Sample records for nasal olfactory epithelium

  1. Distribution of olfactory epithelium in the primate nasal cavity: are microsmia and macrosmia valid morphological concepts?

    PubMed

    Smith, Timothy D; Bhatnagar, Kunwar P; Tuladhar, Praphul; Burrows, Annie M

    2004-11-01

    The terms "microsmatic" and "macrosmatic" are used to compare species with greater versus lesser olfactory capabilities, such as carnivores compared to certain primates. These categories have been morphologically defined based on the size of olfactory bulb and surface area of olfactory epithelium in the nasal fossa. The present study examines assumptions regarding the morphological relationship of bony elements to the olfactory mucosa, the utility of olfactory epithelial surface area as a comparative measurement, and the utility of the microsmatic concept. We examined the distribution of olfactory neuroepithelium (OE) across the anteroposterior length of the nasal fossa (from the first completely enclosed cross-section of the nasal fossa to the choanae) in the microsmatic marmoset (Callithrix jacchus) compared to four species of nocturnal strepsirrhines (Otolemur crassicaudatus, O. garnetti, Microcebus murinus, and Cheirogaleus medius). Adults of all species were examined and infant C. jacchus, O. crassicaudatus, M. murinus, and C. medius were also examined. All specimens were serially sectioned in the coronal plane and prepared for light microscopic study. Distribution of OE across all the turbinals, nasal septal surfaces, and accessory spaces of the nasal chamber was recorded for each specimen. The right nasal fossae of one adult C. jacchus and one neonatal M. murinus were also three-dimensionally reconstructed using Scion Image software to reveal OE distribution. Findings showed OE to be distributed relatively more anteriorly in adult C. jacchus compared to strepsirrhines. It was also distributed more anteriorly along the nasal septal walls and recesses in neonates than adults. Our findings also showed that OE surface area was not a reliable proxy for receptor neuron numbers due to differing OE thickness among species. Such results indicate that nasal cavity morphology must be carefully reconsidered regarding traditional functional roles (olfaction versus air

  2. Quantum Dot Distribution in the Olfactory Epithelium After Nasal Delivery

    NASA Astrophysics Data System (ADS)

    Garzotto, D.; De Marchis, S.

    2010-10-01

    Nanoparticles are used in a wide range of human applications from industrial to bio-medical fields. However, the unique characteristics of nanoparticles, such as the small size, large surface area per mass and high reactivity raises great concern on the adverse effects of these particles on ecological systems and human health. There are several pioneer studies reporting translocation of inhaled particulates to the brain through a potential neuronal uptake mediated by the olfactory nerve (1, 2, 3). However, no direct evidences have been presented up to now on the pathway followed by the nanoparticles from the nose to the brain. In addition to a neuronal pathway, nanoparticles could gain access to the central nervous system through extracellular pathways (perineuronal, perivascular and cerebrospinal fluid paths). In the present study we investigate the localization of intranasally delivered fluorescent nanoparticles in the olfactory epithelium. To this purpose we used quantum dots (QDs), a model of innovative fluorescent semiconductor nanocrystals commonly used in cell and animal biology (4). Intranasal treatments with QDs were performed acutely on adult CD1 mice. The olfactory epithelium was collected and analysed by confocal microscopy at different survival time after treatment. Data obtained indicate that the neuronal components of the olfactory epithelium are not preferentially involved in QDs uptake, thus suggesting nanoparticles can cross the olfactory epithelium through extracellular pathways.

  3. Objectivity in the classification of tumours of the nasal epithelium

    PubMed Central

    Michaels, L.; Hyams, V. J.

    1975-01-01

    A survey of tumours derived from each of the four cell types of nasal epithelium is presented. Criticism is levelled at the adoption of additional terms for tissue types such as lympho-epithelium and transitional cell epithelium and tumours said to be derived from them. Electron microscopy is of assistance in classification particularly in the detection of evidence of keratin synthesis. The proposed classification of tumours of the nasal epithelium is: (1) Pseudostratified columnar epithelium: (a) papillary adenoma, (b) papillary carcinoma. (2) Squamous epithelium: (a) everted squamous papilloma, (b) inverted papilloma, (c) squamous carcinoma of any grade of differentiation from well differentiated to undifferentiated. (3) Melanocyte: malignant melanoma. (4) Olfactory neuroepithelium: olfactory neuroblastoma. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15Fig. 16Fig. 17Fig. 18Fig. 19Fig. 21Fig. 20 PMID:1197175

  4. Nested Expression Domains for Odorant Receptors in Zebrafish Olfactory Epithelium

    NASA Astrophysics Data System (ADS)

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-11-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system.

  5. Visualization and Quantification of Nasal and Olfactory Deposition in a Sectional Adult Nasal Airway Cast.

    PubMed

    Xi, Jinxiang; Yuan, Jiayao Eddie; Zhang, Yu; Nevorski, Dannielle; Wang, Zhaoxuan; Zhou, Yue

    2016-06-01

    To compare drug deposition in the nose and olfactory region with different nasal devices and administration techniques. A Sar-Gel based colorimetry method will be developed to quantify local deposition rates. A sectional nasal airway cast was developed based on an MRI-based nasal airway model to visualize deposition patterns and measure regional dosages. Four nasal spray pumps and four nebulizers were tested with both standard and point-release administration techniques. Delivered dosages were measured using a high-precision scale. The colorimetry correlation for deposited mass was developed via image processing in Matlab and its performance was evaluated through comparison to experimental measurements. Results show that the majority of nasal spray droplets deposited in the anterior nose while only a small fraction (less than 4.6%) reached the olfactory region. For all nebulizers considered, more droplets went beyond the nasal valve, leading to distinct deposition patterns as a function of both the nebulizer type (droplet size and initial speed) and inhalation flow rate. With the point-release administration, up to 9.0% (±1.9%) of administered drugs were delivered to the olfactory region and 15.7 (±2.4%) to the upper nose using Pari Sinus. Standard nasal devices are inadequate to deliver clinically significant olfactory dosages without excess drug losses in other nasal epitheliums. The Sar-Gel based colorimetry method appears to provide a simple and practical approach to visualize and quantify regional deposition.

  6. Lesion of the Olfactory Epithelium Accelerates Prion Neuroinvasion and Disease Onset when Prion Replication Is Restricted to Neurons

    PubMed Central

    Crowell, Jenna; Wiley, James A.; Bessen, Richard A.

    2015-01-01

    Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain. PMID:25822718

  7. Olfactory epithelium changes in germfree mice

    PubMed Central

    François, Adrien; Grebert, Denise; Rhimi, Moez; Mariadassou, Mahendra; Naudon, Laurent; Rabot, Sylvie; Meunier, Nicolas

    2016-01-01

    Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration. PMID:27089944

  8. The morphological change of supporting cells in the olfactory epithelium after bulbectomy.

    PubMed

    Makino, Nobuko; Ookawara, Shigeo; Katoh, Kazuo; Ohta, Yasushi; Ichikawa, Masumi; Ichimura, Keiichi

    2009-02-01

    Transmission electron microscopy was used to study the responses of the supporting cells of the olfactory epithelium at 1-5 days after surgical ablation of the olfactory bulb (bulbectomy). In intact olfactory epithelium, lamellar smooth endoplasmic reticulum and rod-shaped mitochondria were distinctly observed in the supporting cells. On the first day after bulbectomy, bending of the microvilli and an increase in the smooth endoplasmic reticulum were observed. Cristae of the mitochondria became obscure, and the density of the mitochondrial matrix decreased. On the second day after bulbectomy, the number of microvilli decreased, broad cytoplasmic projections that contained cytoplasmic organelles protruded into the luminal side, and the mitochondria were swollen. On the fifth day after bulbectomy, microvilli seemed to be normal and some cells had large cytoplasmic projections that protruded toward the lumen of the nasal cavity. Within the cytoplasmic projections of the supporting cells, a large lamellar and reticular-shaped smooth endoplasmic reticulum was evident. Mitochondria exhibited almost normal morphology. The current findings demonstrate that morphological changes occur in the supporting cells after bulbectomy. This new evidence hypothesizes that these changes represent events that contribute to the regeneration of the olfactory epithelium after bulbectomy.

  9. Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clewell, H.J., E-mail: hclewell@thehamner.org; Efremenko, A.; Campbell, J.L.

    Male and female Fischer 344 rats were exposed to naphthalene vapors at 0 (controls), 0.1, 1, 10, and 30 ppm for 6 h/d, 5 d/wk, over a 90-day period. Following exposure, the respiratory epithelium and olfactory epithelium from the nasal cavity were dissected separately, RNA was isolated, and gene expression microarray analysis was conducted. Only a few significant gene expression changes were observed in the olfactory or respiratory epithelium of either gender at the lowest concentration (0.1 ppm). At the 1.0 ppm concentration there was limited evidence of an oxidative stress response in the respiratory epithelium, but not in themore » olfactory epithelium. In contrast, a large number of significantly enriched cellular pathway responses were observed in both tissues at the two highest concentrations (10 and 30 ppm, which correspond to tumorigenic concentrations in the NTP bioassay). The nature of these responses supports a mode of action involving oxidative stress, inflammation and proliferation. These results are consistent with a dose-dependent transition in the mode of action for naphthalene toxicity/carcinogenicity between 1.0 and 10 ppm in the rat. In the female olfactory epithelium (the gender/site with the highest incidences of neuroblastomas in the NTP bioassay), the lowest concentration at which any signaling pathway was significantly affected, as characterized by the median pathway benchmark dose (BMD) or its 95% lower bound (BMDL) was 6.0 or 3.7 ppm, respectively, while the lowest female olfactory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 16.1, 11.1, and 8.4 ppm, respectively. In the male respiratory epithelium (the gender/site with the highest incidences of adenomas in the NTP bioassay), the lowest pathway BMD and BMDL were 0.4 and 0.3 ppm, respectively, and the lowest male respiratory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 0.5, 0.7, and 0

  10. Enhanced Analgesic Responses After Preferential Delivery of Morphine and Fentanyl to the Olfactory Epithelium in Rats

    PubMed Central

    Hoekman, John D.; Ho, Rodney J.Y.

    2011-01-01

    Background Centrally acting opioid analgesics such as morphine and fentanyl are effective, but their efficacy is often limited by a delayed response or side effects resulting from systemic first-pass before reaching the brain and the central nervous system (CNS). It is generally accepted that drugs applied to the nasal cavity can directly access the brain and the CNS, which could provide therapeutic advantages such as rapid onset and lower systemic exposure. The olfactory region of the nasal cavity has been implicated in facilitating this direct nose-to-CNS transfer. If the fraction of opioid administered to the olfactory region could be improved, there could be a larger fraction of drug directly delivered to the CNS, mediating greater therapeutic benefit. Methods We have developed a pressurized olfactory delivery (POD) device to consistently and non-invasively deposit a majority of drug on the olfactory region of the nasal cavity in Sprague-Dawley rats. Using the tail-flick latency test and analysis of plasma and CNS tissue drug exposure, we compared distribution and efficacy of the opioids morphine and fentanyl administered to the nasal olfactory region with the POD device or the nasal respiratory region with nose drops or systemically via intraperitoneal (IP) injection. Results Compared to nose drop, POD administration of morphine resulted in significantly higher overall therapeutic effect (AUCeffect) without a significant increase in plasma drug exposure (AUCplasma). POD delivery of morphine resulted in a nose-to-CNS direct transport percentage of 38–55%. POD delivery of fentanyl led to a faster (5 min vs. 10 min) and more intense analgesic effect compared to nasal respiratory administration. Unlike IP injection or nose drop administration, both morphine and fentanyl given by the POD device to olfactory nasal epithelium exhibited clockwise [plasma] versus effect hysteresis after nasal POD administration, consistent with direct nose-to-CNS drug transport

  11. Cigarette Smoke Delays Regeneration of the Olfactory Epithelium in Mice.

    PubMed

    Ueha, Rumi; Ueha, Satoshi; Sakamoto, Takashi; Kanaya, Kaori; Suzukawa, Keigo; Nishijima, Hironobu; Kikuta, Shu; Kondo, Kenji; Matsushima, Kouji; Yamasoba, Tatsuya

    2016-08-01

    The olfactory system is a unique part of the mammalian nervous system due to its capacity for neurogenesis and the replacement of degenerating receptor neurons. Cigarette smoking is a major cause of olfactory dysfunction. However, the mechanisms by which cigarette smoke impairs the regenerative olfactory receptor neurons (ORNs) remain unclear. Here, we investigated the influence of cigarette smoke on ORN regeneration following methimazole-induced ORN injury. Administration of methimazole caused detachment of the olfactory epithelium from the basement membrane and induced olfactory dysfunction, thus enabling us to analyze the process of ORN regeneration. We found that intranasal administration of cigarette smoke solution (CSS) suppressed the recovery of ORNs and olfaction following ORN injury. Defective ORN recovery in CSS-treated mice was not associated with any change in the number of SOX2(+) ORN progenitor cells in the basal layer of the OE, but was associated with impaired recovery of GAP43(+) immature ORNs. In the nasal mucosa, mRNA expression levels of neurotrophic factors such as brain-derived neurotrophic factor, neurotrophin-3, neurotrophin-5, glial cell-derived neurotrophic factor, and insulin-like growth factor-1 (IGF-1) were increased following OE injury, whereas CSS administration decreased the ORN injury-induced IGF-1 expression. Administration of recombinant human IGF-1 prevented the CSS-induced suppression of ORN recovery following injury. These results suggest that CSS impairs regeneration of ORNs by suppressing the development of immature ORNs from ORN progenitors, at least partly by reducing IGF-1 in the nasal mucosa.

  12. The physiological basics of the olfactory neuro-epithelium.

    PubMed

    Watelet, J B; Katotomichelakis, M; Eloy, P; Danielidis, V

    2009-01-01

    All living organisms can detect and identify chemical substances in their environment. The olfactory epithelium is covered by a mucus layer which is essential for the function of the olfactory neurons that are directly connected to the brain through the cribriform plate. However, little is known about the composition of this mucus in humans and its significance for the diagnosis of olfactory disorders. The olfactory epithelium consists of four primary cell types, including the olfactory receptor cells essential for odour transduction. This review examines the anatomical, histological and physiological fundamentals of olfactory mucosa. Particular attention is paid to the biochemical environment of the olfactory mucosa that regulates both peri-receptor events and several protective functions.

  13. Nasal polyposis (or chronic olfactory rhinitis).

    PubMed

    Jankowski, R; Rumeau, C; Gallet, P; Nguyen, D T

    2018-06-01

    The concept of chronic rhinosinusitis with or without polyps is founded on the structural and functional unicity of the pituitary mucosa and its united response to environmental aggression by allergens, viruses, bacteria, pollution, etc. The present review sets this concept against the evo-devo three-nose theory, in which nasal polyposis is distinguished as specific to the olfactory nose and in particular to the non-olfactory mucosa of the ethmoid, which is considered to be not a sinus but rather the skull-base bone harboring the olfactory mucosa. The evo-devo approach enables simple and precise positive diagnosis of nasal polyposis and its various clinical forms, improves differential diagnosis by distinguishing chronic diseases of the respiratory nose and those of the paranasal sinuses, hypothesizes an autoimmune origin specifically aimed at olfactory system auto-antigens, and supports the surgical concept of nasalization against that of functional sinus and ostiomeatal-complex surgery. The ventilation function of the sinuses seems minor compared to their production, storage and active release of nitric oxide (NO) serving to oxygenate arterial blood in the pulmonary alveoli. This respiratory function of the paranasal sinuses may indeed be their most important. NO trapped in the ethmoidal spaces also accounts for certain radiographic aspects associated with nasal polyposis. Copyright © 2018. Published by Elsevier Masson SAS.

  14. Olfactory epithelium influences the orientation of mitral cell dendrites during development.

    PubMed

    López-Mascaraque, Laura; García, Concepción; Blanchart, Albert; De Carlos, Juan A

    2005-02-01

    We have established previously that, although the olfactory epithelium is absent in the homozygous Pax-6 mutant mouse, an olfactory bulb-like structure (OBLS) does develop. Moreover, this OBLS contains cells that correspond to mitral cells, the primary projection neurons in the olfactory bulb. The current study aimed to address whether the dendrites of mitral cells in the olfactory bulb or in the OBLS mitral-like cells, exhibit a change in orientation in the presence of the olfactory epithelium. The underlying hypothesis is that the olfactory epithelium imparts a trophic signal on mitral and mitral-like cell that influences the growth of their primary dendrites, orientating them toward the surface of the olfactory bulb. Hence, we cultured hemibrains from wild-type and Pax 6 mutant mice from two different embryonic stages (embryonic days 14 and 15) either alone or in coculture with normal olfactory epithelial explants or control tissue (cerebellum). Our results indicate that the final dendritic orientation of mitral and mitral-like cells is directly influenced both by age and indeed by the presence of the olfactory epithelium. Copyright 2004 Wiley-Liss, Inc.

  15. Effect of Deviated Nasal Septum Type on Nasal Mucociliary Clearance, Olfactory Function, Quality of Life, and Efficiency of Nasal Surgery.

    PubMed

    Berkiten, Güler; Kumral, Tolgar Lütfi; Saltürk, Ziya; Atar, Yavuz; Yildirim, Güven; Uyar, Yavuz; Aydoğdu, Imran; Arslanoğlu, Ahmet

    2016-07-01

    The aim of this study was to analyze the influence of deviated nasal septum (DNS) type on nasal mucociliary clearance, quality of life (QoL), olfactory function, and efficiency of nasal surgery (septoplasty with or without inferior turbinate reduction and partial middle turbinectomy). Fifty patients (20 females and 30 males) with septal deviation were included in the study and were divided into 6 groups according to deviation type after examination by nasal endoscopy and paranasal computed tomography. The saccharin clearance test to evaluate the nasal mucociliary clearance time, Connecticut Chemosensory Clinical Research Center smell test for olfactory function, and sinonasal outcome test-22 (SNOT-22) for patient satisfaction were applied preoperatively and postoperatively at the sixth week after surgery. Nasal mucociliary clearance, smell, and SNOT-22 scores were measured before surgery and at the sixth week following surgery. No significant difference was found in olfactory and SNOT-22 scores for any of the DNS types (both convex and concave sides) (P > 0.05). In addition, there was no difference in the saccharin clearance time (SCT) of the concave and convex sides (P > 0.05). According to the DNS type, the mean SCT of the convex sides showed no difference, but that of the concave sides showed a difference in types 3, 4, 5, and 6. These types had a prolonged SCT (P < 0.05). Olfactory scores revealed no difference postoperatively in types 5 and 6 but were decreased significantly in types 1 to 4 (P < 0.05). There was no significant difference in the healing of both the mucociliary clearance (MCC) and olfactory functions. SNOT-22 results showed a significant decrease in type 3. All DNS types disturb the QoL regarding nasal MCC and olfaction functions. MCC values, olfactory function, and QoL scores are similar among the DNS types. Both sides of the DNS types affect the MCC scores symmetrically. Septal surgery improves olfaction function and QoL at the

  16. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium.

    PubMed

    Mistry, Alpesh; Stolnik, Snjezana; Illum, Lisbeth

    2015-08-03

    The ability to deliver therapeutically relevant amounts of drugs directly from the nasal cavity to the central nervous system to treat neurological diseases is dependent on the availability of efficient drug delivery systems. Increased delivery and/or therapeutic effect has been shown for drugs encapsulated in nanoparticles; however, the factors governing the transport of the drugs and/or the nanoparticles from the nasal cavity to the brain are not clear. The present study evaluates the potential transport of nanoparticles across the olfactory epithelium in relation to nanoparticle characteristics. Model systems, 20, 100, and 200 nm fluorescent carboxylated polystyrene (PS) nanoparticles that were nonmodified or surface modified with polysorbate 80 (P80-PS) or chitosan (C-PS), were assessed for transport across excised porcine olfactory epithelium mounted in a vertical Franz diffusion cell. Assessment of the nanoparticle content in the donor chamber of the diffusion cell, accompanied by fluorescence microscopy of dismounted tissues, revealed a loss of nanoparticle content from the donor suspension and their association with the excised tissue, depending on the surface properties and particle size. Chitosan surface modification of PS nanoparticles resulted in the highest tissue association among the tested systems, with the associated nanoparticles primarily located in the mucus, whereas the polysorbate 80-modified nanoparticles showed some penetration into the epithelial cell layer. Assessment of the bioelectrical properties, metabolic activity, and histology of the excised olfactory epithelium showed that C-PS nanoparticles applied in pH 6.0 buffer produced a damaging effect on the epithelial cell layer in a size-dependent manner, with fine 20 nm sized nanoparticles causing substantial tissue damage relative to that with the 100 and 200 nm counterparts. Although histology showed that the olfactory tissue was affected by the application of citrate buffer that was

  17. Solitary chemoreceptor cell proliferation in adult nasal epithelium.

    PubMed

    Gulbransen, Brian D; Finger, Thomas E

    2005-03-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein alpha-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cbeta2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These experiments were designed to test whether new SCCs are generated within the epithelium of adult mice. Wild type C57/B6 mice were injected with the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) to label dividing cells. At various times after injection (1-40 days), the mice were perfused with 4% paraformaldehyde and prepared for dual-label immunocytochemistry. Double labeled cells were detected as early as 3 days post BrdU injection and remained for as long as 12 days post-injection suggesting that SCCs do undergo turnover like the surrounding nasal epithelium. No BrdU labeled cells were detected after 24 days suggesting relatively rapid replacement of the SCCs.

  18. Solitary Chemoreceptor Cell Proliferation in Adult Nasal Epithelium

    PubMed Central

    Gulbransen, Brian D.; Finger, Thomas E.

    2008-01-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein α-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cβ2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These experiments were designed to test whether new SCCs are generated within the epithelium of adult mice. Wild type C57/B6 mice were injected with the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) to label dividing cells. At various times after injection (1-40 days), the mice were perfused with 4% paraformaldehyde and prepared for dual-label immunocytochemistry. Double labeled cells were detected as early as 3 days post BrdU injection and remained for as long as 12 days post-injection suggesting that SCCs do undergo turnover like the surrounding nasal epithelium. No BrdU labeled cells were detected after 24 days suggesting relatively rapid replacement of the SCCs. PMID:16374713

  19. Intranasal Location and Immunohistochemical Characterization of the Equine Olfactory Epithelium.

    PubMed

    Kupke, Alexandra; Wenisch, Sabine; Failing, Klaus; Herden, Christiane

    2016-01-01

    The olfactory epithelium (OE) is the only body site where neurons contact directly the environment and are therefore exposed to a broad variation of substances and insults. It can serve as portal of entry for neurotropic viruses which spread via the olfactory pathway to the central nervous system. For horses, it has been proposed and concluded mainly from rodent studies that different viruses, e.g., Borna disease virus, equine herpesvirus 1 (EHV-1), hendra virus, influenza virus, rabies virus, vesicular stomatitis virus can use this route. However, little is yet known about cytoarchitecture, protein expression and the intranasal location of the equine OE. Revealing differences in cytoarchitecture or protein expression pattern in comparison to rodents, canines, or humans might help to explain varying susceptibility to certain intranasal virus infections. On the other hand, disclosing similarities especially between rodents and other species, e.g., horses would help to underscore transferability of rodent models. Analysis of the complete noses of five adult horses revealed that in the equine OE two epithelial subtypes with distinct marker expression exist, designated as types a and b which resemble those previously described in dogs. Detailed statistical analysis was carried out to confirm the results obtained on the descriptive level. The equine OE was predominantly located in caudodorsal areas of the nasal turbinates with a significant decline in rostroventral direction, especially for type a . Immunohistochemically, olfactory marker protein and doublecortin (DCX) expression was found in more cells of OE type a , whereas expression of proliferating cell nuclear antigen and tropomyosin receptor kinase A was present in more cells of type b . Accordingly, type a resembles the mature epithelium, in contrast to the more juvenile type b . Protein expression profile was comparable to canine and rodent OE but equine types a and b were located differently within the nose

  20. Intranasal Location and Immunohistochemical Characterization of the Equine Olfactory Epithelium

    PubMed Central

    Kupke, Alexandra; Wenisch, Sabine; Failing, Klaus; Herden, Christiane

    2016-01-01

    The olfactory epithelium (OE) is the only body site where neurons contact directly the environment and are therefore exposed to a broad variation of substances and insults. It can serve as portal of entry for neurotropic viruses which spread via the olfactory pathway to the central nervous system. For horses, it has been proposed and concluded mainly from rodent studies that different viruses, e.g., Borna disease virus, equine herpesvirus 1 (EHV-1), hendra virus, influenza virus, rabies virus, vesicular stomatitis virus can use this route. However, little is yet known about cytoarchitecture, protein expression and the intranasal location of the equine OE. Revealing differences in cytoarchitecture or protein expression pattern in comparison to rodents, canines, or humans might help to explain varying susceptibility to certain intranasal virus infections. On the other hand, disclosing similarities especially between rodents and other species, e.g., horses would help to underscore transferability of rodent models. Analysis of the complete noses of five adult horses revealed that in the equine OE two epithelial subtypes with distinct marker expression exist, designated as types a and b which resemble those previously described in dogs. Detailed statistical analysis was carried out to confirm the results obtained on the descriptive level. The equine OE was predominantly located in caudodorsal areas of the nasal turbinates with a significant decline in rostroventral direction, especially for type a. Immunohistochemically, olfactory marker protein and doublecortin (DCX) expression was found in more cells of OE type a, whereas expression of proliferating cell nuclear antigen and tropomyosin receptor kinase A was present in more cells of type b. Accordingly, type a resembles the mature epithelium, in contrast to the more juvenile type b. Protein expression profile was comparable to canine and rodent OE but equine types a and b were located differently within the nose and

  1. Luteinizing hormone-releasing hormone (LHRH) in rat olfactory systems.

    PubMed

    Witkin, J W; Silverman, A J

    1983-08-20

    The luteinizing hormone-releasing hormone (LHRH) systems of rat olfactory bulbs and nasal areas were studied in neonatal and adult rats. Animals were perfused with Zamboni's fixative and olfactory bulbs with nasal olfactory areas intact were removed, postfixed, and decalcified. LHRH was immunohistochemically demonstrated in unembedded frozen or vibratome sections. Luteinizing hormone-releasing hormone immunoreactive elements were found along the course of the nervus terminalis (NT) and within both the main and accessory olfactory bulbs (MOB and AOB, respectively). Both LHRH neurons and fibers were present in the AOB, but only fibers were detected in the MOB. The fibers of the AOB were not confined to any particular lamina while fibers in the MOB were found mainly in the external plexiform layer. LHRH fibers were found in the mucosa of the olfactory epithelium of the vomeronasal organ in both neonatal and adult rats. The NT probably serves as a source of LHRH fibers for both the AOB and the MOB and for fibers observed in the olfactory epithelium of the vomeronasal organ. Other likely sources of LHRH fibers in the olfactory bulb are discussed.

