Sample records for nasa-usgs collaboration alps

  1. SAFRR Tsunami Scenarios and USGS-NTHMP Collaboration

    NASA Astrophysics Data System (ADS)

    Ross, S.; Wood, N. J.; Cox, D. A.; Jones, L.; Cheung, K. F.; Chock, G.; Gately, K.; Jones, J. L.; Lynett, P. J.; Miller, K.; Nicolsky, D.; Richards, K.; Wein, A. M.; Wilson, R. I.

    2015-12-01

    Hazard scenarios provide emergency managers and others with information to help them prepare for future disasters. The SAFRR Tsunami Scenario, published in 2013, modeled a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. It presented the modeled inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the scenario tsunami. The intended users were those responsible for making mitigation decisions before and those who need to make rapid decisions during future tsunamis. It provided the basis for many exercises involving, among others, NOAA, the State of Washington, several counties in California, and the National Institutes of Health. The scenario led to improvements in the warning protocol for southern California and highlighted issues that led to ongoing work on harbor and marina safety. Building on the lessons learned in the SAFRR Tsunami Scenario, another tsunami scenario is being developed with impacts to Hawaii and to the source region in Alaska, focusing on the evacuation issues of remote communities with primarily shore parallel roads, and also on the effects of port closures. Community exposure studies in Hawaii (Ratliff et al., USGS-SIR, 2015) provided background for selecting these foci. One complicated and important aspect of any hazard scenario is defining the source event. The USGS is building collaborations with the National Tsunami Hazard Mitigation Program (NTHMP) to consider issues involved in developing a standardized set of tsunami sources to support hazard mitigation work. Other key USGS-NTHMP collaborations involve population vulnerability and evacuation modeling.

  2. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    USGS Publications Warehouse

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  3. USGS Science Data Catalog - Open Data Advances or Declines

    NASA Astrophysics Data System (ADS)

    Frame, M. T.; Hutchison, V.; Zolly, L.; Wheeler, B.; Latysh, N.; Devarakonda, R.; Palanisamy, G.; Shrestha, B.

    2014-12-01

    The recent Office of Science and Technology Policy (OSTP) White House Open Data Policies (2013) have required Federal agencies to establish formal catalogues of their science data holdings and make these data easily available on Web sites, portals, and applications. As an organization, the USGS has historically excelled at making its data holdings freely available on its various Web sites (i.e., National, Scientific Programs, or local Science Center). In response to these requirements, the USGS Core Science Analytics, Synthesis, and Libraries program, in collaboration with DOE's Oak Ridge National Laboratory (ORNL) Mercury Consortium (funded by NASA, USGS, and DOE), and a number of other USGS organizations, established the Science Data Catalog (http://data.usgs.gov) cyberinfrastructure, content management processes/tools, and supporting policies. The USGS Science Data Catalog led the charge at USGS to improve the robustness of existing/future metadata collections; streamline and develop sustainable publishing to external aggregators (i.e., data.gov); and provide leadership to the U.S. Department of Interior in emerging Open Data policies, techniques, and systems. The session will discuss the current successes, challenges, and movement toward meeting these Open Data policies for USGS scientific data holdings. A retrospective look at the last year of implementation of these efforts within USGS will occur to determine whether these Open Data Policies are improving data access or limiting data availability. To learn more about the USGS Science Data Catalog, visit us at http://data.usgs.gov/info/about.html

  4. Integration of NASA/GSFC and USGS Rock Magnetic Databases.

    NASA Astrophysics Data System (ADS)

    Nazarova, K. A.; Glen, J. M.

    2004-05-01

    A global Magnetic Petrology Database (MPDB) was developed and continues to be updated at NASA/Goddard Space Flight Center. The purpose of this database is to provide the geomagnetic community with a comprehensive and user-friendly method of accessing magnetic petrology data via the Internet for a more realistic interpretation of satellite (as well as aeromagnetic and ground) lithospheric magnetic anomalies. The MPDB contains data on rocks from localities around the world (about 19,000 samples) including the Ukranian and Baltic Shields, Kamchatka, Iceland, Urals Mountains, etc. The MPDB is designed, managed and presented on the web as a research oriented database. Several database applications have been specifically developed for data manipulation and analysis of the MPDB. The geophysics unit at the USGS in Menlo Park has over 17,000 rock-property data, largely from sites within the western U.S. This database contains rock-density and rock-magnetic parameters collected for use in gravity and magnetic field modeling, and paleomagnetic studies. Most of these data were taken from surface outcrops and together they span a broad range of rock types. Measurements were made either in-situ at the outcrop, or in the laboratory on hand samples and paleomagnetic cores acquired in the field. The USGS and NASA/GSFC data will be integrated as part of an effort to provide public access to a single, uniformly maintained database. Due to the large number of data and the very large area sampled, the database can yield rock-property statistics on a broad range of rock types; it is thus applicable to study areas beyond the geographic scope of the database. The intent of this effort is to provide incentive for others to further contribute to the database, and a tool with which the geophysical community can entertain studies formerly precluded.

  5. Professional Development for Graduate Students through Internships at Federal Labs: an NSF/USGS Collaboration

    NASA Astrophysics Data System (ADS)

    Snow, E.; Jones, E.; Patino, L. C.; Wasserman, E.; Isern, A. R.; Davies, T.

    2016-12-01

    In 2013 the White House initiated an effort to coordinate STEM education initiatives across federal agencies. This idea spawned several important collaborations, one of which is a set of National Science Foundation programs designed to place graduate students in federal labs for 2-12 months of their Ph.D. training. The Graduate Research Internship Program (GRIP) and the Graduate Student Preparedness program (GSP) each have the goal of exposing PhD students to the federal work environment while expanding their research tools and mentoring networks. Students apply for supplementary support to their Graduate Research Fellowship (GRIP) or their advisor's NSF award (GSP). These programs are available at several federal agencies; the USGS is one partner. At the U.S. Geological Survey, scientists propose projects, which students can find online by searching USGS GRIP, or students and USGS scientists can work together to develop a research project. At NSF, projects are evaluated on both the scientific merit and the professional development opportunities they afford the student. The career development extends beyond the science (new techniques, data, mentors) into the professional activity of writing the proposal, managing the budget, and working in a new and different environment. The USGS currently has 18 GRIP scholars, including Madeline Foster-Martinez, a UC Berkeley student who spent her summer as a GRIP fellow at the USGS Pacific Coastal and Marine Science Center working with USGS scientist Jessica Lacy. Madeline's Ph.D. work is on salt marshes and she has studied geomorphology, accretion, and gas transport using a variety of research methods. Her GRIP fellowship allowed her to apply new data-gathering tools to the question of sediment delivery to the marsh, and build and test a model for sediment delivery along marsh edges. In addition, she gained professional skills by collaborating with a new team of scientists, running a large-scale field deployment, and

  6. USGS to accept private funds

    NASA Astrophysics Data System (ADS)

    The U.S. Geological Survey (USGS), the federal government's largest earth science research agency, is now authorized to accept contributions from private sources and to collaborate with such sources in projects that support the agency's scientific research and its development of technology and data systems.Before the USGS can accept outside contributions, however, the proposed project must be deemed to be in the public interest and must be deemed compatible with the basic USGS mission. Among the responsibilities of the USGS, are assessing the nation's land, water, energy, and mineral resources and developing methods to define and mitigate hazards associated with earthquakes, volcanic eruptions, and landslides. Details on criteria and procedures for making contributions and entering into collaborative projects are outlined in the June 2 Federal Register.

  7. NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams

    NASA Technical Reports Server (NTRS)

    Prahst, Steve

    2003-01-01

    Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.

  8. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  9. USGS West Nile Virus Research Strategy

    USGS Publications Warehouse

    Smith, Gregory; Brand, Christopher J.; Saito, Emi

    2003-01-01

    This plan integrates science across multiple USGS disciplines, and provides national and international opportunities for USGS collaboration with state and federal agencies, academic institutions, and non-governmental organizations throughout the Americas.

  10. NASA as a Convener: Government, Academic and Industry Collaborations Through the NASA Human Health and Performance Center

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2011-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 60 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed below. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations are in development: Space Act Agreement between NASA and GE for collaborative projects, NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011), NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011), NASA and the San Diego Zoo

  11. Agencies Collaborate, Develop a Cyanobacteria Assessment Network

    EPA Science Inventory

    This collaborative effort integrates the efforts of the U.S. Environmental Protection Agency (EPA), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), and U.S. Geological Survey (USGS) to provide an approach for mainstrea...

  12. C3: A Collaborative Web Framework for NASA Earth Exchange

    NASA Astrophysics Data System (ADS)

    Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.

    2010-12-01

    The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.

  13. ASTER and USGS EROS emergency imaging for hurricane disasters: Chapter 4D in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Duda, Kenneth A.; Abrams, Michael

    2007-01-01

    Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.

  14. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Each item is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1996.

  15. NASA-OAI Collaborative Aerospace Research and Fellowship Program

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Kankam, Mark D.

    2003-01-01

    During the summer of 2003, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). The objectives of CFP are: (1) to further the professional knowledge of qualified engineering and science faculty, (2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of Glenn. This report is intended primarily to summarize the research activities comprising the 2003 CFP Program at Glenn.

  16. Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2010-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 90 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed in this article. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations have been developed: (1) Space Act Agreement between NASA and GE for collaborative projects (2) NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011) (3) NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011) (4

  17. Remotely Sensed Imagery from USGS: Update on Products and Portals

    NASA Astrophysics Data System (ADS)

    Lamb, R.; Lemig, K.

    2016-12-01

    The USGS Earth Resources Observation and Science (EROS) Center has recently implemented a number of additions and changes to its existing suite of products and user access systems. Together, these changes will enhance the accessibility, breadth, and usability of the remotely sensed image products and delivery mechanisms available from USGS. As of late 2016, several new image products are now available for public download at no charge from USGS/EROS Center. These new products include: (1) global Level 1T (precision terrain-corrected) products from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), provided via NASA's Land Processes Distributed Active Archive Center (LP DAAC); and (2) Sentinel-2 Multispectral Instrument (MSI) products, available through a collaborative effort with the European Space Agency (ESA). Other new products are also planned to become available soon. In an effort to enable future scientific analysis of the full 40+ year Landsat archive, the USGS also introduced a new "Collection Management" strategy for all Landsat Level 1 products. This new archive and access schema involves quality-based tier designations that will support future time series analysis of the historic Landsat archive at the pixel level. Along with the quality tier designations, the USGS has also implemented a number of other Level 1 product improvements to support Landsat science applications, including: enhanced metadata, improved geometric processing, refined quality assessment information, and angle coefficient files. The full USGS Landsat archive is now being reprocessed in accordance with the new `Collection 1' specifications. Several USGS data access and visualization systems have also seen major upgrades. These user interfaces include a new version of the USGS LandsatLook Viewer which was released in Fall 2017 to provide enhanced functionality and Sentinel-2 visualization and access support. A beta release of the USGS Global Visualization Tool ("Glo

  18. Digital Object Identifiers (DOI's) usage and adoption in U.S Geological Survey (USGS)

    NASA Astrophysics Data System (ADS)

    Frame, M. T.; Palanisamy, G.

    2013-12-01

    Addressing grand environmental science challenges requires unprecedented access to easily understood data that cross the breadth of temporal, spatial, and thematic scales. From a scientist's perspective, the big challenges lie in discovering the relevant data, dealing with extreme data heterogeneity, large data volumes, and converting data to information and knowledge. Historical linkages between derived products, i.e. Publications, and associated datasets has not existed in the earth science community. The USGS Core Science Analytics and Synthesis, in collaboration with DOE's Oak Ridge National Laboratory (ORNL) Mercury Consortium (funded by NASA, USGS and DOE), established a Digital Object Identifier (DOI) service for USGS data, metadata, and other media. This service is offered in partnership through the University of California Digital Library EZID service. USGS scientists, data managers, and other professionals can generate globally unique, persistent and resolvable identifiers for any kind of digital objects. Additional efforts to assign DOIs to historical data and publications have also been underway. These DOI identifiers are being used to cite data in journal articles, web-accessible datasets, and other media for distribution, integration, and in support of improved data management practices. The session will discuss the current DOI efforts within USGS, including a discussion on adoption, challenges, and future efforts necessary to improve access, reuse, sharing, and discoverability of USGS data and information.

  19. UZIG USGS research: Advances through interdisciplinary interaction

    USGS Publications Warehouse

    Nimmo, J.R.; Andraski, Brian J.; Rafael, M.-C.

    2009-01-01

    BBecause vadose zone research relates to diverse disciplines, applications, and modes of research, collaboration across traditional operational and topical divisions is especially likely to yield major advances in understanding. The Unsaturated Zone Interest Group (UZIG) is an informal organization sponsored by the USGS to encourage and support interdisciplinary collaboration in vadose or unsaturated zone hydrologic research across organizational boundaries. It includes both USGS and non-USGS scientists. Formed in 1987, the UZIG operates to promote communication, especially through periodic meetings with presentations, discussions, and field trips. The 10th meeting of the UZIG at Los Alamos, NM, in August 2007 was jointly sponsored by the USGS and Los Alamos National Laboratory. Presentations at this meeting served as the initial basis for selecting papers for this special section of Vadose Zone Journal, the purpose of which is to present noteworthy cutting-edge unsaturated zone research promoted by, facilitated by, or presented in connection with the UZIG.

  20. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 200 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1994.

  1. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 150 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1995.

  2. New Zealand Southern Alps

    NASA Image and Video Library

    2001-06-20

    This anaglyph from the MISR instrument aboard NASA Terra spacecraft shows the rugged Southern Alps extending some 650 kilometers along the western side of New Zealand South Island. 3D glasses are necessary to view this image.

  3. Study of USGS/NASA land use classification system. [computer analysis from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.

    1975-01-01

    The results of a computer mapping project using LANDSAT data and the USGS/NASA land use classification system are summarized. During the computer mapping portion of the project, accuracies of 67 percent to 79 percent were achieved using Level II of the classification system and a 4,000 acre test site centered on Douglasville, Georgia. Analysis of response to a questionaire circulated to actual and potential LANDSAT data users reveals several important findings: (1) there is a substantial desire for additional information related to LANDSAT capabilities; (2) a majority of the respondents feel computer mapping from LANDSAT data could aid present or future projects; and (3) the costs of computer mapping are substantially less than those of other methods.

  4. Microwave radiometric studies and ground truth measurements of the NASA/USGS Southern California test site

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Trexler, D. T.; Sakamoto, S.; Jenkins, J. E.

    1969-01-01

    The field measurement program conducted at the NASA/USGS Southern California Test Site is discussed. Ground truth data and multifrequency microwave brightness data were acquired by a mobile field laboratory operating in conjunction with airborne instruments. The ground based investigations were performed at a number of locales representing a variety of terrains including open desert, cultivated fields, barren fields, portions of the San Andreas Fault Zone, and the Salton Sea. The measurements acquired ground truth data and microwave brightness data at wavelengths of 0.8 cm, 2.2 cm, and 21 cm.

  5. NASA-OAI Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center at Lewis Field

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Montegani, Francis J.

    2003-01-01

    During the summer of 2002, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA- ASEE Summer Faculty Fellowship Program, that operated for 38 years at Glenn. This year s program began officially on June 3, 2002 and continued through August 9, 2002. This report is intended primarily to summarize the research activities comprising the 2002 CFP Program at Glenn. Fifteen research summaries are included.

  6. Collaboration Portals for NASA's Airborne Field Campaigns

    NASA Astrophysics Data System (ADS)

    Conover, H.; Kulkarni, A.; Garrett, M.; Goodman, M.; Petersen, W. A.; Drewry, M.; Hardin, D. M.; He, M.

    2011-12-01

    The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.

  7. Collaboration Portals for NASA's Airborne Field Campaigns

    NASA Technical Reports Server (NTRS)

    Conover, Helen; Kulkami, Ajinkya; Garrett, Michele; Goodman, Michael; Peterson, Walter Arthur; Drewry, Marilyn; Hardin, Danny M.; He, Matt

    2011-01-01

    The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.

  8. USGS ecosystem research for the next decade: advancing discovery and application in parks and protected areas through collaboration

    USGS Publications Warehouse

    van Riper, Charles; Nichols, James D.; Wingard, G. Lynn; Kershner, Jeffrey L.; Cloern, James E.; Jacobson, Robert B.; White, Robin P.; McGuire, Anthony David; Williams, Byron K.; Gelfenbaum, Guy; Shapiro, Carl D.

    2014-01-01

    Ecosystems within parks and protected areas in the United States and throughout the world are being transformed at an unprecedented rate. Changes associated with natural hazards, greenhouse gas emissions, and increasing demands for water, food, land, energy and mineral resources are placing urgency on sound decision making that will help sustain our Nation’s economic and environmental well-being (Millennium Ecosystem Assessment, 2005). In recognition of the importance of science in making these decisions, the U.S. Geological Survey (USGS) in 2007 identified ecosystem science as one of six science directions included in a comprehensive decadal strategy (USGS 2007). The Ecosystems Mission Area was identified as essential for integrating activity within the USGS and as a key to enhanced integration with other Federal and private sector research and management organizations (Myers at al., 2007). This paper focuses on benefits to parks and protected areas from the USGS Ecosystems Mission Area plan that expanded the scope of the original 2007 science strategy, to identify the Bureau’s work in ecosystem science over the next decade (Williams et al., 2013). The plan describes a framework that encompasses both basic and applied science and allows the USGS to continue to contribute meaningfully to conservation and management issues related to the Nation’s parks and ecological resources. This framework relies on maintaining long-standing, collaborative relationships with partners in both conducting science and applying scientific results. Here we summarize the major components of the USGS Ecosystems Science Strategy, articulating the vision, goals and strategic approaches, then outlining some of the proposed actions that will ultimately prove useful to those managing parks and protected areas. We end with a discussion on the future of ecosystem science for the USGS and how it can be used to evaluate ecosystem change and the associated consequences to management of our

  9. ATM Coastal Topography-Texas, 2001: UTM Zone 14

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 14, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used

  10. ATM Coastal Topography-Alabama 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Alabama coastline, acquired October 3-4, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface, and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that

  11. ATM Coastal Topography-Florida 2001: Western Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the western Florida panhandle coastline, acquired October 2-4 and 7-10, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used

  12. ATM Coastal Topography-Florida 2001: Eastern Panhandle

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create

  13. ATM Coastal Topography-Mississippi, 2001

    USGS Publications Warehouse

    Nayegandhi, Amar; Yates, Xan; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Mississippi coastline, from Lakeshore to Petit Bois Island, acquired September 9-10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS

  14. NASA Collaborative Approach Mitigates Environmentally-Driven Obsolescence

    NASA Technical Reports Server (NTRS)

    Greene, Brian; Leeney, Bob; Richards, Joni

    2016-01-01

    National Aeronautics and Space Administration (NASA) missions, like Department of Defense (DoD) organizations, require the rigorous testing and qualification of critical materials. Obsolescence supply risks created by environmental requirements can affect the cost, schedule and performance of NASA missions and the resilience of critical infrastructure. The NASA Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center helps to identify obsolescence supply risks driven by environmental requirements and works proactively with NASA Centers and Programs, the DoD, the European Space Agency (ESA) and other agencies and partners to identify and evaluate environmentally friendly alternatives. TEERM tracks environmental regulations, identifies the potential loss of material availability and works with NASA programs and Centers to evaluate potential impacts through a risk assessment approach. TEERM collaborative projects identify, demonstrate and evaluate commercially viable alternative technologies and materials. A major focus during the Space Shuttle Program was the need to replace ozone depleting substances that were used in spray foam and cleaning applications. The potential obsolescence of coatings containing hexavalent chromium and the risks associated with lead free solder were also of concern for the Space Shuttle and present ongoing risks to new programs such as the Space Launch System. One current project teams NASA and ESA in the evaluation and testing of individual coatings and coating systems as replacements for hexavalent chromium coatings in aerospace applications. The proactive, collaborative approach used by TEERM helps reduce the cost burden on any one team partner, reduces duplication of effort, and enhances the technical quality and overall applicability of the testing and analysis.

  15. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  16. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  17. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  18. Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hasbrook, Pete

    2016-01-01

    The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging

  19. Opportunities for NASA Aerospace Related Funding and Collaboration

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2005-01-01

    This presentation describes the different opportunities that NASA offers for effective collaboration with Academia and Industry. In particular, the presentation includes a general overview of opportunities such as SBIRs, STTRs, Educational Programs and NASA Research Announcements. A general description of forthcoming competitive opportunities under the Exploration Systems Mission Directorate (ESMD) as well as the Science Mission Directorate (SMD) are also provided.

  20. Overview of NASA MSFC IEC Federated Engineering Collaboration Capability

    NASA Technical Reports Server (NTRS)

    Moushon, Brian; McDuffee, Patrick

    2005-01-01

    The MSFC IEC federated engineering framework is currently developing a single collaborative engineering framework across independent NASA centers. The federated approach allows NASA centers the ability to maintain diversity and uniqueness, while providing interoperability. These systems are integrated together in a federated framework without compromising individual center capabilities. MSFC IEC's Federation Framework will have a direct affect on how engineering data is managed across the Agency. The approach is directly attributed in response to the Columbia Accident Investigation Board (CAB) finding F7.4-11 which states the Space Shuttle Program has a wealth of data sucked away in multiple databases without a convenient way to integrate and use the data for management, engineering, or safety decisions. IEC s federated capability is further supported by OneNASA recommendation 6 that identifies the need to enhance cross-Agency collaboration by putting in place common engineering and collaborative tools and databases, processes, and knowledge-sharing structures. MSFC's IEC Federated Framework is loosely connected to other engineering applications that can provide users with the integration needed to achieve an Agency view of the entire product definition and development process, while allowing work to be distributed across NASA Centers and contractors. The IEC DDMS federation framework eliminates the need to develop a single, enterprise-wide data model, where the goal of having a common data model shared between NASA centers and contractors is very difficult to achieve.

  1. Intentional Collaboration & Innovation Spaces at NASA

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2014-01-01

    Collaboration and Innovation (C&I) are extremely popular terms in corporate jargon, and institutions with reputations for creativity often have clever and fun spaces set aside for hatching ideas and developing products or services. In and of themselves, a room full of "collaboration furniture" and electronics can't make C&I happen, any more than oil makes a gas or diesel engine run. As with the engine, though, quality lubrication is a huge factor in the smooth operation, power, and longevity of C&I activity. This paper describes spaces deliberately set up at numerous NASA field centers to support collaborative and creative thinking and processes. (Sometimes support is not so much a matter of doing things to spark discussion as it is removing constraints imposed by traditional settings and making information sharing as easy as possible.) Some spaces are rooms or suites dedicated to C&I, with significant electronic support and/or intentional lack thereof (to emphasize the human element). Others are small, comfortable "roosting places" that invite conversations of opportunity. Descriptions include the sponsoring organization, underlying goals and philosophies, lessons learned, and opportunities to excel. There is discussion about how such areas might interconnect within centers, across NASA, and with external entities using current technology and what tools and approaches may be in our future.

  2. NASA Human Research Wiki - An Online Collaboration Tool

    NASA Technical Reports Server (NTRS)

    Barr, Y. R.; Rasbury, J.; Johnson, J.; Barsten, K.; Saile, L.; Watkins, S. D.

    2011-01-01

    In preparation for exploration-class missions, the Exploration Medical Capability (ExMC) element of NASA's Human Research Program (HRP) has compiled a large evidence base, which previously was available only to persons within the NASA community. The evidence base is comprised of several types of data, for example: information on more than 80 medical conditions which could occur during space flight, derived from several sources (including data on incidence and potential outcomes of these medical conditions, as captured in the Integrated Medical Model's Clinical Finding Forms). In addition, approximately 35 gap reports are included in the evidence base, identifying current understanding of the medical challenges for exploration, as well as any gaps in knowledge and/or technology that would need to be addressed in order to provide adequate medical support for these novel missions. In an effort to make the ExMC information available to the general public and increase collaboration with subject matter experts within and outside of NASA, ExMC has developed an online collaboration tool, very similar to a wiki, titled the NASA Human Research Wiki. The platform chosen for this data sharing, and the potential collaboration it could generate, is a MediaWiki-based application that would house the evidence, allow "read only" access to all visitors to the website, and editorial access to credentialed subject matter experts who have been approved by the Wiki's editorial board. Although traditional wikis allow users to edit information in real time, the NASA Human Research Wiki includes a peer review process to ensure quality and validity of information. The wiki is also intended to be a pathfinder project for other HRP elements that may want to use this type of web-based tool. The wiki website will be released with a subset of the data described and will continue to be populated throughout the year.

  3. Continuing Development of a Collaborative Plan to Further Engage South Dakota in NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Farwell, Sherry O.; DeTroye, Diane (Technical Monitor)

    2002-01-01

    An ongoing set of research planning activities have occurred in South Dakota as a consequence of the past two years of NASA-EPSCoR Preparation Grants. During this time a group of approximately 60 scientists, engineers, and university administrators in South Dakota have been directly involved as "theme team" members in a series of five all-day meetings to identify the research and technological priorities that are consistent both with NASA-ESE's interests and the State's expertise. Institutions represented within the group's membership include: South Dakota School of Mines & Technology, South Dakota State University, Augustana College, University of South Dakota, USGS EROS Data Center, Si ranks College, Santa Gleska University, Sisseton Wahpeton Community College, USGS Water Resources Division, US National Weather Service, and the SD Department of Environment & Natural Resources. Many of these organizations are also members and affiliates of the SD Space Grant Consortium. The evolving plan has been guided by the following desirable actions: 1. To establish new contacts and strengthen existing linkages with NASA Centers, relevant NASA researchers, and key personnel at the USGS EROS Data Center. 2. To promote participation from the State's major research institutions, State agencies, and relevant businesses in South Dakota that are interested in strengthening our scientific and technological enterprises. 3. To develop the State's scientific talent and infrastructure for enhanced competitiveness in research, development, and technology-based economic development. 4. To encourage greater participation by under represented groups, especially Native Americans, in scientific education and research. 5. To build greater public and political support in South Dakota for the overall science, engineering, and technology enterprise. 6. To communicate the benefits of current and future NASA programs to the progress and development of South Dakota, the Northern Great Plains Region

  4. Any Light Particle Search (ALPS)

    NASA Astrophysics Data System (ADS)

    Spector, Aaron; Any Light Particle Search (ALPS) Collaboration

    2016-03-01

    High power laser fields enabled by technologies developed for ground-based gravitational-wave observatories open up new opportunities for fundamental physics studies. One of these options is the search for axions and axion-like particles in a pure laboratory experiment. The axion is a solution to the strong CP-problem and a potential dark matter candidate. The axion has also been proposed as an additional channel to cool stars as well as a potential explanation for the TeV transparency problem. The German-US ALPS collaboration is setting up a light-shining-through-walls (LSW) experiment at DESY. LSW experiments are based on the simple idea that a high power laser field traversing a static magnetic field will transform partly into a relativistic axion field. This axion field will travel through an opaque wall into a second static magnetic field region where it turns partly back into an electromagnetic wave field with the same frequency as the laser. The ALPS collaboration is working towards a large scale LSW experiment at DESY in Hamburg, Germany. I will report on the status of the ALPS experiment. This work is supported by the Deutsche Forschungsgemeinschaft, PRISMA, the Helmholtz Association, the National Science Foundation and the Heising-Simons Foundation.

  5. Connecting the dots: a collaborative USGS-NPS effort to expand the utility of monitoring data

    USGS Publications Warehouse

    Grace, James B.; Schoolmaster, Donald R.; Schweiger, E. William; Mitchell, Brian R.; Miller, Kathryn; Guntenspergen, Glenn R.

    2014-01-01

    The Natural Resource Challenge (National Park Service 1999) was a call to action. It constituted a mandate for monitoring based on the twin premises that (1) natural resources in national parks require active management and stewardship if we are to protect them from gradual degradation, and (2) we cannot protect what we do not understand. The intent of the challenge was embodied in its original description: We must expand existing inventory programs and develop efficient ways to monitor the vital signs of natural systems. We must enlist others in the scientific community to help, and also facilitate their inquiry. Managers must have and apply this information to preserve our natural resources. In this article, we report on ongoing collaborative work between the National Park Service (NPS) and the US Geological Survey (USGS) that seeks to add to our scientific understanding of the ecological processes operating behind vital signs monitoring data. The ultimate goal of this work is to provide insights that can facilitate an understanding of the systems and identify potential opportunities for active stewardship by NPS managers (Bennetts et al. 2007; Mitchell et al. 2014). The bulk of the work thus far has involved Acadia and Rocky Mountain national parks, but there are plans for extending the work to additional parks. Our story stats with work designed to consider ways of assessing the status and condition of natural resources and the potential for historical or ongoing influences of human activities. In the 1990s, the concept of "biotic integrity" began to take hold as an aspiration for developing quantitative indices describing how closely the conditions at a site resemble those found at pristine, unimpacted sites. Quantitative methods for developing indices of biotic integrity (IBIs) and elaborations of that idea (e.g., ecological integrity) have received considerable attention and application of these methods to natural resources has become widespread (Karr 1991

  6. Citizen Science in Libraries: Results and Insights from a Unique NASA Collaboration

    NASA Astrophysics Data System (ADS)

    Janney, D. W.; Schwerin, T. G.; Riebeek Kohl, H.; Dusenbery, P.; LaConte, K.; Taylor, J.; Weaver, K. L. K.

    2017-12-01

    Libraries are local community centers and hubs for learning, with more and more libraries responding to the need to increase science literacy and support 21st century skills by adding STEM programs and resources for patrons of all ages. A collaboration has been developed between two NASA Science Mission Directorate projects - the NASA Earth Science Education Collaborative and NASA@ My Library - each bringing unique STEM assets and networks to support library staff and bring authentic STEM experiences and resources to learners in public library settings. The collaboration used Earth Day 2017 as a high profile event to engage and support 100 libraries across the U.S. (>50% serving rural communities), in developing locally-relevant programs and events that incorporated cloud observing and resources using NASA GLOBE Observer (GO) citizen science program. GO cloud observations are helping NASA scientists understand clouds from below (the ground) and above (from space). Clouds play an important role in transferring energy from the Sun to different parts of the Earth system. Because clouds can change rapidly, scientists need frequent observations from citizen scientists. Insights from the library focus groups and evaluation include promising practices, requested resources, programming ideas and approaches, particularly approaches to leveraging NASA subject matter experts and networks, to support local library programming.

  7. NASA and ESA Collaboration on Hexavalent Chrome Free Coatings

    NASA Technical Reports Server (NTRS)

    Greene, Brian

    2017-01-01

    Presentation on the NASA and ESA Collaboration on Hexavalent Chrome Free Coatings project. Project is in response to a Memorandum of Understanding between NASA and ESA Concerning Cooperation in the Field of Space Transportation - signed September 11, 2009. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) have expressed mutual interest in pursuing cooperation in the areas of evaluating hexavalent chrome-free coatings, environmentally-preferable coatings for maintenance of launch facilities and ground support equipment, citric acid as an alternative to nitric acid for passivation of stainless steel alloys.

  8. ATM Coastal Topography - Louisiana, 2001: UTM Zone 16 (Part 2 of 2)

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, Asbury H.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 16, from Grand Isle to the Chandeleur Islands, acquired September 7 and 9, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and

  9. ATM Coastal Topography-Louisiana, 2001: UTM Zone 15 (Part 1 of 2)

    USGS Publications Warehouse

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Klipp, Emily S.; Wright, C. Wayne

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Louisiana coastline beach face within UTM Zone 15, from Isles Dernieres to Grand Isle, acquired September 7 and 10, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last

  10. ATM Coastal Topography-Texas, 2001: UTM Zone 15

    USGS Publications Warehouse

    Klipp, Emily S.; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Yates, Xan; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Texas coastline within UTM zone 15, from Matagorda Peninsula to Galveston Island, acquired October 12-13, 2001. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative scanning lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant

  11. U.S. Geological Survey (USGS) Western Region: Coastal and Ocean Science

    USGS Publications Warehouse

    Kinsinger, Anne E.

    2009-01-01

    USGS Western Region Coastal and Ocean Science is interdisciplinary, collaborative, and integrates expertise from all USGS Disciplines, and ten of its major Science Centers, in Alaska, Hawai'i, California, Washington, and Oregon. The scientific talent, laboratories, and research vessels in the Western Region and across the Nation, strategically position the USGS to address broad geographic and oceanographic research topics. USGS information products inform resource managers and policy makers who must balance conservation mandates with increasing demands for resources that sustain the Nation's economy. This fact sheet describes but a few examples of the breadth of USGS science conducted in coastal, nearshore, and ocean environments along our Nation's West Coast and Pacific Islands.

  12. Secured Advanced Federated Environment (SAFE): A NASA Solution for Secure Cross-Organization Collaboration

    NASA Technical Reports Server (NTRS)

    Chow, Edward; Spence, Matthew Chew; Pell, Barney; Stewart, Helen; Korsmeyer, David; Liu, Joseph; Chang, Hsin-Ping; Viernes, Conan; Gogorth, Andre

    2003-01-01

    This paper discusses the challenges and security issues inherent in building complex cross-organizational collaborative projects and software systems within NASA. By applying the design principles of compartmentalization, organizational hierarchy and inter-organizational federation, the Secured Advanced Federated Environment (SAFE) is laying the foundation for a collaborative virtual infrastructure for the NASA community. A key element of SAFE is the Micro Security Domain (MSD) concept, which balances the need to collaborate and the need to enforce enterprise and local security rules. With the SAFE approach, security is an integral component of enterprise software and network design, not an afterthought.

  13. NASA's space physics theory program - An opportunity for collaboration

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.

    1990-01-01

    The field of theoretical space physics offers a unique opportunity to Latin American scientists for collaborative participation in NASA programs where the greatly increased complexity of both experimental observations and theoretical simulations requires in-depth comparisons between theory and observational data. The key problem areas identified by NASA for aggressive work in the decade of the 1990s are the nature of flows and turbulence, acceleration and transport of particles, the coupling of microphysics and macrophysics, the coupling of local and global dynamics, and nonclassical plasmas.

  14. NASA Human Health and Performance Center: Open Innovation Successes and Collaborative Projects

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2014-01-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, which resulted in the development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the open innovation successes and collaborative projects developed over this timeframe, including the efforts of the NASA Human Health and Performance Center (NHHPC), which was established to advance human health and performance innovations for spaceflight and societal benefit via collaboration in new markets.

  15. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    NASA Technical Reports Server (NTRS)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  16. International Collaboration for Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam; Durante, Marco; Reitz, Guenther

    2015-01-01

    An international collaboration on Galactic Cosmic Ray (GCR) simulation is being formed to make recommendations on how to best simulate the GCR spectrum at ground based accelerators. The external GCR spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The anticipated outcome of these and other studies may be a report or journal article, written by an international collaboration, making accelerator beam recommendations for GCR simulation. This poster describes the status of GCR simulation at the NASA Space Radiation Laboratory and encourages others to join the collaboration.

  17. Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Kankam, Mark D.

    2004-01-01

    During the summer of 2004, a 10-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA-ASEE Summer Faculty Fellowship Program that operated for 38 years at Glenn. The objectives of CFP parallel those of its companion, viz., (1) to further the professional knowledge of qualified engineering and science faculty,(2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants institutions, and (4) to contribute to the research objectives of Glenn. However, CFP, unlike the NASA program, permits faculty to be in residence for more than two summers and does not limit participation to United States citizens. Selected fellows spend 10 weeks at Glenn working on research problems in collaboration with NASA colleagues and participating in related activities of the NASA-ASEE program. This year's program began officially on June 1, 2004 and continued through August 7, 2004. Several fellows had program dates that differed from the official dates because university schedules vary and because some of the summer research projects warranted a time extension beyond the 10 weeks for satisfactory completion of the work. The stipend paid to the fellows was $1200 per week and a relocation allowance of $1000 was paid to those living outside a 50-mile radius of the Center. In post-program surveys from this and previous years, the faculty cited numerous instances where participation in the program has led to new courses, new research projects, new laboratory experiments, and grants from NASA to continue the work initiated during the summer. Many of the fellows mentioned amplifying material, both in

  18. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Community Collaborations

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Lawton, B. L.; Bartolone, L.; Schultz, G. R.; Blair, W. P.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum is one of four scientist-educator teams that support NASA's Science Mission Directorate and its nationwide education and public outreach community in increasing the coherence, efficiency, and effectiveness of their education and public outreach efforts. NASA Astrophysics education and outreach teams collaborate with each other through the Astrophysics Forum to place individual programs in context, connect with broader education and public outreach activities, learn and share successful strategies and techniques, and develop new partnerships. This poster highlights examples of collaborative efforts designed to engage youth and adults across the full spectrum of learning environments, from public outreach venues, to centers of informal learning, to K-12 and higher education classrooms. These include coordinated efforts to support major outreach events such as the USA Science and Engineering Festival; pilot "Astro4Girls" activities in public libraries to engage girls and their families in science during Women’s History Month; and a pilot "NASA's Multiwavelength Universe" online professional development course for middle and high school educators. Resources to assist scientists and Astro101 instructors in incorporating NASA Astrophysics discoveries into their education and public outreach efforts are also discussed.

  19. New Zealand's Southern Alps

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Park, which occupies the far southwest of the island, is largely under cloud.

    Prominent along the east coast are the Canterbury Plains, approximately 180 kilometers long and extending inland from the coast to the foothills of the Southern Alps. This is the largest area of flatland in New Zealand, and a rich agricultural region renowned for its wheat, wool, and livestock. Here the distance between the east and west coasts is little more than 150 kilometers.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  20. NASA Human Health and Performance Center: Open innovation successes and collaborative projects

    NASA Astrophysics Data System (ADS)

    Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-11-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, setting the course for development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the successful execution of the strategy, driving organizational change through open innovation efforts and collaborative projects, including efforts of the NASA Human Health and Performance Center (NHHPC).

  1. Pro-Am Collaboration for Support of NASA Comet ISON Observing Campaign (CIOC)

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.; Warner, E.

    2013-09-01

    From the initial discovery of C/2012 S1 (ISON) by Russian amateur astronomers in September 2012 [1] to the present day, amateur astronomers provide valuable resources of global coverage, data, and legacy knowledge to the professional community. The NASA Comet ISON Observing Campaign (CIOC) has leveraged professional-amateur collaborations via web and social media as part of its mission to facilitate a multi-spectral and multi-facility observation campaign that includes an armada of NASA's ground-based facilities, orbital observatories, and spacecraft. One of the most important goals of these pro-am collaborations is the monitoring of the morphological, photometric, and activity-related evolution of the comet.

  2. The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science

    NASA Astrophysics Data System (ADS)

    Manning, James G.; Lawton, Brandon L.; Gurton, Suzanne; Smith, Denise Anne; Schultz, Gregory; Astrophysics Community, NASA

    2015-08-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of the current generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov and specifically from http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.The presentation will describe the collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists

  3. NASA/DERA Collaborative Program

    NASA Technical Reports Server (NTRS)

    Whitefield, Phillip D.; Hagen, Donald E.; Wormhoudt, Jody C.; Miake-Lye, Richard C.; Brundish, Kevin; Wilson, Christopher W.; Wey, Chowen (Technical Monitor)

    2002-01-01

    This report is an interim report. The work reported are the results from the combustor testing, the first phase of testing in the DERA/NASA collaborative program. A program of work was developed by DERA and NASA utilizing specialist facilities within the UK, and specialist measurement techniques developed within the U.S. Under a Memorandum of Understanding (MoU) between the UK and U.S. governments, the joint UK/U.S. funded program commenced. The objective of the program was to make combustor and engine exit plane emissions measurements, including particulate and sulphur measurements, for kerosene fuels with different sulphur levels. The combustor test program was performed in August/September 2000. Although probe issues complicated the test program, a consistent set of data, including CO, NO(x), NO, NO2, CO2, O2, smoke number, particulate number density and size distribution, SO2, SO3 and HONO were collected at the exit plane of the DERA TRACE engine combustor. A second probe was utilized to measure spatial location of CO, NO(x), NO, NO2 and CO2 concentrations. Data are therefore available for development of aerosol, particulate and aerosol precursor chemistry sub-models for inclusion into CFD. Inlet boundary conditions have been derived at the exit of the combustion system for the modelling of the DERA TRACE engine. The second phase of the program is to perform identical measurements at the engine exit, to allow a full data set to be available. This will be performed in July 2001 at the Glenn test facility, DERA Pyestock.

  4. NASA-ONERA Collaboration on Human Factors in Aviation Accidents and Incidents

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Fabiani, Patrick

    2012-01-01

    This is the first annual report jointly prepared by NASA and ONERA on the work performed under the agreement to collaborate on a study of the human factors entailed in aviation accidents and incidents, particularly focused on the consequences of decreases in human performance associated with fatigue. The objective of this agreement is to generate reliable, automated procedures that improve understanding of the levels and characteristics of flight-crew fatigue factors whose confluence will likely result in unacceptable crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and ONERA are collaborating on the development and assessment of automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases; much larger than can be handled practically by human experts.

  5. The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science

    NASA Astrophysics Data System (ADS)

    Manning, Jim; Lawton, Brandon; Berendsen, Marni; Gurton, Suzanne; Smith, Denise A.; NASA SMD Astrophysics E/PO Community, The

    2014-06-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of a new generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov.The presenter will share the Forum-led Collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, students and the public.

  6. The Collaborative Information Portal and NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan

    2005-01-01

    The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

  7. USGS: Science to understand and forecast change in coastal ecosystems

    USGS Publications Warehouse

    Myers, M.

    2007-01-01

    The multidisciplinary approach of the US Geological Survey (USGS), a principal science agency of the US Department of the Interior (DOI), to address the complex and cumulative impacts of human activities and natural events on the US coastal ecosystems has been considered remarkable for understanding and forecasting the changes. The USGS helps explain geologic, hydrologic, and biologic systems and their connectivity across landscapes and seascapes along the coastline. The USGS coastal science programs effectively address science and information to other scientists, managers, policy makers, and the public. The USGS provides scientific expertise, capabilities, and services to collaborative federal, regional, and state-led efforts, which are in line with the goals of Ocean Action Plan (OAP) and Ocean Research Priorities Plan (ORPP). The organization is a leader in understanding terrestrial and marine environmental hazards such as earthquakes, tsunamis, floods, and landslides and assessing and forecasting coastal impacts using various specialized visualization techniques.

  8. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  9. Remotely Sensed Land Imagery and Access Systems: USGS Updates

    NASA Astrophysics Data System (ADS)

    Lamb, R.; Pieschke, R.; Lemig, K.

    2017-12-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center has implemented a number of updates to its suite of remotely sensed products and distribution systems. These changes will greatly expand the availability, accessibility, and usability of the image products from USGS. As of late 2017, several new datasets are available for public download at no charge from USGS/EROS Center. These products include Multispectral Instrument (MSI) Level-1C data from the Sentinel-2B satellite, which was launched in March 2017. Along with Sentinel-2A, the Sentinel-2B images are now being distributed through USGS systems as part of a collaborative effort with the European Space Agency (ESA). The Sentinel-2 imagery is highly complementary to multispectral data collected by the USGS Landsat 7 and 8 satellites. With these two missions operating together, the potential local revisit rate can be reduced to 2-4 days. Another product addition is Resourcesat-2 data acquired over the United States by the Indian Space Research Organisation (ISRO). The Resourcesat-2 products from USGS consist of Advanced Wide Field Sensor (AWiFS) and Linear Imaging Self-Scanning Sensor Three (LISS-3) images acquired August 2016 to present. In an effort to maximize future Landsat data interoperability, including time series analysis of the 45+ year archive, the reprocessing of Collection 1 for all historical Landsat Level 1 products is nearly complete. The USGS is now working on operational release of higher-level science products to support analysis of the Landsat archive at the pixel level. Major upgrades were also completed in 2017 for several USGS data discovery and access systems, including the LandsatLook Viewer (https://landsatlook.usgs.gov/) and GloVis Tool (https://glovis.usgs.gov/). Other options are now being developed to further enhance data access and overall user experience. These future options will be discussed and community feedback will be encouraged.

  10. USGS: Building on leadership in mapping oceans and coasts

    USGS Publications Warehouse

    Myers, M.D.

    2008-01-01

    The US Geological Survey (USGS) offers continuously improving technologies for mapping oceans and coasts providing unique opportunity for characterizing the marine environment and to expand the understanding of coastal and ocean processes, resources, and hazards. USGS, which has been designated as a leader for mapping the Exclusive Economic Zone, has made an advanced strategic plan, Facing Tomorrow's Challenges- US Geological Survey Science in the Decade 2007 to 2017. This plan focuses on innovative and transformational themes that serve key clients and customers, expand partnerships, and have long-term national impact. The plan includes several key science directions, including Understanding Ecosystems and Predicting Ecosystem Change, Energy and Minerals for America's Future, and A National Hazards, Risk, and Resilience Assessment Program. USGS has also collaborated with diverse partners to incorporate mapping and monitoring within interdisciplinary research programs, addressing the system-scale response of coastal and marine ecosystems.

  11. Improving Access to NASA Earth Science Data through Collaborative Metadata Curation

    NASA Astrophysics Data System (ADS)

    Sisco, A. W.; Bugbee, K.; Shum, D.; Baynes, K.; Dixon, V.; Ramachandran, R.

    2017-12-01

    The NASA-developed Common Metadata Repository (CMR) is a high-performance metadata system that currently catalogs over 375 million Earth science metadata records. It serves as the authoritative metadata management system of NASA's Earth Observing System Data and Information System (EOSDIS), enabling NASA Earth science data to be discovered and accessed by a worldwide user community. The size of the EOSDIS data archive is steadily increasing, and the ability to manage and query this archive depends on the input of high quality metadata to the CMR. Metadata that does not provide adequate descriptive information diminishes the CMR's ability to effectively find and serve data to users. To address this issue, an innovative and collaborative review process is underway to systematically improve the completeness, consistency, and accuracy of metadata for approximately 7,000 data sets archived by NASA's twelve EOSDIS data centers, or Distributed Active Archive Centers (DAACs). The process involves automated and manual metadata assessment of both collection and granule records by a team of Earth science data specialists at NASA Marshall Space Flight Center. The team communicates results to DAAC personnel, who then make revisions and reingest improved metadata into the CMR. Implementation of this process relies on a network of interdisciplinary collaborators leveraging a variety of communication platforms and long-range planning strategies. Curating metadata at this scale and resolving metadata issues through community consensus improves the CMR's ability to serve current and future users and also introduces best practices for stewarding the next generation of Earth Observing System data. This presentation will detail the metadata curation process, its outcomes thus far, and also share the status of ongoing curation activities.

  12. Exposing USGS sample collections for broader discovery and access: collaboration between ScienceBase, IEDA:SESAR, and Paleobiology Database

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Bristol, S.; Lehnert, K. A.; Arko, R. A.; Peters, S. E.; Uhen, M. D.; Song, L.

    2014-12-01

    The U.S. Geological Survey (USGS) is an exemplar of the need for improved cyberinfrastructure for its vast holdings of invaluable physical geoscience data. Millions of discrete paleobiological and geological specimens lie in USGS warehouses and at the Smithsonian Institution. These specimens serve as the basis for many geologic maps and geochemical databases, and are a potential treasure trove of new scientific knowledge. The extent of this treasure is virtually unknown and inaccessible outside a small group of paleogeoscientists and geochemists. A team from the USGS, the Integrated Earth Data Applications (IEDA) facility, and the Paleobiology Database (PBDB) are working to expose information on paleontological and geochemical specimens for discovery by scientists and citizens. This project uses existing infrastructure of the System for Earth Sample Registration (SESAR) and PBDB, which already contains much of the fundamental data schemas that are necessary to accommodate USGS records. The project is also developing a new Linked Data interface for the USGS National Geochemical Database (NGDB). The International Geo Sample Number (IGSN) is the identifier that links samples between all systems. For paleontological specimens, SESAR and PBDB will be the primary repositories for USGS records, with a data syncing process to archive records within the USGS ScienceBase system. The process began with mapping the metadata fields necessary for USGS collections to the existing SESAR and PBDB data structures, while aligning them with the Observations & Measurements and Darwin Core standards. New functionality needed in SESAR included links to a USGS locality registry, fossil classifications, a spatial qualifier attribution for samples with sensitive locations, and acknowledgement of data and metadata licensing. The team is developing a harvesting mechanism to periodically transfer USGS records from within PBDB and SESAR to ScienceBase. For the NGDB, the samples are being

  13. An Introspective Critique of Past, Present, and Future USGS Decision Support

    NASA Astrophysics Data System (ADS)

    Neff, B. P.; Pavlick, M.

    2017-12-01

    In response to increasing scrutiny of publicly funded science, the Water Mission Area of USGS is shifting its approach for informing decisions that affect the country. Historically, USGS has focused on providing sound science on cutting edge, societally relevant issues with the expectation that decision makers will take action on this information. In practice, scientists often do not understand or focus on the needs of decision makers and decision makers often cannot or do not utilize information produced by scientists. The Water Mission Area of USGS has recognized that it can better serve the taxpayer by delivering information more relevant to decision making in a form more conducive to its use. To this end, the Water Mission Area of USGS is seeking greater integration with the decision making process to better inform what information it produces. In addition, recognizing that the transfer of scientific knowledge to decision making is fundamentally a social process, USGS is embracing the use of social science to better inform how it delivers scientific information and facilitates its use. This study utilizes qualitative methods to document the evolution of decision support at USGS and provide a rationale for a shift in direction. Challenges to implementation are identified and collaborative opportunities to improve decision making are discussed.

  14. The NASA Human Research Wiki - An Online Collaboration Tool

    NASA Technical Reports Server (NTRS)

    Barr, Yael; Rasbury, Jack; Johnson, Jordan; Barstend, Kristina; Saile, Lynn; Watkins, Sharmi

    2012-01-01

    The Exploration Medical Capability (ExMC) element is one of six elements of the Human Research Program (HRP). ExMC is charged with decreasing the risk of: "Inability to adequately recognize or treat an ill or injured crew member" for exploration-class missions In preparation for exploration-class missions, ExMC has compiled a large evidence base, previously available only to persons within the NASA community. ExMC has developed the "NASA Human Research Wiki" in an effort to make the ExMC information available to the general public and increase collaboration within and outside of NASA. The ExMC evidence base is comprised of several types of data, including: (1)Information on more than 80 medical conditions which could occur during space flight (a)Derived from several sources (b)Including data on incidence and potential outcomes, as captured in the Integrated Medical Model s (IMM) Clinical Finding Forms (CliFFs). (2)Approximately 25 gap reports (a)Identify any "gaps" in knowledge and/or technology that would need to be addressed in order to provide adequate medical support for these novel missions.

  15. NASA and USGS ASTER Expedited Satellite Data Services for Disaster Situations

    NASA Astrophysics Data System (ADS)

    Duda, K. A.

    2012-12-01

    Significant international disasters related to storms, floods, volcanoes, wildfires and numerous other themes reoccur annually, often inflicting widespread human suffering and fatalities with substantial economic consequences. During and immediately after such events it can be difficult to access the affected areas and become aware of the overall impacts, but insight on the spatial extent and effects can be gleaned from above through satellite images. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on the Terra spacecraft has offered such views for over a decade. On short notice, ASTER continues to deliver analysts multispectral imagery at 15 m spatial resolution in near real-time to assist participating responders, emergency managers, and government officials in planning for such situations and in developing appropriate responses after they occur. The joint U.S./Japan ASTER Science Team has developed policies and procedures to ensure such ongoing support is accessible when needed. Processing and distribution of data products occurs at the NASA Land Processes Distributed Active Archive Center (LP DAAC) located at the USGS Earth Resources Observation and Science Center in South Dakota. In addition to current imagery, the long-term ASTER mission has generated an extensive collection of nearly 2.5 million global 3,600 km2 scenes since the launch of Terra in late 1999. These are archived and distributed by LP DAAC and affiliates at Japan Space Systems in Tokyo. Advanced processing is performed to create higher level products of use to researchers. These include a global digital elevation model. Such pre-event imagery provides a comparative basis for use in detecting changes associated with disasters and to monitor land use trends to portray areas of increased risk. ASTER imagery acquired via the expedited collection and distribution process illustrates the utility and relevancy of such data in crisis situations.

  16. Educational Experiences of Embry-Riddle Students through NASA Research Collaboration

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Walker, Charles; Ristow, James

    2006-01-01

    university collaborations with NASA and industry help students to acquire skills that are vital for their success upon entering the workforce.

  17. EAARL Topography - George Washington Birthplace National Monument 2008

    USGS Publications Warehouse

    Brock, John C.; Nayegandhi, Amar; Wright, C. Wayne; Stevens, Sara; Yates, Xan

    2009-01-01

    system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  18. EAARL Coastal Topography - Northeast Barrier Islands 2007: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom

  19. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: First Surface

    USGS Publications Warehouse

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    , and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  20. EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  1. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  2. EAARL Topography - Natchez Trace Parkway 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  3. EAARL Topography - Jean Lafitte National Historical Park and Preserve 2006

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    , and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  4. EAARL Topography - Vicksburg National Military Park 2008: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2008-01-01

    using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  5. EAARL Coastal Topography - Northeast Barrier Islands 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the northeast coastal barrier islands in New York and New Jersey, acquired April 29-30 and May 15-16, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a

  6. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare Earth

    USGS Publications Warehouse

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    the EAARL system and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  7. EAARL Topography-Vicksburg National Military Park 2007: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Segura, Martha; Yates, Xan

    2009-01-01

    processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  8. EAARL Submerged Topography - U.S. Virgin Islands 2003

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  9. EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed

  10. EAARL Coastal Topography-Chandeleur Islands, Louisiana, 2010: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Bonisteel-Cormier, Jamie M.; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Nagle, David B.; Vivekanandan, Saisudha; Yates, Xan; Klipp, Emily S.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and submerged topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Chandeleur Islands, acquired March 3, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom

  11. EAARL Coastal Topography-Assateague Island National Seashore, 2008: Bare Earth

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.

