sensors in NASA applications are shown such as: Micrometeoroid impact detection and Sensor measurements in environmental facilities The potential for E-textiles for wireless and RFID are also examined.

  7. Astronauts Working Outside the Space Station on This Week @NASA – May 18, 2018

    NASA Image and Video Library

    2018-05-18

    Our astronauts doing work outside the space station, an agencywide town hall with our new administrator, and old data provide new insight about Jupiter’s moon Europa – a few of the stories to tell you about – This Week at NASA!

  8. Noncoherent Doppler tracking: first flight results

    NASA Astrophysics Data System (ADS)

    DeBoy, Christopher C.; Robert Jensen, J.; Asher, Mark S.

    2005-01-01

    Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.

  9. Read You Loud and Clear! The Story of NASA's Spaceflight Tracking and Data Network

    NASA Technical Reports Server (NTRS)

    Tsiao, Sunny

    2008-01-01

    A historical account is provided of NASA's Spaceflight Tracking and Data Network (STDN), starting with its formation in the late 1950s to what it is today in the first decade of the 21st century. It traces the roots of the tracking network from its beginnings at the White Sands Missile Range in New Mexico to the Tracking and Data Relay Satellite System space-based constellation of today. The story spans the early days of satellite tracking using the Minitrack Network, through the expansion of the Satellite Tracking and Data Acquisition Network and the Manned Space Flight Network, and finally, to the Space and Ground networks of today. These accounts tell how international goodwill and foreign cooperation were crucial to the operation of the network and why the space agency chose to build the STDN as it did.

  10. Portable Fan Assembly for the International Space Station

    NASA Technical Reports Server (NTRS)

    Jenkins, Arthur A.; Roman, Monsi C.

    1999-01-01

    NASA/ Marshall Space Flight Center (NASA/MSFC) is responsible for the design and fabrication of a Portable Fan Assembly (PFA) for the International Space Station (ISS). The PFA will be used to enhance ventilation inside the ISS modules as needed for crew comfort and for rack rotation. The PFA consists of the fan on-orbit replaceable unit (ORU) and two noise suppression packages (silencers). The fan ORU will have a mechanical interface with the Seat Track Equipment Anchor Assembly, in addition to the power supply module which includes a DC-DC converter, on/standby switch, speed control, power cable and connector. This paper provides a brief development history, including the criteria used for the fan, and a detailed description of the PFA operational configurations. Space Station requirements as well as fan performance characteristics are also discussed.

  11. Perspectives on NASA flight software development - Apollo, Shuttle, Space Station

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    Flight data systems' software development is chronicled for the period encompassing NASA's Apollo, Space Shuttle, and (ongoing) Space Station Freedom programs, with attention to the methodologies and 'development tools' employed in each case and their mutual relationships. A dominant concern in all three programs has been the accommodation of software change; it has also been noted that any such long-term program carries the additional challenge of identifying which elements of its software-related 'institutional memory' are most critical, in order to preclude their loss through the retirement, promotion, or transfer of its 'last expert'.

  12. K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Densmore, Art; Jamnejad, Vahraz; Wu, T. K.; Woo, Ken

    1993-01-01

    This paper describes the development of the K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for NASA's ACTS Mobile Terminal (AMT) project. ACTS is NASA's Advanced Communications Technology Satellites. The AMT project will make the first experimental use of ACTS soon after the satellite is operational, to demonstrate mobile communications via the satellite from a van on the road. The AMT antenna system consists of a mechanically steered small reflector antenna, using a shared aperture for both frequency bands and fitting under a radome of 23 cm diameter and 10 cm height, and a microprocessor controlled antenna controller that tracks the satellite as the vehicle moves about. The RF and mechanical characteristics of the antenna and the antenna tracking control system are discussed. Measurements of the antenna performance are presented.

  13. Permanent change of station: The NASA employee's guide to an easier move

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This guide is for the NASA employee preparing to make a permanent change of station. Whether a transferee or a new appointee, this guide contains information that will help a Government-authorized move go more smoothly from start to finish. The guide outlines the allowances and expense reimbursements one is entitled to under Federal Travel Regulations (FTR). It provides samples of forms one may need to fill out to start the transfer rolling and to claim reimbursements. However, it is important to note that this guide is not a copy of the FTR. Information in the FTR and the NASA Travel Regulations, FMM 9760, is far more detailed and is always updated and correct.

  14. Advanced ground station architecture

    NASA Technical Reports Server (NTRS)

    Zillig, David; Benjamin, Ted

    1994-01-01

    This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.

  15. UWB Tracking System Design with TDOA Algorithm

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan

    2006-01-01

    This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).

  16. SLR tracking of GPS-35

    NASA Technical Reports Server (NTRS)

    Pavlis, Erricos C.

    1994-01-01

    An experiment was designed to launch a corner cube retroreflector array on one of the Global Positioning Satellites (GPS). The launch on Aug. 31, 1993 ushered in the era of SLR tracking of GPS spacecraft. Once the space operations group finished the check-out procedures for the new satellite, the agreed upon SLR sites were allowed to track it. The first site to acquire GPS-35 was the Russian system at Maidanak and closely after the MLRS system at McDonald Observatory, Texas. The laser tracking network is currently tracking the GPS spacecraft known as GPS-35 or PRN 5 with great success. From the NASA side there are five stations that contribute data regularly and nearly as many from the international partners. Upcoming modifications to the ground receivers will allow for a further increase in the tracking capabilities of several additional sites and add some desperately needed southern hemisphere tracking. We are analyzing the data and are comparing SLR-derived orbits to those determined on the basis of GPS radiometric data.

  17. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 2: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  18. Space Station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Baseline architecture report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned MSFC Payload Training Complex (PTC) required to meet this need will train the Space Station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is made up of the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS Study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs.

  19. Tracking and Navigation of Future NASA Spacecraft with the Square Kilometer Array

    NASA Astrophysics Data System (ADS)

    Resch, G. M.; Jones, D. L.; Connally, M. J.; Weinreb, S.; Preston, R. A.

    2001-12-01

    The international radio astronomy community is currently working on the design of an array of small radio antennas with a total collecting area of one square kilometer - more than a hundred times that of the largest existing (100-m) steerable antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are a two-orders-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased ground-based tracking capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created.

  20. Environmental Radiation Measurements on MIR Station

    NASA Astrophysics Data System (ADS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.

    1997-04-01

    Environmental radiation levels on the Russian space station Mir are being monitored under differing shielding conditions by a series of six area passive dosimeters (APDs) placed at individual locations inside the Core and Kvant 2 modules, and by an External Dosimeter Array (EDA) to be-deployed on the exterior surface of the Kvant 2 module. Each APD and the EDA contains CR-39 plastic nuclear track detectors (PNTDs) for measurement of LET spectra and TLDs for absorbed dose measurements. Two of the missions, NASA-2/Mir-21 and NASA-3/Mir-22 have been completed and the six APDs from each mission returned to Earth from Mir. This report covers progress to date on the analysis of TLDs and PNTDs from these two missions. For NASA-2/Mir-21, average mission absorbed dose rates varied from 271 to 407 micro-Gy/d at the APDS. For NASA-3/Mir-22, average mission absorbed dose rates varied from 265 to 421 micro-Gy/d.

  1. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested

  2. Managing NASA's International Space Station Logistics and Maintenance program

    NASA Astrophysics Data System (ADS)

    Butina, Anthony J.

    2001-02-01

    The International Space Station will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines-it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally complete in April of 2006. Space logistics is a new concept that will have wide reaching consequences for both space travel and life on Earth. What is it like to do something that no one has done before? What challenges do you face? What kind of organization do you put together to perform this type of task? How do you optimize your resources to procure what you need? How do you change a paradigm within a space agency? How do you coordinate and manage a one of a kind system with approximately 5,700 Orbital Replaceable Units (ORUs)? How do you plan for preventive and corrective maintenance, when you need to procure spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors? How do you transport large sections of ISS hardware around the country? These are some of the topics discussed in this paper. From conception to operation, the ISS requires a unique approach in all aspects of development and operation. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station and only time will tell if we did it right. This paper discusses some of the experiences of the author after working 12 years on the International Space Station's integrated logistics & maintenance program. From his early days as a contractor supportability engineer and manager, to the NASA manager responsible for the entire ISS Logistics and Maintenance program. .

  3. On the calculation of air flow rates to ventilate closed-type stations in subway with the double-track tunnel

    NASA Astrophysics Data System (ADS)

    Kiyanitsa, LA

    2018-03-01

    Metro is not only the most promising kind of public transport but also an important part of infrastructure in a modern city. As a place where large groups of people gather, subway is to ensure the required air exchange at the passenger platforms of the stations. The air flow rate for airing the stations is also determined based on the required temperature, humidity and MAC of gases. The present study estimates the required air flow rate at the passenger platform of the closed-type subway station with the double-track tunnel given the standard air temperature, humidity and gas concentration, as well as based on the condition of the specified air flow feed and air changes per hour. The article proposes the scheme of air recirculation from the double-track tunnel to the station.

  4. NASA UTILIZATION OF THE INTERNATIONAL SPACE STATION AND THE VISION FOR SPACE EXPLORATION

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thomas, Donald A.

    2006-01-01

    Under U.S. President Bush s Vision for Space Exploration (January 14, 2004), NASA has refocused its utilization plans for the International Space Station (ISS). This use will now focus on: (1) the development of countermeasures that will protect crews from the hazards of the space environment, (2) testing and validating technologies that will meet information and systems needs for future exploration missions.

  5. Ship Tracks

    NASA Image and Video Library

    2017-12-08

    Ship tracks above the northern Pacific Ocean. NASA image captured July 3, 2010. Satellite: Aqua NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest To learn more about ship tracks go to: visibleearth.nasa.gov/view_rec.php?id=2370 To watch a video on ship tracks go to: www.youtube.com/watch?v=Vsri2sOAjWo&feature=player_em...! NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  6. New Resupply Mission Launches to Space Station on This Week @NASA – June 29, 2018

    NASA Image and Video Library

    2018-06-29

    Almost three tons of supplies and science experiments are headed to the International Space Station, and – Webb Telescope is now targeting March of 2021 as a new launch date … a few of the stories to tell you about – This Week at NASA!

  7. Next space station crew discusses mission on This Week @NASA – September 25, 2015

    NASA Image and Video Library

    2015-09-25

    A news conference was held on Sept. 24 at NASA’s Johnson Space Center with the next crew launching to the International Space Station, including NASA astronaut Tim Kopra. ESA astronaut Timothy Peake, cosmonaut Yuri Malenchenko of the Russian Federal Space Agency and Kopra will launch to the station aboard a Soyuz spacecraft on Dec. 15 from the Baikonur Cosmodrome in Kazakhstan. They’re currently scheduled to return to Earth in May 2016. Also, The rich colors of Pluto, Anniversary of MAVEN’s arrival at Mars, Fall IceBridge missions at both poles, New aviation technology and Robotics team on Capitol Hill!

  8. Autonomous Navigation With Ground Station One-Way Forward-Link Doppler Data

    NASA Technical Reports Server (NTRS)

    Horstkamp, G. M.; Niklewski, D. J.; Gramling, C. J.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has spent several years developing operational onboard navigation systems (ONS's) to provide real time autonomous, highly accurate navigation products for spacecraft using NASA's space and ground communication systems. The highly successful Tracking and Data Relay Satellite (TDRSS) ONS (TONS) experiment on the Explorer Platform/Extreme Ultraviolet (EP/EUV) spacecraft, launched on June 7, 1992, flight demonstrated the ONS for high accuracy navigation using TDRSS forward link communication services. In late 1994, a similar ONS experiment was performed using EP/EUV flight hardware (the ultrastable oscillator and Doppler extractor card in one of the TDRSS transponders) and ground system software to demonstrate the feasibility of using an ONS with ground station forward link communication services. This paper provides a detailed evaluation of ground station-based ONS performance of data collected over a 20 day period. The ground station ONS (GONS) experiment results are used to project the expected performance of an operational system. The GONS processes Doppler data derived from scheduled ground station forward link services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination. Analysis of the GONS experiment performance indicates that real time onboard position accuracies of better than 125 meters (1 sigma) are achievable with two or more 5-minute contacts per day for the EP/EUV 525 kilometer altitude, 28.5 degree inclination orbit. GONS accuracy is shown to be a function of the fidelity of the onboard propagation model, the frequency/geometry of the tracking contacts, and the quality of the tracking measurements. GONS provides a viable option for using autonomous navigation to reduce operational costs for upcoming spacecraft missions with moderate position accuracy requirements.

  9. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  10. E55_Inflight_IndyStar_Off_Track_2018_0517_1330_654170

    NASA Image and Video Library

    2018-05-21

    SPACE STATION CREW DISCUSSES AUTO RACING FROM ORBIT------- Aboard the International Space Station, Expedition 55 NASA Flight Engineers Drew Feustel and Scott Tingle discussed their thoughts on the upcoming Indianapolis “500” auto race during in-flight interviews May 17 with the USA Today Network and the “Off Track with Hinch and Rossi” podcast. Feustel, in particular, is an enormous auto racing aficionado. The crew plans to have the televised May 27 race uplinked to them on orbit during an off-duty day.

  11. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    NASA's Earth Dome is seen at Union Station, Monday, April 22, 2013 in Washington. The Earth Dome housed two of NASA's Science Gallery exhibits as part of a NASA-sponsored Earth Day event at Union Station. Photo Credit: (NASA/Carla Cioffi)

  12. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA Social participants listen as astronaut Joe Acaba answers questions about his time living aboard the International Space Station at NASA Headquarters, Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  13. Overview of NASARTI (NASA Radiation Track Image) Program: Highlights of the Model Improvement and the New Results

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Plante, I.; George, Kerry; Cornforth, M. N.; Loucas, B. D.; Wu, Honglu

    2014-01-01

    This presentation summarizes several years of research done by the co-authors developing the NASARTI (NASA Radiation Track Image) program and supporting it with scientific data. The goal of the program is to support NASA mission to achieve a safe space travel for humans despite the perils of space radiation. The program focuses on selected topics in radiation biology that were deemed important throughout this period of time, both for the NASA human space flight program and to academic radiation research. Besides scientific support to develop strategies protecting humans against an exposure to deep space radiation during space missions, and understanding health effects from space radiation on astronauts, other important ramifications of the ionizing radiation were studied with the applicability to greater human needs: understanding the origins of cancer, the impact on human genome, and the application of computer technology to biological research addressing the health of general population. The models under NASARTI project include: the general properties of ionizing radiation, such as particular track structure, the effects of radiation on human DNA, visualization and the statistical properties of DSBs (DNA double-strand breaks), DNA damage and repair pathways models and cell phenotypes, chromosomal aberrations, microscopy data analysis and the application to human tissue damage and cancer models. The development of the GUI and the interactive website, as deliverables to NASA operations teams and tools for a broader research community, is discussed. Most recent findings in the area of chromosomal aberrations and the application of the stochastic track structure are also presented.

  14. Hybrid Ground Station Technology for RF and Optical Communication Links

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz; Hoppe, D.; Charles, J.; Vilnrotter, V.; Sehic, A.; Hanson, T.; Gam, E.

    2012-01-01

    To support future enhancements of NASA's deep space and planetary communications and tracking services, the Jet Propulsion Laboratory is developing a hybrid ground station that will be capable of simultaneously supporting RF and optical communications. The main reason for adding optical links to the existing RF links is to significantly increase the capacity of deep space communications in support of future solar system exploration. It is envisioned that a mission employing an optical link will also use an RF link for telemetry and emergency purposes, hence the need for a hybrid ground station. A hybrid station may also reduce operations cost by requiring fewer staff than would be required to operate two stations. A number of approaches and techniques have been examined. The most promising ones have been prototyped for field examination and validation.

  15. Second Shuttle Join NASA's STS Fleet: Challenger Launches First New Tracking Satellite

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA made a major stride in readying a second delivery vehicle for its Space Transportation System (STS) fleet with the perfect landing of Shuttle Orbiter Challenger at Edwards Air Force Base, California, April 9, 1983. Besides being the first flight test of Challenger's performance, the mission marked the orbiting of the first spacecraft in NASA's new Tracking and Data Relay Satellite System (TDRSS). The new family of orbiting space communications platforms is essential to serve future Shuttle missions. Although the Inertial Upper Stage (IUS) second stage engine firing failed to place TDRS in its final 35,888 kilometer (22,300 mile) geosynchronous orbit, its release from the orbiter cargo bay went as planned. Launch officials were confident they can achieve its planned orbit in a matter of weeks.

  16. Modeling and analysis of selected space station communications and tracking subsystems

    NASA Technical Reports Server (NTRS)

    Richmond, Elmer Raydean

    1993-01-01

    The Communications and Tracking System on board Space Station Freedom (SSF) provides space-to-ground, space-to-space, audio, and video communications, as well as tracking data reception and processing services. Each major category of service is provided by a communications subsystem which is controlled and monitored by software. Among these subsystems, the Assembly/Contingency Subsystem (ACS) and the Space-to-Ground Subsystem (SGS) provide communications with the ground via the Tracking and Data Relay Satellite (TDRS) System. The ACS is effectively SSF's command link, while the SGS is primarily intended as the data link for SSF payloads. The research activities of this project focused on the ACS and SGS antenna management algorithms identified in the Flight System Software Requirements (FSSR) documentation, including: (1) software modeling and evaluation of antenna management (positioning) algorithms; and (2) analysis and investigation of selected variables and parameters of these antenna management algorithms i.e., descriptions and definitions of ranges, scopes, and dimensions. In a related activity, to assist those responsible for monitoring the development of this flight system software, a brief summary of software metrics concepts, terms, measures, and uses was prepared.

  17. Space station automation and robotics study. Operator-systems interface

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  18. NASA's Hydrogen Outpost: The Rocket Systems Area at Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Arrighi, Robert S.

    2016-01-01

    "There was pretty much a general knowledge about hydrogen and its capabilities," recalled former researcher Robert Graham. "The question was, could you use it in a rocket engine? Do we have the technology to handle it? How will it cool? Will it produce so much heat release that we can't cool the engine? These were the questions that we had to address." The National Aeronautics and Space Administration's (NASA) Glenn Research Center, referred to historically as the Lewis Research Center, made a concerted effort to answer these and related questions in the 1950s and 1960s. The center played a critical role transforming hydrogen's theoretical potential into a flight-ready propellant. Since then NASA has utilized liquid hydrogen to send humans and robots to the Moon, propel dozens of spacecraft across the universe, orbit scores of satellite systems, and power 135 space shuttle flights. Rocket pioneers had recognized hydrogen's potential early on, but its extremely low boiling temperature and low density made it impracticable as a fuel. The Lewis laboratory first demonstrated that liquid hydrogen could be safely utilized in rocket and aircraft propulsion systems, then perfected techniques to store, pump, and cleanly burn the fuel, as well as use it to cool the engine. The Rocket Systems Area at Lewis's remote testing area, Plum Brook Station, played a little known, but important role in the center's hydrogen research efforts. This publication focuses on the activities at the Rocket Systems Area, but it also discusses hydrogen's role in NASA's space program and Lewis's overall hydrogen work. The Rocket Systems Area included nine physically modest test sites and three test stands dedicated to liquid-hydrogen-related research. In 1962 Cleveland Plain Dealer reporter Karl Abram claimed, "The rocket facility looks more like a petroleum refinery. Its test rigs sprout pipes, valves and tanks. During the night test runs, excess hydrogen is burned from special stacks in the best

  19. Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hasbrook, Pete

    2016-01-01

    The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging

  20. DVB-S2 Experiment over NASA's Space Network

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Evans, Michael A.; Tollis, Nicholas S.

    2017-01-01

    The commercial DVB-S2 standard was successfully demonstrated over NASAs Space Network (SN) and the Tracking Data and Relay Satellite System (TDRSS) during testing conducted September 20-22nd, 2016. This test was a joint effort between NASA Glenn Research Center (GRC) and Goddard Space Flight Center (GSFC) to evaluate the performance of DVB-S2 as an alternative to traditional NASA SN waveforms. Two distinct sets of tests were conducted: one was sourced from the Space Communication and Navigation (SCaN) Testbed, an external payload on the International Space Station, and the other was sourced from GRCs S-band ground station to emulate a Space Network user through TDRSS. In both cases, a commercial off-the-shelf (COTS) receiver made by Newtec was used to receive the signal at White Sands Complex. Using SCaN Testbed, peak data rates of 5.7 Mbps were demonstrated. Peak data rates of 33 Mbps were demonstrated over the GRC S-band ground station through a 10MHz channel over TDRSS, using 32-amplitude phase shift keying (APSK) and a rate 89 low density parity check (LDPC) code. Advanced features of the DVB-S2 standard were evaluated, including variable and adaptive coding and modulation (VCMACM), as well as an adaptive digital pre-distortion (DPD) algorithm. These features provided additional data throughput and increased link performance reliability. This testing has shown that commercial standards are a viable, low-cost alternative for future Space Network users.

  1. Utilization of satellite-satellite tracking data for determination of the geocentric gravitational constant (GM)

    NASA Technical Reports Server (NTRS)

    Martin, C. F.; Oh, I. H.

    1979-01-01

    Range rate tracking of GEOS 3 through the ATS 6 satellite was used, along with ground tracking of GEOS 3, to estimate the geocentric gravitational constant (GM). Using multiple half day arcs, a GM of 398600.52 + or - 0.12 cu km/sq sec was estimated using the GEM 10 gravity model, based on speed of light of 299792.458 km/sec. Tracking station coordinates were simultaneously adjusted, leaving geopotential model error as the dominant error source. Baselines between the adjusted NASA laser sites show better than 15 cm agreement with multiple short arc GEOS 3 solutions.

  2. NASA uses Eclipse RCP Applications for Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cohen, Tamar

    2013-01-01

    Eclipse is going to space for the first time in 2013! The International Space Station (ISS) is used as a site for experiments any software developed as part of these experiments has to comply with extensive and strict user interface guidelines. NASA Ames Research Center's Intelligent Robotics Group is doing 2 sets of experiments, both with astronauts using Eclipse RCP applications to remotely control robots. One experiment will control SPHERES with an Android Smartphone on the ISS the other experiment will control a K10 rover on Earth.

  3. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  4. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  5. Sub-nanosecond clock synchronization and precision deep space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, Charles; Lichten, Stephen; Jefferson, David; Border, James S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished at the NASA Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals to ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3 ns error in clock synchronization resulting in an 11 nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock synchronization and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft observations without near-simultaneous quasar-based calibrations. Solutions are presented for a global network of GPS receivers in which the formal errors in clock offset parameters are less than 0.5 ns. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry and the examination of clock closure suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  6. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    NASA Astronaut Don Pettit, speaks about his experience onboard the International Space Station at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  7. Tracking and data relay satellite system (TDRSS) - A worldwide view from space

    NASA Technical Reports Server (NTRS)

    Macoughtry, W. O.; Harris, D. W.

    1983-01-01

    The development, performance levels, and operational use of the TDRSS satellite system are outlined. The TDRSS spacecraft were conceived in the mid-1960s by NASA as a means of using GEO-positioned satellites to eliminate existing ground stations. The main ground terminal becomes Goddard Space Flight Center, through which users other than the Shuttle can also gain access. The TDRSS functions as a relay vehicle, with very little on-board processing except for status reports inserted into the data stream. Use of the TDRSS system by nonNASA agencies currently costs $110/min for forwards, return, and tracking, $24/min for forward service alone, and $8/min for return service only. The spacecraft can store data on board and dump it to the ground station during the limited hours of operation.