  2. Fluctuating olfactory sensitivity and distorted odor perception in allergic rhinitis.

    PubMed

    Apter, A J; Gent, J F; Frank, M E

    1999-09-01

    To characterize the relationship between allergic rhinitis, the severity and duration of nasal disease, olfactory function, and self-reported olfactory symptoms, including fluctuations or distortions in odor perception. Assessment of olfactory function and symptoms of 90 patients with allergic rhinitis. A clinic of a university teaching hospital and research facility. Sixty patients who presented to the Taste and Smell Clinic who had positive allergy test results and 30 patients who presented to the Allergy-Immunology Clinic. The Taste and Smell Clinic patients were grouped by nasal-sinus disease status (30 without chronic rhinosinusitis or nasal polyps, 14 with chronic rhinosinusitis but without polyps, and 16 with nasal polyps). Subjective olfactory symptom questionnaire and objective olfactory function tests. The Allergy-Immunology Clinic patients were diagnosed as being normosmic and the Taste and Smell Clinic patients as being hyposmic or anosmic with olfactory loss that increased significantly with nasal-sinus disease severity. Comparisons with normative data confirm that olfactory scores observed in all groups were significantly lower than expected because of the aging process alone. The self-reported duration of olfactory loss increased significantly with nasal-sinus disease severity. The Taste and Smell Clinic patients without chronic rhinosinusitis or nasal polyps reported the greatest incidence of olfactory distortions and olfactory loss associated with upper respiratory tract infections. There appears to be a continuum of duration and severity of olfactory loss in allergic rhinitis that parallels increasing severity of nasal-sinus disease. As a result of the increased frequency of respiratory infection associated with allergic rhinitis, these patients are at risk for damage to the olfactory epithelium.

  3. Olfactory epithelium: Cells, clinical disorders, and insights from an adult stem cell niche

    PubMed Central

    Choi, Rhea

    2018-01-01

    Disorders causing a loss of the sense of smell remain a therapeutic challenge. Basic research has, however, greatly expanded our knowledge of the organization and function of the olfactory system. This review describes advances in our understanding of the cellular components of the peripheral olfactory system, specifically the olfactory epithelium in the nose. The article discusses recent findings regarding the mechanisms involved in regeneration and cellular renewal from basal stem cells in the adult olfactory epithelium, considering the strategies involved in embryonic olfactory development and insights from research on other stem cell niches. In the context of clinical conditions causing anosmia, the current view of adult olfactory neurogenesis, tissue homeostasis, and failures in these processes is considered, along with current and future treatment strategies. Level of Evidence NA PMID:29492466

  4. Satratoxin-G from the black mold Stachybotrys chartarum induces rhinitis and apoptosis of olfactory sensory neurons in the nasal airways of rhesus monkeys.

    PubMed

    Carey, Stephan A; Plopper, Charles G; Hyde, Dallas M; Islam, Zahidul; Pestka, James J; Harkema, Jack R

    2012-08-01

    Satratoxin-G (SG) is a trichothecene mycotoxin of Stachybotrys chartarum, the black mold suggested to contribute etiologically to illnesses associated with water-damaged buildings. We have reported that intranasal exposure to SG evokes apoptosis of olfactory sensory neurons (OSNs) and acute inflammation in the nose and brain of laboratory mice. To further assess the potential human risk of nasal airway injury and neurotoxicity, we developed a model of SG exposure in monkeys, whose nasal airways more closely resemble those of humans. Adult, male rhesus macaques received a single intranasal instillation of 20 µg SG (high dose, n = 3), or 5 µg SG daily for four days (repeated low dose, n = 3) in one nasal passage, and saline vehicle in the contralateral nasal passage. Nasal tissues were examined using light and electron microscopy and morphometric analysis. SG induced acute rhinitis, atrophy of the olfactory epithelium (OE), and apoptosis of OSNs in both groups. High-dose and repeated low-dose SG elicited a 13% and 66% reduction in OSN volume density, and a 14-fold and 24-fold increase in apoptotic cells of the OE, respectively. This model provides new insight into the potential risk of nasal airway injury and neurotoxicity caused by exposure to water-damaged buildings.

  5. NORMAL GENE EXPRESSION IN MALE F344 RAT NASAL TRANSITIONAL/RESPIRATORY EPITHELIUM

    EPA Science Inventory

    Abstract

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity in rodents. Gene expression profiles were determined in order to provide normal baseline data for nasal transitional/respiratory epithelium from healthy rats. Ce...

  6. Induction of heat shock protein 70 in rat olfactory epithelium by toxic chemicals: in vitro and in vivo studies.

    PubMed

    Simpson, S A; Alexander, D J; Reed, C J

    2005-04-01

    We have previously developed a rat nasal explant system for investigating upper respiratory tract toxicity, and the aims of this study were to determine whether heat shock protein (HSP) 70 is induced in this model following exposure to carbon tetrachloride (CCl4), dimethyl adipate (DMA), methyl iodide (CH3I) or paracetamol, and whether HSP70 can also be induced in the nasal cavity in vivo. Intracellular ATP was significantly depleted in ethmoturbinates incubated for 4 h with the toxins (0-100 mM; EC50 concentrations: CCl4 32 mM, DMA 3 mM, CH3I 1.5 mM, paracetamol 70 mM), but there was little induction of HSP70. Turbinates were then incubated for 1 h with CCl4 (5 mM), DMA (1.5 mM), CH3I (0.57 mM) or paracetamol (30 mM) and allowed to recover for up to 24 h. Treatment with CCl4, DMA or paracetamol resulted in 250-300% induction of HSP70. Male rats were administered a single oral dose of CCl4 (1600 mg/kg) and killed 16 h later. Degenerative lesions (epithelial undulation and hydropic vacuolation) were evident in the olfactory epithelium, and immunohistochemical analysis of HSP70 revealed increased staining in, or proximate to, areas of damage. Thus, HSP70 can be induced in the olfactory epithelium both in vitro and in vivo.

  7. Histological and Lectin Histochemical Studies on the Olfactory and Respiratory Mucosae of the Sheep

    PubMed Central

    IBRAHIM, Dalia; NAKAMUTA, Nobuaki; TANIGUCHI, Kazumi; YAMAMOTO, Yoshio; TANIGUCHI, Kazuyuki

    2013-01-01

    ABSTRACT The olfactory and respiratory mucosae of the Corriedale sheep were examined using lectin histochemistry in order to clarify the histochemical and glycohistochemical differences between these two tissues. The olfactory epithelium was stained with 13 lectins out of 21 lectins examined, while the respiratory epithelium was positive to 16 lectins. The free border of both of the olfactory and respiratory epithelia was stained with 12 lectins: Wheat germ agglutinin (WGA), succinylated-wheat germ agglutinin (s-WGA), Lycopersicon esculentum lectin (LEL), Solanum tuberosum lectin (STL), Datura stramonium lectin (DSL), Soybean agglutinin (SBA), Bandeiraea simplicifolia lectin-I (BSL-I), Ricinus communis agglutinin-I (RCA-120), Erythrina cristagalli lectin (ECL), Concanavalin A (Con A), Phaseolus vulgaris agglutinin-E (PHA-E) and Phaseolus vulgaris agglutinin-L (PHA-L). The associated glands of the olfactory mucosa, Bowman’s glands, were stained with 13 lectins. While both the goblet cells and mucous nasal glands were stained with 8 lectins; five of them (WGA, s-WGA, STL, Vicia villosa agglutinin (VVA) and ECL) were mutually positive among the Bowman’s glands, mucous nasal glands and the goblet cells. These findings indicate that the glycohistochemical characteristics of the free borders of both olfactory and respiratory epithelia are similar to each other, suggesting that secretions from the Bowman’s glands and those of the goblet cells and mucous nasal glands are partially exchanged between the surface of two epithelia to contribute the functions of the respiratory epithelium and the olfactory receptor cells, respectively. PMID:24200894

  8. Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival

    PubMed Central

    François, Adrien; Laziz, Iman; Rimbaud, Stéphanie; Grebert, Denise; Durieux, Didier; Pajot-Augy, Edith; Meunier, Nicolas

    2013-01-01

    The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants. PMID:24399931

  9. The olfactory gonadotropin-releasing hormone immunoreactive system in mouse.

    PubMed

    Jennes, L

    1986-10-29

    The olfactory gonadotropin-releasing hormone (GnRH) system in mice was studied with immunofluorescence in combination with lesions of the olfactory bulb and retrograde transport of horseradish peroxidase (HRP) which was administered intravascularly, intranasally or into the subarachnoid space. GnRH-positive neurons were located in the two major branches forming the septal roots of the nervus terminalis, in the ganglion terminale, within the fascicles of the nervus terminalis throughout its extent, in a conspicuous band which connects the ventral neck of the caudal olfactory bulb with the accessory olfactory bulb and in the nasal mucosa. GnRH-positive fibers were seen in all areas in which neurons were found, i.e. in the rostral septum, the ganglion and nervus terminalis and in the nasal subepithelium. In addition, a broad bundle of fibers was observed to surround the entire caudal olfactory bulb, connecting the rostral sulcus rhinalis with the ventrocaudal olfactory bulb. Fibers were seen in close association with the main and accessory olfactory bulb, with the fila olfactoria and with the nasal mucosa. Throughout the olfactory bulb and the nasal epithelium, an association of GnRH fibers with blood vessels was apparent. Intravascular and intranasal injection of HRP resulted in labeling of certain GnRH neurons in the septal roots of the nervus terminalis, the ganglion terminale, the nervus terminalis, the caudal ventrodorsal connection and in the accessory olfactory bulb. After placement of HRP into the subarachnoid space dorsal to the accessory olfactory bulb, about 50% of the GnRH neurons in the accessory olfactory bulb and in the ventrodorsal connection were labeled with HRP. Also, a few GnRH neurons in the rostral septum, the ganglion terminale and in the fascicles of the nervus terminalis had taken up the enzyme. Lesions of the nervus terminalis caudal to the ganglion terminale resulted in sprouting of GnRH fibers at both sites of the knife cut. Lesions rostral

  10. Spatial pattern of receptor expression in the olfactory epithelium.

    PubMed Central

    Nef, P; Hermans-Borgmeyer, I; Artières-Pin, H; Beasley, L; Dionne, V E; Heinemann, S F

    1992-01-01

    A PCR-based strategy for amplifying putative receptors involved in murine olfaction was employed to isolate a member (OR3) of the seven-transmembrane-domain receptor superfamily. During development, the first cells that express OR3 appear adjacent to the wall of the telencephalic vesicle at embryonic day 10. The OR3 receptor is uniquely expressed in a subset of olfactory cells that have a characteristic bilateral symmetry in the adult olfactory epithelium. This receptor and its specific pattern of expression may serve a functional role in odor coding or, alternatively, may play a role in the development of the olfactory system. Images PMID:1384038

  11. Reduced nasal transport of insulin-like growth factor-1 to the mouse cerebrum with olfactory bulb resection.

    PubMed

    Shiga, Hideaki; Nagaoka, Mikiya; Washiyama, Kohshin; Yamamoto, Junpei; Yamada, Kentaro; Noda, Takuya; Harita, Masayuki; Amano, Ryohei; Miwa, Takaki

    2014-09-01

    Although the olfactory nerve is involved in nasal transport of insulin-like growth factor-1 (IGF-1) to the brain, to our knowledge there have been no direct assessments of the effects of olfactory nerve damage on this transport. To determine whether olfactory bulb resection resulted in reduced transport of nasally administered human recombinant IGF-1 (hIGF-1) to the cerebrum, we measured the uptake of nasally administered iodine-125 hIGF-1 ((125)I-hIGF-1) in the cerebrum as a percentage of that in the blood in male ICR mice subjected to left olfactory bulb resection (model mice) and in sham-operated male ICR mice (control mice). Phosphorylated extracellular signal-regulated kinase (ERK) 1/2 (Thr202/Tyr204)/(Thr185/Tyr187) as a percentage of total ERK 1/2 in the left cerebrum was also assessed by using enzyme-linked immunosorbent assay after nasal administration of hIGF-1. Uptake of nasally administered (125)I-hIGF-1 in the cerebrum as a percentage of that in the blood was significantly lower in the model group than in the control group 30min after nasal administration of hIGF-1. Unilateral olfactory bulb resection prevented nasally administered hIGF-1 from increasing the phosphorylation of ERK 1/2 in the mouse cerebrum in vivo. These findings suggest that olfactory bulb damage reduces nasal transport of hIGF-1 to the brain in vivo. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Histological properties of the nasal cavity and olfactory bulb of the Japanese jungle crow Corvus macrorhynchos.

    PubMed

    Yokosuka, Makoto; Hagiwara, Akiko; Saito, Toru R; Tsukahara, Naoki; Aoyama, Masato; Wakabayashi, Yoshihiro; Sugita, Shoei; Ichikawa, Masumi

    2009-09-01

    The nasal cavity and olfactory bulb (OB) of the Japanese jungle crow (Corvus macrorhynchos) were studied using computed tomography (CT) and histochemical staining. The nasal septum divided the nasal cavity in half. The anterior and maxillary conchae were present on both sides of the nasal cavity, but the posterior concha was indistinct. A small OB was present on the ventral surface of the periphery of the cerebrum. The OB-brain ratio--the ratio of the size of the OB to that of the cerebral hemisphere--was 6.13. The olfactory nerve bundles projected independently to the OB, which appeared fused on gross examination. Histochemical analysis confirmed the fusion of all OB layers. Using a neural tracer, we found that the olfactory nerve bundles independently projected to the olfactory nerve layer (ONL) and glomerular layer (GL) of the left and right halves of the fused OB. Only 4 of 21 lectins bound to the ONL and GL. Thus, compared with mammals and other birds, the jungle crow may have a poorly developed olfactory system and an inferior sense of olfaction. However, it has been contended recently that the olfactory abilities of birds cannot be judged from anatomical findings alone. Our results indicate that the olfactory system of the jungle crow is an interesting research model to evaluate the development and functions of vertebrate olfactory systems.

  13. Morphological study on the olfactory systems of the snapping turtle, Chelydra serpentina.

    PubMed

    Nakamuta, Nobuaki; Nakamuta, Shoko; Kato, Hideaki; Yamamoto, Yoshio

    2016-06-01

    In this study, the olfactory system of a semi-aquatic turtle, the snapping turtle, has been morphologically investigated by electron microscopy, immunohistochemistry, and lectin histochemistry. The nasal cavity of snapping turtle was divided into the upper and lower chambers, lined by the sensory epithelium containing ciliated and non-ciliated olfactory receptor neurons, respectively. Each neuron expressed both Gαolf, the α-subunit of G-proteins coupling to the odorant receptors, and Gαo, the α-subunit of G-proteins coupling to the type 2 vomeronasal receptors. The axons originating from the upper chamber epithelium projected to the ventral part of the olfactory bulb, while those from the lower chamber epithelium to the dorsal part of the olfactory bulb. Despite the identical expression of G-protein α-subunits in the olfactory receptor neurons, these two projections were clearly distinguished from each other by the differential expression of glycoconjugates. In conclusion, these data indicate the presence of two types of olfactory systems in the snapping turtle. Topographic arrangement of the upper and lower chambers and lack of the associated glands in the lower chamber epithelium suggest their possible involvement in the detection of odorants: upper chamber epithelium in the air and the lower chamber epithelium in the water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Investigation of initial changes in the mouse olfactory epithelium following a single intravenous injection of vincristine sulphate.

    PubMed

    Kai, Kiyonori; Yoshida, Mitsuyoshi; Sugawara, Tadaki; Kato, Michiyuki; Uchida, Kazuyuki; Yamaguchi, Ryoji; Tateyama, Susumu; Furuhuma, Kazushisa

    2005-01-01

    To investigate initial changes in the olfactory epithelium, vincristine sulphate (VCR) was administered intravenously once to male BALB/c mice on day 1 in comparison with unilateral bulbectomy (UBT). The light and electron microscopy of the olfactory epithelium, nerve and/or bulb with BrdU-morphometry was performed sequentially. Further, whole-body radioluminography was conducted at 1 and 24 hours postdose. Apoptosis and an increased number of mitotic cells with a tendency toward decreasing BrdU-positive olfactory epithelial cell counts were observed in olfactory epithelial cells at 6 hours postdose of VCR and became more pronounced at 24 hours postdose. These changes disappeared on days 4 or 15, but minimal axonal degeneration was seen in the olfactory nerve from day 4 onward. Semiquantitative measurement of VCR levels in the ethmoturbinals elicited high drug retention even 24 hours after administration. In contrast, UBT showed no effect on mitosis and BrdU-positive cell counts at 6 hours postdose, but severe lesions in the olfactory epithelium and nerve were seen on days 2, 4, and/or 15. The above results suggest that the initial event of VCR-induced apoptosis in the mouse olfactory epithelium would be mitotic arrest with high drug retention, unlike that evoked by UBT.

  15. CT assessment of woodworkers' nasal adenocarcinomas confirms the origin in the olfactory cleft.

    PubMed

    Georgel, T; Jankowski, R; Henrot, P; Baumann, C; Kacha, S; Grignon, B; Toussaint, B; Graff, P; Kaminsky, M C; Geoffrois, L; Vignaud, J M

    2009-08-01

    Endoscopic endonasal surgery let us observe that woodworkers' nasal adenocarcinomas originate in the olfactory cleft. Our aim was the identification of CT imaging features that corroborate the olfactory cleft as the site of origin for woodworkers' adenocarcinoma. We designed a retrospective study to compare CT scans of 27 unilateral olfactory cleft adenocarcinomas with 30 cases of nasosinusal polyposis (NSP) and 33 healthy sinus controls. Enlargement of the olfactory cleft, lateralization of the ethmoidal turbinate wall, and contralateral bulging of the nasal septum were measured on coronal scans passing through crista galli and posterior half of both ocular globes. Comparisons have been performed by using analysis of variance and the Bonferroni procedure. The nasal septum was significantly bulging across the midline in adenocarcinoma (4.6 +/- 3 mm; range, -0.1-13.7 mm) compared with NSP (0.7 +/- 1 mm; range, -2.1-2.3 mm) or healthy sinus controls (0.5 +/- 1 mm; range, -1.2-2 mm) (P < .001). The olfactory cleft was significantly wider in adenocarcinoma (15.1 +/- 4.5 mm; range, 8.6-25.7 mm) than in NSP (3.6 +/- 0.4 mm; range, 2.8-4.6 mm) or healthy sinus controls (3.3 +/- 0.7 mm; range, 1.4-4.6 mm). The ethmoidal labyrinth width was significantly smaller on the pathologic side in adenocarcinoma (7.2 +/- 2.7 mm; range, 3.2-14.2 mm) than in the control groups (P < .001). Whereas the angle between the conchal lamina and vertical midline was close to zero degrees in NSP (0.03 +/- 2.25 degrees ; range, -5 degrees -3 degrees ) and healthy sinus controls (0.45 +/- 2.13 degrees , range, -5 degrees -5 degrees ), it reached 39.76 +/- 13.83 degrees (P < .001) in adenocarcinoma. Radiologists should suspect nasal adenocarcinoma on sinus CT scans showing a unilateral expanding opacity of the olfactory cavity.

  16. STUDIES OF NORMAL GENE EXPRESSION IN THE RAT NASAL EPITHELIUM USNG CDNA ARRAY TECHNOLOGY

    EPA Science Inventory


    Studies of Normal Gene Expression in the Rat Nasal Epithelium Using cDNA Array

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity .Gene expression data are being used increasingly for studies of such conditions. In or...

  17. Olfactory deposition of inhaled nanoparticles in humans

    PubMed Central

    Garcia, Guilherme J. M.; Schroeter, Jeffry D.; Kimbell, Julia S.

    2016-01-01

    Context Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Objectives This manuscript aims to (1) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (2) compare the olfactory dose in humans with our earlier dose estimates for rats. Materials and methods An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1–100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. Results In humans, olfactory dose of inhaled nanoparticles is highest for 1–2 nm particles with approximately 1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Discussion and conclusion Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans due to their larger minute volume. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles. PMID:26194036

  18. Morphological and electrophysiological examination of olfactory sensory neurons during the early developmental prolarval stage of the sea lamprey Petromyzon marinus L

    USGS Publications Warehouse

    Zielinski, B.S.; Fredricks, Keith; McDonald, R.; Zaidi, A.U.

    2005-01-01

    This study examined olfactory sensory neuron morphology and physiological responsiveness in newly hatched sea lamprey, Petromyzon marinus L. These prolarvae hatch shortly after neural tube formation, and stay within nests for approximately 18 days, before moving downstream to silty areas where they burrow, feed and pass to the larval stage. To explore the possibility that the olfactory system is functioning during this prolarval stage, morphological and physiological development of olfactory sensory neurons was examined. The nasal cavity contained an olfactory epithelium with ciliated olfactory sensory neurons. Axons formed aggregates in the basal portion of the olfactory epithelium and spanned the narrow distance between the olfactory epithelium and the brain. The presence of asymmetric synapses with agranular vesicles within fibers in the brain, adjacent to the olfactory epithelium suggests that there was synaptic connectivity between olfactory sensory axons and the brain. Neural recordings from the surface of the olfactory epithelium showed responses following the application of L-arginine, taurocholic acid, petromyzonol sulfate (a lamprey migratory pheromone), and water conditioned by conspecifics. These results suggest that lampreys may respond to olfactory sensory input during the prolarval stage. ?? 2006 Springer Science + Business Media, LLC.

  19. Cellular organisation and functions of the olfactory epithelium of pearl spot Etroplus suratensis (Bloch): a light and scanning electron microscopic study.

    PubMed

    Ghosh, S K; Chakrabarti, P

    2010-08-01

    The cellular organisation of the olfactory rosettes of Etroplus suratensis was studied by light and scanning electron microscopy. The oval shaped olfactory rosette of the fish consists of 12 lamellae radiating from a central raphe. The olfactory lamellae are comprised of restricted areas of sensory epithelium and broad areas of non-sensory epithelium in the apical, middle, and basal regions. The sensory epithelium contains three types of receptor cells: microvillus, ciliated, and rod cells, as well as labyrinth cells and supporting cells. The non-sensory epithelium consists of stratified epithelial and mucous cells. The transitional region between the sensory and non-sensory epithelium consists of ciliated receptor cells, mucous cells, and stratified epithelial cells. The different cells on the olfactory epithelium were discussed regarding the functional significance of the fish concerned.

  20. Olfactory Nerve—A Novel Invasion Route of Neisseria meningitidis to Reach the Meninges

    PubMed Central

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-01-01

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival. PMID:21124975

  1. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.

    PubMed

    Sjölinder, Hong; Jonsson, Ann-Beth

    2010-11-18

    Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.

  2. Terminal-Nerve-Derived Neuropeptide Y Modulates Physiological Responses in the Olfactory Epithelium of Hungry Axolotls (Ambystoma mexicanum)

    PubMed Central

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J.; Eisthen, Heather L.

    2007-01-01

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances. PMID:16855098

  3. Terminal nerve-derived neuropeptide y modulates physiological responses in the olfactory epithelium of hungry axolotls (Ambystoma mexicanum).

    PubMed

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J; Eisthen, Heather L

    2006-07-19

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by l-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.

  4. Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group.

    PubMed

    Jungblut, Lucas David; Reiss, John O; Paz, Dante A; Pozzi, Andrea G

    2017-09-01

    The anuran peripheral olfactory system is composed of a number of subsystems, represented by distinct neuroepithelia. These include the main olfactory epithelium and vomeronasal organ (found in most tetrapods) and three specialized epithelia of anurans: the buccal-exposed olfactory epithelium of larvae, and the olfactory recess and middle chamber epithelium of postmetamorphic animals. To better characterize the developmental changes in these subsystems across the life cycle, morphometric changes of the nasal chemosensory organs during larval development and metamorphosis were analyzed in three different anuran species (Rhinella arenarum, Hypsiboas pulchellus, and Xenopus laevis). We calculated the volume of the nasal chemosensory organs by measuring the neuroepithelial area from serial histological sections at four different stages. In larvae, the vomeronasal organ was relatively reduced in R. arenarum compared with the other two species; the buccal-exposed olfactory epithelium was absent in X. laevis, and best developed in H. pulchellus. In postmetamorphic animals, the olfactory epithelium (air-sensitive organ) was relatively bigger in terrestrial species (R. arenarum and H. pulchellus), whereas the vomeronasal and the middle chamber epithelia (water-sensitive organs) was best developed in X. laevis. A small olfactory recess (likely homologous with the middle chamber epithelium) was found in R. arenarum juveniles, but not in H. pulchellus. These results support the association of the vomeronasal and middle chamber epithelia with aquatic olfaction, as seen by their enhanced development in the secondarily aquatic juveniles of X. laevis. They also support a role for the larval buccal-exposed olfactory epithelium in assessment of oral contents: it was absent in X. laevis, an obligate suspension feeder, while present in the two grazing species. These initial quantitative results give, for the first time, insight into the functional importance of the peripheral

  5. Comparative morphology and histology of the nasal fossa in four mammals: gray squirrel, bobcat, coyote and white-tailed deer

    PubMed Central

    Yee, Karen K.; Craven, Brent A.; Wysocki, Charles J.; Van Valkenburgh, Blaire

    2016-01-01

    Although the anatomy of the nasal fossa is broadly similar among terrestrial mammals, differences are evident in the intricacies of nasal turbinal architecture, which varies from simple scroll-like to complex branching forms, and in the extent of nonsensory and olfactory epithelium covering the turbinals. In this study, detailed morphological and immunohistochemical examinations and quantitative measurements of the turbinals and epithelial lining of the nasal fossa were conducted in an array of species that include the gray squirrel, bobcat, coyote, and white-tailed deer. Results show that much more of the nose is lined with olfactory epithelium in the smallest species (gray squirrel) than in the larger species. In two species with similar body masses, bobcat and coyote, the foreshortened felid snout influences turbinal size and results in a decrease of olfactory epithelium on the ethmoturbinals relative to the longer canine snout. Ethmoturbinal surface area exceeds that of the maxilloturbinals in all four sampled animals, except the white-tailed deer, in which the two are similar in size. Combining our results with published data from a broader array of mammalian noses, it is apparent that olfactory epithelial surface area is influenced by body mass, but is also affected by aspects of life history, such as diet and habitat, as well as skull morphology, itself a product of multiple compromises between various functions, such as feeding, vision, and cognition. The results of this study warrant further examination of other mammalian noses to broaden our evolutionary understanding of nasal fossa anatomy. PMID:27090617

  6. Adiponectin Enhances the Responsiveness of the Olfactory System

    PubMed Central

    Loch, Diana; Heidel, Christian; Breer, Heinz; Strotmann, Jörg

    2013-01-01

    The peptide hormone adiponectin is secreted by adipose tissue and the circulating concentration is reversely correlated with body fat mass; it is considered as starvation signal. The observation that mature sensory neurons of the main olfactory epithelium express the adiponectin receptor 1 has led to the concept that adiponectin may affect the responsiveness of the olfactory system. In fact, electroolfactogram recordings from olfactory epithelium incubated with exogenous adiponectin resulted in large amplitudes upon odor stimulation. To determine whether the responsiveness of the olfactory sensory neurons was enhanced, we have monitored the odorant-induced expression of the immediate early gene Egr1. It was found that in an olfactory epithelium incubated with nasally applied adiponectin the number of Egr1 positive cells was significantly higher compared to controls, suggesting that adiponectin rendered the olfactory neurons more responsive to an odorant stimulus. To analyze whether the augmented responsiveness of sensory neurons was strong enough to elicit a higher neuronal activity in the olfactory bulb, the number of activated periglomerular cells of a distinct glomerulus was determined by monitoring the stimulus-induced expression of c-fos. The studies were performed using the transgenic mOR256-17-IRES-tauGFP mice which allowed to visualize the corresponding glomerulus and to stimulate with a known ligand. The data indicate that upon exposure to 2,3-hexanedione in adiponectin-treated mice the number of activated periglomerular neurons was significantly increased compared to controls. The results of this study indicate that adiponectin increases the responsiveness of the olfactory system, probably due to a higher responsiveness of olfactory sensory neurons. PMID:24130737

  7. Nervus terminalis, olfactory nerve, and optic nerve representation of luteinizing hormone-releasing hormone in primates.