    2009-01-01

    resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for pre-survey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  12. EAARL Coastal Topography - Sandy Hook 2007

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  13. EAARL Coastal Topography-Assateague Island National Seashore, 2008: First Surface

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.

    2009-01-01

    resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for pre-survey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  14. Differential Properties of Human ALP+ Periodontal Ligament Stem Cells vs Their ALP- Counterparts

    PubMed Central

    Tran, Quynh T; El-Ayachi, Ikbale; Bhatti, Fazal-Ur-Rehman; Bahabri, Rayan; Al-Habib, Mey; Huang, George TJ

    2015-01-01

    Characterizing subpopulations of stem cells is important to understand stem cell properties. Tissue-nonspecific alkaline phosphatase (ALP) is associated with mineral tissue forming cells as well as stem cells. Information regarding ALP subpopulation of human periodontal ligament stem cells (hPDLSCs) is limited. In the present study, we examined ALP+ and ALP− hPDLSC subpopulations, their surface markers STRO-1 and CD146, and the expression of stemness genes at various cell passages. We found that ALP+ subpopulation had higher levels of STRO-1 (30.6 ± 5.6%) and CD146 (90.4 ± 3.3%) compared to ALP− (STRO-1: 0.5 ± 0.1%; CD146: 75.3 ± 7.2%). ALP+ cells expressed significantly higher levels of stemness associated genes, NANOG, OCT4 and SOX than ALP− cells at low cell passages of 2-3 (p<0.05). ALP+ and ALP− cells had similar osteogenic, chondrogenic and neurogenic potential while ALP−, not ALP+ cells, lacked adipogenic potential. Upon continuous culturing and passaging, ALP+ continued to express higher stemness genes and STRO-1 and CD146 than ALP− cells at ≥passage 19. Under conditions (over-confluence and vitamin C treatment) when ALP+ subpopulation was increased, the stemness gene levels of ALP+ was no longer significantly higher than those in ALP− cells. In conclusion, ALP+ hPDLSCs possess differential properties from their ALP− counterparts. PMID:26807329

  15. GIO benefits the USGS

    USGS Publications Warehouse

    McDermott, M.P.

    2004-01-01

    The Geographic Information Office (GIO) benefits the U.S. Geological Survey (USGS) by providing access to and delivery of USGS information and services, safety and security of USGS data and information, support for USGS science, and coordination of partnerships through Federal interagency data committees.

  16. Defining a data management strategy for USGS Chesapeake Bay studies

    USGS Publications Warehouse

    Ladino, Cassandra

    2013-01-01

    The mission of U.S. Geological Survey’s (USGS) Chesapeake Bay studies is to provide integrated science for improved understanding and management of the Chesapeake Bay ecosystem. Collective USGS efforts in the Chesapeake Bay watershed began in the 1980s, and by the mid-1990s the USGS adopted the watershed as one of its national place-based study areas. Great focus and effort by the USGS have been directed toward Chesapeake Bay studies for almost three decades. The USGS plays a key role in using “ecosystem-based adaptive management, which will provide science to improve the efficiency and accountability of Chesapeake Bay Program activities” (Phillips, 2011). Each year USGS Chesapeake Bay studies produce published research, monitoring data, and models addressing aspects of bay restoration such as, but not limited to, fish health, water quality, land-cover change, and habitat loss. The USGS is responsible for collaborating and sharing this information with other Federal agencies and partners as described under the President’s Executive Order 13508—Strategy for Protecting and Restoring the Chesapeake Bay Watershed signed by President Obama in 2009. Historically, the USGS Chesapeake Bay studies have relied on national USGS databases to store only major nationally available sources of data such as streamflow and water-quality data collected through local monitoring programs and projects, leaving a multitude of other important project data out of the data management process. This practice has led to inefficient methods of finding Chesapeake Bay studies data and underutilization of data resources. Data management by definition is “the business functions that develop and execute plans, policies, practices and projects that acquire, control, protect, deliver and enhance the value of data and information.” (Mosley, 2008a). In other words, data management is a way to preserve, integrate, and share data to address the needs of the Chesapeake Bay studies to better

  17. Joint USGS/USEPA Pathogens in Soils Geographic ...

    EPA Pesticide Factsheets

    Online interactive maps In order to protect the environment from current and potential threats posed by uncontrolled intentional releases of hazardous substances, pollutants, and contaminants, the biothreat research community recognizes the needs to be able to detect threats in the appropriate matrices and also consider whether a detected constituent is naturally occurring or a contaminant associated with an accidental or purposeful release. Therefore, sensitive and specific methods for processing and analyzing environmental samples as well as methods to determine the existing risk to the public from endemic microorganisms are needed. Background data is also an important variable for assessing and managing the risks posed by a contaminated site. The EPA has collaborated with the USGS to analyze over 4800 soil samples collected during the USGS North American Soil Geochemical Landscapes Project for the presence of Bacillus anthracis and a subset of those samples for the presence of Yersinia pestis, and Francisella tularensis. EPA and USGS scientists correlated occurrences with geochemical constituents (> 40 major and trace elements), historical outbreak data, and climate data by creating online interactive maps using a Geographic Information Systems (GIS) platform. This on-going nationwide survey can be used as an investigative tool by animal and public health scientists and emergency responders determine the potential for disease outbreaks and persistenc

  18. NASA / GE Aviation Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Zeug, Theresa

    2008-01-01

    Current collaborative research with General Electric Aviation on Open Rotor propulsion as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. The current Open Rotor propulsion research activity at NASA and GE are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. GE Open Rotor propulsion technology and business plans currently and toward the future are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  19. Enabling Innovation and Collaboration Across Geography and Culture: A Case Study of NASA's Systems Engineering Community of Practice

    NASA Technical Reports Server (NTRS)

    Topousis, Daria E.; Murphy, Keri; Robinson, Greg

    2008-01-01

    In 2004, NASA faced major knowledge sharing challenges due to geographically isolated field centers that inhibited personnel from sharing experiences and ideas. Mission failures and new directions for the agency demanded better collaborative tools. In addition, with the push to send astronauts back to the moon and to Mars, NASA recognized that systems engineering would have to improve across the agency. Of the ten field centers, seven had not built a spacecraft in over 30 years, and had lost systems engineering expertise. The Systems Engineering Community of Practice came together to capture the knowledge of its members using the suite of collaborative tools provided by the NASA Engineering Network (NEN.) The NEN provided a secure collaboration space for over 60 practitioners across the agency to assemble and review a NASA systems engineering handbook. Once the handbook was complete, they used the open community area to disseminate it. This case study explores both the technology and the social networking that made the community possible, describes technological approaches that facilitated rapid setup and low maintenance, provides best practices that other organizations could adopt, and discusses the vision for how this community will continue to collaborate across the field centers to benefit the agency as it continues exploring the solar system.

  20. LP DAAC MEaSUREs Project Artifact Tracking Via the NASA Earthdata Collaboration Environment

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.

    2015-12-01

    The Land Processes Distributed Active Archive Center (LP DAAC) is a NASA Earth Observing System (EOS) Data and Information System (EOSDIS) DAAC that supports selected EOS Community non-standard data products such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED), and also supports NASA Earth Science programs such as Making Earth System Data Records for Use in Research Environments (MEaSUREs) to contribute in providing long-term, consistent, and mature data products. As described in The LP DAAC Project Lifecycle Plan (Daucsavage, J.; Bennett, S., 2014), key elements within the Project Inception Phase fuse knowledge between NASA stakeholders, data producers, and NASA data providers. To support and deliver excellence for NASA data stewardship, and to accommodate long-tail data preservation with Community and MEaSUREs products, the LP DAAC is utilizing NASA's own Earthdata Collaboration Environment to bridge stakeholder communication divides. By leveraging a NASA supported platform, this poster describes how the Atlassian Confluence software combined with a NASA URS/Earthdata support can maintain each project's members, status, documentation, and artifact checklist. Furthermore, this solution provides a gateway for project communities to become familiar with NASA clients, as well as educating the project's NASA DAAC Scientists for NASA client distribution.

  1. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https://pds-imaging.jpl.nasa

  2. Highlights from 10 Years of NASA/KNMI/FMI Collaboration on UV Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2010-01-01

    The first joint meeting between NASA, KNMI and FMI scientists was held on 13 & 14 June, 2000, almost exactly 10 years ago. NASA had recently selected 14 US scientists to work on instrument calibration, science algorithms, and validation activities related to the Ozone Monitoring Instrument (OMI) that we being built by collaboration between the Netherlands and Finland for flight on NASA's EOS Aura satellite. The progress on this project had been remarkable for a space based instrument. Only two years before this meeting my colleague Ernest Hilsenrath and I had visited Netherlands at the invitation of Fokker Space to persuade KNMI management to collaborate with NASA on this mission. And only 4 years after the first science meeting was held OMI was lunched on the Aura spacecraft. Next month will be the 6 th anniversary of this launch and very successful operation of OMI. All this was possible because of the leadership from Dr. Hennie Kelder and KNMI management who in 1998 saw the opportunity for Netherlands in the mission and stepped up to the challenge by creating a young and talented team of scientists at KNMI under the leadership of Dr. Pieterenel Levelt. This vision has now put Netherlands as the leading country in the world in monitoring air quality from space. Recent selection of TROPOMI by ESA attests to the success of this vision. I will present some selected highlights of our very successful collaboration on this project over the past 10 years.

  3. USGS maps

    USGS Publications Warehouse

    ,

    2005-01-01

    Discover a small sample of the millions of maps produced by the U.S. Geological Survey (USGS) in its mission to map the Nation and survey its resources. This booklet gives a brief overview of the types of maps sold and distributed by the USGS through its Earth Science Information Centers (ESIC) and also available from business partners located in most States. The USGS provides a wide variety of maps, from topographic maps showing the geographic relief and thematic maps displaying the geology and water resources of the United States, to special studies of the moon and planets.

  4. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  5. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  6. NASA and ESA Collaboration on Hexavalent Chrome Alternatives Pretreatments Only Interim Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    NASA and ESA continue to search for an alternative to hexavalent chromium in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems. The overall objective of the collaborative effort between NASA TEERM and ESA is to test and evaluate coating systems (pretreatments, pretreatments with primer, and pretreatments with primer and topcoat) as replacements for hexavalent chrome coatings in aerospace applications. This objective will be accomplished by testing promising coatings identified from previous NASA, ESA, Department of Defense (DOD), and other project experience. Additionally, several new materials will be analyzed according to ESA-identified specifications.

  7. Hydrogeologic studies at the USGS Amargosa Desert Research Site

    USGS Publications Warehouse

    Andraski, Brian J.; Stonestrom, David A.; Taylor, Emily M.

    1998-01-01

    In 1976, the U.S. Geological Survey (USGS) began studies of unsaturated-zone hydrology in the Amargosa Desert in support of the USGS Low-Level Radioactive Waste Program. In 1983, agreements with the Bureau of Land Management and the State of Nevada established two field study areas: a 16-ha area adjacent to a waste-burial facility 17 km south of Beatty and a 0.1-ha area about 3 km farther south (fig. 1A). The study areas are collectively known as the Amargosa Desert Research Site (ADRS). Investigations at the ADRS have provided long-term benchmark information about hydraulic characteristics and soil-water movement for undisturbed conditions and for simulated waste-site conditions in arid environments. In 1995, as a result of unexpectedly finding high concentrations of tritium and carbon-14 in the unsaturated zone beneath the ADRS, the scope of research was broadened to include the study of processes affecting radionuclide transport. The ADRS was incorporated into the USGS Toxic Substances Hydrology Program in 1997. Research at the site is a multidisciplinary, collaborative effort that involves scientists from the USGS, universities, research institutes, and national laboratories. The overall objective for research at the site is to improve understanding of and methods for characterizing mechanisms that control subsurface migration and fate of contaminants in arid environments.

  8. Network Performance Measurements for NASA's Earth Observation System

    NASA Technical Reports Server (NTRS)

    Loiacono, Joe; Gormain, Andy; Smith, Jeff

    2004-01-01

    NASA's Earth Observation System (EOS) Project studies all aspects of planet Earth from space, including climate change, and ocean, ice, land, and vegetation characteristics. It consists of about 20 satellite missions over a period of about a decade. Extensive collaboration is used, both with other US. agencies (e.g., National Oceanic and Atmospheric Administration (NOA), United States Geological Survey (USGS), Department of Defense (DoD), and international agencies (e.g., European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA)), to improve cost effectiveness and obtain otherwise unavailable data. Scientific researchers are located at research institutions worldwide, primarily government research facilities and research universities. The EOS project makes extensive use of networks to support data acquisition, data production, and data distribution. Many of these functions impose requirements on the networks, including throughput and availability. In order to verify that these requirements are being met, and be pro-active in recognizing problems, NASA conducts on-going performance measurements. The purpose of this paper is to examine techniques used by NASA to measure the performance of the networks used by EOSDIS (EOS Data and Information System) and to indicate how this performance information is used.

  9. NASA - easyJet Collaboration on the Human Factors Monitoring Program (HFMP) Study

    NASA Technical Reports Server (NTRS)

    Srivistava, Ashok N.; Barton, Phil

    2012-01-01

    This is the first annual report jointly prepared by NASA and easyJet on the work performed under the agreement to collaborate on a study of the many factors entailed in flight - and cabin-crew fatigue and documenting the decreases in performance associated with fatigue. The objective of this Agreement is to generate reliable, automated procedures that improve understanding of the levels and characteristics of flight - and cabin-crew fatigue factors, both latent and proximate, whose confluence will likely result in unacceptable flight crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and easyJet are both interested in assessing and testing NASA s automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases, much larger than can be handled practically by human experts.

  10. Science and Technology (S and T) Roadmap Collaboration between SMC, NASA, and Government Partners

    NASA Technical Reports Server (NTRS)

    Betser, Joseph; Ewart, Roberta; Chandler, Faith

    2016-01-01

    National Security Space (NSS) presents multi-faceted S and T challenges. We must continually innovate enterprise and information management; provide decision support; develop advanced materials; enhance sensor technology; transform communication technology; develop advanced propulsion and resilient space architectures and capabilities; and enhance multiple additional S and T domains. These challenges are best met by leveraging advanced S and T research and technology development from a number of DoD agencies and civil agencies such as NASA. The authors of this paper have engaged in these activities since 2006 and over the past decade developed multiple strategic S and T relationships. This paper highlights the Office of the Space Missile Systems Center (SMC) Chief Scientist (SMC/ST) collaboration with the NASA Office of Chief Technologist (NASA OCT), which has multiple S and T activities that are relevant to NSS. In particular we discuss the development of the Technology Roadmaps that benefit both Civil Space and NSS. Our collaboration with NASA OCT has been of mutual benefit to multiple participants. Some of the other DoD components include the Defense Advanced Research Projects agency (DARPA), Air Force Research Laboratory (AFRL), Naval Research Laboratory (NRL), The USAF Office of Chief Scientist, the USAF Science Advisory Board (SAB), Space and Naval Warfare Systems Command (SPAWAR), and a number of other services and agencies. In addition, the human talent is a key enabler of advanced S and T activities; it is absolutely critical to have a strong supply of talent in the fields of Science Technology, Engineering, and Mathematics (STEM). Consequently, we continually collaborate with the USAF Institute of Technology (AFIT), other service academies and graduate schools, and other universities and colleges. This paper highlights the benefits that result from such strategic S and T partnerships and recommends a way forward that will continually build upon these

  11. The AlpArray Seismic Network: current status and next steps

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2016-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN), which complements the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The some 260 temporary stations of the AlpArray Seismic Network are operated as a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. The first stations were installed in Spring 2015 and the full AASN is planned to be operational by early Summer 2016. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, typical noise levels, best practices in installation as well as in data management, often encountered challenges, and planned next steps including the deployment of ocean bottom seismometers in the Ligurian Sea.

  12. Open Collaboration: A Problem Solving Strategy That Is Redefining NASA's Innovative Spirit

    NASA Technical Reports Server (NTRS)

    Rando, Cynthia M.; Fogarty, Jennifer A.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2011-01-01

    In 2010, NASA?s Space Life Sciences Directorate announced the successful results from pilot experiments with open innovation methodologies. Specifically, utilization of internet based external crowd sourcing platforms to solve challenging problems in human health and performance related to the future of spaceflight. The follow-up to this success was an internal crowd sourcing pilot program entitled NASA@work, which was supported by the InnoCentive@work software platform. The objective of the NASA@work pilot was to connect the collective knowledge of individuals from all areas within the NASA organization via a private web based environment. The platform provided a venue for NASA Challenge Owners, those looking for solutions or new ideas, to pose challenges to internal solvers, those within NASA with the skill and desire to create solutions. The pilot was launched in 57 days, a record for InnoCentive and NASA, and ran for three months with a total of 20 challenges posted Agency wide. The NASA@work pilot attracted over 6000 participants throughout NASA with a total of 183 contributing solvers for the 20 challenges posted. At the time of the pilot?s closure, solvers provided viable solutions and ideas for 17 of the 20 posted challenges. The solver community provided feedback on the pilot describing it as a barrier breaking activity, conveying that there was a satisfaction associated with helping co-workers, that it was "fun" to think about problems outside normal work boundaries, and it was nice to learn what challenges others were facing across the agency. The results and the feedback from the solver community have demonstrated the power and utility of an internal collaboration tool, such as NASA@work.

  13. Open Collaboration: A Problem Solving Strategy That is Redefining NASA's Innovative Spirit

    NASA Technical Reports Server (NTRS)

    Rando, Cynthia M.; Fogarty, Jennifer A.; Richard, E. E.; Davis, Jeffrey R.

    2011-01-01

    In 2010, NASA's Space Life Sciences Directorate announced the successful results from pilot experiments with open innovation methodologies. Specifically, utilization of internet based external crowdsourcing platforms to solve challenging problems in human health and performance related to the future of spaceflight. The follow-up to this success was an internal crowdsourcing pilot program entitled NASA@work, which was supported by the InnoCentive@work software platform. The objective of the NASA@work pilot was to connect the collective knowledge of individuals from all areas within the NASA organization via a private web based environment. The platform provided a venue for NASA Challenge Owners, those looking for solutions or new ideas, to pose challenges to internal solvers, those within NASA with the skill and desire to create solutions. The pilot was launched in 57 days, a record for InnoCentive and NASA, and ran for three months with a total of 20 challenges posted Agency wide. The NASA@work pilot attracted over 6,000 participants throughout NASA with a total of 183 contributing solvers for the 20 challenges posted. At the time of the pilot's closure, solvers provided viable solutions and ideas for 17 of the 20 posted challenges. The solver community provided feedback on the pilot describing it as a barrier breaking activity, conveying that there was a satisfaction associated with helping co-workers, that it was fun to think about problems outside normal work boundaries, and it was nice to learn what challenges others were facing across the agency. The results and the feedback from the solver community have demonstrated the power and utility of an internal collaboration tool, such as NASA@work.

  14. Making USGS Science Data more Open, Accessible, and Usable: Leveraging ScienceBase for Success

    NASA Astrophysics Data System (ADS)

    Chang, M.; Ignizio, D.; Langseth, M. L.; Norkin, T.

    2016-12-01

    In 2013, the White House released initiatives requiring federally funded research to be made publicly available and machine readable. In response, the U.S. Geological Survey (USGS) has been developing a unified approach to make USGS data available and open. This effort has involved the establishment of internal policies and the release of a Public Access Plan, which outlines a strategy for the USGS to move forward into the modern era in scientific data management. Originally designed as a catalog and collaborative data management platform, ScienceBase (www.sciencebase.gov) is being leveraged to serve as a robust data hosting solution for USGS researchers to make scientific data accessible. With the goal of maintaining persistent access to formal data products and developing a management approach to facilitate stable data citation, the ScienceBase Data Release Team was established to ensure the quality, consistency, and meaningful organization of USGS data through standardized workflows and best practices. These practices include the creation and maintenance of persistent identifiers for data, improving the use of open data formats, establishing permissions for read/write access, validating the quality of standards compliant metadata, verifying that data have been reviewed and approved prior to release, and connecting to external search catalogs such as the USGS Science Data Catalog (data.usgs.gov) and data.gov. The ScienceBase team is actively building features to support this effort by automating steps to streamline the process, building metrics to track site visits and downloads, and connecting published digital resources in line with USGS and Federal policy. By utilizing ScienceBase to achieve stewardship quality and employing a dedicated team to help USGS scientists improve the quality of their data, the USGS is helping to meet today's data quality management challenges and ensure that reliable USGS data are available to and reusable for the public.

  15. USGS science and technology help managers battle invading Asian carp

    USGS Publications Warehouse

    Kolar, Cynthia S.; Morrison, Sandra S.

    2016-09-28

    The U.S. Geological Survey (USGS) conducts Asian carp research focused on early detection, risk assessment, and development of control tools and strategies. The goals are to prevent the establishment of invasive Asian carp in the Great Lakes and to reduce their impacts in the Ohio River and Mississippi River Basins and elsewhere. Managers can use the information, tools, and strategies for early detection of Asian carp and to control them when their presence is first evident. New detection and control tools are designed to accommodate expansion to other invasive species and application in geographically diverse areas.This USGS focus complements goals of the Great Lakes Restoration Initiative (GLRI), a multi-agency collaboration started in 2010 to protect and restore the Great Lakes. As a member of the Asian Carp Regional Coordinating Committee, which guides Asian carp efforts, the USGS works closely with Federal and State agencies, Canada, and others to address high-priority Asian carp issues and provide science to inform management decisions.The USGS has gained extensive knowledge of Asian carp biology and life history over the past 30 years. That knowledge guides the design, development, and application of control strategies, and is essential for developing approaches in line with modern principles and practices of integrated pest management (IPM). IPM is a process used to solve pest problems while minimizing risks to people and the environment.

  16. Aligning USGS senior leadership structure with the USGS science strategy

    USGS Publications Warehouse

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) is realigning its management and budget structure to further enhance the work of its science programs and their interdisciplinary focus areas related to the USGS Science Strategy as outlined in 'Facing Tomorrow's Challenges-U.S. Geological Survey Science in the Decade 2007-2017' (U.S. Geological Survey, 2007). In 2007, the USGS developed this science strategy outlining major natural-science issues facing the Nation and focusing on areas where natural science can make a substantial contribution to the well being of the Nation and the world. These areas include global climate change, water resources, natural hazards, energy and minerals, ecosystems, and data integration.

  17. Interdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation.

    PubMed

    Sato, Masamitsu; Vardy, Leah; Angel Garcia, Miguel; Koonrugsa, Nirada; Toda, Takashi

    2004-04-01

    The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules.

  18. NASA'S SERVIR Gulf of Mexico Project: The Gulf of Mexico Regional Collaborative (GoMRC)

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Irwin, Daniel; Presson, Joan; Estes, Maury; Estes, Sue; Judd, Kathleen

    2006-01-01

    The Gulf of Mexico Regional Collaborative (GoMRC) is a NASA-funded project that has as its goal to develop an integrated, working, prototype IT infrastructure for Earth science data, knowledge and models for the five Gulf U.S. states and Mexico, and to demonstrate its ability to help decision-makers better understand critical Gulf-scale issues. Within this preview, the mission of this project is to provide cross cutting solution network and rapid prototyping capability for the Gulf of Mexico region, in order to demonstrate substantial, collaborative, multi-agency research and transitional capabilities using unique NASA data sets and models to address regional problems. SERVIR Mesoamerica is seen as an excellent existing framework that can be used to integrate observational and GIs data bases, provide a sensor web interface, visualization and interactive analysis tools, archival functions, data dissemination and product generation within a Rapid Prototyping concept to assist decision-makers in better understanding Gulf-scale environmental issues.

  19. EAARL Coastal Topography-Eastern Louisiana Barrier Islands, Post-Hurricane Gustav, 2008: First Surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan

    2010-01-01

    the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  20. EAARL Coastal Topography-Mississippi and Alabama Barrier Islands, Post-Hurricane Gustav, 2008

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Nagle, D.B.; Klipp, E.S.; Vivekanandan, Saisudha; Fredericks, Xan; Segura, Martha

    2010-01-01

    survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  1. EAARL Coastal Topography-Eastern Florida, Post-Hurricane Jeanne, 2004: First Surface

    USGS Publications Warehouse

    Fredericks, Xan; Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Sallenger, A.H.; Brock, J.C.; Klipp, E.S.; Nagle, D.B.

    2010-01-01

    Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  2. EAARL Coastal Topography and Imagery-Naval Live Oaks Area, Gulf Islands National Seashore, Florida, 2007

    USGS Publications Warehouse

    Nagle, David B.; Nayegandhi, Amar; Yates, Xan; Brock, John C.; Wright, C. Wayne; Bonisteel, Jamie M.; Klipp, Emily S.; Segura, Martha

    2010-01-01

    using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  3. EAARL Coastal Topography - Fire Island National Seashore 2007

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Bonisteel, Jamie M.

    2008-01-01

    , and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or first surface topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  4. NASA and ESA Collaboration on Hexavalent Chrome Alternatives: Pretreatments Only Final Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    Hexavalent chromium (hex chrome or CR(VI)) is a widely used element within applied coating systems because of its self-healing and corrosion-resistant properties. The replacement of hex chrome in the processing of aluminum for aviation and aerospace applications remains a goal of great significance. Aluminum is the major manufacturing material of structures and components in the space flight arena. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) are engaged in a collaborative effort to test and evaluate alternatives to hexavalent chromium containing corrosion coating systems. NASA and ESA share common risks related to material obsolescence associated with hexavalent chromium used in corrosion-resistant coatings.

  5. Snow covered Alps of France, Italy, and Switzerland

    NASA Image and Video Library

    1973-07-30

    SL3-121-2438 (July-September 1973) --- The Alps of Switzerland, France and Italy are featured in this exceptional photograph taken by a hand-held camera from the Skylab space station during the second manned Skylab mission. Also visible in the out-the-window 70mm Hasselblad view are Lake Geneva, Lake of Lucerne, Rhone River and many other features. The Skylab 3 crewmen, astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma completed a 59-day mission with a successful splashdown on Sept. 25, 1973. Photo credit: NASA

  6. Interdependency of Fission Yeast Alp14/TOG and Coiled Coil Protein Alp7 in Microtubule Localization and Bipolar Spindle FormationD⃞

    PubMed Central

    Sato, Masamitsu; Vardy, Leah; Angel Garcia, Miguel; Koonrugsa, Nirada; Toda, Takashi

    2004-01-01

    The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules. PMID:14742702

  7. ALPS - A LINEAR PROGRAM SOLVER

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    Linear programming is a widely-used engineering and management tool. Scheduling, resource allocation, and production planning are all well-known applications of linear programs (LP's). Most LP's are too large to be solved by hand, so over the decades many computer codes for solving LP's have been developed. ALPS, A Linear Program Solver, is a full-featured LP analysis program. ALPS can solve plain linear programs as well as more complicated mixed integer and pure integer programs. ALPS also contains an efficient solution technique for pure binary (0-1 integer) programs. One of the many weaknesses of LP solvers is the lack of interaction with the user. ALPS is a menu-driven program with no special commands or keywords to learn. In addition, ALPS contains a full-screen editor to enter and maintain the LP formulation. These formulations can be written to and read from plain ASCII files for portability. For those less experienced in LP formulation, ALPS contains a problem "parser" which checks the formulation for errors. ALPS creates fully formatted, readable reports that can be sent to a printer or output file. ALPS is written entirely in IBM's APL2/PC product, Version 1.01. The APL2 workspace containing all the ALPS code can be run on any APL2/PC system (AT or 386). On a 32-bit system, this configuration can take advantage of all extended memory. The user can also examine and modify the ALPS code. The APL2 workspace has also been "packed" to be run on any DOS system (without APL2) as a stand-alone "EXE" file, but has limited memory capacity on a 640K system. A numeric coprocessor (80X87) is optional but recommended. The standard distribution medium for ALPS is a 5.25 inch 360K MS-DOS format diskette. IBM, IBM PC and IBM APL2 are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  8. EAARL Coastal Topography-Cape Hatteras National Seashore, North Carolina, Post-Nor'Ida, 2009: Bare Earth

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Stevens, Sara

    2011-01-01

    resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations.

  9. Understanding USGS user needs and Earth observing data use for decision making

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2016-12-01

    US Geological Survey (USGS) initiated the Requirements, Capabilities and Analysis for Earth Observations (RCA-EO) project in the Land Remote Sensing (LRS) program, collaborating with the National Oceanic and Atmospheric Administration (NOAA) to jointly develop the supporting information infrastructure - The Earth Observation Requirements Evaluation Systems (EORES). RCA-EO enables us to collect information on current data products and projects across the USGS and evaluate the impacts of Earth observation data from all sources, including spaceborne, airborne, and ground-based platforms. EORES allows users to query, filter, and analyze usage and impacts of Earth observation data at different organizational level within the bureau. We engaged over 500 subject matter experts and evaluated more than 1000 different Earth observing data sources and products. RCA-EO provides a comprehensive way to evaluate impacts of Earth observing data on USGS mission areas and programs through the survey of 345 key USGS products and services. We paid special attention to user feedback about Earth observing data to inform decision making on improving user satisfaction. We believe the approach and philosophy of RCA-EO can be applied in much broader scope to derive comprehensive knowledge of Earth observing systems impacts and usage and inform data products development and remote sensing technology innovation.

  10. NASA Conjunction Assessment Organizational Approach and the Associated Determination of Screening Volume Sizes

    NASA Technical Reports Server (NTRS)

    Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    NASA is committed to safety of flight for all of its operational assets Performed by CARA at NASA GSFC for robotic satellites Focus of this briefing Performed by TOPO at NASA JSC for human spaceflight he Conjunction Assessment Risk Analysis (CARA) was stood up to offer this service to all NASA robotic satellites Currently provides service to 70 operational satellites NASA unmanned operational assets Other USG assets (USGS, USAF, NOAA) International partner assets Conjunction Assessment (CA) is the process of identifying close approaches between two orbiting objects; sometimes called conjunction screening The Joint Space Operations Center (JSpOC) a USAF unit at Vandenberg AFB, maintains the high accuracy catalog of space objects, screens CARA-supported assets against the catalog, performs OD tasking, and generates close approach data.

  11. USGS integrated drought science

    USGS Publications Warehouse

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.

    2017-06-05

    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  12. Advances in integrated system heath management system technologies : overview of NASA and industry collaborative activities

    NASA Technical Reports Server (NTRS)

    Dixit, Sunil; Brown, Steve; Fijany, Amir; Park, Han; Mackey, Ryan; James, Mark; Baroth, Ed

    2005-01-01

    This paper will describe recent advances in ISHM technologies made through collaboration between NASA and industry. In particular, the paper will focus on past, present, and future technology development and maturation efforts at the Jet Propulsion Laboratory (JPL) and its industry partner, Northrop Grumman lntegrated Systems (NGIS).

  13. USGS global change science strategy: A framework for understanding and responding to climate and land-use change

    USGS Publications Warehouse

    Burkett, Virginia R.; Taylor, Ione L.; Belnap, Jayne; Cronin, Thomas M.; Dettinger, Michael D.; Frazier, Eldrich L.; Haines, John W.; Kirtland, David A.; Loveland, Thomas R.; Milly, Paul C.D.; O'Malley, Robin; Thompson, Robert S.

    2011-01-01

    This U.S. Geological Survey (USGS) Global Change Science Strategy expands on the Climate Variability and Change science component of the USGS 2007 Science Strategy, “Facing Tomorrow’s Challenges: USGS Science in the Coming Decade” (U.S. Geological Survey, 2007). Here we embrace the broad definition of global change provided in the U.S. Global Change Research Act of 1990 (Public Law 101–606,104 Stat. 3096–3104)—“Changes in the global environment (including alterations in climate, land productivity, oceans or other water resources, atmospheric chemistry, and ecological systems) that may alter the capacity of the Earth to sustain life”—with a focus on climate and land-use change.There are three major characteristics of this science strategy. First, it addresses the science required to broadly inform global change policy, while emphasizing the needs of natural-resource managers and reflecting the role of the USGS as the science provider for the Department of the Interior and other resource-management agencies. Second, the strategy identifies core competencies, noting 10 critical capabilities and strengths the USGS uses to overcome key problem areas. We highlight those areas in which the USGS is a science leader, recognizing the strong partnerships and effective collaboration that are essential to address complex global environmental challenges. Third, it uses a query-based approach listing key research questions that need to be addressed to create an agenda for hypothesis-driven global change science organized under six strategic goals. Overall, the strategy starts from where we are, provides a vision for where we want to go, and then describes high-priority strategic actions, including outcomes, products, and partnerships that can get us there. Global change science is a well-defined research field with strong linkages to the ecosystems, water, energy and minerals, natural hazards, and environmental health components of the USGS Science Strategy

  14. NASA Collaborative Design Processes

    NASA Technical Reports Server (NTRS)

    Jones, Davey

    2017-01-01

    This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.

  15. Celebrating ten years of collaboration

    USGS Publications Warehouse

    Cushing, W. Matthew

    2017-01-01

    Since the GEOSUR Program launched in 2007, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center has had the honor of collaborating with CAF, PAIGH, and others supporting the Latin America GEOSUR Program. The catalyst for starting the program was the convergence of regional geospatial activities USGS, PAIGH, and CAF had been involved in and they seized the opportunity to consolidate, and increase the sharing of geospatial information at national and regional levels.

  16. The USGS role in mapping the nation's submerged lands

    USGS Publications Warehouse

    Schwab, Bill; Haines, John

    2004-01-01

    The seabed provides habitat for a diverse marine life having commercial, recreational, and intrinsic value. The habitat value of the seabed is largely a function of the geological structure and related geological, biological, oceanologic, and geochemical processes. Of equal importance, the nation's submerged lands contain energy and mineral resources and are utilized for the siting of offshore infrastructure and waste disposal. Seabed character and processes influence the safety and viability of offshore operations. Seabed and subseabed characterization is a prerequisite for the assessment, protection, and utilization of both living and non-living marine resources. A comprehensive program to characterize and understand the nation's submerged lands requires scientific expertise in the fields of geology, biology, hydrography, and oceanography. The U.S. Geological Survey (USGS) has long experience as the Federal agency charged with conducting geologic research and mapping in both coastal and offshore regions. The USGS Coastal and Marine Geology Program (CMGP) leads the nation in expertise related to characterization of seabed and subseabed geology, geological processes, seabed dynamics, and (in collaboration with the National Oceanic and Atmospheric Administration (NOAA) and international partners) habitat geoscience. Numerous USGS studies show that sea-floor geology and processes determine the character and distribution of biological habitats, control coastal evolution, influence the coastal response to storm events and human alterations, and determine the occurrence and concentration of natural resources.

  17. ALPS: A Linear Program Solver

    NASA Technical Reports Server (NTRS)

    Ferencz, Donald C.; Viterna, Larry A.

    1991-01-01

    ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.

  18. Scanning and georeferencing historical USGS quadrangles

    USGS Publications Warehouse

    Fishburn, Kristin A.; Davis, Larry R.; Allord, Gregory J.

    2017-06-23

    The U.S. Geological Survey (USGS) National Geospatial Program is scanning published USGS 1:250,000-scale and larger topographic maps printed between 1884, the inception of the topographic mapping program, and 2006. The goal of this project, which began publishing the Historical Topographic Map Collection in 2011, is to provide access to a digital repository of USGS topographic maps that is available to the public at no cost. For more than 125 years, USGS topographic maps have accurately portrayed the complex geography of the Nation. The USGS is the Nation’s largest producer of traditional topographic maps, and, prior to 2006, USGS topographic maps were created using traditional cartographic methods and printed using a lithographic process. The next generation of topographic maps, US Topo, is being released by the USGS in digital form, and newer technologies make it possible to also deliver historical maps in the same electronic format that is more publicly accessible.

  19. Study of USGS/NASA land use classification system. [compatibility of land use classification system with computer processing techniques employed for land use mapping from ERTS data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Faust, N. L.

    1974-01-01

    It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.

  20. A Collaboration on Collaboration

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent

    2004-01-01

    NASA's 2003-2004 Leadership Development Program class recognized that effective collaborations are often the key to achieving mission success. Personal connections and common goals were key elements of their work together and key findings of their collaboration benchmarking within the agency.

  1. Completion summary for boreholes USGS 140 and USGS 141 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2014-01-01

    In 2013, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 140 and USGS 141 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 140 initially was cored to collect continuous geologic data, and then re-drilled to complete construction as a monitor well. Borehole USGS 141 was drilled and constructed as a monitor well without coring. Boreholes USGS 140 and USGS 141 are separated by about 375 feet (ft) and have similar geologic layers and hydrologic characteristics based on geophysical and aquifer test data collected. The final construction for boreholes USGS 140 and USGS 141 required 6-inch (in.) diameter carbon-steel well casing and 5-in. diameter stainless-steel well screen; the screened monitoring interval was completed about 50 ft into the eastern Snake River Plain aquifer, between 496 and 546 ft below land surface (BLS) at both sites. Following construction and data collection, dedicated pumps and water-level access lines were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Borehole USGS 140 was cored continuously, starting from land surface to a depth of 543 ft BLS. Excluding surface sediment, recovery of basalt and sediment core at borehole USGS 140 was about 98 and 65 percent, respectively. Based on visual inspection of core and geophysical data, about 32 basalt flows and 4 sediment layers were collected from borehole USGS 140 between 34 and 543 ft BLS. Basalt texture for borehole USGS 140 generally was described as aphanitic, phaneritic, and porphyritic; rubble zones and flow mold structure also were described in recovered core material. Sediment layers, starting near 163 ft BLS, generally were composed of fine-grained sand and silt with a lesser amount of clay; however, between 223 and 228 ft BLS, silt

  2. NASA's MERBoard: An Interactive Collaborative Workspace Platform. Chapter 4

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Wales, Roxana; Gossweiler, Rich

    2003-01-01

    This chapter describes the ongoing process by which a multidisciplinary group at NASA's Ames Research Center is designing and implementing a large interactive work surface called the MERBoard Collaborative Workspace. A MERBoard system involves several distributed, large, touch-enabled, plasma display systems with custom MERBoard software. A centralized server and database back the system. We are continually tuning MERBoard to support over two hundred scientists and engineers during the surface operations of the Mars Exploration Rover Missions. These scientists and engineers come from various disciplines and are working both in small and large groups over a span of space and time. We describe the multidisciplinary, human-centered process by which this h4ERBoard system is being designed, the usage patterns and social interactions that we have observed, and issues we are currently facing.

  3. USGS Water Data for Washington

    USGS Publications Warehouse

    ,

    2009-01-01

    The U.S. Geological Survey (USGS) has been investigating the water resources of Washington State since the latter part of the 19th century. During this time, demand for water has evolved from primarily domestic and stock needs to the current complex requirements for public-water supplies, irrigation, power generation, navigation, ecological needs, and numerous other uses. Water-resource data collected by the USGS in Washington have been, or soon will be, published by the USGS Washington Water Science Center (WAWSC) in numerous data and interpretive reports. Most of these reports are available online at the WAWSC web page http://wa.water.usgs.gov/pubs/

  4. DIGITAL LINE GRAPHS - USGS

    EPA Science Inventory

    USGS DLGs are digital representations of program-quadrangle format and sectional maps. All DLG data distributed by the United States Geological Survey (USGS) are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, ...

  5. NASA / Pratt and Whitney Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Chris; Lord, Wed

    2008-01-01

    Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  6. Second Interim Report NASA - easyJet Collaboration on the Human Factors Monitoring Program (HFMP) Study

    NASA Technical Reports Server (NTRS)

    Srivistava, Ashok N.; Barton, Phil

    2012-01-01

    This is the second interim report jointly prepared by NASA and easyJet on the work performed under the agreement to collaborate on a study of the factors entailed in flight and cabin-crew fatigue, and decreases in performance associated with fatigue. The objective of this Agreement is to generate reliable procedures that aid in understanding the levels and characteristics of flight and cabin-crew fatigue factors, both latent and proximate, whose confluence will likely result in unacceptable crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and easyJet are both interested in assessing and testing NASA s automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases; much larger than can be handled practically by human experts.

  7. USGS research on three mid-latitude glaciers

    USGS Publications Warehouse

    Green, J.R.; DeWayne, Cecil L.; Naftz, D.L.; Schuster, P.F.

    2000-01-01

    Low- and mid-latitude regions of the earth are home to 80 to 90 percent of the world's population. Because of this, the U.S. Geological Survey (USGS) is conducting a research program to study the geochemistry of precipitation, snow, ice, and runoff samples from mid-latitude glaciers in Kyrghyzstan, Nepal, and the United States, Areas of research, such as ground-water studies, reconstructing paleoclimate records, describing anthropogenic input of chemicals to the environment, and modeling global climate, are important to the well being of the worlds' population and can be supplemented by the collection and chemical analysis of snow and ice cores. Nearly all the constituents that compose snow and ice-core samples contribute vital information, whether it be the microbial communities that flourish in snow, radionuclides present in various amounts in all the samples, or location-specific deposits of mercury and nitrate. This work is hastened by the fact that mid-latitude glaciers, and the information preserved in them, are rapidly disappearing as a result of global warming. Research collaboration for this project includes 12 national and 7 international universities, and 4 government agencies. Funding is provided by the National Science Foundation, the U.S. Department of Energy, and the USGS.

  8. Improving open access to the results of USGS research (Invited)

    NASA Astrophysics Data System (ADS)

    Bristol, S.

    2013-12-01

    Government Information' and a related policy from the Office of Management and Budget entitled 'Open Data Policy-Managing Information as an Asset.' Together these three directives describe an overall strategy for Federal agencies to improve the open accessibility and usability of data as a crucial resource. The USGS is coordinating responsive actions to these directives and other related initiatives to orchestrate policy and new capabilities that will enable and accelerate scientific discovery within core mission responsibilities and help move science forward on the whole. Wherever possible, existing capabilities and technological systems are being leveraged and combined to reduce duplication and the need for new investments. Policies associated with data management and our overall Fundamental Science Practices are being updated and implemented with care to not create additional burdens on researchers and data stewards. All of these actions are being conducted in collaboration with our Earth science partners in government, academia, and industry to discover, implement, and sustain the best practices and solutions.

  9. Scanning and georeferencing historical USGS quadrangles

    USGS Publications Warehouse

    Davis, Larry R.; Allord, G.J.

    2011-01-01

    The USGS Historical Quadrangle Scanning Project (HQSP) is scanning all scales and all editions of approximately 250,000 topographic maps published by the U.S. Geological Survey (USGS) since the inception of the topographic mapping program in 1884. This scanning will provide a comprehensive digital repository of USGS topographic maps, available to the public at no cost. This project serves the dual purpose of creating a master catalog and digital archive copies of the irreplaceable collection of topographic maps in the USGS Reston Map Library as well as making the maps available for viewing and downloading from the USGS Store and The National Map Viewer.

  10. EPA and USGS scientists conduct study to determine prevalence of newly-emerging contaminants in treated and untreated drinking water

    EPA Pesticide Factsheets

    Scientists from the EPA and USGS are collaborating on a research study to determine the presence of contaminants of emerging concern in treated and untreated drinking water collected from drinking water treatment plants.

  11. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  12. Steady-State ALPS for Real-Valued Problems

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2009-01-01

    The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.

  13. The MY NASA DATA Project: Tools and a Collaboration Space for Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-05-01

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is charged with serving a wide user community that is interested in its large data holdings in the areas of Aerosols, Clouds, Radiation Budget, and Tropospheric Chemistry. Most of the data holdings, however, are in large files with specialized data formats. The MY NASA DATA (mynasadata.larc.nasa.gov) project began in 2004, as part of the NASA Research, Education, and Applications Solutions Network (REASoN), in order to open this important resource to a broader community including K-12 education and citizen scientists. MY NASA DATA (short for Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs) consists of a web space that collects tools, lesson plans, and specially developed documentation to help the target audience more easily use the vast collection of NASA data about the Earth System. The core piece of the MY NASA DATA project is the creation of microsets (both static and custom) that make data easily accessible. The installation of a Live Access Server (LAS) greatly enhanced the ability for teachers, students, and citizen scientists to create and explore custom microsets of Earth System Science data. The LAS, which is an open source software tool using emerging data standards, also allows the MY NASA DATA team to make available data on other aspects of the Earth System from collaborating data centers. We are currently working with the Physical Oceanography DAAC at the Jet Propulsion Laboratory to bring in several parameters describing the ocean. In addition, MY NASA DATA serves as a central space for the K-12 community to share resources. The site already includes a dozen User-contributed lesson plans. This year we will be focusing on the Citizen Science portion of the site, and will be welcoming user-contributed project ideas, as well as reports of completed projects. An e-mentor network has also been created to involve a wider community in

  14. 13 CFR 120.840 - Accredited Lenders Program (ALP).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (ALP). (a) General. Under the ALP program, SBA designates qualified CDCs as ALP CDCs, gives them... approval and servicing actions. (b) Application. A CDC must apply for ALP status to the Lead SBA Office.... (c) Eligibility. In order for a CDC to be eligible to receive ALP status, its application must show...

  15. 13 CFR 120.840 - Accredited Lenders Program (ALP).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (ALP). (a) General. Under the ALP program, SBA designates qualified CDCs as ALP CDCs, gives them... approval and servicing actions. (b) Application. A CDC must apply for ALP status to the Lead SBA Office.... (c) Eligibility. In order for a CDC to be eligible to receive ALP status, its application must show...

  16. 13 CFR 120.840 - Accredited Lenders Program (ALP).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (ALP). (a) General. Under the ALP program, SBA designates qualified CDCs as ALP CDCs, gives them... approval and servicing actions. (b) Application. A CDC must apply for ALP status to the Lead SBA Office.... (c) Eligibility. In order for a CDC to be eligible to receive ALP status, its application must show...

  17. 13 CFR 120.840 - Accredited Lenders Program (ALP).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (ALP). (a) General. Under the ALP program, SBA designates qualified CDCs as ALP CDCs, gives them... approval and servicing actions. (b) Application. A CDC must apply for ALP status to the Lead SBA Office.... (c) Eligibility. In order for a CDC to be eligible to receive ALP status, its application must show...

  18. 13 CFR 120.840 - Accredited Lenders Program (ALP).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (ALP). (a) General. Under the ALP program, SBA designates qualified CDCs as ALP CDCs, gives them... approval and servicing actions. (b) Application. A CDC must apply for ALP status to the Lead SBA Office.... (c) Eligibility. In order for a CDC to be eligible to receive ALP status, its application must show...

  19. The AlpArray Seismic Network: status and operation

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Kissling, Edi

    2017-04-01

    The AlpArray initiative (http://www.alparray.ethz.ch) is a large-scale European collaboration to study the entire Alpine orogen at high resolution and in 3D with a large variety of geoscientific methods. The core element of the initiative is an extensive and dense broadband seismological network, the AlpArray Seismic Network (AASN). Over 300 temporary stations complement the permanent seismological stations to ensure homogeneous coverage of the greater Alpine area. The AASN has officially started operation in January 2016 and is now complete on land. It is operated in a joint effort by a number of institutions from Austria, Bosnia-Herzegovina, Croatia, Czech Republic, France, Germany, Hungary, Italy, Slovakia and Switzerland. In the Ligurian Sea, a 32-station OBS campaign is planned from June 2017 until March 2018. This will complete the coverage of the greater Alpine area at an unprecedented resolution. In this poster we present the actual status of the deployment, the effort undertaken by the contributing groups, station performance, best practices, data management as well as often encountered challenges, and provide a meeting and discussion point during the conference.

  20. Hot Alps (Invited)

    NASA Astrophysics Data System (ADS)

    Speranza, F.; Minelli, L.; Pignatelli, A.; Gilardi, M.

    2013-12-01

    Although it is frequently assumed that crust of Alpine orogens is hot due to the occurrence of thick and young (hence radiogenic) crust, evidence on the thermal ranking of orogens is contradictory. Heat flow measurements from shallow wells (depth ≤ 1 km) in the Alps yield a relatively cold thermal regime of 50-80 mW/m2, but data are likely biased by meteoric cold-water circulation. Here we report on the spectral analysis of the aeromagnetic residuals of northern Italy to derive the Curie point depth (CPD), assumed to represent the 600°C isotherm depth. Airborne magnetics were acquired on whole Italy during the 1970s by the national oil company AGIP (now Eni). Data were gathered by several surveys carried out at 1000-13,300 feet (300-4000 m) altitude, with flight line spacing of 2-10 km. Surveys of the Alps and Po Plain (northern Italy) were obtained both with a line spacing of 5 km (and 5 km tie lines), at an altitude of 4000-5000 and 13,300 feet, respectively. To evaluate CPDs we used the centroid method (routinely adopted in recent CPD studies on East Asia and central-southern Europe) on 72 square windows of 100-110 km edge, with a 50% degree of superposition. CPDs vary between 16 and 38 km (22 km on average) in the Po Plain, located south of the Alps and representing the Adriatic-African foreland area. Conversely, the Alps yield very shallow CPDs, ranging between 6 and 15 km (10 km on average). CPDs fall systematically above local Moho depths, implying that magnetic source bottoms documented in this study do not represent a lithological boundary over non-magnetic peridotitic mantle, but can be safely associated with CPDs and the 600°C isotherm. CPDs from the Po Plain are in rough agreement with reported heat flow values of 25-60 mW/m2, and imply and average thermal conductivity (k) of the Po Plain crust of 1.5 W/m°K, at the lower bound of k values measured and inferred for the crust. Conversely, the average 10 km CPD documented in the Alps translates into

  1. Partnering with NASA: An Overview

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2017-01-01

    Partnerships is an important part of doing business at NASA. NASA partners with external organizations to access capabilities under collaborative agreements; enters into agreements for partner access to NASA capabilities; expand overall landscape of space activity; and spurring innovation. NASA partnerships consist of Reimbursable and Non-Reimbursable Space Act Agreements. Partnerships at Ames aligns with Ames' core competencies, and Partners often office in the NASA Research Park, which is an established regional innovation cluster that facilitates commercialization and services as a technology accelerator via onsite collaborations between NASA and its partners.

  2. USGS response to an urban earthquake, Northridge '94

    USGS Publications Warehouse

    Updike, Randall G.; Brown, William M.; Johnson, Margo L.; Omdahl, Eleanor M.; Powers, Philip S.; Rhea, Susan; Tarr, Arthur C.

    1996-01-01

    For the past 2 years, the USGS has rigorously pursued over 40 tasks focused on the USGS Northridge Earthquake Mission. This document is a summary report of the USGS findings; additional technical reports on specific USGS tasks are appearing in various scientific journals and USGS publications.

  3. A Coordinated USGS Science Response to Hurricane Sandy

    NASA Astrophysics Data System (ADS)

    Jones, S.; Buxton, H. T.; Andersen, M.; Dean, T.; Focazio, M. J.; Haines, J.; Hainly, R. A.

    2013-12-01

    enhancing our work with other agencies. The data, information, and tools that are being produced by implementing this plan will: (1) further characterize impacts and changes, (2) guide mitigation and restoration of impacted communities and ecosystems, (3) inform a redevelopment strategy aimed at developing resilient coastal communities and ecosystems, (4) improve preparedness and responsiveness to the next hurricane or similar coastal disaster, and (5) enable improved hazard assessment, response, and recovery for future storms along the hurricane prone shoreline of the United States. The activities outlined in the plan are organized in five themes based on impact types and information needs. These USGS science themes are: Theme 1: Coastal topography and bathymetry. Theme 2: Impacts to coastal beaches and barriers. Theme 3: Impacts of storm surge and estuarine and bay hydrology. Theme 4: Impacts on environmental quality and persisting contaminant exposures. Theme 5: Impacts to coastal ecosystems, habitats, and fish and wildlife. The major emphases in the implementation of this plan are interacting with stakeholders to better understand their specific data and information needs, engaging with other Federal agencies and non-governmental agencies to encourage collaboration and avoid duplication, defining the best way to make information available, and providing applications of USGS science and expertise to support decision-making.

  4. USGS Emergency Response Resources

    USGS Publications Warehouse

    Bewley, Robert D.

    2011-01-01

    Every day, emergency responders are confronted with worldwide natural and manmade disasters, including earthquakes, floods, hurricanes, landslides, tsunami, volcanoes, wildfires, terrorist attacks, and accidental oil spills.The U.S. Geological Survey (USGS) is ready to coordinate the provisioning and deployment of USGS staff, equipment, geospatial data, products, and services in support of national emergency response requirements.

  5. EAARL Coastal Topography - Northern Gulf of Mexico

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, Abby; Wright, C. Wayne; Travers, Laurinda J.; Lebonitte, James

    2008-01-01

    -spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers and an integrated miniature digital inertial measurement unit which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system on September 19, 2004. The survey resulted in the acquisition of 3.2 gigabytes of data. The data were processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for pre-survey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of 'last return' elevations.