  8. Implementation of high precision optical and radiometric LRO tracking data in the orbit determination to supplement the baseline S-band tracking

    NASA Astrophysics Data System (ADS)

    Mao, D.; Torrence, M. H.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2016-12-01

    LRO has been in a polar lunar orbit for 7 year since it was launched in June 2009. Seven instruments are onboard LRO to perform a global and detailed geophysical, geological and geochemical mapping of the Moon, some of which have very high spatial resolution. To take full advantage of the high resolution LRO datasets from these instruments, the spacecraft orbit must be reconstructed precisely. The baseline LRO tracking was the NASA's White Sands station in New Mexico and a commercial network, the Universal Space Network (USN), providing up to 20 hours per day of almost continuous S-band radio frequency link to LRO. The USN stations produce S-band range data with a 0.4 m precision and Doppler data with a 0.8 mm/s precision. Using the S-band tracking data together with the high-resolution gravity field model from the GRAIL mission, definitive LRO orbit solutions are obtained with an accuracy of 10 m in total position and 0.5 m radially. Confirmed by the 0.50-m high-resolution NAC images from the LROC team, these orbits well represent the LRO orbit "truth". In addition to the S-band data, one-way Laser Ranging (LR) to LRO provides a unique LRO optical tracking dataset over 5 years, from June 2009 to September 2014. Ten international satellite laser ranging stations contributed over 4000 hours LR data with the 0.05 - 0.10 m normal point precision. Another set of high precision LRO tracking data is provided by the Deep Space Network (DSN), which produces radiometric tracking data more precise than the USN S-band data. In the last two years of the LRO mission, the temporal coverage of the USN data has decreased significantly. We show that LR and DSN data can be a good supplement to the baseline tracking data for the orbit reconstruction.

  9. Tracking and data relay satellite system configuration and tradeoff study. Volume 5: User impact and ground station design, part 1

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1972-01-01

    The configuration of the user transponder on the Tracking and Data Relay satellite is described. The subjects discussed are: (1) transponder concepts and trades, (2) ground station design, (3) antenna configurations for ground equipment, (4) telemetry facilities, (5) signal categories, and (6) satellite tracking.

  10. Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

  11. Space Station Astronauts Make Safe Landing on This Week @NASA – September 11, 2015

    NASA Image and Video Library

    2015-09-11

    Aboard the International Space Station, the Expedition 45 crew – including new Commander Scott Kelly and Kjell Lindgren of NASA, said goodbye to Gennady Padalka of the Russian Federal Space Agency, Andreas Mogensen of ESA (European Space Agency) and Aidyn Aimbetov of the Kazakh Space Agency (Kazcosmos) as the trio climbed aboard their Soyuz spacecraft for the return trip to Earth. The Soyuz landed safely in Kazakhstan on Sept. 11 Eastern time, Sept. 12 in Kazakhstan -- closing out a 168-day mission for Padalka and an 8-day stay on the station for Mogensen and Aimbetov. Also, First Orion crew module segments welded, SLS Launch Vehicle Stage Adapter, New Ceres imagery, New Horizons update, 9/11 tribute and National Preparedness Month!

  12. Irma Tracked from Space on This Week @NASA – September 8, 2017

    NASA Image and Video Library

    2017-09-08

    During the week of Sept. 5, spacecraft captured imagery of hurricane Irma as the storm reached category 5 status in the Atlantic Ocean. Irma was seen from the International Space Station, Global Precipitation Measurement mission or GPM, and the Suomi National Polar-orbiting Partnership satellite. Imagery from space is used to help forecasters and officials track and characterize storms and other natural events. Also, Johnson Space Center Recovering from Harvey, Whitson and Fischer Return to Earth, 40 Years of Voyager, and Bridenstine Nominated for Administrator!

  13. The NASA/JPL 64-meter-diameter antenna at Goldstone, California: Project report, technical staff, tracking and data acquisition organization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The significant management and technical aspects of the JPL Project to develop and implement a 64-meter-diameter antenna at the Goldstone Deep Space Communications Complex in California, which was the first of the Advanced Antenna Systems of the National Aeronautics and Space Administration/Jet Propulsion Laboratory Deep Space Network are described. The original need foreseen for a large-diameter antenna to accomplish communication and tracking support of NASA's solar system exploration program is reviewed, and the translation of those needs into the technical specification of an appropriate ground station antenna is described. The antenna project is delineated by phases to show the key technical and managerial skills and the technical facility resources involved. There is a brief engineering description of the antenna and its closely related facilities. Some difficult and interesting engineering problems, then at the state-of-the-art level, which were met in the accomplishment of the Project, are described. The key performance characteristics of the antenna, in relation to the original specifications and the methods of their determination, are stated.

  14. Introduction to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard

    1992-01-01

    NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station

  15. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Astronaut John Mace Grunsfeld takes a quick selfie with astronauts at the International Space Station at the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA announced the "Global Selfie" event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. All selfies posted to social media with the hashtag "GlobalSelfie" will be included in a mosaic image of Earth. Photo Credit: (NASA/Aubrey Gemignani)

  16. NASA Spacecraft Tracks Argentine Flooding

    NASA Image and Video Library

    2015-08-19

    Northwest of Buenos Aires, Argentina, seven straight days of torrential rains of up to 16 inches 40 centimeters in August 2015 resulted in flooding between the cities of Escobar and Campana as seen by NASA Terra spacecraft. The flooding has since eased, allowing some evacuated residents of the 39 affected municipalities to return to their homes. The flooding was captured in this satellite image acquired Aug. 16, 2015, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. The image covers an area of 16.7 by 17.4 miles (26.9 by 28 kilometers), and is located at 34.2 degrees south, 58.6 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19871

  17. NASA's Brad Neal, X-43A Monitor Station Operator aboard NASA's B-52B mothership, performing pre-flight checks on November 16, 2004

    NASA Image and Video Library

    2004-11-16

    NASA X-43A Monitor Station Operator Brad Neal performs final checks and pre-flight preparations aboard the B-52 for the third X-43A research vehicle Mach 10 flight on November 16, 2004. Takeoff of the B-52B mothership carrying the X-43A took place at 1 p.m., PST, with launch of the booster rocket/X-43A approximately an hour later.

  18. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 1: Overview and summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA's Space Station Freedom Program (SSFP) planning efforts have identified a need for a payload training simulator system to serve as both a training facility and as a demonstrator to validate operational concepts. The envisioned Marshall Space Flight Center (MSFC) Payload Training Complex (PTC) required to meet this need will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex at MSFC. The purpose of this SCS study is to investigate issues related to the SCS, alternative requirements, simulator approaches, and state-of-the-art technologies to develop candidate concepts and designs. This study was performed August 1988 to October 1989. Thus, the results are based on the SSFP August 1989 baseline, i.e., pre-Langley configuration/budget review (C/BR) baseline. Some terms, e.g., combined trainer, are being redefined. An overview of the study activities and a summary of study results are given here.

  19. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2006-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  20. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2007-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  1. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thomas, Donald A.; Thumm, Tracy L.

    2006-01-01

    In response to the U.S. President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  2. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    William Gerstenmaier, Associate Administrator Human Exploration and Operations, speaks at a NASA Social on Science on the International Space Station at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  3. Space Station: NASA's software development approach increases safety and cost risks. Report to the Chairman, Committee on Science, Space, and Technology, House of Representatives

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The House Committee on Science, Space, and Technology asked NASA to study software development issues for the space station. How well NASA has implemented key software engineering practices for the station was asked. Specifically, the objectives were to determine: (1) if independent verification and validation techniques are being used to ensure that critical software meets specified requirements and functions; (2) if NASA has incorporated software risk management techniques into program; (3) whether standards are in place that will prescribe a disciplined, uniform approach to software development; and (4) if software support tools will help, as intended, to maximize efficiency in developing and maintaining the software. To meet the objectives, NASA proceeded: (1) reviewing and analyzing software development objectives and strategies contained in NASA conference publications; (2) reviewing and analyzing NASA, other government, and industry guidelines for establishing good software development practices; (3) reviewing and analyzing technical proposals and contracts; (4) reviewing and analyzing software management plans, risk management plans, and program requirements; (4) reviewing and analyzing reports prepared by NASA and contractor officials that identified key issues and challenges facing the program; (5) obtaining expert opinions on what constitutes appropriate independent V-and-V and software risk management activities; (6) interviewing program officials at NASA headquarters in Washington, DC; at the Space Station Program Office in Reston, Virginia; and at the three work package centers; Johnson in Houston, Texas; Marshall in Huntsville, Alabama; and Lewis in Cleveland, Ohio; and (7) interviewing contractor officials doing work for NASA at Johnson and Marshall. The audit work was performed in accordance with generally accepted government auditing standards, between April 1991 and May 1992.

  4. Knowledge-based vision for space station object motion detection, recognition, and tracking

    NASA Technical Reports Server (NTRS)

    Symosek, P.; Panda, D.; Yalamanchili, S.; Wehner, W., III

    1987-01-01

    Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed.

  5. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    A NASA Social participant asks a question to the astronauts onboard the International Space Station in a live downlink from the ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  6. Simultaneous observation solutions for NASA-MOTS and SPEOPT station positions on the North American datum

    NASA Technical Reports Server (NTRS)

    Reece, J. S.; Marsh, J.

    1973-01-01

    Simultaneous observations of the GEOS-I and II flashing lamps by the NASA MOTS and SPEOPT cameras on the North American Datum (NAD) were analyzed using geometrical techniques to provide an adjustment of the station coordinates. Two separate adjustments were obtained. An optical data only solution was computed in which the solution scale was provided by the Rosman-Mojave distance obtained from a dynamic station solution. In a second adjustment, scaling was provided by processing simultaneous laser ranging data from Greenbelt and Wallops Island in a combined optical-laser solution. Comparisons of these results with previous GSFC dynamical solutions indicate an rms agreement on the order of 4 meters or better in each coordinate. Comparison with a detailed gravimetric geoid of North America yields agreement of 3 meters or better for mainland U.S. stations and 7 and 3 meters, respectively, for Bermuda and Puerto Rico.

  7. KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Lisa Malone, deputy director of External Relations and Business Development at KSC, emcees a ceremony in the Space Station Processing Facility to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Speakers at the ceremony included KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  8. A global assessment of NASA AIRS v6 and EUMETSAT IASI v6 precipitable water vapor using ground-based GPS SuomiNet stations

    NASA Astrophysics Data System (ADS)

    Roman, Jacola; Knuteson, Robert; August, Thomas; Hultberg, Tim; Ackerman, Steve; Revercomb, Hank

    2016-08-01

    Satellite remote sensing of precipitable water vapor (PWV) is essential for monitoring moisture in real time for weather applications, as well as tracking the long-term changes in PWV for climate change trend detection. This study assesses the accuracies of the current satellite observing system, specifically the National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) v6 PWV product and the European Organization for the Exploitation of Meteorological Satellite Studies (EUMETSAT) Infrared Atmospheric Sounding Interferometer (IASI) v6 PWV product, using ground-based SuomiNet Global Positioning System (GPS) network as truth. Elevation-corrected collocated matchups to each SuomiNet GPS station in North America and around the world were created, and results were broken down by station, ARM region, climate zone, and latitude zone. The greatest difference, exceeding 5%, between IASI and AIRS retrievals occurred in the tropics. Generally, IASI and AIRS fall within a 5% error in the PWV range of 20-40 mm (a mean bias less than 2 mm), with a wet bias for extremely low PWV values (less than 5 mm) and a dry bias for extremely high PWV values (greater than 50 mm). The operational IR satellite products are able to capture the mean PWV but degrade in the extreme dry and wet regimes.

  9. NASA philosophy concerning space stations as operations centers for construction and maintenance of large orbiting energy systems

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1976-01-01

    Future United States plans for manned space-flight activities are summarized, emphasizing the long-term goals of achieving permanent occupancy and limited self-sufficiency in space. NASA-sponsored studies of earth-orbiting Space Station concepts are reviewed along with lessons learned from the Skylab missions. Descriptions are presented of the Space Transportation System, the Space Construction Base, and the concept of space industrialization (the processing and manufacturing of goods in space). Future plans for communications satellites, solar-power satellites, terrestrial observations from space stations, and manned orbital-transfer vehicles are discussed.

  10. NASA Historical Data Book. Volume 6; NASA Space Applications, Aeronautics and Space Research and Technology, Tracking and Data Acquisition/Support Operations, Commercial Programs and

    NASA Technical Reports Server (NTRS)

    Rumerman, Judy A.

    2000-01-01

    This sixth volume of the NASA Historical Data Book is a continuation of those earlier efforts. This fundamental reference tool presents information, much of it statistical, documenting the development of several critical areas of NASA responsibility for the period between 1979 and 1988. This volume includes detailed information on the space applications effort, the development and operation of aeronautics and space research and technology programs, tracking and data acquisition/space operations, commercial programs, facilities and installations, personnel, and finances and procurement during this era. Special thanks are owed to the student research assistants who gathered and input much of the tabular material-a particularly tedious undertaking. There are numerous people at NASA associated with historical study, technical information, and the mechanics of publishing who helped in myriad ways in the preparation of this historical data book.

  11. New Gateway Installed onto Space Station on This Week @NASA – August 19, 2016

    NASA Image and Video Library

    2016-08-19

    Outside the International Space Station, Expedition 48 Commander Jeff Williams and Flight Engineer Kate Rubins of NASA installed the first of two International Docking Adapters onto the forward end of the station’s Harmony module, during a spacewalk on Aug. 19. The new docking port will be used by the Boeing CST-100 “Starliner” and SpaceX Crew Dragon commercial crew spacecraft being developed to transport U.S. astronauts to and from the station. The second International Docking Adapter – currently under construction – eventually will be placed on the space-facing side of the Harmony module. Also, Commercial Crew Access Arm Installed on Launchpad, Behind the Scenes of our Journey to Mars, Asteroid Redirect Mission Milestone, Asteroid Sample Return Mission Approaches, and Chasing Greenhouse Gases in the Midwest!

  12. SeaTrack: Ground station orbit prediction and planning software for sea-viewing satellites

    NASA Technical Reports Server (NTRS)

    Lambert, Kenneth S.; Gregg, Watson W.; Hoisington, Charles M.; Patt, Frederick S.

    1993-01-01

    An orbit prediction software package (Sea Track) was designed to assist High Resolution Picture Transmission (HRPT) stations in the acquisition of direct broadcast data from sea-viewing spacecraft. Such spacecraft will be common in the near future, with the launch of the Sea viewing Wide Field-of-view Sensor (SeaWiFS) in 1994, along with the continued Advanced Very High Resolution Radiometer (AVHRR) series on NOAA platforms. The Brouwer-Lyddane model was chosen for orbit prediction because it meets the needs of HRPT tracking accuracies, provided orbital elements can be obtained frequently (up to within 1 week). Sea Track requires elements from the U.S. Space Command (NORAD Two-Line Elements) for the satellite's initial position. Updated Two-Line Elements are routinely available from many electronic sources (some are listed in the Appendix). Sea Track is a menu-driven program that allows users to alter input and output formats. The propagation period is entered by a start date and end date with times in either Greenwich Mean Time (GMT) or local time. Antenna pointing information is provided in tabular form and includes azimuth/elevation pointing angles, sub-satellite longitude/latitude, acquisition of signal (AOS), loss of signal (LOS), pass orbit number, and other pertinent pointing information. One version of Sea Track (non-graphical) allows operation under DOS (for IBM-compatible personal computers) and UNIX (for Sun and Silicon Graphics workstations). A second, graphical, version displays orbit tracks, and azimuth-elevation for IBM-compatible PC's, but requires a VGA card and Microsoft FORTRAN.

  13. Cairo and Alexandria, Egypt at Night (NASA, International Space Station Science, 10:28:10)

    NASA Image and Video Library

    2010-11-02

    From 220 miles above Earth, one of the Expedition 25 crew members on the International Space Station took this night time photo featuring the bright lights of Cairo and Alexandria, Egypt on the Mediterranean coast. The Nile River and its delta stand out clearly as well. On the horizon, the airglow of the atmosphere is seen across the Mediterranean. The Sinai Peninsula, at right, is outlined with lights highlighting the Gulf of Suez and Gulf of Aqaba. Credit: NASA

  14. International Space Station Configuration Analysis and Integration

    NASA Technical Reports Server (NTRS)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  15. Space Station Software Recommendations

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor)

    1985-01-01

    Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.

  16. Environmental Radiation Measurements on MIR Station. Program 1; Internal Experiment

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.

    1997-01-01

    Environmental radiation levels on the Russian space station Mir are being monitored under differing shielding conditions by a series of six area passive dosimeters (APDs) placed at individual locations inside the Core and Kvant 2 modules, and by an External Dosimeter Array (EDA) to be-deployed on the exterior surface of the Kvant 2 module. Each APD and the EDA contains CR-39 plastic nuclear track detectors (PNTDs) for measurement of LET spectra and TLDs for absorbed dose measurements. Two of the missions, NASA-2/Mir-21 and NASA-3/Mir-22 have been completed and the six APDs from each mission returned to Earth from Mir. This report covers progress to date on the analysis of TLDs and PNTDs from these two missions. For NASA-2/Mir-21, average mission absorbed dose rates varied from 271 to 407 micro-Gy/d at the APDS. For NASA-3/Mir-22, average mission absorbed dose rates varied from 265 to 421 micro-Gy/d.

  17. Space Station: The next iteration

    NASA Astrophysics Data System (ADS)

    Foley, Theresa M.

    1995-01-01

    NASA's international space station is nearing the completion stage of its troublesome 10-year design phase. With a revised design and new management team, NASA is tasked to deliver the station on time at a budget acceptable to both Congress and the White House. For the next three years, NASA is using tried-and-tested Russian hardware as the technical centerpiece of the station. The new station configuration consists of eight pressurized modules in which the crew can live and work; a long metal truss to connect the pieces; a robot arm for exterior jobs; a solar power system; and propelling the facility in space.

  18. NASA Social

    NASA Image and Video Library

    2011-05-18

    Ed Mango, of the NASA Commercial Crew Office, speaks during a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  19. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Tara Ruttley, International Space Station Program Scientist, talks about the benefits of conducting science experiments on ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  20. High Speed A/D DSP Interface for Carrier Doppler Tracking

    NASA Technical Reports Server (NTRS)

    Baggett, Timothy

    1998-01-01

    As on-board satellite systems continue to increase in ability to perform self diagnostic checks, it will become more important for satellites to initiate ground communications contact. Currently, the NASA Space Network requires users to pre-arranged times for satellite communications links through the Tracking and Data Relay Satellite (TDRS). One of the challenges in implementing an on-demand access protocol into the Space Network, is the fact that a low Earth orbiting (LEO) satellite's communications will be subject to a doppler shift which is outside the capability of the NASA ground station to lock onto. In a prearranged system, the satellite's doppler is known a priori, and the ground station is able to lock onto the satellite's signal. This paper describes the development of a high speed analog to digital interface into a Digital Signal Processor (DSP). This system will be used for identifying the doppler shift of a LEO satellite through the Space Network, and aiding the ground station equipment in locking onto the signal. Although this interface is specific to one application, it can be used as a basis for interfacing other devices with a DSP.

  1. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  2. Use of Scented Sugar Bait Stations to Track Mosquito-Borne Arbovirus Transmission in California

    PubMed Central

    LOTHROP, HUGH D.; WHEELER, SARAH S.; FANG, YING; REISEN, WILLIAM K.

    2012-01-01

    Laboratory and field research was conducted to determine if Culex tarsalis Coquillett expectorated West Nile virus (WNV) during sugar feeding and if a lure or bait station could be developed to exploit this behavior for WNV surveillance. Experimentally infected Cx. tarsalis repeatedly expectorated WNV onto filter paper strips and into vials with wicks containing sucrose that was readily detectable by a quantitative reverse transcriptase-polymerase chain reaction assay. Few females (33%, n = 27) became infected by imbibing sugar solutions spiked with high concentrations (107 plaque forming units/ml) of WNV, indicating sugar feeding stations probably would not be a source of WNV infection. In nature, sugar bait stations scented with the floral attractant phenyl acetaldehyde tracked WNV transmission activity in desert but not urban or agricultural landscapes in California. When deployed in areas of the Coachella Valley with WNV activity during the summer of 2011, 27 of 400 weekly sugar samples (6.8%) tested positive for WNV RNA by reverse transcriptase-polymerase chain reaction. Prevalence of positives varied spatially, but positive sugar stations were detected before concurrent surveillance measures of infection (mosquito pools) or transmission (sentinel chicken seroconversions). In contrast, sugar bait stations deployed in urban settings in Los Angeles or agricultural habits near Bakersfield in Kern County supporting WNV activity produced 1 of 90 and 0 of 60 positive weekly sugar samples, respectively. These results with sugar bait stations will require additional research to enhance bait attractancy and to understand the relationship between positive sugar stations and standard metrics of arbovirus surveillance. PMID:23270177

  3. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  4. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  5. In-Space Networking on NASA's SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.

    2016-01-01

    The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.

  6. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA's Administrator, Charles Bolden, conducts an experiment using circuits at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  7. NASA Social

    NASA Image and Video Library

    2012-05-19

    A NASA Social follower holds up a mobile device as NASA Administrator Charles Bolden, left, and Kennedy Space Center director Robert Cabana appear at the NASA Social event, Friday morning, May 19, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  8. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  9. Determining nest predators of the Least Bell's Vireo through point counts, tracking stations, and video photography

    USGS Publications Warehouse

    Peterson, Bonnie L.; Kus, Barbara E.; Deutschman, Douglas H.

    2004-01-01

    We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.

  10. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Expedition 33/34 astronauts onboard the International Space Station answer questions in a live downlink at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Seen from left to right are NASA astronauts Tom Marshburn, Kevin Ford and Canadian Space Agency (CSA) astronaut Chris Hadfield. Photo Credit: (NASA/Carla Cioffi)

  11. Space Station

    NASA Image and Video Library

    1985-12-01

    Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.

  12. Three-Station Three-dimensional Bolus-Chase MR Angiography with Real-time Fluoroscopic Tracking

    PubMed Central

    Johnson, Casey P.; Weavers, Paul T.; Borisch, Eric A.; Grimm, Roger C.; Hulshizer, Thomas C.; LaPlante, Christine C.; Rossman, Phillip J.; Glockner, James F.; Young, Phillip M.

    2014-01-01

    Purpose To determine the feasibility of using real-time fluoroscopic tracking for bolus-chase magnetic resonance (MR) angiography of peripheral vasculature to image three stations from the aortoiliac bifurcation to the pedal arteries. Materials and Methods This prospective study was institutional review board approved and HIPAA compliant. Eight healthy volunteers (three men; mean age, 48 years; age range, 30–81 years) and 13 patients suspected of having peripheral arterial disease (five men; mean age, 67 years; age range, 47–81 years) were enrolled and provided informed consent. All subjects were imaged with the fluoroscopic tracking MR angiographic protocol. Ten patients also underwent a clinical computed tomographic (CT) angiographic runoff examination. Two readers scored the MR angiographic studies for vessel signal intensity and sharpness and presence of confounding artifacts and venous contamination at 35 arterial segments. Mean aggregate scores were assessed. The paired MR angiographic and CT angiographic studies also were scored for visualization of disease, reader confidence, and overall diagnostic quality and were compared by using a Wilcoxon signed rank test. Results Real-time fluoroscopic tracking performed well technically in all studies. Vessel segments were scored good to excellent in all but the following categories: For vessel signal intensity and sharpness, the abdominal aorta, iliac arteries, distal plantar arteries, and plantar arch were scored as fair to good; and for presence of confounding artifacts, the abdominal aorta and iliac arteries were scored as fair. The MR angiograms and CT angiograms did not differ significantly in any scoring category (reader 1: P = .50, .39, and .39; reader 2: P = .41, .61, and .33, respectively). CT scores were substantially better in 20% (four of 20) and 25% (five of 20) of the pooled evaluations for the visualization of disease and overall image quality categories, respectively, versus 5% (one of 20) for MR

  13. Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question

    NASA Image and Video Library

    2003-07-15

    Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question.

  14. NASA Social

    NASA Image and Video Library

    2012-05-19

    NASA Administrator Charles Bolden, left, and Kennedy Space Center director Robert Cabana appear at the NASA Social event, Friday morning, May 19, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  15. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba speaks at a behind-the-scenes NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  16. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a behind-the-scenes NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  17. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba, center, greets participants at a behind-the-scenes NASA Social in Washington, Tuesday, Dec. 4, 2012 at NASA Headquarters. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  18. The management approach to the NASA space station definition studies at the Manned Spacecraft Center

    NASA Technical Reports Server (NTRS)

    Heberlig, J. C.