    PubMed

    Witkin, J W

    1987-01-01

    The luteinizing hormone-releasing hormone (LHRH) system was examined immunocytochemically in olfactory bulbs of adult monkeys, including two New World species (squirrel monkey, Saimiri sciureus and owl monkey, Aotus trivirgatus) and one Old World species (cynomolgus macaque, Macaca fasciculata), and in the brain and nasal region of a fetal rhesus macaque Macaca mulatta. LHRH neurons and fibers were found sparsely distributed in the olfactory bulbs in all adult monkeys. There was more LHRH in the accessory olfactory bulb (which is absent in Old World monkeys). In the fetal macaque there was a rich distribution of LHRH neurons and fibers along the pathway of the nervus terminalis, anterior and ventral to the olfactory bulb, and in the nasal septum, with fibers branching into the olfactory epithelium. In addition, there were LHRH neurons and fibers in the optic nerve.

  8. Normal Anatomy, Histology, and Spontaneous Pathology of the Nasal Cavity of the Cynomolgus Monkey (Macaca fascicularis).

    PubMed

    Chamanza, Ronnie; Taylor, Ian; Gregori, Michela; Hill, Colin; Swan, Mark; Goodchild, Joel; Goodchild, Kane; Schofield, Jane; Aldous, Mark; Mowat, Vasanthi

    2016-07-01

    The evaluation of inhalation studies in monkeys is often hampered by the scarcity of published information on the relevant nasal anatomy and pathology. We examined nasal cavities of 114 control cynomolgus monkeys from 11 inhalation studies evaluated 2008 to 2013, in order to characterize and document the anatomic features and spontaneous pathology. Compared to other laboratory animals, the cynomolgus monkey has a relatively simple nose with 2 unbranched, dorsoventrally stacked turbinates, large maxillary sinuses, and a nasal septum that continues into the nasopharynx. The vomeronasal organ is absent, but nasopalatine ducts are present. Microscopically, the nasal epithelium is thicker than that in rodents, and the respiratory (RE) and transitional epithelium (TE) rest on a thick basal lamina. Generally, squamous epithelia and TE line the vestibule, RE, the main chamber and nasopharynx, olfactory epithelium, a small caudodorsal region, while TE is observed intermittently along the passages. Relatively high incidences of spontaneous pathology findings, some resembling induced lesions, were observed and included inflammation, luminal exudate, scabs, squamous and respiratory metaplasia or hyperplasia, mucous cell hyperplasia/metaplasia, and olfactory degeneration. Regions of epithelial transition were the most affected. This information is considered helpful in the histopathology evaluation and interpretation of inhalation studies in monkeys. © The Author(s) 2016.

  9. Comparative Morphology and Histology of the Nasal Fossa in Four Mammals: Gray Squirrel, Bobcat, Coyote, and White-Tailed Deer.

    PubMed

    Yee, Karen K; Craven, Brent A; Wysocki, Charles J; Van Valkenburgh, Blaire

    2016-07-01

    Although the anatomy of the nasal fossa is broadly similar among terrestrial mammals, differences are evident in the intricacies of nasal turbinal architecture, which varies from simple scroll-like to complex branching forms, and in the extent of nonsensory and olfactory epithelium covering the turbinals. In this study, detailed morphological and immunohistochemical examinations and quantitative measurements of the turbinals and epithelial lining of the nasal fossa were conducted in an array of species that include the gray squirrel, bobcat, coyote, and white-tailed deer. Results show that much more of the nose is lined with olfactory epithelium in the smallest species (gray squirrel) than in the larger species. In two species with similar body masses, bobcat and coyote, the foreshortened felid snout influences turbinal size and results in a decrease of olfactory epithelium on the ethmoturbinals relative to the longer canine snout. Ethmoturbinal surface area exceeds that of the maxilloturbinals in all four sampled animals, except the white-tailed deer, in which the two are similar in size. Combining our results with published data from a broader array of mammalian noses, it is apparent that olfactory epithelial surface area is influenced by body mass, but is also affected by aspects of life history, such as diet and habitat, as well as skull morphology, itself a product of multiple compromises between various functions, such as feeding, vision, and cognition. The results of this study warrant further examination of other mammalian noses to broaden our evolutionary understanding of nasal fossa anatomy. Anat Rec, 299:840-852, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Ascl1 (Mash1) Knockout Perturbs Differentiation of Nonneuronal Cells in Olfactory Epithelium

    PubMed Central

    Jang, Woochan; Wildner, Hendrik; Schwob, James E.

    2012-01-01

    The embryonic olfactory epithelium (OE) generates only a very few olfactory sensory neurons when the basic helix-loop-helix transcription factor, ASCL1 (previously known as MASH1) is eliminated by gene mutation. We have closely examined the structure and composition of the OE of knockout mice and found that the absence of neurons dramatically affects the differentiation of multiple other epithelial cell types as well. The most prominent effect is observed within the two known populations of stem and progenitor cells of the epithelium. The emergence of horizontal basal cells, a multipotent progenitor population in the adult epithelium, is anomalous in the Ascl1 knockout mice. The differentiation of globose basal cells, another multipotent progenitor population in the adult OE, is also aberrant. All of the persisting globose basal cells are marked by SOX2 expression, suggesting a prominent role for SOX2 in progenitors upstream of Ascl1. However, NOTCH1-expressing basal cells are absent from the knockout; since NOTCH1 signaling normally acts to suppress Ascl1 via HES1 and drives sustentacular (Sus) cell differentiation during adult epithelial regeneration, its absence suggests reciprocity between neurogenesis and the differentiation of Sus cells. Indeed, the Sus cells of the mutant mice express a markedly lower level of HES1, strengthening that notion of reciprocity. Duct/gland development appears normal. Finally, the expression of cKIT by basal cells is also undetectable, except in those small patches where neurogenesis escapes the effects of Ascl1 knockout and neurons are born. Thus, persistent neurogenic failure distorts the differentiation of multiple other cell types in the olfactory epithelium. PMID:23284756

  11. High Fructose Diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice

    PubMed Central

    Rivière, Sébastien; Soubeyre, Vanessa; Jarriault, David; Molinas, Adrien; Léger-Charnay, Elise; Desmoulins, Lucie; Grebert, Denise; Meunier, Nicolas; Grosmaitre, Xavier

    2016-01-01

    Type 2 Diabetes (T2D), a major public health issue reaching worldwide epidemic, has been correlated with lower olfactory abilities in humans. As olfaction represents a major component of feeding behavior, its alteration may have drastic consequences on feeding behaviors that may in turn aggravates T2D. In order to decipher the impact of T2D on the olfactory epithelium, we fed mice with a high fructose diet (HFruD) inducing early diabetic state in 4 to 8 weeks. After only 4 weeks of this diet, mice exhibited a dramatic decrease in olfactory behavioral capacities. Consistently, this decline in olfactory behavior was correlated to decreased electrophysiological responses of olfactory neurons recorded as a population and individually. Our results demonstrate that, in rodents, olfaction is modified by HFruD-induced diabetes. Functional, anatomical and behavioral changes occurred in the olfactory system at a very early stage of the disease. PMID:27659313

  12. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia

    PubMed Central

    Craven, Brent A.; Paterson, Eric G.; Settles, Gary S.

    2010-01-01

    The canine nasal cavity contains hundreds of millions of sensory neurons, located in the olfactory epithelium that lines convoluted nasal turbinates recessed in the rear of the nose. Traditional explanations for canine olfactory acuity, which include large sensory organ size and receptor gene repertoire, overlook the fluid dynamics of odorant transport during sniffing. But odorant transport to the sensory part of the nose is the first critical step in olfaction. Here we report new experimental data on canine sniffing and demonstrate allometric scaling of sniff frequency, inspiratory airflow rate and tidal volume with body mass. Next, a computational fluid dynamics simulation of airflow in an anatomically accurate three-dimensional model of the canine nasal cavity, reconstructed from high-resolution magnetic resonance imaging scans, reveals that, during sniffing, spatially separate odour samples are acquired by each nostril that may be used for bilateral stimulus intensity comparison and odour source localization. Inside the nose, the computation shows that a unique nasal airflow pattern develops during sniffing, which is optimized for odorant transport to the olfactory part of the nose. These results contrast sharply with nasal airflow in the human. We propose that mammalian olfactory function and acuity may largely depend on odorant transport by nasal airflow patterns resulting from either the presence of a highly developed olfactory recess (in macrosmats such as the canine) or the lack of one (in microsmats including humans). PMID:20007171

  13. Neurotoxic, inflammatory, and mucosecretory responses in the nasal airways of mice repeatedly exposed to the macrocyclic trichothecene mycotoxin roridin A: dose-response and persistence of injury.

    PubMed

    Corps, Kara N; Islam, Zahidul; Pestka, James J; Harkema, Jack R

    2010-04-01

    Macrocyclic trichothecene mycotoxins encountered in water-damaged buildings have been suggested to contribute to illnesses of the upper respiratory tract. Here, the authors characterized the adverse effects of repeated exposures to roridin A (RA), a representative macrocyclic trichothecene, on the nasal airways of mice and assessed the persistence of these effects. Young, adult, female C57BL/6 mice were exposed to single daily, intranasal, instillations of RA (0.4, 2, 10, or 50 microg/kg body weight [bw]) in saline (50 microl) or saline alone (controls) over 3 weeks or 250 microg/kg RA over 2 weeks. Histopathologic, immunohistochemical, and morphometric analyses of nasal airways conducted 24 hr after the last instillation revealed that the lowest-effect level was 10 microg/kg bw. RA exposure induced a dose-dependent, neutrophilic rhinitis with mucus hypersecretion, atrophy and exfoliation of nasal transitional and respiratory epithelium, olfactory epithelial atrophy and loss of olfactory sensory neurons (OSNs). In a second study, the persistence of lesions in mice instilled with 250 microg/kg bw RA was assessed. Nasal inflammation and excess luminal mucus were resolved after 3 weeks, but OSN loss was still evident in olfactory epithelium (OE). These results suggest that nasal inflammation, mucus hypersecretion, and olfactory neurotoxicity could be important adverse health effects associated with short-term, repeated, airborne exposures to macrocyclic trichothecenes.

  14. Demonstration of carboxylesterase in cytology samples of human nasal respiratory epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, D.A.; Nikula, K.J.; Avila, K.

    1995-12-01

    The epithelial lining of the nasal airways is a target for responses induced by a variety of toxicant exposures. The high metabolic capacity of this tissue has been suggested to play a role in both protection of the airways through detoxication of certain toxicants, as well as in activation of other compounds to more toxic metabolites. Specifically, nasal carboxylesterase (CE) has been shown to mediate the toxicity of inhaled esters and acrylates by converting them to more toxic acid and alcohol metabolites which can be cytotoxic and/or carcinogenic to the nasal mucosa. Due to difficulties in extrapolating rodent models tomore » human, new paradigms using human cells and tissues are essential to understanding and evaluating the metabolic processes in human nasal epithelium.« less

  15. In vivo effects of endotoxin on DNA synthesis in rat nasal epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkema, J.R.; Hotchkiss, J.A.

    Airway inflammation in bacterial infections is characterized by the presence of neutrophils and often epithelial injury and repair. Release of endotoxin from bacteria may contribute to these processes. The purpose of this study was to determine the in vivo effects of repeated endotoxin exposure on DNA synthesis in rat nasal epithelium in the presence and absence of neutrophilic influx. Rats were intranasally instilled, once a day for 3 days, with endotoxin or saline (controls). Before the first and third instillations, half of the saline and endotoxin-instilled animals were depleted of circulating blood neutrophils by administering a rabbit anti-rat neutrophil antiserum.more » Rats were sacrificed 6 or 24 h after the last instillation. Two hours prior to sacrifice, rats were intraperitoneally injected with bromodeoxyuridine (BrdU), an analog of thymidine that is incorporated in the nucleus of cells in the S-phase of the cell cycle. Nasal tissues were processed for light microscopy and immunohistochemical detection of BrdU in nasal epithelial cells. The numbers of nasal epithelial cells, BrdU-labeled epithelial nuclei, and neutrophils per millimeter of basal lamina in the epithelium lining the nasal turbinates in the proximal nasal passages were determined by morphometric analysis. The authors did not observe a neutrophilic influx in the nasal tissues of neutrophil-depleted rats at 6 or 24 h after the last endotoxin instillation; however, the numbers of nasal epithelial cells and the BrdU-labeling index were significantly increased compared to saline-instilled controls. In contrast, non-neutrophil-depleted rats instilled with endotoxin had a marked neutrophilic influx, but no significant differences in the number of nasal epithelial cells at 6 or 24 h, compared to controls. In addition, the BrdU-labeling index in neutrophil-sufficient rats was increased only 6 h after the last instillation, compared to controls.« less

  16. Treatment of neural anosmia by topical application of basic fibroblast growth factor-gelatin hydrogel in the nasal cavity: an experimental study in mice.

    PubMed

    Nota, Jumpei; Takahashi, Hirotaka; Hakuba, Nobuhiro; Hato, Naohito; Gyo, Kiyofumi

    2013-04-01

    A new treatment of neural anosmia. To investigate the effects of basic fibroblast growth factor (bFGF)-gelatin hydrogel on recovery of neural anosmia in mice. Anosmia was induced by intraperitoneal injection of 3-methylindole, 200 mg/kg. One week later, the animals underwent 1 of the following 3 procedures bilaterally: (1) group A: single-shot intranasal drip infusion of phosphate-buffered saline, (2) group B: single-shot intranasal drip infusion of bFGF, and (3) group C: placement of bFGF-gelatin hydrogel in the nasal cavity. The olfactory function of the animal was evaluated by the odor-detection test (ODT) 2 and 4 weeks later. Following the testing, the animal was killed, the thickness of the olfactory epithelium was measured, and the number of olfactory marker protein (OMP)-positive cells was counted. Research installation. Mice. The placement of bFGF-gelatin hydrogel in the nasal cavity. An ODT, thickness of olfactory epithelium, the number of OMP-positive cells The ODT proved that neural anosmia recovered in group C but not in groups A and B. Histologically, olfactory epithelium became thicker and the number of OMP-positive cells increased in group C, while such functional and histologic recovery was poor in groups A and B. These findings suggested that placement of bFGF-gelatin hydrogel in the nasal cavity was an efficient way to facilitate recovery of neural anosmia. As a gelatin hydrogel degrades slowly in the body, bFGF is gradually released around the site of the lesion; thus, it constantly exerts its effects on neural regeneration.

  17. FORMALDEHYDE-INDUCED GENE EXPRESSION IN F344 RAT NASAL RESPIRATORY EPITHELIUM.

    EPA Science Inventory

    Formaldehyde-induced gene expression in F344 rat nasal respiratory epithelium

    ABSTRACT

    Formaldehyde, an occupational and environmental toxicant used extensively in the manufacturing of many household and personal use products, is known to induce squamous cell carci...

  18. A Computational Study of the Hydrodynamics in the Nasal Region of a Hammerhead Shark (Sphyrna tudes): Implications for Olfaction

    PubMed Central

    Rygg, Alex D.; Cox, Jonathan P. L.; Abel, Richard; Webb, Andrew G.; Smith, Nadine B.; Craven, Brent A.

    2013-01-01

    The hammerhead shark possesses a unique head morphology that is thought to facilitate enhanced olfactory performance. The olfactory chambers, located at the distal ends of the cephalofoil, contain numerous lamellae that increase the surface area for olfaction. Functionally, for the shark to detect chemical stimuli, water-borne odors must reach the olfactory sensory epithelium that lines these lamellae. Thus, odorant transport from the aquatic environment to the sensory epithelium is the first critical step in olfaction. Here we investigate the hydrodynamics of olfaction in Sphyrna tudes based on an anatomically-accurate reconstruction of the head and olfactory chamber from high-resolution micro-CT and MRI scans of a cadaver specimen. Computational fluid dynamics simulations of water flow in the reconstructed model reveal the external and internal hydrodynamics of olfaction during swimming. Computed external flow patterns elucidate the occurrence of flow phenomena that result in high and low pressures at the incurrent and excurrent nostrils, respectively, which induces flow through the olfactory chamber. The major (prenarial) nasal groove along the cephalofoil is shown to facilitate sampling of a large spatial extent (i.e., an extended hydrodynamic “reach”) by directing oncoming flow towards the incurrent nostril. Further, both the major and minor nasal grooves redirect some flow away from the incurrent nostril, thereby limiting the amount of fluid that enters the olfactory chamber. Internal hydrodynamic flow patterns are also revealed, where we show that flow rates within the sensory channels between olfactory lamellae are passively regulated by the apical gap, which functions as a partial bypass for flow in the olfactory chamber. Consequently, the hammerhead shark appears to utilize external (major and minor nasal grooves) and internal (apical gap) flow regulation mechanisms to limit water flow between the olfactory lamellae, thus protecting these delicate

  19. Expression and distribution of the intermediate filament protein nestin and other stem cell related molecules in the human olfactory epithelium.

    PubMed

    Minovi, Amir; Witt, Martin; Prescher, Andreas; Gudziol, Volker; Dazert, Stefan; Hatt, Hanns; Benecke, Heike

    2010-02-01

    The olfactory epithelium (OE) is unique in regenerating throughout life and thus is an attractive target for examining neurogenesis. The nestin protein was shown to be expressed in the OE of rodents and is suggested to be essentially involved in the process of regeneration. Here we report the expression and distribution of nestin in the human OE at RNA and protein level. Moreover, we analysed the expression profiles in dependence on age and olfactory capacity. After sinus surgery, biopsies were taken from the olfactory epithelium of 16 patients aged 20-80 years with documented differences in their olfactory function. Our studies revealed that nestin is constantly detectable in the apical protuberances of sustentacular cells within the human OE of healthy adults. Its expression is not dependent on age, but rather appears to be related to the olfactory function, as a comparison with specimens obtained from patients suffering either from persistent anosmia or hyposmia suggests. Particularly, in the course of dystrophy, often accompanied with impaired olfaction, nestin expression was occasionally decreased. Contrarily, the expression of the p75-NGFR protein, a marker for human OE basal cells, was not altered, indicating that at least in the tested samples olfactory impairment is not connected with abnormalities at the basal cell level. These observations emphasize an essential role of nestin for the process of regeneration, and also highlight this factor as a candidate marker for sustentacular cells in the human olfactory epithelium.

  20. Global Expression Profiling of Globose Basal Cells and Neurogenic Progression Within the Olfactory Epithelium

    PubMed Central

    Krolewski, Richard C.; Packard, Adam; Schwob, James E.

    2013-01-01

    Ongoing, lifelong neurogenesis maintains the neuronal population of the olfactory epithelium in the face of piecemeal neuronal turnover and restores it following wholesale loss. The molecular phenotypes corresponding to different stages along the progression from multipotent globose basal cell (GBC) progenitor to differentiated olfactory sensory neuron are poorly characterized. We used the transgenic expression of enhanced green fluorescent protein (eGFP) and cell surface markers to FACS-isolate ΔSox2-eGFP(+) GBCs, Neurog1-eGFP(+) GBCs and immature neurons, and ΔOMP-eGFP(+) mature neurons from normal adult mice. In addition, the latter two populations were also collected 3 weeks after olfactory bulb ablation, a lesion that results in persistently elevated neurogenesis. Global profiling of mRNA from the populations indicates that all stages of neurogenesis share a cohort of >2,100 genes that are upregulated compared to sustentacular cells. A further cohort of >1,200 genes are specifically upregulated in GBCs as compared to sustentacular cells and differentiated neurons. The increased rate of neurogenesis caused by olfactory bulbectomy had little effect on the transcriptional profile of the Neurog1-eGFP(+) population. In contrast, the abbreviated lifespan of ΔOMP-eGFP(+) neurons born in the absence of the bulb correlated with substantial differences in gene expression as compared to the mature neurons of the normal epithelium. Detailed examination of the specific genes upregulated in the different progenitor populations revealed that the chromatin modifying complex proteins LSD1 and coREST were expressed sequentially in upstream ΔSox2-eGFP(+) GBCs and Neurog1-eGFP(+) GBCs/immature neurons. The expression patterns of these proteins are dynamically regulated after activation of the epithelium by methyl bromide lesion. PMID:22847514

  1. Nasal aerodynamics protects brain and lung from inhaled dust in subterranean diggers, Ellobius talpinus

    PubMed Central

    Moshkin, M. P.; Petrovski, D. V.; Akulov, A. E.; Romashchenko, A. V.; Gerlinskaya, L. A.; Ganimedov, V. L.; Muchnaya, M. I.; Sadovsky, A. S.; Koptyug, I. V.; Savelov, A. A.; Troitsky, S. Yu; Moshkn, Y. M.; Bukhtiyarov, V. I.; Kolchanov, N. A.; Sagdeev, R. Z.; Fomin, V. M.

    2014-01-01

    Inhalation of air-dispersed sub-micrometre and nano-sized particles presents a risk factor for animal and human health. Here, we show that nasal aerodynamics plays a pivotal role in the protection of the subterranean mole vole Ellobius talpinus from an increased exposure to nano-aerosols. Quantitative simulation of particle flow has shown that their deposition on the total surface of the nasal cavity is higher in the mole vole than in a terrestrial rodent Mus musculus (mouse), but lower on the olfactory epithelium. In agreement with simulation results, we found a reduced accumulation of manganese in olfactory bulbs of mole voles in comparison with mice after the inhalation of nano-sized MnCl2 aerosols. We ruled out the possibility that this reduction is owing to a lower transportation from epithelium to brain in the mole vole as intranasal instillations of MnCl2 solution and hydrated nanoparticles of manganese oxide MnO · (H2O)x revealed similar uptake rates for both species. Together, we conclude that nasal geometry contributes to the protection of brain and lung from accumulation of air-dispersed particles in mole voles. PMID:25143031

  2. Normal gene expression in male F344 rat nasal transitional and respiratory epithelium.

    PubMed

    Hester, Susan D; Benavides, Gina B; Sartor, Maureen; Yoon, Lawrence; Wolf, Douglas C; Morgan, Kevin T

    2002-02-20

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity in rodents. Gene expression profiles were determined in order to provide normal baseline data for nasal transitional/respiratory epithelium from healthy rats. Cells lining the rat nasal passages were collected and gene expression analysis was performed using Clontech cDNA Rat Atlas 1.2 arrays (1185 genes). The percentages of genes within specific average expression ranges were 4.2% at 45,000-1000, 14.8% at 1000-200, 25.0% at 200-68, and 56.0% below 68. Nine out of a subset of ten genes were confirmed for relative signal intensity using quantitative real-time RT-PCR. The most highly expressed genes included those involved in phase I (e.g. cytochrome P450s) and phase II (e.g. glutathione S-transferases) xenobiotic metabolism, bioenergetics (e.g. cytochrome oxidase), osmotic balance (e.g. Na(+)/K(+) ATPase) and epithelial ionic homeostasis (e.g. ion channels). Such baseline data will contribute to further understanding the normal physiology of these cells and facilitate the interpretation of responses by the nasal epithelial cells to xenobiotic treatment or disease.

  3. How much does nasal cavity morphology matter? Patterns and rates of olfactory airflow in phyllostomid bats

    PubMed Central

    Eiting, Thomas P.; Perot, J. Blair; Dumont, Elizabeth R.

    2015-01-01

    The morphology of the nasal cavity in mammals with a good sense of smell includes features that are thought to improve olfactory airflow, such as a dorsal conduit that delivers odours quickly to the olfactory mucosa, an enlarged olfactory recess at the back of the airway, and a clear separation of the olfactory and respiratory regions of the nose. The link between these features and having a good sense of smell has been established by functional examinations of a handful of distantly related mammalian species. In this paper, we provide the first detailed examination of olfactory airflow in a group of closely related species that nevertheless vary in their sense of smell. We study six species of phyllostomid bats that have different airway morphologies and foraging ecologies, which have been linked to differences in olfactory ability or reliance. We hypothesize that differences in morphology correlate with differences in the patterns and rates of airflow, which in turn are consistent with dietary differences. To compare species, we make qualitative and quantitative comparisons of the patterns and rates of airflow through the olfactory region during both inhalation and exhalation across the six species. Contrary to our expectations, we find no clear differences among species in either the patterns of airflow through the airway or in rates of flow through the olfactory region. By and large, olfactory airflow seems to be conserved across species, suggesting that morphological differences appear to be driven by other mechanical demands on the snout, such as breathing and feeding. Olfactory ability may depend on other aspects of the system, such as the neurobiological processing of odours that work within the existing morphology imposed by other functional demands on the nasal cavity. PMID:25520358

  4. Ultra-slow mechanical stimulation of olfactory epithelium modulates consciousness by slowing cerebral rhythms in humans.