  6. First Annual Report: NASA-ONERA Collaboration on Human Factors in Aviation Accidents and Incidents

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok; Fabiani, Patrick

    2012-01-01

    This is the first annual report jointly prepared by NASA and ONERA on the work performed under the agreement to collaborate on a study of the human factors entailed in aviation accidents and incidents particularly focused on consequences of decreases in human performance associated with fatigue. The objective of this Agreement is to generate reliable, automated procedures that improve understanding of the levels and characteristics of flight-crew fatigue factors whose confluence will likely result in unacceptable crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and ONERA are collaborating on the development and assessment of automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases much larger than can be handled practically by human experts. This report presents the approach that is currently expected to be used in processing and analyzing the data for identifying decrements in aircraft performance and examining their relationships to decrements in crewmember performance due to fatigue. The decisions on the approach were based on samples of both the numerical and textual data that will be collected during the four studies planned under the Human Factors Monitoring Program (HFMP). Results of preliminary analyses of these sample data are presented in this report.

  7. Physical property studies in the USGS GHASTLI Laboratory

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Hutchinson, Deborah R.; Mason, David H.

    2008-01-01

    One of the many challenges in studying methane hydrate is that it is unstable at typical surface pressure and temperature conditions. To enable methane hydrates and hydrate-bearing sediments to be formed, analyzed, and experimented with, the National Energy Technology Laboratory (NETL), and the U.S. Geological Survey (USGS) in Woods Hole, MA collaborated in the development of the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI). Over the past decade, the USGS has been operating GHASTLI and collaborating in the development of new sample handling tools and procedures, in an effort to improve our ability to analyze methane hydrate in the lab. These tools will enable hydrate researchers to more confidently link field studies (for example geophysics or drilling) with theoretical and predictive studies, leading to a better understanding of the geological conditions and processes that control the growth and concentration of natural gas hydrates, how hydrates affect the properties of the host sediments, and how the hydrate-sediment system changes when hydrate dissociates and releases the previously bound gas. To date, GHASTLI has been used to measure natural samples from ODP Leg 164 (Blake Ridge off the U.S. southeast Atlantic margin), Leg 204 (Hydrate Ridge off the Pacific Northwest margin) and the Mallik well (Mackenzie Delta in northwestern Canada). Additional samples in the queue for analysis are from the Chevron Joint Industry Project Experiment in the Gulf of Mexico and most recently, from IODP Leg 311 off Vancouver Island. Several foreign nations have asked whether GHASTLI will be available to analyze samples that might be recovered during national drilling programs. The ability to perform lab testing of hydrates within sediments is one of the unique capabilities of GHASTLI that separates it from other simulators at NETL and elsewhere.

  8. NASA's Solar System Exploration Research Virtual Institute: Building Collaboration Through International Partnerships

    NASA Technical Reports Server (NTRS)

    Gibbs, K. E.; Schmidt, G. K.

    2017-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on re-search at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the international partner re-search efforts and how we are engaging the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  9. Drilling, construction, geophysical log data, and lithologic log for boreholes USGS 142 and USGS 142A, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Hodges, Mary K.V.; Schusler, Kyle; Mudge, Christopher

    2017-07-27

    Starting in 2014, the U.S. Geological Survey in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 142 and USGS 142A for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 142 initially was cored to collect rock and sediment core, then re-drilled to complete construction as a screened water-level monitoring well. Borehole USGS 142A was drilled and constructed as a monitoring well after construction problems with borehole USGS 142 prevented access to upper 100 feet (ft) of the aquifer. Boreholes USGS 142 and USGS 142A are separated by about 30 ft and have similar geology and hydrologic characteristics. Groundwater was first measured near 530 feet below land surface (ft BLS) at both borehole locations. Water levels measured through piezometers, separated by almost 1,200 ft, in borehole USGS 142 indicate upward hydraulic gradients at this location. Following construction and data collection, screened water-level access lines were placed in boreholes USGS 142 and USGS 142A to allow for recurring water level measurements.Borehole USGS 142 was cored continuously, starting at the first basalt contact (about 4.9 ft BLS) to a depth of 1,880 ft BLS. Excluding surface sediment, recovery of basalt, rhyolite, and sediment core at borehole USGS 142 was approximately 89 percent or 1,666 ft of total core recovered. Based on visual inspection of core and geophysical data, material examined from 4.9 to 1,880 ft BLS in borehole USGS 142 consists of approximately 45 basalt flows, 16 significant sediment and (or) sedimentary rock layers, and rhyolite welded tuff. Rhyolite was encountered at approximately 1,396 ft BLS. Sediment layers comprise a large percentage of the borehole between 739 and 1,396 ft BLS with grain sizes ranging from clay and silt to cobble size. Sedimentary rock layers had calcite cement. Basalt flows

  10. EAARL coastal topography-Cape Hatteras National Seashore, North Carolina, post-Nor'Ida, 2009: first surface

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Fredericks, Xan; Stevens, Sara

    2010-01-01

    the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  11. EAARL Coastal Topography and Imagery-Assateague Island National Seashore, Maryland and Virginia, Post-Nor'Ida, 2009

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Klipp, E.S.; Vivekanandan, Saisudha; Fredericks, Xan; Stevens, Sara

    2010-01-01

    the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  12. EAARL Coastal Topography-Fire Island National Seashore, New York, Post-Nor'Ida, 2009

    USGS Publications Warehouse

    Nayegandhi, Amar; Vivekanandan, Saisudha; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Bonisteel-Cormier, J.M.; Fredericks, Xan; Stevens, Sara

    2010-01-01

    Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  13. EAARL coastal topography and imagery-Fire Island National Seashore, New York, 2009

    USGS Publications Warehouse

    Vivekanandan, Saisudha; Klipp, E.S.; Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Brock, J.C.; Wright, C.W.; Nagle, D.B.; Fredericks, Xan; Stevens, Sara

    2010-01-01

    Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  14. EAARL Coastal Topography-Sandy Hook Unit, Gateway National Recreation Area, New Jersey, Post-Nor'Ida, 2009

    USGS Publications Warehouse

    Nayegandhi, Amar; Vivekanandan, Saisudha; Brock, J.C.; Wright, C.W.; Bonisteel-Cormier, J.M.; Nagle, D.B.; Klipp, E.S.; Stevens, Sara

    2010-01-01

    processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website.

  15. P wave anisotropic tomography of the Alps

    NASA Astrophysics Data System (ADS)

    Hua, Yuanyuan; Zhao, Dapeng; Xu, Yixian

    2017-06-01

    The first tomographic images of P wave azimuthal and radial anisotropies in the crust and upper mantle beneath the Alps are determined by joint inversions of arrival time data of local earthquakes and teleseismic events. Our results show the south dipping European plate with a high-velocity (high-V) anomaly beneath the western central Alps and the north dipping Adriatic plate with a high-V anomaly beneath the Eastern Alps, indicating that the subduction polarity changes along the strike of the Alps. The P wave azimuthal anisotropy is characterized by mountain chain-parallel fast-velocity directions (FVDs) in the western central Alps and NE-SW FVDs in the Eastern Alps, which may be caused by mantle flow induced by the slab subductions. Our results reveal a negative radial anisotropy (i.e., Vph < Vpv) within the subducting slabs and a positive radial anisotropy (i.e., Vph > Vpv) in the low-velocity mantle wedge, which may reflect the subvertical plate subduction and its induced mantle flow. The results of anisotropic tomography provide important new information on the complex mantle structure and dynamics of the Alps and adjacent regions.

  16. USGS 1-min Dst index

    USGS Publications Warehouse

    Gannon, J.L.; Love, J.J.

    2011-01-01

    We produce a 1-min time resolution storm-time disturbance index, the USGS Dst, called Dst8507-4SM. This index is based on minute resolution horizontal magnetic field intensity from low-latitude observatories in Honolulu, Kakioka, San Juan and Hermanus, for the years 1985-2007. The method used to produce the index uses a combination of time- and frequency-domain techniques, which more clearly identifies and excises solar-quiet variation from the horizontal intensity time series of an individual station than the strictly time-domain method used in the Kyoto Dst index. The USGS 1-min Dst is compared against the Kyoto Dst, Kyoto Sym-H, and the USGS 1-h Dst (Dst5807-4SH). In a time series comparison, Sym-H is found to produce more extreme values during both sudden impulses and main phase maximum deviation, possibly due to the latitude of its contributing observatories. Both Kyoto indices are shown to have a peak in their distributions below zero, while the USGS indices have a peak near zero. The USGS 1-min Dst is shown to have the higher time resolution benefits of Sym-H, while using the more typical low-latitude observatories of Kyoto Dst. ?? 2010.

  17. Snake River Plain FORGE Well Data for USGS-142

    DOE Data Explorer

    Robert Podgorney

    2015-11-23

    Well data for the USGS-142 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, and photos of rhyolite core samples. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  18. USGS Map-on-Demand Printing

    USGS Publications Warehouse

    ,

    1999-01-01

    Currently, the U.S. Geological Survey (USGS) uses conventional lithographic printing techniques to produce paper copies of most of its mapping products. This practice is not economical for those products that are in low demand. With the advent of newer technologies, high-speed, large-format printers have been coupled with innovative computer software to turn digital map data into a printed map. It is now possible to store and retrieve data from vast geospatial data bases and print a map on an as-needed basis; that is, print on demand, thereby eliminating the need to warehouse an inventory of paper maps for which there is low demand. Using print-on-demand technology, the USGS is implementing map-on-demand (MOD) printing for certain infrequently requested maps. By providing MOD, the USGS can offer an alternative to traditional, large-volume printing and can improve its responsiveness to customers by giving them greater access to USGS scientific data in a format that otherwise might not be available.

  19. NASA and ESA Collaboration on Hexavalent Chrome Alternatives - Pretreatments with Primers Screening Final Test Report

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.; Kessel, Kurt R.

    2015-01-01

    Hexavalent chromium (hex chrome or Cr(VI)) is a widely used element within applied coating systems because of its self-healing and corrosion-resistant properties. The replacement of hex chrome in the processing of aluminum for aviation and aerospace applications remains a goal of great significance. Aluminum is the major manufacturing material of structures and components in the space flight arena. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) are engaged in a collaborative effort to test and evaluate alternatives to hexavalent chromium containing corrosion coating systems. NASA and ESA share common risks related to material obsolescence associated with hexavalent chromium used in corrosion-resistant coatings. In the United States, Occupational Safety and Health Administration (OSHA) studies have concluded that hexavalent chromium is carcinogenic and poses significant risk to human health. On May 5, 2011, amendments to the Defense Federal Acquisition Regulation Supplement (DFARS) were issued in the Federal Register. Subpart 223.73 prohibits contracts from requiring hexavalent chromium in deliverables unless certain exceptions apply. Subpart 252.223-7008 provides the contract clause prohibiting contractors and subcontractors from using or delivering hexavalent chromium in a concentration greater than 0.1 percent by weight for all new contracts associated with supplies, maintenance and repair services, and construction materials. ESA faces its own increasingly stringent regulations within European directives such as Registration, Evaluation, Authorization and Restriction of Chemical (REACH) substances and the Restriction of Hazardous Substances Directive (RoHS) which have set a mid-2017 sunset date for hexavalent chromium. NASA and ESA continue to search for an alternative to hexavalent chromium in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and

  20. USGS science in Menlo Park -- a science strategy for the U.S. Geological Survey Menlo Park Science Center, 2005-2015

    USGS Publications Warehouse

    Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire

    2006-01-01

    In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and

  1. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  2. OpenStreetMap Collaborative Prototype, Phase 1

    USGS Publications Warehouse

    Wolf, Eric B.; Matthews, Greg D.; McNinch, Kevin; Poore, Barbara S.

    2011-01-01

    Phase One of the OpenStreetMap Collaborative Prototype (OSMCP) attempts to determine if the open source software developed for the OpenStreetMap (OSM, http://www.openstreetmap.org) can be used for data contributions and improvements that meet or exceed the requirements for integration into The National Map (http://www.nationalmap.gov). OpenStreetMap Collaborative Prototype Phase One focused on road data aggregated at the state level by the Kansas Data Access and Support Center (DASC). Road data from the DASC were loaded into a system hosted by the U.S. Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) in Rolla, Missouri. U.S. Geological Survey editing specifications were developed by NGTOC personnel (J. Walters and G. Matthews, USGS, unpub. report, 2010). Interstate and U.S. Highways in the dataset were edited to the specifications by NGTOC personnel while State roads were edited by DASC personnel. Resulting data were successfully improved to meet standards for The National Map once the system and specifications were in place. The OSM software proved effective in providing a usable platform for collaborative data editing

  3. USGS Field Activities 12BHM01, 12BHM02, 12BHM03, 12BHM04, and 12BHM05 on the West Florida Shelf, in February, April, May, June, and August 2012

    USGS Publications Warehouse

    Robbins, Lisa L.; Knorr, Paul O.; Daly, Kendra L.; Barrera, Kira E.

    2014-01-01

    As part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program project "Response of Florida Shelf Ecosystems to Climate Change" and in partnership with Kendra Daly, University of South Florida (USF), data on surface ocean carbonate chemistry were collected on five cruises along transects on the shallow inner west Florida shelf and northern Gulf of Mexico in 2012. Data from the 2011 cruises were also published (Robbins and others., 2013). The data collected allows the USGS, National Oceanic and Atmospheric Administration (NOAA), and USF scientists to map variations in ocean chemistry including carbonate saturation states along designated tracks. The USGS also partners with NOAA and the National Aeronautics and Space Administration (NASA) to model air-sea flux as part of a Gulf of Mexico Carbon Synthesis project led by NASA.

  4. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  5. The ALP miracle: unified inflaton and dark matter

    NASA Astrophysics Data System (ADS)

    Daido, Ryuji; Takahashi, Fuminobu; Yin, Wen

    2017-05-01

    We propose a scenario where both inflation and dark matter are described by a single axion-like particle (ALP) in a unified manner. In a class of the minimal axion hilltop inflation, the effective masses at the maximum and mimimum of the potential have equal magnitude but opposite sign, so that the ALP inflaton is light both during inflation and in the true vacuum. After inflation, most of the ALPs decay and evaporate into plasma through a coupling to photons, and the remaining ones become dark matter. We find that the observed CMB and matter power spectrum as well as the dark matter abundance point to an ALP of mass mphi = Script O(0.01) eV and the axion-photon coupling gphi γ γ = Script O(10-11) GeV-1: the ALP miracle. The suggested parameter region is within the reach of the next generation axion helioscope, IAXO, and high-intensity laser experiments in the future. Furthermore, thermalized ALPs contribute to hot dark matter and its abundance is given in terms of the effective number of extra neutrino species, Δ Neff simeq 0.03, which can be tested by the future CMB and BAO observations. We also discuss a case with multiple ALPs, where the coupling to photons can be enhanced in the early Universe by an order of magnitude or more, which enlarges the parameter space for the ALP miracle. The heavy ALP plays a role of the waterfall field in hybrid inflation, and reheats the Universe, and it can be searched for in various experiments such as SHiP.

  6. USGS Maps

    USGS Publications Warehouse

    ,

    1994-01-01

    Most USGS topographic maps use brown contours to show the shape and elevation of the terrain. Elevations are usually shown in feet, but on some maps they are in meters. Contour intervals vary, depending mainly on the scale of the map and the type of terrain.

  7. USGS Scientific Visualization Laboratory

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey's (USGS) Scientific Visualization Laboratory at the National Center in Reston, Va., provides a central facility where USGS employees can use state-of-the-art equipment for projects ranging from presentation graphics preparation to complex visual representations of scientific data. Equipment including color printers, black-and-white and color scanners, film recorders, video equipment, and DOS, Apple Macintosh, and UNIX platforms with software are available for both technical and nontechnical users. The laboratory staff provides assistance and demonstrations in the use of the hardware and software products.

  8. Age and prematurity of the Alps

    NASA Astrophysics Data System (ADS)

    Hergarten, Stefan; Stüwe, Kurt; Wagner, Thomas

    2010-05-01

    Although the Alps are among the best studied mountain ranges on Earth, the age of their topography is almost unknown. Even their relative stage of evolution is unclear: Are the Alps still growing, in a steady state or even decaying? Using the mean slope at given catchment size as a new geomorphic parameter we analyse the topography of the Alps. Our analysis provides one of the first quantitative constraints that shows that the range is still in its infancy: In contrast to several other mountain ranges, the Alps have still more than half of their evolution to a geomorphic steady state to go. Combining our results with sediment data from the surrounding accumulation spaces we infer that the formation of substantial topography began only 5-6 million years ago. Our results challenge a general consensus that the topographic evolution is distributed over much of the Miocene.

  9. View of Snowy Mountains area of Australian Alps as photographed from Skylab

    NASA Image and Video Library

    1973-07-30

    SL3-27-180 (July-September 1973) --- A vertical view of the Snowy Mountains area of Australian Alps in the States of Victoria and New South Wales, Australia, as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. This picture was taken with type 2443 infrared color film. The lake near the center of the picture is the Eucumbene Reservoir. This area is located immediately south-southwest of the capital city of Canberra. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA

  10. NASA Efforts on Nanotechnology

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2003-01-01

    An overview of the field of nanotechnology within the theme of "New efforts in Nanotechnology Research," will be presented. NASA's interest, requirements and current efforts in this emerging field will be discussed. In particular, NASA efforts to develop nanoelectronic devices, fuel cells, and other applications of interest using this novel technology by collaborating with academia will be addressed. Progress on current collaborations in this area with the University of Puerto Rico will be highlighted.

  11. Ivrea mantle wedge and arc of the Western Alps (II): Kinematic evolution of the Alps-Apennines orogenic system

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Kissling, Eduard; van Hinsbergen, Douwe J. J.; Molli, Giancarlo

    2017-04-01

    Integration of geological and geophysical data on the deep structure of the Alps (Kissling et al. 2017) reveals that the deep-seated Ivrea mantle played a crucial role during the formation of the arc of the Western Alps. Exhumation of the mantle beneath the Ivrea Zone to shallow crustal depths during Mesozoic rifting led to the formation of a strong Ivrea mantle wedge; its strength exceeds that of surrounding mostly quartz-bearing units, and consequently allows for indentation and wedging of a quasi-rigid Ivrea mantle wedge into the Western Alps during Alpine orogeny. A first early stage (pre-35 Ma) of the West-Alpine orogenic evolution is characterized by top-NNW thrusting in sinistral transpression causing at least some 260km displacement of internal Western Alps and E-W-striking Alps farther east, together with the Adria micro-plate, towards N to NNW with respect to stable Europe. It is during the second stage (35-25 Ma) that the Ivrea mantle wedge played a crucial role by accentuating the arc. This stage is associated with top-WNW thrusting in the external zones of the central portion of the arc and lateral indentation and wedging of the Ivrea mantle slice beneath the already existing nappe pile towards WNW by some 100-150km. The final stage of arc formation (25-0 Ma) is associated with orogeny in the Apennines leading to oroclinal bending in the southernmost Western Alps that by now became parts of the Apenninic orogen, in connection with the 50° counterclockwise rotation of the Corsica-Sardinia block and the Ligurian Alps. The lithological composition of some tectonic units originating from the Alpine Tethys (Piemont-Liguria Ocean) found in the Alps and the northern Apennines has much in common. The non-metamorphic parts of the Piemont-Liguria derived units form the upper plate of the Western Alps that is devoid of Austroalpine elements, while the lower plate includes highly metamorphic units derived from the same Piemont-Liguria Ocean. This points to a

  12. EAARL coastal topography and imagery–Western Louisiana, post-Hurricane Rita, 2005: First surface

    USGS Publications Warehouse

    Bonisteel-Cormier, Jamie M.; Wright, Wayne C.; Fredericks, Alexandra M.; Klipp, Emily S.; Nagle, Doug B.; Sallenger, Asbury H.; Brock, John C.

    2013-01-01

    system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the "bare earth" under vegetation from a point cloud of last return elevations. For more information about similar projects, please visit the Lidar for Science and Resource Management Website.

  13. A Development Testbed for ALPS-Based Systems

    DTIC Science & Technology

    1988-10-01

    alloted to tile application because of size or power constraints). Given an underlying support ALPS architecture such as the d-ALPS architecture, a...resource on which it is assigned at runtime. A second representation problem is that most graph analysis algorithms treat either graphs with weighted links...subtask) associated with it but is treated like other links. In d-ALPS, as a priority precedence link, it would cause the binding of a pro- cessor: as a

  14. SKS splitting results in central Italy and Dinaric region inside the AlpArray-CASE project

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Prevolnik, S.; Pondrelli, S.; Molinari, I.; Stipcevic, J.; Kissling, E.; Šipka, V.; Herak, M.

    2017-12-01

    In the framework of the AlpArray project (AlpArray Seismic Network, 2015), the complementary "Central Adriatic Seismic Experiment" (CASE; AlpArray Seismic Network, 2016) was established as collaboration between ETH Zürich, University of Zagreb, INGV and Republic Hydrometeorological Service of Republic of Srpska. The CASE project consists of 9 temporary stations, installed in October 2016, located in Bosnia and Herzegovina, Croatia and Italy. Temporary broadband seismic stations, with the permanent stations present in the region shared by the Croatian Seismological Service and INGV, make an almost continuous transect cutting the Central-Southern Appenines, the central Adriatic region, central External Dinarides and finishing at the eastern margin of the Internal Dinarides. The presence of the the Apenninic and Dinarides slabs, verging in opposite directions and plunging along the opposite sides of the Adriatic plate, make this area a peculiar spot to understand the complex dynamic of the region. Various tomographic images (e.g. Bijwaard and Spakman, 2000; Piromallo and Morelli, 2003) shows not continuous slabs under the Appenines and the Dinarides, suggesting the presence of slab-gaps right beneath the region covered by the CASE experiment. Here we present the preliminary results of the SKS splitting analysis performed on the data recorded by the temporary and permanent seismic stations included in the CASE project. The new results, in combination with previous interpretation, will provide clues about how Northern and Southern Apennines are connected at depth, how the slab rollback of the Apennines thrust belt acted and if and how the Apennines are in relation with the Dinaric region. Together with the measurements from previous studies and from the AlpArray project, our new data will support the mapping of the seismic anisotropy deformation pattern from Western Alps to Pannonian region.

  15. Use of "Crowd-Sourcing" and other collaborations to solve the short-term, earthquake forecasting problem

    NASA Astrophysics Data System (ADS)

    Bleier, T.; Heraud, J. A.; Dunson, J. C.

    2015-12-01

    QuakeFinder (QF) and its international collaborators have installed and currently maintain 165 three-axis induction magnetometer instrument sites in California, Peru, Taiwan, Greece, Chile and Sumatra. The data from these instruments are being analyzed for pre-quake signatures. This analysis consists of both private research by QuakeFinder, and institutional collaborators (PUCP in Peru, NCU in Taiwan, PUCC in Chile, NOA in Greece, Syiah Kuala University in Indonesia, LASP at U of Colo., Stanford, and USGS). Recently, NASA Hq and QuakeFinder tried a new approach to help with the analysis of this huge (50+TB) data archive. A collaboration with Apirio/TopCoder, Harvard University, Amazon, QuakeFinder, and NASA Hq. resulted in an open algorithm development contest called "Quest for Quakes" in which contestants (freelance algorithm developers) attempted to identify quakes from a subset of the QuakeFinder data (3TB). The contest included a $25K prize pool, and contained 100 cases where earthquakes (and null sets) included data from up to 5 remote sites, near and far from quakes greater than M4. These data sets were made available through Amazon.com to hundreds of contestants over a two week contest period. In a more traditional approach, several new algorithms were tried by actively sharing the QF data with universities over a longer period. These algorithms included Principal Component Analysis-PCA and deep neural networks in an effort to automatically identify earthquake signals within typical, noise-filled environments. This presentation examines the pros and cons of employing these two approaches, from both logistical and scientific perspectives.

  16. Update on NASA Microelectronics Activities

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.; Casey, Megan; Lauenstein, Jean-Marie

    2017-01-01

    Mission Statement: The NASA Electronic Parts and Packaging (NEPP) Program provides NASA's leadership for developing and maintaining guidance for the screening, qualification, test. and usage of EEE parts by NASA as well as in collaboration with other government Agencies and industry. NASA Space Technology Mission Directorate (STMD) "STMD rapidly develops, demonstrates, and infuses revolutionary, high-payoff technologies through transparent, collaborative partnerships, expanding the boundaries of the aerospace enterprise." Mission Statement: The Space Environments Testing Management Office (SETMO) will identify, prioritize, and manage a select suite of Agency key capabilities/assets that are deemed to be essential to the future needs of NASA or the nation, including some capabilities that lack an adequate business base over the budget horizon. NESC mission is to perform value-added independent testing, analysis, and assessments of NASA's high-risk projects to ensure safety and mission success. NASA Space Environments and Avionics Fellows as well as Radiation and EEE Parts Community of Practice (CoP) leads.

  17. EAARL Coastal Topography-Maryland and Delaware, Post-Nor'Ida, 2009

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Vivekanandan, Saisudha; Nayegandhi, Amar; Sallenger, A.H.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Klipp, E.S.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Maryland and Delaware coastline beachface, acquired post-Nor'Ida (November 2009 nor'easter) on November 28 and 30, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS

  18. Collaborative Approaches to Increase the Utility of Spatial Data for the Wildfire Management Community Through NASA's Applied Remote Sensing Training Program

    NASA Astrophysics Data System (ADS)

    McCullum, A. J. K.; Schmidt, C.; Blevins, B.; Weber, K.; Schnase, J. L.; Carroll, M.; Prados, A. I.

    2015-12-01

    The utility of spatial data products and tools to assess risk and effectively manage wildfires has increased, highlighting the need for communicating information about these new capabilities to decision makers, resource managers, and community leaders. NASA's Applied Remote Sensing Training (ARSET) program works directly with agencies and policy makers to develop in-person and online training courses that teach end users how to access, visualize, and apply NASA Earth Science data in their profession. The expansion of ARSET into wildfire applications began in 2015 with a webinar and subsequent in-person training hosted in collaboration with Idaho State University's (ISU) GIS Training and Research Center (TReC). These trainings featured presentations from the USDA Forest Service's Remote Sensing Training and Applications Center, the Land Processes DAAC, Northwest Nazarene University, NASA Goddard Space Flight Center, and ISU's GIS TReC. The webinar focused on providing land managers, non-governmental organizations, and international management agencies with an overview of 1) remote sensing platforms for wildfire applications, 2) products for pre- and post-fire planning and assessment, 3) the use of terrain data, 4) new techniques and technologies such as Unmanned Aircraft Systems and the Soil Moisture Active Passive Mission (SMAP), and 5) the RECOVER Decision Support System. This training highlighted online tools that engage the wildfire community through collaborative monitoring and assessment efforts. Webinar attendance included 278 participants from 178 organizations in 42 countries and 33 US states. The majority of respondents (93%) from a post-webinar survey indicated they displayed improvement in their understanding of specific remote-sensing data products appropriate for their work needs. With collaborative efforts between federal, state, and local agencies and academic institutions, increased use of NASA Earth Observations may lead to improved near real

  19. How steep are the Alps?

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Prasicek, Günther; Stüwe, Kurt; Hergarten, Stefan

    2014-05-01

    The topography of the European Alps reflects continental collision, crustal thickening and buoyancy driven surface uplift, overprinted by erosional processes. Topographic gradients generally steepen from the valley floors up to about 1500 m - 2000 m followed by an unexpected decrease in slope up to about 2900 m and a further increase to the highest summits of the range. Several studies have interpreted this pattern and the accompanied maximum in the hypsometric curve in terms of either the critical slope stability angle, the prematurity of the Alps caused by recent tectonic uplift, or the effect of the glacial "buzz saw" related to the Pleistocene glaciation cycles. There is consensus that the lithological inventory represents a first order parameter for the steepness of fluvial channels and the angle of hillslopes in steady state and that the response time of a transient landscape is controlled by lithology. In this study we systematically explore the slope-elevation distributions for several hundred continuous domains of the major structural units of the Alps. For this, we apply a novel numerical code to determine the predominant cause for the observed peculiar topography. We compare adjacent alpine domains with contrasting lithology to explore lithological effects on the limiting slope stability angle. We analyze domains with different lithology in the non-glaciated parts of the orogen to highlight the state of maturity related to a recent uplift event. We evaluate the glacial effects on the landscape by the comparison of areas belonging to the same structural units but affected by a variable amount of glacial imprint. The results show that lithology has a major impact on the morphometric characteristics of the European Alps. Adjacent but different structural units show a significant variability in their slope-elevation distributions although they have experienced the same uplift history and the same amount of glacial imprint. This suggests that the response

  20. USGS international activities in coal resources

    USGS Publications Warehouse

    ,

    1999-01-01

    During the last 30 years the U.S. Geological Survey (USGS) has been engaged in coal exploration and characterization in more that 30 foreign countries, including India, Pakistan, China, Turkey, several Eastern European countries, Russia, and other former Soviet Union countries. Through this work, the USGS has developed an internationally recognized capability for assessing coal resources and defining their geochemical and physical characteristics. More recently, these data have been incorporated into digital databases and Geographic Information System (GIS) digital map products. The USGS has developed a high level of expertise in assessing the technological, economic, environmental, and human health impacts of coal occurrences and utilization based on comprehensive characterization of representative coal samples.

  1. NASA Administrator Welcomes Minister of Economy

    NASA Image and Video Library

    2014-02-18

    NASA Administrator Charles Bolden, left, welcomes Lithuania's Minister of Economy Evaldas Gustas to NASA Headquarters to discuss potential collaborative space activities between NASA and the Republic of Lithuania, Tuesday, Feb. 18, 2014 in Washington.

  2. Preserving science for the ages--USGS data rescue

    USGS Publications Warehouse

    Wippich, Carol

    2012-01-01

    The U.S. Geological Survey (USGS) is a steward for over 130 years of rich, diverse natural science and information resources. We document one-of-a-kind observations of natural phenomena and cultural impacts on our changing world. In order for society to deal with national and global trends, the USGS must enable access and use of legacy, inaccessible information by including these data in our digital archives and databases. The USGS has conducted scientific assessments on the quality and quantity of the Nation's water resources, provided access to geospatial and natural resource data, and conducted multi-purpose natural science studies. All of these have generated records that need to be accessible and integrated in order to be examined for new information and interpretations that were never intended by the original collector. The Federal Records Act of 1950 mandates that the USGS preserve Federal records containing evidence of the agency's organization, functions, policies, decisions, procedures, and essential transactions. At the USGS, the goal of Open Government is to improve and increase access to scientific information. Therefore, it is incumbent upon the USGS to preserve, make available, and provide accountability for the data that it creates from our scientific projects.

  3. A magnetotelluric feasibility study of the Alps

    NASA Astrophysics Data System (ADS)

    Ritter, O.; Weckmann, U.

    2016-12-01

    The Alps are a famous and extensive mountain range system in central Europe. The mountains were formed as the African and Eurasian tectonic plates collided and they have been a prime target for geological and geophysical investigations since the beginning of modern geosciences. Consequently, the Alps have been investigated with active and passive seismological methods and extensive sets of potential field data exist. Hardly anything is known, however, about the deep electrical conductivity structure, as it has been notoriously difficult to acquire magnetotelluric (MT) data in the Alps. The Alps are densely populated and a lot of infrastructure for tourism has been built over the years. MT measurements, which rely on natural variations of the electromagnetic background fields, are severely hampered by this man-made noise. Here, we report on a feasibility study to acquire MT data in the Alps, where all stations are deployed outside the valleys, on high mountain ranges and alpine pastures. Overall we recorded MT data at 7 stations, along an approximately north-south profile centred on Mayrhofen in the Austrian Alps. The average station spacing was 5 kilometers. The data were processed using robust remote-reference processing and the results clearly show that MT measurements are feasible. We used Mare2DEM for 2D inversion to include a somewhat realistic topography. The 2D section indicates moderate resistivity for the top 2 - 5 km, consistent with the regional geology, which suggests (meta-) sedimentary sequences. From depths of 5 km and below resistivities exceed 5,000 Ohmm. This means we can sense very deep with MT but also, that we should be cautious with an interpretation of this short profile. The data also clearly indicate 3D effects. We therefore propose to deploy an array of stations covering the entire Alps in USArray style, e.g. with a station spacing of approximately 50 km, to derive a 3D model of the deep electrical resistivity structure of the Alps. Such a

  4. A Window to the World: Lessons Learned from NASA's Collaborative Metadata Curation Effort

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Dixon, V.; Baynes, K.; Shum, D.; le Roux, J.; Ramachandran, R.

    2017-12-01

    Well written descriptive metadata adds value to data by making data easier to discover as well as increases the use of data by providing the context or appropriateness of use. While many data centers acknowledge the importance of correct, consistent and complete metadata, allocating resources to curate existing metadata is often difficult. To lower resource costs, many data centers seek guidance on best practices for curating metadata but struggle to identify those recommendations. In order to assist data centers in curating metadata and to also develop best practices for creating and maintaining metadata, NASA has formed a collaborative effort to improve the Earth Observing System Data and Information System (EOSDIS) metadata in the Common Metadata Repository (CMR). This effort has taken significant steps in building consensus around metadata curation best practices. However, this effort has also revealed gaps in EOSDIS enterprise policies and procedures within the core metadata curation task. This presentation will explore the mechanisms used for building consensus on metadata curation, the gaps identified in policies and procedures, the lessons learned from collaborating with both the data centers and metadata curation teams, and the proposed next steps for the future.

  5. A new evaluation of the USGS streamgaging network

    USGS Publications Warehouse

    ,

    1998-01-01

    Since 1889, the U.S. Geological Survey (USGS) has operated a streamgaging network to collect information about the Nation's water resources. It is a multipurpose network funded by the USGS and many other Federal, State and local agencies. Individual streamgaging stations are supported for specific purposes such as water allocation, reservoir operations, or regulating permit requirements, but the data are used by others for many purposes. Collectively, the USGS streamgaging network produces valuable data that are used for current forecasting and operational decisions as well as long-term resource planning, infrastructure design, and flood hazard mitigation. The guiding principles of the network are: Streamgaging stations are funded by the USGS and many agencies to achieve the Federal mission goals of the USGS and the individual goals of the funding agencies. Data are freely available to the public and all partners. USGS operates the network on behalf of all partners, which achieves economies because it eliminates the need for multiple infrastructures for testing equipment, providing training to staff, developing and maintaining the communications and database systems, and conducting quality assurance. USGS brings the capability of its national staff to bear on challenging problems such as responding to catastrophic floods or finding solutions to unique streamgaging conditions. This report has been prepared in response to a request from the U.S. House of Representatives Subcommittee on Interior Appropriations in its report to accompany H.R. 4193.

  6. DIGITAL LINE GRAPHS - USGS 1:24,000

    EPA Science Inventory

    USGS DLGs are digital representations of program-quadrangle format and sectional maps. All DLG data distributed by the United States Geological Survey (USGS) are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, ...

  7. DIGITAL LINE GRAPHS - USGS 1:100,000

    EPA Science Inventory

    USGS DLGs are digital representations of program-quadrangle format and sectional maps. All DLG data distributed by the United States Geological Survey (USGS) are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, ...

  8. USGS Laboratory Review Program Ensures Analytical Quality

    USGS Publications Warehouse

    Erdmann, David E.

    1995-01-01

    The USGS operates a review program for laboratories that analyze samples for USGS environmental investigations. This program has been effective in providing QA feedback to laboratories while ensuring that analytical data are consistent, of satisfactory quality, and meet the data objectives of the investigation.

  9. USGS research on mineral resources, 1985 program and abstracts

    USGS Publications Warehouse

    Krafft, Kathleen

    1985-01-01

    The extended abstracts in this volume are summaries of the papers presented orally and as posters in the first V.E. McKelvey Forum on Mineral and Energy Resources, entitled "USGS Research on Mineral Resources-1985." The Forum has been established to improve communication between the USGS and the earth science community by presenting the results of current USGS research on nonrenewable resources in a timely fashion and by providing an opportunity for individuals from other organizations to meet informally with USGS scientists and managers. It is our hope that the McKelvey Forum will help to make USGS programs more responsive to the needs of the earth science community, particularly the mining and petroleum industries, and will foster closer cooperation between organizations and individuals.

  10. Extragalactic photon-ALP conversion at CTA energies

    DOE PAGES

    Kartavtsev, A.; Raffelt, G.; Vogel, H.

    2017-01-12

    Magnetic fields in extragalactic space between galaxy clusters may induce conversions between photons and axion-like particles (ALPs), thereby shielding the photons from absorption on the extragalactic background light. For TeV gamma rays, the oscillation length (l osc) of the photon-ALP system becomes inevitably of the same order as the coherence length of the magnetic field l and the length over which the field changes significantly (transition length l t) due to refraction on background photons. We derive exact statistical evolution equations for the mean and variance of the photon and ALP transfer functions in the non-adiabatic regime (l osc ~more » l >> l t). We also make analytical predictions for the transfer functions in the quasi-adiabatic regime (l osc ALP masses.« less

  11. Present-day uplift of the western Alps.

    PubMed

    Nocquet, J-M; Sue, C; Walpersdorf, A; Tran, T; Lenôtre, N; Vernant, P; Cushing, M; Jouanne, F; Masson, F; Baize, S; Chéry, J; van der Beek, P A

    2016-06-27

    Collisional mountain belts grow as a consequence of continental plate convergence and eventually disappear under the combined effects of gravitational collapse and erosion. Using a decade of GPS data, we show that the western Alps are currently characterized by zero horizontal velocity boundary conditions, offering the opportunity to investigate orogen evolution at the time of cessation of plate convergence. We find no significant horizontal motion within the belt, but GPS and levelling measurements independently show a regional pattern of uplift reaching ~2.5 mm/yr in the northwestern Alps. Unless a low viscosity crustal root under the northwestern Alps locally enhances the vertical response to surface unloading, the summed effects of isostatic responses to erosion and glaciation explain at most 60% of the observed uplift rates. Rock-uplift rates corrected from transient glacial isostatic adjustment contributions likely exceed erosion rates in the northwestern Alps. In the absence of active convergence, the observed surface uplift must result from deep-seated processes.

  12. NASA Satellite Captures Super Bowl Cities - Seattle

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Seattle, Washington acquired August 23, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. NASA Satellite Captures Super Bowl Cities - Phoenix

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Phoenix, Arizona acquired November 28, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. USGS Releases New Digital Aerial Products

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has initiated distribution of digital aerial photographic products produced by scanning or digitizing film from its historical aerial photography film archive. This archive, located in Sioux Falls, South Dakota, contains thousands of rolls of film that contain more than 8 million frames of historic aerial photographs. The largest portion of this archive consists of original film acquired by Federal agencies from the 1930s through the 1970s to produce 1:24,000-scale USGS topographic quadrangle maps. Most of this photography is reasonably large scale (USGS photography ranges from 1:8,000 to 1:80,000) to support the production of the maps. Two digital products are currently available for ordering: high-resolution scanned products and medium-resolution digitized products.

  15. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  16. Collaborative Mission Design at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  17. Best Practices for International Collaboration and Applications of Interoperability within a NASA Data Center

    NASA Astrophysics Data System (ADS)

    Moroni, D. F.; Armstrong, E. M.; Tauer, E.; Hausman, J.; Huang, T.; Thompson, C. K.; Chung, N.

    2013-12-01

    The Physical Oceanographic Distributed Active Archive Center (PO.DAAC) is one of 12 data centers sponsored by NASA's Earth Science Data and Information System (ESDIS) project. The PO.DAAC is tasked with archival and distribution of NASA Earth science missions specific to physical oceanography, many of which have interdisciplinary applications for weather forecasting/monitoring, ocean biology, ocean modeling, and climate studies. PO.DAAC has a 20-year history of cross-project and international collaborations with partners in Europe, Japan, Australia, and the UK. Domestically, the PO.DAAC has successfully established lasting partners with non-NASA institutions and projects including the National Oceanic and Atmospheric Administration (NOAA), United States Navy, Remote Sensing Systems, and Unidata. A key component of these partnerships is PO.DAAC's direct involvement with international working groups and science teams, such as the Group for High Resolution Sea Surface Temperature (GHRSST), International Ocean Vector Winds Science Team (IOVWST), Ocean Surface Topography Science Team (OSTST), and the Committee on Earth Observing Satellites (CEOS). To help bolster new and existing collaborations, the PO.DAAC has established a standardized approach to its internal Data Management and Archiving System (DMAS), utilizing a Data Dictionary to provide the baseline standard for entry and capture of dataset and granule metadata. Furthermore, the PO.DAAC has established an end-to-end Dataset Lifecycle Policy, built upon both internal and external recommendations of best practices toward data stewardship. Together, DMAS, the Data Dictionary, and the Dataset Lifecycle Policy provide the infrastructure to enable standardized data and metadata to be fully ingested and harvested to facilitate interoperability and compatibility across data access protocols, tools, and services. The Dataset Lifecycle Policy provides the checks and balances to help ensure all incoming HDF and net

  18. Urbanization and depopulation in the Alps.

    PubMed

    Batzing, W; Perlik, M; Dekleva, M

    1996-11-01

    Demographic developments in the European Alpine region are analyzed over the period 1870-1990. The region is defined as including parts of Germany, France, Italy, Liechtenstein, Austria, Switzerland, and Slovenia. "Studies of growth, stagnation, decline, commune size, and altitude in almost 6,000 communes are presented on three colored maps.... It is apparent that two highly divergent processes are at work and, accordingly, statistical mean values reveal little of importance. Approximately one-half of Alpine Europe is undergoing general economic and demographic growth and has experienced significant increase in population since the end of the agricultural era. This development has taken place primarily in low-lying valleys and basins and in areas bordering the Alps that have good access to transport routes. Tourism is not as widespread as generally assumed and is usually characterized by a punctate pattern. Only in the western part of the Eastern Alps does tourism account for widespread population growth at higher altitudes; elsewhere the Alps have not been affected by modern development and the economy and population are declining, with some areas in danger of becoming completely abandoned. The results challenge the earlier concept of the Alps as a rural region, once populated by peasants, where tourism now plays a major role." (EXCERPT)

  19. Gene Expression of Lytic Endopeptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonads.

    PubMed

    Tsfasman, Irina M; Lapteva, Yulia S; Krasovskaya, Ludmila A; Kudryakova, Irina V; Vasilyeva, Natalia V; Granovsky, Igor E; Stepnaya, Olga A

    2015-01-01

    Development of an efficient expression system for (especially secreted) bacterial lytic enzymes is a complicated task due to the specificity of their action. The substrate for such enzymes is peptidoglycan, the main structural component of bacterial cell walls. For this reason, expression of recombinant lytic proteins is often accompanied with lysis of the producing bacterium. This paper presents data on the construction of an inducible system for expression of the lytic peptidases AlpA and AlpB from Lysobacter sp. XL1 in Pseudomonas fluorescens Q2-87, which provides for the successful secretion of these proteins into the culture liquid. In this system, the endopeptidase gene under control of the T7lac promoter was integrated into the bacterial chromosome, as well as the Escherichia coli lactose operon repressor protein gene. The T7 pol gene under lac promoter control, which encodes the phage T7 RNA polymerase, is maintained in Pseudomonas cells on the plasmids. Media and cultivation conditions for the recombinant strains were selected to enable the production of AlpA and AlpB by a simple purification protocol. Production of recombinant lytic enzymes should contribute to the development of new-generation antimicrobial drugs whose application will not be accompanied by selection of resistant microorganisms. © 2015 S. Karger AG, Basel.

  20. NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita L.

    2016-01-01

    NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.

  1. Age and Prematurity of the Alps Derived from Topography

    NASA Astrophysics Data System (ADS)

    Hergarten, S.; Wagner, T.; Stüwe, K.

    2010-09-01

    The European Alps are one of the best studied mountain ranges on Earth, but yet the age of their topography is almost unknown. Even their relative stage of evolution is unclear: Are the Alps still growing, in a steady state or already decaying, and is there a significant difference between Western and Eastern Alps? Using a new geomorphic parameter we analyze the topography of the Alps and provide one of the first quantitative constraints demonstrating that the range is still in its infancy: In contrast to several other mountain ranges, the Alps have still more than half of their evolution to a geomorphic steady state to go. Combining our results with sediment budget data from the surrounding basins we infer that the formation of the present topography began only 5-6 million years ago. Our results question the apparent consensus that the topographic evolution is distributed over much of the Miocene and might give new impulses to the reconstruction of paleoclimate in Central Europe.

  2. Challenge theme 6: Natural hazard risks in the Borderlands: Chapter 8 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    USGS Publications Warehouse

    Page, William R.; Parcher, Jean W.; Stefanov, Jim

    2013-01-01

    Natural hazards such as earthquakes, landslides and debris flows, wildfires, hurricanes, and intense storm-induced flash floods threaten communities to varying degrees all along the United States–Mexican border. The U.S. Geological Survey (USGS) collaborates with Federal, State, and local agencies to minimize the effects of natural hazards by providing timely, unbiased science information to emergency response officials, resource managers, and the public to help reduce property damage, injury, and loss of life. The USGS often mobilizes response efforts during and after a natural hazard event to provide technical and scientific counsel on recovery and response, and it has a long history of deploying emergency response teams to major disasters in both domestic and international locations. This chapter describes the challenges of natural hazards in the United States–Mexican border region and the capabilities of the USGS in the fields of hazard research, monitoring, and assessment, as well as preventative mitigation and post-disaster response.

  3. A new organic reference material, l-glutamic acid, USGS41a, for δ(13) C and δ(15) N measurements - a replacement for USGS41.

    PubMed

    Qi, Haiping; Coplen, Tyler B; Mroczkowski, Stanley J; Brand, Willi A; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-04-15

    The widely used l-glutamic acid isotopic reference material USGS41, enriched in both (13) C and (15) N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41. USGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in (13) C and (15) N together with l-glutamic acid of normal isotopic composition. The δ(13) C and δ(15) N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ(13) CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ(13) CVPDB = -46.6 mUr), and IAEA-N-1 ammonium sulfate (δ(15) NAir = +0.43 mUr) and USGS32 potassium nitrate (δ(15) N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry. USGS41a is isotopically homogeneous; the reproducibility of δ(13) C and δ(15) N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ(13) C value of +36.55 mUr relative to VPDB and a δ(15) N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41. The new isotopic reference material USGS41a can be used with USGS40 (having a δ(13) CVPDB value of -26.39 mUr and a δ(15) NAir value of -4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. EAARL coastal topography--Alligator Point, Louisiana, 2010

    USGS Publications Warehouse

    Nayegandhi, Amar; Bonisteel-Cormier, J.M.; Wright, C.W.; Brock, J.C.; Nagle, D.B.; Vivekanandan, Saisudha; Fredericks, Xan; Barras, J.A.

    2012-01-01

    This project provides highly detailed and accurate datasets of a portion of Alligator Point, Louisiana, acquired on March 5 and 6, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the National Aeronautics and Space Administration (NASA) Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have

  5. USEPA/USGS Study of CECs in Source Water and Treated Drinking Water: Assessment of Estrogenic Activity Using an In Vitro Bioassay, T47D-KBluc.

    EPA Science Inventory

    Scientists from the U.S. Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) are collaborating on a research study to determine the presence of contaminants of emerging concern in treated and untreated drinking water collected from up to 50 drinking water trea...

  6. EAARL coastal topography-western Florida, post-Hurricane Charley, 2004: seamless (bare earth and submerged.

    USGS Publications Warehouse

    Nayegandhi, Amar; Bonisteel, Jamie M.; Wright, C. Wayne; Sallenger, A.H.; Brock, John C.; Yates, Xan

    2010-01-01

    processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in an interactive or batch mode. Modules for presurvey flight-line definition, flight-path plotting, lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is used routinely to create maps that represent submerged or sub-aerial topography. Specialized filtering algorithms have been implemented to determine the 'bare earth' under vegetation. For more information about similar projects, please visit the Decision Support for Coastal Science and Management website. Selected References Brock, J.C., Wright, C.W., Sallenger, A.H., Krabill, W.B., and Swift, R.N., 2002, Basis and methods of NASA airborne topographic mapper Lidar surveys for coastal studies: Journal of Coastal Research, v. 18, no. 1, p. 1-13. Crane, Michael, Clayton, Tonya, Raabe, Ellen, Stoker, Jason, Handley, Larry, Bawden, Gerald, Morgan, Karen, and Queija, Vivian, 2004, Report of the U.S. Geological Survey Lidar workshop sponsored by the Land Remote Sensing Program and held in St. Petersburg, FL, November 2002: U.S. Geological Survey Open-File Report 2004-1456, 72 p. Nayegandhi, Amar, Brock, J.C., and Wright, C.W., 2009, Small-footprint, waveform-resolving Lidar estimation of submerged and sub-canopy topography in coastal environments: International Journal of Remote Sensing, v. 30, no. 4, p. 861-878. Sallenger, A.H., Wright, C.W., and Lillycrop, Jeff, 2005, Coastal impacts of the 2004 hurricanes measured with airborne Lidar; initial results: Shore and Beach, v. 73, nos. 2-3, p. 10-14. Resources Included Readme.txt File

  7. The NASA Decadal Survey Aerosol, Cloud, Ecosystems Mission

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Bontempi, Paula; Maring, Hal

    2011-01-01

    In 2007, the National Academy of Sciences delivered a Decadal Survey (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond) for NASA, NOAA, and USGS, which is a prioritization of future satellite Earth observations. The recommendations included 15 missions (13 for NASA, two for NOAA), which were prioritized into three groups or tiers. One of the second tier missions is the Aerosol, Cloud, (ocean) Ecosystems (ACE) mission, which focuses on climate forcing, cloud and aerosol properties and interactions, and ocean ecology, carbon cycle science, and fluxes. The baseline instruments recommended for ACE are a cloud radar, an aerosol/cloud lidar, an aerosol/cloud polarimeter, and an ocean radiometer. The instrumental heritage for these measurements are derived from the Cloudsat, CALIPSO, Glory, SeaWiFS and Aqua (MODIS) missions. In 2008, NASA HQ, lead by Hal Maring and Paula Bontempi, organized an interdisciplinary science working group to help formulate the ACE mission by refining the science objectives and approaches, identifying measurement (satellite and field) and mission (e.g., orbit, data processing) requirements, technology requirements, and mission costs. Originally, the disciplines included the cloud, aerosol, and ocean biogeochemistry communities. Subsequently, an ocean-aerosol interaction science working group was formed to ensure the mission addresses the broadest range of science questions possible given the baseline measurements, The ACE mission is a unique opportunity for ocean scientists to work closely with the aerosol and cloud communities. The science working groups are collaborating on science objectives and are defining joint field studies and modeling activities. The presentation will outline the present status of the ACE mission, the science questions each discipline has defined, the measurement requirements identified to date, the current ACE schedule, and future opportunities for broader community

  8. NASA Satellite Captures Super Bowl Cities - Denver, CO

    NASA Image and Video Library

    2016-02-06

    Landsat 7 image of Denver area acquired Nov 3, 2015. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NASA Satellite Captures Super Bowl Cities - Seattle [annotated

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Seattle, Washington acquired August 23, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA Satellite Captures Super Bowl Cities - Boston/Providence

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Boston/Providence area acquired August 25, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. NASA Satellite Captures Super Bowl Cities - Phoenix [annotated

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Phoenix, Arizona acquired November 28, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. The NASA Exploration Design Team; Blueprint for a New Design Paradigm

    NASA Technical Reports Server (NTRS)

    Oberto, Robert E.; Nilsen, Erik; Cohen, Ron; Wheeler, Rebecca; DeFlorio, Paul

    2005-01-01

    NASA has chosen JPL to deliver a NASA-wide rapid-response real-time collaborative design team to perform rapid execution of program, system, mission, and technology trade studies. This team will draw on the expertise of all NASA centers and external partners necessary. The NASA Exploration Design Team (NEDT) will be led by NASA Headquarters, with field centers and partners added according to the needs of each study. Through real-time distributed collaboration we will effectively bring all NASA field centers directly inside Headquarters. JPL's Team X pioneered the technique of real time collaborative design 8 years ago. Since its inception, Team X has performed over 600 mission studies and has reduced per-study cost by a factor of 5 and per-study duration by a factor of 10 compared to conventional design processes. The Team X concept has spread to other NASA centers, industry, academia, and international partners. In this paper, we discuss the extension of the JPL Team X process to the NASA-wide collaborative design team. We discuss the architecture for such a process and elaborate on the implementation challenges of this process. We further discuss our current ideas on how to address these challenges.

  13. NASA Electronic Parts and Packaging (NEPP) - A NASA Office of Safety and Mission Assurance (OSMA) Program

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.

    2017-01-01

    NEPP Mission Statement: Provide NASA's leadership for developing and maintaining guidance for the screening, qualification, test, and reliable usage of electrical, electronic, and electromechanical (EEE) parts by NASA, in collaboration with other government Agencies and industry.

  14. Grand challenges for integrated USGS science—A workshop report

    USGS Publications Warehouse

    Jenni, Karen E.; Goldhaber, Martin B.; Betancourt, Julio L.; Baron, Jill S.; Bristol, R. Sky; Cantrill, Mary; Exter, Paul E.; Focazio, Michael J.; Haines, John W.; Hay, Lauren E.; Hsu, Leslie; Labson, Victor F.; Lafferty, Kevin D.; Ludwig, Kristin A.; Milly, Paul C. D.; Morelli, Toni L.; Morman, Suzette A.; Nassar, Nedal T.; Newman, Timothy R.; Ostroff, Andrea C.; Read, Jordan S.; Reed, Sasha C.; Shapiro, Carl D.; Smith, Richard A.; Sanford, Ward E.; Sohl, Terry L.; Stets, Edward G.; Terando, Adam J.; Tillitt, Donald E.; Tischler, Michael A.; Toccalino, Patricia L.; Wald, David J.; Waldrop, Mark P.; Wein, Anne; Weltzin, Jake F.; Zimmerman, Christian E.