    1972-01-01

    The overall management approach to the NASA Phase B definition studies for space stations, which were initiated in September 1969 and completed in July 1972, is reviewed with particular emphasis placed on the management approach used by the Manned Spacecraft Center. The internal working organizations of the Manned Spacecraft Center and its prime contractor, North American Rockwell, are delineated along with the interfacing techniques used for the joint Government and industry study. Working interfaces with other NASA centers, industry, and Government agencies are briefly highlighted. The controlling documentation for the study (such as guidelines and constraints, bibliography, and key personnel) is reviewed. The historical background and content of the experiment program prepared for use in this Phase B study are outlined and management concepts that may be considered for future programs are proposed.

  19. Fast Track Study

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints.

  20. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    Students listen intently while NASA's Director, Earth Science Division, Mike Freilich, speaks at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  1. Space station needs, attributes, and architectural options: Space station program cost analysis

    NASA Technical Reports Server (NTRS)

    Cowls, R. S.; Goodwin, A. J.

    1983-01-01

    This report documents the principal cost results (Task 3) derived from the Space Station Needs, Attributes, and Architectural Options study conducted for NASA by the McDonnell Douglas Astronautics Company. The determined costs were those of Architectural Options (Task 2) defined to satisfy Mission Requirements (Task 1) developed within the study. A major feature of this part of the study was the consideration of realistic NASA budget constraints on the recommended architecture. Thus, the space station funding requirements were adjusted by altering schedules until they were consistent with current NASA budget trends.

  2. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA's Administrator, Charles Bolden watches as some students conduct an experiment with a balloon at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  3. NASA Social

    NASA Image and Video Library

    2011-05-18

    Gwynne Shotwell, President of SpaceX, speaks during a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  4. NASA Social

    NASA Image and Video Library

    2012-05-18

    Models of various rockets line a table at a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  5. NASA/FAA North Texas Research Station Overview

    NASA Technical Reports Server (NTRS)

    Borchers, Paul F.

    2012-01-01

    NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.

  6. The NASA data systems standardization program - Radio frequency and modulation

    NASA Technical Reports Server (NTRS)

    Martin, W. L.

    1983-01-01

    The modifications being considered by the NASA-ESA Working Group (NEWG) for space-data-systems standardization to maximize the commonality of the NASA and ESA RF and modulation systems linking spaceborne scientific experiments with ground stations are summarized. The first phase of the NEWG project shows that the NASA MK-IVA Deep Space Network and Shuttle Interrogator (SI) systems in place or planned for 1985 are generally compatible with the ESA Network, but that communications involving the Tracking and Data Relay Satellite (TDRS) are incompatible due to its use of spread-spectrum modulation, pseudonoise ranging, multiple-access channels, and Mbit/s data rates. Topics under study for the post-1985 period include low-bit-rate capability for the ESA Network, an optional 8-kHz command subcarrier for the SI, fixing the spacecraft-transponder frequency-multiplication ratios for possible X-band uplinks or X-band nondeep-space downlinks, review of incompatible TDRS features, and development of the 32-GHz band.

  7. Space Station Freedom media handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This handbook explains in lay terms, the work that is going on at the NASA Centers and contractors' plants in designing and developing the Space Station Freedom. It discusses the roles, responsibilities, and tasks required to build the Space Station Freedom's elements, systems, and components. New, required ground facilities are described, organized by NASA Center in order to provide a local angle for the media. Included are information on the historical perspective, international aspects, the utilization of the Space Station Freedom, a look at future possibilities, a description of the program, its management, program phases and milestones, and considerable information on the role of various NASA Centers, contractors and international partners. A list of abbreviations, a four-page glossary, and a list of NASA contacts are contained in the appendices.

  8. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington engages in social media as he listens to astronaut Joe Acaba answer questions, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  9. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  10. Scaled Composites' Doug Shane examines the screen of his ground control station during tests in New Mexico. Shane used this configuration as the ground control station to remotely pilot the Proteus aircraft during a NASA sponsored series of tests.

    NASA Image and Video Library

    2002-03-13

    Scaled Composites' Doug Shane examines the screen of his ground control station during tests in New Mexico. Shane used this configuration as the ground control station to remotely pilot the Proteus aircraft during a NASA sponsored series of tests.

  11. Office of Tracking and Data Acquisition. [deep space network and spacecraft tracking

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Office of Tracking and Data Acquisition (OTDA) and its two worldwide tracking network facilities, the Spaceflight Tracking and Data Network and the Deep Space Network, are described. Other topics discussed include the NASA communications network, the tracking and data relay satellite system, other OTDA tracking activities, and OTDA milestones.

  12. Space station proposed

    NASA Astrophysics Data System (ADS)

    In his State of the Union address on January 25, President Ronald Reagan announced that he was directing the National Aeronautics and Space Administration (NASA) to “develop a permanently manned space station, and to do it within a decade.”Included in the NASA budget proposal sent to Congress the following week was $150 million for the station. This is the first request of many; expected costs will total roughly $8 billion by the early 1990's.

  13. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden speaks to students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA sponsored the Earth Day event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. Photo Credit: (NASA/Aubrey Gemignani)

  14. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington asks astronaut Joe Acaba a question, Tuesday, Dec. 4, 2012, at NASA Headquarters. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  15. NASA Social

    NASA Image and Video Library

    2012-05-18

    Participants with the NASA Social stand together, Friday, May 18, 2012, in front of the Vehicle Assembly Building (VAB) at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  16. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Michael Meyer, lead scientist for NASA's Mars Exploration Program at NASA Headquarters speaks in front of the Hyperwall at a NASA-sponsored Earth Day event at Union Station, Monday April 22, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  17. In Brief: NASA's Phoenix spacecraft lands on Mars

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Kumar, Mohi

    2008-06-01

    After a 9.5-month, 679-million-kilometer flight from Florida, NASA's Phoenix spacecraft made a soft landing in Vastitas Borealis in Mars's northern polar region on 25 May. The lander, whose camera already has returned some spectacular images, is on a 3-month mission to examine the area and dig into the soil of this site-chosen for its likelihood of having frozen water near the surface-and analyze samples. In addition to a robotic arm and robotic arm camera, the lander's instruments include a surface stereo imager; thermal and evolved-gas analyzer; microscopy, electrochemistry, and conductivity analyzer; and a meteorological station that is tracking daily weather and seasonal changes.

  18. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington tweets as he listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  19. Expedition 54 Postflight Presentation at NASA Headquarters

    NASA Image and Video Library

    2018-06-15

    NASA astronaut Mark Vande Hei speaks about his time onboard the International Space Station, Friday, June 15, 2018 at NASA Headquarters in Washington. Vande Hei and astronaut Joe Acaba answered questions from the audience and spoke about their experiences aboard the International Space Station for 168 days as part of Expedition 53 and 54. Photo Credit: (NASA/Joel Kowsky)

  20. KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  1. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, media and guests listen intently to remarks during a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony included these speakers: KSC Director Roy Bridges Jr.; NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  2. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left) , deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  3. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  4. KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Center Director Roy Bridges Jr. speaks to the media and guests gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: NASA's Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  5. A Real Time Differential GPS Tracking System for NASA Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Bauer, Frank (Technical Monitor)

    2000-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

  6. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Holli Riebeek, Education and Public Outreach Lead for NASA/Landsat Mission at NASA's Goddard Spaceflight Center, holds up Landsat maps NASA's Earth Day Science Gallery Exhibit, Monday, April 22, 2013 at Union Station in Washington. The NASA Science Gallery exhibits are being sponsored by NASA in honor of Earth Day. (Photo Credit: NASA/Carla Cioffi)

  7. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Jennifer Brennan, NASA EOSDIS Outreach Lead at NASA's Goddard Spaceflight Center, speaks to participants at a NASA Earth Day sponsored exhibit about satellite earth imagery, Monday, April 22, 2013 at Union Station in Washington. The NASA Science Gallery exhibits are being sponsored by NASA in honor of Earth Day. (Photo Credit: NASA/Carla Cioffi)

  8. NASA Social

    NASA Image and Video Library

    2012-05-18

    NASA Social participants are reflected in the sunglasses of former NASA astronaut Garrett Reisman, now a senior engineer working on astronaut safety and mission assurance for Space Exploration Technologies, or SpaceX, as he speaks with them, Friday, May 18, 2012, at the launch complex where the company's Falcon 9 rocket is set to launch early Friday morning at Cape Canaveral Air Force Station in Cape Canaveral, Fla. Photo Credit: (NASA/Paul E. Alers)

  9. NASA space station automation: AI-based technology review

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  10. Space Station Information System - Concepts and international issues

    NASA Technical Reports Server (NTRS)

    Williams, R. B.; Pruett, David; Hall, Dana L.

    1987-01-01

    The Space Station Information System (SSIS) is outlined in terms of its functions and probable physical facilities. The SSIS includes flight element systems as well as existing and planned institutional systems such as the NASA Communications System, the Tracking and Data Relay Satellite System, and the data and communications networks of the international partners. The SSIS strives to provide both a 'user friendly' environment and a software environment which will allow for software transportability and interoperability across the SSIS. International considerations are discussed as well as project management, software commonality, data communications standards, data security, documentation commonality, transaction management, data flow cross support, and key technologies.

  11. NASA systems autonomy demonstration project: Advanced automation demonstration of Space Station Freedom thermal control system

    NASA Technical Reports Server (NTRS)

    Dominick, Jeffrey; Bull, John; Healey, Kathleen J.

    1990-01-01

    The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.

  12. Expedition 54 Postflight Presentation at NASA Headquarters

    NASA Image and Video Library

    2018-06-15

    NASA astronauts Joe Acaba, left, and Mark Vande Hei, right, speak about their time onboard the International Space Station, Friday, June 15, 2018 at NASA Headquarters in Washington. Acaba and Vande Hei answered questions from the audience and spoke about their experiences aboard the International Space Station for 168 days as part of Expedition 53 and 54. Photo Credit: (NASA/Joel Kowsky)

  13. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Holli Riebeek, Education and Public Outreach Lead for NASA/Landsat Mission at NASA's Goddard Spaceflight Center, is seen speaking to students at NASA's Earth Day Science Gallery Exhibit, Monday, April 22, 2013 at Union Station in Washington. The NASA Science Gallery exhibits are being sponsored by NASA in honor of Earth Day. (Photo Credit: NASA/Carla Cioffi)

  14. High Output Maximum Efficiency Resonator (HOMER) Laser for NASA's Global Ecosystem Dynamics Investigation (GEDI) Lidar Mission

    NASA Technical Reports Server (NTRS)

    Stysley, Paul; Coyle, Barry; Clarke, Greg; Poulios, Demetrios; Kay, Richard

    2015-01-01

    The Global Ecosystems Dynamics Investigation (GEDI) is a planned mission sending a LIDAR instrument to the International Space Station that will employ three NASA laser transmitters. This instrument will produce parallel tracks on the Earth's surface that will provide global 3D vegetation canopy measurements. To meet the mission goals a total of 5 High Output Maximum Efficiency Resonator lasers will to be built (1 ETU + 3 Flight + 1 spare) in-house at NASA-GSFC. This presentation will summarize the HOMER design, the testing the design has completed in the past, and the plans to successfully build the units needed for the GEDI mission.

  15. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 6: Study issues report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload specialists and mission specialists to operate the wide variety of experiments that will be on-board the Freedom Space Station. This simulation Computer System (SCS) study issues report summarizes the analysis and study done as task 1-identify and analyze the CSC study issues- of the SCS study contract.This work was performed over the first three months of the SCS study which began in August of 1988. First issues were identified from all sources. These included the NASA SOW, the TRW proposal, and working groups which focused the experience of NASA and the contractor team performing the study-TRW, Essex, and Grumman. The final list is organized into training related issues, and SCS associated development issues. To begin the analysis of the issues, a list of all the functions for which the SCS could be used was created, i.e., when the computer is turned on, what will it be doing. Analysis was continued by creating an operational functions matrix of SCS users vs. SCS functions to insure all the functions considered were valid, and to aid in identification of users as the analysis progressed. The functions will form the basis for the requirements, which are currently being developed under task 3 of the SCS study.

  16. Space program: Space debris a potential threat to Space Station and shuttle

    NASA Technical Reports Server (NTRS)

    Schwartz, Stephen A.; Beers, Ronald W.; Phillips, Colleen M.; Ramos, Yvette

    1990-01-01

    Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed.

  17. Behavioral Health Support of NASA Astronauts for International Space Station Missions

    NASA Technical Reports Server (NTRS)

    Sipes, Walter

    2000-01-01

    Two areas of focus for optimizing behavioral health and human performance during International Space Station missions are 1) sleep and circadian assessment and 2) behavioral medicine. The Mir experience provided the opportunity to examine the use and potential effectiveness of tools and procedures to support the behavioral health of the crew. The experience of NASA has shown that on-orbit performance can be better maintained if behavioral health, sleep, and circadian issues are effectively monitored and properly addressed. For example, schedules can be tailored based upon fatigue level of crews and other behavioral and cognitive indicators to maximize performance. Previous research and experience with long duration missions has resulted in the development and upgrade of tools used to monitor fatigue, stress, cognitive function, and behavioral health. Self-assessment and objective tools such as the Spaceflight Cognitive Assessment Tool have been developed and refined to effectively address behavioral medicine countermeasures in space.

  18. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    Students listen intently while an exhibitor conducts an experiment at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  19. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    Students listen intently while Astronaut John Mace Grunsfeld speaks at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  20. Space Station Upgrades Continue on This Week @NASA – March 31, 2017

    NASA Image and Video Library

    2017-03-31

    Work continues aboard the International Space Station on upgrades to prepare it for future operational activities. Ground controllers, using the station’s robotic arm, moved the Pressurized Mating Adapter-3 (PMA-3) from the Tranquility module to the station’s Harmony module March 26. PMA-3 will be outfitted with one of two International Docking Adapters to accommodate U.S. commercial spacecraft carrying astronauts on future missions. Four days after the PMA-3 move, NASA’s Shane Kimbrough and Peggy Whitson conducted the second in a series of three planned spacewalks to complete work related to the upgrades. The third spacewalk is planned in April. Also, James Webb Space Telescope Completes Acoustic and Vibration Tests, MAVEN Data Helps Measure Loss of Mars’ Atmosphere, Getting Excited About STEM, and New NASA App for Amazon Fire TV!

  1. The issue is leadership. [Space Station program

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.

    1985-01-01

    Four NASA Phase B centers (NASA-Johnson, NASA-Marshall, NASA-Goddard, and NASA-Lewis) are responsible for construction, assembly, servicing, habitat, and other particular tasks and functions of the Space Station. The project has been joined by the aerospace programs of Canada, Japan, and the European Space Agency, ensuring technological and financial support, and cooperative use by the participants. Some of the future uses of the Space Station include biomedical research and applications; experiments in solar-terrestrial physics and astronomy; building, maintenance, and launching of space instruments and planetary missions; manufacturing and processing of materials that call for the conditions of microgravity and weightlessness; supporting communication operations; and improving earth and atmospheric observations. The political significance of the Space Station as a symbol of leadership and of friendly cooperation is noted.

  2. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    A participant at NASA's Earth Day Science Gallery Exhibit calculates his carbon footprint at the Carbon Footprint Estimator, Monday, April 22, 2013 at Union Station in Washington. The NASA Science Gallery exhibits are being sponsored by NASA in honor of Earth Day. (Photo Credit: NASA/Carla Cioffi)

  3. Performance of the NASA Beacon Receiver for the Alphasat Aldo Paraboni TDP5 Propagation Experiment

    NASA Technical Reports Server (NTRS)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2015-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 gigahertz band. NASA GRC has developed and installed a K/Q-band (20/40 gigahertz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 gigahertz signals broadcast from the Alphasat Aldo Paraboni Technology Demonstration Payload (TDP) no. 5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since June 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 gigahertz beacon signals. The system consists of a 1.2-meter K-band and a 0.6-meter Q-band Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 hertz sampling rate is implemented to characterize scintillation effects, with a 1-hertz measurement bandwidth dynamic range of 45 decibels. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  4. Preliminary Results of the NASA Beacon Receiver for Alphasat Aldo Paraboni TDP5 Propagation Experiment

    NASA Technical Reports Server (NTRS)

    Nessel, James; Morse, Jacquelynne; Zemba, Michael; Riva, Carlo; Luini, Lorenzo

    2014-01-01

    NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have initiated a joint propagation campaign within the framework of the Alphasat propagation experiment to characterize rain attenuation, scintillation, and gaseous absorption effects of the atmosphere in the 40 GHz band. NASA GRC has developed and installed a K/Q-band (20/40 GHz) beacon receiver at the POLIMI campus in Milan, Italy, which receives the 20/40 GHz signals broadcast from the Alphasat Aldo Paraboni TDP#5 beacon payload. The primary goal of these measurements is to develop a physical model to improve predictions of communications systems performance within the Q-band. Herein, we describe the design and preliminary performance of the NASA propagation terminal, which has been installed and operating in Milan since May 2014. The receiver is based upon a validated Fast Fourier Transform (FFT) I/Q digital design approach utilized in other operational NASA propagation terminals, but has been modified to employ power measurement via a frequency estimation technique and to coherently track and measure the amplitude of the 20/40 GHz beacon signals. The system consists of a 1.2-m K-band and a 0.6-m Qband Cassegrain reflector employing synchronous open-loop tracking to track the inclined orbit of the Alphasat satellite. An 8 Hz sampling rate is implemented to characterize scintillation effects, with a 1-Hz measurement bandwidth dynamic range of 45 dB. A weather station with an optical disdrometer is also installed to characterize rain drop size distribution for correlation with physical based models.

  5. NASA: Data on the Web.

    ERIC Educational Resources Information Center

    Galica, Carol

    1997-01-01

    Provides an annotated bibliography of selected NASA Web sites for K-12 math and science teachers: the NASA Lewis Research Center Learning Technologies K-12 Home Page, Spacelink, NASA Quest, Basic Aircraft Design Page, International Space Station, NASA Shuttle Web Site, LIFTOFF to Space Education, Telescopes in Education, and Space Educator's…

  6. Space Station

    NASA Image and Video Library

    1989-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  7. Plum Brook Station Open House - 2016

    NASA Image and Video Library

    2016-06-11

    Astronaut Sunita Williams gives a talk at NASA's Plum Brook Station. In June, NASA Glenn hosted an Open House at Plum Brook Station in Sandusky to celebrate the 75th anniversary of the Center. Thousands of people attended, and some lucky kids got to see awesome experiments and meet astronaut Suni Williams.

  8. [Assessment of the Space Station Program

    NASA Technical Reports Server (NTRS)

    Kerrebrock, Jack L.

    1994-01-01

    This letter report by the National Research Council's (NRC's) Aeronautics and Space Engineering Board addresses comments on NASA's response to the Board's 1993 letter report, NASA's response to technical and management recommendations from previous NRC technical reports on the Space Station, and an assessment of the current International Space Station Alpha (ISSA) program.

  9. Expedition 54 Postflight Presentation at NASA Headquarters

    NASA Image and Video Library

    2018-06-15

    NASA astronauts Joe Acaba, left, and Mark Vande Hei, right, answer questions from the audience after speaking about their time onboard the International Space Station, Friday, June 15, 2018 at NASA Headquarters in Washington. Acaba and Vande Hei answered questions from the audience and spoke about their experiences aboard the International Space Station for 168 days as part of Expedition 53 and 54. Photo Credit: (NASA/Joel Kowsky)

  10. Concept for a commercial space station laboratory

    NASA Technical Reports Server (NTRS)

    Wood, P. W.; Stark, P. M.

    1984-01-01

    The concept of a privately owned and operated fee-for-service laboratory as an element of a civil manned space station, envisioned as the venture of a group of private investors and an experienced laboratory operator to be undertaken with the cooperation of NASA is discussed. This group would acquire, outfit, activate, and operate the labortory on a fee-for-service basis, providing laboratory services to commercial firms, universities, and government agencies, including NASA. This concept was developed to identify, stimulate, and assist potential commercial users of a manned space station. A number of the issues which would be related to the concept, including the terms under which NASA might consider permitting private ownership and operation of a major space station component, the policies with respect to international participation in the construction and use of the space station, the basis for charging users for services received from the space station, and the types of support that NASA might be willing to provide to assist private industry in carrying out such a venture are discussed.

  11. Garver NASA Social

    NASA Image and Video Library

    2011-05-18

    NASA Deputy Administrator Lori Garver, in yellow jacket, stands with participants from the NASA Social underneath the engines of the Saturn V rocket at the Apollo Saturn V visitor center, Thursday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  12. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Izolda Trakhtenberg, Science Educator at NASA Goddard Spaceflight Center, conducts an experiment with students to create a cloud in a bottle, Monday, April 22, 2013 at Union Station in Washington. The NASA Science Gallery exhibits are being sponsored by NASA in honor of Earth Day. (Photo Credit: NASA/Carla Cioffi)

  13. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Todd Toth, Science Educator at NASA Goddard Spaceflight Center, conducts an experiment with students to create a cloud in a bottle, Monday, April 22, 2013 at Union Station in Washington. The NASA Science Gallery exhibits are being sponsored by NASA in honor of Earth Day. (Photo Credit: NASA/Carla Cioffi)

  14. Tracking a Superstorm

    NASA Image and Video Library

    2017-12-08

    Oct. 29, 2012 – A day before landfall, Sandy intensified into a Category 2 superstorm nearly 1,000 miles wide. Credit: NASA's Goddard Space Flight Center and NASA Center for Climate Simulation Video and images courtesy of NASA/GSFC/William Putman -- A NASA computer model simulates the astonishing track and forceful winds of Hurricane Sandy. Hurricane Sandy pummeled the East Coast late in 2012’s Atlantic hurricane season, causing 159 deaths and $70 billion in damages. Days before landfall, forecasts of its trajectory were still being made. Some computer models showed that a trough in the jet stream would kick the monster storm away from land and out to sea. Among the earliest to predict its true course was NASA’s GEOS-5 global atmosphere model. The model works by dividing Earth’s atmosphere into a virtual grid of stacked boxes. A supercomputer then solves mathematical equations inside each box to create a weather forecast predicting Sandy’s structure, path and other traits. The NASA model not only produced an accurate track of Sandy, but also captured fine-scale details of the storm’s changing intensity and winds. Watch the video to see it for yourself. For more information, please visit: gmao.gsfc.nasa.gov/research/atmosphericassim/tracking_hur... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. A comparison and evaluation of satellite derived positions of tracking stations

    NASA Technical Reports Server (NTRS)

    Vincent, S. F.; Strange, W. E.; Marsh, J. G.

    1971-01-01

    A comparison is presented of sets of satellite tracking station coordinate values published in the past few years by a number of investigators, i.e. Goddard Space Flight Center, Smithsonian Astrophysical Observatory, Ohio State University, The Naval Weapons Laboratory, Air Force Cambridge Research Laboratories, and Wallops Island. The comparisons have been made in terms of latitude, longitude and height. The results of the various solutions have been compared directly and also with external standards such as local survey data and gravimetrically derived geoid heights. After taking into account systematic rotations, latitude and longitude agreement on a global basis is generally 15 meters or better, on the North American Datum agreement is generally better than 10 meters. Allowing for scale differences (of the order of 2 ppm) radial agreement is generally of the order of 10 meters.

  16. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Students assemble balloon race cars and Alka-Seltzer film canister rockets to demonstrate Newton's third Law of motion at the NASA Science Gallery at Union Station, Monday, April 22, 2013 in Washington. The NASA Science Gallery exhibits are being sponsored by NASA in honor of Earth Day. (Photo Credit: NASA/Carla Cioffi)

  17. Freedom is an international partnership. [foreign contributions to NASA Space Station project

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard H.