    PubMed

    Piarulli, A; Zaccaro, A; Laurino, M; Menicucci, D; De Vito, A; Bruschini, L; Berrettini, S; Bergamasco, M; Laureys, S; Gemignani, A

    2018-04-26

    The coupling between respiration and neural activity within olfactory areas and hippocampus has recently been unambiguously demonstrated, its neurophysiological basis sustained by the well-assessed mechanical sensitivity of the olfactory epithelium. We herein hypothesize that this coupling reverberates to the whole brain, possibly modulating the subject's behavior and state of consciousness. The olfactory epithelium of 12 healthy subjects was stimulated with periodical odorless air-delivery (frequency 0.05 Hz, 8 s on, 12 off). Cortical electrical activity (High Density-EEG) and perceived state of consciousness have been studied. The stimulation induced i) an enhancement of delta-theta EEG activity over the whole cortex mainly involving the Limbic System and Default Mode Network structures, ii) a reversal of the overall information flow directionality from wake-like postero-anterior to NREM sleep-like antero-posterior, iii) the perception of having experienced an Altered State of Consciousness. These findings could shed further light via a neurophenomenological approach on the links between respiration, cerebral activity and subjective experience, suggesting a plausible neurophysiological basis for interpreting altered states of consciousness induced by respiration-based meditative practices.

  5. Integrating temperature with odor processing in the olfactory bulb.

    PubMed

    Kludt, Eugen; Okom, Camille; Brinkmann, Alexander; Schild, Detlev

    2015-05-20

    Temperature perception has long been classified as a somesthetic function solely. However, in recent years several studies brought evidence that temperature perception also takes place in the olfactory system of rodents. Temperature has been described as an effective stimulus for sensory neurons of the Grueneberg ganglion located at the entrance of the nose. Here, we investigate whether a neuronal trace of temperature stimulation can be observed in the glomeruli and mitral cells of the olfactory bulb, using calcium imaging and fast line-scanning microscopy. We show in the Xenopus tadpole system that the γ-glomerulus, which receives input from olfactory neurons, is highly sensitive to temperature drops at the olfactory epithelium. We observed that thermo-induced activity in the γ-glomerulus is conveyed to the mitral cells innervating this specific neuropil. Surprisingly, a substantial number of thermosensitive mitral cells were also chemosensitive. Moreover, we report another unique feature of the γ-glomerulus: it receives ipsilateral and contralateral afferents. The latter fibers pass through the contralateral bulb, cross the anterior commissure, and then run to the ipsilateral olfactory bulb, where they target the γ-glomerulus. Temperature drops at the contralateral olfactory epithelium also induced responses in the γ-glomerulus and in mitral cells. Temperature thus appears to be a relevant physiological input to the Xenopus olfactory system. Each olfactory bulb integrates and codes temperature signals originating from receptor neurons of the ipsilateral and contralateral nasal cavities. Finally, temperature and chemical information is processed in shared cellular networks. Copyright © 2015 the authors 0270-6474/15/357892-11$15.00/0.

  6. Skeletal morphology and development of the olfactory region of Spea (Anura: Scaphiopodidae)

    PubMed Central

    Pugener, L A; Maglia, A M

    2007-01-01

    The nasal capsules of anurans are formed by an intricate set of sac-like cavities that house the olfactory organ and constitute the beginning of the respiratory system. In tadpoles, nasal capsules do not have a respiratory function, but each is composed of a single soft tissue cavity lined with olfactory epithelium. Our study has revealed that in Spea the nasal cartilages and septomaxillae are de novo adult structures that form dorsal to the larval skeleton of the ethmoid region. The only element of the adult nasal capsule that is partially derived from the larval skeleton is the solum nasi. Development of the nasal skeleton begins at about Gosner Stage 31, with chondrification of the septum nasi and lamina orbitonasalis. The alary cartilage and superior prenasal cartilage are the first of the anterior nasal cartilages to chondrify at Gosner Stage 37. By Gosner Stages 40/41, the ethmoid region is composed of the larval structures ventrally and the adult structures dorsally. By Stage 44, the larval structures have eroded. The adult nasal capsule is characterized by: (1) a septum nasi that projects ventrally beyond the plane of the nasal floor; (2) a paranasal commissure that forms the ventral margin of the fenestra nasolateralis; and (3) a large skeletal support for the eminentia olfactoria formed by the nasal floor and vomer. The timing of chondrification of the anterior nasal cartilages and the development of the postnasal wall, inferior prenasal cartilage, fenestra nasolateralis, and paranasal commissure are discussed and compared with those of other anuran species. This study also includes a discussion of the morphology of the skeletal support for the eminentia olfactoria, a structure best developed in distinctly ground-dwelling frogs such as spadefoot toads. Finally, we propose a more precise restriction of the terminology that is used to designate the posterior structures of the olfactory region of anurans. PMID:18045351

  7. NADPH-diaphorase activity and NO synthase expression in the olfactory epithelium of the bovine.

    PubMed

    Wenisch, S; Arnhold, S

    2010-06-01

    NADPH-diaphorase (NADPH-d) staining of the bovine olfactory epithelium was compared with the immunohistochemical localization of nitric oxide synthase (NOS), soluble guanylyl cyclase, and cGMP (cyclic guanosine 3',5'-monophosphate). Out of the three isoforms, only the inducible NOS (NOS-II) was found at the epithelial surface correlating with the strong labelling for NADPH-d. In contrast, light diaphorase staining associated with deeper epithelial regions did not coincide with any NOS immunoreactivity. As there is overlapping expression of NOS-II, soluble guanylyl cyclase and cGMP at the luminal surface morphologically occupied by dendritic knobs of olfactory receptor neurons and microvillar endings of supporting cells, the nitric oxide (NO)/cGMP pathway is likely to be involved in modulating the odour signals during olfactory transduction.

  8. Nasal neuron PET imaging quantifies neuron generation and degeneration

    PubMed Central

    Van de Bittner, Genevieve C.; Riley, Misha M.; Cao, Luxiang; Herrick, Scott P.; Ricq, Emily L.; O’Neill, Michael J.; Ahmed, Zeshan; Murray, Tracey K.; Smith, Jaclyn E.; Wang, Changning; Schroeder, Frederick A.; Albers, Mark W.; Hooker, Jacob M.

    2017-01-01

    Olfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality. Notably, OSNs are continually replenished by adult neurogenesis in mammals, including humans, so OSN measurements are primed to provide specialized insights into neurological disease. Here, we have evaluated a PET radiotracer, [11C]GV1-57, that specifically binds mature OSNs and quantifies the mature OSN population in vivo. [11C]GV1-57 monitored native OSN population dynamics in rodents, detecting OSN generation during postnatal development and aging-associated neurodegeneration. [11C]GV1-57 additionally measured rates of neuron regeneration after acute injury and early-stage OSN deficits in a rodent tauopathy model of neurodegenerative disease. Preliminary assessment in nonhuman primates suggested maintained uptake and saturable binding of [18F]GV1-57 in primate nasal epithelium, supporting its translational potential. Future applications for GV1-57 include monitoring additional diseases or conditions associated with olfactory dysregulation, including cognitive decline, as well as monitoring effects of neuroregenerative or neuroprotective therapeutics. PMID:28112682

  9. Nasal aerodynamics protects brain and lung from inhaled dust in subterranean diggers, Ellobius talpinus.

    PubMed

    Moshkin, M P; Petrovski, D V; Akulov, A E; Romashchenko, A V; Gerlinskaya, L A; Ganimedov, V L; Muchnaya, M I; Sadovsky, A S; Koptyug, I V; Savelov, A A; Troitsky, S Yu; Moshkn, Y M; Bukhtiyarov, V I; Kolchanov, N A; Sagdeev, R Z; Fomin, V M

    2014-10-07

    Inhalation of air-dispersed sub-micrometre and nano-sized particles presents a risk factor for animal and human health. Here, we show that nasal aerodynamics plays a pivotal role in the protection of the subterranean mole vole Ellobius talpinus from an increased exposure to nano-aerosols. Quantitative simulation of particle flow has shown that their deposition on the total surface of the nasal cavity is higher in the mole vole than in a terrestrial rodent Mus musculus (mouse), but lower on the olfactory epithelium. In agreement with simulation results, we found a reduced accumulation of manganese in olfactory bulbs of mole voles in comparison with mice after the inhalation of nano-sized MnCl2 aerosols. We ruled out the possibility that this reduction is owing to a lower transportation from epithelium to brain in the mole vole as intranasal instillations of MnCl2 solution and hydrated nanoparticles of manganese oxide MnO · (H2O)x revealed similar uptake rates for both species. Together, we conclude that nasal geometry contributes to the protection of brain and lung from accumulation of air-dispersed particles in mole voles. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Results of examination of the nasal mucosa. [in Apollo 17 BIOCORE pocket mice

    NASA Technical Reports Server (NTRS)

    Kraft, L. M.; Vogel, F. S.; Lloyd, B.; Benton, E. V.; Cruty, M. R.; Haymaker, W.; Leon, H. A.; Billingham, J.; Turnbill, C. E.; Teas, V.

    1975-01-01

    The olfactory epithelium, but not the nasal respiratory epithelium, of the four pocket mice (Perognathus longimembris) that survived their flight on Apollo XVII showed both diffuse alterations and numerous disseminated focal lesions. The olfactory mucosa of the mouse that died during flight was also affected, but to a minor degree insofar as could be determined. All this was in contrast to the normal appearance of the olfactory mucosa of the numerous control animals. A number of possible causes were considered: systemic or regional infection; inhaled particulate material (seed dust); by-products from the KO2 bed in aerosol or particulate form; gas contaminants originating in the flight package; volatile substances from the dead mouse; weightlessness; and cosmic ray particle radiation. Where feasible, studies were conducted in an effort to rule in or rule out some of these potentially causative factors. No definitive conclusions were reached as to the cause of the lesions in the flight mice.

  11. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice

    PubMed Central

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep. PMID:27247803

  12. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice.

    PubMed

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.

  13. Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.

    PubMed

    2017-07-01

    We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium. Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n = 375) and AEGIS-2 (n = 130) clinical trials and gene expression profiled using microarrays. All statistical tests were two-sided. We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed with lung cancer vs those with benign disease after one year of follow-up ( P  < .001). Using bronchial gene expression data from the AEGIS-1 patients, we found statistically significant concordant cancer-associated gene expression alterations between the two airway sites ( P  < .001). Differentially expressed genes in the nose were enriched for genes associated with the regulation of apoptosis and immune system signaling. A nasal lung cancer classifier derived in the AEGIS-1 cohort that combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistically significantly higher area under the curve (0.81; 95% confidence interval [CI] = 0.74 to 0.89, P  = .01) and sensitivity (0.91; 95% CI = 0.81 to 0.97, P  = .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort. These results support that the airway epithelial field of lung cancer-associated injury in ever smokers extends to the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection. © The Author 2017. Published by Oxford

  14. Perforated Patch-clamp Recording of Mouse Olfactory Sensory Neurons in Intact Neuroepithelium: Functional Analysis of Neurons Expressing an Identified Odorant Receptor

    PubMed Central

    Jarriault, David; Grosmaitre, Xavier

    2015-01-01

    Analyzing the physiological responses of olfactory sensory neurons (OSN) when stimulated with specific ligands is critical to understand the basis of olfactory-driven behaviors and their modulation. These coding properties depend heavily on the initial interaction between odor molecules and the olfactory receptor (OR) expressed in the OSNs. The identity, specificity and ligand spectrum of the expressed OR are critical. The probability to find the ligand of the OR expressed in an OSN chosen randomly within the epithelium is very low. To address this challenge, this protocol uses genetically tagged mice expressing the fluorescent protein GFP under the control of the promoter of defined ORs. OSNs are located in a tight and organized epithelium lining the nasal cavity, with neighboring cells influencing their maturation and function. Here we describe a method to isolate an intact olfactory epithelium and record through patch-clamp recordings the properties of OSNs expressing defined odorant receptors. The protocol allows one to characterize OSN membrane properties while keeping the influence of the neighboring tissue. Analysis of patch-clamp results yields a precise quantification of ligand/OR interactions, transduction pathways and pharmacology, OSNs' coding properties and their modulation at the membrane level.  PMID:26275097

  15. Proliferative and transcriptional identity of distinct classes of neural precursors in the mammalian olfactory epithelium.

    PubMed

    Tucker, Eric S; Lehtinen, Maria K; Maynard, Tom; Zirlinger, Mariela; Dulac, Catherine; Rawson, Nancy; Pevny, Larysa; Lamantia, Anthony-Samuel

    2010-08-01

    Neural precursors in the developing olfactory epithelium (OE) give rise to three major neuronal classes - olfactory receptor (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons. Nevertheless, the molecular and proliferative identities of these precursors are largely unknown. We characterized two precursor classes in the olfactory epithelium (OE) shortly after it becomes a distinct tissue at midgestation in the mouse: slowly dividing self-renewing precursors that express Meis1/2 at high levels, and rapidly dividing neurogenic precursors that express high levels of Sox2 and Ascl1. Precursors expressing high levels of Meis genes primarily reside in the lateral OE, whereas precursors expressing high levels of Sox2 and Ascl1 primarily reside in the medial OE. Fgf8 maintains these expression signatures and proliferative identities. Using electroporation in the wild-type embryonic OE in vitro as well as Fgf8, Sox2 and Ascl1 mutant mice in vivo, we found that Sox2 dose and Meis1 - independent of Pbx co-factors - regulate Ascl1 expression and the transition from lateral to medial precursor state. Thus, we have identified proliferative characteristics and a dose-dependent transcriptional network that define distinct OE precursors: medial precursors that are most probably transit amplifying neurogenic progenitors for ORNs, VRNs and GnRH neurons, and lateral precursors that include multi-potent self-renewing OE neural stem cells.

  16. Proliferative and transcriptional identity of distinct classes of neural precursors in the mammalian olfactory epithelium

    PubMed Central

    Tucker, Eric S.; Lehtinen, Maria K.; Maynard, Tom; Zirlinger, Mariela; Dulac, Catherine; Rawson, Nancy; Pevny, Larysa; LaMantia, Anthony-Samuel

    2010-01-01

    Neural precursors in the developing olfactory epithelium (OE) give rise to three major neuronal classes – olfactory receptor (ORNs), vomeronasal (VRNs) and gonadotropin releasing hormone (GnRH) neurons. Nevertheless, the molecular and proliferative identities of these precursors are largely unknown. We characterized two precursor classes in the olfactory epithelium (OE) shortly after it becomes a distinct tissue at midgestation in the mouse: slowly dividing self-renewing precursors that express Meis1/2 at high levels, and rapidly dividing neurogenic precursors that express high levels of Sox2 and Ascl1. Precursors expressing high levels of Meis genes primarily reside in the lateral OE, whereas precursors expressing high levels of Sox2 and Ascl1 primarily reside in the medial OE. Fgf8 maintains these expression signatures and proliferative identities. Using electroporation in the wild-type embryonic OE in vitro as well as Fgf8, Sox2 and Ascl1 mutant mice in vivo, we found that Sox2 dose and Meis1 – independent of Pbx co-factors – regulate Ascl1 expression and the transition from lateral to medial precursor state. Thus, we have identified proliferative characteristics and a dose-dependent transcriptional network that define distinct OE precursors: medial precursors that are most probably transit amplifying neurogenic progenitors for ORNs, VRNs and GnRH neurons, and lateral precursors that include multi-potent self-renewing OE neural stem cells. PMID:20573694

  17. Molecular characterization and histochemical demonstration of salmon olfactory marker protein in the olfactory epithelium of lacustrine sockeye salmon (Oncorhynchus nerka).

    PubMed

    Kudo, H; Doi, Y; Ueda, H; Kaeriyama, M

    2009-09-01

    Despite the importance of olfactory receptor neurons (ORNs) for homing migration, the expression of olfactory marker protein (OMP) is not well understood in ORNs of Pacific salmon (genus Oncorhynchus). In this study, salmon OMP was characterized in the olfactory epithelia of lacustrine sockeye salmon (O. nerka) by molecular biological and histochemical techniques. Two cDNAs encoding salmon OMP were isolated and sequenced. These cDNAs both contained a coding region encoding 173 amino acid residues, and the molecular mass of the two proteins was calculated to be 19,581.17 and 19,387.11Da, respectively. Both amino acid sequences showed marked homology (90%). The protein and nucleotide sequencing demonstrates the existence of high-level homology between salmon OMPs and those of other teleosts. By in situ hybridization using a digoxigenin-labeled salmon OMP cRNA probe, signals for salmon OMP mRNA were observed preferentially in the perinuclear regions of the ORNs. By immunohistochemistry using a specific antibody to salmon OMP, OMP-immunoreactivities were noted in the cytosol of those neurons. The present study is the first to describe cDNA cloning of OMP in salmon olfactory epithelium, and indicate that OMP is a useful molecular marker for the detection of the ORNs in Pacific salmon.

  18. Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells

    PubMed Central

    Ogura, Tatsuya; Szebenyi, Steven A.; Krosnowski, Kurt; Sathyanesan, Aaron; Jackson, Jacqueline

    2011-01-01

    The mammalian olfactory epithelium is made up of ciliated olfactory sensory neurons (OSNs), supporting cells, basal cells, and microvillous cells. Previously, we reported that a population of nonneuronal microvillous cells expresses transient receptor potential channel M5 (TRPM5). Using transgenic mice and immunocytochemical labeling, we identify that these cells are cholinergic, expressing the signature markers of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter. This result suggests that acetylcholine (ACh) can be synthesized and released locally to modulate activities of neighboring supporting cells and OSNs. In Ca2+ imaging experiments, ACh induced increases in intracellular Ca2+ levels in 78% of isolated supporting cells tested in a concentration-dependent manner. Atropine, a muscarinic ACh receptor (mAChR) antagonist suppressed the ACh responses. In contrast, ACh did not induce or potentiate Ca2+ increases in OSNs. Instead ACh suppressed the Ca2+ increases induced by the adenylyl cyclase activator forskolin in some OSNs. Supporting these results, we found differential expression of mAChR subtypes in supporting cells and OSNs using subtype-specific antibodies against M1 through M5 mAChRs. Furthermore, we found that various chemicals, bacterial lysate, and cold saline induced Ca2+ increases in TRPM5/ChAT-expressing microvillous cells. Taken together, our data suggest that TRPM5/ChAT-expressing microvillous cells react to certain chemical or thermal stimuli and release ACh to modulate activities of neighboring supporting cells and OSNs via mAChRs. Our studies reveal an intrinsic and potentially potent mechanism linking external stimulation to cholinergic modulation of activities in the olfactory epithelium. PMID:21676931

  19. Relationship between uninasal anatomy and uninasal olfactory ability.

    PubMed

    Hornung, D E; Leopold, D A

    1999-01-01

    To examine the relationship between uninasal anatomy and olfactory ability. A stepwise analysis of variance was used to regress the logarithm of the percentage of correct responses on the Odorant Confusion Matrix (a measure of olfactory ability) against the logarithm of nasal volume measurements determined from computed tomographic scans. Nineteen patients with hyposmia whose olfactory losses were thought to be related to conductive disorders. After correcting for sex differences, a mathematical model was developed in which the volume of 6 regions of the nasal cavity, 6 first-order interactions, and 3 second-order interactions accounted for 97% of the variation in the measure of olfactory ability. Increases in the size of compartments of the nasal cavity around the olfactory cleft generally increase olfactory ability. Also, anatomical differences in the nasal cavities of men and women may account, in part, for sex differences in olfactory ability.

  20. Testicular receptor 2, Nr2c1, is associated with stem cells in the developing olfactory epithelium and other cranial sensory and skeletal structures.

    PubMed

    Baker, Jennifer L; Wood, Bernard; Karpinski, Beverly A; LaMantia, Anthony-S; Maynard, Thomas M

    2016-01-01

    Comparative genomic analysis of the nuclear receptor family suggests that the testicular receptor 2, Nr2c1, undergoes positive selection in the human-chimpanzee clade based upon a significant increase in nonsynonymous compared to synonymous substitutions. Previous in situ analyses of Nr2c1 lacked the temporal range and spatial resolution necessary to characterize cellular expression of this gene from early to mid gestation, when many nuclear receptors are key regulators of tissue specific stem or progenitor cells. Thus, we asked whether Nr2c1 protein is associated with stem cell populations in the mid-gestation mouse embryo. Nr2c1 is robustly expressed in the developing olfactory epithelium. Its expression in the olfactory epithelium shifts from multiple progenitor classes at early stages to primarily transit amplifying cells later in olfactory epithelium development. In the early developing central nervous system, Nr2c1 is limited to the anterior telencephalon/olfactory bulb anlagen, coincident with Nestin-positive neuroepithelial stem cells. Nr2c1 is also seen in additional cranial sensory specializations including cells surrounding the mystacial vibrissae, the retinal pigment epithelium and Scarpa's ganglion. Nr2c1 was also detected in a subset of mesenchymal cells in developing teeth and cranial bones. The timing and distribution of embryonic expression suggests that Nr2c1 is primarily associated with the early genesis of mammalian cranial sensory neurons and craniofacial skeletal structures. Thus, Nr2c1 may be a candidate for mediating parallel adaptive changes in cranial neural sensory specializations such as the olfactory epithelium, retina and mystacial vibrissae and in non-neural craniofacial features including teeth. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Transcriptomes of Mouse Olfactory Epithelium Reveal Sexual Differences in Odorant Detection

    PubMed Central

    Shiao, Meng-Shin; Chang, Andrew Ying-Fei; Liao, Ben-Yang; Ching, Yung-Hao; Lu, Mei-Yeh Jade; Chen, Stella Maris; Li, Wen-Hsiung

    2012-01-01

    To sense numerous odorants and chemicals, animals have evolved a large number of olfactory receptor genes (Olfrs) in their genome. In particular, the house mouse has ∼1,100 genes in the Olfr gene family. This makes the mouse a good model organism to study Olfr genes and olfaction-related genes. To date, whether male and female mice possess the same ability in detecting environmental odorants is still unknown. Using the next generation sequencing technology (paired-end mRNA-seq), we detected 1,088 expressed Olfr genes in both male and female olfactory epithelium. We found that not only Olfr genes but also odorant-binding protein (Obp) genes have evolved rapidly in the mouse lineage. Interestingly, Olfr genes tend to express at a higher level in males than in females, whereas the Obp genes clustered on the X chromosome show the opposite trend. These observations may imply a more efficient odorant-transporting system in females, whereas a more active Olfr gene expressing system in males. In addition, we detected the expression of two genes encoding major urinary proteins, which have been proposed to bind and transport pheromones or act as pheromones in mouse urine. This observation suggests a role of main olfactory system (MOS) in pheromone detection, contrary to the view that only accessory olfactory system (AOS) is involved in pheromone detection. This study suggests the sexual differences in detecting environmental odorants in MOS and demonstrates that mRNA-seq provides a powerful tool for detecting genes with low expression levels and with high sequence similarities. PMID:22511034

  2. Cell-specific Expression of CYP2A5 in the Mouse Respiratory Tract: Effects of Olfactory Toxicants

    PubMed Central

    Piras, Elena; Franzén, Anna; Fernández, Estíbaliz L.; Bergström, Ulrika; Raffalli-Mathieu, Françoise; Lang, Matti; Brittebo, Eva B.

    2003-01-01

    We performed a detailed analysis of mouse cytochrome P450 2A5 (CYP2A5) expression by in situ hybridization (ISH) and immunohistochemistry (IHC) in the respiratory tissues of mice. The CYP2A5 mRNA and the corresponding protein co-localized at most sites and were predominantly detected in the olfactory region, with an expression in sustentacular cells, Bowman's gland, and duct cells. In the respiratory and transitional epithelium there was no or only weak expression. The nasolacrimal duct and the excretory ducts of nasal and salivary glands displayed expression, whereas no expression occurred in the acini. There was decreasing expression along the epithelial linings of the trachea and lower respiratory tract, whereas no expression occurred in the alveoli. The hepatic CYP2A5 inducers pyrazole and phenobarbital neither changed the CYP2A5 expression pattern nor damaged the olfactory mucosa. In contrast, the olfactory toxicants dichlobenil and methimazole induced characteristic changes. The damaged Bowman's glands displayed no expression, whereas the damaged epithelium expressed the enzyme. The CYP2A5 expression pattern is in accordance with previously reported localization of protein and DNA adducts and the toxicity of some CYP2A5 substrates. This suggests that CYP2A5 is an important determinant for the susceptibility of the nasal and respiratory epithelia to protoxicants and procarcinogens. PMID:14566026

  3. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.

    PubMed

    Cadiou, Hervé; Aoudé, Imad; Tazir, Bassim; Molinas, Adrien; Fenech, Claire; Meunier, Nicolas; Grosmaitre, Xavier

    2014-04-02

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to lyral induces plasticity in the population of OSNs expressing MOR23. Their density decreases after odorant exposure, whereas the amount of MOR23 mRNA and protein remain stable in the whole epithelium. Meanwhile, quantitative PCR indicates that each MOR23 neuron has higher levels of olfactory receptor transcripts and also expresses more CNGA2 and phosphodiesterase 1C, fundamental olfactory transduction pathway proteins. Transcript levels return to baseline after 4 weeks recovery. Patch-clamp recordings reveal that exposed MOR23 neurons respond to lyral with higher sensitivity and broader dynamic range while the responses' kinetics were faster. These effects are specific to the odorant-receptor pair lyral-MOR23: there was no effect of acetophenone on MOR23 neurons and no effect of acetophenone and lyral on the M71 population. Together, our results clearly demonstrate that OSNs undergo specific anatomical, molecular, and functional adaptation when chronically exposed to odorants in the early stage of life.

  4. TRANSCRIPTOMIC ANALYSIS OF F344 RAT NASAL EPITHELIUM SUGGESTS THAT THE LACK OF CARCINOGENIC RESPONSE TO GLUTARALDEHYDE IS DUE TO ITS GREATER TOXICITY COMPARED TO FORMALDEHYDE

    EPA Science Inventory

    Formaldehyde is cytotoxic and carcinogenic to the rat nasal respiratory epithelium inducing tumors after 12 months. Glutaraldehyde is also cytotoxic but is not carcinogenic to nasal epithelium even after 24 months. Both aldehydes induce similar acute and subchronic histopathology...

  5. Olfactory mechanisms in the control of maternal aggression, appetite, and fearfulness: effects of lesions to olfactory receptors, mediodorsal thalamic nucleus, and insular prefrontal cortex.