    2017-06-30

    Executive SummaryThe U.S. Geological Survey (USGS) has a long history of advancing the traditional Earth science disciplines and identifying opportunities to integrate USGS science across disciplines to address complex societal problems. The USGS science strategy for 2007–2017 laid out key challenges in disciplinary and interdisciplinary arenas, culminating in a call for increased focus on a number of crosscutting science directions. Ten years on, to further the goal of integrated science and at the request of the Executive Leadership Team (ELT), a workshop with three dozen invited scientists spanning different disciplines and career stages in the Bureau convened on February 7–10, 2017, at the USGS John Wesley Powell Center for Analysis and Synthesis in Fort Collins, Colorado.The workshop focused on identifying “grand challenges” for integrated USGS science. Individual participants identified nearly 70 potential grand challenges before the workshop and through workshop discussions. After discussion, four overarching grand challenges emerged:Natural resource security,Societal risk from existing and emerging threats,Smart infrastructure development, andAnticipatory science for changing landscapes.Participants also identified a “comprehensive science challenge” that highlights the development of integrative science, data, models, and tools—all interacting in a modular framework—that can be used to address these and other future grand challenges:Earth Monitoring, Analyses, and Projections (EarthMAP)EarthMAP is our long-term vision for an integrated scientific framework that spans traditional scientific boundaries and disciplines, and integrates the full portfolio of USGS science: research, monitoring, assessment, analysis, and information delivery.The Department of Interior, and the Nation in general, have a vast array of information needs. The USGS meets these needs by having a broadly trained and agile scientific workforce. Encouraging and supporting

  15. Earth Science and Public Health: Proceedings of the Second National Conference on USGS Health-Related Research

    USGS Publications Warehouse

    Buxton, Herbert T.; Griffin, Dale W.; Pierce, Brenda S.

    2007-01-01

    The mission of the U.S. Geological Survey (USGS) is to serve the Nation by providing reliable scientific information to describe and understand the earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. As the Nation?s largest water, earth, and biological science and civilian mapping agency, the USGS can play a significant role in providing scientific knowledge and information that will improve our understanding of the relations of environment and wildlife to human health and disease. USGS human health-related research is unique in the Federal government because it brings together a broad spectrum of natural science expertise and information, including extensive data collection and monitoring on varied landscapes and ecosystems across the Nation. USGS can provide a great service to the public health community by synthesizing the scientific information and knowledge on our natural and living resources that influence human health, and by bringing this science to the public health community in a manner that is most useful. Partnerships with health scientists and managers are essential to the success of these efforts. USGS scientists already are working closely with the public health community to pursue rigorous inquiries into the connections between natural science and public health. Partnering agencies include the Armed Forces Institute of Pathology, Agency for Toxic Substances Disease Registry, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, Food and Drug Administration, Mine Safety and Health Administration, National Cancer Institute, National Institute of Allergy and Infectious Disease, National Institute of Environmental Health Sciences, National Institute for Occupational Safety and Health, U.S. Public Health Service, and the U.S. Army Medical Research Institute of Infectious Diseases. Collaborations between public

  16. Volunteer map data collection at the USGS

    USGS Publications Warehouse

    Eric, B. Wolf; Poore, Barbara S.; Caro, Holly K.; Matthews, Greg D.

    2011-01-01

    Since 1994, citizen volunteers have helped the U.S. Geological Survey (USGS) improve its topographic maps. Through the Earth Science Corps program, citizens were able to "adopt a quad" and collect new information and update existing map features. Until its conclusion in 2001, as many as 300 volunteers annotated paper maps which were incorporated into the USGS topographic-map revision process.

  17. Biomedical applications of NASA technology

    NASA Technical Reports Server (NTRS)

    Friedman, Donald S.

    1991-01-01

    Through the active transfer of technology, NASA Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from such areas as digital image processing, space medicine and biology, microelectronics, optics, and electro-optics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.

  18. NASA International Environmental Partnerships

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie; Valek, Susan

    2010-01-01

    For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.

  19. The XMAP215 Ortholog Alp14 Promotes Microtubule Nucleation in Fission Yeast.

    PubMed

    Flor-Parra, Ignacio; Iglesias-Romero, Ana Belén; Chang, Fred

    2018-06-04

    The organization and number of microtubules (MTs) in a cell depend on the proper regulation of MT nucleation. Currently, the mechanism of nucleation is the most poorly understood aspect of MT dynamics. XMAP215/chTOG/Alp14/Stu2 proteins are MT polymerases that stimulate MT polymerization at MT plus ends by binding and releasing tubulin dimers. Although these proteins also localize to MT organizing centers and have nucleating activity in vitro, it is not yet clear whether these proteins participate in MT nucleation in vivo. Here, we demonstrate that in the fission yeast Schizosaccharomyces pombe, the XMAP215 ortholog Alp14 is critical for efficient MT nucleation in vivo. In multiple assays, loss of Alp14 function led to reduced nucleation rate and numbers of interphase MT bundles. Conversely, activation of Alp14 led to increased nucleation frequency. Alp14 associated with Mto1 and γ-tubulin complex components, and artificially targeting Alp14 to the γ-tubulin ring complexes (γ-TuRCs) stimulated nucleation. In imaging individual nucleation events, we found that Alp14 transiently associated with a γ-tubulin particle shortly before the appearance of a new MT. The transforming acidic coiled-coil (TACC) ortholog Alp7 mediated the localization of Alp14 at nucleation sites but not plus ends, and was required for efficient nucleation but not for MT polymerization. Our findings provide the strongest evidence to date that Alp14 serves as a critical MT nucleation factor in vivo. We suggest a model in which Alp14 associates with the γ-tubulin complex in an Alp7-dependent manner to facilitate the assembly or stabilization of the nascent MT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. NASA Centers and Universities Collaborate Through Smallsat Technology Partnerships

    NASA Technical Reports Server (NTRS)

    Cockrell, James

    2018-01-01

    The Small Spacecraft Technology (SST) Program within the NASA Space Technology Mission Directorate is chartered develop and demonstrate the capabilities that enable small spacecraft to achieve science and exploration missions in "unique" and "more affordable" ways. Specifically, the SST program seeks to enable new mission architectures through the use of small spacecraft, to expand the reach of small spacecraft to new destinations, and to make possible the augmentation existing assets and future missions with supporting small spacecraft. The SST program sponsors smallsat technology development partnerships between universities and NASA Centers in order to engage the unique talents and fresh perspectives of the university community and to share NASA experience and expertise in relevant university projects to develop new technologies and capabilities for small spacecraft. These partnerships also engage NASA personnel in the rapid, agile and cost-conscious small spacecraft approaches that have evolved in the university community, as well as increase support to university efforts and foster a new generation of innovators for NASA and the nation.

  1. Making USGS information effective in the electronic age

    USGS Publications Warehouse

    Hutchinson, Debbie R.; Sanders, Rex; Faust, T.

    2003-01-01

    Executive Summary -- The USGS Coastal and Marine Geology Program (CMGP) held a workshop on 'Making USGS Information Effective in the Electronic Age' in Woods Hole, MA, on 6-8 February 2001. The workshop was designed to address broad issues of knowledge and communication, and to help develop the mission, vision, and goals of the National Knowledge Bank called for in the 1999 NRC review of the CMGP. Presentations led by historians and philosophers yield to a wide-ranging review and discussion of the role of USGS science in society: USGS science is important to government to understand certain complicated public policy issues (such as the environment), but we must participate in two-way public dialogs to increase our relevance and usefulness. Presentations led by USGS communications experts reviewed the principles of audience analysis and effective communications: this focused look at audiences, markets, and products provided an introduction to the behaviors, the tools, and the terminology that might be applied to public discourse. Presentations by several information technology experts showed the potential - and pitfalls - of current schemes for Web-based information access. Finally, several brainstorming sessions developed action items, vision, and characteristics of a knowledge bank. Based on the workshop discussions and results, the authors developed the National Knowledge Bank Mission, Vision, and Goals statements.

  2. NASA USAID Memorandum of Understanding

    NASA Image and Video Library

    2011-04-25

    USAID Administrator Rajiv Shahspeaks prior to signing a five-year memorandum of understanding with NASA, Monday, April 25, 2011, at NASA Headquarters in Washington. The agreement formalizes ongoing agency collaborations that use Earth science data to address developmental challenges, and to assist in disaster mitigation and humanitarian responses. The agreement also encourages NASA and USAID to apply geospatial technologies to solve development challenges affecting the United States and developing countries. Photo Credit: (NASA/Paul E. Alers)

  3. NASA USAID Memorandum of Understanding

    NASA Image and Video Library

    2011-04-25

    USAID Administrator Rajiv Shah, left, and NASA Administrator Charles Bolden sign a five-year memorandum of understanding, Monday, April 25, 2011, at NASA Headquarters in Washington. The agreement formalizes ongoing agency collaborations that use Earth science data to address developmental challenges, and to assist in disaster mitigation and humanitarian responses. The agreement also encourages NASA and USAID to apply geospatial technologies to solve development challenges affecting the United States and developing countries. Photo Credit: (NASA/Paul E. Alers)

  4. NASA USAID Memorandum of Understanding

    NASA Image and Video Library

    2011-04-25

    USAID Administrator Rajiv Shah speaks prior to signing a five-year memorandum of understanding with NASA, Monday, April 25, 2011, at NASA Headquarters in Washington. The agreement formalizes ongoing agency collaborations that use Earth science data to address developmental challenges, and to assist in disaster mitigation and humanitarian responses. The agreement also encourages NASA and USAID to apply geospatial technologies to solve development challenges affecting the United States and developing countries. Photo Credit: (NASA/Paul E. Alers)

  5. USGS Gulf Coast Science Conference and Florida Integrated Science Center Meeting: Proceedings with abstracts, October 20-23, 2008, Orlando, Florida

    USGS Publications Warehouse

    Lavoie, Dawn L.; Rosen, Barry H.; Sumner, Dave; Haag, Kim H.; Tihansky, Ann B.; Boynton, Betsy; Koenig, Renee; Lavoie, Dawn L.; Rosen, Barry H.; Sumner, Dave; Haag, Kim H.; Tihansky, Ann B.; Boynton, Betsy; Koenig, Renee

    2008-01-01

    Welcome! The USGS is the Nation's premier source of information in support of science-based decision making for resource management. We are excited to have the opportunity to bring together a diverse array of USGS scientists, managers, specialists, and others from science centers around the Gulf working on biologic, geologic, and hydrologic issues related to the Gulf of Mexico and the State of Florida. We've organized the meeting around the major themes outlined in the USGS Circular 1309, Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017. USGS senior leadership will provide a panel discussion about the Gulf of Mexico and Integrated Science. Capstone talks will summarize major topics and key issues. Interactive poster sessions each evening will provide the opportunity for you to present your results and talk with your peers. We hope that discussions and interactions at this meeting will help USGS scientists working in Florida and the Gulf Coast region find common interests, forge scientific collaborations and chart a direction for the future. We hope that the meeting environment will encourage interaction, innovation and stimulate ideas among the many scientists working throughout the region. We'd like to create a community of practice across disciplines and specialties that will help us address complex scientific and societal issues. Please take advantage of this opportunity to visit with colleagues, get to know new ones, share ideas and brainstorm about future possibilities. It is our pleasure to provide this opportunity. We are glad you're here.

  6. The USGS Abandoned Mine Lands Initiative: Protecting and restoring the environment near abandoned mine lands

    USGS Publications Warehouse

    ,

    1999-01-01

    The Abandoned Mine Lands (AML) Initiative is part of a larger strategy of the U.S. Department of the Interior and the U.S. Department of Agriculture to clean up Federal lands contaminated by abandoned mines.Thousands of abandond hard-rock metal mines (such as gold, copper, lead, and zinc) have left a dual legacy across the Western United States. They reflect the historic development of the west, yet at the same time represent a possible threat to human health and local ecosystems.Abandoned Mine Lands (AML) are areas adjacent to or affected by abandoned mines. AML's often contain unmined mineral deposits, mine dumps (the ore and rock removed to get to the ore deposits), and tailings (the material left over from the ore processing) that contaminate the surrounding watershed and ecosystem. For example, streams near AML's can contain metals and (or) be so acidic that fish and aquatic insects cannot live in them.Many of these abandoned hard-rock mines are located on or adjacent to public lands administered by the Bureau of Land Management, National Park Service, and U.S. Forest Service. These federal land management agencies and the USGS are committed to mitigating the adverse effects that AML's can have on water quality and stream habitats.The USGS AML Initiative began in 1997 and will continue through 2001 in two pilot watersheds - the Boulder River basin in southwestern Montana and the upper Animas River basin in southwestern Colorado. The USGS is providing a wide range of scientific expertise to help land managers minimize and, where possible, eliminate the adverse environmental effects of AML's. USGS ecologists, geologists, water quality experts, hydrologists, geochemists, and mapping and digital data collection experts are collaborating to provide the scientific knowledge needed for an effective cleanup of AML's.

  7. A new organic reference material, L-glutamic acid, USGS41a, for δ13C and δ15N measurements − a replacement for USGS41

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Mroczkowski, Stanley J.; Brand, Willi A.; Brandes, Lauren; Geilmann, Heike; Schimmelmann, Arndt

    2016-01-01

    RationaleThe widely used l-glutamic acid isotopic reference material USGS41, enriched in both 13C and 15N, is nearly exhausted. A new material, USGS41a, has been prepared as a replacement for USGS41.MethodsUSGS41a was prepared by dissolving analytical grade l-glutamic acid enriched in 13C and 15N together with l-glutamic acid of normal isotopic composition. The δ13C and δ15N values of USGS41a were directly or indirectly normalized with the international reference materials NBS 19 calcium carbonate (δ13CVPDB = +1.95 mUr, where milliurey = 0.001 = 1 ‰), LSVEC lithium carbonate (δ13CVPDB = −46.6 mUr), and IAEA-N-1 ammonium sulfate (δ15NAir = +0.43 mUr) and USGS32 potassium nitrate (δ15N = +180 mUr exactly) by on-line combustion, continuous-flow isotope-ratio mass spectrometry, and off-line dual-inlet isotope-ratio mass spectrometry.ResultsUSGS41a is isotopically homogeneous; the reproducibility of δ13C and δ15N is better than 0.07 mUr and 0.09 mUr, respectively, in 200-μg amounts. It has a δ13C value of +36.55 mUr relative to VPDB and a δ15N value of +47.55 mUr relative to N2 in air. USGS41 was found to be hydroscopic, probably due to the presence of pyroglutamic acid. Experimental results indicate that the chemical purity of USGS41a is substantially better than that of USGS41.ConclusionsThe new isotopic reference material USGS41a can be used with USGS40 (having a δ13CVPDB value of −26.39 mUr and a δ15NAir value of −4.52 mUr) for (i) analyzing local laboratory isotopic reference materials, and (ii) quantifying drift with time, mass-dependent isotopic fractionation, and isotope-ratio-scale contraction for isotopic analysis of biological and organic materials. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  8. USGS Science Serves Public Health

    USGS Publications Warehouse

    Buxton, Herbert T.

    2010-01-01

    Human health so often depends on the health of the environment and wildlife around us. The presence of naturally occurring or human environmental contaminants and the emergence of diseases transferred between animals and humans are growing concerns worldwide. The USGS is a source of natural science information vital for understanding the quantity and quality of our earth and living resources. This information improves our understanding not only of how human activities affect environmental and ecological health, but also of how the quality of our environment and wildlife in turn affects human health. USGS is taking a leadership role in providing the natural science information needed by health researchers, policy makers, and the public to safeguard public health

  9. NASA and The Semantic Web

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen

    2005-01-01

    We provide an overview of several ongoing NASA endeavors based on concepts, systems, and technology from the Semantic Web arena. Indeed NASA has been one of the early adopters of Semantic Web Technology and we describe ongoing and completed R&D efforts for several applications ranging from collaborative systems to airspace information management to enterprise search to scientific information gathering and discovery systems at NASA.

  10. Developing Resource Guides for Astro 101 Instructors, as a Higher Education Community Collaboration from the NASA Astrophysics SEPOF

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory R.; Fraknoi, A.; Smith, D.; Manning, J.

    2012-01-01

    The NASA/SMD-funded Astrophysics SEPOF (Science Education & Public Outreach Forum) has been organizing EPO "community collaborations” as part of its coordination efforts with missions and EPO programs within NASA Astrophysics. One of the community collaborations that emerged has been focusing on higher education, with a particular emphasis on introductory astronomy courses ("Astro 101"), and how NASA EPO programs and materials can help serve the needs of these courses’ instructors. One of the consequent efforts that has begun is the compiling and development of topical Resource Guides for Astro 101 instructors, with the initial subject tackled being cosmology. This is an area in basic astronomy where rapid progress is being made, older textbooks are quickly out of date, and ideas are challenging for many students, and even instructors! We have had informal conversations so far with about a dozen instructors, divided among universities, liberal-arts colleges, and 2-year community colleges. We have also gathered feedback regarding suggested cosmology resources from the EPO community served by the NASA Astrophysics Forum. And we have undertaken an independent search for Astro 101-suitable curriculum materials, from NASA and other sources, and identified a useful set of such materials, in print and on the Web. Results from this investigation will be shared, along with our project's initial Cosmology Resource Guide, and plans for follow-up guides. Feedback is solicited from Astro 101 instructors, resource developers, and EPO professionals.

  11. USGS Releases Landsat Orthorectified State Mosaics

    USGS Publications Warehouse

    ,

    2005-01-01

    The U.S. Geological Survey (USGS) National Remote Sensing Data Archive, located at the USGS Center for Earth Resources Observation and Science (EROS) in Sioux Falls, South Dakota, maintains the Landsat orthorectified data archive. Within the archive are Landsat Enhanced Thematic Mapper Plus (ETM+) data that have been pansharpened and orthorectified by the Earth Satellite Corporation. This imagery has acquisition dates ranging from 1999 to 2001 and was created to provide users with access to quality-screened, high-resolution satellite images with global coverage over the Earth's landmasses.

  12. NASA Ames DEVELOP Interns Collaborate with the South Bay Salt Pond Restoration Project to Monitor and Study Restoration Efforts using NASA's Satellites

    NASA Technical Reports Server (NTRS)

    Newcomer, Michelle E.; Kuss, Amber Jean; Nguyen, Andrew; Schmidt, Cynthia L.

    2012-01-01

    In the past, natural tidal marshes in the south bay were segmented by levees and converted into ponds for use in salt production. In an effort to provide habitat for migratory birds and other native plants and animals, as well as to rebuild natural capital, the South Bay Salt Pond Restoration Project (SBSPRP) is focused on restoring a portion of the over 15,000 acres of wetlands in California's South San Francisco Bay. The process of restoration begins when a levee is breached; the bay water and sediment flow into the ponds and eventually restore natural tidal marshes. Since the spring of 2010 the NASA Ames Research Center (ARC) DEVELOP student internship program has collaborated with the South Bay Salt Pond Restoration Project (SBSPRP) to study the effects of these restoration efforts and to provide valuable information to assist in habitat management and ecological forecasting. All of the studies were based on remote sensing techniques -- NASA's area of expertise in the field of Earth Science, and used various analytical techniques such as predictive modeling, flora and fauna classification, and spectral detection, to name a few. Each study was conducted by a team of aspiring scientists as a part of the DEVELOP program at Ames.

  13. NASA USAID Memorandum of Understanding

    NASA Image and Video Library

    2011-04-25

    USAID Administrator Rajiv Shah, left, and NASA Administrator Charles Bolden shake hands after signing a five-year memorandum of understanding, Monday, April 25, 2011, at NASA Headquarters in Washington. The agreement formalizes ongoing agency collaborations that use Earth science data to address developmental challenges, and to assist in disaster mitigation and humanitarian responses. The agreement also encourages NASA and USAID to apply geospatial technologies to solve development challenges affecting the United States and developing countries. Photo Credit: (NASA/Paul E. Alers)

  14. USGS research on energy resources, 1986; program and abstracts

    USGS Publications Warehouse

    Carter, Lorna M.H.

    1986-01-01

    The extended abstracts in this volume are summaries of the papers presented orally and as posters in the second V. E. McKelvey Forum on Mineral and Energy Resources, entitled "USGS Research on Energy Resources-1986." The Forum has been established to improve communication between the USGS and the earth science community by presenting the results of current USGS research on nonrenewable resources in a timely fashion and by providing an opportunity for individuals from other organizations to meet informally with USGS scientists and managers. It is our hope that the McKelvey Forum will help to make USGS programs more responsive to the needs of the earth science community, particularly the mining and petroleum industries, and Win foster closer cooperation between organizations and individuals. The Forum was named after former Director Vincent E. McKelvey in recognition of his lifelong contributions to research, development, and administration in mineral and energy resources, as a scientist, as Chief Geologist, and as Director of the U.S. Geological Survey. The Forum will be an annual event, and its subject matter will alternate between mineral and energy resources. We expect that the format will change somewhat from year to year as various approaches are tried, but its primary purpose will remain the same: to encourage direct communication between USGS scientists and the representatives of other earth-science related organizations. Energy programs of the USGS include oil and gas, coal, geothermal, uranium-thorium, and oil shale; work in these programs spans the national domain, including surveys of the offshore Exclusive Economic Zone. The topics selected for presentation at this McKelvey Forum represent an overview of the scientific breadth of USGS research on energy resources. They include aspects of petroleum occurrence in Eastern United States rift basins, the origin of magnetic anomalies over oil fields, accreted terranes and energy-resource implications, coal

  15. SALMON-TRINITY ALPS WILDERNESS, CALIFORNIA.

    USGS Publications Warehouse

    Hotz, Preston E.; Thurber, Horace K.

    1984-01-01

    The Salmon-Trinity Alps Wilderness in the Klamath Mountains province occupies an area of about 648 sq mi in parts of Trinity, Siskiyou, and Humboldt Counties, northwestern California. As a result of field studies it was determined that the Salmon-Trinity Alps Wilderness has an area with substantiated potential for gold resources in known lode deposits. Small amounts of quicksilver have been produced from one mine but there is little promise for the discovery of additional mercury resources. Geochemical sampling showed that anomalously high amounts of several other metals occur in a few places, but there is little promise for the discovery of energy or mineral resources other than mercury and gold.

  16. Public-Private Partnerships: NASA as Your Business Partner

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2017-01-01

    Partnerships is an important part of doing business at NASA. NASA partners with external organizations to access capabilities under collaborative agreements; enters into agreements for partner access to NASA capabilities; expand overall landscape of space activity; and spurring innovation. The U.S. national policy on commercial space is to develop a robust and competitive U.S. commercial space sector and to energize competitive domestic industries to participate in global markets. Commercial space must be competitive, while the government has other priorities such as safety, jobs, etc. NASA partnerships consist of Reimbursable and Non-Reimbursable Space Act Agreements. Partnerships at Ames aligns with Ames' core competencies, and Partners often office in the NASA Research Park, which is an established regional innovation cluster that facilitates commercialization and services as a technology accelerator via onsite collaborations between NASA and its partners.

  17. NASA Satellite Captures Super Bowl Cities - Boston/Providence [annotated

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Boston/Providence area acquired August 25, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. USGS Earthquake Program GPS Use Case : Earthquake Early Warning

    DOT National Transportation Integrated Search

    2015-03-12

    USGS GPS receiver use case. Item 1 - High Precision User (federal agency with Stafford Act hazard alert responsibilities for earthquakes, volcanoes and landslides nationwide). Item 2 - Description of Associated GPS Application(s): The USGS Eart...

  19. Fission yeast Alp14 is a dose-dependent plus end–tracking microtubule polymerase

    PubMed Central

    Al-Bassam, Jawdat; Kim, Hwajin; Flor-Parra, Ignacio; Lal, Neeraj; Velji, Hamida; Chang, Fred

    2012-01-01

    XMAP215/Dis1 proteins are conserved tubulin-binding TOG-domain proteins that regulate microtubule (MT) plus-end dynamics. Here we show that Alp14, a XMAP215 orthologue in fission yeast, Schizosaccharomyces pombe, has properties of a MT polymerase. In vivo, Alp14 localizes to growing MT plus ends in a manner independent of Mal3 (EB1). alp14-null mutants display short interphase MTs with twofold slower assembly rate and frequent pauses. Alp14 is a homodimer that binds a single tubulin dimer. In vitro, purified Alp14 molecules track growing MT plus ends and accelerate MT assembly threefold. TOG-domain mutants demonstrate that tubulin binding is critical for function and plus end localization. Overexpression of Alp14 or only its TOG domains causes complete MT loss in vivo, and high Alp14 concentration inhibits MT assembly in vitro. These inhibitory effects may arise from Alp14 sequestration of tubulin and effects on the MT. Our studies suggest that Alp14 regulates the polymerization state of tubulin by cycling between a tubulin dimer–bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly. PMID:22696680

  20. Vulnerability and adaptation to water scarcity in the European Alps

    NASA Astrophysics Data System (ADS)

    Isoard, S.; McCallum, S.; Prutsch, A.; Benno Hain, B.; Schauser, I.

    2009-04-01

    The European Environment Agency (EEA) has recently undertaken a project addressing vulnerability and adaptation to water availability in the European Alps. Mountains are indeed one of the most vulnerable regions to climate change in Europe (EEA 2008, IPCC 2007).The Alps, in particular, can be presented as the ‘water towers' of Europe (the amount of water delivered by the Alps allocates 40% of EU consumption) where changes in water availability affect all socio-economical sectors. This therefore makes adaptation actions a regional topic with an outstanding European dimension. The specific objectives of the study were to highlight the importance of the Alps in their function as ‘water towers' for Europe and analyse the vulnerability of the Alpine Region with regard to impacts of climate change (but also to global change as a whole) focussing on water availability. Given the EU and regional policy background with regard to adaptation and water issues, the study assessed the possible needs, constraints and opportunities for adaptation to the adverse impacts for various sectors pending on water resources. Findings of this activity expanded the knowledge base, fed into the preparation of European Commission's 2009 White Paper and the Alpine Convention 2009 Report on the State of the Alps, and complemented other recent studies (e.g. OECD 2007, European Parliament Committee on Agriculture & Rural Development 2008). The method used for the study relied on the one hand on findings from recent key publications on climate change impacts (EEA 2008, IPCC 2007) and EU research projects (e.g. ClimChAlp, ProClim); on the other side it was based on selected case studies chosen within the four climatic regions of the eight Alpine countries for which an extensive series of interviews with local and regional stakeholders and decision makers has been undertaken. The interviewees had been directly involved in designing and implementing water availability-related adaptation measures

  1. NASA Applied Sciences Disasters Program Support for the September 2017 Mexico Earthquakes

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Kirschbaum, D.; Torres-Perez, J. L.; Yun, S. H.; Owen, S. E.; Hua, H.; Fielding, E. J.; Liang, C.; Bekaert, D. P.; Osmanoglu, B.; Amini, R.; Green, D. S.; Murray, J. J.; Stough, T.; Struve, J. C.; Seepersad, J.; Thompson, V.

    2017-12-01

    The 8 September M 8.1 Tehuantepec and 19 September M 7.1 Puebla earthquakes were among the largest earthquakes recorded in Mexico. These two events caused widespread damage, affecting several million people and causing numerous casualties. A team of event coordinators in the NASA Applied Sciences Program activated soon after these devastating earthquakes in order to support decision makers in Mexico, using NASA modeling and international remote sensing capabilities to generate decision support products to aid in response and recovery. The NASA Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. For these two events, the Disasters Program worked with Mexico's space agency (Agencia Espacial Mexico, AEM) and the National Center for Prevention of Disasters (Centro Nacional de Prevención de Desastres, CENAPRED) to generate products to support response, decision-making, and recovery. Products were also provided to academic partners, technical institutions, and field responders to support response. In addition, the Program partnered with the US Geological Survey (USGS), Office of Foreign Disaster Assistance (OFDA), and other partners in order to provide information to federal and domestic agencies that were supporting event response. Leveraging the expertise of investigators at NASA Centers, products such as landslide susceptibility maps, precipitation models, and radar based damage assessments and surface deformation maps were generated and used by AEM, CENAPRED, and others during the event. These were used by AEM in collaboration with other government agencies in Mexico to make appropriate decisions for mapping damage, rescue and recovery, and informing the population regarding areas prone to potential risk. We will provide an overview of the response activities and data products generated in support of the earthquake response, partnerships with

  2. USGS Spectral Library Version 7

    USGS Publications Warehouse

    Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.

    2017-04-10

    We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and

  3. ASTER and USGS EROS disaster response: emergency imaging after Hurricane Katrina

    USGS Publications Warehouse

    Duda, Kenneth A.; Abrams, Michael

    2005-01-01

    The value of remotely sensed imagery during times of crisis is well established, and the increasing spatial and spectral resolution in newer systems provides ever greater utility and ability to discriminate features of interest (International Charter, Space and Major Disasters, 2005). The existing suite of sensors provides an abundance of data, and enables warning alerts to be broadcast for many situations in advance. In addition, imagery acquired soon after an event occurs can be used to assist response and remediation teams in identifying the extent of the affected area and the degree of damage. The data characteristics of the Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) are well-suited for monitoring natural hazards and providing local and regional views after disaster strikes. For this reason, and because of the system fl exibility in scheduling high-priority observations, ASTER is often tasked to support emergency situations. The Emergency Response coordinators at the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) work closely with staff at the National Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center (LP DAAC) at EROS and the ASTER Science Team as they fulfi ll their mission to acquire and distribute data during critical situations. This article summarizes the role of the USGS/EROS Emergency Response coordinators, and provides further discussion of ASTER data and the images portrayed on the cover of this issue

  4. Controls on Deep Seated Gravitational Slope Deformations in the European Alps

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni B.; Frattini, Paolo; Agliardi, Federico

    2013-04-01

    DSGSDs are very large, slow mass movements affecting entire high-relief valley slopes. The first orogen-scale inventory of such phenomena at has been recently presented for the European Alps (Crosta et al 2008, Agliardi et al 2012), and then further implemented. The inventory includes 1034 Deep Seated Gravitational Slope Deformations, widespread over the entire orogen and clustered along major valleys and in some specific sectors of the Alps. In this contribution we systematically explore lithological, structural and topographic controls on DSGSD distribution with the help of multivariate statistical techniques (Principal Component Analysis, Discriminant Analysis). Analysis units for statistical analysis were obtained by creating three square vector grids with 2.5 km, 5 km and 10 km grid cell size, respectively, covering the entire area (about 110,000 km2). For each grid cell, we calculated the density of DSGSD, and we assigned a value for each of the controlling variable considered in the analysis. From the NASA SRTM (Shuttle Radar Topography Mission) DEM we derived land surface parameters, such as relief, slope gradients, slope aspect, mean vertical distance from base level and ruggedness. The SRTM DEM was also used to extract the drainage density, with a threshold of 1 km2 and 10 km2. We also computer the stream power of the 1km2 river network Lithology was obtained by assembling different geological maps (1:200.000 map of Salzburg, 1:250.000 map of France, 1:500.000 maps of Switzerland and Austria, 1:1.000.000 map of Italy) and by reclassifying the geological units into 8 lithological classes (carbonate rocks, metapelites, sandstones and marls, paragneiss, ortogneiss, flysch-type rocks, granitoid/metabasite, Quaternary units, and volcanic rocks). To study the role of seismicity, we calculated the number of earthquakes (CPTI11 and USGS-NEIC database) within a distance dmax from the square cell, calculated adopting Keefer's (1984) equation, and the sum of Arias

  5. NASA Satellite Captures Super Bowl Cities - Charlotte, NC

    NASA Image and Video Library

    2016-02-06

    Landsat 7 image of the Charlotte, NC area acquired Oct 18, 2015. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. USGS research on geohazards of the North Pacific: past, present, and future

    NASA Astrophysics Data System (ADS)

    McNutt, M. K.; Eichelberger, J. C.

    2012-12-01

    The disastrous earthquakes and tsunamis of Sumatra in 2004 and Tohoku in 2011 have driven re-examination of where and how such events occur. Particular focus is on the North Pacific. Of the top 30 earthquakes recorded instrumentally worldwide, 50% occurred along the line of subduction from the Kuril Islands to the southern Alaska mainland. This region has seen monstrous volcanic eruptions (Katmai-Novarupta, 1912), destructive tsunamis (Severo-Kurilsk, 1952), and one of Earth's largest instrumentally-recorded earthquakes (M9.2 Alaska, 1964). Only the modest populations in these frontier towns half a century ago kept losses to a minimum. Impact of any natural disaster to population, vital infrastructure, and sea and air transportation would be magnified today. While USGS had a presence in Alaska for more than a century, the great Alaska earthquake of 1964 ushered in the first understanding of the area's risks. This was the first mega-thrust earthquake properly interpreted as such, and led to re-examination of the 1960 Chilean event. All modern conceptions of mega-thrust earthquakes and tsunamis derive some heritage from USGS research following the 1964 event. The discovery of oil in the Alaska Arctic prompted building a pipeline from the north slope of Alaska to the ice-free port of Valdez. The USGS identified risks from crossing permafrost and active faults. Accurate characterization of these hazards informed innovative designs that kept the pipeline from rupturing due to ground instability or during the M7.9 Denali earthquake of 2002. As a large state with few roads, air travel is common in Alaska. The frequent ash eruptions of volcanoes in the populous Cook Inlet basin became a serious issue, highlighted by the near-crash of a large passenger jet in 1989. In response, the USGS and its partners developed and deployed efficient seismic networks on remote volcanoes and initiated regular satellite surveillance for early warning of ash eruptions. Close collaboration

  7. Proceedings of the First All-USGS Modeling Conference, November 14-17, 2005

    USGS Publications Warehouse

    Frondorf, Anne

    2007-01-01

    Preface: The First All-USGS Modeling Conference was held November 14-17, 2005, in Port Angeles, Washington. U.S. Geological Survey (USGS) participants at the conference came from USGS headquarters and all USGS regions and represented all four science disciplines-Biology, Geography, Geology, and Water. The conference centered on selected oral case study presentations and posters on current USGS scientific modeling capabilities and activities. Abstracts for these case study presentations and posters are presented here. On behalf of all the participants of the First All-USGS Modeling Conference, we appreciate the support of Dee Ann Nelson and the staff of the Olympic Park Institute in providing the conference facilities; Dr. Jerry Freilich and Dr. Brian Winter of the National Park Service, Olympic National Park, for organizing and leading the conference field trip; and Debra Becker and Amy Newman, USGS Western Fisheries Research Center, Seattle, Washington, and Tammy Hansel, USGS Geospatial Information Office, Reston, Virginia, for providing technical support for the conference. The organizing committee for the conference included Jenifer Bracewell, Jacoby Carter, Jeff Duda, Anne Frondorf, Linda Gundersen, Tom Gunther, Pat Jellison, Rama Kotra, George Leavesley, and Doug Muchoney.

  8. Software Engineering Research/Developer Collaborations in 2005

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom

    2006-01-01

    In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.

  9. Operating a global seismic network - perspectives from the USGS GSN

    NASA Astrophysics Data System (ADS)

    Gee, L. S.; Derr, J. S.; Hutt, C. R.; Bolton, H.; Ford, D.; Gyure, G. S.; Storm, T.; Leith, W.

    2007-05-01

    The Global Seismographic Network (GSN) is a permanent digital network of state-of-the-art seismological and geophysical sensors connected by a global telecommunications network, serving as a multi-use scientific facility used for seismic monitoring for response applications, basic and applied research in solid earthquake geophysics, and earth science education. A joint program of the U.S. Geological Survey (USGS), the National Science Foundation, and Incorporated Research Institutions in Seismology (IRIS), the GSN provides near- uniform, worldwide monitoring of the Earth through 144 modern, globally distributed seismic stations. The USGS currently operates 90 GSN or GSN-affiliate stations. As a US government program, the USGS GSN is evaluated on several performance measures including data availability, data latency, and cost effectiveness. The USGS-component of the GSN, like the GSN as a whole, is in transition from a period of rapid growth to steady- state operations. The program faces challenges of aging equipment and increased operating costs at the same time that national and international earthquake and tsunami monitoring agencies place an increased reliance on GSN data. Data acquisition of the USGS GSN is based on the Quanterra Q680 datalogger, a workhorse system that is approaching twenty years in the field, often in harsh environments. An IRIS instrumentation committee recently selected the Quanterra Q330 HR as the "next generation" GSN data acquisition system, and the USGS will begin deploying the new equipment in the middle of 2007. These new systems will address many of the issues associated with the ageing Q680 while providing a platform for interoperability across the GSN.. In order to address the challenge of increasing operational costs, the USGS employs several tools. First, the USGS benefits from the contributions of local host institutions. The station operators are the first line of defense when a station experiences problems, changing boards

  10. NASA Collaborative Research on the Ultra High Bypass Engine Cycle and Potential Benefits for Noise, Performance, and Emissions

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2013-01-01

    The National Aeronautics and Space Administration has taken an active role in collaborative research with the U.S. aerospace industry to investigate technologies to minimize the impact of aviation on the environment. In December 2006, a new program, called the Fundamental Aeronautics Program, was established to enhance U.S. aeronautics technology and conduct research on energy, efficiency and the environment. A project within the overall program, the Subsonic Fixed Wing Project, was formed to focus on research related to subsonic aircraft with specific goals and time based milestones to reduce aircraft noise, emissions and fuel burn. This paper will present an overview of the Subsonic Fixed Wing Project environmental goals and describe a segment of the current research within NASA and also were worked collaboratively with partners from the U.S. aerospace industry related to the next generation of aircraft that will have lower noise, emissions and fuel burn.

  11. USGS Science: Addressing Our Nation's Challenges

    USGS Publications Warehouse

    Larson, Tania M.

    2009-01-01

    With 6.6 billion people already living on Earth, and that number increasing every day, human influence on our planet is ever more apparent. Changes to the natural world combined with increasing human demands threaten our health and safety, our national security, our economy, and our quality of life. As a planet and a Nation, we face unprecedented challenges: loss of critical and unique ecosystems, the effects of climate change, increasing demand for limited energy and mineral resources, increasing vulnerability to natural hazards, the effects of emerging diseases on wildlife and human health, and growing needs for clean water. The time to respond to these challenges is now, but policymakers and decisionmakers face difficult choices. With competing priorities to balance, and potentially serious - perhaps irreversible - consequences at stake, our leaders need reliable scientific information to guide their decisions. As the Nation's earth and natural science agency, the USGS monitors and conducts scientific research on natural hazards and resources and how these elements and human activities influence our environment. Because the challenges we face are complex, the science needed to better understand and deal with these challenges must reflect the complex interplay among natural and human systems. With world-class expertise in biology, geology, geography, hydrology, geospatial information, and remote sensing, the USGS is uniquely capable of conducting the comprehensive scientific research needed to better understand the interdependent interactions of Earth's systems. Every day, the USGS helps decisionmakers to minimize loss of life and property, manage our natural resources, and protect and enhance our quality of life. This brochure provides examples of the challenges we face and how USGS science helps decisionmakers to address these challenges.

  12. NASA Software Engineering Benchmarking Effort

    NASA Technical Reports Server (NTRS)

    Godfrey, Sally; Rarick, Heather

    2012-01-01

    Benchmarking was very interesting and provided a wealth of information (1) We did see potential solutions to some of our "top 10" issues (2) We have an assessment of where NASA stands with relation to other aerospace/defense groups We formed new contacts and potential collaborations (1) Several organizations sent us examples of their templates, processes (2) Many of the organizations were interested in future collaboration: sharing of training, metrics, Capability Maturity Model Integration (CMMI) appraisers, instructors, etc. We received feedback from some of our contractors/ partners (1) Desires to participate in our training; provide feedback on procedures (2) Welcomed opportunity to provide feedback on working with NASA

  13. NASA spinoffs to bioengineering and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.; Winfield, D. L.; Canada, S. C.

    1991-01-01

    Through the active transfer of technology, the National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from areas such as digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government, and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.

  14. Engaging Scientists in NASA Education and Public Outreach: Higher Education

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Smith, D. A.; Schultz, G. R.; Lawton, B. L.; Bianchi, L.; Blair, W. P.; Buxner, S.; SEPOF Higher Education Working Group; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the Higher Education community. Members of the Higher Education community include instructors, faculty, and students at community colleges and four-year colleges/universities. The Forums’ efforts for the Higher Education community include a literature review, appraisal of instructors’ needs, coordination of audience-based NASA resources and opportunities, and classroom support materials. Learn how to join in our collaborative efforts to support the Higher Education community based upon mutual needs and interests.

  15. Structure of Accelerated Learning Program (ALP) Efforts, 2000-01.

    ERIC Educational Resources Information Center

    Baenen, Nancy; Yaman, Kimberly

    This report focuses on the structure of instructional assistance available through the Accelerated Learning Program (ALP) to students who show low achievement in the Wake County Public School System (WCPSS), North Carolina. Context information is also provided on other programs available to these students. Reports on ALP student participation,…

  16. USGS Arctic Science Strategy

    USGS Publications Warehouse

    Shasby, Mark; Smith, Durelle

    2015-07-17

    The United States is one of eight Arctic nations responsible for the stewardship of a polar region undergoing dramatic environmental, social, and economic changes. Although warming and cooling cycles have occurred over millennia in the Arctic region, the current warming trend is unlike anything recorded previously and is affecting the region faster than any other place on Earth, bringing dramatic reductions in sea ice extent, altered weather, and thawing permafrost. Implications of these changes include rapid coastal erosion threatening villages and critical infrastructure, potentially significant effects on subsistence activities and cultural resources, changes to wildlife habitat, increased greenhouse-gas emissions from thawing permafrost, threat of invasive species, and opening of the Arctic Ocean to oil and gas exploration and increased shipping. The Arctic science portfolio of the U.S. Geological Survey (USGS) and its response to climate-related changes focuses on landscapescale ecosystem and natural resource issues and provides scientific underpinning for understanding the physical processes that shape the Arctic. The science conducted by the USGS informs the Nation's resource management policies and improves the stewardship of the Arctic Region.

  17. NASA EPA MOA Signing

    NASA Image and Video Library

    2010-04-25

    NASA Administrator Charles Bolden, left, and U.S. Environmental Protection Agency (EPA) Administrator Lisa P. Jackson, right, sign a Memorandum of Agreement (MOA) to promote collaboration between the two agencies for cooperation in environmental and Earth sciences and environmental management applications as students from the Howard University Middle School of Mathematics and Science look on, Monday, April 26, 2010, at the school in Washington. Photo Credit: (NASA/Paul E. Alers)

  18. NASA EPA MOA Signing

    NASA Image and Video Library

    2010-04-25

    NASA Administrator Charles Bolden, foreground, speaks with Howard University students after he and and U.S. Environmental Protection Agency (EPA) Administrator Lisa P. Jackson, right, signed a Memorandum of Agreement (MOA) to promote collaboration between the two agencies for cooperation in environmental and Earth sciences and environmental management applications at the Howard University Middle School of Mathematics and Science, Monday, April 26, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)

  19. Collaborative Supercomputing for Global Change Science

    NASA Astrophysics Data System (ADS)

    Nemani, R.; Votava, P.; Michaelis, A.; Melton, F.; Milesi, C.

    2011-03-01

    There is increasing pressure on the science community not only to understand how recent and projected changes in climate will affect Earth's global environment and the natural resources on which society depends but also to design solutions to mitigate or cope with the likely impacts. Responding to this multidimensional challenge requires new tools and research frameworks that assist scientists in collaborating to rapidly investigate complex interdisciplinary science questions of critical societal importance. One such collaborative research framework, within the NASA Earth sciences program, is the NASA Earth Exchange (NEX). NEX combines state-of-the-art supercomputing, Earth system modeling, remote sensing data from NASA and other agencies, and a scientific social networking platform to deliver a complete work environment. In this platform, users can explore and analyze large Earth science data sets, run modeling codes, collaborate on new or existing projects, and share results within or among communities (see Figure S1 in the online supplement to this Eos issue (http://www.agu.org/eos_elec)).

  20. Landsat-8: science and product vision for terrestrial global change research

    USDA-ARS?s Scientific Manuscript database

    Landsat 8, a NASA and USGS collaboration, acquires global moderate-resolution measurements of the Earth's terrestrial and polar regions in the visible, near-infrared, short wave, and thermal infrared. Landsat 8 extends the remarkable 40 year Landsat record and has enhanced capabilities including new...

  1. NASA Satellite Captures Super Bowl Cities - Santa Clara, CA

    NASA Image and Video Library

    2017-12-08

    Landsat 7 image of the Santa Clara area acquired Nov 16, 2015. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. USGS California Water Science Center water programs in California

    USGS Publications Warehouse

    Shulters, Michael V.

    2005-01-01

    California is threatened by many natural hazards—fire, floods, landslides, earthquakes. The State is also threatened by longer-term problems, such as hydrologic effects of climate change, and human-induced problems, such as overuse of ground water and degradation of water quality. The threats and problems are intensified by increases in population, which has risen to nearly 36.8 million. For the USGS California Water Science Center, providing scientific information to help address hazards, threats, and hydrologic issues is a top priority. To meet the demands of a growing California, USGS scientific investigations are helping State and local governments improve emergency management, optimize resources, collect contaminant-source and -mobility information, and improve surface- and ground-water quality. USGS hydrologic studies and data collection throughout the State give water managers quantifiable and detailed scientific information that can be used to plan for development and to protect and more efficiently manage resources. The USGS, in cooperation with state, local, and tribal agencies, operates more than 500 instrument stations, which monitor streamflow, ground-water levels, and surface- and ground-water constituents to help protect water supplies and predict the threats of natural hazards. The following are some of the programs implemented by the USGS, in cooperation with other agencies, to obtain and analyze information needed to preserve California's environment and resources.

  3. Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    NASA Technical Reports Server (NTRS)

    Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David

    2011-01-01

    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations

  4. NASA Aeronautics and Space Database for bibliometric analysis

    NASA Technical Reports Server (NTRS)

    Powers, R.; Rudman, R.

    2004-01-01

    The authors use the NASA Aeronautics and Space Database to perform bibliometric analysis of citations. This paper explains their research methodology and gives some sample results showing collaboration trends between NASA Centers and other institutions.

  5. USGS environmental studies of the World Trade Center area, New York City, after September 11, 2001

    USGS Publications Warehouse

    Clark, Roger N.; Meeker, Greg; Plumlee, Geoffrey S.; Swayze, Gregg A.

    2002-01-01

    Two days after the September 11, 2001, attack on World Trade Center (WTC), the U.S. Geological Survey (USGS) was asked by the U.S. Environmental Protection Agency (EPA) and the U.S. Public Health Service to conduct a remote sensing and mineralogical characterization study of lower Manhattan around the WTC. This study, conducted in cooperation with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL), was requested to rapidly provide emergency response teams with information on the concentrations and distribution of asbestos and other materials in the dusts deposited around lower Manhattan after the September 11 WTC building collapse in New York City. Preliminary results of the study were released via the internet to emergency response teams on September 18 and September 27, 2001. After September 27, additional work was done to fill remaining data gaps, and the study report underwent further detailed peer review. The report was released to the general public via the internet on November 27, 2001. This fact sheet summarizes the results of the interdisciplinary study; the full report can be viewed at http://geology.cr.usgs.gov/pub/open-file-reports/ofr-01-0429/ .

  6. NASA EPA MOA Signing

    NASA Image and Video Library

    2010-04-25

    NASA Administrator Charles Bolden, left, and U.S. Environmental Protection Agency (EPA) Administrator Lisa P. Jackson, right, answer questions from students and faculty from the Howard University Middle School of Mathematics and Science after signing a Memorandum of Agreement (MOA) to promote collaboration between the two agencies for cooperation in environmental and Earth sciences and environmental management applications, Monday, April 26, 2010, at the school in Washington. Photo Credit: (NASA/Paul E. Alers)

  7. NASA Astrophysics EPO Community: Enhancing STEM Instruction

    NASA Astrophysics Data System (ADS)

    Bartolone, L.; Manning, J.; Lawton, B.; Meinke, B. K.; Smith, D. A.; Schultz, G.; NASA Astrophysics EPO community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enhance Science, Technology, Engineering, and Math (STEM) instruction. In 2010, the Astrophysics EPO community identified online professional development for classroom educators and multiwavelength resources as a common interest and priority for collaborative efforts. The result is NASA's Multiwavelength Universe, a 2-3 week online professional development experience for classroom educators. The course uses a mix of synchronous sessions (live WebEx teleconferences) and asynchronous activities (readings and activities that educators complete on their own on the Moodle, and moderated by course facilitators). The NASA SMD Astrophysics EPO community has proven expertise in providing both professional development and resources to K-12 Educators. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum engage the K-12 education community in these ways, including associated metrics and evaluation findings.

  8. Lidar vegetation mapping in national parks: Gulf Coast Network

    USGS Publications Warehouse

    Brock, John C.; Palaseanu-Lovejoy, Monica; Segura, Martha

    2011-01-01

    Airborne lidar (Light Detection and Ranging) is an active remote sensing technique used to collect accurate elevation data over large areas. Lidar provides an extremely high level of regional topographic detail, which makes this technology an essential component of U.S. Geological Survey (USGS) science strategy. The USGS Coastal and Marine Geology Program (CMGP) has collaborated with the National Aeronautics and Space Administration (NASA) and the National Park Service (NPS) to acquire dense topographic lidar data in a variety of coastal environments.

  9. Proceedings of the Second All-USGS Modeling Conference, February 11-14, 2008: Painting the Big Picture

    USGS Publications Warehouse

    Brady, Shailaja R.

    2009-01-01

    The Second USGS Modeling Conference was held February 11-14, 2008, in Orange Beach, Ala. Participants at the conference came from all U.S. Geological Survey (USGS) regions and represented all four science discipline - Biology, Geography, Geology, and Water. Representatives from other Department of the Interior (DOI) agencies and partners from the academic community also participated. The conference, which was focused on 'painting the big picture', emphasized the following themes: Integrated Landscape Monitoring, Global Climate Change, Ecosystem Modeling, and Hazards and Risks. The conference centered on providing a forum for modelers to meet, exchange information on current approaches, identify specific opportunities to share existing models and develop more linked and integrated models to address complex science questions, and increase collaboration across disciplines and with other organizations. Abstracts for the 31 oral presentations and more than 60 posters presented at the conference are included here. The conference also featured a field trip to review scientific modeling issues along the Gulf of Mexico. The field trip included visits to Mississippi Sandhill Crane National Wildlife Refuge, Grand Bay National Estuarine Research Reserve, the 5 Rivers Delta Resource Center, and Bon Secour National Wildlife Refuge. On behalf of all the participants of the Second All-USGS Modeling Conference, the conference organizing committee expresses our sincere appreciation for the support of field trip oganizers and leaders, including the managers from the various Reserves and Refuges. The organizing committee for the conference included Jenifer Bracewell, Sally Brady, Jacoby Carter, Thomas Casadevall, Linda Gundersen, Tom Gunther, Heather Henkel, Lauren Hay, Pat Jellison, K. Bruce Jones, Kenneth Odom, and Mark Wildhaber.

  10. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  11. NASA Astrophysics EPO Community: Enhancing STEM Experience of Undergraduates

    NASA Astrophysics Data System (ADS)

    Manning, J.; Meinke, B. K.; Lawton, B.; Smith, D. A.; Bartolone, L.; Schultz, G.; NASA Astrophysics EPO Community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enhance the Science, Technology, Engineering, and Math (STEM) experience of undergraduates. The NASA SMD Astrophysics EPO community has proven expertise in providing both professional development and resources to faculty at two- and four-year institutions and in offering internships and student collaboration opportunities. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum engage the higher education community in these ways, including associated metrics and evaluation findings.

  12. The DECLIC Research Facility - a Fertile Platform for NASA/CNES Scientific Collaboration

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde,Uday G.; Hahn, Inseob; Strutzenberg, Louise S.; Pont, Gabriel; Zappoli, Bernard

    2012-01-01

    The DECLIC (Device for the Study of Critical Liquids and Crystalization) Facility was launched to the International Space Station (ISS) on Shuttle flight 17-A (August 2009) and has been in service for a little over three years. Activity from the three originally planned investigations, the HTI (High Temperature Insert) investigation, the ALI (Alice Like Insert) investigation and the DSI (Directional Solidication Insert) investigation has led to fruitful collaborations among a team of scientists, sponsored by NASA and CNES, to extend the utility of the inserts and the breadth of science beyond its initial scope. These follow-on investigations plan to use inserts that have been returned to earth for refurbishment, two of which (i.e., HTI-R and DSI-R) simply entail changing the test sample and the third (i.e., ALI-R) entails a slight hardware modication to allow for precise changes in sample volume. The first investigation, the Supercritical Water Mixture (SCWM) experiment, uses the refurbished HTI-R, which will accommodate a dilute aqueous mixture of Na2SO4 -0.5% w. This investigation will extend earlier observations of pure water at near-critical conditions. The second experiment uses a modified insert, the DSI-R, with a different concentration of succinonitrile-camphor than the original flight sample. This will allow, among other objectives, a detailed study of dendritic sidebranch formation in extended three-dimensional arrays, with the goal of elucidating whether noise amplication and/or a deterministic limit cycle is the main cause of sidebranch formation. The final experiment, the ALI-R, uses a sample cell with variable density to allow for additional observations of thermo-physical properties on SF6 at near critical conditions. The presentation will provide a discussion of the DECLIC facility's hardware, its modied inserts, and an overview of the extended science that will be achieved through these collaborative activities.