    1990-01-01

    The NASA Space Station Freedom (SSF) project initiated in 1984 is a collaborative one among the U.S., Japan, Canada, and the 10 nations participating in ESA. The SSF partners have over the last six years defined user requirements, decided on the hardware to be manufactured, and constructed a framework for long-term cooperation. SSF will be composed of user elements furnished by the foreign partners and a U.S.-supplied infrastructure encompassing the truss assembly, electrical power system, and crew living quarters. The U.S. will also furnish a lab and a polar-orbit platform; ESA, a second lab and the coorbiting Free-Flying Laboratory, as well as a second polar platform. Japan's Japanese Experiment Module shall include an Exposed Facility and an Experimental Logistics module. Canada will contribute the Mobile Servicing System robotic assembler/maintainer for the whole of SFF.

  18. Expert Water Quality Panel Review of Responses to the NASA Request for Information for the International Space Station On-Board Environmental Monitoring System

    NASA Technical Reports Server (NTRS)

    Fishman, Julianna L.; Mudgett, Paul D.; Packham, Nigel J.; Schultz, John R.; Straub, John E., II

    2005-01-01

    On August 9, 2003, NASA, with the cooperative support of the Vehicle Office of the International Space Station Program, the Advanced Human Support Technology Program, and the Johnson Space Center Habitability and Environmental Factors Office released a Request for Information, or RFI, to identify next-generation environmental monitoring systems that have demonstrated ability or the potential to meet defined requirements for monitoring air and water quality onboard the International Space Station. This report summarizes the review and analysis of the proposed solutions submitted to meet the water quality monitoring requirements. Proposals were to improve upon the functionality of the existing Space Station Total Organic Carbon Analyzer (TOCA) and monitor additional contaminants in water samples. The TOCA is responsible for in-flight measurement of total organic carbon, total inorganic carbon, total carbon, pH, and conductivity in the Space Station potable water supplies. The current TOCA requires hazardous reagents to accomplish the carbon analyses. NASA is using the request for information process to investigate new technologies that may improve upon existing capabilities, as well as reduce or eliminate the need for hazardous reagents. Ideally, a replacement for the TOCA would be deployed in conjunction with the delivery of the Node 3 water recovery system currently scheduled for November 2007.

  19. Science and Supplies Launched to Space Station on This Week @NASA – November 17, 2017

    NASA Image and Video Library

    2017-11-17

    An Orbital ATK Cygnus cargo spacecraft arrived at the International Space Station on Nov. 14, carrying about 7,400 pounds of supplies, and science and research materials. The Cygnus – named after late NASA astronaut Eugene Cernan – was launched two days earlier from our Wallops Flight Facility in Virginia. Cygnus also carried several small satellites designed to conduct technology demonstrations of laser communication, research on the effects of microgravity on bacterial antibiotic resistance, and a variety of other studies. Also, Dream Chaser Free Flight Test, Mars 2020 Supersonic Parachute Test, and New “Gravity Assist” Podcast Debuts!

  20. Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos Flyby. II. Doppler tracking: Formulation of observed and computed values, and noise budget

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamón, T. M.; Molera Calvés, G.; Gurvits, L. I.; Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Dirkx, D.; Rosenblatt, P.

    2018-01-01

    Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims: We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods: We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results: We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.

  1. Bridenstine Sworn In As NASA Administrator

    NASA Image and Video Library

    2018-04-23

    Vice President Mike Pence and NASA Administrator Jim Bridenstine talk with NASA astronauts Andrew Feustel, Scott Tingle, and Ricky Arnold who are onboard the International Space Station, Monday, April 23, 2018 at NASA Headquarters in Washington. Bridenstine was just sworn in by the Vice President as NASA's 13th Administrator. Photo Credit: (NASA/Joel Kowsky)

  2. Bridenstine Sworn In As NASA Administrator

    NASA Image and Video Library

    2018-04-23

    Vice President Mike Pence, and NASA Administrator Jim Bridenstine talk with NASA astronauts Scott Tingle, Andrew Feustel, and Ricky Arnold who are onboard the International Space Station, Monday, April 23, 2018 at NASA Headquarters in Washington. Bridenstine was just sworn in by the Vice President as NASA's 13th Administrator. Photo Credit: (NASA/Bill Ingalls)

  3. Earth Day at Union Station

    NASA Image and Video Library

    2013-04-22

    Dr. Thomas Wagner, NASA Program Scientist for the cryosphere, gives a presentation on observing the Earth's Poles in front of the Hyperwall at at a NASA-sponsored Earth Day event at Union Station, Monday April 22, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  4. Using NASA's Giovanni System to Simulate Time-Series Stations in the Outflow Region of California's Eel River

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Shen, Suhung; Leptoukh, Gregory G.; Lee, Zhongping

    2012-01-01

    Oceanographic time-series stations provide vital data for the monitoring of oceanic processes, particularly those associated with trends over time and interannual variability. There are likely numerous locations where the establishment of a time-series station would be desirable, but for reasons of funding or logistics, such establishment may not be feasible. An alternative to an operational time-series station is monitoring of sites via remote sensing. In this study, the NASA Giovanni data system is employed to simulate the establishment of two time-series stations near the outflow region of California s Eel River, which carries a high sediment load. Previous time-series analysis of this location (Acker et al. 2009) indicated that remotely-sensed chl a exhibits a statistically significant increasing trend during summer (low flow) months, but no apparent trend during winter (high flow) months. Examination of several newly-available ocean data parameters in Giovanni, including 8-day resolution data, demonstrates the differences in ocean parameter trends at the two locations compared to regionally-averaged time-series. The hypothesis that the increased summer chl a values are related to increasing SST is evaluated, and the signature of the Eel River plume is defined with ocean optical parameters.

  5. Vice President Meets with NASA Leadership

    NASA Image and Video Library

    2018-04-23

    NASA Chief Financial Officer, Jeff DeWit, watches the live uplink with the crew of the International Space Station, Monday, April 23, 2018 at NASA Headquarters in Washington. Jim Bridenstine was just sworn in by the Vice President as NASA's 13th Administrator. Photo Credit: (NASA/Aubrey Gemignani)

  6. ISS Asset Tracking Using SAW RFID Technology

    NASA Technical Reports Server (NTRS)

    Schellhase, Amy; Powers, Annie

    2004-01-01

    A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.

  7. Space Station

    NASA Image and Video Library

    1986-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts a configuration with enhanced capabilities. It builds on the horizontal boom and module pattern of the revised baseline. This configuration would feature dual keels, two vertical spines 105-meters long joined by upper and lower booms. The structure carrying the modules would become a transverse boom of a basically rectangular structure. The two new booms, 45-meters in length, would provide extensive accommodations for attached payloads, and would offer a wide field of view. Power would be increased significantly, with the addition if a 50-kW solar dynamic power system.

  8. Bridenstine Sworn In As NASA Administrator

    NASA Image and Video Library

    2018-04-23

    Vice President Mike Pence, and NASA Administrator Jim Bridenstine, right, talk with NASA astronauts Scott Tingle, Andrew Feustel, and Ricky Arnold who are onboard the International Space Station, Monday, April 23, 2018 at NASA Headquarters in Washington. Bridenstine was just sworn in by the Vice President as NASA's 13th Administrator. Photo Credit: (NASA/Bill Ingalls)

  9. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    An attendee of NASA's Earth Day event observes the glow from a bracelet that is part of an exhibit at the event. The Earth Day event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  10. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  11. Proceedings from the Texas Rural Transportation Conference Transportation and Tourism Track : February 21, 2001 : George Bush Presidential Conference Center, College Station, Texas

    DOT National Transportation Integrated Search

    2001-07-01

    This report documents the proceedings from the Transportation and Tourism Track at the Texas Rural Transportation Conference held in College Station, Texas on February 21, 2000. The Conference was : sponsored by the Texas Transportation Institute, th...

  12. Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Woodling, Mark A.

    2000-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

  13. October Spacewalks Aboard the Space Station on This Week @NASA – October 13, 2017

    NASA Image and Video Library

    2017-10-13

    The Oct. 10th spacewalk outside the International Space Station was the second in less than a week by NASA’s Randy Bresnik and Mark Vande Hei – and one of three U.S. spacewalks planned for October. The astronauts lubricated the new latching end effector they installed on the Canadarm2 robotic arm on Oct. 5. They also replaced a faulty camera system and completed several other tasks. Joe Acaba will join Bresnik for the next spacewalk – currently scheduled for Oct. 20. Also, California Wildfires Seen from Space, NASA Pinpoints Cause of Earth’s Record CO2 Levels, Send Your Name to Mars, Celebrating the First Piloted Supersonic Flight, and Potential Asteroid Warning Network Tested!

  14. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Sam Scimemi, Director of NASA's International Space Station Division, speaks during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  15. International Research Results and Accomplishments From the International Space Station

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara M.; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka; hide

    2016-01-01

    In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a collection of summaries of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/issscience) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It reflects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will

  16. NASA's In-Space Manufacturing Project: Development of a Multimaterial, Multiprocess Fabrication Laboratory for the International Space Station

    NASA Technical Reports Server (NTRS)

    Prater, T.; Werkheiser, N.; Bean, Q.; Ledbetter, F.; Soohoo, H.; Wilkerson, M.; Hipp, B.

    2017-01-01

    NASA's long term goal is to send humans to Mars. Over the next two decades, NASA will work with private industry to develop and demonstrate the technologies and capabilities needed to support exploration of the red planet by humans and ensure their safe return to earth. To accomplish this goal, NASA is employing a capability driven approach to its human spaceflight strategy. This approach will develop a suite of evolving capabilities which provide specific functions to solve exploration challenges. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing project, its past and current activities, and how technologies under development will ultimately culminate in a multimaterial, multiprocess fabrication laboratory ('FabLab') to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit may result in a loss of mission in transit to Mars. In order to have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The paper will discuss the phased approach to FabLab development, desired capabilities, and requirements for the hardware. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the FabLab will be tested on ISS, the system is ultimately intended for use in a deep space habitat or transit vehicle.

  17. A Strong State of NASA on This Week @NASA – February 16, 2018

    NASA Image and Video Library

    2018-02-16

    The Fiscal Year 2019 budget and the State of NASA, astronauts at work outside the International Space Station, and the arrival of our next planet-hunting satellite … a few of the stories to tell you about – This Week at NASA!

  18. NASA Technical Management Report (533Q)

    NASA Technical Reports Server (NTRS)

    Klosko, S. M.; Sanchez, B. (Technical Monitor)

    2001-01-01

    The objective of this task is analytical support of the NASA Satellite Laser Ranging (SLR) program in the areas of SLR data analysis, software development, assessment of SLR station performance, development of improved models for atmospheric propagation and interpretation of station calibration techniques, and science coordination and analysis functions for the NASA led Central Bureau of the International Laser Ranging Service (ILRS). The contractor shall in each year of the five year contract: (1) Provide software development and analysis support to the NASA SLR program and the ILRS. Attend and make analysis reports at the monthly meetings of the Central Bureau of the ILRS covering data received during the previous period. Provide support to the Analysis Working Group of the ILRS including special tiger teams that are established to handle unique analysis problems. Support the updating of the SLR Bibliography contained on the ILRS web site; (2) Perform special assessments of SLR station performance from available data to determine unique biases and technical problems at the station; (3) Develop improvements to models of atmospheric propagation and for handling pre- and post-pass calibration data provided by global network stations; (4) Provide review presentation of overall ILRS network data results at one major scientific meeting per year; (5) Contribute to and support the publication of NASA SLR and ILRS reports highlighting the results of SLR analysis activity.

  19. Investigation of Techniques for Simulating Communications and Tracking Subsystems on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Deacetis, Louis A.

    1991-01-01

    The need to reduce the costs of Space Station Freedom has resulted in a major redesign and downsizing of the Station in general, and its Communications and Tracking (C&T) components in particular. Earlier models and simulations of the C&T Space-to-Ground Subsystem (SGS) in particular are no longer valid. There thus exists a general need for updated, high fidelity simulations of C&T subsystems. This project explored simulation techniques and methods that might be used in developing new simulations of C&T subsystems, including the SGS. Three requirements were placed on the simulations to be developed: (1) they run on IBM PC/XT/AT compatible computers; (2) they be written in Ada as much as possible; and (3) since control and monitoring of the C&T subsystems will involve communication via a MIL-STD-1553B serial bus, that the possibility of commanding the simulator and monitoring its sensors via that bus be included in the design of the simulator. The result of the project is a prototype of a simulation of the Assembly/Contingency Transponder of the SGS, written in Ada, which can be controlled from another PC via a MIL-STD-1553B bus.

  20. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden poses for a quick selfie with students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA announced the "Global Selfie" event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. All selfies posted to social media with the hashtag "GlobalSelfie" will be included in a mosaic image of Earth. Photo Credit: (NASA/Aubrey Gemignani)

  1. Bridenstine Sworn In As NASA Administrator

    NASA Image and Video Library

    2018-04-23

    Vice President Mike Pence, left, and NASA Administrator Jim Bridenstine are seen as they talk with NASA astronauts Scott Tingle, Andrew Feustel, and Ricky Arnold who are onboard the International Space Station, Monday, April 23, 2018 at NASA Headquarters in Washington. Bridenstine was just sworn in by the Vice President as NASA's 13th Administrator. Photo Credit: (NASA/Bill Ingalls)

  2. A feasibility assessment of nuclear reactor power system concepts for the NASA Growth Space Station

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Heller, J. A.

    1986-01-01

    A preliminary feasibility assessment of the integration of reactor power system concepts with a projected growth Space Station architecture was conducted to address a variety of installation, operational, disposition and safety issues. A previous NASA sponsored study, which showed the advantages of Space Station - attached concepts, served as the basis for this study. A study methodology was defined and implemented to assess compatible combinations of reactor power installation concepts, disposal destinations, and propulsion methods. Three installation concepts that met a set of integration criteria were characterized from a configuration and operational viewpoint, with end-of-life disposal mass identified. Disposal destinations that met current aerospace nuclear safety criteria were identified and characterized from an operational and energy requirements viewpoint, with delta-V energy requirement as a key parameter. Chemical propulsion methods that met current and near-term application criteria were identified and payload mass and delta-V capabilities were characterized. These capabilities were matched against concept disposal mass and destination delta-V requirements to provide a feasibility of each combination.

  3. Bridenstine Sworn In As NASA Administrator

    NASA Image and Video Library

    2018-04-23

    Jen Rae Wang, NASA Associate Administrator for NASA’s Office of Communications, left, NASA Administrator Jim Bridenstine, and Vice President Mike Pence, talk with NASA astronauts Scott Tingle, Andrew Feustel, and Ricky Arnold who are onboard the International Space Station, Monday, April 23, 2018 at NASA Headquarters in Washington. Bridenstine was just sworn in by the Vice President as NASA's 13th Administrator. Photo Credit: (NASA/Joel Kowsky)

  4. Space station: A step into the future

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1989-01-01

    The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.

  5. Micro Weather Station

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.

    1999-01-01

    Improved in situ meteorological measurements in the troposphere and stratosphere are needed for studies of weather and climate, both as a primary data source and as validation for remote sensing instruments. Following the initial development and successful flight validation of the surface acoustic wave (SAW) hygrometer, the micro weather station program was directed toward the development of an integrated instrument, capable of accurate, in situ profiling of the troposphere, and small enough to fly on a radiosonde balloon for direct comparison with standard radiosondes. On April 23, 1998, working with Frank Schmidlin and Bob Olson of Wallops Island Flight Facility, we flew our instrument in a dual payload experiment, for validation and direct comparison with a Vaisala radiosonde. During that flight, the SAW dewpoint hygrometer measured frostpoint down to -76T at 44,000 feet. Using a laptop computer in radio contact with the balloon, we monitored data in real time, issued the cutdown command, and recovered the payload less than an hour after landing in White Sands Missile Range, 50 miles from the launch site in Hatch, New Mexico. Future flights will extend the intercomparison, and attempt to obtain in situ meteorological profiles from the surface through the tropopause. The SAW hygrometer was successfully deployed on the NASA DC8 as part of NASA's Third Convection and Moisture Experiment (CAMEX-3) during August and September, 1998. This field campaign was devoted to the study of hurricane tracking and intensification using NASA-funded aircraft. In situ humidity data from the SAW hygrometer are currently being analyzed and compared with data from other instruments on the DC8 and ER2 aircraft. Additional information is contained in the original.

  6. NASA Vision

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

  7. How Mars is losing its atmosphere on This Week @NASA – November 6, 2015

    NASA Image and Video Library

    2015-11-06

    New findings by NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission indicate that solar wind is currently stripping away the equivalent of about 1/4 pound of gas every second from the Martian atmosphere. MAVEN tracked a series of dramatic solar storms passing through the Martian atmosphere in March and found the loss was accelerated. This could suggest that violent solar activity in the distant past may have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life, to the cold, arid planet Mars is today. Also, 15 Years on space station, and counting!, Spacewalk for space station maintenance, NASA seeking future astronauts, Commercial Crew access tower progress and First SLS flight engine placed for testing!

  8. Artist concept of the STS-43 Tracking and Data Relay Satellite E (TDRS-E)

    NASA Image and Video Library

    1990-06-22

    Artist concept shows the Tracking and Data Relay Satellite E (TDRS-E) augmenting a sophisticated TDRS system (TDRSS) communications network after deployment during STS-43 from Atlantis, Orbiter Vehicle (OV) 104. TDRS, built by TRW, will be placed in a geosynchronous orbit and after onorbit testing, which requires several weeks, will be designated TDRS-5. The communications satellite will replace TDRS-3 at 174 degrees West longitude. The backbone of NASA's space-to-ground communications, the TDRSs have increased NASA's ability to send and receive data to spacecraft in low-earth orbit to more than 85 percent of the time. Before TDRS, NASA relied solely on a system of ground stations that permitted communications only 15 percent of the time. Increased coverage has allowed onorbit repairs, live television broadcast from space and continuous dialogues between astronaut crews and ground control during critical periods such as Space Shuttle landings.

  9. NASA Earth Observations Track the Gulf Oil Spill

    NASA Technical Reports Server (NTRS)

    Jones, Jason B.; Childs, Lauren

    2010-01-01

    The NASA Applied Sciences Program created the Gulf of Mexico Initiative (GOMI) in 2007 "to enhance the region s ability to recover from the devastating hurricanes of 2005 and to address its coastal management issues going into the future." The GOMI utilizes NASA Earth science assets to address regional priorities defined by the Gulf of Mexico Alliance, a partnership formed by the states of Alabama, Florida, Louisiana, Mississippi, and Texas, along with 13 federal agencies and 4 regional organizations to promote regional collaboration and enhance the ecological and economic health of the Gulf of Mexico. NASA's GOMI is managed by the Applied Science and Technology Project Office at Stennis Space Center and has awarded over $18 million in Gulf of Mexico research since 2008. After the Deepwater Horizon oil spill, GOMI personnel assisted members of the Gulf of Mexico Alliance with obtaining NASA remote sensing data for use in their oil spill response efforts.

  10. Neutral Buoyancy Simulator - Space Station

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.

  11. Geoid undulation computations at laser tracking stations

    NASA Technical Reports Server (NTRS)

    Despotakis, Vasilios K.

    1987-01-01

    Geoid undulation computations were performed at 29 laser stations distributed around the world using a combination of terrestrial gravity data within a cap of radius 2 deg and a potential coefficient set up to 180 deg. The traditional methods of Stokes' and Meissl's modification together with the Molodenskii method and the modified Sjoberg method were applied. Performing numerical tests based on global error assumptions regarding the terrestrial data and the geopotential set it was concluded that the modified Sjoberg method is the most accurate and promising technique for geoid undulation computations. The numerical computations for the geoid undulations using all the four methods resulted in agreement with the ellipsoidal minus orthometric value of the undulations on the order of 60 cm or better for most of the laser stations in the eastern United States, Australia, Japan, Bermuda, and Europe. A systematic discrepancy of about 2 meters for most of the western United States stations was detected and verified by using two relatively independent data sets. For oceanic laser stations in the western Atlantic and Pacific oceans that have no terrestrial data available, the adjusted GEOS-3 and SEASAT altimeter data were used for the computation of the geoid undulation in a collocation method.

  12. The challenge of the US Space Station

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.

    1985-01-01

    The U.S. Space Station program is described. The objectives of the present national space policy are reviewed. International involvement and commercial use of space are the two strategies involved in the development of the Space Station. The Space Station is to be a multifunctional, modular, permanent facility with manned and unmanned platforms. The functions of the Space Station for space research projects, such as material processing and electrophoresis, are examined. The infrastructure required for commercialization of space is analyzed. NASA's space policy aimed at stimulating space commerce is discussed. NASA's plans to reduce the financial, institutional, and technical risks of space research are studied.

  13. Space Station Freedom media handbook

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Work underway at NASA to design and develop Space Station Freedom is described in this handbook. The roles, responsibilities, and tasks at NASA are discussed in order to provide information for the media. Ground facilities are described with a look towards future possibilities and requirements. Historical perspectives, international cooperation, and the responsibilities of specific NASA centers are also examined.

  14. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Astronaut and Expeditions 23 and 24 Flight Engineer, Tracy Caldwell Dyson, speaks at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Caldwell Dyson recently returned from a six-month stay aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  15. Space Station commercial user development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The commercial utilization of the space station is investigated. The interest of nonaerospace firms in the use of the space station is determined. The user requirements are compared to the space station's capabilities and a feasibility analysis of a commercial firm acting as an intermediary between NASA and the private sector to reduce costs is presented.

  16. Classical and modern control strategies for the deployment, reconfiguration, and station-keeping of the National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation

    NASA Astrophysics Data System (ADS)

    Capo-Lugo, Pedro A.

    Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous

  17. Rover Tracks

    NASA Image and Video Library

    1997-07-07

    Tracks made by the Sojourner rover are visible in this image, taken by one of the cameras aboard Sojourner on Sol 3. The tracks represent the rover maneuvering towards the rock dubbed "Barnacle Bill." The rover, having exited the lander via the rear ramp, first traveled towards the right portion of the image, and then moved forward towards the left where Barnacle Bill sits. The fact that the rover was making defined tracks indicates that the soil is made up of particles on a micron scale. http://photojournal.jpl.nasa.gov/catalog/PIA00633

  18. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Astronaut and Expeditions 23 and 24 Flight Engineer, Tracy Caldwell Dyson, far left, speaks at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Caldwell Dyson recently returned from a six-month stay aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  19. Environmental Radiation Measurements on the Mir Space Station. Program 1; Internal Experiment Program

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.

    1998-01-01

    As part of the NASA/Mir Phase 1B Science Program, the ionizing radiation environment inside and outside the Russian Mir's Space Station was monitored using a combination of Thermoluminescent Detectors (TLD) and CR-39 Plastic Nuclear Track Detectors (PNTD). Radiation measurements inside the Mir station were carried out using six Area Passive Dosimeters (APD), four located inside the Mir Base Block and two located inside the Kvant 2 module, during the NASA-2/Mir-21, NASA-3/Mir-22 and NASA-4/Mir-23 missions. The radiation environment under low shielding was measured using an External Dosimeter Array (EDA) mounted on the outer surface of the Kvant 2 module. The external radiation environment and a location inside the Kvant 2 roughly corresponding to the location of the EDA were monitored for 130 days during the NASA- 4/Mir-23 and NASA-5/Mir-24 missions. Dose rates measured by APD TLDs ranged from 271 to 407 microGy/d during the NASA-2/Mir-21 mission, from 265 to 378 microGy/d during the NASA-3/Mir-22 mission, and from 287 to 421 microGy/d during the NASA-4/Mir-23 mission. APD PNTDs have been analyzed and LET spectra have been Cenerated for the five APDs exposed on the NASA-2/Mir-21 mission and for two APD PNTDs exposed on the NASA-3/Mir-22 mission. Dose equivalent rates on the NASA-2/Mir-21 mission ranged from 513 microSv/d in the Kvant 2 module to 710 microSv/d on the floor of the Base Block. Dose as a function of shielding depth in TLDs has been measured in the thin TLD stacks including in the EDA. EDA dose range from 72.5 Gy under 0.0146 g/sq cm to 0.093 Gy under 3.25 g/sq cm of shielding. Readout and analysis of the reaming PNTDs form the NASA-3/Mir-22 mission and PNTDs from the NASA-4/Mir-23 mission (including those from the EDA) is ongoing and will be completed during the final year of this experiment. Dose equivalent rates for the NASA-3/Mir-22 and NASA-4/Mir-23 APDs will then be determined and comparisons will be made with both model calculations and with

  20. The role of tethers on space station

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. (Editor)

    1985-01-01

    The results of research and development that addressed the usefulness of tether applications in space, particularly for space station are described. A well organized and structured effort of considerable magnitude involving NASA, industry and academia have defined the engineering and technological requirements of space tethers and their broad range of economic and operational benefits. The work directed by seven NASA Field Centers is consolidated and structured to cover the general and specific roles of tethers in space as they apply to NASA's planned space station. This is followed by a description of tether systems and operations. A summary of NASA's plans for tether applications in space for years to come is given.