    PubMed

    Ferreira, A; Dahlöf, L G; Hansen, S

    1987-10-01

    During lactation the female rat is hyperphagic, aggressive toward adult conspecifics, and less fearful than usual. In the first experiment the importance of olfactory receptors was investigated by surgically removing the olfactory epithelium of the nasal cavity. Mother rats subjected to this treatment consumed significantly less food and weighed less than sham-operated females. Moreover, experimental subjects displayed a dramatic decrease in maternal aggression. Fear behavior (sound-elicited freezing), on the other hand, was not affected by the lesions. The mediodorsal thalamic nucleus and the prefrontal insular cortex form part of the central olfactory system. The second experiment assessed the involvement of this olfactory-related thalamocortical system and the behavioral profile of mother rats. It was found that whereas the thalamic and cortical lesions left food intake and fear behavior unaffected, they significantly decreased the frequency with which the mother would attack an intruder male placed into her home cage. The sense of smell appears, according to the present experiments, to play a crucial role in maternal aggression.

  6. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models.

    PubMed

    Corley, R A; Minard, K R; Kabilan, S; Einstein, D R; Kuprat, A P; Harkema, J R; Kimbell, J S; Gargas, M L; Kinzell, John H

    2009-05-01

    The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflow calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (approximately 50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.

  7. Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb.

    PubMed

    Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M

    1984-08-01

    A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity.

  8. Analysis of the olfactory mucosa in chronic rhinosinusitis

    PubMed Central

    Yee, Karen K.; Pribitkin, Edmund A.; Cowart, Beverly J.; Rosen, David; Feng, Pu; Rawson, Nancy E

    2009-01-01

    The impact of chronic rhinosinusitis (CRS) on the olfactory mucosa (OM) is dramatic. Cellular profiles and epithelial integrity in OM biopsies were evaluated using histological and immunohistochemical methods to define a strategy for future histological studies of CRS. We have examined nasal biopsies of 54 CRS patients (18 - 63 years old) and have defined specific histopathological patterns of the OM: normal pseudostratified, goblet cell hyperplasia, squamous metaplasia and erosion. Goblet cell hyperplasia was most similar to a normal pseudostratified OM pattern but with goblet cells intermixed in the apical layers. Squamous metaplasia exhibited an absence of olfactory supporting cells and had olfactory sensory neurons that were morphologically abnormal. It is unknown if these neurons would be functional in this type of tissue transformation. The pattern of erosion exhibited a severe loss of epithelial layers and a higher prevalence of infiltrating inflammatory cells within the olfactory epithelium when compared to the other OM patterns. Although it is not known if the OM remodeling patterns we have noted correspond to specific stages or distinct pathways of the disease, the template proposed here can be used in further studies to understand how the histopathological progression of CRS relates to olfactory loss and the response to treatment. PMID:19686198

  9. Vomeronasal versus olfactory epithelium: is there a cellular basis for human vomeronasal perception?

    PubMed

    Witt, Martin; Hummel, Thomas

    2006-01-01

    The vomeronasal organ (VNO) constitutes an accessory olfactory organ that receives chemical stimuli, pheromones, which elicit behavioral, reproductive, or neuroendocrine responses among individuals of the same species. In many macrosmatic animals, the morphological substrate constitutes a separate organ system consisting of a vomeronasal duct (ductus vomeronasalis, VND), equipped with chemosensory cells, and a vomeronasal nerve (nervus vomeronasalis, VNN) conducting information into the accessory olfactory bulb (AOB) in the central nervous system (CNS). Recent data require that the long-accepted dual functionality of a main olfactory system and the VNO be reexamined, since all species without a VNO are nevertheless sexually active, and species possessing a VNO also can sense other than "vomeronasal" stimuli via the vomeronasal epithelium (VNE). The human case constitutes a borderline situation, as its embryonic VNO anlage exerts a developmental track common to most macrosmatics, but later typical structures such as the VNN, AOB, and probably most of the chemoreceptor cells within the still existent VND are lost. This review also presents recent information on the VND including immunohistochemical expression of neuronal markers, intermediate filaments, lectins, integrins, caveolin, CD44, and aquaporins. Further, we will address the issue of human pheromone candidates.

  10. Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb.

    PubMed Central

    Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M

    1984-01-01

    A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity. Images PMID:6206495

  11. Tonic and Phasic Receptor Neurons in the Vertebrate Olfactory Epithelium

    PubMed Central

    Madrid, Rodolfo; Sanhueza, Magdalena; Alvarez, Osvaldo; Bacigalupo, Juan

    2003-01-01

    Olfactory receptor neurons (ORNs) respond to odorants with characteristic patterns of action potentials that are relevant for odor coding. Prolonged odorant exposures revealed three populations of dissociated toad ORNs, which were mimicked by depolarizing currents: tonic (TN, displaying sustained firing, 49% of 102 cells), phasic (PN, exhibiting brief action potential trains, 36%) and intermediate neurons (IN, generating trains longer than PN, 15%). We studied the biophysical properties underlying the differences between TNs and PNs, the most extreme cases among ORNs. TNs and PNs possessed similar membrane capacitances (∼4 pF), but they differed in resting potential (−82 versus −64 mV), input resistance (4.2 versus 2.9 GΩ) and unspecific current, Iu (TNs: 0 < Iu ≤ 1 pA/pF; and PNs: Iu > 1 pA/pF). Firing behavior did not correlate with differences in voltage-gated conductances. We developed a mathematical model that accurately simulates tonic and phasic patterns. Whole cell recordings from rat ORNs in fragments (∼4 mm2) of olfactory epithelium showed that such a tissue normally contains tonic and phasic receptor neurons, suggesting that this feature is common across a wide range of vertebrates. Our findings show that the individual passive electrical properties can govern the firing patterns of ORNs. PMID:12770919

  12. Effects of Zinc Gluconate and 2 Other Divalent Cationic Compounds on Olfactory Function in Mice

    PubMed Central

    Duncan-Lewis, Christopher A; Lukman, Roy L; Banks, Robert K

    2011-01-01

    Intranasal application of zinc gluconate has commonly been used to treat the common cold. The safety of this treatment, however, has come into question recently. In addition to a United States recall of a homeopathic product that contains zinc gluconate, abundant literature reports cytotoxic effects of zinc on the olfactory epithelium. Additional research suggests that divalent cations (such as zinc) can block ion channels that facilitate the transduction of odors into electrical signals on the olfactory epithelium. The purpose of the current study was 2-fold: to confirm whether zinc gluconate causes anosmia and to reveal whether any other divalent cationic compounds produce a similar effect. Groups of mice underwent a buried food-pellet test to gauge olfactory function and then were nasally irrigated with 1 of 3 divalent cationic compounds. When tested after treatment, mice irrigated with zinc gluconate and copper gluconate experienced a marked increase in food-finding time, indicating that they had lost their ability to smell a hidden food source. Control mice irrigated with saline had a significantly lower increase in times. These results confirm that zinc gluconate can cause anosmia and reveal that multiple divalent cations can negatively affect olfaction. PMID:22330252

  13. Complications of Nasal Bone Fractures.

    PubMed

    Hwang, Kun; Yeom, Seung Han; Hwang, Suk Hyun

    2017-05-01

    The aim of this study was to perform a systematic review of the treatment of nasal bone fractures. The search terms ("nasal bone fracture" AND complication) and ("nasal bone fracture" AND [anosmia OR olfaction OR olfactory nerve OR smell]) and (anosmia AND ["nasal preparation" OR "nasal antiseptics"]) were used to search PubMed and SCOPUS. Of the 500 titles, 40 full papers were reviewed. One paper was excluded, and 3 mined papers were added. Ultimately, 12 papers were analyzed. The overall deformity rate was 10.4% ± 4.8%. No significant differences were found between patients who underwent closed reduction (14.7% ± 7.3%) and those who underwent open reduction (9.4% ± 4.4%), between those who underwent local anesthesia (5.8% ± 4.5%), and those who underwent general anesthesia (8.8% ± 3.8%), or between those who received timely treatment (5.7%) and those whose treatment was delayed (9.0%). Septal deviation occurred in 10.0% of patients as a sequela of nasal bone fracture. The nasal obstruction rate was 10.5% ± 5.3%. Fewer patients of nasal obstruction occurred in the open reduction patients (6.9% ± 4.4%) than in the closed reduction patients (15.2%). One patient of epiphora and 1 patient of diplopia were reportedAmong the 77 patients with nasal bone fractures, 29 (37.7% ± 11.3%) complained of olfactory disturbances. No significant associations were found between the type of fracture and the presence of olfactory disturbances. It is recommended for providers to explain to patients that approximately one-tenth of nasal bone fractures exhibit deformity, septal deviation, or nasal obstruction after surgery. Surgeons should take considerable care to avoid the olfactory mucosa during reduction surgery.

  14. Unitary Responses in Frog Olfactory Epithelium to Sterically Related Molecules at Low Concentrations

    PubMed Central

    Getchell, Thomas V.

    1974-01-01

    Responses of receptor cells in the frog's olfactory epithelium were recorded using platinum-black metal-filled microelectrodes. Spontaneous activity varied over a wide range from 0.07 to 1.8 spikes/s. Mean interspike intervals ranged from 13.7 to 0.5 s. Excitatory responses to six sterically related compounds at low concentrations were investigated. Stimuli were delivered in an aqueous medium. Thresholds for impulse initiation varied from greater than 1 mM down to the nanomolar concentration range. Thresholds of different olfactory receptors to the same stimulus could vary by several log units. Thresholds of the same receptor cell to different stimuli could be within the same order of magnitude, or could vary by as much as 5 log units. Based upon quantitative measures of stimulus-evoked excitatory responses it appeared that some receptors did not discriminate among sterically related molecules, whereas other receptors clearly discriminated between stimuli which evoke similar odor sensations. PMID:4211101

  15. Response of the macaque nasal epithelium to ambient levels of ozone. A morphologic and morphometric study of the transitional and respiratory epithelium.

    PubMed Central

    Harkema, J. R.; Plopper, C. G.; Hyde, D. M.; St George, J. A.; Wilson, D. W.; Dungworth, D. L.

    1987-01-01

    Although ozone (O3)-induced bronchiolitis has been morphologically characterized, effects of O3 on the upper respiratory tract have not been thoroughly investigated. The purpose of this study was to determine whether exposures to ambient levels of O3 induce lesions in the nasal mucosa. Bonnet monkeys were exposed to 0.00, 0.15, or 0.30 ppm O3 for 6 or 90 days, 8 hours/day. After exposure, nasal mucosa was processed for light and electron microscopy. Quantitative changes were evident in the nasal transitional and respiratory epithelium. At 6 or 90 days of exposure to 0.15 or 0.30 ppm O3 lesions consisted of ciliated cell necrosis, shortened cilia, and secretory cell hyperplasia. Inflammatory cell influx was only present at 6 days of exposure. Ultrastructural changes in goblet cells were evident at 90 days. Ambient levels of O3 can induce significant nasal epithelial lesions, which may compromise upper respiratory defense mechanisms. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:3605312

  16. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiology and drug delivery

    PubMed Central

    Kumar, Niyanta N.; Gautam, Mohan; Lochhead, Jeffrey J.; Wolak, Daniel J.; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G.

    2016-01-01

    Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13–17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain. PMID:27558973

  17. A pharmacological profile of the aldehyde receptor repertoire in rat olfactory epithelium

    PubMed Central

    Araneda, Ricardo C; Peterlin, Zita; Zhang, Xinmin; Chesler, Alex; Firestein, Stuart

    2004-01-01

    Several lines of evidence suggest that odorants are recognized through a combinatorial process in the olfactory system; a single odorant is recognized by multiple receptors and multiple odorants are recognized by the same receptor. However few details of how this might actually function for any particular odour set or receptor family are available. Approaching the problem from the ligands rather than the receptors, we used the response to a common odorant, octanal, as the basis for defining multiple receptor profiles. Octanal and other aldehydes induce large EOG responses in the rodent olfactory epithelium, suggesting that these compounds activate a large number of odour receptors (ORs). Here, we have determined and compared the pharmacological profile of different octanal receptors using Ca2+ imaging in isolated olfactory sensory neurones (OSNs). It is believed that each OSN expresses only one receptor, thus the response profile of each cell corresponds to the pharmacological profile of one particular receptor. We stimulated the cells with a panel of nine odorants, which included octanal, octanoic acid, octanol and cinnamaldehyde among others (all at 30μm). Cluster analysis revealed several distinct pharmacological profiles for cells that were all sensitive to octanal. Some receptors had a broad molecular range, while others were activated only by octanal. Comparison of the profiles with that of the one identified octanal receptor, OR-I7, indicated several differences. While OR-I7 is activated by low concentrations of octanal and blocked by citral, other receptors were less sensitive to octanal and not blocked by citral. A lower estimate for the maximal number of octanal receptors is between 33 and 55. This large number of receptors for octanal suggests that, although the peripheral olfactory system is endowed with high sensitivity, discrimination among different compounds probably requires further central processing. PMID:14724183

  18. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction.

    PubMed

    Zhao, Kai; Scherer, Peter W; Hajiloo, Shoreh A; Dalton, Pamela

    2004-06-01

    Recent studies that have compared CT or MRI images of an individual's nasal anatomy and measures of their olfactory sensitivity have found a correlation between specific anatomical areas and performance on olfactory assessments. Using computational fluid dynamics (CFD) techniques, we have developed a method to quickly (nasal CT scans from an individual patient into an anatomically accurate 3-D numerical nasal model that can be used to predict airflow and odorant transport, which may ultimately determine olfactory sensitivity. The 3-D model can be also be rapidly modified to depict various anatomical deviations, such as polyps and their removal, that may alter nasal airflow and impair olfactory ability. To evaluate the degree to which variations in critical nasal areas such as the olfactory slit and nasal valve can alter airflow and odorant transport, inspiratory and expiratory airflow with odorants were simulated using numerical finite volume methods. Results suggest that anatomical changes in the olfactory region (upper meatus below the cribriform plate) and the nasal valve region will strongly affect airflow patterns and odorant transport through the olfactory region, with subsequent effects on olfactory function. The ability to model odorant transport through individualized models of the nasal passages holds promise for relating anatomical deviations to generalized or selective disturbances in olfactory perception and may provide important guidance for treatments for nasal-sinus disease, occupational rhinitis and surgical interventions that seek to optimize airflow and improve deficient olfactory function.

  19. Oxidatively damaged DNA in the nasal epithelium of workers occupationally exposed to silica dust in Tuscany region, Italy.

    PubMed

    Peluso, Marco E M; Munnia, Armelle; Giese, Roger W; Chellini, Elisabetta; Ceppi, Marcello; Capacci, Fabio

    2015-07-01

    Chronic silica exposure has been associated to cancer and silicosis. Furthermore, the induction of oxidative stress and the generation of reactive oxygen species have been indicated to play a main role in the carcinogenicity of respirable silica. Therefore, we conducted a cross-sectional study to evaluate the prevalence of 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) adducts, a biomarker of oxidative stress and peroxidation of lipids, in the nasal epithelium of 135 silica-exposed workers, employed in pottery, ceramic and marble manufacturing plants as well as in a stone quarry, in respect to 118 controls living in Tuscany region, Italy. The M1dG generation was measured by the (32)P-postlabelling assay. Significant higher levels of M1dG adducts per 10(8) normal nucleotides were observed in the nasal epithelium of smokers, 77.9±9.8 (SE), and in those of former smokers, 80.7±9.7 (SE), as compared to non-smokers, 57.1±6.2 (SE), P = 0.001 and P = 0.004, respectively. Significant increments of M1dG adducts were found in the nasal epithelium of workers that handle artificial marble conglomerates, 184±36.4 (SE), and in those of quarry workers, 120±34.7 (SE), with respect to controls, 50.6±2.7 (SE), P = 0.014 and P < 0.001, respectively. Null increments were observed in association with the pottery and the ceramic factories. After stratification for different exposures, silica-exposed workers that were co-exposed to organic solvents, and welding and exhaust fumes have significantly higher M1dG levels, 90.4±13.4 (SE), P = 0.014 vs. Our data suggested that silica exposure might be associated with genotoxicity in the nasal epithelial cells of silica-exposed workers that handle of artificial marble conglomerates and quarry workers. Importantly, we observed that co-exposures to other respiratory carcinogens may have contributed to enhance the burden of M1dG adducts in the nasal epithelium of silica-exposed workers. © The

  20. Mechanisms of permanent loss of olfactory receptor neurons induced by the herbicide 2,6-dichlorobenzonitrile: Effects on stem cells and noninvolvement of acute induction of the inflammatory cytokine IL-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fang; Fang, Cheng; School of Public Health, State University of New York at Albany, NY 12201

    We explored the mechanisms underlying the differential effects of two olfactory toxicants, the herbicide 2,6-dichlorobenzonitrile (DCBN) and the anti-thyroid drug methimazole (MMZ), on olfactory receptor neuron (ORN) regeneration in mouse olfactory epithelium (OE). DCBN, but not MMZ, induced inflammation-like pathological changes in OE, and DCBN increased interleukin IL-6 levels in nasal-wash fluid to much greater magnitude and duration than did MMZ. At 24 h after DCBN injection, the population of horizontal basal cells (HBCs; reserve, normally quiescent OE stem cells) lining the DMM became severely depleted as some of them detached from the basal lamina, and sloughed into the nasalmore » cavity along with the globose basal cells (GBCs; heterogeneous population of stem and progenitor cells), neurons, and sustentacular cells of the neuroepithelium. In contrast, the layer of HBCs remained intact in MMZ-treated mice, as only the mature elements of the neuroepithelium were shed. Despite the respiratory metaplasia accompanying the greater severity of the DCBN lesion, residual HBCs that survived intoxication were activated by the injury and contributed to the metaplastic respiratory epithelium, as shown by tracing their descendants in a K5CreEr{sup T2}::fl(stop)TdTomato strain of mice in which recombination causes HBCs to express TdTomato in advance of the lesion. But, contrary to published observations with MMZ, the HBCs failed to form ORNs. A role for IL-6 in suppressing ORN regeneration in DCBN-treated mice was rejected by the failure of the anti-inflammatory drug dexamethasone to prevent the subsequent respiratory metaplasia in the DMM, suggesting that other factors lead to HBC neuro-incompetence. - Highlights: • The herbicide dichlobenil (DCBN) can damage olfactory epithelium stem cells. • Another olfactory toxicant, methimazole, leaves the olfactory stem cells intact. • DCBN, but not methimazole, induces a prolonged increase in nasal IL-6 levels.

  1. Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment

    PubMed Central

    Lemons, Kayla; Aoudé, Imad; Ogura, Tatsuya; Mbonu, Kenechukwu; Matsumoto, Ichiro; Arakawa, Hiroyuki

    2017-01-01

    The mammalian main olfactory epithelium (MOE) modifies its activities in response to changes in the chemical environment. This process is essential for maintaining the functions of the olfactory system and the upper airway. However, mechanisms involved in this functional maintenance, especially those occurring via paracrine regulatory pathways within the multicellular MOE, are poorly understood. Previously, a population of non-neuronal, transient receptor potential M5-expressing microvillous cells (TRPM5-MCs) was identified in the MOE, and the initial characterization of these cells showed that they are cholinergic and responsive to various xenobiotics including odorants at high concentrations. Here, we investigated the role of TRPM5-MCs in maintaining olfactory function using transcription factor Skn-1a knockout (Skn-1a-/-) mice, which lack TRPM5-MCs in the MOE. Under our standard housing conditions, Skn-1a-/- mice do not differ significantly from control mice in odor-evoked electro-olfactogram (EOG) responses and olfactory-guided behaviors, including finding buried food and preference reactions to socially and sexually relevant odors. However, after a 2-wk exposure to high-concentration odor chemicals and chitin powder, Skn-1a-/- mice exhibited a significant reduction in their odor and pheromone-evoked EOG responses. Consequently, their olfactory-guided behaviors were impaired compared with vehicle-exposed Skn-1a-/- mice. Conversely, the chemical exposure did not induce significant changes in the EOG responses and olfactory behaviors of control mice. Therefore, our physiological and behavioral results indicate that TRPM5-MCs play a protective role in maintaining the olfactory function of the MOE. PMID:28612045

  2. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route

    PubMed Central

    Munster, Vincent J.; Prescott, Joseph B.; Bushmaker, Trenton; Long, Dan; Rosenke, Rebecca; Thomas, Tina; Scott, Dana; Fischer, Elizabeth R.; Feldmann, Heinz; de Wit, Emmie

    2012-01-01

    Encephalitis is a hallmark of Nipah virus (NiV) infection in humans. The exact route of entry of NiV into the central nervous system (CNS) is unknown. Here, we performed a spatio-temporal analysis of NiV entry into the CNS of hamsters. NiV initially predominantly targeted the olfactory epithelium in the nasal turbinates. From there, NiV infected neurons were visible extending through the cribriform plate into the olfactory bulb, providing direct evidence of rapid CNS entry. Subsequently, NiV disseminated to the olfactory tubercle and throughout the ventral cortex. Transmission electron microscopy on brain tissue showed extravasation of plasma cells, neuronal degeneration and nucleocapsid inclusions in affected tissue and axons, providing further evidence for axonal transport of NiV. NiV entry into the CNS coincided with the occurrence of respiratory disease, suggesting that the initial entry of NiV into the CNS occurs simultaneously with, rather than as a result of, systemic virus replication. PMID:23071900

  3. Manganese Uptake and Distribution in the Brain after Methyl Bromide-Induced Lesions in the Olfactory Epithelia

    PubMed Central

    Thompson, Khristy J.; Molina, Ramon M.; Donaghey, Thomas; Savaliya, Sandeep; Schwob, James E.; Brain, Joseph D.

    2011-01-01

    Manganese (Mn) is an essential nutrient with potential neurotoxic effects. Mn deposited in the nose is apparently transported to the brain through anterograde axonal transport, bypassing the blood-brain barrier. However, the role of the olfactory epithelial cells in Mn transport from the nasal cavity to the blood and brain is not well understood. We utilized the methyl bromide (MeBr) lesion model wherein the olfactory epithelium fully regenerates in a time-dependent and cell type–specific manner over the course of 6–8 weeks postinjury. We instilled 54MnCl2 intranasally at different recovery periods to study the role of specific olfactory epithelial cell types in Mn transport. 54MnCl2 was instilled at 2, 4, 7, 21, and 56 days post-MeBr treatment. 54Mn concentrations in the blood were measured over the first 4-h period and in the brain and other tissues at 7 days postinstillation. Age-matched control rats were similarly studied at 2 and 56 days. Blood and tissue 54Mn levels were reduced initially but returned to control values by day 7 post-MeBr exposure, coinciding with the reestablishment of sustentacular cells. Brain 54Mn levels also decreased but returned to control levels only by 21 days, the period near the completion of neuronal regeneration/bulbar reinnervation. Our data show that Mn transport to the blood and brain temporally correlated with olfactory epithelial regeneration post-MeBr injury. We conclude that (1) sustentacular cells are necessary for Mn transport to the blood and (2) intact axonal projections are required for Mn transport from the nasal cavity to the olfactory bulb and brain. PMID:21177252

  4. Manganese uptake and distribution in the brain after methyl bromide-induced lesions in the olfactory epithelia.

    PubMed

    Thompson, Khristy J; Molina, Ramon M; Donaghey, Thomas; Savaliya, Sandeep; Schwob, James E; Brain, Joseph D

    2011-03-01

    Manganese (Mn) is an essential nutrient with potential neurotoxic effects. Mn deposited in the nose is apparently transported to the brain through anterograde axonal transport, bypassing the blood-brain barrier. However, the role of the olfactory epithelial cells in Mn transport from the nasal cavity to the blood and brain is not well understood. We utilized the methyl bromide (MeBr) lesion model wherein the olfactory epithelium fully regenerates in a time-dependent and cell type-specific manner over the course of 6-8 weeks postinjury. We instilled (54)MnCl(2) intranasally at different recovery periods to study the role of specific olfactory epithelial cell types in Mn transport. (54)MnCl(2) was instilled at 2, 4, 7, 21, and 56 days post-MeBr treatment. (54)Mn concentrations in the blood were measured over the first 4-h period and in the brain and other tissues at 7 days postinstillation. Age-matched control rats were similarly studied at 2 and 56 days. Blood and tissue (54)Mn levels were reduced initially but returned to control values by day 7 post-MeBr exposure, coinciding with the reestablishment of sustentacular cells. Brain (54)Mn levels also decreased but returned to control levels only by 21 days, the period near the completion of neuronal regeneration/bulbar reinnervation. Our data show that Mn transport to the blood and brain temporally correlated with olfactory epithelial regeneration post-MeBr injury. We conclude that (1) sustentacular cells are necessary for Mn transport to the blood and (2) intact axonal projections are required for Mn transport from the nasal cavity to the olfactory bulb and brain.

  5. Functional short- and long-term effects of nasal CPAP with and without humidification on the ciliary function of the nasal respiratory epithelium.

    PubMed

    Sommer, J Ulrich; Kraus, Marius; Birk, Richard; Schultz, Johannes D; Hörmann, Karl; Stuck, Boris A

    2014-03-01

    Continuous positive airway pressure (CPAP) is the gold standard in the treatment of obstructive sleep apnea (OSA), but its impact on ciliary function is unclear to date. Furthermore, CPAP is associated with numerous side effects related to the nose and upper airway. Humidified CPAP is used to relieve these symptoms, but again, little is known regarding its effect on ciliary function of the nasal respiratory epithelium. In this prospective, randomized, crossover trial, 31 patients with OSA (AHI >15/h) were randomized to two treatment arms: nasal continuous positive airway pressure (nCPAP) with humidification or nCPAP without humidification for one night in each modality to assess short-term effects of ciliary beat frequency (CBF) and mucus transport time (MTT) and consecutively for 8 weeks in each modality to assess long-term effects in a crossover fashion. The baseline CBF was 4.8 ± 0.6 Hz, and baseline MTT was 540 ± 221 s. After one night of CPAP with and without humidification, ciliary function increased moderately yet with statistical significance (p <0.05). The short-term groups with and without humidification did not differ statistically significant. Regarding long-term effects of CPAP, a statistically significant increase in ciliary function above the baseline level and above the short-term level was shown without humidification (7.2 ± 0.4 Hz; 402 ± 176 s; p <0.01). The increase above baseline level was even more pronounced with humidification (9.3 ± 0.7 Hz; 313 ± 95 s; p <0.01). There was a statistically significant difference between both groups at long-term assessment with regard to CBF (p <0.01). Independent of airway humidification, nCPAP has moderate effects on short-term ciliary function of the nasal respiratory epithelium. However, a significant increase in ciliary function-both in terms of an increased CBF and a decreased MTT-was detected after long-term use. The effect was more pronounced when humidification was used during nCPAP.

  6. 5HTR3A-driven GFP labels immature olfactory sensory neurons.