  13. Nuclear translocation of the cytoskeleton-associated protein, smALP, upon induction of skeletal muscle differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cambier, Linda; Pomies, Pascal, E-mail: pascal.pomies@crbm.cnrs.fr

    2011-06-17

    Highlights: {yields} The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. {yields} smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. {yields} The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. {yields} The LIM domain of smALP is essential for the nuclear accumulation of the protein. {yields} smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletalmore » muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.« less

  14. Streamflow, groundwater, and water-quality monitoring by USGS Nevada Water Science Center

    USGS Publications Warehouse

    Gipson, Marsha L.; Schmidt, Kurtiss

    2013-01-01

    The U.S. Geological Survey (USGS) has monitored and assessed the quantity and quality of our Nation's streams and aquifers since its inception in 1879. Today, the USGS provides hydrologic information to aid in the evaluation of the availability and suitability of water for public and domestic supply, agriculture, aquatic ecosystems, mining, and energy development. Although the USGS has no responsibility for the regulation of water resources, the USGS hydrologic data complement much of the data collected by state, county, and municipal agencies, tribal nations, U.S. District Court Water Masters, and other federal agencies such as the Environmental Protection Agency, which focuses on monitoring for regulatory compliance. The USGS continues its mission to provide timely and relevant water-resources data and information that are available to water-resource managers, non-profit organizations, industry, academia, and the public. Data collected by the USGS provide the science needed for informed decision-making related to resource management and restoration, assessment of flood and drought hazards, ecosystem health, and effects on water resources from land-use changes.

  15. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  16. Si3 AlP: A New Promising Material for Solar Cell Absorber

    NASA Astrophysics Data System (ADS)

    Yang, Jihui; Zhai, Yingteng; Liu, Hengrui; Xiang, Hongjun; Gong, Xingao; Wei, Suhuai

    2014-03-01

    First-principles calculations are performed to study the structural and optoelectronic properties of the newly synthesized nonisovalent and lattice-matched (Si2)0.6(AlP)0.4 alloy [T. Watkins et al., J. Am. Chem. Soc. 2011, 133, 16212.] The most stable structure of Si3AlP is a superlattice along the <111>direction with separated AlP and Si layers, which has a similar optical absorption spectrum to silicon. The ordered C1c1-Si3AlP is found to be the most stable one among all the structures with -AlPSi3- motifs, in agreement with the experimental suggestions. We predict that C1c1-Si3AlP has good optical properties, i.e., it has a larger fundamental band gap and a smaller direct band gap than Si, thus it has much higher absorption in the visible light region, making it a promising candidate for improving the performance of the existing Si-based solar cells.

  17. Educational Experiences of Embry-Riddle Students through NASA Research Collaboration

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Chatman, Yadira; Ristow, James; Gangadharan, Sathya; Sudermann, James; Walker, Charles

    2007-01-01

    NASA's educational programs benefit students while increasing the overall productivity of the organization. The NASA Graduate Student Research Program (GSRP) awards fellowships for graduate study leading to both masters and doctoral degrees in several technical fields, while the Cooperative Education program allows undergraduate and graduate students the chance to gain work experience in the field. The Mission Analysis Branch of the Expendable Launch Vehicles Division at NASA Kennedy Space Center has utilized these two programs with students from Embry-Riddle Aeronautical University to conduct research in modeling and developing a parameter estimation method for spacecraft fuel slosh using simple pendulum analogs. Simple pendulum models are used to understand complicated spacecraft fuel slosh behavior. A robust parameter estimation process will help to identiFy the parameters that will predict the response fairly accurately during the initial stages of design. NASA's Cooperative Education Program trains the next wave of new hires while allowing graduate and undergraduate college students to gain valuable "real-world" work experience. It gives NASA a no risk capability to evaluate the true performance of a prospective new hire without relying solely on a paper resume, while providing the students with a greater hiring potential upon graduation, at NASA or elsewhere. In addition, graduate students serve as mentors for undergrad students and provide a unique learning environment. Providing students with a unique opportunity to work on "real-world" aerospace problems ultimately reinforces their problem solving abilities and their communication skills (in terms of interviewing, resume writing, technical writing, presentation, and peer review) that are vital for the workforce to succeed.

  18. Identity Federation and Its Importance for NASA's Future: The SharePoint Extranet Pilot

    NASA Technical Reports Server (NTRS)

    Baturin, Rebecca R.

    2013-01-01

    My project at Kennedy Space Center (KSC) during the spring 2013 Project Management and Systems Engineering Internship was to functionalJy test and deploy the SharePoint Extranet system and ensure successful completion of the project's various lifecycle milestones as described by NASA Procedural Requirement (NPR) 7 120.7. I worked alongside NASA Project Managers, Systems Integration Engineers, and Information Technology (IT) Professionals to pilot this collaboration capability between NASA and its External Partners. The use of identity federation allows NASA to leverage externally-issued credentials of other federal agencies and private aerospace and defense companies, versus the traditional process of granting and maintaining full NASA identities for these individuals. This is the first system of its kind at NASA and it will serve as a pilot for the Federal Government. Recognizing the novelty of this service, NASA's initial approach for deployment included a pilot period where nearby employees of Patrick Air Force Base would assist in testing and deployment. By utilizing a credential registration process, Air Force users mapped their Air Force-issued Common Access Cards (CAC) to a NASA identity for access to the External SharePoint. Once the Air Force stands up an Active Directory Federation Services (ADFS) instance within their Data Center and establishes a direct trust with NASA, true identity federation can be established. The next partner NASA is targeting for collaboration is Lockheed Martin (LMCO), since they collaborate frequently for the ORION Program. Through the use of Exostar as an identity hub, LMCO employees will be able to access NASA data on a need to know basis, with NASA ultimately managing access. In a time when every dollar and resource is being scrutinized, this capability is an exciting new way for NASA to continue its collaboration efforts in a cost and resource effective manner.

  19. Younger Dryas equilibrium line altitudes and precipitation patterns in the Alps

    NASA Astrophysics Data System (ADS)

    Kerschner, Hanns; Moran, Andrew; Ivy-Ochs, Susan

    2016-04-01

    Moraine systems of the "Egesen Stadial" are widespread and easily identifiable features in the Alps. Absolute dating with terrestrial cosmogenic radionuclides shows that the maximum extent was reached during the early Younger Dryas (YD), probably as a reaction to the intense climatic downturn subsequent to Lateglacial Interstadial. In recent years, several new studies and the availability of high-quality laser-scan hillshades and orthophotos allowed a significant extension of the database of YD glaciers as "palaeoprecipitation gauges" to large hitherto unmapped regions in the Austrian and Swiss Alps. The equilibrium line altitude (ELA) of the glaciers and its lowering relative to the Little Ice Age ELA (dELA) shows a distinct and systematic spatial pattern. Along the northern slope of the Alps, dELAs are usually large (around 400 m and perhaps even more), while dELAs range around 200 m in the well sheltered areas of the central Alps, e.g. in the Engadine and in western Tyrol. Both stochastic glacier-climate models (e.g. Ohmura et al. 1992) and the heat- and mass balance equation (Kuhn 1981) allow the reconstruction of precipitation change under the assumption of a spatially constant summer temperature depression, which in turn can be estimated from biological proxies. This allows to draw the spatial pattern of precipitation change with considerable detail. Precipitation change is clearly controlled by the local relief like high mountain chains, deeply incised and long valleys and mountain passes. Generally the contrast between the northern fringe of the Alps and the interior was more pronounced than today. Climate in the Northern and and Northwestern Alps was rather wet with precipitation totals eventually exceeding modern annual sums. The central Alps received 20 - 30% less precipitation than today, mainly due to reduced winter precipitation. In the southern Alps, still scarce spatial information points to precipitation sums which were approximately similar to

  20. Phenology in the Western Alps: first results of the PhenoALP project

    NASA Astrophysics Data System (ADS)

    Cremonese, Edoardo; Tracol, Yann

    2010-05-01

    PHENOALP is a EU co-funded Interreg Project under the operational programme for cross-border cooperation "Italy-France (Alps-ALCOTRA)" 2007 - 2013, started in 2009, aiming to get a better understanding of phenological changes in the Alps and build a long term monitoring network. The results obtained after the first year of the project are mainly related to the definition of observation protocols and to the implementation of the observation networks. In particular, we focused on the comparison of different approaches for monitoring alpine grasslands phenology. We developed a new protocol for vegetative and reproductive phases of the seven most common plant growth life forms of alpine pastures: cyperaceae, poaceae (palatable and non palatable), evergreen and deciduous shrubs, forbs and leguminous. For each group quantitative and qualitative variables (e.g. leaves length, bud number, fruits number and phenophases) are monitored during the growing season. Study sites are located along an elevation gradient from 1560 to 2580 m asl and measurements are carried out on marked individuals in permanent plots. The other techniques used to monitor grassland phenology are: analysis of webcam images, weekly nadiral digital images, visual estimations of greening percentage, canopy structural measurements (i.e. height, fraction of absorbed photosynthetically active radiation, leaf are index, etc..) and high frequency radiometric measurements of vegetation indexes related to canopy structure. All methods are providing promising results and our goal is to define a protocol suitable for long term observation based on a reasonable trade-off between the quality and robustness of collected data and the heaviness of the observations. For animal phenology we are focusing on many animal taxa among birds, mammals, amphibians and insects. First results are coming from birds and amphibians. In the case of birds, observations of reproductive phenology of some common alpine species are done

  1. Sharing NASA's Scientific Explorations with Communities Across the Country: A Study of Public Libraries Collaborating with NASA STEM Experts

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Holland, A.; Harold, J. B.; Johnson, A.; Randall, C.; Fitzhugh, G.

    2017-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, how our Sun varies and impacts the heliosphere, and defining the conditions necessary to support life beyond Earth. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are also developing new ways to engage their patrons in STEM learning. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. NCIL's STAR Library Network (STAR_Net) is providing important leverage to expand its community of practice that serves both librarians and STEM professionals. Seventy-five libraries were selected through a competitive application process to receive NASA STEM Facilitation Kits, NASA STEM Backpacks for circulation, financial resources, training, and partnership opportunities. Initial survey data from the 75 NASA@ My Library partners showed that, while they are actively providing programming, few STEM programs connected with NASA science and engineering. With the launch of the initiative - including training, resources, and STEM-related event opportunities - all 75 libraries are engaged in offering NASA-focused programs, including with NASA subject matter experts. This talk will highlight the impacts the initiative is having on both public library partners and many others across the country.

  2. USGS Science Data Life Cycle Tools - Lessons Learned in moving to the Cloud

    NASA Astrophysics Data System (ADS)

    Frame, M. T.; Mancuso, T.; Hutchison, V.; Zolly, L.; Wheeler, B.; Urbanowski, S.; Devarakonda, R.; Palanisamy, G.

    2016-12-01

    The U.S Geological Survey (USGS) Core Science Systems has been working for the past year to design, re-architect, and implement several key tools and systems within the USGS Cloud Hosting Service supported by Amazon Web Services (AWS). As a result of emerging USGS data management policies that align with federal Open Data mandates, and as part of a concerted effort to respond to potential increasing user demand due to these policies, the USGS strategically began migrating its core data management tools and services to the AWS environment in hopes of leveraging cloud capabilities (i.e. auto-scaling, replication, etc.). The specific tools included: USGS Online Metadata Editor (OME); USGS Digital Object Identifier (DOI) generation tool; USGS Science Data Catalog (SDC); USGS ScienceBase system; and an integrative tool, the USGS Data Release Workbench, which steps bureau personnel through the process of releasing data. All of these tools existed long before the Cloud was available and presented significant challenges in migrating, re-architecting, securing, and moving to a Cloud based environment. Initially, a `lift and shift' approach, essentially moving as is, was attempted and various lessons learned about that approach will be discussed, along with recommendations that resulted from the development and eventual operational implementation of these tools. The session will discuss lessons learned related to management of these tools in an AWS environment; re-architecture strategies utilized for the tools; time investments through sprint allocations; initial benefits observed from operating within a Cloud based environment; and initial costs to support these data management tools.

  3. USGS research on Florida's isolated freshwater wetlands

    USGS Publications Warehouse

    Torres, Arturo E.; Haag, Kim H.; Lee, Terrie M.; Metz, Patricia A.

    2011-01-01

    The U.S. Geological Survey (USGS) has studied wetland hydrology and its effects on wetland health and ecology in Florida since the 1990s. USGS wetland studies in Florida and other parts of the Nation provide resource managers with tools to assess current conditions and regional trends in wetland resources. Wetland hydrologists in the USGS Florida Water Science Center (FLWSC) have completed a number of interdisciplinary studies assessing the hydrology, ecology, and water quality of wetlands. These studies have expanded the understanding of wetland hydrology, ecology, and related processes including: (1) the effects of cyclical changes in rainfall and the influence of evapotranspiration; (2) surface-water flow, infiltration, groundwater movement, and groundwater and surfacewater interactions; (3) the effects of water quality and soil type; (4) the unique biogeochemical components of wetlands required to maintain ecosystem functions; (5) the effects of land use and other human activities; (6) the influences of algae, plants, and invertebrates on environmental processes; and (7) the effects of seasonal variations in animal communities that inhabit or visit Florida wetlands and how wetland function responds to changes in the plant community.

  4. A Class for Teachers Featuring a NASA Satellite Mission

    NASA Astrophysics Data System (ADS)

    Battle, R.; Hawkins, I.

    1996-05-01

    As part of the NASA IDEA (Initiative to Develop Education through Astronomy) program, the UC Berkeley Center for EUV Astrophysics (CEA) received a grant to develop a self-contained teacher professional development class featuring NASA's Extreme Ultraviolet Explorer (EUVE) satellite mission. This class was offered in collaboration with the Physics/Astronomy Department and the Education Department of San Francisco State University during 1994, and in collaboration with the UCB Graduate School of Education in 1995 as an extension course. The class served as the foundation for the Science Education Program at CEA, providing valuable lessons and experience through a full year of intense collaboration with 50 teachers from the diverse school districts of the San Francisco Bay Area teaching in the 3rd--12th grade range. The underlying theme of the class focused on how scientists carry out research using a NASA satellite mission. Emphasis was given to problem-solving techniques, with specific examples taken from the pre- and post-launch stages of the EUVE mission. The two, semester-long classes were hosted by the CEA, so the teachers spent an average of 4 hours/week during 17 weeks immersed in astrophysics, collaborating with astronomers, and working with colleagues from the Lawrence Hall of Science and the Graduate School of Education. The teachers were taught the computer skills and space astrophysics concepts needed to perform hands-on analysis and interpretation of the EUVE satellite data and the optical identification program. As a final project, groups of teachers developed lesson plans based on NASA and other resources that they posted on the World Wide Web using html. This project's model treats teachers as professionals, and allows them to collaborate with scientists and to hone their curriculum development skills, an important aspect of their professional growth. We will summarize class highlights and showcase teacher-developed lesson plans. A detailed evaluation

  5. Partnering With NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and PSAMS Initiative

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa; Draper, David

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. In order to continue to provide this level of support to the planetary sciences community, and also expand our services and collaboration within the broader scientific community, we intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science. This initiative should result in substantial cost savings to PIs with NASA funding who wish to use our facilities. Another cost saving could be realized by aggregating visiting user experiments and analyses through COMPRES, which would be of particular interest to researchers in earth and material sciences. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs and mission teams easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products that could be shared and distributed to COMPRES community members. These experimental run products could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, CETUS (see companion abstract), to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale.

  6. USGS Mineral Resources Program--Supporting Stewardship of America's Natural Resources

    USGS Publications Warehouse

    Kropschot, Susan J.

    2006-01-01

    The USGS Mineral Resources Program continues a tradition of Federal leadership in the science of mineral resources that extends back before the beginning of the bureau. The need for information on metallic mineral resources helped lead to the creation of the USGS in 1879. In response to the need to assess large areas of Federal lands in the 20th century, Program scientists developed, tested, and refined tools to support managers making land-use decisions on Federal lands. The refinement of the tools and techniques that have established the USGS as a leader in the world in our ability to conduct mineral resource assessments extends into the 21st century.

  7. Ground System Harmonization Efforts at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smith, Dan

    2011-01-01

    This slide presentation reviews the efforts made at Goddard Space Flight Center in harmonizing the ground systems to assist in collaboration in space ventures. The key elements of this effort are: (1) Moving to a Common Framework (2) Use of Consultative Committee for Space Data Systems (CCSDS) Standards (3) Collaboration Across NASA Centers (4) Collaboration Across Industry and other Space Organizations. These efforts are working to bring into harmony the GSFC systems with CCSDS standards to allow for common software, use of Commercial Off the Shelf Software and low risk development and operations and also to work toward harmonization with other NASA centers

  8. Expanding NASA Science Cooperation with New Partners

    NASA Astrophysics Data System (ADS)

    Allen, Marc; Bress, Kent

    Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.

  9. The NASA SMD Science Education and Public Outreach Forums: Engaging Scientists in NASA Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Peticolas, L.; Schwerin, T.; Shipp, S.

    2014-01-01

    The NASA Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program provides a direct return on the public’s investment in NASA’s science missions and research programs through a comprehensive suite of educational resources and opportunities for students, educators, and the public. Four Science Education and Public Outreach Forums work with SMD-funded missions, research programs, and grantees to organize individual E/PO activities into a coordinated, effective, and efficient nationwide effort, with easy entry points for scientists, educators, and the public. We outline the Forums’ role in 1) facilitating communication and collaboration among SMD E/PO programs, scientists, and educators; 2) supporting utilization of best practices and educational research; 3) creating clear paths of involvement for scientists interested in SMD E/PO; and, 4) enabling efficient and effective use of NASA content and education products. Our work includes a cross-Forum collaboration to inventory existing SMD education materials; identify and analyze gaps; and interconnect and organize materials in an accessible manner for multiple audiences. The result is NASAWavelength.org, a one-stop-shop for all NASA SMD education products, including tools to help users identify resources based upon their needs and national education standards. The Forums have also collaborated with the SMD E/PO community to provide a central point of access to metrics, evaluation findings, and impacts for SMD-funded E/PO programs (http://smdepo.org/page/5324). We also present opportunities for the astronomy community to participate in collaborations supporting NASA SMD efforts in the K - 12 Formal Education, Informal Education and Outreach, Higher Education and Research Scientist communities. See Bartolone et al., Lawton et al., Meinke et al., and Buxner et al. (this conference), respectively, to learn about Forum resources and opportunities specific to each of these communities.

  10. The NASA GPM Iowa Flood Studies Experiment

    NASA Astrophysics Data System (ADS)

    Petersen, W. A.; Krajewski, W. F.; Peters-Lidard, C. D.; Rutledge, S. A.; Wolff, D. B.

    2013-12-01

    The overarching objective of NASA Global Precipitation Measurement Mission (GPM) integrated hydrologic ground validation (GV) is to provide a better understanding of the strengths and limitations of the satellite products, in the context of hydrologic applications. Accordingly, the NASA GPM GV program recently completed the first of several hydrology-oriented field efforts: the Iowa Flood Studies (IFloodS) experiment. IFloodS was conducted in central Iowa during the months of April-June, 2013. IFloodS science objectives focused on: a) The collection of reference multi-parameter radar, rain gauge, disdrometer, soil moisture, and hydrologic network measurements to quantify the physical character and space/time variability of rain (e.g., rates, drop size distributions, processes), land surface- state and hydrologic response; b) Application of the ground reference measurements to assessment of satellite-based rainfall estimation uncertainties; c) Propagation of both ground and satellite rainfall estimation uncertainties in coupled hydrologic prediction models to assess impacts on predictive skill; and d) Evaluation of rainfall properties such as rate and accumulation relative to basin hydrologic characteristics in modeled flood genesis. IFloodS observational objectives were achieved via deployments of the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars (operating in coordinated scanning modes), four University of Iowa X-band dual-polarimetric radars, four Micro Rain Radars, a network of 25 paired rain gauge platforms with attendant soil moisture and temperature probes, a network of six 2D Video and 14 Parsivel disdrometers, and 15 USDA-ARS rain gauge and soil-moisture stations (collaboration with the USDA-ARS and NASA Soil Moisture Active-Passive mission). The aforementioned platforms complemented existing operational WSR-88D S-band polarimetric radar, USGS streamflow, and Iowa Flood Center-affiliated stream monitoring and rainfall measurements. Coincident

  11. Low temperature thermochronology in the Easter Alps. New data, interpretations and perspectives.

    NASA Astrophysics Data System (ADS)

    Wölfler, Andreas

    2015-04-01

    The aim of this study is to evaluate new and published low temperature thermochronological data of the Eastern Alps in terms of its Mesozoic and Cenozoic tectonic evolution and the possible connection with deep seated lithospheric processes. In the Eastern Alps, the tectonic units that originate from the Penninic domain are buried beneath the Austroalpine nappe stack. Overthrusting of the Austroalpine nappes over the Penninic units occurred throughout the Cretaceous and lasted until the Eocene. During lateral tectonic extrusion in Oligocene to Miocene times the footwall penninic units exposed in the Tauern Window, were tectonically exhumed from below the Austroalpine hanging wall. This is well documented by Miocene to Pliocene zircon- and apatite fission track (ZFT, AFT) and (U-Th)/He data. However, the Austroalpine hanging wall shows a more complex age pattern. Late Cretaceous ZFT data reflect post-metamorphic exhumational cooling after Eo-Alpine metamorphism that goes along with an extensional phase that affected large parts of the Eastern Alps. Paleogene AFT and apatite (U-Th)/He data of the Austroalpine units to the east of the Tauern Window reflect exhumation of this area that supplied clastic material, the so-called Augenstein formation. Exhumation and erosion of the area left a probably hilly surface in Early Miocene times that was only moderately uplifted since then. These areas are well known for paleosurfaces exposed in the Gurktal- Kor- and Seckauer Alps to the east of the Tauern Window and in the central and eastern Northern Calcareous Alps. However, distinct parts of the Austroalpine hanging wall experienced substantial exhumation and surface uplift in the Miocene, contemporaneous to the exhumation of Penninic units and lateral extrusion of the Eastern Alps. These areas are restricted to the south and northeast of the Tauern Window and are characterized by steep and rugged reliefs that contrast the hilly and moderately shaped reliefs of the

  12. Seismotectonics investigations in the internal Cottian Alps (Italian Western Alps)

    NASA Astrophysics Data System (ADS)

    Perrone, Gianluigi; Eva, Elena; Solarino, Stefano; Cadoppi, Paola; Balestro, Gianni; Fioraso, Gianfranco; Tallone, Sergio

    2010-05-01

    The inner Cottian Alps represent an area of a low- to moderate- magnitude seismicity (Eva et al., 1990) even though some historical earthquakes reached VIII degree of the Mercalli's scale. Although the frame of seismicity is quite well known, the relation between faults and earthquake sources is still under debate. The low deformation rates and the occurrence of several glacial-interglacial cycles during the Pleistocene partly masked the geomorphological evidences of the recent tectonic activity. Recent studies based on field mapping and structural analysis (Balestro et al., 2009; Perrone et al., 2009) allowed characterizing the size and extension of the regional-scale faults dissecting this area of the Western Alps. Here, we combine the results of these novel studies and updated seismological data with the aim to investigate the relations between mapped faults and seismic activity. In the analyzed area both continental crust and oceanic tectonic units, belonging to the Penninic Domain of the Western Alps, crop out. The main brittle tectonic feature of this area is represented by the Lis-Trana Deformation Zone (LTZ), an N-S striking, steep structure that extends for about 35 km from the Lower Lanzo valleys to the Lower Sangone Valley. The occurrence of steep faults displacing the metamorphic basement, showed in seismic sections carried out for oil exploration (Bertotti & Mosca, 2009), suggests that the LTZ may be prolonged Southward beneath the Plio-Quaternary deposits of the Po Plain. West of the LTZ some other minor E-W and N-S faults are also present. Zircon and apatite fission-track data indicate that the activity of these faults started since the Oligocene. Two main faulting stages characterize the post-metamorphic structural evolution of this area: the earlier (faulting stage A; Oligocene?-Early Miocene?) is associated to right-lateral movements along the LTZ and sinistral movements along E-W faults; the subsequent faulting stage (faulting stage B; post

  13. The 2003 NASA Faculty Fellowship Program Research Reports

    NASA Technical Reports Server (NTRS)

    Nash-Stevenson, S. K.; Karr, G.; Freeman, L. M.; Bland, J. (Editor)

    2004-01-01

    For the 39th consecutive year, the NASA Faculty Fellowship Program (NFFP) was conducted at Marshall Space Flight Center. The program was sponsored by NASA Headquarters, Washington, DC, and operated under contract by The University of Alabama in Huntsville. In addition, promotion and applications are managed by the American Society for Engineering Education (ASEE) and assessment is completed by Universities Space Research Association (USRA). The nominal starting and finishing dates for the 10-week program were May 27 through August 1, 2003. The primary objectives of the NASA Faculty Fellowship Program are to: (1) Increase the quality and quantity of research collaborations between NASA and the academic community that contribute to NASA s research objectives; (2) provide research opportunities for college and university faculty that serve to enrich their knowledge base; (3) involve students in cutting-edge science and engineering challenges related to NASA s strategic enterprises, while providing exposure to the methods and practices of real-world research; (4) enhance faculty pedagogy and facilitate interdisciplinary networking; (5) encourage collaborative research and technology transfer with other Government agencies and the private sector; and (6) establish an effective education and outreach activity to foster greater awareness of this program.

  14. Use of Remote Sensing Data to Enhance the National Weather Service (NWS) Storm Damage Toolkit

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Molthan, Andrew; White, Kris; Burks, Jason; Stellman, Keith; Smith, Matthew

    2012-01-01

    SPoRT is improving the use of near real-time satellite data in response to severe weather events and other diasters. Supported through NASA s Applied Sciences Program. Planned interagency collaboration to support NOAA s Damage Assessment Toolkit, with spinoff opportunities to support other entities such as USGS and FEMA.

  15. Cultivating a Grassroots Aerospace Innovation Culture at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    D'Souza, Sarah; Sanchez, Hugo; Lewis, Ryan

    2017-01-01

    This paper details the adaptation of specific 'knowledge production' methods to implement a first of its kind, grassroots event that provokes a cultural change in how the NASA Ames civil servant community engages in the creation and selection of innovative ideas. Historically, selection of innovative proposals at NASA Ames Research Center is done at the highest levels of management, isolating the views and perspectives of the larger civil servant community. Additionally, NASA innovation programs are typically open to technical organizations and do not engage non-technical organizations to bring forward innovative processes/business practices. Finally, collaboration on innovative ideas and associated solutions tend to be isolated to organizational silos. In this environment, not all Ames employees feel empowered to innovate and opportunities for employee collaboration are limited. In order to address these issues, the 'innovation contest' method was adapted to create the NASA Ames Innovation Fair, a unique, grassroots innovation opportunity for the civil servant community. The Innovation Fair consisted of a physical event with a virtual component. The physical event provided innovators the opportunity to collaborate and pitch their innovations to the NASA Ames community. The civil servant community then voted for the projects that they viewed as innovative and would contribute to NASA's core mission, making this event a truly grassroots effort. The Innovation Fair website provided a location for additional knowledge sharing, discussion, and voting. On March 3rd, 2016, the 'First Annual NASA Ames Innovation Fair' was held with 49 innovators and more than 300 participants collaborating and/or voting for the best innovations. Based on the voting results, seven projects were awarded seed funding for projects ranging from innovative cost models to innovations in aerospace technology. Surveys of both innovators and Fair participants show the Innovation Fair was successful

  16. EAARL-B submerged topography: Barnegat Bay, New Jersey, post-Hurricane Sandy, 2012-2013

    USGS Publications Warehouse

    Wright, C. Wayne; Troche, Rodolfo J.; Kranenburg, Christine J.; Klipp, Emily S.; Fredericks, Xan; Nagle, David B.

    2014-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived submerged topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida. This project provides highly detailed and accurate datasets for part of Barnegat Bay, New Jersey, acquired post-Hurricane Sandy on November 1, 5, 16, 20, and 30, 2012; December 5, 6, and 21, 2012; and January 10, 2013. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar system, known as the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), was used during data acquisition. The EAARL-B system is a raster-scanning, waveform-resolving, green-wavelength (532-nm) lidar designed to map nearshore bathymetry, topography, and vegetation structure simultaneously. The EAARL-B sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, down-looking red-green-blue (RGB) and infrared (IR) digital cameras, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL-B platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL-B system. The resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed originally in a NASA-USGS collaboration. The exploration and processing of lidar data in an

  17. EAARL-B coastal topography: eastern New Jersey, Hurricane Sandy, 2012: first surface

    USGS Publications Warehouse

    Wright, C. Wayne; Fredericks, Xan; Troche, Rodolfo J.; Klipp, Emily S.; Kranenburg, Christine J.; Nagle, David B.

    2014-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida. This project provides highly detailed and accurate datasets for a portion of the New Jersey coastline beachface, acquired pre-Hurricane Sandy on October 26, and post-Hurricane Sandy on November 1 and November 5, 2012. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar system, known as the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), was used during data acquisition. The EAARL-B system is a raster-scanning, waveform-resolving, green-wavelength (532-nm) lidar designed to map nearshore bathymetry, topography, and vegetation structure simultaneously. The EAARL-B sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, down-looking red-green-blue (RGB) and infrared (IR) digital cameras, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL-B platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL-B system. The resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of lidar data in

  18. USGS invasive species solutions

    USGS Publications Warehouse

    Simpson, Annie

    2011-01-01

    Land managers must meet the invasive species challenge every day, starting with identification of problem species, then the collection of best practices for their control, and finally the implementation of a plan to remove the problem. At each step of the process, the availability of reliable information is essential to success. The U.S. Geological Survey (USGS) has developed a suite of resources for early detection and rapid response, along with data management and sharing.

  19. Public-Private Collaborations with Earth-Space Benefits

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth

    2014-01-01

    The NASA Human Health and Performance Center (NHHPC) was established in October 2010 to promote collaborative problem solving and project development to advance human health and performance innovations benefiting life in space and on Earth. The NHHPC, which now boasts over 150 corporate, government, academic and non-profit members, has convened four successful workshops and engaged in multiple collaborative projects. The virtual center facilitates member engagement through a variety of vehicles, including annual in-person workshops, webcasts, quarterly electronic newsletters, web postings, and the new system for partner engagement. NHHPC workshops serve to bring member organizations together to share best practices, discuss common goals, and facilitate development of the collaborative projects. The most recent NHHPC workshop was conducted in November 2013 on the topic of "Accelerating Innovation: New Organizational Business Models," and focused on various collaborative approaches successfully used by organizations to achieve their goals. Past workshops have addressed smart media and health applications, connecting through collaboration, microbiology innovations, and strategies and best practices in open innovation. A fifth workshop in Houston, Texas, planned for September 18, 2014, will feature "Innovation Through Co-Development: Engaging Partners". One area of great interest to NASA is mobile health applications, including mobile laboratory analytics, health monitoring, and close loop sensing, all of which also offer ground-based health applications for remote and underserved areas. Another project being coordinated by NASA and the Health and Environmental Sciences Institute is the pursuit of one to several novel strategies to increase medication stability that would enable health care in remote terrestrial settings as well as during space flight. NASA has also funded work with corporate NHHPC partner GE, seeking to develop ultrasound methodologies that will

  20. Advancing migratory bird conservation and management by using radar: An interagency collaboration

    USGS Publications Warehouse

    Ruth, Janet M.; Barrow, Wylie C.; Sojda, Richard S.; Dawson, Deanna K.; Diehl, Robert H.; Manville, Albert; Green, Michael T.; Krueper, David J.; Johnston, Scott

    2005-01-01

    Many technical issues make this work difficult, including complex data structures, massive data sets, digital recognition of birds, large areas not covered by weather radar, and model validation; however, progress will only be furthered by tackling the challenge. The new coalition will meets its goals by: (1) facilitating a productive collaboration with NOAA, Department of the Interior bureaus, state wildlife agencies, universities, power companies, and other potential partners; (2) building and strengthening scientific capabilities within USGS; (3) addressing key migratory bird management issues; and (4) ensuring full funding for the collaborative effort.

  1. U.S. Geological Survey (USGS) Western Region: Alaska Coastal and Ocean Science

    USGS Publications Warehouse

    Holland-Bartels, Leslie

    2009-01-01

    The U.S. Geological Survey (USGS), a bureau of the Department of the Interior (DOI), is the Nation's largest water, earth, and biological science and mapping agency. The bureau's science strategy 'Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017' describes the USGS vision for its science in six integrated areas of societal concern: Understanding Ecosystems and Predicting Ecosystem Change; Climate Variability and Change; Energy and Minerals; Hazards, Risk, and Resilience; Environment and Wildlife in Human Health; and Water Census of the United States. USGS has three Regions that encompass nine geographic Areas. This fact sheet describes examples of USGS science conducted in coastal, nearshore terrestrial, and ocean environments in the Alaska Area.

  2. USGS Methodology for Assessing Continuous Petroleum Resources

    USGS Publications Warehouse

    Charpentier, Ronald R.; Cook, Troy A.

    2011-01-01

    The U.S. Geological Survey (USGS) has developed a new quantitative methodology for assessing resources in continuous (unconventional) petroleum deposits. Continuous petroleum resources include shale gas, coalbed gas, and other oil and gas deposits in low-permeability ("tight") reservoirs. The methodology is based on an approach combining geologic understanding with well productivities. The methodology is probabilistic, with both input and output variables as probability distributions, and uses Monte Carlo simulation to calculate the estimates. The new methodology is an improvement of previous USGS methodologies in that it better accommodates the uncertainties in undrilled or minimally drilled deposits that must be assessed using analogs. The publication is a collection of PowerPoint slides with accompanying comments.

  3. Software Engineering Research/Developer Collaborations in 2004 (C104)

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom; Markosian, Lawrance

    2005-01-01

    In 2004, six collaborations between software engineering technology providers and NASA software development personnel deployed a total of five software engineering technologies (for references, see Section 7.2) on the NASA projects. The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report (for references, see Section 7.1). Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Section 6 lists the acronyms used in this report.

  4. Team Collaboration: Lessons Learned Report

    NASA Technical Reports Server (NTRS)

    Arterberrie, Rhonda Y.; Eubanks, Steven W.; Kay, Dennis R.; Prahst, Stephen E.; Wenner, David P.

    2005-01-01

    An Agency team collaboration pilot was conducted from July 2002 until June 2003 and then extended for an additional year. The objective of the pilot was to assess the value of collaboration tools and adoption processes as applied to NASA teams. In an effort to share knowledge and experiences, the lessons that have been learned thus far are documented in this report. Overall, the pilot has been successful. An entire system has been piloted - tools, adoption, and support. The pilot consisted of two collaboration tools, a team space and a virtual team meeting capability. Of the two tools that were evaluated, the team meeting tool has been more widely accepted. Though the team space tool has been met with a lesser degree of acceptance, the need for such a tool in the NASA environment has been evidenced. Both adoption techniques and support were carefully developed and implemented in a way that has been well received by the pilot participant community.

  5. Semantic-Web Technology: Applications at NASA

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen

    2004-01-01

    We provide a description of work at the National Aeronautics and Space Administration (NASA) on building system based on semantic-web concepts and technologies. NASA has been one of the early adopters of semantic-web technologies for practical applications. Indeed there are several ongoing 0 endeavors on building semantics based systems for use in diverse NASA domains ranging from collaborative scientific activity to accident and mishap investigation to enterprise search to scientific information gathering and integration to aviation safety decision support We provide a brief overview of many applications and ongoing work with the goal of informing the external community of these NASA endeavors.

  6. FAA/NASA UAS Traffic Management Pilot Program (UPP)

    NASA Technical Reports Server (NTRS)

    Johnson, Ronald D.; Kopardekar, Parimal H.; Rios, Joseph L.

    2018-01-01

    NASA Ames is leading ATM R&D organization. NASA started working on UTM in 2012, it's come a long way primarily due to close relationship with FAA and industry. We have a research transition team between FAA and NASA for UTM. We have a few other RTTs as well. UTM is a great example of collaborative innovation, and now it's reaching very exciting stage of UTM Pilot Project (UPP). NASA is supporting FAA and industry to make the UPP most productive and successful.

  7. Meeting the Needs of USGS's Science Application for Risk Reduction Group through Evaluation Research

    NASA Astrophysics Data System (ADS)

    Ritchie, L.; Campbell, N. M.; Vickery, J.; Madera, A.

    2016-12-01

    The U.S. Geological Survey's (USGS) Science Application for Risk Reduction (SAFRR) group aims to support innovative collaborations in hazard science by uniting a broad range of stakeholders to produce and disseminate knowledge in ways that are useful for decision-making in hazard mitigation, planning, and preparedness. Since 2013, an evaluation team at the Natural Hazards Center (NHC) has worked closely with the SAFRR group to assess these collaborations and communication efforts. In contributing to the nexus between academia and practice, or "pracademia," we use evaluation research to provide the USGS with useful feedback for crafting relevant information for practitioners and decision-makers. This presentation will highlight how the NHC team has varied our methodological and information design approaches according to the needs of each project, which in turn assist the SAFRR group in meeting the needs of practitioners and decision-makers. As the foci of our evaluation activities with SAFRR have evolved, so have our efforts to ensure that our work appropriately matches the information needs of each scenario project. We draw upon multiple projects, including evaluation work on the SAFRR Tsunami Scenario, "The First Sue Nami" tsunami awareness messaging, and their most recent project concerning a hypothetical M7 earthquake on the Hayward fault in the Bay Area (HayWired scenario). We have utilized various qualitative and quantitative methodologies—including telephone interviews, focus groups, online surveys, nonparticipant observation, and in-person survey distribution. The findings generated from these series of evaluations highlight the ways in which evaluation research can be used by researchers and academics to more appropriately address the needs of practitioners. Moreover, they contribute to knowledge enhancement surrounding disaster preparedness and risk communication, and, more generally, the limited body of knowledge about evaluation-focused disaster

  8. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to James Pontius, Global Ecosystem Dynamics Investigator (GEDI) Project Manager and Bryan Blair, GEDI Deputy Principal Investigator talk about mission and science of GEDI and the collaborative work being done with Sweden. Photo Credit: NASA/Goddard/Rebecca Roth Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NREL and NASA Receive Regional FLC Award for Notable Technology | News |

    Science.gov Websites

    NREL and NASA Receive Regional FLC Award for Notable Technology NREL and NASA Receive Regional FLC Award for Notable Technology August 25, 2016 NASA Johnson Space Center (JSC) and the National Group Manager Ahmad Pesaran, along with NASA Scientist and collaborator Eric Darcy, will be honored

  10. USGS St. Petersburg Coastal and Marine Science Center

    USGS Publications Warehouse

    2011-01-01

    Extreme storms, sea-level rise, and the health of marine communities are some of the major societal and environmental issues impacting our Nation's marine and coastal realm. The U.S. Geological Survey (USGS) in St. Petersburg, Fla., investigates processes related to these ecosystems and the societal implications of natural hazards and resource sustainability. As one of three centers nationwide conducting research within the USGS Coastal and Marine Geology Program, the center is integral towards developing an understanding of physical processes that will contribute to rational decisions regarding the use and stewardship of national coastal and marine environments.

  11. Maturing Pump Technology for EVA Applications in a Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian

    2012-01-01

    The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.

  12. USGS VDP Infrasound Sensor Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slad, George William; Merchant, Bion J.

    2016-10-01

    Sandia National Laboratories has tested and evaluated two infrasound sensors, the model VDP100 and VDP250, built in-house at the USGS Cascades Volcano Observatory. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, self-noise, dynamic range and nominal transfer function. Notable features of the VDP sensors include novel and durable construction and compact size.

  13. The Indigenous Observation Network: Collaborative, Community-Based Monitoring in the Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Herman-Mercer, N. M.; Mutter, E. A.; Wilson, N. J.; Toohey, R.; Schuster, P. F.

    2017-12-01

    The Indigenous Observation Network (ION) is a collaborative Community-Based Monitoring (CBM) program with both permafrost and water-quality monitoring components operating in the Yukon River Basin (YRB) of Alaska and Canada. ION is jointly facilitated by the Yukon River Inter-Tribal Watershed Council (YRITWC), an indigenous non-profit organization, and the US Geological Survey (USGS), a federal agency. The YRB is the fourth largest drainage basin in North America encompassing 855,000 square kilometers in northwestern Canada and central Alaska and is essential to the ecosystems of the Bering and Chuckchi Seas. Water is also fundamental to the subsistence and culture of the 76 Tribes and First Nations that live in the YRB providing sustenance in the form of drinking water, fish, wildlife, and vegetation. Despite the ecological and cultural significance of the YRB, the remote geography of sub-Arctic and Arctic Alaska and Canada make it difficult to collect scientific data in these locations and led to a lack of baseline data characterizing this system until recently. In response to community concerns about the quality of the YR and a desire by USGS scientists to create a long term water-quality database, the USGS and YRITWC collaborated to create ION in 2005. Surface water samples are collected by trained community technicians from Tribal Environmental Programs or First Nation Lands and Resources staff from over 35 Alaska Native Tribes and First Nations that reside along the YR and/or one of the major tributaries. Samples are analyzed at USGS laboratories in Boulder, CO and results are disseminated to participating YRB communities and the general public. This presentation will focus on the factors that have enabled the longevity and success of this program over the last decade, as well as the strategies ION uses to ensure the credibility of the data collected by community members and best practices that have facilitated the collection of surface water data in remote

  14. Engaging Scientists in NASA Education and Public Outreach: K - 12 Formal Education

    NASA Astrophysics Data System (ADS)

    Bartolone, Lindsay; Smith, D. A.; Eisenhamer, B.; Lawton, B. L.; Universe Professional Development Collaborative, Multiwavelength; NASA Data Collaborative, Use of; SEPOF K-12 Formal Education Working Group; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the K - 12 Formal Education community. Members of the K - 12 Formal Education community include classroom educators, homeschool educators, students, and curriculum developers. The Forums’ efforts for the K - 12 Formal Education community include a literature review, appraisal of educators’ needs, coordination of audience-based NASA resources and opportunities, professional development, and support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K - 12 Formal Education community based upon mutual needs and interests.

  15. The prevalence of and risk factors for acute mountain sickness in the Eastern and Western Alps.

    PubMed

    Mairer, Klemens; Wille, Maria; Burtscher, Martin

    2010-01-01

    Acute mountain sickness (AMS) is the most common condition of high altitude illnesses. Its prevalence varies between 15% and 80% depending on the speed of ascent, absolute altitude reached, and individual susceptibility. Additionally, we assumed that the more experienced mountaineers of the Western Alps are less susceptible to developing AMS than recreational mountaineers of the Eastern Alps or tourist populations. Therefore, the main goals of the present study were the collection of data regarding the AMS prevalence and triggers in both the Eastern and Western Alps using identical methods. A total of 162 mountaineers, 79 in the Eastern Alps (3454 m) and 83 in the Western Alps (3817 m) were studied on the morning after their first night at high altitude. A diagnosis of AMS was based on a Lake Louise Score (LLS) ≥4, the presence of headache, and at least one additional symptom. Thirty of 79 subjects (38.0%) suffered from AMS at 3454 m in the Eastern Alps as did 29 of 83 (34.9%) at 3817 m in the Western Alps. After adjustment for altitude, the prevalence in the Western Alps constituted 24.5%, which differed significantly (p = 0.04) from that found in the Eastern Alps. The lower mountaineering experience of mountaineers in the Eastern Alps turned out to be the only factor for explaining their higher AMS prevalence. Thus, expert advice by mountain guides or experienced colleagues could help to reduce the AMS risk in these subjects.

  16. NASA Research to Support the Airlines

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a PowerPoint presentation that was a review of NASA projects that support airline operations. It covered NASA tasks that have provided new tools to the airline operations center and flight deck including the Flight Awareness Collaboration Tool, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. This material is very similar to other previously approved presentations with the same title.

  17. NASA Nationwide and the Year of the Solar System (Invited)

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2010-12-01

    NASA depends on the efforts of several volunteer networks to help implement its formal and informal education goals, to disseminate its key messages related to space and Earth science missions and to support broad public initiatives such as the upcoming Year of the Solar System (YSS), sponsored by the Planetary Science Education and Public Outreach Forum (SEPOF). These highly leveraged networks include programs such as Solar System Ambassadors, Solar System Educators, Night Sky Network, and NASA Explorer Schools. Founded in June 2008, NASA Nationwide: A Consortium of Formal and Informal Education Networks is a program that brings together these volunteer networks by creating an online community and shared resources which broadens the member networks’ base of support and provides opportunities to coordinate, cooperate, and collaborate with each other. Since its inception, NASA Nationwide has grown to include twelve NASA-funded volunteer networks as members and collaborates with three other NASA networks as affiliates. NASA Nationwide’s support for the Year of the Solar System includes management of several recently completed Solar System Nights kits, which will be made available regionally to collaborative teams of volunteers and affiliates for use in connecting with students in underserved, underrepresented and rural populations. In the latter part of 2010, the program will be further enhanced by the debut of the public NASA Nationwide website to showcase the successful efforts of these volunteers, provide information about member organizations and advertise their upcoming events in support of the Year of the Solar System. Through its broad reach and the dedicated enthusiasm of its members, NASA Nationwide will be an essential factor utilized to help achieve Year of the Solar System goals and ensure the ultimate success of the initiative.

  18. USGS: Science at the intersection of land and ocean

    USGS Publications Warehouse

    Myers, M.D.

    2009-01-01

    The US Geological Survey (USGS) conducts an ongoing national assessment of coastal change hazards in order to help protect lives and support management of coastal infrastructure and resources. The research group rapidly gathers to investigate coastal changes along the Gulf Coast's sandy beaches after each hurricane to examine the magnitude and variability of impacts. This investigation helps to protect the environment and the American people by preparing maps that show the extreme coastal change. It also posts online video and still photography and LIDAR (light detection and ranging) survey data after each storm, to provide a clear picture of the devastated area. The USGS provides data to understand changing coastal vulnerabilities so that informed decisions can be made to protect disaster affected areas and its resources. Earth scientists in the USGS are learning more about coastal dynamics, determining changes, and improving the ability to forecast how coastal environments will respond to the next storm.

  19. Middleware and Web Services for the Collaborative Information Portal of NASA's Mars Exploration Rovers Mission

    NASA Technical Reports Server (NTRS)

    Sinderson, Elias; Magapu, Vish; Mak, Ronald

    2004-01-01

    We describe the design and deployment of the middleware for the Collaborative Information Portal (CIP), a mission critical J2EE application developed for NASA's 2003 Mars Exploration Rover mission. CIP enabled mission personnel to access data and images sent back from Mars, staff and event schedules, broadcast messages and clocks displaying various Earth and Mars time zones. We developed the CIP middleware in less than two years time usins cutting-edge technologies, including EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed as a collection of independent, hot-deployable web services, providing secure access to back end file systems and databases. Throughout the middleware we enabled crosscutting capabilities such as runtime service configuration, security, logging and remote monitoring. This paper presents our approach to mitigating the challenges we faced, concluding with a review of the lessons we learned from this project and noting what we'd do differently and why.

  20. Archiving and Near Real Time Visualization of USGS Instantaneous Data

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Ryan, D.; Whitenack, T.; Valentine, D. W.; Rodriguez, M.

    2009-12-01

    The CUAHSI Hydrologic Information System project has been developing databases, services and online and desktop software applications supporting standards-based publication and access to large volumes of hydrologic data from US federal agencies and academic partners. In particular, the CUAHSI WaterML 1.x schema specification for exchanging hydrologic time series, earlier published as an OGC Discussion Paper (2007), has been adopted by the United States Geological Survey to provide web service access to USGS daily values and instantaneous data. The latter service, making available raw measurements of discharge, gage height and several other parameters for over 10,000 USGS real time measurement points, was announced by USGS, as an experimental WaterML-compliant service, at the end of July 2009. We demonstrate an online application that leverages the new service for nearly continuous harvesting of USGS real time data, and simultaneous visualization and analysis of the data streams. To make this possible, we integrate service components of the CUAHSI software stack with Open Source Data Turbine (OSDT) system, an NSF-supported software environment for robust and scalable assimilation of multimedia data streams (e.g. from sensors), and interfacing with a variety of viewers, databases, archival systems and client applications. Our application continuously queries USGS Instantaneous water data service (which provides access to 15-min measurements updated at USGS every 4 hours), and maps the results for each station-variable combination to a separate "channel", which is used by OSDT to quickly access and manipulate the time series. About 15,000 channels are used, which makes it by far the largest deployment of OSDT. Using RealTime Data Viewer, users can now select one or more stations of interest (e.g. from upstream or downstream from each other), and observe and annotate simultaneous dynamics in the respective discharge and gage height values, using fast forward or

  1. USGS Regional Groundwater Availability Studies: Quantifying Aquifer Response

    NASA Astrophysics Data System (ADS)

    Reeves, H. W.

    2017-12-01

    The U.S. Geological Survey (USGS) identified six challenges in determining groundwater availability: 1) limited direct measurement, 2) varying response times for different systems, 3) varying spatial scales for different availability questions and aquifer systems, 4) varying tolerance to changes in water levels or outflows, 5) redistribution of stresses and potential return-flow of water pumped from the system, and 6) varying chemical quality of groundwater and the role of quality in determining suitability for different uses. USGS Regional groundwater availability studies are designed to address these challenges. USGS regional groundwater availability studies focus on quantifying the groundwater budget for principal aquifers and determining how this budget has changed in response to pumping or variations in climate. This focus requires relating limited measurements to a quantitative understanding of the temporal and spatial response of regional aquifers. For most principal aquifer studies, aquifer response is quantified using regional groundwater flow models, and USGS regional groundwater availability studies have provided test cases for the development and application of advanced modeling techniques and methods. Results from regional studies from the Lake Michigan Basin and Northern Atlantic Coastal Plain illustrate how different parts of these systems respond differently to pumping with some areas showing large drawdowns and others having much less drawdown but greater capture of discharge. The Central Valley and Mississippi Embayment studies show how extensive pumping and transfer of water have resulted in much more groundwater moving through the aquifer system under current conditions compared to pre-development. These and other results from regional studies will be explored to illustrate how regional groundwater availability and related studies address the six challenges to determining groundwater availability.

  2. Three whole-wood isotopic reference materials, USGS54, USGS55, and USGS56, for δ2H, δ13C, δ15N, and δ18O measurements

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Jordan, James A.

    2016-01-01

    Comparative measurements of stable hydrogen and oxygen isotopes in wood are hampered by the lack of proper reference materials (RMs). The U.S. Geological Survey (USGS) has prepared three powdered, whole-wood RMs, USGS54 (Pinus contorta, Canadian lodgepole pine), USGS55 (Cordia cf. dodecandra, Mexican ziricote), and USGS56 (Berchemia cf. zeyheri, South African red ivorywood). The stable isotopes of hydrogen, oxygen, carbon, and nitrogen in these RMs span ranges as δ2HVSMOW from –150.4 to –28.2 mUr or ‰, as δ18OVSMOW from + 17.79 to + 27.23 mUr, as δ13CVPDB from –27.13 to –24.34 mUr, and as δ15N AIR-N2 from –2.42 to + 1.8 mUr. These RMs will enable users to normalize measurements of wood samples to isotope–delta scales, and they are intended primarily for the normalization of δ2H and δ18O measurements of unknown wood samples. However, they also are suitable for normalization of stable isotope measurements of carbon and nitrogen in wood samples. In addition, these RMs are suitable for inter-laboratory calibration for the dual-water suilibration procedure for the measurements of δ2HVSMOW values of non-exchangeable hydrogen. The isotopic compositions with 1-σ uncertainties, mass fractions of each element, and fractions of exchangeable hydrogen of these materials are:USGS54 (Pinus contorta, Canadian Lodgepole pine)δ2HVSMOW = –150.4 ± 1.1 mUr (n = 29), hydrogen mass fraction = 6.00 ± 0.04 % (n = 10)Fraction of exchangeable hydrogen = 5.4 ± 0.6 % (n = 29)δ18OVSMOW = + 17.79 ± 0.15 mUr (n = 18), oxygen mass fraction = 40.4 ± 0.2 % (n = 6)δ13CVPDB = –24.43 ± 0.02 mUr (n = 18), carbon mass fraction = 48.3 ± 0.4 % (n = 12)δ15NAIR-N2 = –2.42 ± 0.32 mUr (n = 17), nitrogen mass fraction = 0.05 % (n = 4)USGS55 (Cordia cf. dodecandra, Mexican ziricote)δ2HVSMOW = –28.2 ± 1.7 mUr (n = 30), hydrogen mass fraction = 5.65 ± 0.06 % (n = 10)Fraction of exchangeable

  3. USGS42 and USGS43: Human-hair stable hydrogen and oxygen isotopic reference materials and analytical methods for forensic science and implications for published measurement results

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2012-01-01

    Because there are no internationally distributed stable hydrogen and oxygen isotopic reference materials of human hair, the U.S. Geological Survey (USGS) has prepared two such materials, USGS42 and USGS43. These reference materials span values commonly encountered in human hair stable isotope analysis and are isotopically homogeneous at sample sizes larger than 0.2 mg. USGS42 and USGS43 human-hair isotopic reference materials are intended for calibration of δ(2)H and δ(18)O measurements of unknown human hair by quantifying (1) drift with time, (2) mass-dependent isotopic fractionation, and (3) isotope-ratio-scale contraction. While they are intended for measurements of the stable isotopes of hydrogen and oxygen, they also are suitable for measurements of the stable isotopes of carbon, nitrogen, and sulfur in human and mammalian hair. Preliminary isotopic compositions of the non-exchangeable fractions of these materials are USGS42(Tibetan hair)δ(2)H(VSMOW-SLAP) = -78.5 ± 2.3‰ (n = 62) and δ(18)O(VSMOW-SLAP) = +8.56 ± 0.10‰ (n = 18) USGS42(Indian hair)δ(2)H(VSMOW-SLAP) = -50.3 ± 2.8‰ (n = 64) and δ(18)O(VSMOW-SLAP) = +14.11 ± 0.10‰ (n = 18). Using recommended analytical protocols presented herein for δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurements, the least squares fit regression of 11 human hair reference materials is δ(2)H(VSMOW-SLAP) = 6.085δ(2)O(VSMOW-SLAP) - 136.0‰ with an R-square value of 0.95. The δ(2)H difference between the calibrated results of human hair in this investigation and a commonly accepted human-hair relationship is a remarkable 34‰. It is critical that readers pay attention to the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) of isotopic reference materials in publications, and they need to adjust the δ(2)H(VSMOW-SLAP) and δ(18)O(VSMOW-SLAP) measurement results of human hair in previous publications, as needed, to ensure all results on are on the same scales.