  1. Technology for space station

    NASA Astrophysics Data System (ADS)

    Colladay, R. S.; Carlisle, R. F.

    1984-10-01

    Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.

  2. Keeping Track Every Step of the Way

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Knowledge Sharing Systems, Inc., a producer of intellectual assets management software systems for the federal government, universities, non-profit laboratories, and private companies, constructed and presently manages the NASA Technology Tracking System, also known as TechTracS. Under contract to Langley Research Center, TechTracS identifies and captures all NASA technologies, manages the patent prosecution process, and then tracks their progress en route to commercialization. The system supports all steps involved in various technology transfer activities, and is considered the premier intellectual asset management system used in the federal government today. NASA TechTracS consists of multiple relational databases and web servers, located at each of the 10 field centers, as well as NASA Headquarters. The system is capable of supporting the following functions: planning commercial technologies; commercialization activities; reporting new technologies and inventions; and processing and tracking intellectual property rights, licensing, partnerships, awards, and success stories. NASA TechTracS is critical to the Agency's ongoing mission to commercialize its revolutionary technologies in a variety of sectors within private industry, both aerospace and non- aerospace.

  3. On increasing the spectral efficiency and transmissivity in the data transmission channel on the spacecraft-ground tracking station line

    NASA Astrophysics Data System (ADS)

    Andrianov, M. N.; Kostenko, V. I.; Likhachev, S. F.

    2018-01-01

    The algorithms for achieving a practical increase in the rate of data transmission on the space-craft-ground tracking station line has been considered. This increase is achieved by applying spectral-effective modulation techniques, the technology of orthogonal frequency compression of signals using millimeterrange radio waves. The advantages and disadvantages of each of three algorithms have been revealed. A significant advantage of data transmission in the millimeter range has been indicated.

  4. The space station

    NASA Technical Reports Server (NTRS)

    Munoz, Abraham

    1988-01-01

    Conceived since the beginning of time, living in space is no longer a dream but rather a very near reality. The concept of a Space Station is not a new one, but a redefined one. Many investigations on the kinds of experiments and work assignments the Space Station will need to accommodate have been completed, but NASA specialists are constantly talking with potential users of the Station to learn more about the work they, the users, want to do in space. Present configurations are examined along with possible new ones.

  5. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  6. Space Station redesign option A: Modular buildup concept

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In early 1993, President Clinton mandated that NASA look at lower cost alternatives to Space Station Freedom. He also established an independent advisory committee - the Blue Ribbon Panel - to review the redesign work and evaluate alternatives. Daniel Goldin, NASA Administrator, established a Station Redesign Team that began operating in late March from Crystal City, Virginia. NASA intercenter teams - one each at Marshall Space Flight Center, Johnson Space Center, and Langley Research Center provided engineering and other support. The results of the Option A study done at Marshall Space Flight Center are summarized. Two configurations (A-1 and A-2) are covered. Additional data is provided in the briefing package MSFC SRT-001, Final System Review to SRT-002, Space Station Option A Modular Buildup Concept, Volumes 1-5, Revision B, June 10, 1993. In June 1993, President Clinton decided to proceed with a modular concept consistent with Option A, and asked NASA to provide an Implementation Plan by September. All data from the Option A redesign activity was provided to NASA's Transition Team for use in developing the Implementation Plan.

  7. News Conference Features with Next Space Station Crew

    NASA Image and Video Library

    2017-12-07

    A NASA news conference was held Dec. 7 at Johnson Space Center in Houston with the next crew launching to the International Space Station. NASA astronauts A.J. (Drew) Feustel, Ricky Arnold, and Oleg Artemyev of the Russian space agency Roscosmos will launch to the space station aboard a Soyuz MS-08 spacecraft in March 2018, from the Baikonur Cosmodrome in Kazakhstan.

  8. NASA and Canadian Snowbirds Aircrafts

    NASA Image and Video Library

    2018-05-09

    Several types of aircraft are on the tarmac at the Shuttle Landing Facility (SLF) at NASA's Kennedy Space in Florida. From left, are two Canadian Forces Snowbird CF-18 jets, a NASA Huey helicopter, and two NASA T-38 trainer aircraft. The Canadian Forces Snowbirds performed aerial maneuvers over Kennedy and Cape Canaveral Air Force Station during a practice flight on May 9, 2018, between their scheduled air shows.

  9. Final Tier 2 Environmental Impact Statement for International Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Final Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA!s participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.

  10. The ESA-NASA 'CHOICE' Study: Winterover at Concordia Station, Interior Antarctica, as an Analog for Spaceflight-Associated Immune Dysregu1ation

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E,; Feuerecker, M.; Salam, A. P.; Rybka, A.; Stowe, R. P.; Morrels, M.; Mehta, S. K.; Quiriarte, H.; Quintens, Roel; Thieme, U.; hide

    2011-01-01

    For ground-based space physiological research, the choice of analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assess innate and adaptive immunity, viral reactivataion and stress factors during Concordia winter-over deployment. To date, not all samples have been analyzed. Here, only data will be preliminary presented for those parameters where sample/data analysis is completed (i.e., Leukocyte subsets, T cell function, and intracellular/secreted cytokine profiles.)

  11. A customer-friendly Space Station

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1984-01-01

    This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.

  12. Space Station transition through Spacelab

    NASA Technical Reports Server (NTRS)

    Craft, Harry G., Jr.; Wicks, Thomas G.

    1990-01-01

    It is appropriate that NASA's Office of Space Science and Application's science management structures and processes that have proven successful on Spacelab be applied and extrapolated to Space Station utilization, wherever practical. Spacelab has many similarities and complementary aspects to Space Station Freedom. An understanding of the similarities and differences between Spacelab and Space Station is necessary in order to understand how to transition from Spacelab to Space Station. These relationships are discussed herein as well as issues which must be dealt with and approaches for transition and evolution from Spacelab to Space Station.

  13. JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    JPL Researcher Bruce Chapman at an AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  14. The National Aeronautics and Space Administration (NASA) Tracking and Data Relay Satellite System (TDRSS) program Economic and programmatic, considerations

    NASA Technical Reports Server (NTRS)

    Aller, R. O.

    1985-01-01

    The Tracking and Data Relay Satellite System (TDRSS) represents the principal element of a new space-based tracking and communication network which will support NASA spaceflight missions in low earth orbit. In its complete configuration, the TDRSS network will include a space segment consisting of three highly specialized communication satellites in geosynchronous orbit, a ground segment consisting of an earth terminal, and associated data handling and control facilities. The TDRSS network has the objective to provide communication and data relay services between the earth-orbiting spacecraft and their ground-based mission control and data handling centers. The first TDRSS spacecraft has been now in service for two years. The present paper is concerned with the TDRSS experience from the perspective of the various programmatic and economic considerations which relate to the program.

  15. NASA Glenn Research Center's Materials International Space Station Experiments (MISSE 1-7)

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce a.; Dever, Joyce A.; Jaworske, Donald A.; Miller, Sharon K.; Sechkar, Edward A.; Panko, Scott R.

    2008-01-01

    NASA Glenn Research Center (Glenn) has 39 individual materials flight experiments (>540 samples) flown as part of the Materials International Space Station Experiment (MISSE) to address long duration environmental durability of spacecraft materials in low Earth orbit (LEO). MISSE is a series of materials flight experiments consisting of trays, called Passive Experiment Carriers (PECs) that are exposed to the space environment on the exterior of the International Space Station (ISS). MISSE 1-5 have been successfully flown and retrieved and were exposed to the space environment from one to four years. MISSE 6A & 6B were deployed during the STS-123 shuttle mission in March 2008, and MISSE 7A & 7B are being prepared for launch in 2009. The Glenn MISSE experiments address atomic oxygen (AO) effects such as erosion and undercutting of polymers, AO scattering, stress effects on AO erosion, and in-situ AO fluence monitoring. Experiments also address solar radiation effects such as radiation induced polymer shrinkage, stress effects on radiation degradation of polymers, and radiation degradation of indium tin oxide (ITO) coatings and spacesuit fabrics. Additional experiments address combined AO and solar radiation effects on thermal control films, paints and cermet coatings. Experiments with Orion Crew Exploration Vehicle (CEV) seals and UltraFlex solar array materials are also being flown. Several experiments were designed to provide ground-facility to in-space calibration data thus enabling more accurate in-space performance predictions based on ground-laboratory testing. This paper provides an overview of Glenn s MISSE 1-7 flight experiments along with a summary of results from Glenn s MISSE 1 & 2 experiments.

  16. A Space Based Internet Protocol System for Sub-Orbital Tracking and Control

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket Program. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. The fifteen types of sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Launch activities are conducted not only from established missile ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets which also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GPS receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating requirement for tracking radar. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem, and a

  17. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Sam Scimemi, Director of NASA's International Space Station Division, left, Phil McAlister, Director of NASA's Commercial Spaceflight Division, second from left, Dan Dumbacher, Deputy Associate Administrator of NASA's Exploration Systems Development, center, Michele Gates, Senior Technical Advisor of NASA's Human Exploration and Operations Mission Directorate, second from right, and Jason Crusan, Director of NASA's Advanced Exploration Systems Division, right, sit on a panel during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  18. NASA space station automation: AI-based technology review. Executive summary

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.

  19. House cuts science to restore Space Station

    NASA Astrophysics Data System (ADS)

    The House voted 240 to 173 to fully fund Space Station Freedom at $1.9 billion next year, overriding the House appropriations subcommittee, which eliminated the funding for the station last month. The unexpected action on June 6, taken after a day of heated debate, froze all other programs of the National Aeronautics and Space Administration at this year's levels, confirming the recent suspicion that the rest of the agency would suffer if the space station were funded. The House also took an additional $217 million from public housing subsidies and added it to the station. The National Science Foundation's budget request, funded by the same bill as NASA is, was not affected.NASA administrator Richard H. Truly called the vote “a big victory for all America.” He added, however, that “much work remains to be done to provide a final FY 1992 budget for NASA that is well balanced between science, manned space flight and exploration, aeronautical research, Earth observation, and technology development.”

  20. 1. STATION "50" AREA OVERVIEW, BUILDING 0512 AT FAR LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. STATION "50" AREA OVERVIEW, BUILDING 0512 AT FAR LEFT, AND PADS FOR SHOP AND STORAGE BUILDINGS IN CENTER. Looking northeast. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA

  1. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  2. NASA Ames 2016 Highlights

    NASA Image and Video Library

    2016-12-28

    2016 presented the opportunity for NASA's Ames Research Center to meet its challenges and opportunities head on. Projects ranged from testing the next generation of air traffic control software to studying the stars of our galaxy. From developing life science experiments that flew aboard the International Space Station to helping protect our planet through airborne Earth observation campaigns. NASA's missions and programs are challenging and the people at NASA Ames Research Center continue to reach new heights and reveal the unknown for the benefit of all humankind!

  3. Space tracking and data systems; Proceedings of the Symposium, Arlington, VA, June 16-18, 1981

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor); Hamdan, L. A.

    1981-01-01

    The AIAA/NASA Symposium on Space Tracking and Data Systems, held in Pentagon City, Virginia, on June 16-18, 1981, had the purpose of reviewing international activities in space tracking and data systems for civil use in the 1980-2000 time frame. Participants included 225 representatives from industrial and government organizations in eight nations. The nations represented include the United States, France, Germany, India, Japan, Norway, Spain, and Sweden. The major functions of the systems described at the Symposium are related to the initial downlink of telemetry and spacecraft status data, attendant tracking activities, and uplink of spacecraft commands; communication between the associated acquisition sites and central processing and control stations; formulation and implementation of commands that control the spacecraft and its payload; and processing of spacecraft data needed to make command decisions. Attention is given to an overview of current activities and plans, and supporting developments, taking into account the time from 1980 to 1990. New developments are also considered.

  4. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified standards...

  5. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified standards...

  6. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  7. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    NASA Technical Reports Server (NTRS)

    Borden, C. S.; Schwartz, D. L.

    1984-01-01

    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

  8. Dust Devil Tracks

    NASA Image and Video Library

    2017-03-06

    This image captured by NASA 2001 Mars Odyssey spacecraft shows dust devil tracks in Aonia Terra. As the dust devil moves along the surface it scours the dust and fine materials away, revealing the darker rocky surface below the dust. Orbit Number: 66962 Latitude: -68.8221 Longitude: 241.346 Instrument: VIS Captured: 2017-01-17 13:13 http://photojournal.jpl.nasa.gov/catalog/PIA21501

  9. Detecting swift fox: Smoked-plate scent stations versus spotlighting

    Treesearch

    Daniel W. Uresk; Kieth E. Severson; Jody Javersak

    2003-01-01

    We compared two methods of detecting presence of swift fox: smoked-plate scent stations and spotlight counts. Tracks were counted on ten 1-mile (1.6-km) transects with bait/tracking plate stations every 0.1 mile (0.16 km). Vehicle spotlight counts were conducted on the same transects. Methods were compared with Spearman's rank order correlation. Repeated measures...

  10. Advancing automation and robotics technology for the space station and for the US economy

    NASA Technical Reports Server (NTRS)

    Nunamaker, Robert

    1988-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.

  11. Advancing automation and robotics technology for the space station and for the US economy

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the second in a series of progress updates and covers the period between October 4, 1985, and March 31, l986. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Program and serve as a highly visible stimulator effecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.

  12. Our NASA is strong on This Week @NASA – February 12, 2016

    NASA Image and Video Library

    2016-02-12

    During his Feb. 9 State of NASA speech at Langley Research Center in Hampton, Va, Administrator Charles Bolden characterized President Obama’s $19 billion Fiscal Year 2017 budget proposal for NASA as a vote of confidence and an indication of the agency’s strength. Bolden noted that the investments in the FY2017 budget proposal will empower NASA to continue to work with partners both in and out of government to develop the technologies that drive exploration – to build an even stronger future in which NASA continues reaching for new heights for the benefit of all humankind. Also, Space station one-year crew update, Increased land water slows sea level rise, Gravitational waves detected, and more!

  13. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  14. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  15. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Sam Scimemi, Director of NASA's International Space Station Division, second from left, Phil McAlister, Director of NASA's Commercial Spaceflight Division, third from left, Dan Dumbacher, Deputy Associate Administrator of NASA's Exploration Systems Development, center, Michele Gates, Senior Technical Advisor of NASA's Human Exploration and Operations Mission Directorate, second from right, and Jason Crusan, Director of NASA's Advanced Exploration Systems Division, right, sit on a panel during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  16. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    NASA Technical Reports Server (NTRS)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  17. Pettit prepares for a NASA EPO Activity in the JPM

    NASA Image and Video Library

    2012-02-14

    ISS030-E-074053 (14 Feb. 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, prepares for a NASA Education Payload Operations (EPO) activity in the Kibo laboratory of the International Space Station. Pettit is working with a soft Earth ball and an eraser tied to dental floss to demonstrate the space station orbiting Earth.

  18. Pettit prepares for a NASA EPO Activity in the JPM

    NASA Image and Video Library

    2012-02-14

    ISS030-E-074051 (14 Feb. 2012) --- NASA astronaut Don Pettit, Expedition 30 flight engineer, prepares for a NASA Education Payload Operations (EPO) activity in the Kibo laboratory of the International Space Station. Pettit is working with a soft Earth ball and an eraser tied to dental floss to demonstrate the space station orbiting Earth.

  19. The ceremonial transfer of Leonardo, the first MPLM, from ASI to NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Participants pose for a photo at the Space Station Processing Facility ceremony transferring the 'Leonardo' Multipurpose Logistics Module (MPLM) from the Italian Space Agency, Agenzia Spaziale Italiana (ASI), to NASA. From left, they are astronaut Jim Voss, European Space Agency astronauts Umberto Guidoni of Italy and Christer Fuglesang of Sweden, NASA International Space Station Program Manager Randy Brinkley, NASA Administrator Daniel S. Goldin, ASI President Sergio De Julio and Stephen Francois, director, International Space Station Launch Site Support at KSC. The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-100, targeted for April 2000.

  20. Draft Tier 2 Environmental Impact Statement for International Space Station

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Draft Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA's participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop a human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.

  1. The influence of subway station design on noise levels.

    PubMed

    Shah, Ravi R; Suen, Jonathan J; Cellum, Ilana P; Spitzer, Jaclyn B; Lalwani, Anil K

    2017-05-01

    To investigate the impact of subway station design on platform noise levels. Observational. Continuous A-weighted decibel (dBA) sound levels were recorded in 20 New York City subway stations, where trains entered on either a straight track or curved track in 10 stations each. Equivalent continuous noise levels (L eq ) at various locations on the boarding platform (inbound end, midplatform, and outbound end) during train entry and exit were compared between the straight and curved stations in broadband as well as narrow one-third octave bands. Overall, curved stations trended louder than straight stations, although the difference in broadband L eq did not reach statistical significance (curve, 83.4 dBA; straight, 82.6 dBA; P = .054). Noise levels were significantly louder at the inbound end of the platform during train entry (inbound, 89.7 dBA; mid, 85.5 dBA; outbound, 78.7 dBA; P < .001) and at the outbound end during train exit (inbound, 79.7 dBA; mid, 85.3 dBA; outbound, 89.1 dBA; P < .001). Narrow band analysis showed that curved stations were significantly louder than straight stations at 100 Hz and high frequencies from 8 to 20 kHz. Peak impact levels ranged from 104 to 121 dBA. Curved stations have a different noise profile compared to straight stations and are significantly louder than straight stations at high frequencies. Designing stations with straight tracks within the platform can help reduce commuter noise exposure. NA Laryngoscope, 127:1169-1174, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  2. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with the ACTS satellite. The ACTS experiment's program proposed to validate Ka-band satellite and ground station technology. demonstrate future telecommunication services. demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals (Part 1) and the lessons learned throughout their six year operation including the inclined orbit phase of operations (Full Report). An overview of the Ka-band technology and components developed for the ACTS ground stations is presented. Next. the performance of the ground station technology and its evolution during the ACTS campaign are discussed to illustrate the technical tradeoffs made during the program and highlight technical advances by industry to support the ACTS experiments program and terminal operations. Finally. lessons learned during development and operation of the user terminals are discussed for consideration of commercial adoption into future Ka-band systems. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector based offset-fed antenna systems ranging in size from 0.35m to 3.4m antenna diameter. Gateway earth stations included two systems, referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET). The NGS provides tracking, telemetry, and control (TT&C) and Time Division Multiple Access (TDMA) network control functions. The LET supports technology verification and high data rate experiments. The ground

  3. Preparing a health care delivery system for Space Station

    NASA Technical Reports Server (NTRS)

    Logan, J. S.; Stewart, G. R.

    1985-01-01

    NASA's Space Station is viewed as the beginning of man's permanent presence in space. This paper presents the guidelines being developed by NASA's medical community in preparing a quality, permanent health care delivery system for Space Station. The guidelines will be driven by unique Space Station requirements such as mission duration, crew size, orbit altitude and inclination, EVA frequency and rescue capability. The approach will emphasize developing a health care system that is modular and flexible. It will also incorporate NASA's requirements for growth capability, commonality, maintainability, and advanced technology development. Goals include preventing unnecessary rescue attempts, as well as maintaining the health and safety of the crew. Proper planning will determine the levels of prevention, diagnosis, and treatment necessary to achieve these goals.

  4. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  5. Stennis hosts NASA Night in Oxford

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A young visitor to the Powerhouse Community Arts and Cultural Center in Oxford, Miss., enjoys a balloon rocket transportation activity during a NASA Night in the Neighborhood on March 29. NASA's John C. Stennis Space Center near Bay St. Louis visited the center with a variety of space-related displays and educational activities. Events targeted for children included moon phasers and build-your-own rocket transportation exercises, as well as an astronaut ice cream tasting station. Visitors also were able to take photos in the astronaut suit display. Displays focused on the 40th anniversaries of the Apollo 11 and Apollo 13 lunar missions, the International Space Station, and various aspects of Stennis work. The event was sponsored by the NASA Office of External Affairs and Education at Stennis.

  6. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    NASA Deputy Administrator Lori Garver views the inside of a full scale mockup of Bigelow Aerospace's Space Station Alpha during a tour of the Bigelow Aerospace facilities by the company's President Robert Bigelow on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  7. JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    JPL Researcher Tim Miller at the primary AirSAR station aboard NASA's DC-8 flying laboratory during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  8. NASA Satellite Tracks Severity of African Drought

    NASA Image and Video Library

    2011-07-28

    Surface relative humidity anomalies in percent, during July 2011 compared to the average surface relative humidity over the previous eight years, as measured by NASA Aqua instrument AIRS. The driest areas are shown in oranges and reds.

  9. NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Altunc, Serhat; Wong, Yen; Shelton, Marta; Celeste, Peter; Anderson, Michael; Perrotto, Trish

    2017-01-01

    The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats.The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration/ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is

  10. NASA MISR Tracks Massive Flooding in Pakistan

    NASA Image and Video Library

    2010-08-18

    In late July 2010, flooding caused by heavy monsoon rains began in several regions of Pakistan, including the Khyber Pakhtunkhwa, Sindh, Punjab and parts of Baluchistan. This image was acquired by NASA Terra spacecraft on August 11, 2010.

  11. Space station automation study. Volume 1: Executive summary. Autonomous systems and assembly

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The space station automation study (SSAS) was to develop informed technical guidance for NASA personnel in the use of autonomy and autonomous systems to implement space station functions. The initial step taken by NASA in organizing the SSAS was to form and convene a panel of recognized expert technologists in automation, space sciences and aerospace engineering to produce a space station automation plan.

  12. Comparisons of the NASA ER-2 meteorological measurement system with radar tracking and radiosonde data

    NASA Technical Reports Server (NTRS)

    Gaines, Steven E.; Bowen, Stuart W.; Hipskind, R. S.; Bui, T. P.; Chan, K. R.

    1992-01-01

    Measurements of aircraft longitude, latitude, and velocity, and measurements of atmospheric pressure, temperature, and horizontal wind from the meteorological measurement system (MMS) on board the NASA ER-2 aircraft were compared with independent measurements of these quantities from radiosondes and radar tracking of both the ER-2 and radiosonde balloons. In general, the comparisons were good and within the expected measurement accuracy and natural variability of the meteorological parameters. Radar tracking of the ER-2 resolved the velocity and position drift of the inertial navigation system (INS). The rms errors in the horizontal velocity components of the ER-2, due to INS errors, were found to be 0.5 m/s. The magnitude of the drift in longitude and latitude depends on the sign and magnitude of the corresponding component velocity drift and can be a few hundredths of a degree. The radar altitudes of the ER-2 and radiosondes were used as the basis for comparing measurements of atmospheric pressure, temperature, and horizontal wind from these two platforms. The uncertainty in the MMS horizontal wind measurement is estimated to be +/- 2.5 m/s. The accuracy of the MMS pressure and temperature measurements were inferred to be +/- 0.3 hPa and +/- 0.3 K.