    PubMed

    Finger, Thomas E; Bartel, Dianna L; Shultz, Nicole; Goodson, Noah B; Greer, Charles A

    2017-05-01

    The ionotropic serotonin receptor, 5-HT 3 , is expressed by many developing neurons within the central nervous system. Since the olfactory epithelium continues to generate new olfactory sensory neurons (OSNs) throughout life, we investigated the possibility that 5-HT 3 is expressed in the adult epithelium. Using a transgenic mouse in which the promoter for the 5-HT 3a subunit drives expression of green fluorescent protein (GFP), we assessed the expression of this marker in the olfactory epithelium of adult mice. Both the native 5-HT 3a mRNA and GFP are expressed within globose basal cells of the olfactory and vomeronasal epithelium in adult mice. Whereas the 5-HT 3a mRNA disappears relatively quickly after final cell division, the GFP label persists for about 5 days, thereby labeling immature OSNs in both the main olfactory system and vomeronasal organ. The GFP-labeled cells include both proliferative globose basal cells as well as immature OSNs exhibiting the hallmarks of ongoing differentiation including GAP43, PGP9.5, but the absence of olfactory marker protein. Some of the GFP-labeled OSNs show characteristics of more mature yet still developing OSNs including the presence of cilia extending from the apical knob and expression of NaV1.5, a component of the transduction cascade. These findings suggest that 5-HT 3a is indicative of a proliferative or developmental state, regardless of age, and that the 5-HT 3A GFP mice may prove useful for future studies of neurogenesis in the olfactory epithelium. J. Comp. Neurol. 525:1743-1755, 2017. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Increase of poorly proliferated p63+ /Ki67+ basal cells forming multiple layers in the aberrant remodeled epithelium in nasal polyps.

    PubMed

    Zhao, L; Li, Y Y; Li, C W; Chao, S S; Liu, J; Nam, H N; Dung, N T N; Shi, L; Wang, D Y

    2017-06-01

    Aberrant epithelial remodeling with the ectopic expression of p63 (basal cell markers) is an important pathologic phenomenon seen in chronically inflamed airway epithelium such as in nasal polyps (NPs). Biopsies were obtained from 55 NP patients and 18 healthy controls (inferior turbinate). Among NP patients, 15 were treated with oral and nasal steroids, so that two sets of NP biopsies were taken before and after the treatments. p63, Ki67, type IV β-tubulin, and cell cycle markers were investigated in these specimens. The number of p63 + cells is significantly higher in both hyperplastic (1.53-fold, P < 0.0001) and squamous metaplastic (2.02-fold, P < 0.0001) epithelium from NPs than from healthy controls. There are three types of proliferative basal cells (p63 + /Ki67 + ) which are in different phases of the cell cycle, such as G1 phase (type I cells), S to G2 phase (type II cells), and mitosis (type III cells). Of importance, some type I cells may arrest after proliferation although they may still be p63 + /Ki67 + . In healthy epithelium, the ratio of the type I and II cells is almost 50:50. However, less type II cells are found in hyperplastic epithelium (34.85%, P = 0.012) and in squamous metaplastic epithelium (30.77%, P = 0.02) together with the presence of type III cells (3.45%, P = 0.01). These findings were not changed after steroid treatments. An increase of poorly proliferated basal cells forming multiple layers, which may stain for basal cell markers but does not form a proper epidermal barrier, is an important histopathologic phenomenon in aberrant remodeled epithelium of NPs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Olfactory imprinting is correlated with changes in gene expression in the olfactory epithelia of the zebrafish.

    PubMed

    Harden, Maegan V; Newton, Lucy A; Lloyd, Russell C; Whitlock, Kathleen E

    2006-11-01

    Odors experienced as juveniles can have significant effects on the behavior of mature organisms. A dramatic example of this occurs in salmon, where the odors experienced by developing fish determine the river to which they return as adults. Further examples of olfactory memories are found in many animals including vertebrates and invertebrates. Yet, the cellular and molecular bases underlying the formation of olfactory memory are poorly understood. We have devised a series of experiments to determine whether zebrafish can form olfactory memories much like those observed in salmonids. Here we show for the first time that zebrafish form and retain olfactory memories of an artificial odorant, phenylethyl alcohol (PEA), experienced as juveniles. Furthermore, we demonstrate that exposure to PEA results in changes in gene expression within the olfactory sensory system. These changes are evident by in situ hybridization in the olfactory epithelium of the developing zebrafish. Strikingly, our analysis by in situ hybridization demonstrates that the transcription factor, otx2, is up regulated in the olfactory sensory epithelia in response to PEA. This increase is evident at 2-3 days postfertilization and is maintained in the adult animals. We propose that the changes in otx2 gene expression are manifest as an increase in the number of neuronal precursors in the cells olfactory epithelium of the odor-exposed fish. Thus, our results reveal a role for the environment in controlling gene expression in the developing peripheral nervous system. Copyright 2006 Wiley Periodicals, Inc.

  9. Immunohistochemical characterization of human olfactory tissue

    PubMed Central

    Holbrook, Eric H.; Wu, Enming; Curry, William T.; Lin, Derrick T.; Schwob, James E.

    2011-01-01

    Objectives/Hypothesis The pathophysiology underlying human olfactory disorders is poorly understood because biopsying the olfactory epithelium (OE) can be unrepresentative and extensive immunohistochemical analysis is lacking. Autopsy tissue enriches our grasp of normal and abnormal olfactory immunohistology and guides the sampling of the OE by biopsy. Furthermore, a comparison of the molecular phenotype of olfactory epithelial cells between rodents and humans will improve our ability to correlate human histopathology with olfactory dysfunction. Study Design An immunohistochemical analysis of human olfactory tissue using a comprehensive battery of proven antibodies. Methods Human olfactory mucosa obtained from 21 autopsy specimens was analyzed with immunohistochemistry. The position and extent of olfactory mucosa was assayed by staining whole mounts with neuronal markers. Sections of the OE were analyzed with an extensive group of antibodies directed against cytoskeletal proteins and transcription factors, as were surgical specimens from an esthesioneuroblastoma. Results Neuron-rich epithelium is always found inferior to the cribriform plate, even at advanced age, despite the interruptions in the neuroepithelial sheet caused by patchy respiratory metaplasia. The pattern of immunostaining with our antibody panel identifies two distinct types of basal cell progenitors in human OE similar to rodents. The panel also clarifies the complex composition of the esthesioneuroblastoma. Conclusion The extent of human olfactory mucosa at autopsy can easily be delineated as a function of age and neurological disease. The similarities in human vs. rodent OE will enable us to translate knowledge from experimental animals to humans and will extend our understanding of human olfactory pathophysiology. PMID:21792956

  10. Shape of the human nasal cavity promotes retronasal smell

    NASA Astrophysics Data System (ADS)

    Trastour, Sophie; Melchionna, Simone; Mishra, Shruti; Zwicker, David; Lieberman, Daniel E.; Kaxiras, Efthimios; Brenner, Michael P.

    2015-11-01

    Humans are exceptionally good at perceiving the flavor of food. Flavor includes sensory input from taste receptors but is dominated by olfactory (smell) receptors. To smell food while eating, odors must be transported to the nasal cavity during exhalation. Olfactory performance of this retronasal route depends, among other factors, on the position of the olfactory receptors and the shape of the nasal cavity. One biological hypothesis is that the derived configuration of the human nasal cavity has resulted in a greater capacity for retronasal smell, hence enhanced flavor perception. We here study the air flow and resulting odor deposition as a function of the nasal geometry and the parameters of exhalation. We perform computational fluid dynamics simulations in realistic geometries obtained from CT scans of humans. Using the resulting flow fields, we then study the deposition of tracer particles in the nasal cavity. Additionally, we derive scaling laws for the odor deposition rate as a function of flow parameters and geometry using boundary layer theory. These results allow us to assess which changes in the evolution of the human nose led to significant improvements of retronasal smell.

  11. Ethmoidectomy combined with superior meatus enlargement increases olfactory airflow

    PubMed Central

    Kondo, Kenji; Nomura, Tsutomu; Yamasoba, Tatsuya

    2017-01-01

    Objectives The relationship between a particular surgical technique in endoscopic sinus surgery (ESS) and airflow changes in the post‐operative olfactory region has not been assessed. The present study aimed to compare olfactory airflow after ESS between conventional ethmoidectomy and ethmoidectomy with superior meatus enlargement, using virtual ESS and computational fluid dynamics (CFD) analysis. Study Design Prospective computational study. Materials and Methods Nasal computed tomography images of four adult subjects were used to generate models of the nasal airway. The original preoperative model was digitally edited as virtual ESS by performing uncinectomy, ethmoidectomy, antrostomy, and frontal sinusotomy. The following two post‐operative models were prepared: conventional ethmoidectomy with normal superior meatus (ESS model) and ethmoidectomy with superior meatus enlargement (ESS‐SM model). The calculated three‐dimensional nasal geometries were confirmed using virtual endoscopy to ensure that they corresponded to the post‐operative anatomy observed in the clinical setting. Steady‐state, laminar, inspiratory airflow was simulated, and the velocity, streamline, and mass flow rate in the olfactory region were compared among the preoperative and two postoperative models. Results The mean velocity in the olfactory region, number of streamlines bound to the olfactory region, and mass flow rate were higher in the ESS‐SM model than in the other models. Conclusion We successfully used an innovative approach involving virtual ESS, virtual endoscopy, and CFD to assess postoperative outcomes after ESS. It is hypothesized that the increased airflow to the olfactory fossa achieved with ESS‐SM may lead to improved olfactory function; however, further studies are required. Level of Evidence NA. PMID:28894833

  12. Satratoxin G from the Black Mold Stachybotrys chartarum Evokes Olfactory Sensory Neuron Loss and Inflammation in the Murine Nose and Brain

    PubMed Central

    Islam, Zahidul; Harkema, Jack R.; Pestka, James J.

    2006-01-01

    Satratoxin G (SG) is a macrocyclic trichothecene mycotoxin produced by Stachybotrys chartarum, the “black mold” suggested to contribute etiologically to illnesses associated with water-damaged buildings. Using an intranasal instillation model in mice, we found that acute SG exposure specifically induced apoptosis of olfactory sensory neurons (OSNs) in the olfactory epithelium. Dose–response analysis revealed that the no-effect and lowest-effect levels at 24 hr postinstillation (PI) were 5 and 25 μg/kg body weight (bw) SG, respectively, with severity increasing with dose. Apoptosis of OSNs was identified using immunohistochemistry for caspase-3 expression, electron microscopy for ultrastructural cellular morphology, and real-time polymerase chain reaction for elevated expression of the proapoptotic genes Fas, FasL, p75NGFR, p53, Bax, caspase-3, and CAD. Time-course studies with a single instillation of SG (500 μg/kg bw) indicated that maximum atrophy of the olfactory epithelium occurred at 3 days PI. Exposure to lower doses (100 μg/kg bw) for 5 consecutive days resulted in similar atrophy and apoptosis, suggesting that in the short term, these effects are cumulative. SG also induced an acute, neutrophilic rhinitis as early as 24 hr PI. Elevated mRNA expression for the proinflammatory cytokines tumor necrosis factor-α, interleukin-6 (IL-6), and IL-1 and the chemokine macrophage-inflammatory protein-2 (MIP-2) were detected at 24 hr PI in both the ethmoid turbinates of the nasal airways and the adjacent olfactory bulb of the brain. Marked atrophy of the olfactory nerve and glomerular layers of the olfactory bulb was also detectable by 7 days PI along with mild neutrophilic encephalitis. These findings suggest that neurotoxicity and inflammation within the nose and brain are potential adverse health effects of exposure to satratoxins and Stachybotrys in the indoor air of water-damaged buildings. PMID:16835065

  13. Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain.

    PubMed

    Islam, Zahidul; Harkema, Jack R; Pestka, James J

    2006-07-01

    Satratoxin G (SG) is a macrocyclic trichothecene mycotoxin produced by Stachybotrys chartarum, the "black mold" suggested to contribute etiologically to illnesses associated with water-damaged buildings. Using an intranasal instillation model in mice, we found that acute SG exposure specifically induced apoptosis of olfactory sensory neurons (OSNs) in the olfactory epithelium. Dose-response analysis revealed that the no-effect and lowest-effect levels at 24 hr postinstillation (PI) were 5 and 25 microg/kg body weight (bw) SG, respectively, with severity increasing with dose. Apoptosis of OSNs was identified using immunohistochemistry for caspase-3 expression, electron microscopy for ultrastructural cellular morphology, and real-time polymerase chain reaction for elevated expression of the proapoptotic genes Fas, FasL, p75NGFR, p53, Bax, caspase-3, and CAD. Time-course studies with a single instillation of SG (500 microg/kg bw) indicated that maximum atrophy of the olfactory epithelium occurred at 3 days PI. Exposure to lower doses (100 microg/kg bw) for 5 consecutive days resulted in similar atrophy and apoptosis, suggesting that in the short term, these effects are cumulative. SG also induced an acute, neutrophilic rhinitis as early as 24 hr PI. Elevated mRNA expression for the proinflammatory cytokines tumor necrosis factor-alpha, interleukin-6 (IL-6) , and IL-1 and the chemokine macrophage-inflammatory protein-2 (MIP-2) were detected at 24 hr PI in both the ethmoid turbinates of the nasal airways and the adjacent olfactory bulb of the brain. Marked atrophy of the olfactory nerve and glomerular layers of the olfactory bulb was also detectable by 7 days PI along with mild neutrophilic encephalitis. These findings suggest that neurotoxicity and inflammation within the nose and brain are potential adverse health effects of exposure to satratoxins and Stachybotrys in the indoor air of water-damaged buildings.

  14. A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction.

    PubMed

    Lawson, M J; Craven, B A; Paterson, E G; Settles, G S

    2012-07-01

    Olfaction begins when an animal draws odorant-laden air into its nasal cavity by sniffing, thus transporting odorant molecules from the external environment to olfactory receptor neurons (ORNs) in the sensory region of the nose. In the dog and other macrosmatic mammals, ORNs are relegated to a recess in the rear of the nasal cavity that is comprised of a labyrinth of scroll-like airways. Evidence from recent studies suggests that nasal airflow patterns enhance olfactory sensitivity by efficiently delivering odorant molecules to the olfactory recess. Here, we simulate odorant transport and deposition during steady inspiration in an anatomically correct reconstructed model of the canine nasal cavity. Our simulations show that highly soluble odorants are deposited in the front of the olfactory recess along the dorsal meatus and nasal septum, whereas moderately soluble and insoluble odorants are more uniformly deposited throughout the entire olfactory recess. These results demonstrate that odorant deposition patterns correspond with the anatomical organization of ORNs in the olfactory recess. Specifically, ORNs that are sensitive to a particular class of odorants are located in regions where that class of odorants is deposited. The correlation of odorant deposition patterns with the anatomical organization of ORNs may partially explain macrosmia in the dog and other keen-scented species.

  15. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage.

    PubMed

    Yan, Miling; Pamp, Sünje J; Fukuyama, Julia; Hwang, Peter H; Cho, Do-Yeon; Holmes, Susan; Relman, David A

    2013-12-11

    The indigenous microbiota of the nasal cavity plays important roles in human health and disease. Patterns of spatial variation in microbiota composition may help explain Staphylococcus aureus colonization and reveal interspecies and species-host interactions. To assess the biogeography of the nasal microbiota, we sampled healthy subjects, representing both S. aureus carriers and noncarriers at three nasal sites (anterior naris, middle meatus, and sphenoethmoidal recess). Phylogenetic compositional and sparse linear discriminant analyses revealed communities that differed according to site epithelium type and S. aureus culture-based carriage status. Corynebacterium accolens and C. pseudodiphtheriticum were identified as the most important microbial community determinants of S. aureus carriage, and competitive interactions were only evident at sites with ciliated pseudostratified columnar epithelium. In vitro cocultivation experiments provided supporting evidence of interactions among these species. These results highlight spatial variation in nasal microbial communities and differences in community composition between S. aureus carriers and noncarriers. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage

    PubMed Central

    Yan, Miling; Pamp, Sünje J.; Fukuyama, Julia; Hwang, Peter H.; Cho, Do-Yeon; Holmes, Susan; Relman, David A.

    2013-01-01

    Summary The indigenous microbiota of the nasal cavity plays important roles in human health and disease. Patterns of spatial variation in microbiota composition may help explain Staphylococcus aureus colonization, and reveal interspecies and species-host interactions. To assess the biogeography of the nasal microbiota, we sampled healthy subjects, representing both S. aureus carriers and non-carriers, at 3 nasal sites (anterior naris, middle meatus, and sphenoethmoidal recess). Phylogenetic compositional and sparse linear discriminant analyses revealed communities that differed according to site epithelium type and S. aureus culture-based carriage status. Corynebacterium accolens and C. pseudodiphtheriticum were identified as the most important microbial community determinants of S. aureus carriage, with competitive interactions evident only at sites with ciliated pseudostratified columnar epithelium. In vitro co-cultivation experiments provided supporting evidence of interactions among these species. These results highlight spatial variation in nasal microbial communities and differences in community composition between S. aureus carriers and non-carriers. PMID:24331461

  17. Predictors of Olfactory Dysfunction in Rhinosinusitis Using the Brief Smell Identification Test

    PubMed Central

    Alt, Jeremiah A.; Mace, Jess C.; Buniel, Maria C. F.; Soler, Zachary M.; Smith, Timothy L.

    2014-01-01

    Objective Associations between olfactory function to quality-of-life (QOL) and disease severity in patients with rhinosinusitis is poorly understood. We sought to evaluate and compare olfactory function between subgroups of patients with rhinosinusitis using the Brief Smell Identification Test (BSIT). Study Design Cross-sectional evaluation of a multi-center cohort. Methods Patients with recurrent acute sinusitis (RARS) and chronic rhinosinusitis (CRS) with and without nasal polyposis were prospectively enrolled from three academic tertiary care sites. Each subject completed the BSIT, in addition to measures of disease-specific QOL. Patient demographics, comorbidities, and clinical measures of disease severity were compared between patients with normal (BSIT; ≥9) and abnormal (BSIT; <9) olfaction scores. Regression modeling was used to identify potential risk factors associated with olfactory impairment. Results Patients with rhinosinusitis (n=445) were found to suffer olfactory dysfunction as measured by the BSIT (28.3%). Subgroups of rhinosinusitis differed in the degree of olfactory dysfunction reported. Worse disease severity, measured by computed tomography and nasal endoscopy, correlated to worse olfaction. Olfactory scores did not consistently correlate with Rhinosinusitis Disability Index or Sinonasal Outcome Test scores. Regression models demonstrated nasal polyposis was the strongest predictor of olfactory dysfunction. Recalcitrant disease and aspirin intolerance were strongly predictive of worse olfactory function. Conclusion Olfactory dysfunction is a complex, multi-factorial process found to be differentially expressed within subgroups of rhinosinusitis. Olfaction was associated with disease severity as measured by imaging and endoscopy, with only weak associations to disease-specific QOL measures. PMID:24402746

  18. Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein.

    PubMed Central

    Reed, C J; Lock, E A; De Matteis, F

    1988-01-01

    1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone

  19. Gross anatomy and histology of the olfactory rosette of the shark Heptranchias perlo.

    PubMed

    Ferrando, Sara; Gallus, Lorenzo; Amaroli, Andrea; Gambardella, Chiara; Waryani, Baradi; Di Blasi, Davide; Vacchi, Marino

    2017-06-01

    Sharks belonging to the family Hexanchidae have six or seven gill slits, unlike all other elasmobranchs, which have five gill slits. Their olfactory organs have a round shape, which is common for holocephalans, but not for elasmobranchs. Thus, the shape of the olfactory organ represents a further, less striking, peculiarity of this family among elasmobranchs. Despite that, the microscopic anatomy and histology of the olfactory organ have not yet been studied in any species of this family. Here, an anatomical and histological description of the olfactory organ of the sharpnose sevengill shark Heptranchias perlo is given. The organ is a rosette, with a central raphe and 31-34 primary lamellae, which bear secondary lamellae with a more or less branched shape. The elastic connective capsule which envelops the olfactory rosette possibly changes its shape along with water influx. In the olfactory epithelium, the supporting cells also have a secretory function, while no specialized mucous cells are visible; regarding this feature the olfactory epithelium of H. perlo differs from that of other chondrichthyan species. The immunohistochemical investigation of the sensory epithelium shows the absence of immunoreactivity for Gαolf in receptor neurons, which confirms previous observations in Chondrichthyes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manceur, Aziza P.; Donnelly Centre, University of Toronto, Toronto, Ontario; Tseng, Michael

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B)more » inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.« less

  1. Human Neural Cells Transiently Express Reelin during Olfactory Placode Development

    PubMed Central

    Antal, M. Cristina; Samama, Brigitte; Ghandour, M. Said; Boehm, Nelly

    2015-01-01

    Reelin, an extracellular glycoprotein is essential for migration and correct positioning of neurons during development. Since the olfactory system is known as a source of various migrating neuronal cells, we studied Reelin expression in the two chemosensory olfactory systems, main and accessory, during early developmental stages of human foetuses/embryos from Carnegie Stage (CS) 15 to gestational week (GW) 14. From CS 15 to CS 18, but not at later stages, a transient expression of Reelin was detected first in the presumptive olfactory and then in the presumptive vomeronasal epithelium. During the same period, Reelin-positive cells detach from the olfactory/vomeronasal epithelium and migrate through the mesenchyme beneath the telencephalon. Dab 1, an adaptor protein of the Reelin pathway, was simultaneously expressed in the migratory mass from CS16 to CS17 and, at later stages, in the presumptive olfactory ensheathing cells. Possible involvements of Reelin and Dab 1 in the peripheral migrating stream are discussed. PMID:26270645

  2. Development of the nasal chemosensory organs in two terrestrial anurans: the directly developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), and the metamorphosing toad, Bufo americanus (Anura: Bufonidae).

    PubMed

    Jermakowicz, Walter J; Dorsey, David A; Brown, Amy L; Wojciechowski, Karen; Giscombe, Claudette L; Graves, Brent M; Summers, Cliff H; Ten Eyck, Gary R

    2004-08-01

    Nearly all vertebrates possess an olfactory organ but the vomeronasal organ is a synapomorphy for tetrapods. Nevertheless, it has been lost in several groups of tetrapods, including aquatic and marine animals. The present study examines the development of the olfactory and vomeronasal organs in two terrestrial anurans that exhibit different developmental modes. This study compares the development of the olfactory and vomeronasal organs in metamorphic anurans that exhibit an aquatic larva (Bufo americanus) and directly developing anurans that have eliminated the tadpole (Eleutherodactylus coqui). The olfactory epithelium in larval B. americanus is divided into dorsal and ventral branches in the rostral and mid-nasal regions. The larval olfactory pattern in E. coqui has been eliminated. Ontogeny of the olfactory system in E. coqui embryos starts to vary substantially from the larval pattern around the time of operculum development, the temporal period when the larval stage is hypothesized to have been eliminated. The nasal anatomy of the two frogs does not appear morphologically similar until the late stages of embryogenesis in E. coqui and the terminal portion of metamorphosis in B. americanus. Both species and their respective developing offspring, aquatic tadpoles and terrestrial egg/embryos, possess a vomeronasal organ. The vomeronasal organ develops at mid-embryogenesis in E. coqui and during the middle of the larval period in B. americanus, which is relatively late for neobatrachians. Development of the vomeronasal organ in both frogs is linked to the developmental pattern of the olfactory system. This study supports the hypothesis that the most recent common ancestor of tetrapods possessed a vomeronasal organ and was aquatic, and that the vomeronasal organ was retained in the Amphibia, but lost in some other groups of tetrapods, including aquatic and marine animals. Copyright 2004 Wiley-Liss, Inc.

  3. A rare case report of mixed olfactory neuroblastoma: Carcinoma with review of literature.

    PubMed

    Gandhoke, Charandeep S; Dewan, Aditi; Gupta, Divya; Syal, Simran K; Jagetia, Anita; Saran, Ravindra K; Meher, Ravi; Srivastava, Arvind K; Singh, Daljit

    2017-01-01

    Olfactory neuroblastoma (ONB) is a rare malignant neuroectodermal tumor of the nasal cavity. Mixed olfactory neuroblastoma which contains areas of divergent differentiation is even rare. Till date, only 4 cases of mixed olfactory neuroblastomas have been reported. We report the case of a 46-year-old male who presented with the chief complaints of nasal bleeding and nasal obstruction since 4 months. Radiological imaging was suggestive of a large heterogeneous mass in the left superior nasal cavity with extensions into bilateral maxillary, ethmoidal, and sphenoidal sinuses, as well as into the anterior cranial fossa. Bifrontal osteoplastic craniotomy and excision of the intracranial part of the tumor from above and transnasal endoscopic removal of the mass in the nasal cavities and paranasal sinuses from below was done. Postoperative radiological imaging was suggestive of gross complete excision of the mass. Histopathological diagnosis was "mixed olfactory neuroblastoma-carcinoma (squamous and glandular differentiation) Hyams grade IV." On immunohistochemistry, the tumor cells were positive for neuron specific enolase (NSE), synaptophysin, chromogranin, and CD56 and peripherally for S100. Because of personal reasons, the patient did not take adjuvant radiotherapy. He presented again after 2 months with a full blown recurrence of esthesioneuroblastoma with similar extensions as before. The patient is now planned for salvage surgery followed by adjuvant chemoradiation. We report the 5 th case in the world of mixed olfactory neuroblastoma-carcinoma with squamous and glandular differentiation. From an analysis of the findings in the 5 reported cases of mixed olfactory neuroblastomas, one might infer that a separate subcategory of ONB, i.e., mixed ONB, should be considered because mixed ONBs have an aggressive behavior, high rates of recurrence, and these tumors should be treated aggressively by multimodality treatment.