  4. Video documentation of experiments at the USGS debris-flow flume 1992–2017

    USGS Publications Warehouse

    Logan, Matthew; Iverson, Richard M.

    2007-11-23

    This set of videos presents about 18 hours of footage documenting the 163 experiments conducted at the USGS debris-flow flume from 1992 to 2017. Owing to improvements in video technology over the years, the quality of footage from recent experiments generally exceeds that from earlier experiments.Use the list below to access the individual videos, which are mostly grouped by date and subject matter. When a video is selected from the list, multiple video sequences are generally shown in succession, beginning with a far-field overview and proceeding to close-up views and post-experiment documentation.Interpretations and data from experiments at the USGS debris-flow flume are not provided here but can be found in published reports, many of which are available online at: https://profile.usgs.gov/riverson/A brief introduction to the flume facility is also available online in USGS Open-File Report 92–483 [http://pubs.er.usgs.gov/usgspubs/ofr/ofr92483].

  5. App-lifying USGS Earth Science Data: Engaging the public through Challenge.gov

    NASA Astrophysics Data System (ADS)

    Frame, M. T.

    2013-12-01

    With the goal of promoting innovative use and applications of USGS data, USGS Core Science Analytics and Synthesis (CSAS) launched the first USGS Challenge: App-lifying USGS Earth Science Data. While initiated before the recent Office of Science and Technology Policy's memorandum 'Increasing Access to the Results of Federally Funded Scientific Research', our challenge focused on one of the core tenets of the memorandum- expanding discoverability, accessibility and usability of CSAS data. From January 9 to April 1, 2013, we invited developers, information scientists, biologists/ecologists, and scientific data visualization specialists to create applications for selected USGS datasets. Identifying new, innovative ways to represent, apply, and make these data available is a high priority for our leadership. To help boost innovation, our only constraint on the challengers stated they must incorporate at least one of the identified datasets in their application. Winners were selected based on the relevance to the USGS and CSAS missions, innovation in design, and overall ease of use of the application. The winner for Best Overall App was TaxaViewer by the rOpenSci group. TaxaViewer is a Web interface to a mashup of data from the USGS-sponsored interagency Integrated Taxonomic Information System (ITIS) and other data from the Phylotastic taxonomic Name service, the Global Invasive Species Database, Phylomatic, and the Global Biodiversity Information Facility. The Popular Choice App award, selected through a public vote on the submissions, went to the Species Comparison Tool by Kimberly Sparks of Raleigh, N.C., which allows users to explore the USGS Gap Analysis Program habitat distribution and/or range of two species concurrently. The application also incorporates ITIS data and provides external links to NatureServe species information. Our results indicated that running a challenge was an effective method for promoting our data products and therefore improving

  6. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  7. Diagnostic Accuracy of B-mode USG and Doppler Scan for Ovarian Lesions

    PubMed Central

    Agarwal, Vinish Kumar

    2016-01-01

    Introduction Ultrasonography (USG) is considered as the primary imaging modality for confirmation of ovarian mass and to differentiate them in to benign or malignant. Aim The present study was conducted with the aim to evaluate accuracy of B- mode USG and Doppler scan (Colour Doppler + Spectral Doppler) for ovarian lesions. Materials and Methods The patients included in the study were from those referred with either palpable adnexal mass or incidentally detected adnexal masses. Total 250 women were evaluated by USG, Doppler scan. Only fifty patients who had true ovarian mass intraoperatively and on histopathology were included in study, rest masses were excluded. Study parameters were morphological indexing on B- Mode USG, flow study, vessel arrangement, and vessel morphology and vessel location in Colour Doppler and resistive index and pulsatility index in spectral Doppler. Results Total 50 women were included in present study. Out of these 46% were pre-menopausal while 54% were menopaused women, 66.7% of post-menopausal women had malignant ovarian masses compared to 8.7% of premenopausal. Sensitivity, specificity, positive predictive value and negative predictive value of B-Mode USG for ovarian masses were 94.44%, 48.15%, 54.84% and 92.86% respectively, with p-value = 0.007, while sensitivity, specificity, positive predictive value and negative predictive value of Doppler scan were 85%, 90%, 85% and 90% respectively, with p-value = 0.0001. Conclusion USG and its different techniques are accepted as the primary imaging modality for early stage diagnosis of an ovarian malignancy. Statistical analysis suggests that Doppler Scan (Colour + Spectral) was more accurate (88%) than B-Mode USG (67%), but author is in view that both of these modalities should be used in conjunction to screen the ovarian lesions. PMID:27790544

  8. Public-Private Collaborations with Earth-Space Benefits

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2014-01-01

    The NASA Human Health and Performance Center (NHHPC) was established in October 2010 to promote collaborative problem solving and project development to advance human health and performance innovations benefiting life in space and on Earth. The NHHPC, which now boasts over 135 corporate, government, academic and non-profit members, has convened four successful workshops and engaged in multiple collaborative projects. The center is currently developing a streamlined partner engagement process to capture technical needs and opportunities of NHHPC members, facilitate partnership development, and establish and manage collaborative projects for NASA. The virtual center facilitates member engagement through a variety of vehicles, including annual inperson workshops, webcasts, quarterly electronic newsletters, web postings, and the new system for partner engagement. The most recent NHHPC workshop was conducted in November 2013 on the topic of "Accelerating Innovation: New Organizational Business Models," and focused on various collaborative approaches successfully used by organizations to achieve their goals. The powerful notion of collaboration across sectors to solve intractable problems was recently highlighted in Williams Eggers' book "The Solution Revolution,"i which provides numerous examples of how business, government and social enterprises partner to solve tough problems. Mr. Eggers was a keynote speaker at the workshop, along with Harvard Business School, Jump Associates, and the Conrad Foundation. The robust program also included an expert panel addressing collaboration across sectors, four interactive breakout sessions, and a concluding keynote on innovative ways to increase science, technology, engineering, and math (STEM) education by NASA Associate Administrator for Education, Leland Melvin. The NHHPC forum also provides a platform for international partners to interact on many topics. Members from around the world include ISS International Partner JAXA

  9. NASA's Coordinated Efforts to Enhance STEM Education: Bringing NASA Science into the Library

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Thomas, C.; Eyermann, S.; Mitchell, S.; LaConte, K.; Hauck, K.

    2015-11-01

    Libraries are community-centered, free-access venues serving learners of all ages and backgrounds. Libraries also recognize the importance of science literacy and strive to include science in their programming portfolio. Scientists and educators can partner with local libraries to advance mutual goals of connecting the public to Earth and Space Science. In this interactive Special Interest Group (SIG) discussion, representatives from the NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) community's library collaborations discussed the opportunities for partnership with public and school libraries; explored the resources, events, and programs available through libraries; explored NASA science programming and professional development opportunities available for librarians; and strategized about the types of support that librarians require to plan and implement programs that use NASA data and resources. We also shared successes, lessons learned, and future opportunities for incorporating NASA science programming into library settings.

  10. A revision in hydrogen isotopic composition of USGS42 and USGS43 human-hair stable isotopic reference materials for forensic science

    USGS Publications Warehouse

    Coplen, Tyler B.; Qi, Haiping

    2016-01-01

    The hydrogen isotopic composition (δ2HVSMOW-SLAP) of USGS42 and USGS43 human hair stable isotopic reference materials, normalized to the VSMOW (Vienna-Standard Mean Ocean Water)–SLAP (Standard Light Antarctic Precipitation) scale, was originally determined with a high temperature conversion technique using an elemental analyzer (TC/EA) with a glassy carbon tube and glassy carbon filling and analysis by isotope-ratio mass spectrometer (IRMS). However, the TC/EA IRMS method can produce inaccurate δ2HVSMOW-SLAPresults when analyzing nitrogen-bearing organic substances owing to the formation of hydrogen cyanide (HCN), leading to non-quantitative conversion of a sample into molecular hydrogen (H2) for IRMS analysis. A single-oven, chromium-filled, elemental analyzer (Cr-EA) coupled to an IRMS substantially improves the measurement quality and reliability of hydrogen isotopic analysis of hydrogen- and nitrogen-bearing organic material because hot chromium scavenges all reactive elements except hydrogen. USGS42 and USGS43 human hair isotopic reference materials have been analyzed with the Cr-EA IRMS method, and the δ2HVSMOW-SLAP values of their non-exchangeable hydrogen fractions have been revised:where mUr = 0.001 = ‰. On average, these revised δ2HVSMOW-SLAP values are 5.7 mUr more positive than those previously measured. It is critical that readers pay attention to the δ2HVSMOW-SLAP of isotopic reference materials in publications as they may need to adjust the δ2HVSMOW–SLAP measurement results of human hair in previous publications to ensure all results are on the same isotope-delta scale.

  11. A revision in hydrogen isotopic composition of USGS42 and USGS43 human-hair stable isotopic reference materials for forensic science.

    PubMed

    Coplen, Tyler B; Qi, Haiping

    2016-09-01

    The hydrogen isotopic composition (δ(2)HVSMOW-SLAP) of USGS42 and USGS43 human hair stable isotopic reference materials, normalized to the VSMOW (Vienna-Standard Mean Ocean Water)-SLAP (Standard Light Antarctic Precipitation) scale, was originally determined with a high temperature conversion technique using an elemental analyzer (TC/EA) with a glassy carbon tube and glassy carbon filling and analysis by isotope-ratio mass spectrometer (IRMS). However, the TC/EA IRMS method can produce inaccurate δ(2)HVSMOW-SLAP results when analyzing nitrogen-bearing organic substances owing to the formation of hydrogen cyanide (HCN), leading to non-quantitative conversion of a sample into molecular hydrogen (H2) for IRMS analysis. A single-oven, chromium-filled, elemental analyzer (Cr-EA) coupled to an IRMS substantially improves the measurement quality and reliability of hydrogen isotopic analysis of hydrogen- and nitrogen-bearing organic material because hot chromium scavenges all reactive elements except hydrogen. USGS42 and USGS43 human hair isotopic reference materials have been analyzed with the Cr-EA IRMS method, and the δ(2)HVSMOW-SLAP values of their non-exchangeable hydrogen fractions have been revised: [Formula: see text] [Formula: see text] where mUr=0.001=‰. On average, these revised δ(2)HVSMOW-SLAP values are 5.7mUr more positive than those previously measured. It is critical that readers pay attention to the δ(2)HVSMOW-SLAP of isotopic reference materials in publications as they may need to adjust the δ(2)HVSMOW-SLAP measurement results of human hair in previous publications to ensure all results are on the same isotope-delta scale. Published by Elsevier Ireland Ltd.

  12. CIOC_ISON: Pro-Am Collaboration for Support of NASA Comet ISON Observing Campaign (CIOC) via Social Media

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.; ISON, CIOC; CIOC, NASA

    2013-10-01

    From the initial discovery of C/2012 S1 (ISON) by Russian amateur astronomers in September 2012 to present day, amateur astronomers provide valuable resources of global coverage, data and legacy knowledge to the professional community. C/ISON promises to be the rare and brightest of comets if predictions of its evolution are correct. NASA has requested a small group of cometary scientists to facilitate, support and coordinate the observations of this potential bright comet. The Comet ISON Observing Campaign (CIOC) goals (www.isoncampaign.org) are: (i) a detailed characterization of a subset of comets (sun grazers) that are usually difficult to identify and study in the few hours before their demise; and (ii) facilitate collaborations between various investigators for the best science possible. One of the tangible products is the creation of CIOC_ISON, a professional - amateur astronomer collaboration network established on Facebook, with members from the scientific, amateur, science outreach/education, public from around the globe (www.facebook.com/groups/482774205113931/). Members, by invitation or request, provide the details of their equipment, location and observations and post their observations to both share and provide a forum for interactive discussions. Guidelines for observations and their logs are provided and updated as deemed necessary by the scientists for useful data. The long lead time between initial discovery of C/ISON in September 2012 and its perihelion in November 2013 provides a rare opportunity for the scientific and amateur astronomer communities to study a sungrazer comet on its initial (and possibly) only passage through the inner solar system. These collaborations, once an occasional connection, are now becoming essential and necessary, changing the paradigm of research. Unlike Citizen Science, these interactive and collaborative activities are the equivalent of Inverse Citizen Science, with the scientific community relying on the amateur

  13. USGS lidar science strategy—Mapping the technology to the science

    USGS Publications Warehouse

    Stoker, Jason M.; Brock, John C.; Soulard, Christopher E.; Ries, Kernell G.; Sugarbaker, Larry J.; Newton, Wesley E.; Haggerty, Patricia K.; Lee, Kathy E.; Young, John A.

    2016-01-11

    The U.S. Geological Survey (USGS) utilizes light detection and ranging (lidar) and enabling technologies to support many science research activities. Lidar-derived metrics and products have become a fundamental input to complex hydrologic and hydraulic models, flood inundation models, fault detection and geologic mapping, topographic and land-surface mapping, landslide and volcano hazards mapping and monitoring, forest canopy and habitat characterization, coastal and fluvial erosion mapping, and a host of other research and operational activities. This report documents the types of lidar being used by the USGS, discusses how lidar technology facilitates the achievement of individual mission area goals within the USGS, and offers recommendations and suggested changes in direction in terms of how a mission area could direct work using lidar as it relates to the mission area goals that have already been established.

  14. NASA Lunar Regolith Simulant Program

    NASA Technical Reports Server (NTRS)

    Edmunson, J.; Betts, W.; Rickman, D.; McLemore, C.; Fikes, J.; Stoeser, D.; Wilson, S.; Schrader, C.

    2010-01-01

    Lunar regolith simulant production is absolutely critical to returning man to the Moon. Regolith simulant is used to test hardware exposed to the lunar surface environment, simulate health risks to astronauts, practice in situ resource utilization (ISRU) techniques, and evaluate dust mitigation strategies. Lunar regolith simulant design, production process, and management is a cooperative venture between members of the NASA Marshall Space Flight Center (MSFC) and the U.S. Geological Survey (USGS). The MSFC simulant team is a satellite of the Dust group based at Glenn Research Center. The goals of the cooperative group are to (1) reproduce characteristics of lunar regolith using simulants, (2) produce simulants as cheaply as possible, (3) produce simulants in the amount needed, and (4) produce simulants to meet users? schedules.

  15. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses the needs of Underrepresented Audiences through NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Smith, Denise A.; Bleacher, Lora; Hauck, Karin; Soeffing, Cassie; NASA SMD E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring the NASA science education resources and expertise to libraries nationwide. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO (which is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. The NASA Science4Girls and Their Families initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging this particular underserved and underrepresented audience in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  16. Introducing NASA's Solar System Exploration Research Virtual Institute

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne

    The Solar System Exploration Research Virtual Institute (SSERVI) is focused on the Moon, near Earth asteroids, and the moons of Mars. Comprised of competitively selected teams across the U.S., a growing number of international partnerships around the world, and a small central office located at NASA Ames Research Center, the institute advances collaborative research to bridge science and exploration goals. As a virtual institute, SSERVI brings unique skills and collaborative technologies for enhancing collaborative research between geographically disparate teams. SSERVI is jointly funded through the NASA Science Mission Directorate and the NASA Human Exploration and Operations Mission Directorate. Current U.S. teams include: Dr. Jennifer L. Heldmann, NASA Ames Research Center, Moffett Field, CA; Dr. William Farrell, NASA Goddard Space Flight Center, Greenbelt, MD; Prof. Carlé Pieters, Brown University, Providence, RI; Prof. Daniel Britt, University of Central Florida, Orlando, FL; Prof. Timothy Glotch, Stony Brook University, Stony Brook, NY; Dr. Mihaly Horanyi, University of Colorado, Boulder, CO; Dr. Ben Bussey, Johns Hopkins Univ. Applied Physics Laboratory, Laurel, MD; Dr. David A. Kring, Lunar and Planetary Institute, Houston, TX; and Dr. William Bottke, Southwest Research Institute, Boulder, CO. Interested in becoming part of SSERVI? SSERVI Cooperative Agreement Notice (CAN) awards are staggered every 2.5-3yrs, with award periods of five-years per team. SSERVI encourages those who wish to join the institute in the future to engage current teams and international partners regarding potential collaboration, and to participate in focus groups or current team activities now. Joining hand in hand with international partners is a winning strategy for raising the tide of Solar System science around the world. Non-U.S. science organizations can propose to become either Associate or Affiliate members on a no-exchange-of-funds basis. Current international partners

  17. Partnering for science: proceedings of the USGS Workshop on Citizen Science

    USGS Publications Warehouse

    Hines, Megan; Benson, Abigail; Govoni, David; Masaki, Derek; Poore, Barbara; Simpson, Annie; Tessler, Steven

    2013-01-01

    What U.S. Geological Survey (USGS) programs use citizen science? How can projects be best designed while meeting policy requirements? What are the most effective volunteer recruitment methods? What data should be collected to ensure validation and how should data be stored? What standard protocols are most easily used by volunteers? Can data from multiple projects be integrated to support new research or existing science questions? To help answer these and other questions, the USGS Community of Data Integration (CDI) supported the development of the Citizen Science Working Group (CSWG) in August 2011 and funded the working group’s proposal to hold a USGS Citizen Science Workshop in fiscal year 2012. The stated goals for our workshop were: raise awareness of programs and projects in the USGS that incorporate citizen science, create a community of practice for the sharing of knowledge and experiences, provide a forum to discuss the challenges of—and opportunities for—incorporating citizen science into USGS projects, and educate and support scientists and managers whose projects may benefit from public participation in science.To meet these goals, the workshop brought together 50 attendees (see appendix A for participant details) representing the USGS, partners, and external citizen science practitioners from diverse backgrounds (including scientists, managers, project coordinators, and technical developers, for example) to discuss these topics at the Denver Federal Center in Colorado on September 11–12, 2012. Over two and a half days, attendees participated in four major plenary sessions (Citizen Science Policy and Challenges, Engaging the Public in Scientific Research, Data Collection and Management, and Technology and Tools) comprised of 25 invited presentations and followed by structured discussions for each session designed to address both prepared and ad hoc "big questions." A number of important community support and infrastructure needs were identified

  18. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    projects under five functional themes. I) Streamflow and Flood Forecasting 2) Water Supply and Irrigation (includes evapotranspiration) 3) Drought 4) Water Quality 5) Climate and Water Resources. To maximize this activity NASA Water Resources Program works closely with other government agencies (e.g., the National Oceanic and Atmospheric Administration (NOAA); the U.S. Department of Agriculture (USDA); the U.S. Geological Survey (USGS); the Environmental Protection Agency (EPA), USAID, the Air Force Weather Agency (AFWA)), universities, non-profit national and international organizations, and the private sector. The NASA Water Resources program currently is funding 21 active projects under the functional themes (http://wmp.gsfc.nasa.gov & http://science.nasa.gov/earth-science/applied-sciences/).

  19. Engaging Scientists in NASA Education and Public Outreach: Informal Science Education and Outreach

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; Bartolone, L.; Meinke, B. K.; Discovery Guides Collaborative, Universe; Collaborative, NASAScience4Girls; SEPOF Informal Education Working Group; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the Informal Science Education and Outreach communities. Members of the Informal Science Education and Outreach communities include museum/science center/planetarium professionals, librarians, park rangers, amateur astronomers, and other out-of-school-time educators. The Forums’ efforts for the Informal Science Education and Outreach communities include a literature review, appraisal of informal educators’ needs, coordination of audience-based NASA resources and opportunities, and professional development. Learn how to join in our collaborative efforts to reach the informal science education and outreach communities based upon mutual needs and interests.

  20. NASA-FAA-NOAA Partnering Strategy

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2003-01-01

    This viewgraph presentation provides an overview of NASA-FAA (Federal Aviation Administration) and NOAA (National Oceanic and Atmospheric Administration) collaboration efforts particularly in the area of aviation and aircraft safety. Five technology areas are being jointly by these agencies: (1) aviation weather information; (2) weather products; (3) automet technologies; (4) forward looking weather sensors and (5) turbulence controls and mitigation systems. Memorandum of Agreements (MOU) between these agencies are reviewed. A general review of the pros and pitfalls of inter-agency collaborations is also presented.

  1. Multi-Center Implementation of NPR 7123.1A: A Collaborative Effort

    NASA Technical Reports Server (NTRS)

    Hall, Phillip B.; McNelis, Nancy B.

    2011-01-01

    Collaboration efforts between MSFC and GRC Engineering Directorates to implement the NASA Systems Engineering (SE) Engine have expanded over the past year to include other NASA Centers. Sharing information on designing, developing, and deploying SE processes has sparked further interest based on the realization that there is relative consistency in implementing SE processes at the institutional level. This presentation will provide a status on the ongoing multi-center collaboration and provide insight into how these NPR 7123.1A SE-aligned directives are being implemented and managed to better support the needs of NASA programs and projects. NPR 7123.1A, NASA Systems Engineering Processes and Requirements, was released on March 26, 2007 to clearly articulate and establish the requirements on the implementing organization for performing, supporting, and evaluating SE activities. In early 2009, MSFC and GRC Engineering Directorates undertook a collaborative opportunity to share their research and work associated with developing, updating and revising their SE process policy to comply and align with NPR 7123.1A. The goal is to develop instructions, checklists, templates, and procedures for each of the 17 SE process requirements so that systems engineers will be a position to define work that is process-driven. Greater efficiency and more effective technical management will be achieved due to consistency and repeatability of SE process implementation across and throughout each of the NASA centers. An added benefit will be to encourage NASA centers to pursue and collaborate on joint projects as a result of using common or similar processes, methods, tools, and techniques.

  2. Integration of Research and Education at USGS

    NASA Astrophysics Data System (ADS)

    Ridky, R. W.

    2003-12-01

    Education and research are always in the public service and therefore are inextricably bound at all levels. When present, effective integration of research and education infuses the acquisition of knowledge with the spirit of inquiry and assures that the findings and methods of research are quickly and effectively communicated in a broader context and to a larger audience. It can be shown that the best supported and sustained research programs within government, academia or the corporate sector have developed a projectable identity that allows for ready identification. This identification is especially important in public settings as it works both within the organization and without clarifying what it is about, the importance of the group's activities, and what they are striving to accomplish. Working from the Survey's mandated role of providing long-term monitoring, research and assessments, the Survey's Strategic Plan reflects the high priority given to meeting partner and customer needs in disseminating reliable and impartial scientific information. The way in which USGS research translates knowledge and makes it available to scientific organizations and to the public is critical to the intrinsic societal value of USGS. Consequently, in a conformable way, both research and education have, as their ultimate goal, providing useful knowledge within a relevant context. USGS has a long history of integrating its education and research endeavors. Criteria and examples for assessing quality educational contributions, commensurate with bureau's unique role as the nation's principal natural sciences, and information agency will be presented.

  3. United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    USGS Publications Warehouse

    Updike, Randall G.; Ellis, Eugene G.; Page, William R.; Parker, Melanie J.; Hestbeck, Jay B.; Horak, William F.

    2013-01-01

    Along the nearly 3,200 kilometers (almost 2,000 miles) of the United States–Mexican border, in an area known as the Borderlands, we are witnessing the expression of the challenges of the 21st century. This circular identifies several challenge themes and issues associated with life and the environment in the Borderlands, listed below. The challenges are not one-sided; they do not originate in one country only to become problems for the other. The issues and concerns of each challenge theme flow in both directions across the border, and both nations feel their effects throughout the Borderlands and beyond. The clear message is that our two nations, the United States and Mexico, face the issues in these challenge themes together, and the U.S. Geological Survey (USGS) understands it must work with its counterparts, partners, and customers in both countries.Though the mission of the USGS is not to serve as land manager, law enforcer, or code regulator, its innovation and creativity and the scientific and technical depth of its capabilities can be directly applied to monitoring the conditions of the landscape. The ability of USGS scientists to critically analyze the monitored data in search of signals and trends, whether they lead to negative or positive results, allows us to reach significant conclusions—from providing factual conclusions to decisionmakers, to estimating how much of a natural resource exists in a particular locale, to predicting how a natural hazard phenomenon will unfold, to forecasting on a scale from hours to millennia how ecosystems will behave.None of these challenge themes can be addressed strictly by one or two science disciplines; all require well-integrated, cross-discipline thinking, data collection, and analyses. The multidisciplinary science themes that have become the focus of the USGS mission parallel the major challenges in the border region between Mexico and the United States. Because of this multidisciplinary approach, the USGS

  4. Slab detachment under the Eastern Alps seen by seismic anisotropy

    PubMed Central

    Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz

    2015-01-01

    We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian–Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW–NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW–SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW–SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle. PMID:25843968

  5. Slab detachment under the Eastern Alps seen by seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz

    2015-01-01

    We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian-Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW-NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW-SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW-SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle.

  6. USGS remote sensing coordination for the 2010 Haiti earthquake

    USGS Publications Warehouse

    Duda, Kenneth A.; Jones, Brenda

    2011-01-01

    In response to the devastating 12 January 2010, earthquake in Haiti, the US Geological Survey (USGS) provided essential coordinating services for remote sensing activities. Communication was rapidly established between the widely distributed response teams and data providers to define imaging requirements and sensor tasking opportunities. Data acquired from a variety of sources were received and archived by the USGS, and these products were subsequently distributed using the Hazards Data Distribution System (HDDS) and other mechanisms. Within six weeks after the earthquake, over 600,000 files representing 54 terabytes of data were provided to the response community. The USGS directly supported a wide variety of groups in their use of these data to characterize post-earthquake conditions and to make comparisons with pre-event imagery. The rapid and continuing response achieved was enabled by existing imaging and ground systems, and skilled personnel adept in all aspects of satellite data acquisition, processing, distribution and analysis. The information derived from image interpretation assisted senior planners and on-site teams to direct assistance where it was most needed.

  7. Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  8. Regulation of the Synthesis of the Angucyclinone Antibiotic Alpomycin in Streptomyces ambofaciens by the Autoregulator Receptor AlpZ and Its Specific Ligand▿

    PubMed Central

    Bunet, Robert; Mendes, Marta V.; Rouhier, Nicolas; Pang, Xiuhua; Hotel, Laurence; Leblond, Pierre; Aigle, Bertrand

    2008-01-01

    Streptomyces ambofaciens produces an orange pigment and the antibiotic alpomycin, both of which are products of a type II polyketide synthase gene cluster identified in each of the terminal inverted repeats of the linear chromosome. Five regulatory genes encoding Streptomyces antibiotic regulatory proteins (alpV, previously shown to be an essential activator gene; alpT; and alpU) and TetR family receptors (alpZ and alpW) were detected in this cluster. Here, we demonstrate that AlpZ, which shows high similarity to γ-butyrolactone receptors, is at the top of a pathway-specific regulatory hierarchy that prevents synthesis of the alp polyketide products. Deletion of the two copies of alpZ resulted in the precocious production of both alpomycin and the orange pigment, suggesting a repressor role for AlpZ. Consistent with this, expression of the five alp-located regulatory genes and of two representative biosynthetic structural genes (alpA and alpR) was induced earlier in the alpZ deletion strain. Furthermore, recombinant AlpZ was shown to bind to specific DNA sequences within the promoter regions of alpZ, alpV, and alpXW, suggesting direct transcriptional control of these genes by AlpZ. Analysis of solvent extracts of S. ambofaciens cultures identified the existence of a factor which induces precocious production of alpomycin and pigment in the wild-type strain and which can disrupt the binding of AlpZ to its DNA targets. This activity is reminiscent of γ-butyrolactone-type molecules. However, the AlpZ-interacting molecule(s) was shown to be resistant to an alkali treatment capable of inactivating γ-butyrolactones, suggesting that the AlpZ ligand(s) does not possess a lactone functional group. PMID:18296523

  9. Regulation of the synthesis of the angucyclinone antibiotic alpomycin in Streptomyces ambofaciens by the autoregulator receptor AlpZ and its specific ligand.

    PubMed

    Bunet, Robert; Mendes, Marta V; Rouhier, Nicolas; Pang, Xiuhua; Hotel, Laurence; Leblond, Pierre; Aigle, Bertrand

    2008-05-01

    Streptomyces ambofaciens produces an orange pigment and the antibiotic alpomycin, both of which are products of a type II polyketide synthase gene cluster identified in each of the terminal inverted repeats of the linear chromosome. Five regulatory genes encoding Streptomyces antibiotic regulatory proteins (alpV, previously shown to be an essential activator gene; alpT; and alpU) and TetR family receptors (alpZ and alpW) were detected in this cluster. Here, we demonstrate that AlpZ, which shows high similarity to gamma-butyrolactone receptors, is at the top of a pathway-specific regulatory hierarchy that prevents synthesis of the alp polyketide products. Deletion of the two copies of alpZ resulted in the precocious production of both alpomycin and the orange pigment, suggesting a repressor role for AlpZ. Consistent with this, expression of the five alp-located regulatory genes and of two representative biosynthetic structural genes (alpA and alpR) was induced earlier in the alpZ deletion strain. Furthermore, recombinant AlpZ was shown to bind to specific DNA sequences within the promoter regions of alpZ, alpV, and alpXW, suggesting direct transcriptional control of these genes by AlpZ. Analysis of solvent extracts of S. ambofaciens cultures identified the existence of a factor which induces precocious production of alpomycin and pigment in the wild-type strain and which can disrupt the binding of AlpZ to its DNA targets. This activity is reminiscent of gamma-butyrolactone-type molecules. However, the AlpZ-interacting molecule(s) was shown to be resistant to an alkali treatment capable of inactivating gamma-butyrolactones, suggesting that the AlpZ ligand(s) does not possess a lactone functional group.

  10. The rising greenhouse effect: experiments and observations in and around the Alps

    NASA Astrophysics Data System (ADS)

    Philipona, R.

    2010-09-01

    The rapid temperature increase of more than 1°C in central Europe over the last three decades is larger than expected from anthropogenic greenhouse warming. Surface radiation flux measurements in and around the Alps in fact confirm that not only thermal longwave radiation but also solar shortwave radiation increased since the 1980s. Surface energy budget analyses reveal the rising surface temperature to be well correlated with the radiative forcing, and also show an increase of the kinetic energy fluxes explaining the rise of atmospheric water vapor. Solar radiation mainly increased due to a strong decline of anthropogenic aerosols since mid of the 1980s. While anthropogenic aerosols were mainly accumulated in the boundary layer, this reduction let solar radiation to recover (solar brightening after several decades of solar dimming) mainly at low altitudes around the Alps. At high elevations in the Alps, solar forcing is much smaller and the respective temperature rise is also found to be smaller than in the lowlands. The fact that temperature increases less in the Alps than at low elevations is unexpected in the concept of greenhouse warming, but the radiation budget analyses clearly shows that in the plains solar forcing due to declining aerosols additionally increased surface temperature, whereas in the Alps temperature increased primarily due to greenhouse warming that is particularly manifested by a strong water vapor feedback.

  11. USGS US topo maps for Alaska

    USGS Publications Warehouse

    Anderson, Becci; Fuller, Tracy

    2014-01-01

    In July 2013, the USGS National Geospatial Program began producing new topographic maps for Alaska, providing a new map series for the state known as US Topo. Prior to the start of US Topo map production in Alaska, the most detailed statewide USGS topographic maps were 15-minute 1:63,360-scale maps, with their original production often dating back nearly fifty years. The new 7.5-minute digital maps are created at 1:25,000 map scale, and show greatly increased topographic detail when compared to the older maps. The map scale and data specifications were selected based on significant outreach to various map user groups in Alaska. This multi-year mapping initiative will vastly enhance the base topographic maps for Alaska and is possible because of improvements to key digital map datasets in the state. The new maps and data are beneficial in high priority applications such as safety, planning, research and resource management. New mapping will support science applications throughout the state and provide updated maps for parks, recreation lands and villages.

  12. NASA + JAXA = Partners in Space

    NASA Image and Video Library

    2017-02-12

    NASA announced the continuation of the successful collaboration with the Japan Aerospace Exploration Agency (JAXA) with the recent signing of an agreement to encourage scientists from both countries to use International Space Station hardware located in both countries’ laboratories. JAXA’s Tetesuya Sakashita, the science integration manager for JAXA’s “Kibo” laboratory module, talks about plans to expand on investigations in microgravity including inviting more countries to participate in this unique orbiting laboratory. To learn more about this new program of cooperation, check out this recent article posted at NASA.gov.

  13. 2002 NASA-HU Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    DePriest, Douglas J. (Compiler); Murray, Deborah B. (Compiler); Berg, Jennifer J. (Compiler)

    2004-01-01

    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering and science faculty members spend 10 weeks working with professional peers on research. NASA HQs and the American Society for Engineering Education supervise the program. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate an exchange of ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of the participants' institutions; (4) To contribute to the research objectives of the NASA Center. Program Description: College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program consisting of lectures and seminars relevant to the Fellows' research.

  14. NASA's Internal Space Weather Working Group

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Guhathakurta, M.; Bell, H.; Niemeyer, L.; Allen, J.

    2011-01-01

    Measurements from many of NASA's scientific spacecraft are used routinely by space weather forecasters, both in the U.S. and internationally. ACE, SOHO (an ESA/NASA collaboration), STEREO, and SDO provide images and in situ measurements that are assimilated into models and cited in alerts and warnings. A number of years ago, the Space Weather laboratory was established at NASA-Goddard, along with the Community Coordinated Modeling Center. Within that organization, a space weather service center has begun issuing alerts for NASA's operational users. NASA's operational user community includes flight operations for human and robotic explorers; atmospheric drag concerns for low-Earth orbit; interplanetary navigation and communication; and the fleet of unmanned aerial vehicles, high altitude aircraft, and launch vehicles. Over the past three years we have identified internal stakeholders within NASA and formed a Working Group to better coordinate their expertise and their needs. In this presentation we will describe this activity and some of the challenges in forming a diverse working group.

  15. U.S. Geological Survey scientific activities in the exploration of Antarctica: 1946-2006 record of personnel in Antarctica and their postal cachets: U.S. Navy (1946-48, 1954-60), International Geophysical Year (1957-58), and USGS (1960-2006)

    USGS Publications Warehouse

    Meunier, Tony K.; Williams, Richard S.; Ferrigno, Jane G.

    2007-01-01

    Antarctica, a vast region encompassing 13.2 million km2 (5.1 million mi2), is considered to be one of the most important scientific laboratories on Earth. During the past 60 years, the USGS, in collaboration and with logistical support from the National Science Foundation's Office of Polar Programs, has sent 325 USGS scientists to Antarctica to work on a wide range of projects: 169 personnel from the NMD (mostly aerial photography, surveying, and geodesy, primarily used for the modern mapping of Antarctica), 138 personnel from the GD (mostly geophysical and geological studies onshore and offshore), 15 personnel from the WRD (mostly hydrological/glaciological studies in the McMurdo Dry Valleys), 2 personnel from the BRD (microbiological studies in the McMurdo Dry Valleys), and 1 person from the Director's Office (P. Patrick Leahy, Acting Director, 2005–06 austral field season). Three GD scientists and three NMD scientists have carried out field work in Antarctica 9 or more times: John C. Behrendt (15), who started in 1956–57 and published two memoirs (Behrendt, 1998, 2005), Arthur B. Ford (10), who started in 1960–61, and Gary D. Clow (9), who started in 1985–86; Larry D. Hothem (12), who began as a winter-over geodesist at Mawson Station in 1968–69, and Jerry L. Mullins (12), who started in 1982–83 and followed in the legendary footsteps of his NMD predecessor, William R. MacDonald (9), who started in 1960–61 and supervised the acquisition of more than 1,000,000 square miles of aerial photography of Antarctica. This report provides a record as complete as possible, of USGS and non-USGS collaborating personnel in Antarctica from 1946–2006, the geographic locations of their work, and their scientific/engineering disciplines represented. Postal cachets for each year follow the table of personnel and scientific activities in the exploration of Antarctica during those 60 years. To commemorate special events and projects in Antarctica, it became an

  16. Developing Distributed Collaboration Systems at NASA: A Report from the Field

    NASA Technical Reports Server (NTRS)

    Becerra-Fernandez, Irma; Stewart, Helen; Knight, Chris; Norvig, Peter (Technical Monitor)

    2001-01-01

    Web-based collaborative systems have assumed a pivotal role in the information systems development arena. While business to customers (B-to-C) and business to business (B-to-B) electronic commerce systems, search engines, and chat sites are the focus of attention, web-based systems span the gamut of information systems that were traditionally confined to internal organizational client server networks. For example, the Domino Application Server allows Lotus Notes (trademarked) uses to build collaborative intranet applications and mySAP.com (trademarked) enables web portals and e-commerce applications for SAP users. This paper presents the experiences in the development of one such system: Postdoc, a government off-the-shelf web-based collaborative environment. Issues related to the design of web-based collaborative information systems, including lessons learned from the development and deployment of the system as well as measured performance, are presented in this paper. Finally, the limitations of the implementation approach as well as future plans are presented as well.

  17. No erosional control on the lateral growth of the Alps

    NASA Astrophysics Data System (ADS)

    Rosenberg, C. L.; Berger, A.

    2009-04-01

    On the base of literature data, we estimated the paleowidth of the Central Alps and the changing location of the inferred active fronts of the orogen from the Oligocene to the present. These compilations indicate that the absolute change of width, defined as the distance between the most external, but not necessarily active thrusts of the orogen was modest, amounting to less than 15 %, from 32 Ma to the present. This value lies within the error of estimate, and hence it is no sound evidence for lateral growth or retreat of the orogen. On the other hand the width of the active orogen, defined as the distance between the most external active thrusts, did increase in the early Miocene. This increase started already in the Oligocene as also concluded on the base of sedimentological findings, suggesting a continuous growth of thrusts through the Oligocene-Early Miocene interval (e.g. Schumacher et al., 1996). In the Late Miocene the active width of the Southern Alps decreased, as documented by a pre-Messinian out-of-sequence phase of thrusting (Lecco thrust; Schönborn, 1992) younger than the Milan Belt (Schönborn 1992). Increasing erosion rates are expected to reduce the width of the orogen, whereas decreasing rates are expected to increase its width (Beaumont et al., 1992). Therefore, following the example of previous investigations (Schlunegger et al., 2001; Schlunegger and Simpson, 2002; Willett et al., 2006) we compare the reconstructed changes of width of the Alps with the depositional budgets of the Alpine foreland basins (Kuhlemann, 2000) inferred to be a proxy for the erosion rates of the Alpine belt. This comparison shows that the most significant increases in erosion efficiency do not lead to a decrease in the active width of the orogen. This is indicated by the pronounced foreland-directed growth of the Alps after the Messinian, i.e., during the phase of greatest increase in the erosion rates of the orogen. The best regional examples are the northward shift

  18. Seismic anisotropy and large-scale deformation of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Bokelmann, Götz; Qorbani, Ehsan; Bianchi, Irene

    2013-12-01

    Mountain chains at the Earth's surface result from deformation processes within the Earth. Such deformation processes can be observed by seismic anisotropy, via the preferred alignment of elastically anisotropic minerals. The Alps show complex deformation at the Earth's surface. In contrast, we show here that observations of seismic anisotropy suggest a relatively simple pattern of internal deformation. Together with earlier observations from the Western Alps, the SKS shear-wave splitting observations presented here show one of the clearest examples yet of mountain chain-parallel fast orientations worldwide, with a simple pattern nearly parallel to the trend of the mountain chain. In the Eastern Alps, the fast orientations do not connect with neighboring mountain chains, neither the present-day Carpathians, nor the present-day Dinarides. In that region, the lithosphere is thin and the observed anisotropy thus resides within the asthenosphere. The deformation is consistent with the eastward extrusion toward the Pannonian basin that was previously suggested based on seismicity and surface geology.

  19. The USGS Salton Sea Science Office

    USGS Publications Warehouse

    Case, Harvey Lee; Barnum, Douglas A.

    2007-01-01

    The U.S. Geological Survey's (USGS) Salton Sea Science Office (SSSO) provides scientific information and evaluations to decisionmakers who are engaged in restoration planning and actions associated with the Salton Sea. The primary focus is the natural resources of the Salton Sea, including the sea?s ability to sustain biological resources and associated social and economic values.

  20. U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: Introduction to Antarctica (Including USGS Field Personnel: 1946-59)

    USGS Publications Warehouse

    Tony K. Meunier Edited by Williams, Richard S.; Ferrigno, Jane G.

    2007-01-01

    international) programs in biology, geology, geophysics, hydrology, and mapping. Therefore, the USGS was the obvious choice for these tasks, because it already had a professional staff of experienced mapmakers, scientists, and program managers with the foresight, dedication, and understanding of the need for accurate maps to support the science programs in Antarctica when asked to do so by the U.S. National Academy of Sciences. Public Laws 85-743 and 87-626, signed in August 1958, and in September 1962, respectively, authorized the Secretary, U.S. Department of the Interior, through the USGS, to support mapping and scientific work in Antarctica (Meunier, 1979 [2007], appendix A). Open-File Report 2006-1116 includes scanned facsimiles of postal cachets. It has become an international practice to create postal cachets to commemorate special events and projects in Antarctica. A cachet is defined as a seal or commemorative design printed or stamped on an envelope to mark a philatelic or special event. The inked impression illustrates to the scientist, historian, stamp collector, and general public the multidisciplinary science projects staffed by USGS and collaborating scientists during the field season. Since 1960, philatelic cachets have been created by team members for each USGS field season and, in most cases, these cachets depict the specific geographic areas and field season program objectives. The cachets become a convenient documentation of the people, projects, and geographic places of interest for that year. Because the cachets are representative of USGS activities, each year's cachet is included as a digital facsimile in that year's Open-File Report. In the 1980s, multiple USGS cachets were prepared each year, one for use by the winter team at Amundsen-Scott South Pole Station and the other for the project work areas of the austral summer field season programs.

  1. NASA's Water Solutions Using Remote Sensing

    NASA Technical Reports Server (NTRS)

    Toll, David

    2012-01-01

    NASA Water Resources works within Earth sciences to leverage investments of space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities into water resources management decision support tools for the sustainable use of water. Earth science satellite observations and modelling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of the water cycle. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. The NASA Water Resources Program has the objective to provide NASA products to help deal with these issues with the goal for the sustainable use of water. The Water Resources program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use (includes evapotranspiration) and irrigation; 3) drought; 4) water quality; and 5) climate and water resources. NASA primarily works with national and international groups such as other US government agencies (NOAA, EPA, USGS, USAID) and various other groups to maximize the widest use of the water products. A summary of NASA's water activities linked to helping solve issues for developing countries will be highlighted.

  2. United States Geological Survey (USGS) Natural Hazards Response

    USGS Publications Warehouse

    Lamb, Rynn M.; Jones, Brenda K.

    2012-01-01

    The primary goal of U.S. Geological Survey (USGS) Natural Hazards Response is to ensure that the disaster response community has access to timely, accurate, and relevant geospatial products, imagery, and services during and after an emergency event. To accomplish this goal, products and services provided by the National Geospatial Program (NGP) and Land Remote Sensing (LRS) Program serve as a geospatial framework for mapping activities of the emergency response community. Post-event imagery and analysis can provide important and timely information about the extent and severity of an event. USGS Natural Hazards Response will also support the coordination of remotely sensed data acquisitions, image distribution, and authoritative geospatial information production as required for use in disaster preparedness, response, and recovery operations.

  3. Enhancing Undergraduate Education with NASA Resources

    NASA Astrophysics Data System (ADS)

    Manning, James G.; Meinke, Bonnie; Schultz, Gregory; Smith, Denise Anne; Lawton, Brandon L.; Gurton, Suzanne; Astrophysics Community, NASA

    2015-08-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring cutting-edge discoveries of NASA missions to the introductory astronomy college classroom. Uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogical expertise, the Forum has coordinated the development of several resources that provide new opportunities for college and university instructors to bring the latest NASA discoveries in astrophysics into their classrooms.To address the needs of the higher education community, the Astrophysics Forum collaborated with the astrophysics E/PO community, researchers, and introductory astronomy instructors to place individual science discoveries and learning resources into context for higher education audiences. The resulting products include two “Resource Guides” on cosmology and exoplanets, each including a variety of accessible resources. The Astrophysics Forum also coordinates the development of the “Astro 101” slide set series. The sets are five- to seven-slide presentations on new discoveries from NASA astrophysics missions relevant to topics in introductory astronomy courses. These sets enable Astronomy 101 instructors to include new discoveries not yet in their textbooks in their courses, and may be found at: https://www.astrosociety.org/education/resources-for-the-higher-education-audience/.The Astrophysics Forum also coordinated the development of 12 monthly “Universe Discovery Guides,” each featuring a theme and a representative object well-placed for viewing, with an accompanying interpretive story, strategies for conveying the topics, and supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. These resources are adaptable for use by instructors and may be found at: http://nightsky.jpl.nasa

  4. NASA-ASEE Summer Faculty Fellowship Program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Prahl, Joseph M.; Keith, Theo G., Jr.; Montegani, Francis J.

    1996-01-01

    During the summer of 1996, a ten-week Summer Faculty Fellowship Program was conducted at the NASA Lewis Research Center (LeRC) in collaboration with Case Western Reserve University (CWRU), and the Ohio Aerospace Institute (OAI). This is the thirty-third summer of this program at Lewis. It was one of nine summer programs sponsored by NASA in 1996, at various field centers under the auspices of the American Society for Engineering Education (ASEE). The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science educators, (2) to stimulate an exchange of ideas between participants and NASA, (3) to enrich and refresh the research activities of participants' institutions. (4) to contribute to the research objectives of LeRC. This report is intended to recapitulate the activities comprising the 1996 Lewis Summer Faculty Fellowship Program, to summarize evaluations by the participants, and to make recommendations regarding future programs.

  5. USGS Blind Sample Project: monitoring and evaluating laboratory analytical quality

    USGS Publications Warehouse

    Ludtke, Amy S.; Woodworth, Mark T.

    1997-01-01

    The U.S. Geological Survey (USGS) collects and disseminates information about the Nation's water resources. Surface- and ground-water samples are collected and sent to USGS laboratories for chemical analyses. The laboratories identify and quantify the constituents in the water samples. Random and systematic errors occur during sample handling, chemical analysis, and data processing. Although all errors cannot be eliminated from measurements, the magnitude of their uncertainty can be estimated and tracked over time. Since 1981, the USGS has operated an independent, external, quality-assurance project called the Blind Sample Project (BSP). The purpose of the BSP is to monitor and evaluate the quality of laboratory analytical results through the use of double-blind quality-control (QC) samples. The information provided by the BSP assists the laboratories in detecting and correcting problems in the analytical procedures. The information also can aid laboratory users in estimating the extent that laboratory errors contribute to the overall errors in their environmental data.

  6. The Lifecycle of NASA's Earth Science Enterprise Data Resources

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert

    2004-01-01

    A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.

  7. The European Alps as an interrupter of the Earth's conductivity structures

    NASA Astrophysics Data System (ADS)

    Al-Halbouni, D.

    2013-07-01

    Joint interpretation of magnetotelluric and geomagnetic depth sounding results in the period range of 10-105 s in the Western European Alps offer new insights into the conductivity structure of the Earth's crust and mantle. This first large scale electromagnetic study in the Alps covers a cross-section from Germany to northern Italy and shows the importance of the alpine mountain chain as an interrupter of continuous conductors. Poor data quality due to the highly crystalline underground is overcome by Remote Reference and Robust Processing techniques and the combination of both electromagnetic methods. 3-D forward modeling reveals on the one hand interrupted dipping crustal conductors with maximum conductances of 4960 S and on the other hand a lithosphere thickening up to 208 km beneath the central Western Alps. Graphite networks arising from Palaeozoic sedimentary deposits are considered to be accountable for the occurrence of high conductivity and the distribution pattern of crustal conductors. The influence of huge sedimentary Molasse basins on the electromagnetic data is suggested to be minor compared with the influence of crustal conductors. Dipping direction (S-SE) and maximum angle (10.1°) of the northern crustal conductor reveal the main thrusting conditions beneath the Helvetic Alps whereas the existence of a crustal conductor in the Briançonnais supports theses about its belonging to the Iberian Peninsula. In conclusion the proposed model arisen from combined 3-D modeling of noise corrected electromagnetic data is able to explain the geophysical influence of various structural features in and around the Western European Alps and serves as a background for further upcoming studies.

  8. Program for the Increased Participation of Minorities in NASA-Related Research

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The goal of this program is to increase the participation of minorities in NASA related research and "Science for the Nation s Interest". Collaborative research projects will be developed involving NASA-MSFC, National Space Science and Technology Center (NSSTC), other government agencies, industries and minority serving institutions (MSIs). The primary focus for the MSIs will be on Alabama A&M University and Tuskegee University, which are in partnership with the NSSTC. These schools have excellent Ph.D. programs in physics and materials science and engineering, respectively. The first phase of this program will be carried out at Alabama A&M University in the "Research and Development Office" in collaboration with Dr. Dorothy Huston, Vice President of Research and Development. The development assignment will be carried out at the NSSTC with Sandy Coleman/ RS01 and this will primarily involve working with Tuskegee University.A portion of the program will be devoted to identifying and contacting potential funding sources for use in establishing collaborative research projects between NASA-MSFC, other government agencies, NSSTC, industries, and MSIs. These potential funding sources include the National Science Foundation (NSF), National Institute of Health (NIH), Department of Defense (DOD), Army, Navy, and Air Force. Collaborative research projects will be written mostly in the following research areas: a. Cosmic radiation shielding materials b. Advanced propulsion material c. Biomedical materials and biosensors d. In situ resource utilization e. Photonics for NASA applications

  9. Ciencia, Sociedad, Soluciones: Una Introduccion al USGS

    USGS Publications Warehouse

    ,

    2001-01-01

    El USGS sirve a la nacion de los Estados Unidos proveyendo informacion fidedigna para ? Describir y comprender la Tierra; ? Minimizar la perdida de vidas y propiedades por desastres naturales; ? Manejar los recursos hidrologicos, biologicos, energeticos y minerales; y ? Mejorar y proteger nuestra calidad de vida.

  10. U.S. Geological Survey (USGS) Earthquake Web Applications

    NASA Astrophysics Data System (ADS)

    Fee, J.; Martinez, E.

    2015-12-01

    USGS Earthquake web applications provide access to earthquake information from USGS and other Advanced National Seismic System (ANSS) contributors. One of the primary goals of these applications is to provide a consistent experience for accessing both near-real time information as soon as it is available and historic information after it is thoroughly reviewed. Millions of people use these applications every month including people who feel an earthquake, emergency responders looking for the latest information about a recent event, and scientists researching historic earthquakes and their effects. Information from multiple catalogs and contributors is combined by the ANSS Comprehensive Catalog into one composite catalog, identifying the most preferred information from any source for each event. A web service and near-real time feeds provide access to all contributed data, and are used by a number of users and software packages. The Latest Earthquakes application displays summaries of many events, either near-real time feeds or custom searches, and the Event Page application shows detailed information for each event. Because all data is accessed through the web service, it can also be downloaded by users. The applications are maintained as open source projects on github, and use mobile-first and responsive-web-design approaches to work well on both mobile devices and desktop computers. http://earthquake.usgs.gov/earthquakes/map/

  11. Overview of NASA MSFC IEC Multi-CAD Collaboration Capability

    NASA Technical Reports Server (NTRS)

    Moushon, Brian; McDuffee, Patrick

    2005-01-01

    This viewgraph presentation provides an overview of a Design and Data Management System (DDMS) for Computer Aided Design (CAD) collaboration in order to support the Integrated Engineering Capability (IEC) at Marshall Space Flight Center (MSFC).

  12. USGS Geospatial Fabric and Geo Data Portal for Continental Scale Hydrology Simulations

    NASA Astrophysics Data System (ADS)

    Sampson, K. M.; Newman, A. J.; Blodgett, D. L.; Viger, R.; Hay, L.; Clark, M. P.

    2013-12-01

    This presentation describes use of United States Geological Survey (USGS) data products and server-based resources for continental-scale hydrologic simulations. The USGS Modeling of Watershed Systems (MoWS) group provides a consistent national geospatial fabric built on NHDPlus. They have defined more than 100,000 hydrologic response units (HRUs) over the continental United States based on points of interest (POIs) and split into left and right bank based on the corresponding stream segment. Geophysical attributes are calculated for each HRU that can be used to define parameters in hydrologic and land-surface models. The Geo Data Portal (GDP) project at the USGS Center for Integrated Data Analytics (CIDA) provides access to downscaled climate datasets and processing services via web-interface and python modules for creating forcing datasets for any polygon (such as an HRU). These resources greatly reduce the labor required for creating model-ready data in-house, contributing to efficient and effective modeling applications. We will present an application of this USGS cyber-infrastructure for assessments of impacts of climate change on hydrology over the continental United States.