  13. Mars Weather-Station Tools on Rover Mast

    NASA Image and Video Library

    2015-04-13

    The Rover Environmental Monitoring Station (REMS) on NASA's Curiosity Mars rover includes temperature and humidity sensors mounted on the rover's mast. One of the REMS booms extends to the left from the mast in this view. Spain provided REMS to NASA's Mars Science Laboratory Project. The monitoring station has provided information about air pressure, relative humidity, air temperature, ground temperature, wind and ultraviolet radiation in all Martian seasons and at all times of day or night. This view is a detail from a January 2015 Curiosity self-portrait. The self-portrait, at PIA19142, was assembled from images taken by Curiosity's Mars Hand Lens Imager. http://photojournal.jpl.nasa.gov/catalog/PIA19164

  14. NASA Information Summaries.

    ERIC Educational Resources Information Center

    Mar, May 1987, 1988

    1988-01-01

    This document consists of 11 "NASA Information Summaries" grouped together: (1) "Our Planets at a Glance" (PMS-010); (2) "Space Shuttle Mission Summary: 1985-1986" (PMS-005); (3) "Astronaut Selection and Training" (PMS-019); (4) "Space Station" (PMS-008); (5) "Materials Processing in…

  15. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  16. Historics of the Space Tracking And Data Acquisition Network (STADAN), the Manned Space Flight Network (MSFN), and the NASA Communications Network (NASCOM)

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1974-01-01

    The historical and technical aspects of the major networks which comprise the NASA tracking and data acquisition system are considered in a complete reference work which traces the origin and growth of STADAN, MSFN, and NASCOM up to mid-1971. The roles of these networks in both the Gemini and Apollo programs are discussed, and the separate developmental trends are identified for each network.

  17. Evaluation of Kapton pyrolysis, arc tracking, and flashover on SiO(x)-coated polyimide insulated samples of flat flexible current carriers for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Mundson, Chris

    1993-01-01

    Kapton polyimide wiring insulation was found to be vulnerable to pyrolization, arc tracking, and flashover when momentary short-circuit arcs have occurred on aircraft power systems. Short-circuit arcs between wire pairs can pyrolize the polyimide resulting in a conductive char between conductors that may sustain the arc (arc tracking). Furthermore, the arc tracking may spread (flashover) to other wire pairs within a wire bundle. Polyimide Kapton will also be used as the insulating material for the flexible current carrier (FCC) of Space Station Freedom (SSF). The FCC, with conductors in a planar type geometric layout as opposed to bundles, is known to sustain arc tracking at proposed SSF power levels. Tests were conducted in a vacuum bell jar that was designed to conduct polyimide pyrolysis, arc tracking, and flashover studies on samples of SSF's FCC. Test results will be reported concerning the minimal power level needed to sustain arc tracking and the FCC susceptibility to flashover. Results of the FCC arc tracking tests indicate that only 22 volt amps were necessary to sustain arc tracking (proposed SSF power level is 400 watts). FCC flashover studies indicate that the flashover event is highly unlikely.

  18. Space Station - Government and industry launch joint venture

    NASA Astrophysics Data System (ADS)

    Nichols, R. G.

    1985-04-01

    After the development of the space transportation system over the last decade, the decision to launch a permanently manned space station was announced by President Reagan in his 1984 State of the Union Address. As a result of work performed by the Space Station Task Force created in 1982, NASA was able to present Congress with a plan for achieving the President's objective. The plan envisions a space station which would cost about $8 billion and be operational as early as 1992. The functions of the Space Station would include the servicing of satellites. In addition, the station would serve as a base for the construction of large space structures, and provide facilities for research and development. The Space Station design selected by NASA is the 'Power Tower', a 450-foot-long truss structure which will travel in orbit with its main axis perpendicular to the earth's surface. Attention is given to the living and working quarters for the crew, the location of earth observation equipment and astronomical instruments, and details regarding the employment of the Station.

  19. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office (SSCO). Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. Here, she receives an overview of a robotic console station used to practice satellite servicing activities. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Chris Gunn Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Modernization of the first-generation Intercosmos laser rangefinder at the Zvenigorod experimental satellite-tracking station of the Astronomical Council of the USSR Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Matveev, D. T.; Chepurnov, B. D.

    Test results obtained during 1980-1981 at the Zvenigorod station are presented for the Intercosmos laser rangefinder which was modified in various ways: e.g., optical components of the laser were replaced, and the mechanical Q-switch of the laser resonator was replaced by a phototropic Q-switch. Improved reliability was noted, and the ranging accuracy was increased by 1.5-2 times. It is concluded that the Zvenigorod tests indicate that the first-generation Intercosmos laser rangefinder can be effectively modernized at other Intercosmos tracking stations.

  1. Injury Surveillance Among NASA Astronauts Using the Barell Injury Diagnosis Matrix

    NASA Technical Reports Server (NTRS)

    Murray, J. D.; Laughlin, M. S.; Eudy, D. L.; Wear, M. L.; VanBaalen, M. G.

    2014-01-01

    Astronauts perform physically demanding tasks and risk incurring musculoskeletal injuries during both groundbased training and missions. Increased injury rates throughout the history of the U.S. space program have been attributed to numerous factors, including an aging astronaut corps, increased Weightless Environment Training Facility (WETF) and Neutral Buoyancy Laboratory (NBL) training to construct the International Space Station, and improved clinical operations that promote injury prevention and reporting. With NASA program changes through the years (including retirement of the Shuttle program) and an improved training environment (including a new astronaut gym), there is no surveillance program to systematically track injury rates. A limited number of research projects have been conducted over the past 20 years to evaluate musculoskeletal injuries: (1) to evaluate orthopedic injuries from 1987 to 1995, (2) to describe upper extremity injuries, (3) to evaluate EVA spacesuit training related injuries, and (4) to evaluate in-flight musculoskeletal injuries. Nevertheless, there has been no consistently performed comprehensive assessment of musculoskeletal injuries among astronauts. The Barell Injury Diagnosis Matrix was introduced at the 2001 meeting of the International Collaborative Effort (ICE) on Injury Statistics. The Matrix proposes a standardized method of classifying body region by nature of injury. Diagnoses are coded using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) coding system. The purpose of this study is to assess the usefulness and complexity of the Barell Injury Diagnosis Matrix to classify and track musculoskeletal injuries among NASA astronauts.

  2. Another Powerful Spacewalk on This Week @NASA – January 13, 2017

    NASA Image and Video Library

    2017-01-13

    Outside the International Space Station, Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineer Thomas Pesquet of the European Space Agency conducted a spacewalk on Jan. 13, to complete an upgrade that included installing adapter plates and hooking up electrical connections for six new lithium-ion batteries, which were delivered to the station in December. Kimbrough and fellow NASA astronaut Peggy Whitson began the upgrade work during a spacewalk on Jan. 6. Also, NASA at SciTech 2017, Testing How the SLS Deals with Shock, New Earth Science Field Experiments, and NASA Sees Storms Affecting the Western U.S.

  3. A Space Based Internet Protocol System for Launch Vehicle Tracking and Control

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Grant, Charles; Morgan, Dwayne; Streich, Ron; Bauer, Frank (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia are responsible for the overall management of the NASA Sounding Rocket and Scientific Balloon Programs. Payloads are generally in support of NASA's Space Science Enterprise's missions and return a variety of scientific data as well as providing a reasonably economical means of conducting engineering tests for instruments and devices used on satellites and other spacecraft. Sounding rockets used by NASA can carry payloads of various weights to altitudes from 50 km to more than 1,300 km. Scientific balloons can carry a payload weighing as much as 3,630 Kg to an altitude of 42 km. Launch activities for both are conducted not only from established ranges, but also from remote locations worldwide requiring mobile tracking and command equipment to be transported and set up at considerable expense. The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce tracking and control costs of these launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating this ground infrastructure. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initiated from practically any location. A low cost Commercial Off The Shelf (COTS) system is currently under development for sounding rockets that also has application to UAVs and scientific balloons. Due to relatively low data rate (9600 baud) currently available, the system will first be used to provide GPS data for tracking and vehicle recovery. Range safety requirements for launch vehicles usually stipulate at least two independent tracking sources. Most sounding rockets flown by NASA now carry GP receivers that output position data via the payload telemetry system to the ground station. The Flight Modem can be configured as a completely separate link thereby eliminating the requirement for tracking radar. The

  4. Space Station Food System

    NASA Technical Reports Server (NTRS)

    Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.

    1986-01-01

    A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.

  5. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    A section of the International Space Station truss assembly arrived at the Marshall Space Flight Center on NASA's Super Guppy cargo plane for structural and design testing as well as installation of critical flight hardware.

  7. 13. VIEW FROM POTOMAC RIVER BRIDGE PLATFORM WEST TOWARDS STATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW FROM POTOMAC RIVER BRIDGE PLATFORM WEST TOWARDS STATION. HARPERS FERRY DEPOT IS ON LEFT, NORTH TRACK WAITING STATION IS ON RIGHT. - Baltimore & Ohio Railroad, Harpers Ferry Station, Potomac Street, Harpers Ferry, Jefferson County, WV

  8. Ice Station Diagrams

    NASA Image and Video Library

    2017-12-08

    On July 18, 2011, Melinda Webster of University of Washington, calculated distances between sampling locations during the 2011 ICESCAPE mission's eighth sea ice station in the Arctic Ocean. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Expedition 53-54 Crew Safely Onboard the Space Station

    NASA Image and Video Library

    2017-09-13

    After docking their Soyuz MS-06 spacecraft to the Poisk module on the Russian segment of the International Space Station, Expedition 53-54 Soyuz Commander Alexander Misurkin of Roscosmos and flight engineers Mark Vande Hei and Joe Acaba of NASA were greeted by station Commander Randy Bresnik of NASA and flight engineers Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of the European Space Agency, as the hatches between the spacecraft were opened.

  10. Concrete: Potential material for Space Station

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1992-01-01

    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

  11. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office (SSCO). Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. Here, she receives an overview of a robotic console station used to practice satellite servicing activities. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Desiree Stover NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  13. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module (above right) of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  14. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager ; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  15. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  16. KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - At a ceremony highlighting the arrival of two major components of the International Space Station, William Gerstenmaier, International Space Station Program manager, points to one of the components as he speaks to guests and the media gathered in the Space Station Processing Facility. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  17. KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Alan Thirkettle, International Space Station Program manager for Node 2, European Space Agency (ESA), speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by ESA in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  18. KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs, speaks to guests and the media gathered in the Space Station Processing Facility for a ceremony to highlight the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope) arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  19. KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone, deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr.; NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan.

  20. KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

    NASA Image and Video Library

    2003-06-18

    KENNEDY SPACE CENTER, FLA. - Kuniaki Shiraki, JEM Project manager, National Aerospace and Development Agency of Japan, speaks to guests and the media gathered in the Space Station Processing Facility at a ceremony highlighting the arrival of two major components of the International Space Station. NASA's Node 2, built by the European Space Agency (ESA) in Italy, arrived at KSC on June 1. It will be the next pressurized module installed on the Station. The pressurized module of the Japanese Experiment Module (JEM), named "Kibo" (Hope), arrived at KSC on June 4. It is Japan's primary contribution to the Station. The ceremony held today included the official transfer of ownership signing of Node 2 between the ESA and NASA.. Emceed by Lisa Malone (far left), deputy director of External Relations and Business Development at KSC, the ceremony also included these speakers: Center Director Roy Bridges Jr. (second from left); NASA’s Michael C. Kostelnik, deputy associate administrator for International Space Station and Shuttle Programs and William Gerstenmaier, International Space Station Program manager; Alan Thirkettle, International Space Station Program manager for Node 2, ESA; and Andrea Lorenzoni, International Space Station Program manager for Node 2, Italian Space Agency.

  1. Automation of PCXMC and ImPACT for NASA Astronaut Medical Imaging Dose and Risk Tracking

    NASA Technical Reports Server (NTRS)

    Bahadori, Amir; Picco, Charles; Flores-McLaughlin, John; Shavers, Mark; Semones, Edward

    2011-01-01

    To automate astronaut organ and effective dose calculations from occupational X-ray and computed tomography (CT) examinations incorporating PCXMC and ImPACT tools and to estimate the associated lifetime cancer risk per the National Council on Radiation Protection & Measurements (NCRP) using MATLAB(R). Methods: NASA follows guidance from the NCRP on its operational radiation safety program for astronauts. NCRP Report 142 recommends that astronauts be informed of the cancer risks from reported exposures to ionizing radiation from medical imaging. MATLAB(R) code was written to retrieve exam parameters for medical imaging procedures from a NASA database, calculate associated dose and risk, and return results to the database, using the Microsoft .NET Framework. This code interfaces with the PCXMC executable and emulates the ImPACT Excel spreadsheet to calculate organ doses from X-rays and CTs, respectively, eliminating the need to utilize the PCXMC graphical user interface (except for a few special cases) and the ImPACT spreadsheet. Results: Using MATLAB(R) code to interface with PCXMC and replicate ImPACT dose calculation allowed for rapid evaluation of multiple medical imaging exams. The user inputs the exam parameter data into the database and runs the code. Based on the imaging modality and input parameters, the organ doses are calculated. Output files are created for record, and organ doses, effective dose, and cancer risks associated with each exam are written to the database. Annual and post-flight exposure reports, which are used by the flight surgeon to brief the astronaut, are generated from the database. Conclusions: Automating PCXMC and ImPACT for evaluation of NASA astronaut medical imaging radiation procedures allowed for a traceable and rapid method for tracking projected cancer risks associated with over 12,000 exposures. This code will be used to evaluate future medical radiation exposures, and can easily be modified to accommodate changes to the risk

  2. ILRS Station Reporting

    NASA Technical Reports Server (NTRS)

    Noll, Carey E.; Pearlman, Michael Reisman; Torrence, Mark H.

    2013-01-01

    Network stations provided system configuration documentation upon joining the ILRS. This information, found in the various site and system log files available on the ILRS website, is essential to the ILRS analysis centers, combination centers, and general user community. Therefore, it is imperative that the station personnel inform the ILRS community in a timely fashion when changes to the system occur. This poster provides some information about the various documentation that must be maintained. The ILRS network consists of over fifty global sites actively ranging to over sixty satellites as well as five lunar reflectors. Information about these stations are available on the ILRS website (http://ilrs.gsfc.nasa.gov/network/stations/index.html). The ILRS Analysis Centers must have current information about the stations and their system configuration in order to use their data in generation of derived products. However, not all information available on the ILRS website is as up-to-date as necessary for correct analysis of their data.

  3. 47 CFR 25.172 - Requirements for reporting space station control arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... case of a non-U.S.-licensed space station, prior to commencing operation with U.S. earth stations. (1... earth station(s) communicating with the space station from any site in the United States. (3) The location, by city and country, of any telemetry, tracking, and command earth station that communicates with...

  4. NASA and Orbital ATK CRS-7 Prelaunch News Conference

    NASA Image and Video Library

    2017-04-17

    In the NASA Kennedy Space Center's Press Site auditorium, agency and industry leaders brief the media about the upcoming launch of Orbital ATK’s seventh commercial resupply services mission to the International Space Station. Orbital ATK has contracted with United Launch Alliance for its Atlas V rocket for the launch service which will lift off from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Under NASA’s first Commercial Resupply Services contract, more than 7,600 pounds of science research, crew supplies and hardware will be delivered to the orbiting laboratory in support of the crew members. Briefing participants: -George Diller, NASA Communications -Joel Montalbano, Deputy Manager, NASA International Space Station Program -Vern Thorp, Program Manager for Commercial Missions, United Launch Alliance -Frank Culbertson, President, Space Systems Group, Orbital ATK -Tara Ruttley, Associate Program Scientist, JSC -David Craft, Weather Officer, 45th Weather Squadron

  5. Space Station Freedom Utilization Conference: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    From August 3-6, 1992, Space Station Freedom Program (SSFP) representatives and prospective Space Station Freedom researchers gathered at the Von Braun Civic Center in Huntsville, Alabama, for NASA's first annual Space Station Freedom (SSF) Utilization Conference. The sessions presented are: (1) overview and research capabilities; (2) research plans and opportunities; (3) life sciences research; (4) technology research; (4) microgravity research and biotechnology; and (5) closing plenary.

  6. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  7. NORTH SIDE FACING TRACK, SHOWING ELECTRICAL BOX AND CONCRETE VAULT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SIDE FACING TRACK, SHOWING ELECTRICAL BOX AND CONCRETE VAULT - Edwards Air Force Base, South Base Sled Track, Electrical Distribution Station, South side of Sled Track, Lancaster, Los Angeles County, CA

  8. Space Station-Baseline Configuration With Callouts

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  9. NASA astronomical findings highlighted on This Week @NASA – January 8, 2016

    NASA Image and Video Library

    2016-01-08

    New NASA astrophysics findings were highlighted at the 227th American Astronomical Society meeting, Jan. 4-8 in Kissimmee, Florida. The findings, which ranged from runaway stars to a burping galaxy, were made with the help of several NASA observation instruments, including the Spitzer Space Telescope, the Wide-field Infrared Survey Explorer, the Chandra X-ray Observatory, the Nuclear Spectroscopic Telescope Array and others. Also, Next space station crew preparing for mission, Economical new era of aviation, A new level of coral reef studies and more!

  10. Whitson Receives Call from President Trump on This Week @NASA - April 28, 2017

    NASA Image and Video Library

    2017-04-28

    On April 24 aboard the International Space Station, NASA astronaut Peggy Whitson set a new record for cumulative time spent in space by a U.S. astronaut. President Donald Trump marked the milestone with a call from the Oval Office, with First Daughter Ivanka Trump, and NASA astronaut Kate Rubins – to the station, where Whitson was joined by NASA’s Jack Fischer. Whitson, who in 2008 became the first woman to command the space station, also holds the record for most spacewalks by a female astronaut. NASA worked with the Department of Education, on behalf of the White House, to make the president’s call to the station available to schools across America. Whitson encouraged students to think about how the steps they take in the classroom today could someday help NASA make the next giant leap in space exploration. Also, First Live 4K Broadcast from Space, Kate Rubins Visits National Institutes of Health, Cassini Begins its Grand Finale, and 2017 Astrobiology Science Conference!

  11. International Space Station -- Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)

  12. NEIS (NASA Environmental Information System)

    NASA Technical Reports Server (NTRS)

    Cook, Beth

    1995-01-01

    The NASA Environmental Information System (NEIS) is a tool to support the functions of the NASA Operational Environment Team (NOET). The NEIS is designed to provide a central environmental technology resource drawing on all NASA centers' capabilities, and to support program managers who must ultimately deliver hardware compliant with performance specifications and environmental requirements. The NEIS also tracks environmental regulations, usages of materials and processes, and new technology developments. It has proven to be a useful instrument for channeling information throughout the aerospace community, NASA, other federal agencies, educational institutions, and contractors. The associated paper will discuss the dynamic databases within the NEIS, and the usefulness it provides for environmental compliance efforts.

  13. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  14. The minitrack tracking function description, volume 1

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Mango, S. A.; Roettcher, C. A.; Watters, D. L.

    1973-01-01

    The treatment of tracking data by the Minitrack system is described from the transmission of the nominal 136-MHz radio beacon energy from a satellite and the reception of this signal by the interferometer network through the ultimate derivation of the direction cosines (the angular coordinates of the vector from the tracking station to the spacecraft) as a function of time. Descriptions of some of the lesser-known functions operating on the system, such as the computer preprocessing program, are included. A large part of the report is devoted to the preprocessor, which provides for the data compression, smoothing, calibration correction, and ambiguity resolution of the raw interferometer phase tracking measurements teletyped from each of the worldwide Minitrack tracking stations to the central computer facility at Goddard Space Flight Center. An extensive bibliography of Minitrack hardware and theory is presented.

  15. NASA Global GNSS Network (GGN) Status and Plans

    NASA Astrophysics Data System (ADS)

    Doelger, S.; Sklar, J.; Blume, F.; Meertens, C. M.; Mattioli, G. S.

    2015-12-01

    UNAVCO, in conjunction with JPL, is responsible for monitoring the 62 GNSS permanent stations, which include 88 GPS receivers, which comprise the NASA Global GNSS Network (GGN). These sites represent approximately 16% of the ~400 International GNSS Service (IGS) stations, and they provide a globally distributed GNSS network to support NASA operations and its commitments to GGOS. UNAVCO provides data flow monitoring, trouble-shooting, station installation, maintenance, as well as engineering services to improve the capabilities and performance of station infrastructure. Activities this past year include the installation of a geodetic quality wellhead monument for the new SEY2 station to replace SEY1, which is mounted on a UCSD seismic station in the Seychelles Islands. SEY1 will be removed soon to accommodate planned maintenance and upgrades by UCSD. Data from both SEY1 and SEY2 are being collected concurrently until maintenance begins. MRTG (Multi Router Traffic Grapher), a tool to aid in characterizing bandwidth usage and to identify communications problems, is now being used to monitor data throughput at 7 stations where VSAT or radio telemetry are used, including: ABPO; AREQ; FALK; GUAM; HARV; ISPA; QUIN; and STHL. Aging computers are being replaced with new hardware running Linux CentOS. These are semi-ruggedized low power solid-state systems built to endure challenging environments. With the aid of on-site collaborators, systems are now deployed at: FALK; CUSV; KELY; STHL; SANT; and ZAMB. Last, 4 new GPS stations were deployed for NASA's Space Geodesy Project (SGP); three of which (KOKF, KOKG, and KOKR) are located at Koke'e Park Geophysical Observatory on Kauai, Hawai'i, and HAL1 at the Haleakala observatory complex on Maui, Hawai'i. A campaign system was set up at Koke'e in order to sample data quality to determine if an additional station would be viable. Planning is ongoing for deployment of several new stations next year at McDonald Observatory (TX).

  16. 3. NORTH FRONT, BULLET GLASS OBSERVATION WINDOWS FACE SLED TRACK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTH FRONT, BULLET GLASS OBSERVATION WINDOWS FACE SLED TRACK. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA

  17. The extended tracking network and indications of baseline precision and accuracy in the North Andes

    NASA Technical Reports Server (NTRS)

    Freymueller, Jeffrey T.; Kellogg, James N.

    1990-01-01

    The CASA Uno Global Positioning System (GPS) experiment (January-February 1988) included an extended tracking network which covered three continents in addition to the network of scientific interest in Central and South America. The repeatability of long baselines (400-1000 km) in South America is improved by up to a factor of two in the horizontal vector baseline components by using tracking stations in the Pacific and Europe to supplement stations in North America. In every case but one, the differences between the mean solutions obtained using different tracking networks was equal to or smaller than day-to-day rms repeatabilities for the same baselines. The mean solutions obtained by using tracking stations in North America and the Pacific agreed at the 2-3 millimeter level with those using tracking stations in North America and Europe. The agreement of the extended tracking network solutions suggests that a broad distribution of tracking stations provides better geometric constraints on the satellite orbits and that solutions are not sensitive to changes in tracking network configuration when an extended network is use. A comparison of the results from the North Andes and a baseline in North America suggests that the use of a geometrically strong extended tracking network is most important when the network of interest is far from North America.

  18. Satellite tracking of threatened species

    USGS Publications Warehouse

    Williams, M.; Lunsford, A.; Ellis, D.; Robinson, J.; Coronado, P.; Campbell, W.

    1998-01-01

    In 1990, a joint effort of two U.S. federal agencies, NASA Goddard Space Flight Center (GSFC) and the Patuxent Wildlife Research Center, began. We initially joined forces in a project that used satellite telemetry to discover the winter home of a tiny dwindling population of Siberian Cranes. Since then several projects have emerged, and a web site was created to follow some of these activities. This web site is called the Satellite Tracking of Threatened Species and its location is http://sdcd.gsfc.nasa.gov/ISTO/satellite_tracking. It describes the overall program, and links you to three subsections that describe the projects in more detail: Satellite Direct Readout, Birdtracks, and Birdworld.