  4. A rare case report of mixed olfactory neuroblastoma: Carcinoma with review of literature

    PubMed Central

    Gandhoke, Charandeep S.; Dewan, Aditi; Gupta, Divya; Syal, Simran K.; Jagetia, Anita; Saran, Ravindra K.; Meher, Ravi; Srivastava, Arvind K.; Singh, Daljit

    2017-01-01

    Background: Olfactory neuroblastoma (ONB) is a rare malignant neuroectodermal tumor of the nasal cavity. Mixed olfactory neuroblastoma which contains areas of divergent differentiation is even rare. Till date, only 4 cases of mixed olfactory neuroblastomas have been reported. Case Description: We report the case of a 46-year-old male who presented with the chief complaints of nasal bleeding and nasal obstruction since 4 months. Radiological imaging was suggestive of a large heterogeneous mass in the left superior nasal cavity with extensions into bilateral maxillary, ethmoidal, and sphenoidal sinuses, as well as into the anterior cranial fossa. Bifrontal osteoplastic craniotomy and excision of the intracranial part of the tumor from above and transnasal endoscopic removal of the mass in the nasal cavities and paranasal sinuses from below was done. Postoperative radiological imaging was suggestive of gross complete excision of the mass. Histopathological diagnosis was “mixed olfactory neuroblastoma-carcinoma (squamous and glandular differentiation) Hyams grade IV.” On immunohistochemistry, the tumor cells were positive for neuron specific enolase (NSE), synaptophysin, chromogranin, and CD56 and peripherally for S100. Because of personal reasons, the patient did not take adjuvant radiotherapy. He presented again after 2 months with a full blown recurrence of esthesioneuroblastoma with similar extensions as before. The patient is now planned for salvage surgery followed by adjuvant chemoradiation. Conclusion: We report the 5th case in the world of mixed olfactory neuroblastoma-carcinoma with squamous and glandular differentiation. From an analysis of the findings in the 5 reported cases of mixed olfactory neuroblastomas, one might infer that a separate subcategory of ONB, i.e., mixed ONB, should be considered because mixed ONBs have an aggressive behavior, high rates of recurrence, and these tumors should be treated aggressively by multimodality treatment. PMID

  5. Office procedures for quantitative assessment of olfactory function.

    PubMed

    Doty, Richard L

    2007-01-01

    Despite the importance of the sense of smell for establishing the flavor of foods and beverages, as well as protecting against environmental dangers, this primary sensory system is commonly ignored by the rhinologist. In this article basic issues related to practical measurement of olfactory function in the clinic are described and examples of the application of the two most common paradigms for such measurement--odor identification and detection--are presented. A listing is made of the 27 olfactory tests currently used clinically, along with their strengths and weaknesses. A brief review of common nasosinus-related disorders for which quantitative olfactory testing has been performed is provided. Although many psychophysical tests are available for quantifying olfactory loss, it is apparent that a number are limited in terms of practicality, sensitivity, and reliability. In general, sensitivity and reliability are positively correlated with test length. Given the strengths of the more reliable forced-choice pyschophysical tests and the limitations of electrophysiological tests, the common distinction between "subjective" and "objective" tests is misleading and should not be used. Complete recovery of olfactory function, as measured quantitatively, rarely follows surgical or medical interventions in patients with rhinosinusitis. Given the availability of practical clinical olfactory tests, the modern rhinologist can easily quantify cranial nerve (CN) I function. The application of such tests has led to a new understanding of the effects of nasal disease on olfactory function. Except in cases of total or near-total nasal obstruction, olfactory and airway patency measures usually are unrelated, in accord with the concept that rhinosinusitis primarily influences olfactory function by apoptotic pathological changes within the olfactory neuroepithelium.

  6. Lesion of olfactory epithelium attenuates expression of morphine-induced behavioral sensitization and reinstatement of drug-primed conditioned place preference in mice.

    PubMed

    Niu, Haichen; Zheng, Yingwei; Huma, Tanzeel; Rizak, Joshua D; Li, Ling; Wang, Guimei; Ren, He; Xu, Liqi; Yang, Jianzhen; Ma, Yuanye; Lei, Hao

    2013-01-01

    Previous studies have shown that olfactory impairment by disrupting the olfactory epithelium prior to morphine administration attenuated the development addiction-related behaviors. However, it is unclear whether olfactory impairment will affect the expression of already established addiction-related behaviors. To address this issue, mice were conditioned with morphine to induce behavioral sensitization and condition placed preference (CPP). After an abstinence period, the animals were subjected to either an intranasal ZnSO(4) effusion (ZnE) or sham treatment with saline. Behavioral sensitization and CPP reinstatement were evaluated 24h later, as well as the expression of c-Fos protein, a marker of activated neural sites, in brain regions of interest. It was found that ZnE treatment attenuated morphine-induced behavioral sensitization and reinstatement of CPP. Compared to the saline-treated ones, the ZnE-treated animals showed reduced c-Fos expression in the nucleus accumbens (NAc) associated with behavioral sensitization, and in the NAc, cingulate cortex, dentate gyrus, amygdala, lateral hypothalamus and ventral tegmental area associated with CPP reinstatement. Together, these results demonstrated that acute olfactory impairment could attenuate already established addiction-related behaviors and expression of c-Fos in drug addiction related brain regions, perhaps by affecting the coordination between reward and motivational systems in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Gonadotropin-releasing hormone immunoreactivity in the adult and fetal human olfactory system.

    PubMed

    Kim, K H; Patel, L; Tobet, S A; King, J C; Rubin, B S; Stopa, E G

    1999-05-01

    Studies in fetal brain tissue of rodents, nonhuman primates and birds have demonstrated that cells containing gonadotropin-releasing hormone (GnRH) migrate from the olfactory placode across the nasal septum into the forebrain. The purpose of this study was to examine GnRH neurons in components of the adult and fetal human olfactory system. In the adult human brain (n=4), immunoreactive GnRH was evident within diffusely scattered cell bodies and processes in the olfactory bulb, olfactory nerve, olfactory cortex, and nervus terminalis located on the anterior surface of the gyrus rectus. GnRH-immunoreactive structures showed a similar distribution in 20-week human fetal brains (n=2), indicating that the migration of GnRH neurons is complete at this time. In 10-11-week fetal brains (n=2), more cells were noted in the nasal cavity than in the brain. Our data are consistent with observations made in other species, confirming olfactory derivation and migration of GnRH neurons into the brain from the olfactory placode. Copyright 1999 Elsevier Science B.V.

  8. Increase of olfactory threshold in plating factory workers exposed to chromium in Korea.

    PubMed

    Kitamura, Fumihiko; Yokoyama, Kazuhito; Araki, Shunichi; Nishikitani, Mariko; Choi, Jae-Wook; Yum, Youg-Tae; Park, Hee-Chan; Park, Sang-Hwoi; Sato, Hajime

    2003-07-01

    To disclose the effects of chromium (Cr) on olfactory function, olfactory threshold tests were conducted on 27 male plating workers (Cr workers) with signs and symptoms of olfactory irritation but without nasal septum perforation or ulcer and on 34 male control subjects in Korean plating factories. The Cr workers had been exposed to Cr fume for 0.9 to 18.2 (mean 7.9) years; their blood Cr concentrations (0.16-3.69, mean 1.29 microg/dl) were significantly higher than those of the 34 control subjects (0.04-1.95, mean 0.55 microg/dl). Scores on recognition thresholds among the Cr workers were significantly higher than those of the control subjects (p < 0.05) and related positively and significantly to the exposure periods of the 27 Cr workers (p < 0.05). Olfactory thresholds were not significantly different between the Cr workers with and without nasal signs or symptoms, except that the scores on the recognition threshold were significantly higher in those experiencing difficulty with smell (p < 0.05). It is suggested that olfactory threshold is affected by Cr without development of nasal septum perforation or ulceration.

  9. Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization

    PubMed Central

    Polese, Gianluca; Bertapelle, Carla

    2016-01-01

    ABSTRACT The cephalopod olfactory organ was described for the first time in 1844 by von Kölliker, who was attracted to the pair of small pits of ciliated cells on each side of the head, below the eyes close to the mantle edge, in both octopuses and squids. Several functional studies have been conducted on decapods but very little is known about octopods. The morphology of the octopus olfactory system has been studied, but only to a limited extent on post-hatching specimens, and the only paper on adult octopus gives a minimal description of the olfactory organ. Here, we describe the detailed morphology of young male and female Octopus vulgaris olfactory epithelium, and using a combination of classical morphology and 3D reconstruction techniques, we propose a new classification for O. vulgaris olfactory sensory neurons. Furthermore, using specific markers such as olfactory marker protein (OMP) and proliferating cell nuclear antigen (PCNA) we have been able to identify and differentially localize both mature olfactory sensory neurons and olfactory sensory neurons involved in epithelium turnover. Taken together, our data suggest that the O. vulgaris olfactory organ is extremely plastic, capable of changing its shape and also proliferating its cells in older specimens. PMID:27069253

  10. Trichosomoides nasalis (Nematoda: Trichinelloidea) in the murid host Arvicanthis niloticus: Migration to the epithelium of the nasal mucosa after intramuscular development

    PubMed Central

    Fall, E.H.; Diagne, M.; Martin, C.; Mutafchiev, Y.; Granjon, L.; Ba, K.; Junker, K.; Bain, O.

    2012-01-01

    Knowledge of the biology of the trichinelloid subfamily Trichosomoidinae is poor. Trichosomoides nasalis is a common parasite of Arvicanthis niloticus (Muridae) in Senegal, and a procedure for experimental infections has been established. It has been demonstrated that larvae develop in striated muscle fibres, similar to Trichinella spp., but they are not arrested in the first stage, and they reach the adult stage within three weeks. In the present histological study it is shown that T. nasalis females and dwarf males migrate from the abdomen and thorax to the host’s muzzle, moving through connective tissues and between muscles. A few migrating specimens were also found in the blood vessels of the nasal mucosa. While sexes were still separated in the lamina propria of the mucosa, females recovered from the epithelium contained intra-uterine males. Worms were found between the incisors in the mucosa of the anterior and median conchae which are rich in mucous cells. Only the pseudostratified epithelium was parasitized. Under natural conditions, the inflammation of the nasal mucosa that is induced by the parasites might reduce the competitiveness of infected rodents when foraging or looking for potential mates. PMID:23193520

  11. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration.

    PubMed

    Calderón-Garcidueñas, Lilian; Maronpot, Robert R; Torres-Jardon, Ricardo; Henríquez-Roldán, Carlos; Schoonhoven, Robert; Acuña-Ayala, Hilda; Villarreal-Calderón, Anna; Nakamura, Jun; Fernando, Reshan; Reed, William; Azzarelli, Biagio; Swenberg, James A

    2003-01-01

    Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NFkappaB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid(1-42) in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days-10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NFkappaB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and beta amyloid(1-42) in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer

  12. Evidence that thyroid hormone induces olfactory cellular proliferation in salmon during a sensitive period for imprinting.

    PubMed

    Lema, Sean C; Nevitt, Gabrielle A

    2004-09-01

    Salmon have long been known to imprint and home to natal stream odors, yet the mechanisms driving olfactory imprinting remain obscure. The timing of imprinting is associated with elevations in plasma thyroid hormone levels, with possible effects on growth and proliferation of the peripheral olfactory system. Here, we begin to test this idea by determining whether experimentally elevated plasma levels of 3,5,3'-triiodothyronine (T(3)) influence cell proliferation as detected by the 5-bromo-2'-deoxyuridine (BrdU) cell birth-dating technique in the olfactory epithelium of juvenile coho salmon (Oncorhynchus kisutch). We also explore how natural fluctuations in thyroxine (T(4)) relate to proliferation in the epithelium during the parr-smolt transformation. In both studies, we found that BrdU labeled both single and clusters of mitotic cells. The total number of BrdU-labeled cells in the olfactory epithelium was significantly greater in fish with artificially elevated T(3) compared with placebo controls. This difference in proliferation was restricted to the basal region of the olfactory epithelium, where multipotent progenitor cells differentiate into olfactory receptor neurons. The distributions of mitotic cluster sizes differed significantly from a Poisson distribution for both T(3) and placebo treatments, suggesting that proliferation tends to be non-random. Over the course of the parr-smolt transformation, changes in the density of BrdU cells showed a positive relationship with natural fluctuations in plasma T(4). This relationship suggests that even small changes in thyroid activity can stimulate the proliferation of neural progenitor cells in the salmon epithelium. Taken together, our results establish a link between the thyroid hormone axis and measurable anatomical changes in the peripheral olfactory system.

  13. Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons

    PubMed Central

    Brunert, Daniela; Kurtenbach, Stefan; Isik, Sonnur; Benecke, Heike; Gisselmann, Günter; Schuhmann, Wolfgang; Hatt, Hanns; Wetzel, Christian H.

    2009-01-01

    The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis. PMID:19430528

  14. The essence of appetite: Does olfactory receptor variation play a role?

    USDA-ARS?s Scientific Manuscript database

    Olfactory receptors are G-protein coupled chemoreceptors expressed on millions of olfactory sensory neurons within the nasal cavity. These receptors detect environmental odorants and signal the brain regarding the location of feed, potential mates, and the presence of possible threats (e.g., predato...

  15. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration

    PubMed Central

    Finger, Thomas E.; Böttger, Bärbel; Hansen, Anne; Anderson, Karl T.; Alimohammadi, Hessamedin; Silver, Wayne L.

    2003-01-01

    Inhalation of irritating substances leads to activation of the trigeminal nerve, triggering protective reflexes that include apnea or sneezing. Receptors for trigeminal irritants are generally assumed to be located exclusively on free nerve endings within the nasal epithelium, requiring that trigeminal irritants diffuse through the junctional barrier at the epithelial surface to activate receptors. We find, in both rats and mice, an extensive population of chemosensory cells that reach the surface of the nasal epithelium and form synaptic contacts with trigeminal afferent nerve fibers. These chemosensory cells express T2R “bitter-taste” receptors and α-gustducin, a G protein involved in chemosensory transduction. Functional studies indicate that bitter substances applied to the nasal epithelium activate the trigeminal nerve and evoke changes in respiratory rate. By extending to the surface of the nasal epithelium, these chemosensory cells serve to expand the repertoire of compounds that can activate trigeminal protective reflexes. The trigeminal chemoreceptor cells are likely to be remnants of the phylogenetically ancient population of solitary chemoreceptor cells found in the epithelium of all anamniote aquatic vertebrates. PMID:12857948

  16. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration.

    PubMed

    Finger, Thomas E; Böttger, Bärbel; Hansen, Anne; Anderson, Karl T; Alimohammadi, Hessamedin; Silver, Wayne L

    2003-07-22

    Inhalation of irritating substances leads to activation of the trigeminal nerve, triggering protective reflexes that include apnea or sneezing. Receptors for trigeminal irritants are generally assumed to be located exclusively on free nerve endings within the nasal epithelium, requiring that trigeminal irritants diffuse through the junctional barrier at the epithelial surface to activate receptors. We find, in both rats and mice, an extensive population of chemosensory cells that reach the surface of the nasal epithelium and form synaptic contacts with trigeminal afferent nerve fibers. These chemosensory cells express T2R "bitter-taste" receptors and alpha-gustducin, a G protein involved in chemosensory transduction. Functional studies indicate that bitter substances applied to the nasal epithelium activate the trigeminal nerve and evoke changes in respiratory rate. By extending to the surface of the nasal epithelium, these chemosensory cells serve to expand the repertoire of compounds that can activate trigeminal protective reflexes. The trigeminal chemoreceptor cells are likely to be remnants of the phylogenetically ancient population of solitary chemoreceptor cells found in the epithelium of all anamniote aquatic vertebrates.

  17. Regional deposition of nasal sprays in adults: A wide ranging computational study.

    PubMed

    Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H

    2018-05-01

    The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Cladistic Analysis of Olfactory and Vomeronasal Systems

    PubMed Central

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2010-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical “cortex.” We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses. PMID:21290004

  19. Cladistic analysis of olfactory and vomeronasal systems.

    PubMed

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  20. Mechanisms of Regulation of Olfactory Transduction and Adaptation in the Olfactory Cilium

    PubMed Central

    Antunes, Gabriela; Sebastião, Ana Maria; Simoes de Souza, Fabio Marques

    2014-01-01

    Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR

  1. [Posttraumatic anosmia: olfactory event related potentials and MRI evaluation].

    PubMed

    Liu, Jian-Feng; You, Hui; Ni, Dao-Feng; Zhang, Qiu-Hang; Yang, Da-Zhang; Wang, Na-Ya

    2008-03-01

    Using olfactory event related potentials (OERP) and magnetic resonance to evaluate olfactory function in patients with posttraumatic anosmia. Twenty four patients with posttraumatic anosmia were reviewed retrospectively. A thorough medical history, physical examination, nasal endoscopy, T&T olfactory testing, olfactory event-related potentials, brain computed tomography scan and magnetic resonance image of olfactory pathway were performed in all patients. Subjective olfactory testing indicated 20 of 24 patients were birhinal anosmia, 2 with right nostril anosmia and left impairment, 2 with left anosmia and right normal. No OERP were obtained in 24 (20 were birhinal, 4 was monorhinal), except 4 cases with single nostril. Magnetic resonance imaging revealed the injures to the olfactory bulbs (100%), rectus gyrus (91.7%), orbital gyrus (67%), olfactory tracts (8%) and temporal lobes (8%). OERP can objectively evaluate posttraumatic olfactory function, and magnetic resonance of olfactory pathway can precisely identify the location and extent of injures.

  2. Health risks associated with inhaled nasal toxicants.

    PubMed

    Feron, V J; Arts, J H; Kuper, C F; Slootweg, P J; Woutersen, R A

    2001-05-01

    Health risks of inhaled nasal toxicants were reviewed with emphasis on chemically induced nasal lesions in humans, sensory irritation, olfactory and trigeminal nerve toxicity, nasal immunopathology and carcinogenesis, nasal responses to chemical mixtures, in vitro models, and nasal dosimetry- and metabolism-based extrapolation of nasal data in animals to humans. Conspicuous findings in humans are the effects of outdoor air pollution on the nasal mucosa, and tobacco smoking as a risk factor for sinonasal squamous cell carcinoma. Objective methods in humans to discriminate between sensory irritation and olfactory stimulation and between adaptation and habituation have been introduced successfully, providing more relevant information than sensory irritation studies in animals. Against the background of chemoperception as a dominant window of the brain on the outside world, nasal neurotoxicology is rapidly developing, focusing on olfactory and trigeminal nerve toxicity. Better insight in the processes underlying neurogenic inflammation may increase our knowledge of the causes of the various chemical sensitivity syndromes. Nasal immunotoxicology is extremely complex, which is mainly due to the pivotal role of nasal lymphoid tissue in the defense of the middle ear, eye, and oral cavity against antigenic substances, and the important function of the nasal passages in brain drainage in rats. The crucial role of tissue damage and reactive epithelial hyperproliferation in nasal carcinogenesis has become overwhelmingly clear as demonstrated by the recently developed biologically based model for predicting formaldehyde nasal cancer risk in humans. The evidence of carcinogenicity of inhaled complex mixtures in experimental animals is very limited, while there is ample evidence that occupational exposure to mixtures such as wood, leather, or textile dust or chromium- and nickel-containing materials is associated with increased risk of nasal cancer. It is remarkable that these

  3. NORMAL NASAL GENE EXPRESSION LEVELS USING CDNA ARRAY TECHNOLOGY

    EPA Science Inventory

    Normal Nasal Gene Expression Levels Using cDNA Array Technology.

    The nasal epithelium is a target site for chemically-induced toxicity and carcinogenicity. To detect and analyze genetic events which contribute to nasal tumor development, we first defined the gene expressi...

  4. Molecular Changes in the Nasal Cavity after N,N-Dimethyl-p-toluidine Exposure

    PubMed Central

    Dunnick, June K.; Merrick, B. Alex; Brix, Amy; Morgan, Daniel L.; Gerrish, Kevin; Wang, Yu; Flake, Gordon; Foley, Julie; Shockley, Keith R.

    2016-01-01

    N,N-Dimethyl-p-toluidine (DMPT) (Cas No. 99-97-8), an accelerant for methyl methacrylate monomers in medical devices, is a nasal cavity carcinogen in a 2-year cancer study in male and female F344/N rats, with the nasal tumors arising from the transitional cell epithelium. In this study we exposed male F344/N rats for five days to DMPT (0, 1, 6, 20, 60 or 120 mg/kg (oral gavage)) to explore early changes in the nasal cavity after short-term exposure. Lesions occurred in the nasal cavity including hyperplasia of transitional cell epithelium (60 and 120 mg/kg). Nasal tissue was rapidly removed and preserved for subsequent laser capture microdissection and isolation of the transitional cell epithelium (0 and 120 mg/kg) for transcriptomic studies. DMPT transitional cell epithelium gene transcript patterns were characteristic of an anti-oxidative damage response (e.g. Akr7a3, Maff, Mgst3), cell proliferation, and decrease in signals for apoptosis. Amino acid transporters transcripts were upregulated (e. g, Slc7a11). The DMPT nasal transcript expression pattern was similar to that found in the rat nasal cavity after formaldehyde exposure with over 1000 transcripts in common. Molecular changes in the nasal cavity after DMPT exposure suggest that oxidative damage is a mechanism for the DMPT toxic and/or carcinogenic effects. PMID:27099258

  5. 2-D And 3-D Reconstructions Of The Olfactory System Of The Rat

    NASA Astrophysics Data System (ADS)

    Reisner, Alex H.; Bell, G. A.; Bucholtz, C. A.; Rosenfeld, Dov; Tsui, K. K.

    1989-04-01

    The olfactory system of the rat is a useful model for the study of mammalian sensory systems. However, the anatomy of the nasal epithelium, where the cells responsible for detecting odors are located, is extremely complex. Therefore, we have focused our attention on the development of two- and three-dimensional automated imaging methods. The presentation of pure odorants to the experimental animal together with the injection of [14M-deoxyglucose has been combined with autoradiography of frozen sectioned material. Several approaches have been used to obtain optimal alignments of the digitized images of the sections so as to be able to generate appropriate 2-D and 3-D reconstructions. Such reconstructions allow visualization of the ethmo-turbinal bones (turbinates) and the associated soft tissue and appear to be useful in analyzing and highlighting differential metabolic activity.

  6. Ultrastructural nasal pathology in children chronically and sequentially exposed to air pollutants.

    PubMed

    Calderón-Garcidueñas, L; Valencia-Salazar, G; Rodríguez-Alcaraz, A; Gambling, T M; García, R; Osnaya, N; Villarreal-Calderón, A; Devlin, R B; Carson, J L

    2001-02-01

    Southwest Metropolitan Mexico City (SWMMC) children are repeatedly exposed to a complex mixture of air pollutants, including ozone, particulate matter, and aldehydes. Nasal biopsies taken from these children exhibit a wide range of histopathologic alterations: marked changes in ciliated and goblet cell populations, basal cell hyperplasia, squamous metaplasia, and mild dysplasias. We studied the ultrastructural features of 15 nasal biopsies obtained from clinically healthy children 4 to 15 yr of age, growing up in SWMMC. The results were compared with nasal biopsies from 11 children growing up in Veracruz and exposed to low pollutant levels. Ultrathin sections of nasal biopsies revealed an unremarkable mucociliary epithelium in control children, whereas SWMMC children showed an epithelium comprised of variable numbers of basal, ciliated, goblet, and squamous metaplastic as well as intermediate cells. Nascent ciliated cells, as evidenced by the presence of migratory kinetosomes, were common, as were ciliary abnormalities, including absent central microtubules, supernumerary central and peripheral tubules, ciliary microtubular discontinuities, and compound cilia. Dyskinesia associated with these abnormal cilia was suggested by the altered orientation of the central microtubules in closely adjacent cilia. A transudate was evident between epithelial cells, suggesting potential deficiencies in epithelial junction integrity. Particulate matter was present in heterolysosomal bodies in epithelial cells and it was also deposited in intercellular spaces. The severe structural alteration of the nasal epithelium together with the prominent acquired ciliary defects are likely the result of chronic airway injury in which ozone, particulate matter, and aldehydes are thought to play a crucial role. The nasal epithelium in SWMMC children is fundamentally disordered, and their mucociliary defense mechanisms are no longer intact. A compromised nasal epithelium has less ability to

  7. Changes of olfactory abilities in relation to age: odor identification in more than 1400 people aged 4 to 80 years.

    PubMed

    Sorokowska, A; Schriever, V A; Gudziol, V; Hummel, C; Hähner, A; Iannilli, E; Sinding, C; Aziz, M; Seo, H S; Negoias, S; Hummel, T

    2015-08-01

    The currently presented large dataset (n = 1,422) consists of results that have been assembled over the last 8 years at science fairs using the 16-item odor identification part of the "Sniffin' Sticks". In this context, the focus was on olfactory function in children; in addition before testing, we asked participants to rate their olfactory abilities and the patency of the nasal airways. We reinvestigated some simple questions, e.g., differences in olfactory odor identification abilities in relation to age, sex, self-ratings of olfactory function and nasal patency. Three major results evolved: first, consistent with previously published reports, we found that identification scores of the youngest and the oldest participants were lower than the scores obtained by people aged 20-60. Second, we observed an age-related increase in the olfactory abilities of children. Moreover, the self-assessed olfactory abilities were related to actual performance in the smell test, but only in adults, and self-assessed nasal patency was not related to the "Sniffin' Sticks" identification score.

  8. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs.