  13. USGS Emergency Response and the Hazards Data Distribution System (HDDS)

    NASA Astrophysics Data System (ADS)

    Jones, B. K.; Lamb, R.

    2013-12-01

    Remotely sensed datasets such as satellite imagery and aerial photography can be an invaluable resource to support the response and recovery from many types of emergency events such as floods, earthquakes, landslides, wildfires, and other natural or human-induced disasters. When disaster strikes there is often an urgent need and high demand for rapid acquisition and coordinated distribution of pre- and post-event geospatial products and remotely sensed imagery. These products and images are necessary to record change, analyze impacts, and facilitate response to the rapidly changing conditions on the ground. The coordinated and timely provision of relevant imagery and other datasets is one important component of the USGS support for domestic and international emergency response activities. The USGS Hazards Data Distribution System (HDDS) serves as a single, consolidated point-of-access for relevant satellite and aerial image datasets during an emergency event response. The HDDS provides data visibility and immediate download services through a complementary pair of graphical map-based and traditional directory-based interfaces. This system allows emergency response personnel to rapidly select and obtain pre-event ('baseline') and post-event emergency response imagery from many different sources. These datasets will typically include images that are acquired directly by USGS, but may also include many other types of images that are collected and contributed by partner agencies and organizations during the course of an emergency event response. Over the past decade, USGS Emergency Response and HDDS have supported hundreds of domestic and international disaster events by providing critically needed pre- and post-event remotely sensed imagery and other related geospatial products as required by the emergency response community. Some of the larger national events supported by HDDS have included Hurricane Sandy (2012), the Deepwater Horizon Oil Spill (2010), and Hurricane

  14. A global digital elevation model - GTOP030

    USGS Publications Warehouse

    1999-01-01

    GTOP030, the U.S. Geological Survey's (USGS) digital elevation model (DEM) of the Earth, provides the flrst global coverage of moderate resolution elevation data.  The original GTOP30 data set, which was developed over a 3-year period through a collaborative effort led by the USGS, was completed in 1996 at the USGS EROS Data Center in Sioux Falls, South Dakota.  The collaboration involved contributions of staffing, funding, or source data from cooperators including the National Aeronautics and Space Administration (NASA), the United Nations Environment Programme Global Resource Information Database (UNEP/GRID), the U.S. Agency for International Development (USAID), the Instituto Nacional de Estadistica Geografia e Informatica (INEGI) of Mexico, the Geographical Survey Institute (GSI) of Japan, Manaaki Whenua Landcare Research of New Zealand, and the Scientific Committee on Antarctic Research (SCAR). In 1999, work was begun on an update to the GTOP030 data set. Additional data sources are being incorporated into GTOP030 with an enhanced and improved data set planned for release in 2000.

  15. Integrating Gridded NASA Hydrological Data into CUAHSI HIS

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, William; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko K.; Whiteaker, Tim; Valentine, David; Maidment, David; Hooper, Richard

    2011-01-01

    The amount of hydrological data available from NASA remote sensing and modeling systems is vast and ever-increasing;but, one challenge persists:increasing the usefulness of these data for, and thus their use by, end user communities. The Hydrology Data and Information Services Center (HDISC), part of the Goddard Earth Sciences DISC, has continually worked to better understand the hydrological data needs of different end users, to thus better able to bridge the gap between NASA data and end user communities. One effective strategy is integrating the data in to end user community tools and environments. There is an ongoing collaborative effort between NASA HDISC, NASA Hydrological Sciences Branch, and CUAHSI to integrate NASA gridded hydrology data in to the CUAHSI Hydrologic Information System (HIS).

  16. A consistent and uniform research earthquake catalog for the AlpArray region: preliminary results.

    NASA Astrophysics Data System (ADS)

    Molinari, I.; Bagagli, M.; Kissling, E. H.; Diehl, T.; Clinton, J. F.; Giardini, D.; Wiemer, S.

    2017-12-01

    The AlpArray initiative (www.alparray.ethz.ch) is a large-scale European collaboration ( 50 institutes involved) to study the entire Alpine orogen at high resolution with a variety of geoscientific methods. AlpArray provides unprecedentedly uniform station coverage for the region with more than 650 broadband seismic stations, 300 of which are temporary. The AlpArray Seismic Network (AASN) is a joint effort of 25 institutes from 10 nations, operates since January 2016 and is expected to continue until the end of 2018. In this study, we establish a uniform earthquake catalogue for the Greater Alpine region during the operation period of the AASN with a aimed completeness of M2.5. The catalog has two main goals: 1) calculation of consistent and precise hypocenter locations 2) provide preliminary but uniform magnitude calculations across the region. The procedure is based on automatic high-quality P- and S-wave pickers, providing consistent phase arrival times in combination with a picking quality assessment. First, we detect all events in the region in 2016/2017 using an STA/LTA based detector. Among the detected events, we select 50 geographically homogeneously distributed events with magnitudes ≥2.5 representative for the entire catalog. We manually pick the selected events to establish a consistent P- and S-phase reference data set, including arrival-time time uncertainties. The reference data, are used to adjust the automatic pickers and to assess their performance. In a first iteration, a simple P-picker algorithm is applied to the entire dataset, providing initial picks for the advanced MannekenPix (MPX) algorithm. In a second iteration, the MPX picker provides consistent and reliable automatic first arrival P picks together with a pick-quality estimate. The derived automatic P picks are then used as initial values for a multi-component S-phase picking algorithm. Subsequently, automatic picks of all well-locatable earthquakes will be considered to calculate

  17. How Investment in #GovTech Tools Helped with USGS Disaster Response During Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Shah, S.; Pearson, D. K.

    2017-12-01

    Hurricane Harvey was an unprecedented storm event that not only included a challenge to decision-makers, but also the scientific community to provide clear and rapid dissemination of changing streamflow conditions and potential flooding concerns. Of primary importance to the U.S. Geological Survey (USGS) Texas Water Science Center was to focus on the availability of accessible data and scientific communication of rapidly changing water conditions across Texas with regards to heavy rainfall rates, rising rivers, streams, and lake elevations where USGS has monitoring stations. Infrastructure modernization leading to advanced GovTech practices and data visualization was key to the USGS role in providing data during Hurricane Harvey. In the last two years, USGS has released two web applications, "Texas Water Dashboard" and "Water-On-The-Go", which were heavily utilized by partners, local media, and municipal government officials. These tools provided the backbone for data distribution through both desktop and mobile applications as decision support during flood events. The combination of Texas Water Science Center web tools and the USGS National Water Information System handled more than 5-million data requests over the course of the storm. On the ground local information near Buffalo Bayou and Addicks/Barker Dams, as well as statewide support of USGS real-time scientific data, were delivered to the National Weather Service, U.S. Army Corps of Engineers, FEMA, Harris County Flood Control District, the general public, and others. This presentation will provide an overview of GovTech solutions used during Hurricane Harvey, including the history of USGS tool development, discussion on the public response, and future applications for helping provide scientific communications to the public.

  18. NASA Exhibits

    NASA Technical Reports Server (NTRS)

    Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick; hide

    2001-01-01

    A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.

  19. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  20. Glacial isostatic uplift of the European Alps

    PubMed Central

    Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D.; Egholm, David L.; Tesauro, Magdala; Schildgen, Taylor F.; Strecker, Manfred R.

    2016-01-01

    Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth’s viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions. PMID:27830704

  1. Glacial isostatic uplift of the European Alps.

    PubMed

    Mey, Jürgen; Scherler, Dirk; Wickert, Andrew D; Egholm, David L; Tesauro, Magdala; Schildgen, Taylor F; Strecker, Manfred R

    2016-11-10

    Following the last glacial maximum (LGM), the demise of continental ice sheets induced crustal rebound in tectonically stable regions of North America and Scandinavia that is still ongoing. Unlike the ice sheets, the Alpine ice cap developed in an orogen where the measured uplift is potentially attributed to tectonic shortening, lithospheric delamination and unloading due to deglaciation and erosion. Here we show that ∼90% of the geodetically measured rock uplift in the Alps can be explained by the Earth's viscoelastic response to LGM deglaciation. We modelled rock uplift by reconstructing the Alpine ice cap, while accounting for postglacial erosion, sediment deposition and spatial variations in lithospheric rigidity. Clusters of excessive uplift in the Rhône Valley and in the Eastern Alps delineate regions potentially affected by mantle processes, crustal heterogeneity and active tectonics. Our study shows that even small LGM ice caps can dominate present-day rock uplift in tectonically active regions.

  2. Software for Collaborative Use of Large Interactive Displays

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Shab, Thodore; Wales, Roxana; Vera, Alonso; Tollinger, Irene; McCurdy, Michael; Lyubimov, Dmitriy

    2006-01-01

    The MERBoard Collaborative Workspace, which is currently being deployed to support the Mars Exploration Rover (MER) Missions, is the first instantiation of a new computing architecture designed to support collaborative and group computing using computing devices situated in NASA mission operations room. It is a software system for generation of large-screen interactive displays by multiple users

  3. USGS River Ecosystem Modeling: Where Are We, How Did We Get Here, and Where Are We Going?

    USGS Publications Warehouse

    Hanson, Leanne; Schrock, Robin; Waddle, Terry; Duda, Jeffrey J.; Lellis, Bill

    2009-01-01

    This report developed as an outcome of the USGS River Ecosystem Modeling Work Group, convened on February 11, 2008 as a preconference session to the second USGS Modeling Conference in Orange Beach, Ala. Work Group participants gained an understanding of the types of models currently being applied to river ecosystem studies within the USGS, learned how model outputs are being used by a Federal land management agency, and developed recommendations for advancing the state of the art in river ecosystem modeling within the USGS. During a break-out session, participants restated many of the recommendations developed at the first USGS Modeling Conference in 2006 and in previous USGS needs assessments. All Work Group recommendations require organization and coordination across USGS disciplines and regions, and include (1) enhancing communications, (2) increasing efficiency through better use of current human and technologic resources, and (3) providing a national infrastructure for river ecosystem modeling resources, making it easier to integrate modeling efforts. By implementing these recommendations, the USGS will benefit from enhanced multi-disciplinary, integrated models for river ecosystems that provide valuable risk assessment and decision support tools for adaptive management of natural and managed riverine ecosystems. These tools generate key information that resource managers need and can use in making decisions about river ecosystem resources.

  4. Geological setting of the southern termination of Western Alps

    NASA Astrophysics Data System (ADS)

    d'Atri, Anna; Piana, Fabrizio; Barale, Luca; Bertok, Carlo; Martire, Luca

    2016-09-01

    A revision of the stratigraphic and tectonic setting of the southern termination of the Western Alps, at the junction of the Maritime Alps with the westernmost Ligurian Alps, is proposed. In response to the Alpine kinematic evolution, a number of tectonic units formed on the deformed palaeo-European continental margin and were arranged in a NW-SE striking anastomosed pattern along the north-eastern boundary of the Argentera Massif. Because these tectonic units often cut across the palaeogeographic subdivision of the Alpine literature and show only partial affinity with their distinctive stratigraphic features, new attributions are proposed. The Subbriançonnais domain is here intended as a "deformation zone", and its tectonic units have been attributed to Dauphinois and Provençal domains; furthermore, the Eocene Alpine Foreland Basin succession has been interpreted, based on the affinity of its lithologic characters and age, as a single feature resting above all the successions of the different Mesozoic domains. The Cretaceous tectono-sedimentary evolution of the studied domains was characterized by intense tectonic controls on sedimentation inducing lateral variations of stratigraphic features and major hydrothermal phenomena. Since the early Oligocene, transpressional tectonics induced a NE-SW shortening, together with significant left-lateral movements followed by (late Oligocene-middle Miocene) right-lateral movements along E-W to SE-NW striking shear zones. This induced the juxtaposition and/or stacking of Briançonnais, Dauphinois and Ligurian tectonic units characterized by different metamorphic histories, from anchizonal to lower greenschist facies. This evolution resulted in the arrangement of the tectonostratigraphic units in a wide "transfer zone" accommodating the Oligocene WNW-ward movement of portions of the palaeo-European margin placed at the south-western termination of Western Alps and the Miocene dextral shearing along SE striking faults that

  5. Status report on the USGS component of the Global Seismographic Network

    NASA Astrophysics Data System (ADS)

    Gee, L. S.; Bolton, H. F.; Derr, J.; Ford, D.; Gyure, G.; Hutt, C. R.; Ringler, A.; Storm, T.; Wilson, D.

    2010-12-01

    As recently as four years ago, the average age of a datalogger in the portion of the Global Seismographic Network (GSN) operated by the United States Geological Survey (USGS) was 16 years - an eternity in the lifetime of computers. The selection of the Q330HR in 2006 as the “next generation” datalogger by an Incorporated Research Institutions for Seismology (IRIS) selection committee opened the door for upgrading the GSN. As part of the “next generation” upgrades, the USGS is replacing a single Q680 system with two Q330HRs and a field processor to provide the same capability. The functionality includes digitizing, timing, event detection, conversion into miniSEED records, archival of miniSEED data on the ASP and telemetry of the miniSEED data using International Deployment of Accelerometers (IDA) Authenticated Disk Protocol (IACP). At many sites, Quanterra Balers are also being deployed. The Q330HRs feature very low power consumption (which will increase reliability) and higher resolution than the Q680 systems. Furthermore, this network-wide upgrade provides the opportunity to correct known station problems, standardize the installation of secondary sensors and accelerometers, replace the feedback electronics of STS-1 sensors, and perform checks of absolute system sensitivity and sensor orientation. The USGS upgrades began with ANMO in May, 2008. Although we deployed Q330s at KNTN and WAKE in the fall of 2007 (and in the installation of the Caribbean network), these deployments did not include the final software configuration for the GSN upgrades. Following this start, the USGS installed six additional sites in FY08. With funding from the American Recovery and Reinvestment Act and the USGS GSN program, 14 stations were upgraded in FY09. Twenty-one stations are expected to be upgraded in FY10. These systematic network-wide upgrades will improve the reliability and data quality of the GSN, with the end goal of providing the Earth science community high

  6. Turbine Seal Research at NASA GRC

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Steinetz, Bruce M.; Delgado, Irebert R.; Hendricks, Robert C.

    2011-01-01

    Low-leakage, long-life turbomachinery seals are important to both Space and Aeronautics Missions. (1) Increased payload capability (2) Decreased specific fuel consumption and emissions (3) Decreased direct operating costs. NASA GRC has a history of significant accomplishments and collaboration with industry and academia in seals research. NASA's unique, state-of-the-art High Temperature, High Speed Turbine Seal Test Facility is an asset to the U.S. Engine / Seal Community. Current focus is on developing experimentally validated compliant, non-contacting, high temperature seal designs, analysis, and design methodologies to enable commercialization.

  7. NASA Armstrong's Approach to Store Separation Analysis

    NASA Technical Reports Server (NTRS)

    Acuff, Chris; Bui, Trong

    2015-01-01

    Presentation will an overview of NASA Armstrong's store separation capabilities and how they have been applied recently. Objective of the presentation is to brief Generation Orbit and other potential partners on NASA Armstrong's store separation capabilities. It will include discussions on the use of NAVSEP and Cart3D, as well as some Python scripting work to perform the analysis, and a short overview of this methodology applied to the Towed Glider Air Launch System. Collaboration with potential customers in this area could lead to funding for the further development of a store separation capability at NASA Armstrong, which would boost the portfolio of engineering expertise at the center.

  8. Design of Scalable and Effective Earth Science Collaboration Tool

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  9. NASA Earth Science Partnerships - A Multi-Level Approach to Effectively Collaborating with Communities and Organizations to Utilize Earth Science Data for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Favors, J.

    2016-12-01

    NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, technology development, and science education. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations that produce substantive benefit to communities - both locally and globally. This presentation will showcase various ways ESD approaches partnering and will highlight best practices, challenges, and provide case studies related to rapid partnerships, co-location of scientists and end-user communities, capacity building, and ESD's new Partnerships Program which is built around taking an innovative approach to partnering that fosters interdisplinary teaming & co-production of knowledge to broaden the applicability of Earth observations and answer new, big questions for partners and NASA, alike.

  10. Issues in NASA program and project management. Special report: 1995 conference

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1995-01-01

    This volume is the tenth in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1996 Conference as follows: international partnerships; industry/interagency collaboration; technology transfer; and project management development process. A section on resources for NASA managers rounds out the publication.

  11. Helping solve Georgia's water problems - the USGS Cooperative Water Program

    USGS Publications Warehouse

    Clarke, John S.

    2006-01-01

    The U.S. Geological Survey (USGS) addresses a wide variety of water issues in the State of Georgia through the Cooperative Water Program (CWP). As the primary Federal science agency for water-resource information, the USGS monitors the quantity and quality of water in the Nation's rivers and aquifers, assesses the sources and fate of contaminants in aquatic systems, collects and analyzes data on aquatic ecosystems, develops tools to improve the application of hydrologic information, and ensures that its information and tools are available to all potential users. This broad, diverse mission cannot be accomplished effectively without the contributions of the CWP.

  12. Archive of Boomer and Chirp Seismic Reflection Data Collected During USGS Cruise 01RCE02, Southern Louisiana, April and May 2001

    USGS Publications Warehouse

    Calderon, Karynna; Dadisman, Shawn V.; Flocks, James G.; Wiese, Dana S.

    2003-01-01

    In April and May of 2001, the U.S. Geological Survey conducted a geophysical study of the Mississippi River Delta, Atchafalaya River Delta, and Shell Island Pass in southern Louisiana. This study was part of a larger USGS River Contaminant Evaluation (RCE) Project. This disc serves as an archive of unprocessed digital seismic reflection data, trackline navigation files, shotpoint navigation maps, observers' logbooks, GIS information, and formal Federal Geographic Data Committee (FGDC) metadata. In addition, a filtered and gained digital GIF-formatted image of each seismic profile is provided. For your convenience, a list of acronyms and abbreviations frequently used in this report has also been provided. This DVD (Digital Versatile Disc) document is readable on any computing platform that has standard DVD driver software installed. Documentation on this DVD was produced using Hyper Text Markup Language (HTML) utilized by the World Wide Web (WWW) and allows the user to access the information by using a web browser (i.e. Netscape or Internet Explorer). To access the information contained on this disc, open the file 'index.htm' located at the top level of the disc using your web browser. This report also contains WWW links to USGS collaborators and other agencies. These links are only accessible if access to the internet is available while viewing the DVD. The archived boomer and chirp seismic reflection data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry et al., 1975) and may be downloaded for processing with public domain software such as Seismic Unix (SU), currently located at http://www.cwp.mines.edu/cwpcodes. Examples of SU processing scripts are provided in the boom.tar and chirp.tar files located in the SU subfolder of the SOFTWARE folder located at the top level of this DVD. In-house (USGS) DOS and Microsoft Windows compatible software for viewing SEG-Y headers - DUMPSEGY.EXE (Zilhman, 1992) - is provided in the USGS subfolder

  13. State of Texas - Highlighting low-lying areas derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of Texas and a grayscale relief of the surrounding areas. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2002. Shaded relief over Mexico was obtained from the USGS National Atlas.

  14. NASA in the 21st century: A vision of greatness

    NASA Technical Reports Server (NTRS)

    Murphy, Kathleen J.

    1992-01-01

    Notions of greatness are discussed that have guided NASA in the past, values are presented that might be delivered by NASA in the future, and the the skills required for NASA to execute a vision of greatness are examined. Three possible patterns of space development by NASA are reviewed: (1) a mission to protect the ecology of the Earth; (2) the engineering of the technologies critical to space transportation and a healthy, productive life in space; and (3) the management of a major nonterrestrial resource project. Potential sources of funds are discussed along with opportunities for sustainable collaboration, and the life cycle of NASA's funding responsibility for its space development program.

  15. Science, Society, Solutions: An Introduction to the USGS

    USGS Publications Warehouse

    ,

    2001-01-01

    The USGS serves the Nation by providing relevant, impartial scientific information to * Describe and understand the Earth; * Minimize loss of life and property from natural disasters; * Manage water, biological, energy, and mineral resources; and * Enhance and protect our quality of life.

  16. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  17. Continuous Groundwater Monitoring Collocated at USGS Streamgages

    NASA Astrophysics Data System (ADS)

    Constantz, J. E.; Eddy-Miller, C.; Caldwell, R.; Wheeer, J.; Barlow, J.

    2012-12-01

    USGS Office of Groundwater funded a 2-year pilot study collocating groundwater wells for monitoring water level and temperature at several existing continuous streamgages in Montana and Wyoming, while U.S. Army Corps of Engineers funded enhancement to streamgages in Mississippi. To increase spatial relevance with in a given watershed, study sites were selected where near-stream groundwater was in connection with an appreciable aquifer, and where logistics and cost of well installations were considered representative. After each well installation and surveying, groundwater level and temperature were easily either radio-transmitted or hardwired to existing data acquisition system located in streamgaging shelter. Since USGS field personnel regularly visit streamgages during routine streamflow measurements and streamgage maintenance, the close proximity of observation wells resulted in minimum extra time to verify electronically transmitted measurements. After field protocol was tuned, stream and nearby groundwater information were concurrently acquired at streamgages and transmitted to satellite from seven pilot-study sites extending over nearly 2,000 miles (3,200 km) of the central US from October 2009 until October 2011, for evaluating the scientific and engineering add-on value of the enhanced streamgage design. Examination of the four-parameter transmission from the seven pilot study groundwater gaging stations reveals an internally consistent, dynamic data suite of continuous groundwater elevation and temperature in tandem with ongoing stream stage and temperature data. Qualitatively, the graphical information provides appreciation of seasonal trends in stream exchanges with shallow groundwater, as well as thermal issues of concern for topics ranging from ice hazards to suitability of fish refusia, while quantitatively this information provides a means for estimating flux exchanges through the streambed via heat-based inverse-type groundwater modeling. In June

  18. USGS Emergency Response and the International Charter Space and Major Disasters

    NASA Astrophysics Data System (ADS)

    Jones, B. K.

    2009-12-01

    Responding to catastrophic natural disasters requires information. When the flow of information on the ground is interrupted by crises such as earthquakes, landslides, volcanoes, hurricanes, and floods, satellite imagery and aerial photographs become invaluable tools in revealing post-disaster conditions and in aiding disaster response and recovery efforts. USGS is a global clearinghouse for remotely sensed disaster imagery. It is also a source of innovative products derived from satellite imagery that can provide unique overviews as well as important details about the impacts of disasters. Repeatedly, USGS and its resources have proven their worth in assisting with disaster recovery activities in the United States and abroad. USGS has a well-established role in emergency response in the United States. It works closely with the Federal Emergency Management Agency (FEMA) by providing first responders with satellite and aerial images of disaster-impacted sites and products developed from those images. FEMA’s partnership with the USGS began in 1999 when the agency established USGS as its executive agent for the acquisition and coordination of aerial and satellite remote sensing data. Understanding the terrain affords FEMA the vital perspective needed to effectively respond to the devastation many disasters leave behind. The combination of the USGS image archive, coupled with its global data transfer capability and on-site science staff, was instrumental in the USGS becoming a participating agency in the International Charter Space and Major Disasters. This participation provides the USGS with access to international members space agencies, to information on their methodology in disaster response, and to data from the satellites they operate. Such access enhances the USGS’ ability to respond to global emergencies and to disasters that occur in the United States (US). As one example, the Charter agencies provided over 75 images to the US in support of Hurricane

  19. Fire Island National Seashore

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Patterson, Matt; Nayagandhi, Amar; Patterson, Judd

    2007-01-01

    These lidar-derived topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. The aims of the partnership that created this product are to develop advanced survey techniques for mapping barrier island geomorphology and habitats, and to enable the monitoring of ecological and geological change within National Seashores. This product is based on data from an innovative airborne lidar instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Advanced Airborne Research Lidar (EAARL).

  20. Research Reports: 1989 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Six, Frank (Editor); Freeman, L. Michael (Editor)

    1989-01-01

    For the twenty-fifth consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague.

  1. Collaboration Between NASA Centers of Excellence on Autonomous System Software Development

    NASA Technical Reports Server (NTRS)

    Goodrich, Charles H.; Larson, William E.; Delgado, H. (Technical Monitor)

    2001-01-01

    Software for space systems flight operations has its roots in the early days of the space program when computer systems were incapable of supporting highly complex and flexible control logic. Control systems relied on fast data acquisition and supervisory control from a roomful of systems engineers on the ground. Even though computer hardware and software has become many orders of magnitude more capable, space systems have largely adhered to this original paradigm In an effort to break this mold, Kennedy Space Center (KSC) has invested in the development of model-based diagnosis and control applications for ten years having broad experience in both ground and spacecraft systems and software. KSC has now partnered with Ames Research Center (ARC), NASA's Center of Excellence in Information Technology, to create a new paradigm for the control of dynamic space systems. ARC has developed model-based diagnosis and intelligent planning software that enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. ARC demonstrated the utility of onboard diagnosis and planning with an experiment aboard Deep Space I in 1999. This paper highlights the software control system collaboration between KSC and ARC. KSC has developed a Mars In-situ Resource Utilization testbed based on the Reverse Water Gas Shift (RWGS) reaction. This plant, built in KSC's Applied Chemistry Laboratory, is capable of producing the large amount of Oxygen that would be needed to support a Human Mars Mission. KSC and ARC are cooperating to develop an autonomous, fault-tolerant control system for RWGS to meet the need for autonomy on deep space missions. The paper will also describe how the new system software paradigm will be applied to Vehicle Health Monitoring, tested on the new X vehicles and integrated into future launch processing systems.

  2. Collaboration: It Is Much More Than the Technology

    NASA Technical Reports Server (NTRS)

    Elfrey, Priscilla; Conroy, Michael

    2005-01-01

    A joint study conducted with the University of Central Florida and the National Aeronautics and Space Agency's (NASA) Kennedy Space Center (KSC) resulted in a new approach to the collaboration issues that had troubled the Agency. We believe in teams. We believe in the concept of collaboration. We never doubted Douglas Engelbart's thesis-- "Our very survival depends on our ability to work together, more effectively, to get collectively smarter. Computers -- when used properly -- can help us do that". It was not lack of trying. Predictably, NASA engineers had worked as if better and better technology would resolve the matter. It had not. The study itself provided an insight, an "aha! moment that pointed us toward the problems of collaboration we had to solve. People quickly saw that we had to remove barriers and make it easier to share data, coordinate efficiently, work together to add value and create corporate memory. This paper describes what happened.

  3. The NASA L3 Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2016-01-01

    The Astrophysics Implementation Plan calls for a minority role in L3, planned for launch in 2034. L3 The third large mission in ESAs Cosmic Visions 2015-2025 Programme NASA and ESA have been discussing a collaboration for 2 years Gravitational Observatory Advisory Team (GOAT) ESA study evaluating and recommend scientific performance tradeoffs, detection technologies, technology development activities, data analysis capabilities, schedule and cost US representatives: Guido Mueller, Mark Kasevich, Bill Klipstein, RTS Started in October 2014, concluding with a final report in late Marchor early April 2016. ESA solicited interest from ESA Member States in November 2015 NASA is continuing technology development support. ESA is restarting technology development activities.

  4. Human Centered Hardware Modeling and Collaboration

    NASA Technical Reports Server (NTRS)

    Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena

    2013-01-01

    In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.

  5. NASA Activity Update for the 2013 Unmanned Vehicle Systems International (UVSI) Yearbook

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.

    2013-01-01

    was initiated last year when the Sensor Integrated Environmental Remote Research Aircraft (SIERRA) UAS began surveying faults in California s Surprise Valley. A team of scientists and engineers from the United States Geological Survey (USGS), NASA Ames Research Center, Central Washington University, and Carnegie Mellon University will measure magnetic fields using ground surveys and the SIERRA to map the geophysics below the surface of Surprise Valley. The data collected will be used to generate 3D maps of the geophysical data of the area. The Aeronautics Mission Directorate continues its collaboration with Boeing to conduct UAS flight operations of the X-48C, a modified version of the X-48B originally built by Cranfield Aerospace, United Kingdom. The Aeronautics Mission Directorate utilizes vehicles of this size for a wide variety of research studies. Most of these operations are conducted within restricted airspace. The Aeronautics Research Mission Directorate also sponsors the UAS in the National Airspace System (NAS) Project, which is working in close cooperation with the Federal Aviation Administration (FAA) to address critical challenges associated with routine UAS operations in civil airspace. The project is focused on separation assurance and collision avoidance systems and algorithms, command and control for non-military operations including spectrum allocation requirements, human system interaction issues, and safety and certification topics.

  6. Bridging the Gap Between NASA Earth Observations and Decision Makers Through the NASA Develop National Program

    NASA Astrophysics Data System (ADS)

    Remillard, C. M.; Madden, M.; Favors, J.; Childs-Gleason, L.; Ross, K. W.; Rogers, L.; Ruiz, M. L.

    2016-06-01

    The NASA DEVELOP National Program bridges the gap between NASA Earth Science and society by building capacity in both participants and partner organizations that collaborate to conduct projects. These rapid feasibility projects highlight the capabilities of satellite and aerial Earth observations. Immersion of decision and policy makers in these feasibility projects increases awareness of the capabilities of Earth observations and contributes to the tools and resources available to support enhanced decision making. This paper will present the DEVELOP model, best practices, and two case studies, the Colombia Ecological Forecasting project and the Miami-Dade County Ecological Forecasting project, that showcase the successful adoption of tools and methods for decision making. Through over 90 projects each year, DEVELOP is always striving for the innovative, practical, and beneficial use of NASA Earth science data.

  7. Changes of forest cover and disturbance regimes in the mountain forests of the Alps.

    PubMed

    Bebi, P; Seidl, R; Motta, R; Fuhr, M; Firm, D; Krumm, F; Conedera, M; Ginzler, C; Wohlgemuth, T; Kulakowski, D

    2017-03-15

    Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest cover across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire Alps (on average +4% per decade over the past 25-115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15-40 years in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more strongly

  8. Archive report for most USGS seismic refraction investigations conducted between 1978 and 1991

    USGS Publications Warehouse

    Murphy, Janice M.

    2000-01-01

    In 1978, the U.S. Geological Survey (USGS) began acquiring seismic refraction data throughout the U.S. and Saudi Arabia. Numerous professional papers have been published in the literature and the technical details and goals for most of these surveys have been described in USGS Open-file reports (Table 1). This report describes the archiving of the data.

  9. 2006 NASA Strategic Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On January 14, 2004, President George W. Bush announced A Renewed Spirit of Discovery: The President's Vision for U.S. Space Exploration, a new directive for the Nation's space program. The fundamental goal of this directive is "to advance U.S. scientific, security, and economic interests through a robust space exploration program." In issuing it, the President committed the Nation to a journey of exploring the solar system and beyond: returning to the Moon in the next decade, then venturing further into the solar system, ultimately sending humans to Mars and beyond. He challenged NASA to establish new and innovative programs to enhance understanding of the planets, to ask new questions, and to answer questions that are as old as humankind. NASA enthusiastically embraced the challenge of extending a human presence throughout the solar system as the Agency's Vision, and in the NASA Authorization Act of 2005, Congress endorsed the Vision for Space Exploration and provided additional guidance for implementation. NASA is committed to achieving this Vision and to making all changes necessary to ensure success and a smooth transition. These changes will include increasing internal collaboration, leveraging personnel and facilities, developing strong, healthy NASA Centers,a nd fostering a safe environment of respect and open communication for employees at all levels. NASA also will ensure clear accountability and solid program management and reporting practices. Over the next 10 years, NASA will focus on six Strategic Goals to move forward in achieving the Vision for Space Exploration. Each of the six Strategic Goals is clearly defined and supported by multi-year outcomes that will enhance NASA's ability to measure and report Agency accomplishments in this quest.

  10. Specifications for updating USGS land use and land cover maps

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1983-01-01

    To meet the increasing demands for up-to-date land use and land cover information, a primary goal of the U.S. Geological Survey's (USGS) national land use and land cover mapping program is to provide for periodic updating of maps and data in a timely and uniform manner. The technical specifications for updating existing USGS land use and land cover maps that are presented here cover both the interpretive aspects of detecting and identifying land use and land cover changes and the cartographic aspects of mapping and presenting the change data in conventional map format. They provide the map compiler with the procedures and techniques necessary to then use these change data to update existing land use and land cover maps in a manner that is both standardized and repeatable. Included are specifications for the acquisition of remotely sensed source materials, selection of compilation map bases, handling of data base corrections, editing and quality control operations, generation of map update products for USGS open file, and the reproduction and distribution of open file materials. These specifications are planned to become part of the National Mapping Division's Technical Instructions.

  11. Characterization and Manipulation of the Pathway-Specific Late Regulator AlpW Reveals Streptomyces ambofaciens as a New Producer of Kinamycins ▿ †

    PubMed Central

    Bunet, Robert; Song, Lijiang; Mendes, Marta Vaz; Corre, Christophe; Hotel, Laurence; Rouhier, Nicolas; Framboisier, Xavier; Leblond, Pierre; Challis, Gregory L.; Aigle, Bertrand

    2011-01-01

    The genome sequence of Streptomyces ambofaciens, a species known to produce the congocidine and spiramycin antibiotics, has revealed the presence of numerous gene clusters predicted to be involved in the biosynthesis of secondary metabolites. Among them, the type II polyketide synthase-encoding alp cluster was shown to be responsible for the biosynthesis of a compound with antibacterial activity. Here, by means of a deregulation approach, we gained access to workable amounts of the antibiotics for structure elucidation. These compounds, previously designated as alpomycin, were shown to be known members of kinamycin family of antibiotics. Indeed, a mutant lacking AlpW, a member of the TetR regulator family, was shown to constitutively produce kinamycins. Comparative transcriptional analyses showed that expression of alpV, the essential regulator gene required for activation of the biosynthetic genes, is strongly maintained during the stationary growth phase in the alpW mutant, a stage at which alpV transcripts and thereby transcripts of the biosynthetic genes normally drop off. Recombinant AlpW displayed DNA binding activity toward specific motifs in the promoter region of its own gene and that of alpV and alpZ. These recognition sequences are also targets for AlpZ, the γ-butyrolactone-like receptor involved in the regulation of the alp cluster. However, unlike that of AlpZ, the AlpW DNA-binding ability seemed to be insensitive to the signaling molecules controlling antibiotic biosynthesis. Together, the results presented in this study reveal S. ambofaciens to be a new producer of kinamycins and AlpW to be a key late repressor of the cellular control of kinamycin biosynthesis. PMID:21193612

  12. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, C. D.; Arsenault, K. R.; Shukla, S.; Getirana, A.; McNally, A.; Koster, R. D.; Zaitchik, B. F.; Badr, H. S.; Roningen, J. M.; Kumar, S.; Funk, C. C.

    2017-12-01

    A seamless and effective water deficit monitoring and early warning system is critical for assessing food security in Africa and the Middle East. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of drought and water availability monitoring products in the region. Next, it will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the products through NASA's web-services. The water deficit forecasting system thus far incorporates NASA GMAO's Catchment and the Noah Multi-Physics (MP) LSMs. In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. To establish a climatology from 1981-2015, the two LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. Comparison of the models' energy and hydrological budgets with independent observations suggests that major droughts are well-reflected in the climatology. The system uses seasonal climate forecasts from NASA's GEOS-5 (the Goddard Earth Observing System Model-5) and NCEP's Climate Forecast System-2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region. Current work suggests

  13. CosmoQuest Collaborative: Galvanizing a Dynamic Professional Learning Network

    NASA Astrophysics Data System (ADS)

    Cobb, Whitney; Bracey, Georgia; Buxner, Sanlyn; Gay, Pamela L.; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    The CosmoQuest Collaboration offers in-depth experiences to diverse audiences around the nation and the world through pioneering citizen science in a virtual research facility. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and citizens of all ages—to explore and make sense of our solar system and beyond. Leveraging human networks to expand NASA science, scaffolded by an educational framework that inspires lifelong learners, CosmoQuest engages citizens in analyzing and interpreting real NASA data, inspiring questions and defining problems.The QuestionLinda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] … [and] connected to teachers' collaborative work in professional learning community...." (2012) In light of that, what is the unique role CosmoQuest's virtual research facility can offer NASA STEM education?A Few AnswersThe CosmoQuest Collaboration actively engages scientists in education, and educators (and learners) in science. CosmoQuest uses social channels to empower and expand NASA's learning community through a variety of media, including science and education-focused hangouts, virtual star parties, and social media. In addition to creating its own supportive, standards-aligned materials, CosmoQuest offers a hub for excellent resources and materials throughout NASA and the larger astronomy community.In support of CosmoQuest citizen science opportunities, CQ initiatives (Learning Space, S-ROSES, IDEASS, Educator Zone) will be leveraged and shared through the CQPLN. CosmoQuest can be present and alive in the awareness its growing learning community.Finally, to make the CosmoQuest PLN truly relevant, it aims to encourage partnerships between scientists

  14. A Year in the Life of the NASA Electronic Parts and Packaging (NEPP) Program

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.

    2017-01-01

    NEPP Mission Statement: Provide NASAs leadership for developing and maintaining guidance for the screening, qualification, test, and reliable usage of electrical, electronic, and electromechanical (EEE) parts by NASA, in collaboration with other government Agencies and industry.

  15. NASA's Fermi Telescope Resolves Radio Galaxy Centaurus A

    NASA Image and Video Library

    2017-12-08

    NASA release April 1, 2010 Fermi's Large Area Telescope resolved high-energy gamma rays from an extended region around the active galaxy Centaurus A. The emission corresponds to million-light-year-wide radio-emitting gas thrown out by the galaxy's supersized black hole. This inset shows an optical/gamma-ray composite of the galaxy and its location on the Fermi one-year sky map. Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory To learn more about these images go to: www.nasa.gov/mission_pages/GLAST/news/smokestack-plumes.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  16. Aerospace Communications Technologies in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.

  17. USGS contributions to earthquake and tsunami monitoring in the Caribbean Region

    NASA Astrophysics Data System (ADS)

    McNamara, D.; Caribbean Project Team, U.; Partners, C.

    2007-05-01

    USGS Caribbean Project Team: Lind Gee, Gary Gyure, John Derr, Jack Odum, John McMillan, David Carver, Jim Allen, Susan Rhea, Don Anderson, Harley Benz Caribbean Partners: Christa von Hillebrandt-Andrade-PRSN, Juan Payero ISU-UASD,DR, Eduardo Camacho - UPAN, Panama, Lloyd Lynch - SRU,Gonzalo Cruz - UNAH,Honduras, Margaret Wiggins-Grandison - Jamaica, Judy Thomas - CERO Barbados, Sylvan McIntyre - NADMA Grenada, E. Bermingham - STRI. The magnitude-9 Sumatra-Andaman Islands earthquake of December 26, 2004, increased global awareness of the destructive hazard posed by earthquakes and tsunamis. In response to this tragedy, the US government undertook a collaborative project to improve earthquake and tsunami monitoring along a major portion of vulnerable coastal regions, in the Caribbean Sea, the Gulf of Mexico, and the Atlantic Ocean. Seismically active areas of the Caribbean Sea region pose a tsunami risk for Caribbean islands, coastal areas along the Gulf of Mexico, and the Atlantic seaboard of North America. Nearly 100 tsunamis have been reported for the Caribbean region in the past 500 years, including 14 tsunamis reported in Puerto Rico and the U.S. Virgin Islands. Partners in this project include the United States Geological Survey (USGS), the Smithsonian Institute, the National Oceanic and Aeronautic Administration (NOAA), and several partner institutions in the Caribbean region. This presentation focuses on the deployment of nine broadband seismic stations to monitor earthquake activity in the Caribbean region that are affiliated with the Global Seismograph Network (GSN). By the end of 2006, five stations were transmitting data to the USGS National Earthquake Information Service (NEIS), and regional partners through Puerto Rico seismograph network (PRSN) Earthworm systems. The following stations are currently operating: SDDR - Sabaneta Dam Dominican Republic, BBGH - Gun Hill Barbados, GRGR - Grenville, Grenada, BCIP - Barro Colorado, Panama, TGUH - Tegucigalpa

  18. Invasive Species Forecasting System: A Decision Support Tool for the U.S. Geological Survey: FY 2005 Benchmarking Report v.1.6

    NASA Technical Reports Server (NTRS)

    Stohlgren, Tom; Schnase, John; Morisette, Jeffrey; Most, Neal; Sheffner, Ed; Hutchinson, Charles; Drake, Sam; Van Leeuwen, Willem; Kaupp, Verne

    2005-01-01

    The National Institute of Invasive Species Science (NIISS), through collaboration with NASA's Goddard Space Flight Center (GSFC), recently began incorporating NASA observations and predictive modeling tools to fulfill its mission. These enhancements, labeled collectively as the Invasive Species Forecasting System (ISFS), are now in place in the NIISS in their initial state (V1.0). The ISFS is the primary decision support tool of the NIISS for the management and control of invasive species on Department of Interior and adjacent lands. The ISFS is the backbone for a unique information services line-of-business for the NIISS, and it provides the means for delivering advanced decision support capabilities to a wide range of management applications. This report describes the operational characteristics of the ISFS, a decision support tool of the United States Geological Survey (USGS). Recent enhancements to the performance of the ISFS, attained through the integration of observations, models, and systems engineering from the NASA are benchmarked; i.e., described quantitatively and evaluated in relation to the performance of the USGS system before incorporation of the NASA enhancements. This report benchmarks Version 1.0 of the ISFS.

  19. NASA Open Rotor Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2010-01-01

    Owing to their inherent fuel burn efficiency advantage compared with the current generation high bypass ratio turbofan engines, there is resurgent interest in developing open rotor propulsion systems for powering the next generation commercial aircraft. However, to make open rotor systems truly competitive, they must be made to be acoustically acceptable too. To address this challenge, NASA in collaboration with industry is exploring the design space for low-noise open rotor propulsion systems. The focus is on the system level assessment of the open rotors compared with other candidate concepts like the ultra high bypass ratio cycle engines. To that end there is an extensive research effort at NASA focused on component testing and diagnostics of the open rotor acoustic performance as well as assessment and improvement of open rotor noise prediction tools. In this presentation and overview of the current NASA research on open rotor noise will be provided. Two NASA projects, the Environmentally Responsible Aviation Project and the Subsonic Fixed Wing Project, have been funding this research effort.

  20. USGS Information Technology Strategic Plan: Fiscal Years 2007-2011

    USGS Publications Warehouse

    ,

    2006-01-01

    Introduction: The acquisition, management, communication, and long-term stewardship of natural science data, information, and knowledge are fundamental mission responsibilities of the U.S. Geological Survey (USGS). USGS scientists collect, maintain, and exchange raw scientific data and interpret and analyze it to produce a wide variety of science-based products. Managers throughout the Bureau access, summarize, and analyze administrative or business-related information to budget, plan, evaluate, and report on programs and projects. Information professionals manage the extensive and growing stores of irreplaceable scientific information and knowledge in numerous databases, archives, libraries, and other digital and nondigital holdings. Information is the primary currency of the USGS, and it flows to scientists, managers, partners, and a wide base of customers, including local, State, and Federal agencies, private sector organizations, and individual citizens. Supporting these information flows is an infrastructure of computer systems, telecommunications equipment, software applications, digital and nondigital data stores and archives, technical expertise, and information policies and procedures. This infrastructure has evolved over many years and consists of tools and technologies acquired or built to address the specific requirements of particular projects or programs. Developed independently, the elements of this infrastructure were typically not designed to facilitate the exchange of data and information across programs or disciplines, to allow for sharing of information resources or expertise, or to be combined into a Bureauwide and broader information infrastructure. The challenge to the Bureau is to wisely and effectively use its information resources to create a more Integrated Information Environment that can reduce costs, enhance the discovery and delivery of scientific products, and improve support for science. This Information Technology Strategic Plan

  1. Novel Problem Solving - The NASA Solution Mechanism Guide

    NASA Technical Reports Server (NTRS)

    Keeton, Kathryn E.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-01-01

    Over the past five years, the Human Health and Performance (HH&P) Directorate at the NASA Johnson Space Center (JSC) has conducted a number of pilot and ongoing projects in collaboration and open innovation. These projects involved the use of novel open innovation competitions that sought solutions from "the crowd", non-traditional problem solvers. The projects expanded to include virtual collaboration centers such as the NASA Human Health and Performance Center (NHHPC) and more recently a collaborative research project between NASA and the National Science Foundation (NSF). These novel problem-solving tools produced effective results and the HH&P wanted to capture the knowledge from these new tools, to teach the results to the directorate, and to implement new project management tools and coursework. The need to capture and teach the results of these novel problem solving tools, the HH&P decided to create a web-based tool to capture best practices and case studies, to teach novice users how to use new problem solving tools and to change project management training/. This web-based tool was developed with a small, multi-disciplinary group and named the Solution Mechanism Guide (SMG). An alpha version was developed that was tested against several sessions of user groups to get feedback on the SMG and determine a future course for development. The feedback was very positive and the HH&P decided to move to the beta-phase of development. To develop the web-based tool, the HH&P utilized the NASA Tournament Lab (NTL) to develop the software with TopCoder under an existing contract. In this way, the HH&P is using one new tool (the NTL and TopCoder) to develop the next generation tool, the SMG. The beta-phase of the SMG is planed for release in the spring of 2014 and results of the beta-phase testing will be available for the IAC meeting in September. The SMG is intended to disrupt the way problem solvers and project managers approach problem solving and to increase the

  2. Science and the storms: The USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Farris, G. S.; Smith, G.J.; Crane, M.P.; Demas, C.R.; Robbins, L.L.; Lavoie, D.L.

    2007-01-01

    This report is designed to give a view of the immediate response of the U.S. Geological Survey (USGS) to four major hurricanes of 2005: Dennis, Katrina, Rita, and Wilma. Some of this response took place days after the hurricanes; other responses included fieldwork and analysis through the spring. While hurricane science continues within the USGS, this overview of work following these hurricanes reveals how a Department of the Interior bureau quickly brought together a diverse array of its scientists and technologies to assess and analyze many hurricane effects. Topics vary from flooding and water quality to landscape and ecosystem impacts, from geotechnical reconnaissance to analyzing the collapse of bridges and estimating the volume of debris. Thus, the purpose of this report is to inform the American people of the USGS science that is available and ongoing in regard to hurricanes. It is the hope that such science will help inform the decisions of those citizens and officials tasked with coastal restoration and planning for future hurricanes. Chapter 1 is an essay establishing the need for science in building a resilient coast. The second chapter includes some hurricane facts that provide hurricane terminology, history, and maps of the four hurricanes’ paths. Chapters that follow give the scientific response of USGS to the storms. Both English and metric measurements are used in the articles in anticipation of both general and scientific audiences in the United States and elsewhere. Chapter 8 is a compilation of relevant ongoing and future hurricane work. The epilogue marks the 2-year anniversary of Hurricane Katrina. An index of authors follows the report to aid in finding articles that are cross-referenced within the report. In addition to performing the science needed to understand the effects of hurricanes, USGS employees helped in the rescue of citizens by boat and through technology by “geoaddressing” 911 calls after Katrina and Rita so that other

  3. Cross-Cultural Collaboration - With Integrity

    NASA Astrophysics Data System (ADS)

    Maryboy, N. C.

    2015-12-01

    Cross-Cultural Collaboration - with Integrity This poster will show the value of cross-cultural collaboration, between scientific institutions and Indigenous ways of knowing, as practiced by the Indigenous Education Institute. Focus is on respect for diverse worldviews, integrity as process, and academic diversity and equity. Today, as never before, traditional ecological knowledge (TEK) is of vital importance as it speaks strongly to the significance of balance to create a healthy environment. Utilizing a lens of contemporary scientific perspective along with a traditional Indigenous perspective illuminates the complementary aspects of both ways of knowing and a greater sense of understanding the earth and sky than would be possible with one perspective alone. The poster will highlight several examples of successful cross-cultural collaborations. *Collaborative partnership with University of Washington, Tacoma, Symposium on Contemporary Native American Issues in Higher Education: Intersectionality of Native Language and Culture in Modern Society (Sharing Our Skies - Looking at the Stars Through Indigenous Eyes and Western Astronomy Lenses) *AST 201, Introduction to Indigenous Astronomy, Department of Physics and Astronomy, Northern Arizona University: a course that fulfills the Diversity Requirement for graduation *Native Universe: a National Science Foundation funded project, which honors Indigenous Voice in science museums to deepen our relationship with nature, vital in this time of climate change *MAVEN - Imagine Mars Through Indigenous Eyes: a NASA funded project which provides middle and high school curriculum delivered in science centers and Indigenous schools *Navajo Sky: modules and shows for planetariums, funded by NASA, that juxtapose Navajo and western astronomy concepts and context, highlighting place-based science

  4. Sixth NASA Glenn Research Center Propulsion Control and Diagnostics (PCD) Workshop

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S. (Compiler)

    2018-01-01

    The Intelligent Control and Autonomy Branch at NASA Glenn Research Center hosted the Sixth Propulsion Control and Diagnostics Workshop on August 22-24, 2017. The objectives of this workshop were to disseminate information about research being performed in support of NASA Aeronautics programs; get feedback from peers on the research; and identify opportunities for collaboration. There were presentations and posters by NASA researchers, Department of Defense representatives, and engine manufacturers on aspects of turbine engine modeling, control, and diagnostics.

  5. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-28

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  6. Fast and sensitive near-infrared fluorescent probes for ALP detection and 3d printed calcium phosphate scaffold imaging in vivo.

    PubMed

    Park, Chul Soon; Ha, Tai Hwan; Kim, Moonil; Raja, Naren; Yun, Hui-Suk; Sung, Mi Jeong; Kwon, Oh Seok; Yoon, Hyeonseok; Lee, Chang-Soo

    2018-05-15

    Alkaline phosphatase (ALP) is a critical biological marker for osteoblast activity during early osteoblast differentiation, but few biologically compatible methods are available for its detection. Here, we describe the discovery of highly sensitive and rapidly responsive novel near-infrared (NIR) fluorescent probes (NIR-Phos-1, NIR-Phos-2) for the fluorescent detection of ALP. ALP cleaves the phosphate group from the NIR skeleton and substantially alters its photophysical properties, therefore generating a large "turn-on" fluorescent signal resulted from the catalytic hydrolysis on fluorogenic moiety. Our assay quantified ALP activity from 0 to 1.0UmL -1 with a 10 -5 -10 -3 UmL -1 limit of detection (LOD), showing a response rate completed within 1.5min. A potentially powerful approach to probe ALP activity in biological systems demonstrated real-time monitoring using both concentration- and time-dependent variations of endogenous ALP in live cells and animals. Based on high binding affinity to bone tissue of phosphate moiety, bone-like scaffold-based ALP detection in vivo was accessed using NIR probe-labeled three-dimensional (3D) calcium deficient hydroxyapatite (CDHA) scaffolds. They were subcutaneously implanted into mice and monitored ALP signal changes using a confocal imaging system. Our results suggest the possibility of early-stage ALP detection during neo-bone formation inside a bone defect, by in vivo fluorescent evaluation using 3D CDHA scaffolds. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The onset of alpine pastoral systems in the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Oeggl, Klaus; Festi, Daniela; Putzer, Andreas

    2015-04-01

    Since the discovery of the Neolithic glacier mummy "Ötzi" in the nival belt of the main Alpine ridge, the onset of alpine pasture is matter of a highly controversial debate both in archaeology and in palaeo-ecology of the Eastern Alps. The implication is that his sojourn in the high-altitudes of the Alps is considered to be connected with pastoral nomadism. Regrettably any archaeological evidence for the existence of such Neolithic alpine pastoral systems is missing up to now and the assumption is based on palynological data only. However, also the palynological record is ambiguous, because pasture indicators in the alpine regions react positive on grazing as well as on fertilization induced by a higher runoff of precipitation. Thus alpine pasture indicators reflect both grazing pressure and climatic change. Anyhow, alpine pastoral systems are a common practice in Alpine animal husbandry, but from an economic point of view such a seasonal vertical transhumance is costly. There are three main reasons for its practice: i) climatic, ii) economic (mainly in connection with population pressure or mining activities), and iii) cultural ideology. In this study we tested the above mentioned reasons in an interdisciplinary study on the beginning of pastoral activities in high altitudes in the central part of the Eastern Alps. This is conducted by palynological analyses of peat deposits situated in the vicinity of the timberline (1600 - 2400 m a.s.l.) combined with archaeological surveys. The investigated sites are located in traditional Alpine transhumance regions and aligned on a transect through the central part of the Eastern Alps. The studies reveal that grazing pressure is reflected since the Bronze Age, which is corroborated by archaeological findings in the vicinity of the investigated sites.

  8. Last Glacial Maximum Dated by Means of 10Be in the Maritime Alps (Italy)

    NASA Astrophysics Data System (ADS)

    Granger, D. E.; Spagnolo, M.; Federici, P.; Pappalardo, M.; Ribolini, A.; Cyr, A. J.