  19. Nasa Program Plan

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Major facts are given for NASA'S planned FY-1981 through FY-1985 programs in aeronautics, space science, space and terrestrial applications, energy technology, space technology, space transportation systems, space tracking and data systems, and construction of facilities. Competition and cooperation, reimbursable launchings, schedules and milestones, supporting research and technology, mission coverage, and required funding are considered. Tables and graphs summarize new initiatives, significant events, estimates of space shuttle flights, and major missions in astrophysics, planetary exploration, life sciences, environmental and resources observation, and solar terrestrial investigations. The growth in tracking and data systems capabilities is also depicted.

  20. Conceptual design and evaluation of selected Space Station concepts, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space Station configuration concepts are defined to meet the NASA Headquarters Concept Development Group (CDG) requirements. Engineering and programmatic data are produced on these concepts suitable for NASA and industry dissemination. A data base is developed for input to the CDG's evaluation of generic Space Station configurations and for use in the critique of the CDG's generic configuration evaluation process.

  1. Emblem - NASA Skylab (SL) Program

    NASA Image and Video Library

    1973-04-25

    S73-23952 (May 1973) --- This is the official emblem for the National Aeronautics and Space Administration's (NASA) Skylab Program. The emblem depicts the United States Skylab space station cluster in Earth orbit with the sun in the background. Skylab will evaluate systems and techniques designed to gather information on Earth resources and environmental problems. Solar telescopes will increase man's knowledge of our sun and the multitude of solar influences on Earth environment. Medical experiments will increase knowledge of man himself and his relationship to his earthly environment and adaptability to spaceflight. Additionally, Skylab will experiment with industrial processes which may be enhanced by the unique weightless, vacuum environment of orbital spaceflight. The 100-ton laboratory complex Skylab space station is composed of the Command/Service Module (CSM), Orbital Workshop (OW), Apollo Telescope Mount (ATM), Multiple Docking Adapter (MDA), and Airlock Module (AM). The NASA insignia design for Skylab is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced. Photo credit: NASA

  2. Guidelines for developing spacecraft maximum allowable concentrations for Space Station contaminants

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The National Aeronautics and Space Administration (NASA) is preparing to launch a manned space station by the year 1996. Because of concerns about the health, safety, and functioning abilities of the crews, NASA has requested that the National Research Council (NRC) through the Board on Environmental Studies and Toxicology (BEST) provide advice on toxicological matters for the space-station program. The Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants was established by the Committee on Toxicology (COT) to address NASA's concerns. Spacecraft maximum allowable concentrations (SMAC's) are defined as the maximum concentrations of airborne substances (such as gas, vapor, or aerosol) that will not cause adverse health effects, significant discomfort, or degradation in crew performance.

  3. Series of Storms Battering California Tracked by NASA AIRS Instrument

    NASA Image and Video Library

    2017-01-13

    trajectory. A third storm, the coldest of the three events, moved through California on January 11 and 12, producing significant rainfall, as well as snow at higher elevations. The movie ends with another atmospheric river attempting to form on January 11 and 12 to the west of Hawaii, transporting moisture into the storm track. Movies are availalbe at http://photojournal.jpl.nasa.gov/catalog/PIA21209

  4. Monitors Track Vital Signs for Fitness and Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Have you ever felt nauseous reading a book in the back seat of a car? Or woken from a deep sleep feeling disoriented, unsure which way is up? Momentary mixups like these happen when the sensory systems that track the body's orientation in space become confused. (In the case of the backseat bookworm, the conflict arises when the reader s inner ear, part of the body s vestibular system, senses the car s motion while her eyes are fixed on the stationary pages of the book.) Conditions like motion sickness are common on Earth, but they also present a significant challenge to astronauts in space. Human sensory systems use the pull of gravity to help determine orientation. In the microgravity environment onboard the International Space Station, for example, the body experiences a period of confusion before it adapts to the new circumstances. (In space, even the body s proprioceptive system, which tells the brain where the arms and legs are oriented without the need for visual confirmation, goes haywire, meaning astronauts sometimes lose track of where their limbs are when they are not moving them.) This Space Adaptation Syndrome affects a majority of astronauts, even experienced ones, causing everything from mild disorientation to nausea to severe vomiting. "It can be quite debilitating," says William Toscano, a research scientist in NASA s Ames Research Center Psychophysiology Laboratory, part of the Center s Human Systems Integration Division. "When this happens, as you can imagine, work proficiency declines considerably." Since astronauts cannot afford to be distracted or incapacitated during critical missions, NASA has explored various means for preventing and countering motion sickness in space, including a range of drug treatments. Many effective motion sickness drugs, however, cause undesirable side effects, such as drowsiness. Toscano and his NASA colleague, Patricia Cowings, have developed a different approach: Utilizing biofeedback training methods, the pair can

  5. Space-to-Ground: Tracking a Monster: 09/08/2017

    NASA Image and Video Library

    2017-09-07

    Three crew members said farewell to the station...the station had eyes on a monstrous storm...and what kind of weather can you have in space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  6. 14 CFR 1215.112 - User/NASA contractual arrangement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false User/NASA contractual arrangement. 1215.112 Section 1215.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA... User/NASA contractual arrangement. No service shall be provided without an approved agreement. [77 FR...

  7. How to get on board Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bartoe, John-David

    1992-01-01

    Space Station Freedom will accommodate researchers with interests in science, technology and commercial applications. NASA sponsors will be responsible for selecting the U.S. researchers for Space Station Freedom. The four NASA sponsors are: Office of Space Science and Applications (OSSA), Office of Aeronautics and Space Technology (OAST), Office of Commercial Programs (OCP), and the Office of Space Flight (OSF). The areas of research responsibility for each sponsor are presented. The researcher solicitation vehicles used by OSSA and OAST and the methodology for researchers seeking sponsorship from OCP and OSF as well as the pricing policy are discussed. Descriptions of flight planning, payload integration and operations functions are presented. Three categories of payloads and their respective payload integration times are discussed. Researchers are advised to contact a NASA sponsor and a source which lists the points of contact for the NASA sponsors is noted.

  8. Contamination assessment for OSSA space station IOC payloads

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1987-01-01

    An assessment is made of NASA/OSSA space station IOC payloads. The report has two main objectives, i.e., to provide realistic contamination requirements for space station attached payloads, serviced payloads and platforms, and to determine unknowns or major impacts requiring further assessment.

  9. Tracking Electromagnetic Energy With SQUIDs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.

  10. Assessing Wetland Hydroperiod and Soil Moisture with Remote Sensing: A Demonstration for the NASA Plum Brook Station Year 2

    NASA Technical Reports Server (NTRS)

    Brooks, Colin; Bourgeau-Chavez, Laura; Endres, Sarah; Battaglia, Michael; Shuchman, Robert

    2015-01-01

    Assist with the evaluation and measuring of wetlands hydroperiod at the Plum Brook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: (1) Show the relative length of hydroperiod using available remote sensing datasets, (2) Date linked table of wetlands extent over time for all feasible non-forested wetlands, (3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables (4), A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment; and (5) A MTRI style report summarizing year 2 results.

  11. NASA Space Radiation Program Integrative Risk Model Toolkit

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  12. NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.

    2017-01-01

    The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The first NEN supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into low earth orbit (LEO) in early 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configurationease of upgrade, to ensure compatibility with the IRIS radio.In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is

  13. Science@NASA: Direct to People!

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Adams, Mitzi; Gallagher, Dennis; Whitaker, Ann (Technical Monitor)

    2002-01-01

    Science@NASA is a science communication effort sponsored by NASA's Marshall Space Flight Center. It is the result of a four year research project between Marshall, the University of Florida College of Journalism and Communications and the internet communications company, Bishop Web Works. The goals of Science@NASA are to inform, inspire, and involve people in the excitement of NASA science by bringing that science directly to them. We stress not only the reporting of the facts of a particular topic, but also the context and importance of the research. Science@NASA involves several levels of activity from academic communications research to production of content for 6 websites, in an integrated process involving all phases of production. A Science Communications Roundtable Process is in place that includes scientists, managers, writers, editors, and Web technical experts. The close connection between the scientists and the writers/editors assures a high level of scientific accuracy in the finished products. The websites each have unique characters and are aimed at different audience segments: 1. http://science.nasa.gov. (SNG) Carries stories featuring various aspects of NASA science activity. The site carries 2 or 3 new stories each week in written and audio formats for science-attentive adults. 2. http://liftoff.msfc.nasa.gov. Features stories from SNG that are recast for a high school level audience. J-Track and J-Pass applets for tracking satellites are our most popular product. 3. http://kids. msfc.nasa.gov. This is the Nursemaids site and is aimed at a middle school audience. The NASAKids Club is a new feature at the site. 4. http://www.thursdaysclassroom.com . This site features lesson plans and classroom activities for educators centered around one of the science stories carried on SNG. 5. http://www.spaceweather.com. This site gives the status of solar activity and its interactions with the Earth's ionosphere and magnetosphere.

  14. Proceedings of the First NASA Ada Users' Symposium

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Ada has the potential to be a part of the most significant change in software engineering technology within NASA in the last twenty years. Thus, it is particularly important that all NASA centers be aware of Ada experience and plans at other centers. Ada activity across NASA are covered, with presenters representing five of the nine major NASA centers and the Space Station Freedom Program Office. Projects discussed included - Space Station Freedom Program Office: the implications of Ada on training, reuse, management and the software support environment; Johnson Space Center (JSC): early experience with the use of Ada, software engineering and Ada training and the evaluation of Ada compilers; Marshall Space Flight Center (MSFC): university research with Ada and the application of Ada to Space Station Freedom, the Orbital Maneuvering Vehicle, the Aero-Assist Flight Experiment and the Secure Shuttle Data System; Lewis Research Center (LeRC): the evolution of Ada software to support the Space Station Power Management and Distribution System; Jet Propulsion Laboratory (JPL): the creation of a centralized Ada development laboratory and current applications of Ada including the Real-time Weather Processor for the FAA; and Goddard Space Flight Center (GSFC): experiences with Ada in the Flight Dynamics Division and the Extreme Ultraviolet Explorer (EUVE) project and the implications of GSFC experience for Ada use in NASA. Despite the diversity of the presentations, several common themes emerged from the program: Methodology - NASA experience in general indicates that the effective use of Ada requires modern software engineering methodologies; Training - It is the software engineering principles and methods that surround Ada, rather than Ada itself, which requires the major training effort; Reuse - Due to training and transition costs, the use of Ada may initially actually decrease productivity, as was clearly found at GSFC; and real-time work at LeRC, JPL and GSFC shows

  15. Microbiology on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L. (Editor); Mcginnis, Michael R. (Editor); Mishra, S. K. (Editor); Wogan, Christine F. (Editor)

    1991-01-01

    This panel discussion convened in Houston, Texas, at the Lunar and Planetary Institute, on November 6 to 8, 1989, to review NASA's plans for microbiology on Space Station Freedom. A panel of distinguished scientists reviewed, validated, and recommended revisions to NASA's proposed acceptability standards for air, water, and internal surfaces on board Freedom. Also reviewed were the proposed microbiology capabilities and monitoring plan, disinfection procedures, waste management, and clinical issues. In the opinion of this advisory panel, ensuring the health of the Freedom's crews requires a strong goal-oriented research effort to determine the potential effects of microorganisms on the crewmembers and on the physical environment of the station. Because there are very few data addressing the fundamental question of how microgravity influences microbial function, the panel recommended establishing a ground-based microbial model of Freedom, with subsequent evaluation using in-flight shuttle data. Sampling techniques and standards will be affected by both technological advances in microgravity-compatible instrumentation, and by changes in the microbial population over the life of the station.

  16. Environmental Assessment for New Hampshire Tracking Station B-Side Remote Tracking Station Block Change at New Boston Air Force Station, New Hampshire

    DTIC Science & Technology

    2011-06-29

    Action and Alternatives 9 2.5 Identification of the Preferred Action 10 3.0 AFFECTED ENVIRONMENT 13 3.1 New Boston Air Force Station 13 3.1.1 Air...the alternative actions is presented in Section 2.4. Finally, identification of the Preferred Action is presented in Section 2.5. 2.1 PROPOSED...presented in Chapter 4.0 of this EA. 2.5 IDENTIFICATION OF THE PREFERRED ACTION The USAF’s Preferred Action is to implement the Proposed Action at

  17. Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission

    NASA Technical Reports Server (NTRS)

    Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

    1973-01-01

    The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

  18. Life sciences utilization of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambers, Lawrence P.

    1992-01-01

    Space Station Freedom will provide the United States' first permanently manned laboratory in space. It will allow, for the first time, long term systematic life sciences investigations in microgravity. This presentation provides a top-level overview of the planned utilization of Space Station Freedom by NASA's Life Sciences Division. The historical drivers for conducting life sciences research on a permanently manned laboratory in space as well as the advantages that a space station platform provides for life sciences research are discussed. This background information leads into a description of NASA's strategy for having a fully operational International Life Sciences Research Facility by the year 2000. Achieving this capability requires the development of the five discipline focused 'common core' facilities. Once developed, these facilities will be brought to the space station during the Man-Tended Capability phase, checked out and brought into operation. Their delivery must be integrated with the Space Station Freedom manifest. At the beginning of Permanent Manned Capability, the infrastructure is expected to be completed and the Life Sciences Division's SSF Program will become fully operational. A brief facility description, anticipated launch date and a focused objective is provided for each of the life sciences facilities, including the Biomedical Monitoring and Countermeasures (BMAC) Facility, Gravitational Biology Facility (GBF), Gas Grain Simulation Facility (GGSF), Centrifuge Facility (CF), and Controlled Ecological Life Support System (CELSS) Test Facility. In addition, hardware developed by other NASA organizations and the SSF International Partners for an International Life Sciences Research Facility is also discussed.

  19. Prototype space station automation system delivered and demonstrated at NASA

    NASA Technical Reports Server (NTRS)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support System (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of Space Station subsystems. The hierarchical and distributed real time controls system places the required controls authority at every level of the automation system architecture. As a demonstration of the automation technique, the ASCLSS system automated the Air Revitalization Group (ARG) of the Space Station regenerative Environmental Control and Life Support System (ECLSS) using real-time, high fidelity simulators of the ARG processess. This automation system represents an early flight prototype and an important test bed for evaluating Space Station controls technology including future application of ADA software in real-time control and the development and demonstration of embedded artificial intelligence and expert systems (AI/ES) in distributed automation and controls systems.

  20. Halfway point of the one year mission on This Week @NASA – September 18, 2015

    NASA Image and Video Library

    2015-09-18

    Sept. 15 marked the halfway point in the yearlong mission on the International Space Station with NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko. An event the day before at the National Press Club in Washington included a discussion about the biomedical research conducted on the station, to help formulate future human missions to Mars. Kelly participated from the space station. His identical twin, retired NASA astronaut Mark Kelly, and NASA astronaut Terry Virts, who served as commander of Expedition 43, participated from the press club. Also, I spy the space station: Live!, Expedition 43 post-flight visit, Key milestone for Orion spacecraft, Global ocean on Enceladus, Connecting space to village and more!

  1. Firefighters from Mayport Naval Station train at CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During training exercises at Cape Canaveral Air Force Station Pad 30, firefighters with the Fire and Emergency Services at the Naval Station Mayport, Fla., wait while the NASA/USAF water carrier truck directs its water cannon toward a burning simulated aircraft (out of view).

  2. Science in space with the Space Station

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.

    1987-01-01

    The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.

  3. Satellite tracking and earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The SAO laser site in Arequipa continued routine operations throughout the reporting period except for the months of March and April when upgrading was underway. The laser in Orroral Valley was operational through March. Together with the cooperating stations in Wettzell, Grasse, Kootwikj, San Fernando, Helwan, and Metsahove the laser stations obtained a total of 37,099 quick-look observations on 978 passes of BE-C, Starlette, and LAGEOS. The Network continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination. The Network performed regular tracking of BE-C and Starlette for refined determinations of station coordinate and the Earth's gravity field and for studies of solid earth dynamics. Monthly statistics of the passes and points are given by station and by satellite.

  4. Space Station power system autonomy demonstration

    NASA Technical Reports Server (NTRS)

    Kish, James A.; Dolce, James L.; Weeks, David J.

    1988-01-01

    The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.

  5. Erik Lindbergh christens NASA's 747 Clipper Lindbergh with a special commemorative concoction representing local, NASA, and industry partners

    NASA Image and Video Library

    2007-05-21

    Erik Lindbergh christens NASA's 747 Clipper Lindbergh, the Stratospheric Observatory for Infrared Astronomy, with a special commemorative concoction representing local, NASA, and industry partners. The liquid consisted of a small amount of California wine representing NASA Dryden where the aircraft will be stationed, a small amount of Dr. Pepper (a Waco, TX invention), a quantity of French bottled water (to symbolize Charles Lindbergh's flight to Paris on this date), and a dash of German beer to represent the SOFIA German industry partners.

  6. NASA-OAST photovoltaic energy conversion program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  7. Space Station Freedom Utilization Conference. Executive summary

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Station Freedom Utilization Conference was held on 3-6 Aug. 1992 in Huntsville, Alabama. The purpose of the conference was to bring together prospective space station researchers and the people in NASA and industry with whom they would be working to exchange information and discuss plans and opportunities for space station research. Topics covered include: research capabilities; research plans and opportunities; life sciences research; technology research; and microgravity research and biotechnology.

  8. The Space Station decision - Incremental politics and technological choice

    NASA Technical Reports Server (NTRS)

    Mccurdy, Howard E.

    1990-01-01

    Using primary documents and interviews with participants, this book describes the events that led up to the 1984 decision that NASA should build a permanently occupied, international space station in low earth orbit. The role that civil servants in NASA played in initiating the program is highlighted. The trail of the Space Station proposal as its advocates devised strategies to push it through the White House policy review process is followed. The critical analysis focuses on the way in which 'incrementalism' (the tendency of policy makers to introduce incremental changes once projects are under way) operated in connection with the Space Station program. The book calls for a commitment to a long-range space policy.

  9. Using computer graphics to design Space Station Freedom viewing

    NASA Technical Reports Server (NTRS)

    Goldsberry, Betty S.; Lippert, Buddy O.; Mckee, Sandra D.; Lewis, James L., Jr.; Mount, Francis E.

    1993-01-01

    Viewing requirements were identified early in the Space Station Freedom program for both direct viewing via windows and indirect viewing via cameras and closed-circuit television (CCTV). These requirements reside in NASA Program Definition and Requirements Document (PDRD), Section 3: Space Station Systems Requirements. Currently, analyses are addressing the feasibility of direct and indirect viewing. The goal of these analyses is to determine the optimum locations for the windows, cameras, and CCTV's in order to meet established requirements, to adequately support space station assembly, and to operate on-board equipment. PLAID, a three-dimensional computer graphics program developed at NASA JSC, was selected for use as the major tool in these analyses. PLAID provides the capability to simulate the assembly of the station as well as to examine operations as the station evolves. This program has been used successfully as a tool to analyze general viewing conditions for many Space Shuttle elements and can be used for virtually all Space Station components. Additionally, PLAID provides the ability to integrate an anthropometric scale-modeled human (representing a crew member) with interior and exterior architecture.

  10. Applying a Space-Based Security Recovery Scheme for Critical Homeland Security Cyberinfrastructure Utilizing the NASA Tracking and Data Relay (TDRS) Based Space Network

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.; McLaughlin, Brian; Stocklin, Frank; Fortin, Andre; Israel, David; Dissanayake, Asoka; Gilliand, Denise; LaFontaine, Richard; Broomandan, Richard; Hyunh, Nancy

    2015-01-01

    Protection of the national infrastructure is a high priority for cybersecurity of the homeland. Critical infrastructure such as the national power grid, commercial financial networks, and communications networks have been successfully invaded and re-invaded from foreign and domestic attackers. The ability to re-establish authentication and confidentiality of the network participants via secure channels that have not been compromised would be an important countermeasure to compromise of our critical network infrastructure. This paper describes a concept of operations by which the NASA Tracking and Data Relay (TDRS) constellation of spacecraft in conjunction with the White Sands Complex (WSC) Ground Station host a security recovery system for re-establishing secure network communications in the event of a national or regional cyberattack. Users would perform security and network restoral functions via a Broadcast Satellite Service (BSS) from the TDRS constellation. The BSS enrollment only requires that each network location have a receive antenna and satellite receiver. This would be no more complex than setting up a DIRECTTV-like receiver at each network location with separate network connectivity. A GEO BSS would allow a mass re-enrollment of network nodes (up to nationwide) simultaneously depending upon downlink characteristics. This paper details the spectrum requirements, link budget, notional assets and communications requirements for the scheme. It describes the architecture of such a system and the manner in which it leverages off of the existing secure infrastructure which is already in place and managed by the NASAGSFC Space Network Project.

  11. Evaluation of Kapton pyrolysis, arc tracking, and arc propagation on the Space Station Freedom (SSF) solar array Flexible Current Carrier (FCC)

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.

    1991-01-01

    Recent studies involving the use of polyimide Kapton coated wires indicate that if a momentary electrical short circuit occurs between two wires, sufficient heating of the Kapton can occur to thermally char (pyrolyze) the Kapton. Such charred Kapton has sufficient electrical conductivity to create an arc which tracks down the wires and possibly propagates to adjoining wires. These studies prompted an investigation to ascertain the likelihood of the Kapton pyrolysis, arc tracking and propagation phenomena, and the magnitude of destruction conceivably inflicted on Space Station Freedom's (SSF) Flexible Current Carrier (FCC) for the photovoltaic array. The geometric layout of the FCC, having a planar-type orientation as opposed to bundles, may reduce the probability of sustaining an arc. An experimental investigation was conducted to simulate conditions under which an arc can occur on the FCC of SSF, and the consequences of arc initiation.

  12. Evaluation of Kapton pyrolysis, arc tracking, and arc propagation on the Space Station Freedom (SSF) solar array flexible current carrier (FCC)

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.

    1991-01-01

    Recent studies involving the use of polyimide Kapton coated wires indicate that if a momentary electrical short circuit occurs between two wires, sufficient heating of the Kapton can occur to themally chlar (pyrolyze) the Kapton. Such charred Kapton has sufficient electricxl conductivity to create an arc which tracks down the wires and possibly propagates to adjoining wires. These studies prompted an invetigation to ascertain the likelihood of Kapton pyrolysis, arc tracking and propagation phenomena, and the magnitude of destruction conceivably inflicted on Space Station Freedom's (SSF's) Flexible Current Carrier (FCC) for the photovoltaic array. The geometric layout of the FCC, having a planar-type orientation as opposed to bundles, may reduce the probability of sustaining an arc. An experimental investigation was conducted to simulate conditions under which an arc can occur on the FCC of the SSF, and the consequences of arc initiation.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2000-07-01

    The 45-foot, port-side (P1) truss segment flight article for the International Space Station is being transported to the Redstone Airfield, Marshall Space Flight Center. The truss will be loaded aboard NASA's Super Guppy cargo plane for shipment to the Kennedy Space Center.

  14. TDRS-L NASA Social Tour

    NASA Image and Video Library

    2014-01-23

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, social media participants were given an opportunity to go inside the spaceport's Vehicle Assembly Building. After serving through the Apollo and Space Shuttle Programs, the structure now is undergoing renovations to accommodate future launch vehicles and to continue as a major part of America's efforts to explore space. The social media participants gathered at the Florida spaceport for the launch of the Tracking and Data Relay Satellite, or TDRS-L spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Dan Casper

  15. Software Defined GPS Receiver for International Space Station

    NASA Technical Reports Server (NTRS)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  16. Space Station Environmental Control/Life Support System engineering

    NASA Technical Reports Server (NTRS)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  17. Situation awareness measures for simulated submarine track management.

    PubMed

    Loft, Shayne; Bowden, Vanessa; Braithwaite, Janelle; Morrell, Daniel B; Huf, Samuel; Durso, Francis T

    2015-03-01

    The aim of this study was to examine whether the Situation Present Assessment Method (SPAM) and the Situation Awareness Global Assessment Technique (SAGAT) predict incremental variance in performance on a simulated submarine track management task and to measure the potential disruptive effect of these situation awareness (SA) measures. Submarine track managers use various displays to localize and track contacts detected by own-ship sensors. The measurement of SA is crucial for designing effective submarine display interfaces and training programs. Participants monitored a tactical display and sonar bearing-history display to track the cumulative behaviors of contacts in relationship to own-ship position and landmarks. SPAM (or SAGAT) and the Air Traffic Workload Input Technique (ATWIT) were administered during each scenario, and the NASA Task Load Index (NASA-TLX) and Situation Awareness Rating Technique were administered postscenario. SPAM and SAGAT predicted variance in performance after controlling for subjective measures of SA and workload, and SA for past information was a stronger predictor than SA for current/future information. The NASA-TLX predicted performance on some tasks. Only SAGAT predicted variance in performance on all three tasks but marginally increased subjective workload. SPAM, SAGAT, and the NASA-TLX can predict unique variance in submarine track management performance. SAGAT marginally increased subjective workload, but this increase did not lead to any performance decrement. Defense researchers have identified SPAM as an alternative to SAGAT because it would not require field exercises involving submarines to be paused. SPAM was not disruptive, but it is potentially problematic that SPAM did not predict variance in all three performance tasks. © 2014, Human Factors and Ergonomics Society.

  18. NASA & USDA teams to plant seeds Today on This Week @NASA – October 9, 2015

    NASA Image and Video Library

    2015-10-09

    On Monday, October 5th, NASA Deputy Administrator Dava Newman and U.S. Department of Agriculture (USDA) Deputy Secretary Krysta Harden planted “Outredgeous” Red Romaine Lettuce seeds in USDA’s People’s Garden, sister seeds of those grown and harvested on the International Space Station. During the event in Washington, D.C., they also signed an a new interagency agreement expanding USDA and NASA's commitment to promoting careers in science, technology, engineering, agriculture and math to young people. Also, CubeSats launched to test new technology, New Orion crew egress test, NASA living of Land in Space? NASA lends a helping hand for Start Ups, Meet the New Inductees to the Glenn Hall of Fame, and it’s National Cybersecurity Awareness Month, so Stop, Think & Connect.

  19. NASA Expands BEAM’s Mission

    NASA Image and Video Library

    2017-12-05

    The mission of the Bigelow Expandable Activity Module (BEAM) on the International Space Station has been, well, expanded. After more than a year and a half on orbit providing performance data on expandable habitat technologies, NASA and Bigelow Aerospace have reached agreement to extend the life of the privately-owned module. For a minimum of three more years, BEAM will be a more operational element of the station used in crew activities and on board storage, allowing time to gather more data on the technology’s structural integrity, thermal stability, and resistance to space debris, radiation and microbial growth. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  20. 21-cm Observations with the NASA ADAS 18-meter Antenna System: Baseline Astronomical Observations and Measurements of Performance Characteristics

    NASA Astrophysics Data System (ADS)

    Malphrus, B. K.; Combs, M. S.; Kruth, J.

    2001-12-01

    Herein we report astronomical observations made with the NASA Advanced Data Acquisition System (ADAS). The NASA ADAS antenna, located at NASA Goddard Spaceflight Center's Wallops Flight Facility, Virginia, is an 18-meter X-band antenna system that has been primarily used for satellite tracking and served as the telecommunication station for the NASA IUE satellite until ca. 1997. A joint NASA-Morehead State University (MSU)-Kentucky NSF EPSCoR venture has been initiated to upgrade and relocate the antenna system to MSU's Astrophysics Laboratory where it will provide a research instrument and active laboratory for undergraduate students as well as be engaged in satellite tracking missions. As part of the relocation efforts, many systems will be upgraded including replacement of a hydrostatic azimuth bearing with a high-precision electromechanical bearing, a new servo system, and Ku-capable reflector surface. It is widely believed that there are still contributions that small aperture centimeter-wave instruments can make utilizing three primary observing strategies: 1.) longitudinal studies of RF variations in cosmic phenomena, 2.) surveys of large areas of sky, and 3.) fast reactions to transient phenomena. MSU faculty and staff along with NASA engineers re-outfitted the ADAS system with RF systems and upgraded servo controllers during the spring and summer of 2001. Empirical measurements of primary system performance characteristics were made including G/T (at S- and L bands), noise figures, pointing and tracking accuracies, and drive speeds and accelerations. Baseline astronomical observations were made with the MSU L-band receiver using a 6 MHz bandwidth centered at 1420 MHz (21-cm) and observing over a range of frequencies (up to 2.5 MHz, tunable over the 6 MHz window) with a 2048-channel back-end spectrometer, providing up to 1 KHz frequency resolution. Baseline observations of radio sources herein reported include Cygnus A, 3C 157, 3C 48 and the Andromeda

  1. Advancing automation and robotics technology for the space station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    Creedon, Jeremiah F.

    1989-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the eighth in a series of progress updates and covers the period between October 1, 1988, and March 31, 1989. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.

  2. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1988-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.

  3. LP DAAC MEaSUREs Project Artifact Tracking Via the NASA Earthdata Collaboration Environment

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.

    2015-12-01

    The Land Processes Distributed Active Archive Center (LP DAAC) is a NASA Earth Observing System (EOS) Data and Information System (EOSDIS) DAAC that supports selected EOS Community non-standard data products such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED), and also supports NASA Earth Science programs such as Making Earth System Data Records for Use in Research Environments (MEaSUREs) to contribute in providing long-term, consistent, and mature data products. As described in The LP DAAC Project Lifecycle Plan (Daucsavage, J.; Bennett, S., 2014), key elements within the Project Inception Phase fuse knowledge between NASA stakeholders, data producers, and NASA data providers. To support and deliver excellence for NASA data stewardship, and to accommodate long-tail data preservation with Community and MEaSUREs products, the LP DAAC is utilizing NASA's own Earthdata Collaboration Environment to bridge stakeholder communication divides. By leveraging a NASA supported platform, this poster describes how the Atlassian Confluence software combined with a NASA URS/Earthdata support can maintain each project's members, status, documentation, and artifact checklist. Furthermore, this solution provides a gateway for project communities to become familiar with NASA clients, as well as educating the project's NASA DAAC Scientists for NASA client distribution.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module (MPLM) and the External Stowage Platform-2. Back dropped by popcorn-like clouds, the MPLM can be seen in the cargo bay as Discovery undergoes rendezvous and docking operations. Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft from the International Space Station (ISS).

  5. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module (MPLM) and the External Stowage Platform-2. Back dropped by popcorn-like clouds, the MPLM can be seen in the cargo bay as Discovery undergoes rendezvous and docking operations. Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft from the International Space Station (ISS).

  6. An approach to design knowledge capture for the space station

    NASA Technical Reports Server (NTRS)

    Wechsler, D. B.; Crouse, K. R.

    1986-01-01

    The design of NASA's space station has begun. During the design cycle, and after activation of the space station, the reoccurring need will exist to access not only designs, but also deeper knowledge about the designs, which is only hinted in the design definition. Areas benefiting from this knowledge include training, fault management, and onboard automation. NASA's Artificial Intelligence Office at Johnson Space Center and The MITRE Corporation have conceptualized an approach for capture and storage of design knowledge.

  7. An Approach To Design Knowledge Capture For The Space Station

    NASA Astrophysics Data System (ADS)

    Wechsler, D. B.; Crouse, K. R.

    1987-02-01

    Design of NASA's Space Station has begun. During the design cycle, and after activation of the Space Station, the reoccuring need will exist to access not only designs; but also deeper knowledge about the designs, which is only hinted in the design definition. Areas benefiting from this knowledge include training, fault management, and onboard automation. NASA's Artificial Intelligence Office at Johnson Space Center and The MITRE Corporation have conceptualized an approach for capture and storage of design knowledge.

  8. An approach to design knowledge capture for the space station

    NASA Technical Reports Server (NTRS)

    Wechsler, D. B.; Crouse, K. R.

    1987-01-01

    The design of NASA's space station has begun. During the design cycle, and after activation of the space station, the reoccurring need will exist to access not only designs, but also deeper knowledge about the designs, which is only hinted in the design definition. Areas benefiting from this knowledge include training, fault management, and onboard automation. NASA's Artificial Intelligence Office at Johnson Space Center and The MITRE Corporation have conceptualized an approach for capture and storage of design knowledge.

  9. Cutting Edge RFID Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2007-01-01

    This viewgraph document reviews the use of Radio-frequency identification (RFID) for NASA applications. Some of the uses reviewed are: inventory management in space; potential RFID uses in a remote human outpost; Ultra-Wideband RFID for tracking; Passive, wireless sensors in NASA applications such as Micrometeoroid impact detection and Sensor measurements in environmental facilities; E-textiles for wireless and RFID.

  10. RadNet Air Quality (Fixed Station) Data

    EPA Pesticide Factsheets

    RadNet is a national network of monitoring stations that regularly collect air for analysis of radioactivity. The RadNet network, which has stations in each State, has been used to track environmental releases of radioactivity from nuclear weapons tests and nuclear accidents. RadNet also documents the status and trends of environmental radioactivity

  11. Building intelligent systems: Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, P.; Lum, H.

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  12. Building intelligent systems - Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Lum, Henry

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  13. South American Aerosol Tracking - LALINET

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Lopes, Fabio; Ristori, Pablo; Quel, Eduardo; Otero, Lidia; Forno, Ricardo; Sanchez, Maria Fernanda; Barbosa, Henrique; Gouveia, Diego; Vieira Santos, Amanda; Bastidas, Alvaro; Nisperuza, Daniel

    2018-04-01

    LALINET lidar stations were used to track down aerosols generated over Amazon region and transported over the continent. These data were merged with collocated Aeronet stations in order to help in their identification together with HYSPLIT simulations. The results show potential indication of how aerosol can age in their long transport over regions South and Westward from the source areas by change of their optical properties.

  14. Pilot's Desk Flight Station

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1984-01-01

    Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.

  15. Internationalization of the Space Station

    NASA Technical Reports Server (NTRS)

    Lottmann, R. V.

    1985-01-01

    Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.

  16. An active K/Ka-band antenna array for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Tulintseff, A.; Crist, R.; Densmore, Art; Sukamto, L.

    1993-01-01

    An active K/Ka-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz. Satellite tracking for the land-mobile vehicular antenna system involves 'mechanical dithering' of the antenna, where the antenna radiates a fixed beam 46 deg. above the horizon. The antenna is to transmit horizontal polarization and receive vertical polarization at 29.634 plus or minus 0.15 GHz and 19.914 plus or minus 0.15 GHz, respectively. The active array will provide a minimum of 22 dBW EIRP transmit power density and a -8 dB/K deg. receive sensitivity.

  17. NASA chooses hybrid power system for Space Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, D.J.

    1986-06-01

    The hybrid solar power system being developed for the Space Station is characterized. Major components of the 75-kW system required for the initial operational phase of the Station are 25-kW photovoltaic arrays (with Ni-H storage batteries for eclipse-phase power and some means of conversion to ac for distribution) and a 50-kW solar dynamic system comprising a reflecting concentrator, a thermal-energy storage unit, and a heat engine based either on an organic Rankine cycle (described by Holt, 1985) or on a closed Brayton cycle. The design and operating principle of a Brayton-cycle engine using an He-Xe mixture as the working fluid,more » gas-foil journal bearings, an LiF/MgF2 thermal-storage unit, and a 95-percent-effectiveness plate-fin-type recuperator are described and illustrated with drawings. This engine is designed to operate at 25,000-50,000 rpm with overall day/night cycle efficiency 27.6 percent for 95-min orbits, and to be restartable under zero-g conditions.« less

  18. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2016-03-01

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2017-12-08

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Current and Future Parts Management at NASA

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.

    2011-01-01

    This presentation provides a high level view of current and future electronic parts management at NASA. It describes a current perspective of the new human space flight direction that NASA is beginning to take and how that could influence parts management in the future. It provides an overview of current NASA electronic parts policy and how that is implemented at the NASA flight Centers. It also describes some of the technical challenges that lie ahead and suggests approaches for their mitigation. These challenges include: advanced packaging, obsolescence and counterfeits, the global supply chain and Commercial Crew, a new direction by which NASA will utilize commercial launch vehicles to get astronauts to the International Space Station.

  1. NASA Briefing Previews Upcoming Spacewalks on ISS

    NASA Image and Video Library

    2017-10-02

    On Oct. 2, NASA held a briefing at the Johnson Space Center in Houston, to preview a trio of spacewalks in October to perform maintenance outside the International Space Station. Expedition 53 Commander Randy Bresnik of NASA will lead all three spacewalks, joined on Oct. 5 and 10 by Flight Engineer Mark Vande Hei, also of NASA. Flight Engineer Joe Acaba of NASA will join Bresnik on Oct. 18 for the third spacewalk. NASA TV coverage of the spacewalks will begin at 6:30 a.m. on Oct. 5, 10 and 18. Each spacewalk is scheduled to start at approximately 8:05 a.m., however, the spacewalks may begin earlier if the crew is running ahead of schedule.

  2. The Status of the NASA All Sky Fireball Network

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Moser, Danielle E.

    2011-01-01

    Established by the NASA Meteoroid Environment Office, the NASA All Sky Fireball Network consists of 6 meteor video cameras in the southern United States, with plans to expand to 15 cameras by 2013. As of mid-2011, the network had detected 1796 multi-station meteors, including meteors from 43 different meteor showers. The current status of the NASA All Sky Fireball Network is described, alongside preliminary results.

  3. Implementation of Risk Management in NASA's CEV Project- Ensuring Mission Success

    NASA Astrophysics Data System (ADS)

    Perera, Jeevan; Holsomback, Jerry D.

    2005-12-01

    Most project managers know that Risk Management (RM) is essential to good project management. At NASA, standards and procedures to manage risk through a tiered approach have been developed - from the global agency-wide requirements down to a program or project's implementation. The basic methodology for NASA's risk management strategy includes processes to identify, analyze, plan, track, control, communicate and document risks. The identification, characterization, mitigation plan, and mitigation responsibilities associated with specific risks are documented to help communicate, manage, and effectuate appropriate closure. This approach helps to ensure more consistent documentation and assessment and provides a means of archiving lessons learned for future identification or mitigation activities.A new risk database and management tool was developed by NASA in 2002 and since has been used successfully to communicate, document and manage a number of diverse risks for the International Space Station, Space Shuttle, and several other NASA projects and programs including at the Johnson Space Center. Organizations use this database application to effectively manage and track each risk and gain insight into impacts from other organization's viewpoint to develop integrated solutions. Schedule, cost, technical and safety issues are tracked in detail through this system.Risks are tagged within the system to ensure proper review, coordination and management at the necessary management level. The database is intended as a day-to- day tool for organizations to manage their risks and elevate those issues that need coordination from above. Each risk is assigned to a managing organization and a specific risk owner who generates mitigation plans as appropriate. In essence, the risk owner is responsible for shepherding the risk through closure. The individual that identifies a new risk does not necessarily get assigned as the risk owner. Whoever is in the best position to effectuate

  4. JPL Non-NASA Programs

    NASA Technical Reports Server (NTRS)

    Cox, Robert S.

    2006-01-01

    A viewgraph presentation describing JPL's non-NASA Programs is shown. The contents include: 1) JPL/Caltech: National Security Heritage; 2) Organization and Portfolio; 3) Synergistic Areas of Interest; 4) Business Environment; 5) National Space Community; 6) New Business Environment; 7) Technology Transfer Techniques; 8) Innovative Partnership Program (IPP); and 9) JPL's Track Record.

  5. The Mothball, Sustainment, and Proposed Reactivation of the Hypersonic Tunnel Facility (HTF) at NASA Glenn Research Center Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.

    2010-01-01

    The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart

  6. NASA's Next Generation Space Geodesy Network

    NASA Technical Reports Server (NTRS)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  7. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1989-01-01

    This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.

  8. The ESA-NASA CHOICE Study: Winterover at Concordia Station, Interior Antarctica, A Potential Analog for Spaceflight-Associated Immune Dysregulation

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Quiriarte, H.; Pierson, D L.; Sams, C. F.

    2010-01-01

    For ground-based space physiological research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a superior ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assesses innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. Initial data obtained from the first study deployment (2009 mission; 'n' of 6) will be presented, and logistical challenges regarding analog usage for biological studies will also be discussed. The total WBC increased, and alterations in some peripheral leukocyte populations were observed during winterover at Concordia Station. Percentages of lymphocytes and monocytes increased, and levels of senescent CD8+ T cells were increased during deployment. Transient increases in constitutively activated T cell subsets were observed, at mission time points associated with endemic disease outbreaks. T cell function (early blastogenesis response) was increased near the entry/exit deployment phases, and production of most measured cytokines increased during deployment. Salivary cortisol demonstrated high variability during winterover, but was generally increased. A 2-point circadian rhythm of cortisol measurement (morning/evening) was unaltered during winterover. Perceived stress was mildly elevated during winterover. Other measures, including in-vitro DTH assessment, viral specific T cell number/function and latent herpesvirus reactivation have not yet been completed for the 2009 winterover subjects. Based on the preliminary data, alterations in immune cell distribution and function appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to

  9. Work/control stations in Space Station weightlessness

    NASA Technical Reports Server (NTRS)

    Willits, Charles

    1990-01-01

    An ergonomic integration of controls, displays, and associated interfaces with an operator, whose body geometry and dynamics may be altered by the state of weightlessness, is noted to rank in importance with the optimal positioning of controls relative to the layout and architecture of 'body-ported' work/control stations applicable to the NASA Space Station Freedom. A long-term solution to this complex design problem is envisioned to encompass the following features: multiple imaging, virtual optics, screen displays controlled by a keyboard ergonomically designed for weightlessness, cursor control, a CCTV camera, and a hand-controller featuring 'no-grip' vernier/tactile positioning. This controller frees all fingers for multiple-switch actuations, while retaining index/register determination with the hand controller. A single architectural point attachment/restraint may be used which requires no residual muscle tension in either brief or prolonged operation.

  10. TDRS-L NASA Social Tour

    NASA Image and Video Library

    2014-01-23

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, social media participants were given an up-close look at one of the spaceport's mammoth crawler-transporters. Recent work has included preparations to install upgraded components that will enable the crawler to carry the greater loads anticipated with the agency's new rocket designed to take astronauts beyond low-Earth orbit for the first time since the early 1970s. The social media participants gathered at the Florida spaceport for the launch of the Tracking and Data Relay Satellite, or TDRS-L spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Dan Casper

  11. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  12. 78 FR 66964 - International Space Station Advisory Committee; Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-128)] International Space Station Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the International Space Station Advisory Committee...

  13. Mapping an Ice Station

    NASA Image and Video Library

    2017-12-08

    On July 10, 2011, Melinda Webster of University of Washington mapped the locations where measurements were collected during the 2011 ICESCAPE mission's fourth sea ice station in the Chukchi Sea. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. International Space Station (ISS)

    NASA Image and Video Library

    2000-05-01

    This photograph depicts the International Space Station's (ISS) Joint Airlock Module undergoing exhaustive structural and systems testing in the Space Station manufacturing facility at the Marshall Space Flight Center (MSFC) prior to shipment to the Kennedy Space Center. The Airlock includes two sections. The larger equipment lock, on the left, will store spacesuits and associated gear and the narrower crewlock is on the right, from which the astronauts will exit into space for extravehicular activity. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.

  15. International Polar Year Observations From the International Space Station

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Runco, Susan; Byrne, Gregory; Willis, Kim; Heydorn, James; Stefanov, William L.; Wilkinson, M. Justin; Trenchard, Michael

    2006-01-01

    Astronauts aboard the International Space Station (ISS) have several opportunities each day to observe and document high-latitude phenomena. Although lighting conditions, ground track and other viewing parameters change with orbital precessions and season, the 51.6 degree orbital inclination and 400 km altitude of the ISS provide the crew an excellent vantage point for collecting image-based data for IPY investigators. To date, the database of imagery acquired by the Crew Earth Observations (CEO) experiment aboard the ISS (http://eol.jsc.nasa.gov) contains more than 12,000 images of high latitude (above 50 degrees) events such as aurora, mesospheric clouds, sea-ice, high-latitude plankton blooms, volcanic eruptions, and snow cover. The ISS Program will formally participate in IPY through an activity coordinated through CEO entitled Synchronized Observations of Polar Mesospheric Clouds, Aurora and Other Large-scale Polar Phenomena from the ISS and Ground Sites. The activity will augment the existing collection of Earth images taken from the ISS by focusing astronaut observations on polar phenomena. NASA s CEO experiment will solicit requests by IPY investigators for ISS observations that are coordinated with or complement ground-based polar studies. The CEO imagery website (http://eol.jsc.nasa.gov) will provide an on-line form for IPY investigators to interact with CEO scientists and define their imagery requests. This information will be integrated into daily communications with the ISS crews about their Earth Observations targets. All data collected will be cataloged and posted on the website for downloading and assimilation into IPY projects.

  16. Preliminary design, analysis, and costing of a dynamic scale model of the NASA space station

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Pinson, E. D.; Voqui, H. L.; Crawley, E. F.; Everman, M. R.

    1987-01-01

    The difficulty of testing the next generation of large flexible space structures on the ground places an emphasis on other means for validating predicted on-orbit dynamic behavior. Scale model technology represents one way of verifying analytical predictions with ground test data. This study investigates the preliminary design, scaling and cost trades for a Space Station dynamic scale model. The scaling of nonlinear joint behavior is studied from theoretical and practical points of view. Suspension system interaction trades are conducted for the ISS Dual Keel Configuration and Build-Up Stages suspended in the proposed NASA/LaRC Large Spacecraft Laboratory. Key issues addressed are scaling laws, replication vs. simulation of components, manufacturing, suspension interactions, joint behavior, damping, articulation capability, and cost. These issues are the subject of parametric trades versus the scale model factor. The results of these detailed analyses are used to recommend scale factors for four different scale model options, each with varying degrees of replication. Potential problems in constructing and testing the scale model are identified, and recommendations for further study are outlined.

  17. 14 CFR § 1215.112 - User/NASA contractual arrangement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false User/NASA contractual arrangement. § 1215.112 Section § 1215.112 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING... § 1215.112 User/NASA contractual arrangement. No service shall be provided without an approved agreement...

  18. Use of automation and robotics for the Space Station

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron

    1987-01-01

    An overview is presented of the various possible applications of automation and robotics technology to the Space Station system. The benefits of such technology to the private sector and the national economy are addressed. NASA's overall approach to incorporating advanced technology into the Space Station is examined.

  19. NASA Customer Data and Operations System

    NASA Technical Reports Server (NTRS)

    Butler, Madeline J.; Stallings, William H.

    1991-01-01

    In addition to the currently provided NASA services such as Communications and Tracking and Data Relay Satellite System services, the NASA's Customer Data and Operations System (CDOS) will provide the following services to the user: Data Delivery Service, Data Archive Service, and CDOS Operations Management Service. This paper describes these services in detail and presents respective block diagrams. The CDOS services will support a variety of multipurpose missions simultaneously with centralized and common hardware and software data-driven systems.

  20. Automatic electronic fish tracking system

    NASA Technical Reports Server (NTRS)

    Osborne, P. W.; Hoffman, E.; Merriner, J. V.; Richards, C. E.; Lovelady, R. W.

    1976-01-01

    A newly developed electronic fish tracking system to automatically monitor the movements and migratory habits of fish is reported. The system is aimed particularly at studies of effects on fish life of industrial facilities which use rivers or lakes to dump their effluents. Location of fish is acquired by means of acoustic links from the fish to underwater Listening Stations, and by radio links which relay tracking information to a shore-based Data Base. Fish over 4 inches long may be tracked over a 5 x 5 mile area. The electronic fish tracking system provides the marine scientist with electronics which permit studies that were not practical in the past and which are cost-effective compared to manual methods.