    2006-12-01

    Relatively few exposure dates of LGM moraines boulders are available for the European Alps, and none on the southern flank. Ponte Murato (PM) is a frontal moraine at 860 m asl in the Gesso Basin (Maritime Alps, SW European Alps). The PM moraine dams the 157 km2 Gesso della Barra Valley and it represents the lowermost frontal moraine of the entire Gesso Valley, near the outlet of the valley in the Po Plain. Its ELA, determined from the paleo- shape of the supposed Gesso della Barra glacier, is 1746 m asl. Tetti Bandito (TB) is a small and badly preserved glacial deposit, tentatively attributed to a lateral-frontal moraine, that is positioned 5 km downvalley from the PM deposit at 800 m asl. There are no other glacial deposits downvalley from the TB moraine in the Gesso Basin or farther NE in the piedmont region of the upper Po Plain. Boulders sampled on the PM and on the TB moraine crests gave a 10Be cosmogenic age of respectively 16300 ± 880 ka (average value) and 18798 ± 973 ka. This result constrains the PM frontal moraine within the LGM interval but also suggests that the maximum expansion of the Gesso Basin glacier was more downvalley at some point during the last glaciation. If the TB is a lateral-frontal moraine as supposed, the two TB and PM moraines would represent the outer and inner moraine crests of the same LGM stadial, with the outer moraine much less pronounced than the inner moraine, similarly to the maximalstand and the hochstand described in the Eastern Alps (Van Husen, 1997). Within this perspective, the PM and TB dates are consistent with a European Alps LGM corresponding to MIS 2 (Ivy-Ochs et al., 2004). This study of the Maritime Alps moraines is also in agreement with the Upper Würm climatic theory (Florineth and Schlüchter, 2000) of a stronger influence of the W and SW incoming humid airflows in the European Alps, differently from the nearby Vosges and Pyrenees mountain chains where more dry conditions were probably responsible for a very

  9. Tracking and Establishing Provenance of Earth Science Datasets: A NASA-Based Example

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.; Goldstein, Justin C.; Hua, Hook; Wolfe, Robert E.

    2016-01-01

    Information quality is of paramount importance to science. Accurate, scientifically vetted and statistically meaningful and, ideally, reproducible information engenders scientific trust and research opportunities. Not surprisingly, federal bodies (e.g., NASA, NOAA, USGS) have very strictly affirmed the importance of information quality in their product requirements. So-called Highly Influential Scientific Assessments (HISA) such as The Third US National Climate Assessment (NCA3) published in 2014 undergo a very rigorous review process to ensure transparency and credibility. To support the transparency of such reports, the U.S. Global Change Research Program (USGCRP) has developed the Global Change Information System (GCIS). A recent activity was performed to trace the provenance as completely as possible for all NCA3 figures that were predominantly based on NASA data. This poster presents the mechanics of that project and the lessons learned from that activity.

  10. NASA Research to Support the Airlines

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2017-01-01

    This is a PowerPoint document that reviews NASA aeronautics research that supports airline operations. It provides short descriptions of several lines of work including the Airline Operations Workshop, Airline Operations Research Laboratory Forum, Flight Awareness Collaboration Tool, dispatcher human factors study, turbulence research, ramp area accidents research, and Traffic Aware Strategic Aircrew Requests.

  11. ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraljic, David; Rummel, Markus; Conlon, Joseph P., E-mail: David.Kraljic@physics.ox.ac.uk, E-mail: Markus.Rummel@physics.ox.ac.uk, E-mail: j.conlon1@physics.ox.ac.uk

    2015-01-01

    It was recently found that the soft X-ray excess in the center of the Coma cluster can be fitted by conversion of axion-like-particles (ALPs) of a cosmic axion background (CAB) to photons. We extend this analysis to the outskirts of Coma, including regions up to 5 Mpc from the center of the cluster. We extract the excess soft X-ray flux from ROSAT All-Sky Survey data and compare it to the expected flux from ALP to photon conversion of a CAB. The soft X-ray excess both in the center and the outskirts of Coma can be simultaneously fitted by ALP tomore » photon conversion of a CAB. Given the uncertainties of the cluster magnetic field in the outskirts we constrain the parameter space of the CAB. In particular, an upper limit on the CAB mean energy and a range of allowed ALP-photon couplings are derived.« less

  12. Reaching and abandoning the furthest ice extent during the Last Glacial Maximum in the Alps

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, Susan; Wirsig, Christian; Zasadni, Jerzy; Hippe, Kristina; Christl, Marcus; Akçar, Naki; Schluechter, Christian

    2016-04-01

    During the Last Glacial Maximum (LGM) in the European Alps (late Würm) local ice caps and extensive ice fields in the high Alps fed huge outlet glaciers that occupied the main valleys and extended onto the forelands as piedmont lobes. Records from numerous sites suggest advance of glaciers beyond the mountain front by around 30 ka (Ivy-Ochs 2015 and references therein). Reaching of the maximum extent occurred by about 27-26 ka, as exemplified by dates from the Rhein glacier area (Keller and Krayss, 2005). Abandonment of the outermost moraines at sites north and south of the Alps was underway by about 24 ka. In the high Alps, systems of transection glaciers with transfluences over many of the Alpine passes dominated, for example, at Grimsel Pass in the Central Alps (Switzerland). 10Be exposure ages of 23 ± 1 ka for glacially sculpted bedrock located just a few meters below the LGM trimline in the Haslital near Grimsel Pass suggest a pulse of ice surface lowering at about the same time that the foreland moraines were being abandoned (Wirsig et al., 2016). Widespread ice surface lowering in the high Alps was underway by no later than 18 ka. Thereafter, glaciers oscillated at stillstand and minor re-advance positions on the northern forelands for several thousand years forming the LGM stadial moraines. Final recession back within the mountain front took place by 19-18 ka. Recalculation to a common basis of all published 10Be exposure dates for boulders situated on LGM moraines suggests a strong degree of synchrony for the timing of onset of ice decay both north and south of the Alps. Ivy-Ochs, S., 2015, Cuadernos de investigación geográfica 41: 295-315. Keller, O., Krayss, E., 2005, Vierteljahrschr. Naturforsch. Gesell. Zürich 150: 69-85. Wirsig, C. et al., 2016, J. Quat. Sci. 31: 46-59.

  13. Quantifying the Eocene to Pleistocene topographic evolution of the southwestern Alps, France and Italy

    NASA Astrophysics Data System (ADS)

    Fauquette, Séverine; Bernet, Matthias; Suc, Jean-Pierre; Grosjean, Anne-Sabine; Guillot, Stéphane; van der Beek, Peter; Jourdan, Sébastien; Popescu, Speranta-Maria; Jiménez-Moreno, Gonzalo; Bertini, Adele; Pittet, Bernard; Tricart, Pierre; Dumont, Thierry; Schwartz, Stéphane; Zheng, Zhuo; Roche, Emile; Pavia, Giulio; Gardien, Véronique

    2015-02-01

    We evaluate the topographic evolution of the southwestern Alps using Eocene to Pleistocene pollen data combined with existing sedimentological, petrographic and detrital geo- and thermochronological data. We report 32 new pollen analyses from 10 sites completed by an existing dataset of 83 samples from 14 localities situated across the southwestern Alps, including both the pro- and the retro-foreland basins. The presence of microthermic tree pollen (mainly Abies, Picea) indicates that this part of the mountain belt attained elevations over 1900 m as early as the Oligocene. Inferred rapid surface uplift during the mid-Oligocene coincided with a previously documented brief phase of rapid erosional exhumation, when maximum erosion rates may have reached values of up to 1.5-2 km/Myr. Slower long-term average exhumation rates of ∼0.3 km/Myr since the Late Oligocene helped maintaining the high Alpine topography of the southwestern Alps until today. The relative abundances of meso-microthermic tree pollen (Cathaya, Cedrus and Tsuga) and microthermic tree pollen (Abies, Picea) in the pro- and retro-foreland basin deposits, indicate that the present-day asymmetric topography, with a relatively gentle western flank and steeper eastern flank, was established early in the southwestern Alps, at least since the Early Miocene, and possibly since the Oligocene or Late Eocene. Therefore, the high topography and asymmetric morphology of this part of the Alps has been maintained throughout the past ∼30 Ma.

  14. New biotite and muscovite isotopic reference materials, USGS57 and USGS58, for δ2H measurements–A replacement for NBS 30

    USGS Publications Warehouse

    Qi, Haiping; Coplen, Tyler B.; Gehre, Matthias; Vennemann, Torsten W.; Brand, Willi A.; Geilmann, Heike; Olack, Gerard; Bindeman, Ilya N.; Palandri, Jim; Huang, Li; Longstaffe, Fred J.

    2017-01-01

    The advent of continuous-flow isotope-ratio mass spectrometry (CF-IRMS) coupled with a high temperature conversion (HTC) system enabled faster, more cost effective, and more precise δ2H analysis of hydrogen-bearing solids. Accurate hydrogen isotopic analysis by on-line or off-line techniques requires appropriate isotopic reference materials (RMs). A strategy of two-point calibrations spanning δ2H range of the unknowns using two RMs is recommended. Unfortunately, the supply of the previously widely used isotopic RM, NBS 30 biotite, is exhausted. In addition, recent measurements have shown that the determination of δ2H values of NBS 30 biotite on the VSMOW-SLAP isotope-delta scale by on-line HTC systems with CF-IRMS may be unreliable because hydrogen in this biotite may not be converted quantitatively to molecular hydrogen. The δ2HVSMOW-SLAP values of NBS 30 biotite analyzed by on-line HTC systems can be as much as 21 mUr (or ‰) too positive compared to the accepted value of − 65.7 mUr, determined by only a few conventional off-line measurements. To ensure accurate and traceable on-line hydrogen isotope-ratio determinations in mineral samples, we here propose two isotopically homogeneous, hydrous mineral RMs with well-characterized isotope-ratio values, which are urgently needed. The U.S. Geological Survey (USGS) has prepared two such RMs, USGS57 biotite and USGS58 muscovite. The δ2H values were determined by both glassy carbon-based on-line conversion and chromium-based on-line conversion, and results were confirmed by off-line conversion. The quantitative conversion of hydrogen from the two RMs using the on-line HTC method was carefully evaluated in this study. The isotopic compositions of these new RMs with 1-σ uncertainties and mass fractions of hydrogen are:USGS57 (biotite)δ2HVSMOW-SLAP = − 91.5 ± 2.4 mUr (n = 24)Mass fraction hydrogen = 0.416 ± 0.002% (n = 4)Mass fraction water = 3.74 ± 0.02% (n = 4)USGS58 (muscovite

  15. USGS Environmental health science strategy: providing environmental health science for a changing world: public review release

    USGS Publications Warehouse

    Bright, Patricia R.; Buxton, Herbert T.; Balistrieri, Laurie S.; Barber, Larry B.; Chapelle, Francis H.; Cross, Paul C.; Krabbenhoft, David P.; Plumlee, Geoffrey S.; Sleeman, Jonathan M.; Tillitt, Donald E.; Toccalino, Patricia L.; Winton, James R.

    2012-01-01

    and providing it to environmental, natural resource, agricultural, and public-health managers. The USGS is a Federal science agency with a broad range of natural science expertise relevant to environmental health. USGS provides scientific information and tools as a scientific basis for management and policy decision making. USGS specializes in science at the environment-health interface, by characterizing the processes that affect the interaction among the physical environment, the living environment, and people, and the resulting factors that affect ecological and human exposure to disease agents. This report describes a 10-year strategy that encompasses the portfolio of USGS environmental health science. It summarizes national environmental health priorities that USGS is best suited to address, and will serve as a strategic framework for USGS environmental health science goals, actions, and outcomes for the next decade. Implementation of this strategy is intended to aid coordination of USGS environmental health activities and to provide a focal point for disseminating information to stakeholders. The "One Health" paradigm advocated by the World Health Organization (WHO, 2011), and the American Veterinary Medicine Association (AVMA, 2008), among others, is based on a general recognition that the health of humans, animals, and the environment are inextricably linked. Thus, successful efforts to protect that health will require increased interdisciplinary research and increased communication and collaboration among the broader scientific and health community. This strategy is built upon that paradigm. The vision, mission, and five cornerstone goals of the USGS Environmental Health Science Strategy were developed with significant input from a wide range of stakeholders. Vision - The USGS is a premier source of the environmental health science needed to safeguard the health of the environment, fish, wildlife, and people. Mission - The mission of USGS in environmental

  16. NASA y Tú (NASA and You) - NASA's partnership with UNIVISION to promote Science, Technology, Engineering, and Math (STEM) careers among Hispanic youth

    NASA Astrophysics Data System (ADS)

    Colon-Robles, M.; Gilman, I.; Verstynen, S.; Jaramillo, R.; Bednar, S.; Shortridge, T.; Bravo, J.; Bowers, S.

    2010-12-01

    NASA is working with Univision Communications Inc. in support of the Spanish-language media outlet's initiative to improve high school graduation rates, prepare Hispanic students for college, and encourage them to pursue careers in science, technology, engineering and mathematics, or STEM, disciplines. A total of 52 Public Service Announcements (PSAs) named “Visión NASA” or “Vision: NASA” are being developed by NASA centered on current innovative technologies from all four NASA mission directorates (Science, Exploration Systems, Space Operations, and Aerodynamics). Public service announcements are being produced from scratch in both English and Spanish for a total of 26 announcements in each language. Interviews were conducted with NASA Hispanic Scientists or Engineers on the selected PSAs topics to both supply information on their subject matter and to serve as role models for Hispanic youth. Each topic selected for the PSAs has an accompanying website which includes the announcements, interviews with a Hispanic scientists or engineers, background information on the topic, and educational resources for students, parents and teachers. Products developed through this partnership will be presented including the websites of each PSA and their accompanying educational resources. The use of these educational resources for professional development, outreach and informal events, and for in-classroom uses will also be presented. This collaboration with Univision complements NASA's current education efforts to engage underrepresented and underserved students in the critical STEM fields.

  17. Lewis' Educational and Research Collaborative Intership Program Grant Closeout Report

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Lewis' Educational and Research Collaborative Internship Program (LERCIP) is a collaborative undertaking by the Office of Educational Programs at NASA Glenn Research Center at Lewis Field (formerly NASA Lewis Research Center) and the Ohio Aerospace Institute. This program provides 10-week internships and 10 or 12-week fellowships for undergraduate/graduate students and secondary school teachers. Approximately 130 interns are selected to participate in this program each year and begin arriving the second week in May. The internships provide students with introductory professional experiences to complement their academic programs. The interns are given assignments on research and development projects under the personal guidance of NASA professional staff members. Each intern is assigned a NASA mentor who facilitates a research assignment. In addition to the research assignment, the summer program includes a strong educational component that enhances the professional stature of the participants. The educational activities include a research symposium and a variety of workshops, lectures and short courses. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds.

  18. QUANTIFICATION OF GLACIAL EROSION IN THE ALPS USING VERY LOW-TEMPERATURE THERMOCHRONOLOGY (OSL & AHe)

    NASA Astrophysics Data System (ADS)

    Champagnac, J.; Herman, F.; Rhodes, E. J.; Fellin, M.; Jaiswal, M.; Schwenninger, J.; Reverman, R. L.

    2009-12-01

    The impact of glaciations on the topography of the Alps is still unclear: Long-term denudation rate determined by low-T thermochronology are in the range of 0.2 to 1 mm/yr, and increased during the Plio-Quaternary by 3 fold (Vernon et al., 2008). Such an increase is also documented by peri-alpine sediment budget (Kuhleman, 2000), with a similar increase in sediment yields since 5-3 Ma. This increase was considered as evidence of a climatically-driven surface process change, attributed to increased precipitation (Cederbom et al., 2004) and erosion by glacial processes (Champagnac et al., 2007). The timing of the onset of intense glacial erosion as well as its rates are still ambiguous. The glacial erosion seems to have accelerated around 0.9 Ma as suggested by the ten fold increase of incision rates of a valley in the Central Alps (Häuselmann et al., 2007), and by information about vegetation and sedimentologic changes (Muttoni et al., 2003). There is however no direct quantification of topographic change during the Plio-Quaternary. We present here how we use OSL-thermochronology, a new thermochronometer of exceptionally low closure temperature (about 30°-40°C) (Herman et al subm.), new {U-Th}/He on apatites data, and a glacial erosion model (Herman and Braun 2008) to estimate topographic changes in the Alps in response to glaciations. Because of their low closure temperature, OSL and AHe thermochronology enables quantification of events of less than 1 Ma at very small wavelength of the topography. We collected two vertical profiles, one in the Zermatt Valley (Valais) and one in Maurienne Valley (Savoy). We infer from these results changes in topography, date and quantify relief creation under glacial-interglacial cycles. Cederbom, C.E, et al., Climate induced rebound and exhumation of the European Alps. Geology 32, 709-712 (2000). Champagnac, J.-D., et al., Quaternary erosion-induced isostatic rebound in the western Alps. Geology 35, 195-198 (2007). Ha

  19. The Tri-Agency Climate Education (TrACE) Catalog: Promoting collaboration, effective practice, and a robust portfolio by sharing educational resources developed across NASA, NOAA & NSF climate education initiatives

    NASA Astrophysics Data System (ADS)

    McDougall, C.; Martin, A.; Givens, S. M.; Yue, S.; Wilson, C. E.; Karsten, J. L.

    2012-12-01

    The Tri-Agency Climate Education (TrACE) Catalog is an online, interactive, searchable and browsable web product driven by a database backend. TrACE was developed for and by the community of educators, scientists, and Federal agency representatives involved in a tri-agency collaboration for climate education. NASA, NOAA, and NSF are working together to strategically coordinate and support a portfolio of projects focused on climate literacy and education in formal and informal learning environments. The activities of the tri-agency collaboration, including annual meetings for principal investigators and the ongoing development of a nascent common evaluation framework, have created a strong national network for effectively engaging diverse audiences with the principles of climate literacy (see Eos Vol. 92, No. 24, 14 June 2011). TrACE is a tool for the climate education community that promotes the goals of the tri-agency collaboration to leverage existing resources, minimize duplicate efforts, and facilitate communication among this emergent community of scientists and educators. TrACE was born as "The Matrix," a product of the 2011 Second Annual NASA, NOAA and NSF Climate Change Education Principal Investigators Meeting (see McDougall, Wilson, Martin & Knippenberg, 2011, Abstract ED21B-0583 presented at 2011 Fall Meeting, AGU, San Francisco, CA.) Meeting attendees were asked to populate a pen-and-paper matrix with all of the activities or deliverables they had created or anticipated creating as part of their NOAA/NASA/NSF-funded project. During the 2012 Third Annual Tri-Agency PI Meeting, projects were given the opportunity to add and update their products and deliverables. In the intervening year, the dataset comprising the Matrix was converted to a MySQL database, with a standardized taxonomy and minimum criteria for inclusion, and further developed into the interactive TrACE Catalog. In the fall of 2012, the TrACE Catalog web product will be made publicly

  20. Collaborative Computer Graphics Product Development between Academia and Government: A Dynamic Model

    NASA Technical Reports Server (NTRS)

    Fowler, Deborah R.; Kostis, Helen-Nicole

    2016-01-01

    Collaborations and partnerships between academia and government agencies are common, especially when it comes to research and development in the fields of science, engineering and technology. However, collaboration between a government agency and an art school is rather atypical. This paper presents the Collaborative Student Project, which aims to explore the following challenge: The ideation, development and realization of education and public outreach products for NASAs upcoming ICESat-2 mission in collaboration with art students.

  1. Study geomorphology, past and present, linear trench, tectonics relationship between Pyrenees and Alps

    NASA Technical Reports Server (NTRS)

    Guillemot, J. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS-1 images obviously show up some large linear features trending N 80 E or N 30 E common to both Alps and Pyrenees. One of them, the Ligurian Fault, had been previously forecast by Laubscher in an interpretation of the Alps by the plate tectonic theory, but it extends westward farthest from the Alps, cutting the Pyrenees axis. These lineaments have been interpreted as reflections of deep seated wrench faults in the surficial part of the sedimentary series. A large set of such lineaments is perceptible in western Europe, such as the Guadalquivir Fault in southern Spain, Ligurian Fault, Insubrian Fault, Northern-Jura Fault, Metz Fault. Perhaps these may be interpreted as transform faults of the mid-Atlantic ridge or of a paleo-rift seated in the Rhine-Rhone graben.

  2. Applications of NASA and NOAA Satellite Observations by NASA's Short-term Prediction Research and Transition (SPoRT) Center in Response to Natural Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2012-01-01

    NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.

  3. NASA's Astrophysics Data Archives

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Hanisch, R.; Bredekamp, J.

    2000-09-01

    The NASA Office of Space Science has established a series of archival centers where science data acquired through its space science missions is deposited. The availability of high quality data to the general public through these open archives enables the maximization of science return of the flight missions. The Astrophysics Data Centers Coordinating Council, an informal collaboration of archival centers, coordinates data from five archival centers distiguished primarily by the wavelength range of the data deposited there. Data are available in FITS format. An overview of NASA's data centers and services is presented in this paper. A standard front-end modifyer called `Astrowbrowse' is described. Other catalog browsers and tools include WISARD and AMASE supported by the National Space Scince Data Center, as well as ISAIA, a follow on to Astrobrowse.

  4. Lewis' Educational and Research Collaborative Internship Program

    NASA Technical Reports Server (NTRS)

    Heyward, Ann; Gott, Susan (Technical Monitor)

    2004-01-01

    The Lewis Educational and Research Collaborative Internship Program (LERCIP) is a collaborative undertaking by the Office of Educational Programs at NASA Glenn Research Center at Lewis Field (formerly NASA Lewis Research Center) and the Ohio Aerospace Institute. This program provides 10-week internships in addition to summer and winter extensions if funding is available and/or is requested by mentor (no less than 1 week no more than 4 weeks) for undergraduate/graduate students and secondary school teachers. Students who meet the travel reimbursement criteria receive up to $500 for travel expenses. Approximately 178 interns are selected to participate in this program each year and begin arriving the fourth week in May. The internships provide students with introductory professional experiences to complement their academic programs. The interns are given assignments on research and development projects under the personal guidance of NASA professional staff members. Each intern is assigned a NASA mentor who facilitates a research assignment. In addition to the research assignment, the summer program includes a strong educational component that enhances the professional stature of the participants. The educational activities include a research symposium and a variety of workshops, and lectures. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 2004.

  5. Structurally controlled 'teleconnection' of large-scale mass wasting (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Ostermann, Marc; Sanders, Diethard

    2015-04-01

    In the Brenner Pass area (Eastern Alps) , closely ahead of the most northward outlier ('nose') of the Southern-Alpine continental indenter, abundant deep-seated gravitational slope deformations and a cluster of five post-glacial rockslides are present. The indenter of roughly triangular shape formed during Neogene collision of the Southern-Alpine basement with the Eastern-Alpine nappe stack. Compression by the indenter activated a N-S striking, roughly W-E extensional fault northward of the nose of the indenter (Brenner-normal fault; BNF), and lengthened the Eastern-Alpine edifice along a set of major strike-slip faults. These fault zones display high seismicity, and are the preferred locus of catastrophic rapid slope failures (rockslides, rock avalanches) and deep-seated gravitational slope deformations. The seismotectonic stress field, earthquake activity, and structural data all indicate that the South-Alpine indenter still - or again - exerts compression; in consequence, the northward adjacent Eastern Alps are subject mainly to extension and strike-slip. For the rockslides in the Brenner Pass area, and for the deep-seated gravitational slope deformations, the fault zones combined with high seismic activity predispose massive slope failures. Structural data and earthquakes mainly record ~W-E extension within an Eastern Alpine basement block (Oetztal-Stubai basement complex) in the hangingwall of the BNF. In the Northern Calcareous Alps NW of the Oetztal-Stubai basement complex, dextral faults provide defacement scars for large rockfalls and rockslides. Towards the West, these dextral faults merge into a NNW-SSE striking sinistral fault zone that, in turn, displays high seismic activity and is the locus of another rockslide cluster (Fern Pass cluster; Prager et al., 2008). By its kinematics dictated by the South-Alpine indenter, the relatively rigid Oetztal-Stubai basement block relays faulting and associated mass-wasting over a N-S distance of more than 60

  6. Great Basin NP and USGS cooperate on a geologic mapping program

    USGS Publications Warehouse

    Brown, Janet L.; Davila, Vidal

    1993-01-01

    The GRBA draft General Management Plan proposes development in several locations in Kious Spring and Lehman Caves 1:24,000 topographic quadrangles, and these proposed developments need geologic evaluation before construction. Brown will act as project manager to coordinate the IA with time frames, budget constraints, and the timely preparation of required maps, reports, and GIS data sets. In addition to having been an interpretive Ranger-Naturalist in two National Parks, Brown has published USGS interpretive geologic maps and USGS bulletins. Her research includes sedimentologic, stratigraphic, and structural analyses of Laramide intermontane basins in the Westem Interior.

  7. NASA's new university engineering space research programs

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.

    1988-01-01

    The objective of a newly emerging element of NASA's university engineering programs is to provide a more autonomous element that will enhance and broaden the capabilities in academia, enabling them to participate more effectively in the U.S. civil space program. The programs utilize technical monitors at NASA centers to foster collaborative arrangements, exchange of personnel, and the sharing of facilities between NASA and the universities. The elements include: the university advanced space design program, which funds advanced systems study courses at the senior and graduate levels; the university space engineering research program that supports cross-disciplinary research centers; the outreach flight experiments program that offers engineering research opportunities to universities; and the planned university investigator's research program to provide grants to individuals with outstanding credentials.

  8. Orogen-scale anticline revealed in the Southern Alps of New Zealand by structural thermochronology

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; Brandon, Mark

    2017-04-01

    A dense set of cooling ages from the Southern Alps reveals an orogen-scale anticline of cooling-age isosurfaces (isochrones) and provides an interesting example of structural thermochronology, where isochrones are used as structural markers. The isochrone concept is an integral aspect of the age-elevation method, but the latter implicitly assumes that all isochrones are horizontal. Our experience in New Zeland and elsewhere is that isochrones are commonly tilted after formation. We use a more general approach that solves for orientation of the isochrone surfaces, and also the slope of the age-elevation trend, where "elevation" is measured normal to the isochrone surfaces. In New Zealand, collision and convergence between the Pacific and Australian plates have resulted in the formation and continuing growth of the Southern Alps, a prototypical orogenic wedge. In the western side, the Southern Alps is bounded by the Alpine fault, along with deeply exhumed rocks from depths up to 25 km. There are 150 apatite and 200 zircon fission-track (AFT, ZFT) ages that cover the vast region of the South Island of New Zealand from Lake Summer to Lake Wanaka. The AFT ages range from <0.5 to 140 Ma, and the ZFT ages, from <0.5 to 400 Ma. Our approach was initiated by McPhillips and Brandon (Earth and Planetary Science Letters, 2010, doi: 10.1016/j.epsl.2010.05.022). We use a least-squares method to solve for a best-fit sequence of dipping isochrone surfaces. The solution specifies the strike, dip and spacing of the parallel isochrones, the last of which indicates the velocity of the isochrones passing through the closure depth. We find that the calculation of the entire dataset failed to yield reasonable results, implying nonplanar structures at the regional scale. Using subsets of data, we observed three distinct zones of isochrones from E to W across the South Island. 1) The large area east of the Southern Alps in the central South Island contains ZFT isochrones that dip shallowly

  9. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  10. 13 CFR 120.841 - Qualifications for the ALP.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... An applicant for ALP status must show that it substantially meets the following criteria: (a) CDC staff experience. The CDC's staff must have well-trained, qualified loan officers who are knowledgeable concerning SBA's lending policies and procedures for the 504 program. The CDC must have at least one loan...

  11. 13 CFR 120.841 - Qualifications for the ALP.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... An applicant for ALP status must show that it substantially meets the following criteria: (a) CDC staff experience. The CDC's staff must have well-trained, qualified loan officers who are knowledgeable concerning SBA's lending policies and procedures for the 504 program. The CDC must have at least one loan...

  12. 13 CFR 120.841 - Qualifications for the ALP.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... An applicant for ALP status must show that it substantially meets the following criteria: (a) CDC staff experience. The CDC's staff must have well-trained, qualified loan officers who are knowledgeable concerning SBA's lending policies and procedures for the 504 program. The CDC must have at least one loan...

  13. 13 CFR 120.841 - Qualifications for the ALP.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... An applicant for ALP status must show that it substantially meets the following criteria: (a) CDC staff experience. The CDC's staff must have well-trained, qualified loan officers who are knowledgeable concerning SBA's lending policies and procedures for the 504 program. The CDC must have at least one loan...

  14. NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.

    2012-01-01

    A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.

  15. International aerospace engineering: NASA shuttle and European Spacelab

    NASA Technical Reports Server (NTRS)

    Bilstein, R. E.

    1981-01-01

    NASA negotiations and contractual arrangements involving European space research organizations' participation in manned space operations and efforts in building Spacelab for the U.S. Reusable Space Shuttle are discussed. Some of the diplomatic and technical collaboration involved in the international effort is reviewed.

  16. Cutting-edge Kinetic Physics with Parker Solar Probe and Solar Orbiter: The Arbitrary Linear Plasma Solver (ALPS)

    NASA Astrophysics Data System (ADS)

    Verscharen, D.; Klein, K. G.; Chandran, B. D. G.; Stevens, M. L.; Salem, C. S.; Bale, S. D.

    2017-12-01

    The Arbitrary Linear Plasma Solver (ALPS) is a parallelized numerical code that solves the dispersion relation in a hot (even relativistic) magnetized plasma with an arbitrary number of particle species with arbitrary gyrotropic equilibrium distribution functions for any direction of wave propagation with respect to the background field. In this way, ALPS retains generality and overcomes the shortcomings of previous (bi-)Maxwellian solvers for the plasma dispersion relations. The unprecedented high-resolution particle and field data products from Parker Solar Probe (PSP) and Solar Orbiter (SO) will require novel theoretical tools. ALPS is one such tool, and its use will make possible new investigations into the role of non-Maxwellian distributions in the near-Sun solar wind. It can be applied to numerous high-velocity-resolution systems, ranging from current space missions to numerical simulations. We will briefly discuss the ALPS algorithm and demonstrate its functionality based on previous solar-wind measurements. We will then highlight our plans for future applications of ALPS to PSP and SO observations.

  17. Use of Rituximab for Refractory Cytopenias Associated with Autoimmune Lymphoproliferative Syndrome (ALPS)

    PubMed Central

    Rao, V. Koneti; Price, Susan; Perkins, Katie; Aldridge, Patricia; Tretler, Jean; Davis, Joie; Dale, Janet K.; Gill, Fred; Hartman, Kip R.; Stork, Linda C.; Gnarra, David J.; Krishnamurti, Lakshmanan; Newburger, Peter E.; Puck, Jennifer; Fleisher, Thomas

    2009-01-01

    Background ALPS is a disorder of apoptosis resulting in accumulation of autoreactive lymphocytes, leading to marked lymphadenopathy, hepatosplenomegaly and multilineage cytopenias due to splenic sequestration and/or autoimmune destruction often presenting in childhood. We summarize our experience of rituximab use during the last 8 years in twelve patients, 9 children and 3 adults, out of 259 individuals with ALPS, belonging to 166 families currently enrolled in studies at the National Institutes of Health. Methods Refractory immune thrombocytopenia (platelet count <20,000) in 9 patients and autoimmune hemolytic anemia (AIHA) in 3 patients led to treatment with rituximab. Among them, 7 patients had undergone prior surgical splenectomy; 3 had significant splenomegaly; and 2 had no palpable spleen. Results In 7 out of 9 patients with ALPS and thrombocytopenia, rituximab therapy led to median response duration of 21months (range 14–36 months). In contrast, none of the 3 children treated with rituximab for AIHA responded. Noted toxicities included profound and prolonged hypogammaglobulinemia in 3 patients requiring replacement IVIG, total absence of antibody response to polysaccharide vaccines lasting up to 4 years after rituximab infusions in 1 patient and prolonged neutropenia in 1 patient. Conclusion Toxicities including hypogammaglobulinemia and neutropenia constitute an additional infection risk burden, especially in asplenic individuals, and may warrant avoidance of rituximab until other immunosuppressive medication options are exhausted. Long term follow up of ALPS patients with cytopenias after any treatment is necessary to determine relative risks and benefits. PMID:19214977

  18. Effects of atmospheric and climate change at the timberline of the Central European Alps

    PubMed Central

    Wieser, Gerhard; Matyssek, Rainer; Luzian, Roland; Zwerger, Peter; Pindur, Peter; Oberhuber, Walter; Gruber, Andreas

    2011-01-01

    This review considers potential effects of atmospheric change and climate warming within the timberline ecotone of the Central European Alps. After focusing on the impacts of ozone (O3) and rising atmospheric CO2 concentration, effects of climate warming on the carbon and water balance of timberline trees and forests will be outlined towards conclusions about changes in tree growth and treeline dynamics. Presently, ambient ground-level O3 concentrations do not exert crucial stress on adult conifers at the timberline of the Central European Alps. In response to elevated atmospheric CO2 Larix decidua showed growth increase, whereas no such response was found in Pinus uncinata. Overall climate warming appears as the factor responsible for the observed growth stimulation of timberline trees. Increased seedling re-establishment in the Central European Alps however, resulted from invasion into potential habitats rather than upward migration due to climate change, although seedlings will only reach tree size upon successful coupling with the atmosphere and thus loosing the beneficial microclimate of low stature vegetation. In conclusion, future climate extremes are more likely than the gradual temperature increase to control treeline dynamics in the Central European Alps. PMID:21379395

  19. A New Business Model for Problem Solving-Infusing Open Collaboration and Innovation Health and Human Services

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Eliabeth E.; Fogarty, Jennifer A.; Rando, Cynthia M.

    2011-01-01

    This slide presentation reviews the Space Life Sciences Directorate (SLSD) new business model for problem solving, with emphasis on open collaboration and innovation. The topics that are discussed are: an overview of the work of the Space Life Sciences Directorate and the strategic initiatives that arrived at the new business model. A new business model was required to infuse open collaboration/innovation tools into existing models for research, development and operations (research announcements, procurements, SBIR/STTR etc). This new model involves use of several open innovation partnerships: InnoCentive, Yet2.com, TopCoder and NASA@work. There is also a new organizational structure developed to facilitate the joint collaboration with other NASA centers, international partners, other U.S. Governmental organizations, Academia, Corporate, and Non-Profit organizations: the NASA Human Health and Performance Center (NHHPC).

  20. Research Reports: 1986 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Freeman, L. Michael (Editor); Speer, Fridtjof A. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)

    1986-01-01

    For the 22th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted for the summer of 1986 by the University of Alabama and Marshall Space Flight Center. The basic objectives of the program are: (1)to further the professional knowledge of qualified engineering and science faculty members; (2)to stimulate an exchange of ideas between participants and NASA; (3)to enrich and refresh the research and teaching activities of the participants' institution; and (4)to contribute to the research objectives of the NASA center. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interest and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of Fellows' reports on their research.

  1. USGS Tampa Bay Pilot Study

    USGS Publications Warehouse

    Yates, K.K.; Cronin, T. M.; Crane, M.; Hansen, M.; Nayeghandi, A.; Swarzenski, P.; Edgar, T.; Brooks, G.R.; Suthard, B.; Hine, A.; Locker, S.; Willard, D.A.; Hastings, D.; Flower, B.; Hollander, D.; Larson, R.A.; Smith, K.

    2007-01-01

    Providing a web-based digital information management system of information for scientists and the public, including a system that supports the work of those officials who must make decisions that affect the state of the bay. The Tampa Bay Study is in its sixth year and will continue through September 2007. This paper presents a non-inclusive summary of key findings associated with the six primary project components listed above. Component 4 (above) is described in detail in the following chapter 13. More information on the Tampa Bay Study is available from our on-line digital information system for the Tampa Bay Study at http://gulfsci.usgs.gov.

  2. Isotopic composition of sulfate accumulations, Northern Calcareous Alps, Austria

    NASA Astrophysics Data System (ADS)

    Bojar, Ana-Voica; Halas, Stanislaw; Bojar, Hans-Peter; Trembaczowski, Andrzej

    2015-04-01

    The Eastern Alps are characterised by the presence of three main tectonic units, such as the Lower, Middle and Upper Austroalpine, which overlie the Penninicum (Tollmann, 1977). The Upper Austroalpine unit consists of the Northern Calcareous Alps (NCA) overlying the Greywacke zone and corresponding to the Graz Paleozoic, Murau Paleozoic and the Gurktal Nappe. Evaporitic rocks are lacking in the later ones. The Northern Calcareous Alps are a detached fold and thrust belt. The sedimentation started in the Late Carboniferous or Early Permian, the age of the youngest sediments being Eocene. The NCA are divided into the Bajuvaric, Tirolic and Juvavic nappe complexes. The evaporitic Haselgebirge Formation occurs in connection with the Juvavic nappe complex at the base of the Tirolic units (Leitner et al., 2013). The Haselgebirge Formation consists mainly of salt, shales, gypsum and anhydrite and includes the oldest sediments of the NCA. The age of the Haselgebirge Formation, established by using spors and geochronological data, is Permian to Lower Triassic. For the Northern Calcareous Alps, the mineralogy of sulphate accumulations consists mainly of gypsum and anhydrite and subordonates of carbonates. The carbonates as magnesite, dolomite and calcite can be found either as singular crystals or as small accumulations within the hosting gypsum. Sulfides (sphalerite, galena, pyrite), sulfarsenides (enargite, baumhauerite) and native sulphur enrichments are known from several deposits (Kirchner, 1987; Postl, 1990). The investigated samples were selected from various gypsum and halite rich deposits of the Northern Calcareous Alps. A total of over 20 samples were investigated, and both oxygen and sulfur isotopic composition were determined for anhydrite, gyps, polyhalite, blödite and langbeinite. The sulfur isotopic values vary between 10.1 to 14 ‰ (CDT), with three values higher than 14 ‰. The Oxygen isotopic values show a range from 9 to 23 ‰ (SMOW). The sulfur

  3. Advanced Image Processing for NASA Applications

    NASA Technical Reports Server (NTRS)

    LeMoign, Jacqueline

    2007-01-01

    The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion.

  4. Low temperature thermochronology in the Eastern Alps: Implications for structural and topographic evolution

    PubMed Central

    Wölfler, Andreas; Stüwe, Kurt; Danišík, Martin; Evans, Noreen J.

    2012-01-01

    According to new apatite fission track, zircon- and apatite (U–Th)/He data, we constrain the near-surface history of the southeastern Tauern Window and adjacent Austrolapine units. The multi-system thermochronological data demonstrate that age-elevation correlations may lead to false implications about exhumation and cooling in the upper crust. We suggest that isothermal warping in the Penninic units that are in the position of a footwall, is due to uplift, erosion and the buildup of topography. Additionally we propose that exhumation rates in the Penninic units did not increase during the Middle Miocene, thus during the time of lateral extrusion. In contrast, exhumation rates of the Austroalpine hangingwall did increase from the Paleogene to the Neogene and the isotherms in this unit were not warped. The new zircon (U–Th)/He ages as well as zircon fission track ages from the literature document a Middle Miocene exhumation pulse which correlates with a period of enhanced sediment accumulation during that time. However, enhanced sedimentation- and exhumation rates at the Miocene/Pliocene boundary, as observed in the Western- and Central Alps, cannot be observed in the Eastern Alps. This contradicts a climatic trigger for surface uplift, and makes a tectonic trigger and/or deep-seated mechanism more obvious to explain surface uplift in the Eastern Alps. In combination with already published geochronological ages, our new data demonstrate Oligocene to Late Miocene fault activity along the Möll valley fault that constitutes a major shear zone in the Eastern Alps. In this context we suggest a geometrical and temporal relationship of the Katschberg-, Polinik–Möll valley- and Mur–Mürz faults that define the extruding wedge in the eastern part of the Eastern Alps. Equal deformation- and fission track cooling ages along the Katschberg–Brenner- and Simplon normal faults demonstrate overall Middle Miocene extension in the whole alpine arc. PMID:27065501

  5. Kimball to Be Nominated to Lead USGS

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-01-01

    Suzette Kimball, who has served as acting director of the U.S. Geological Survey (USGS) since February 2013, will be nominated to be director of the agency, U.S. president Barack Obama announced on 9 January. If Kimball's nomination is confirmed by the U.S. Senate, she will lead the science agency, which has more than 8000 employees and an annual budget of more than $1.1 billion.

  6. Monitoring Climate Variability and Change in Northern Alaska: Updates to the U.S. Geological Survey (USGS) Climate and Permafrost Monitoring Network

    NASA Astrophysics Data System (ADS)

    Urban, F. E.; Clow, G. D.; Meares, D. C.

    2004-12-01

    Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.

  7. Ivrea mantle wedge and arc of the Western Alps (I): Geophysical evidence for the deep structure

    NASA Astrophysics Data System (ADS)

    Kissling, Edi; Schmid, Stefan M.; Diehl, Tobias

    2017-04-01

    The construction of five crustal-scale profiles across the Western Alps and the Ivrea mantle wedge integrates up-to-date geological and geophysical information and reveals important along strike changes in the overall structure of the crust of the Western Alpine arc (Schmid et al. 2017). The 3D crustal model of the Western Alps represented by these cross sections is based on recent P-velocity local earthquake tomography that compliments the previously existing wealth of geophysical information about lithosphere structure in the region. As part of Adria mantle lithosphere exhibiting strong upward bending toward the plate boundary along the inner arc of the Western Alps, the well-known Ivrea body plays a crucial role in our tectonic model. Until recently, however, the detailed 3D geometry of this key structure was only poorly constrained. In this study we present a review of the many seismic data in the region and we document the construction of our 3D lithosphere model by principles of multidisciplinary seismic tomography. Reference: Stefan M. Schmid, Edi Kissling, Douwe J.J. van Hinsbergen, Giancarlo Molli (2017). Ivrea mantle wedge and arc of the Western Alps (2): Kinematic evolution of the Alps-Apennines orogenic system. Abstract Volume EGU 2017.

  8. NOAA-USGS Debris-Flow Warning System - Final Report

    USGS Publications Warehouse

    ,

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  9. Holocene geological records of flood regime in French Alps

    NASA Astrophysics Data System (ADS)

    Arnaud, Fabien; Wilhelm, Bruno; Giguet-Covex, Charline; Jenny, Jean-Philippe; Fouinat, Laurent; Sabatier, Pierre; Debret, Maxime; Révillon, Sidonie; Chapron, Emmanuel; Revel, Marie

    2014-05-01

    In this paper we present a review of a ca. 10-years research effort (1-9) aiming at reconstructing floods dynamics in in French Alps through the Holocene, based on lake sediment records. We will particularly discuss how such geological records can be considered as representative of past climate. This implies a wise interpretation of data in order to really understand "what does the core really says". Namely, we showed that different lake systems record different types of flood events. Low altitude lakes, fed by large-scale catchment areas are more sensitive to regional heavy rainfall events (2-5), whereas high altitude small lakes record local extreme rainfall events (6). Moreover, human societies' development must be taken into account as it is susceptible to modulate the climate-geological record relationship (7). Altogether our data permit the establishment of a Holocene-long perspective upon both regional heavy rainfall and torrential activities in high elevation sites. We hence show that both types of events frequency co-evolve in Northern as well as Southern French Alps where Holocene colder spells generally present higher flood frequencies (6-9). On the other hand, intensities of torrential events present a North-South opposite pattern: during warm spells (e.g. the Medieval Warm Period or nowadays), northern Alps are subject to rare but extremely intense heavy rainfall events, whereas in the southern Alps torrential floods are both rare and weak. During cold spells (e.g. the Little Ice Age), the inverse pattern is observed: torrential floods are more frequent everywhere and above-average intensity in Southern Alps. This point is particularly important for risk management in mountain areas in a context of global warming. Our results point out how complex can be the response of regional system to global climate changes. We are hence far from completely understanding this complexity which is moreover imperfectly simulated by climate models. As geological

  10. The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Jones, David; Hopkins, Randy

    2011-01-01

    This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.

  11. USGS investigations of water produced during hydrocarbon reservoir development

    USGS Publications Warehouse

    Engle, Mark A.; Cozzarelli, Isabelle M.; Smith, Bruce D.

    2014-01-01

    Significant quantities of water are present in hydrocarbon reservoirs. When brought to the land surface during oil, gas, and coalbed methane production, the water—either naturally occurring or injected as a method to enhance production—is termed produced water. Produced water is currently managed through processes such as recycling, treatment and discharge, spreading on roads, evaporation or infiltration, and deep well injection. U.S. Geological Survey (USGS) scientists conduct research and publish data related to produced water, thus providing information and insight to scientists, decisionmakers, the energy industry, and the public. The information advances scientific knowledge, informs resource management decisions, and facilitates environmental protection. This fact sheet discusses integrated research being conducted by USGS scientists supported by programs in the Energy and Minerals and Environmental Health Mission Areas. The research products help inform decisions pertaining to understanding the nature and management of produced water in the United States.

  12. Making a world of difference; recent USGS contributions to the Nation

    USGS Publications Warehouse

    ,

    1998-01-01

    Public service is about making a difference. As the Federal government's principal natural science and information agency, the USGS is committed to providing excellence in public service and to making a difference to the world we live in. Our motto conveys an enduring message: science for a changing world. The changing nature of the natural and physical world is the primary driving force and motivation behind all of the work USGS does in biology, geology, mapping, and water. We live our motto each day in fulfilling our mission to provide reliable, impartial information to the citizen of this country and to the global community.

  13. Research reports: 1991 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Freeman, L. Michael (Editor)

    1991-01-01

    The basic objectives of the programs, which are in the 28th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of their research reports for summer 1991.

  14. USGS Abandoned Mine Lands Research Presented at the NAAMLP Meeting in Billings, Mont., Sept. 25, 2006

    USGS Publications Warehouse

    Johnson, Kate; Church, Stan

    2006-01-01

    The following talk was an invited presentation given at the National Association of Abandoned Mine Lands Programs meeting in Billings, Montana on Sept. 25, 2006. The objective of the talk was to outline the scope of the U.S. Geological Survey research, past, present and future, in the area of abandoned mine research. Two large Professional Papers have come out of our AML studies: Nimick, D.A., Church, S.E., and Finger, S.E., eds., 2004, Integrated investigations of environmental effects of historical mining in the Basin and Boulder mining districts, Boulder River watershed, Jefferson County, Montana: U.S. Geological Survey Professional Paper 1652, 524 p., 2 plates, 1 DVD, URL: http://pubs.er.usgs.gov/usgspubs/pp/pp1652 Church, S.E., von Guerard, Paul, and Finger, S.E., eds., 2006, Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado: U.S. Geological Survey Professional Paper 1651, 1,096 p., 6 plates, 1 DVD (in press). Additional publications and links can be found on the USGS AML website at URL: http://amli.usgs.gov/ or are accessible from the USGS Mineral Resource Program website at URL: http://minerals.usgs.gov/.

  15. The NASA Integrated Information Technology Architecture

    NASA Technical Reports Server (NTRS)

    Baldridge, Tim

    1997-01-01

    of IT systems, 3) the Technical Architecture: a common, vendor-independent framework for design, integration and implementation of IT systems and 4) the Product Architecture: vendor=specific IT solutions. The Systems Architecture is effectively a description of the end-user "requirements". Generalized end-user requirements are discussed and subsequently organized into specific mission and project functions. The Technical Architecture depicts the framework, and relationship, of the specific IT components that enable the end-user functionality as described in the Systems Architecture. The primary components as described in the Technical Architecture are: 1) Applications: Basic Client Component, Object Creation Applications, Collaborative Applications, Object Analysis Applications, 2) Services: Messaging, Information Broker, Collaboration, Distributed Processing, and 3) Infrastructure: Network, Security, Directory, Certificate Management, Enterprise Management and File System. This Architecture also provides specific Implementation Recommendations, the most significant of which is the recognition of IT as core to NASA activities and defines a plan, which is aligned with the NASA strategic planning processes, for keeping the Architecture alive and useful.

  16. NASA Technology Evaluation for Environmental Risk Mitigation Remediation Technology Collaboration Development

    NASA Technical Reports Server (NTRS)

    Romeo, James

    2013-01-01

    NASA is committed to finding solutions to agency cleanup problems that are better, cheaper, and more effective than the status quo. Unfortunately, some potential solutions involve innovative technologies for which NASA remediation managers may not have a high level of understanding or confidence. Since 2004, NASA's Stennis Space Center (SSC) in Mississippi has been pumping groundwater contaminated with trichloroethylene (TCE) and other halogenated volatile organic compounds (HVOC) from their cleanup location designated "Area G" through extraction wells to an aboveground treatment system. Over time, however, the effectiveness of this treatment strategy has diminished and an alternative approach is needed. In 2012, professionals from NASA's Principal Center for Technology Evaluation for Environmental Risk Mitigation (TEERM) introduced SSC managers to an innovative technology for enhancing the performance of SSC's existing pump and treat system. The technology, generally referred to as in situ chemical oxidation (ISCO), involves slowly and continuously injecting a strong but safe chemical oxidant into the groundwater. Treatment is enhanced by a "surfactant-type effect" which causes residual contamination from saturated soil to be released into the dissolved-phase where it can be readily oxidized. Any dissolved-phase contamination that was not oxidized can be collected by the extraction well network and treated aboveground. SSC was not familiar with the technology so to increase their confidence, TEERM identified a contractor who was willing to demonstrate their product and process at a significantly reduced price. An initial, small-scale demonstration of ISCO began at sse in March 2012 and completed in August 2012. This successful demonstration was followed by three larger-scale ISCO demonstrations between August and December 2012. The contractor's innovative Continuous Injection System (CIS) incorporated "green" and sustainable technologies and practices. A slow

  17. Unique Education and Workforce Development for NASA Engineers

    NASA Technical Reports Server (NTRS)

    Forsgren, Roger C.; Miller, Lauren L.

    2010-01-01

    NASA engineers are some of the world's best-educated graduates, responsible for technically complex, highly significant scientific programs. Even though these professionals are highly proficient in traditional analytical competencies, there is a unique opportunity to offer continuing education that further enhances their overall scientific minds. With a goal of maintaining the Agency's passionate, "best in class" engineering workforce, the NASA Academy of Program/Project & Engineering Leadership (APPEL) provides educational resources encouraging foundational learning, professional development, and knowledge sharing. NASA APPEL is currently partnering with the scientific community's most respected subject matter experts to expand its engineering curriculum beyond the analytics and specialized subsystems in the areas of: understanding NASA's overall vision and its fundamental basis, and the Agency initiatives supporting them; sharing NASA's vast reservoir of engineering experience, wisdom, and lessons learned; and innovatively designing hardware for manufacturability, assembly, and servicing. It takes collaboration and innovation to educate an organization that possesses such a rich and important historyand a future that is of great global interest. NASA APPEL strives to intellectually nurture the Agency's technical professionals, build its capacity for future performance, and exemplify its core valuesalJ to better enable NASA to meet its strategic visionand beyond.

  18. Bacteriological water quality in and around Lake Pontchartrain following Hurricanes Katrina and Rita: Chapter 7H in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Demcheck, Dennis K.; Stoeckel, Donald M.; Bushon, Rebecca N.; Blehert, David S.; Hippe, Daniel J.

    2007-01-01

    Following the Louisiana landfalls of Katrina on August 29 and Rita on September 24, 2005, the local population and the American public were concerned about the effects the hurricanes might have on water quality in Lake Pontchartrain. The lake is a major recreational resource for the region and an important fishery. Contamination carried by the storm surge—along with runoff and water pumped from flooded areas of New Orleans—was considered a serious threat to the water body. The USGS, in collaboration with the LDEQ, monitored the sanitary quality of water at 22 sites in and around Lake Pontchartrain, La., for 3 consecutive weeks from September 13 to 29, 2005 (fig. 1). A subsequent multipleagency survey of 30 sites within Lake Pontchartrain was undertaken by the U.S. Environmental Protection Agency (EPA), the USGS, and the National Oceanic and Atmospheric Administration during the week of October 11–14, 2005, to evaluate the effects of the hurricanes and overall levels of fecal contamination on the water quality of the lake (see Heitmuller and Perez, this volume). In addition, the EPA monitored fecal-indicator concentrations at a variety of sites in New Orleans, surrounding areas, and the Mississippi River between September 3 and October 22, 2005 (U.S. Environmental Protection Agency, 2006). This article describes fecal-indicator bacteria concentration results collected by USGS in the context of other existing data.

  19. Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Wax, Allan; Lam, Ray; Baldwin, John; Borden, Chet

    2006-01-01

    A viewgraph presentation to demonstrate collaborative scheduling using Java Message Service (JMS) in a mixed Java and .Net environment is given. The topics include: 1) NASA Deep Space Network scheduling; 2) Collaborative scheduling concept; 3) Distributed computing environment; 4) Platform concerns in a distributed environment; 5) Messaging and data synchronization; and 6) The prototype.

  20. NASA Astrophysics EPO Resources For Engaging Girls in Science

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Mendoza, D.; Smith, D.; Hasan, H.

    2011-09-01

    A new collaboration among the NASA Science Mission Directorate (SMD) Astrophysics EPO community is to engage girls in science who do not self-select as being interested in science, through the library setting. The collaboration seeks to (i) improve how girls view themselves as someone who knows about, uses, and sometimes contributes to science, and (ii) increase the capacity of EPO practitioners and librarians (both school and public) to engage girls in science. As part of this collaboration, we are collating the research on audience needs and best practices, and SMD EPO resources, activities and projects that focus on or can be recast toward engaging girls in science. This ASP article highlights several available resources and individual projects, such as: (i) Afterschool Universe, an out-of-school hands-on astronomy curriculum targeted at middle school students and an approved Great Science for Girls curriculum; (ii) Big Explosions and Strong Gravity, a Girl Scout patch-earning event for middle school aged girls to learn astronomy through hands-on activities and interaction with actual astronomers; and (iii) the JWST-NIRCAM Train the Trainer workshops and activities for Girl Scouts of USA leaders; etc. The NASA Astrophysics EPO community welcomes the broader EPO community to discuss with us how best to engage non-science-attentive girls in science, technology, engineering, and mathematics (STEM), and to explore further collaborations on this theme.