    PubMed

    Yarragudi, Sasi B; Richter, Robert; Lee, Helen; Walker, Greg F; Clarkson, Andrew N; Kumar, Haribalan; Rizwan, Shakila B

    2017-05-01

    Targeted delivery and retention of drug formulations in the olfactory mucosa, the target site for nose-to-brain drug absorption is a major challenge due to the geometrical complexity of the nose and nasal clearance. Recent modelling data indicates that 10μm-sized microparticles show maximum deposition in the olfactory mucosa. In the present study we tested the hypothesis that 10μm-sized mucoadhesive microparticles would preferentially deposit on, and increase retention of drug on, the olfactory mucosa in a novel 3D-printed human nasal-replica cast under simulated breathing. The naturally occurring mucoadhesive polymer, tamarind seed polysaccharide (TSP) was used to formulate the microparticles using a spray drying technique. Physicochemical properties of microparticles such as size, morphology and mucoadhesiveness was investigated using a combination of laser diffraction, electron microscopy and texture-analysis. Furthermore, FITC-dextrans (5-40kDa) were incorporated in TSP-microparticles as model drugs. Size-dependent permeability of the FITC-dextrans was observed ex vivo using porcine nasal mucosa. Using the human nasal-replica cast, greater deposition of 10μm TSP-microparticles in the olfactory region was observed compared to TSP-microparticles 2μm in size. Collectively, these findings support our hypothesis that 10μm-sized mucoadhesive microparticles can achieve selective deposition and retention of drug in the olfactory mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Respiratory and olfactory turbinal size in canid and arctoid carnivorans

    PubMed Central

    Green, Patrick A; Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail

    2012-01-01

    Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. PMID:23035637

  10. Numerical Simulation of Airway Dimension Effects on Airflow Patterns and Odorant Deposition Patterns in the Rat Nasal Cavity

    PubMed Central

    Wei, Zehong; Xu, Zhixiang; Li, Bo; Xu, Fuqiang

    2013-01-01

    The sense of smell is largely dependent on the airflow and odorant transport in the nasal cavity, which in turn depends on the anatomical structure of the nose. In order to evaluate the effect of airway dimension on rat nasal airflow patterns and odorant deposition patterns, we constructed two 3-dimensional, anatomically accurate models of the left nasal cavity of a Sprague-Dawley rat: one was based on high-resolution MRI images with relatively narrow airways and the other was based on artificially-widening airways of the MRI images by referencing the section images with relatively wide airways. Airflow and odorant transport, in the two models, were determined using the method of computational fluid dynamics with finite volume method. The results demonstrated that an increase of 34 µm in nasal airway dimension significantly decreased the average velocity in the whole nasal cavity by about 10% and in the olfactory region by about 12% and increased the volumetric flow into the olfactory region by about 3%. Odorant deposition was affected to a larger extent, especially in the olfactory region, where the maximum odorant deposition difference reached one order of magnitude. The results suggest that a more accurate nasal cavity model is necessary in order to more precisely study the olfactory function of the nose when using the rat. PMID:24204875

  11. Structure of the principal olfactory tract.

    PubMed

    Gil-Carcedo, L M; Vallejo, L A; Gil-Carcedo, E

    2000-01-01

    Although the purpose and importance of the sense of smell in human beings has not been totally clarified, it is one of the principal information channels in macrosmatic animals. It was the first long-distance information system to have appeared in phylogenetic evolution. The objective of this article is to deepen the knowledge of the pathways that join the olfactory epithelium with the cortical olfaction areas, to better understand olfactory dysfunction in human beings. Differential staining and marking techniques were applied to histologic sections obtained from 155 animals of different species, to study the different connections existing among olfactory tract components. Our study of the connections between the olfactory mucosa and the principal olfactory bulb deserves special mention. The distribution of second neuron connections of the olfactory tract with the central nervous system is quite complex and diffuse. This indicates an interrelation between the sense of smell and a multitude of functions. These connections seem to be of different quantitative importance according to species, but qualitatively they exist in both human beings and other macrosmatic animals.

  12. Localization of α1-2 Fucose Glycan in the Mouse Olfactory Pathway.

    PubMed

    Kondoh, Daisuke; Kamikawa, Akihiro; Sasaki, Motoki; Kitamura, Nobuo

    2017-01-01

    Glycoconjugates in the olfactory system play critical roles in neuronal formation, and α1-2 fucose (α1-2Fuc) glycan mediates neurite outgrowth and synaptic plasticity. Histochemical findings of α1-2Fuc glycan in the mouse olfactory system detected using Ulex europaeus agglutinin-I (UEA-I) vary. This study histochemically assessed the main olfactory and vomeronasal pathways in male and female ICR and C57BL/6J mice aged 3-4 months using UEA-I. Ulex europaeus agglutinin-I reacted with most receptor cells arranged mainly at the basal region of the olfactory epithelium. The olfactory nerve layer and glomerular layer of the main olfactory bulb were speckled with positive UEA-I staining, and positive fibers were scattered from the glomerular to the internal plexiform layer. The lateral olfactory tract and rostral migratory stream were also positive for UEA-I. We identified superficial short-axon cells, interneurons of the external plexiform layer, external, middle and internal tufted cells, mitral cells and granule cells as the origins of the UEA-I-positive fibers in the main olfactory bulb. The anterior olfactory nucleus, anterior piriform cortex and olfactory tubercle were negative for UEA-I. Most receptor cells in the vomeronasal epithelium and most glomeruli of the accessory olfactory bulb were positive for UEA-I. Our findings indicated that α1-2Fuc glycan is located within the primary and secondary, but not the ternary, pathways of the main olfactory system, in local circuits of the main olfactory bulb and within the primary, but not secondary, pathway of the vomeronasal system. © 2016 S. Karger AG, Basel.

  13. Ultrastructural study of the primary olfactory pathway in Macaca fascicularis.

    PubMed

    Herrera, Loren P; Casas, Carlos E; Bates, Margaret L; Guest, James D

    2005-08-08

    Olfactory ensheathing glial cells (OEGs) interact with a wide repertoire of cell types and support extension of olfactory axons (OAs) within the olfactory pathway. OEGs are thought to exclude OAs from contact with all other cells between the olfactory epithelium and the glomerulus of the olfactory bulb. These properties have lead to testing to determine whether OEGs support axonal growth following transplantation. The cellular interactions of transplanted OEGs will probably resemble those that occur within the normal pathway where interactions between OEGs and fibroblasts are prominent. No previous primate studies have focused on these interactions, knowledge of which is important if clinical application is envisioned. We describe the detailed intercellular interactions of OAs with supporting cells throughout the olfactory epithelium, the lamina propria, the fila olfactoria, and the olfactory nerve layer by using transmission electron microscopy in adult Macaca fascicularis. Patterns of OEG ensheathment and variations of the endo- and perineurium formed by olfactory nerve fibroblasts are described. OAs mainly interacted with horizontal basal cells, OEGs, and astrocytes. At both transitional ends of the pathway seamless intercellular interactions were observed, and fibroblast processes were absent. Perineurial cells produced surface basal lamina; however, endoneurial, epineurial, and meningeal fibroblasts did not. Perineurial cells contained intermediate filaments and were distinct from other fibroblasts and meningeal cells. OAs had direct contacts with astrocytes near the glia limitans. The properties of OEGs differed depending on whether astrocytic or fibroblastic processes were present. This indicates the importance of the cellular milieu in the structure and function of OEGs in primates.

  14. Abnormal Ion Permeation through Cystic Fibrosis Respiratory Epithelium

    NASA Astrophysics Data System (ADS)

    Knowles, M. R.; Stutts, M. J.; Spock, A.; Fischer, N.; Gatzy, J. T.; Boucher, R. C.

    1983-09-01

    The epithelium of nasal tissue excised from subjects with cystic fibrosis exhibited higher voltage and lower conductance than tissue from control subjects. Basal sodium ion absorption by cystic fibrosis and normal nasal epithelia equaled the short-circuit current and was amiloride-sensitive. Amiloride induced chloride ion secretion in normal but not cystic fibrosis tissue and consequently was more effective in inhibiting the short-circuit current in cystic fibrosis epithelia. Chloride ion-free solution induced a smaller hyperpolarization of cystic fibrosis tissue. The increased voltage and amiloride efficacy in cystic fibrosis reflect absorption of sodium ions across an epithelium that is relatively impermeable to chloride ions.

  15. Respiratory and olfactory turbinal size in canid and arctoid carnivorans.

    PubMed

    Green, Patrick A; Van Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail

    2012-12-01

    Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  16. Volumetric computed tomography analysis of the olfactory cleft in patients with chronic rhinosinusitis.

    PubMed

    Soler, Zachary M; Pallanch, John F; Sansoni, Eugene Ritter; Jones, Cameron S; Lawrence, Lauren A; Schlosser, Rodney J; Mace, Jess C; Smith, Timothy L

    2015-09-01

    Commonly used computed tomography (CT) staging systems for chronic rhinosinusitis (CRS) focus on the sinuses and do not quantify disease in the olfactory cleft. The goal of the current study was to determine whether precise measurements of olfactory cleft opacification better correlate with olfaction in patients with CRS. Olfaction was assessed using the 40-item Smell Identification Test (SIT-40) before and after sinus surgery in adult patients. Olfactory cleft opacification was quantified precisely using three-dimensional (3D), computerized volumetric analysis, as well as via semiquantitative Likert scale estimations at predetermined anatomic sites. Sinus opacification was also quantified using the Lund-Mackay staging system. The overall cohort (n = 199) included 89 (44.7%) patients with CRS with nasal polyposis (CRSwNP) and 110 (55.3%) with CRS without nasal polyposis (CRSsNP). The olfactory cleft opacified volume correlated with objective olfaction as determined by the SIT-40 (Spearman's rank correlation coefficient [Rs ] = -0.461; p < 0.001). The correlation was significantly stronger in the CRSwNP subgroup (Rs = -0.573; p < 0.001), whereas no appreciable correlation was found in the CRSsNP group (Rs = -0.141; p = 0.141). Correlations between sinus-specific Lund-Mackay CT scoring and SIT-40 scores were weaker in the CRSwNP (Rs = -0.377; p < 0.001) subgroup but stronger in the CRSsNP (Rs = -0.225; p = 0.018) group when compared to olfactory cleft correlations. Greater intraclass correlations (ICCs) were found between quantitative volumetric measures of olfactory cleft opacification (ICC = 0.844; p < 0.001) as compared with semiquantitative Likert grading (ICC = 0.627; p < 0.001). Quantitative measures of olfactory cleft opacification correlate with objective olfaction, with the strongest correlations seen in patients with nasal polyps. © 2015 ARS-AAOA, LLC.

  17. The neuroregenerative capacity of olfactory stem cells is not limitless: implications for aging.

    PubMed

    Child, Kevin M; Herrick, Daniel B; Schwob, James E; Holbrook, Eric H; Jang, Woochan

    2018-06-22

    The olfactory epithelium (OE) of vertebrates is a highly regenerative neuroepithelium, maintained under normal condition by a population of stem and progenitor cells - globose basal cells (GBCs) that also contribute to epithelial reconstitution after injury. However, aging of the OE often leads to neurogenic exhaustion - the disappearance of both GBCs and olfactory sensory neurons (OSNs). Aneuronal tissue may remain as olfactory, with an uninterrupted sheet of apically arrayed microvillar-capped sustentacular cell, or may undergo respiratory metaplasia. We have generated a transgenic mouse model for neurogenic exhaustion using OMP-driven Tet-off regulation of the A subunit of Diphtheria toxin such that the death of mature OSNs is accelerated. As early as 2 months of age the epithelium of transgenic mice, regardless of sex, recapitulates what is seen in the aged OE of humans and rodents. Areas of the epithelium completely lack neurons and GBCs, while the horizontal basal cells, a reserve stem cell population, show no evidence of activation. Surprisingly, other areas that were olfactory undergo respiratory metaplasia. The impact of accelerated neuronal death and reduced innervation on the olfactory bulb (OB) is also examined. Constant neuronal turnover leaves glomeruli shrunken and impacts the dopaminergic interneurons in the periglomerular layer. Moreover, the acceleration of OSN death can be reversed in those areas where some GBCs persist. However, the projection onto the OB recovers incompletely and the reinnervated glomeruli are markedly altered. Thus, the capacity for OE regeneration is tempered when GBCs disappear. SIGNIFICANCE STATEMENT A large percentage of humans lose or suffer a significant decline in olfactory function as they age. Consequently, quality of life suffers, and safety and nutritional status are put at risk. With age, the OE apparently becomes incapable of fully maintaining the neuronal population of the epithelium despite its well

  18. Proteomic Analysis of the Human Olfactory Bulb.

    PubMed

    Dammalli, Manjunath; Dey, Gourav; Madugundu, Anil K; Kumar, Manish; Rodrigues, Benvil; Gowda, Harsha; Siddaiah, Bychapur Gowrishankar; Mahadevan, Anita; Shankar, Susarla Krishna; Prasad, Thottethodi Subrahmanya Keshava

    2017-08-01

    The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.

  19. Differential expression pattern of antimicrobial peptides in nasal mucosa and secretion.

    PubMed

    Laudien, Martin; Dressel, Stefanie; Harder, Jürgen; Gläser, Regine

    2011-03-01

    The intact nasal barrier is a prerequisite for a functioning defense of the upper airway system, in particular the permanent threat by inhaled potentially harmful microorganisms. Antimicrobial peptides (AMP) play an important role in maintaining barrier function. There is few data about AMP in respect of nasal mucosa. This study is addressed to gain further insight into the differential AMP expression and secretion pattern according to defined anatomical regions of the vestibulum nasi and turbinates. ELISA was applied to quantify concentrations of AMP RNase-7, psoriasin, hBD-2, hBD-3 and LL-37 in nasal secretions of 20 healthy volunteers. Immunohistochemistry was used to detect the local cellular sources of AMP in the vestibulum nasi (squamous epithelium) and compared to the mucosa of the turbinates (pseudostratified epithelium) in 10 healthy volunteers. Expression of RNase 7 and psoriasin was detected in all nasal secretion specimens, whereas LL-37 was detected in 16, hBD-2 in 5 and hBD-3 in 6 specimens. In the vestibulum nasi, luminal cell layers were demonstrated as local cellular sources for hBD-3 and RNase 7, whereas psoriasin was found in all layers of the stratified squamous epithelium. LL-37 was detected in 1 stroma cells sample, whereas hBD-2 was not detected at all. In turbinate biopsie,s hBD-3 and LL-37 were detectable in the epithelium, stroma cells and submucosal glands. RNase 7 was only present in submucosal glands. HBD-2 and psoriasin were not detected. These data demonstrate that the nasal epithelium contains a chemical defense shield through the expression and secretion of various AMP.

  20. Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System

    PubMed Central

    DeMaria, Shannon; Berke, Allison P.; Van Name, Eric; Heravian, Anisa; Ferreira, Todd

    2013-01-01

    Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the “one receptor, one neuron” rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed. PMID:24048853

  1. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1.

    PubMed

    Login, Hande; Butowt, Rafal; Bohm, Staffan

    2015-07-01

    It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience.

  2. ATP Mediates Neuroprotective and Neuroproliferative Effects in Mouse Olfactory Epithelium following Exposure to Satratoxin G In Vitro and In Vivo

    PubMed Central

    Jia, Cuihong; Sangsiri, Sutheera; Belock, Bethany; Iqbal, Tania R.; Pestka, James J.; Hegg, Colleen C.

    2011-01-01

    Intranasal aspiration of satratoxin G (SG), a mycotoxin produced by the black mold Stachybotrys chartarum, selectively induces apoptosis in olfactory sensory neurons (OSNs) in mouse olfactory epithelium (OE) through unknown mechanisms. Here, we show a dose-dependent induction of apoptosis 24 h post-SG exposure in vitro as measured by increased activated caspases in the OP6 olfactory placodal cell line and increased propidium iodide staining in primary OE cell cultures. Intranasal aspiration of SG increased TUNEL (Terminal dUTP Nick End Labeling) staining in the neuronal layer of the OE and significantly increased the latency to find a buried food pellet, confirming that SG selectively induces neuronal apoptosis and demonstrating that SG impairs the sense of smell. Next, we investigated whether ATP can prevent SG-induced OE toxicity. ATP did not decrease apoptosis under physiological conditions but significantly reduced SG-induced OSN apoptosis in vivo and in vitro. Furthermore, purinergic receptor inhibition significantly increased apoptosis in OE primary cell culture and in vivo. These data indicate that ATP is neuroprotective against SG-induced OE toxicity. The number of cells that incorporated 5′-bromodeoxyuridine, a measure of proliferation, was significantly increased 3 and 6 days post-SG aspiration. Treatment with purinergic receptor antagonists significantly reduced SG-induced cell proliferation, whereas post-treatment with ATP significantly potentiated SG-induced cell proliferation. These data indicate that ATP is released and promotes cell proliferation via activation of purinergic receptors in SG-induced OE injury. Thus, the purinergic system is a therapeutic target to alleviate or restore the loss of OSNs. PMID:21865290

  3. Flow through the nasal cavity of the spiny dogfish, Squalus acanthias

    NASA Astrophysics Data System (ADS)

    Timm-Davis, L. L.; Fish, F. E.

    2015-12-01

    The nasal cavity of spiny dogfish is a blind capsule with no internal connection to the oral cavity. Water is envisioned to flow through the cavity in a smooth, continuous flow pattern; however, this assumption is based on previous descriptions of the morphology of the olfactory cavity. No experimentation on the flow through the internal nasal cavity has been reported. Morphology of the head of the spiny dogfish ( Squalus acanthias) does not suggest a close external connection between the oral and nasal systems. However, dye visualization showed that there was flow through the nasal apparatus and from the excurrent nostril to the mouth when respiratory flows were simulated. The hydrodynamic flow through the nasal cavity was observed from flow tank experiments. The dorsum of the nasal cavity of shark heads from dead animals was exposed by dissection and a glass plate was glued over of the exposed cavity. When the head was placed in a flow, dye was observed to be drawn passively into the cavity showing a complex, three-dimensional hydrodynamic flow. Dye entered the incurrent nostril, flowed through the nasal lamellae, crossed over and under the nasal valve, and circulated around the nasal valve before exiting the excurrent nostril. When the nasal valve was removed, the dye became stagnant and back flowed out through the incurrent nostril. The single nasal valve has a hydrodynamic function that organizes a coherent flow of water through the cavity without disruption. The results suggest that the morphology of the nasal apparatus in concert with respiratory flow and ambient flows from active swimming can be used to draw water through the olfactory cavity of the shark.

  4. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system.

    PubMed

    van Riel, Debby; Verdijk, Rob; Kuiken, Thijs

    2015-01-01

    The olfactory nerve consists mainly of olfactory receptor neurons and directly connects the nasal cavity with the central nervous system (CNS). Each olfactory receptor neuron projects a dendrite into the nasal cavity on the apical side, and on the basal side extends its axon through the cribriform plate into the olfactory bulb of the brain. Viruses that can use the olfactory nerve as a shortcut into the CNS include influenza A virus, herpesviruses, poliovirus, paramyxoviruses, vesicular stomatitis virus, rabies virus, parainfluenza virus, adenoviruses, Japanese encephalitis virus, West Nile virus, chikungunya virus, La Crosse virus, mouse hepatitis virus, and bunyaviruses. However, mechanisms of transport via the olfactory nerve and subsequent spread through the CNS are poorly understood. Proposed mechanisms are either infection of olfactory receptor neurons themselves or diffusion through channels formed by olfactory ensheathing cells. Subsequent virus spread through the CNS could occur by multiple mechanisms, including trans-synaptic transport and microfusion. Viral infection of the CNS can lead to damage from infection of nerve cells per se, from the immune response, or from a combination of both. Clinical consequences range from nervous dysfunction in the absence of histopathological changes to severe meningoencephalitis and neurodegenerative disease. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. Effect of Septorhinoplasty on Olfactory Function: Assessment Using the Brief Smell Identification Test.

    PubMed

    Dengiz, Ramazan; Haytoğlu, Süheyl; Görgülü, Orhan; Doğru, Mehmet; Arıkan, Osman Kürşat

    2015-03-01

    Septorhinoplasty (SRP), one of the most commonly performed rhinologic surgery procedures, can affect olfactory function; however, the findings of studies investigating smell following SRP are controversial. We used a culturally adapted modified Brief Smell Identification Test (B-SIT) to investigate the long- and short-term effects of SRP on olfactory function. We enrolled 59 patients admitted to the Ear-Nose-Throat Clinic, who were complaining of external nasal deformity and nasal obstruction. Functional SRP was performed on all cases. The B-SIT was administered prior to surgery and at 4 and 12 weeks post-surgery. The smell identification score (SIS) reflected the number of correct answers. In addition, we investigated the effects of gender and smoking on olfactory function and whether the SRP procedure changed these associations. The mean preoperative, 4-week, and 12-week postoperative SISs were 10.15±1.30, 10.21±1.52, and 10.92±0.95, respectively. The difference between the preoperative and 4-week postoperative SISs was not statistically significant; however, the 12-week postoperative score was significantly different from the preoperative and 4-week postoperative scores. Furthermore, the repeated measures analysis according to gender and smoking habit revealed a significant difference between the 4-and 12-week postoperative SISs. One patient developed postoperative anosmia; however, the patient recovered in the 12-week postoperative period. SRP surgery is a safe procedure in terms of olfactory function. In addition, olfactory function may increase following surgery as a result of improved nasal airflow.

  6. Unilateral endonasal transcribriform approach with septal transposition for olfactory groove meningioma: can olfaction be preserved?

    PubMed

    Youssef, A Samy; Sampath, Raghuram; Freeman, Jacob L; Mattingly, Jameson K; Ramakrishnan, Vijay R

    2016-10-01

    Loss of olfaction has been considered inevitable in endoscopic endonasal resection of olfactory groove meningiomas. Olfaction preservation may be feasible through an endonasal unilateral transcribriform approach, with the option for expansion using septal transposition and contralateral preservation of the olfactory apparatus. An expanded unilateral endonasal transcribriform approach with septal transposition was performed in five cadaver heads. The approach was applied in a surgical case of a 24 × 26-mm olfactory groove meningioma originating from the right cribriform plate with partially intact olfaction. The surgical approach offered adequate exposure to the anterior skull base bilaterally. The nasal/septal mucosa was preserved on the contralateral side. Gross total resection of the meningioma was achieved with the successful preservation of the contralateral olfactory apparatus and preoperative olfaction. Six months later, the left nasal cavity showed no disruption of the mucosal lining and the right side was at the appropriate stage of healing for a harvested nasoseptal flap. One year later, the preoperative olfactory function was intact and favorably viewed by the patient. Objective testing of olfaction showed microsomia. Olfaction preservation may be feasible in the endoscopic endonasal resection of a unilateral olfactory groove meningioma through a unilateral transcribriform approach with septal transposition and preservation of the contralateral olfactory apparatus.

  7. Impacts of upper respiratory tract disease on olfactory behavior of the Mojave desert tortoise

    USGS Publications Warehouse

    Germano, Jennifer; Van Zerr, Vanessa E.; Esque, Todd C.; Nussear, Ken E.; Lamberski, Nadine

    2014-01-01

    Upper respiratory tract disease (URTD) caused by Mycoplasma agassizii is considered a threat to desert tortoise populations that should be addressed as part of the recovery of the species. Clinical signs can be intermittent and include serous or mucoid nasal discharge and respiratory difficulty when nares are occluded. This nasal congestion may result in a loss of the olfactory sense. Turtles are known to use olfaction to identify food items, predators, and conspecifics; therefore, it is likely that URTD affects not only their physical well-being but also their behavior and ability to perform necessary functions in the wild. To determine more specifically the impact nasal discharge might have on free-ranging tortoises (Gopherus agassizii), we compared the responses of tortoises with and without nasal discharge and both positive and negative for M. agassizii antibodies to a visually hidden olfactory food stimulus and an empty control. We found that nasal discharge did reduce sense of smell and hence the ability to locate food. Our study also showed that moderate chronic nasal discharge in the absence of other clinical signs did not affect appetite in desert tortoises.

  8. The effect of endoscopic olfactory cleft polyp removal on olfaction.

    PubMed

    Kuperan, Arjuna B; Lieberman, Seth M; Jourdy, Deya N; Al-Bar, Mohammad H; Goldstein, Bradley J; Casiano, Roy R

    2015-01-01

    The presence of olfactory cleft polyps in chronic rhinosinusitis with nasal polyposis is well documented, but the effect of endoscopic olfactory cleft polyp surgery on olfaction, versus observation, has not been well studied. This analysis assessed if microdebridement of olfactory cleft polyps yields significant objective smell improvements in those with anosmia or hyposmia. A randomized prospective single-blinded study was performed on patients undergoing bilateral endoscopic sinus surgery with profound bilateral nasal polyposis, excluding those younger than 18 years or without olfactory polyps. A preoperative University of Pennsylvania Smell Identification Test (UPSIT), visual analog scale (VAS), and sinonasal outcomes 20 score (SNOT-20), and a follow-up at 6 months was performed. Two cohorts were created, including one with cleft polyp removal (group A) and one with cleft polyps left in place (group B). There were 10 patients in group A and 7 in group B. By using the Wilcoxon signed rank test, the two groups were individually analyzed for changes in the preoperative UPSIT, VAS, and SNOT-20 versus the 6-month test results. In group A, the improvement in the UPSIT, VAS, and SNOT-20 were statistically significant at p < 0.05. For group B only the improvement in the VAS was statistically significant, at p < 0.05. There was a statistically significant difference in clinical smell improvement between group A and B at 6 months (p = 0.00512). Evidence exists that olfactory cleft polyp surgery improves olfactory function outcomes. Long-term data beyond 6 months is needed to further validate these early promising outcomes.

  9. Olfactory receptor antagonism between odorants

    PubMed Central

    Oka, Yuki; Omura, Masayo; Kataoka, Hiroshi; Touhara, Kazushige

    2004-01-01

    The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist–OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality. PMID:14685265

  10. Functional transformations of odor inputs in the mouse olfactory bulb.

    PubMed

    Adam, Yoav; Livneh, Yoav; Miyamichi, Kazunari; Groysman, Maya; Luo, Liqun; Mizrahi, Adi

    2014-01-01

    Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli. We used in vivo two-photon calcium imaging for large scale functional mapping of distinct neuronal populations in the mouse OB, at single cell resolution. Specifically, we imaged odor responses of mitral cells (MCs), tufted cells (TCs) and glomerular interneurons (GL-INs). Mitral cells population activity was heterogeneous and only mildly correlated with the olfactory receptor neuron (ORN) inputs, supporting the view that discrete input maps undergo significant transformations at the output level of the OB. In contrast, population activity profiles of TCs were dense, and highly correlated with the odor inputs in both space and time. Glomerular interneurons were also highly correlated with the ORN inputs, but showed higher activation thresholds suggesting that these neurons are driven by strongly activated glomeruli. Temporally, upon persistent odor exposure, TCs quickly adapted. In contrast, both MCs and GL-INs showed diverse temporal response patterns, suggesting that GL-INs could contribute to the transformations MCs undergo at slow time scales. Our data suggest that sensory odor maps are transformed by TCs and MCs in different ways forming two distinct and parallel information streams.

  11. [An observation of the effect of sulfur dioxide on rat nasal mucosa].

    PubMed

    Lu, Z Q

    1990-01-01

    This paper reports the effect of SO2 on rat nasal mucosa. The rats were forced to inhale SO2 and the effect on the nasal mucosa observed. The rats were divided into four groups. The first group inhaled 10ppm SO2; the second group 20ppm; the third group 40 ppm and the fourth group served as control. The observation lasted for 6 months. It was found that the nasal mucosa in the control group remained columnar ciliated. In the experimental groups, during the early stage (groups I, II) of exposure, there was no significant morphological change in epithelium. Then (groups I, II) the epithelium changed into cuboidal with complete disappearance of cilia, only some short and slender microvilli remained. While in the late stage (group III), the epithelium had transformed into squamous stratified and the amount of mucosal glands reduced.

  12. Long-term control of olfactory neuroblastoma in a dog treated with surgery and radiation therapy.

    PubMed

    Gumpel, E; Moore, A S; Simpson, D J; Hoffmann, K L; Taylor, D P

    2017-07-01

    Olfactory neuroblastoma is a rare malignancy of the nasal cavity in dogs that is thought to arise from specialised sensory neuroendocrine olfactory cells derived from the neural crest. An 8-year-old dog was presented for reclusiveness and pacing. On CT and MRI, a contract-enhancing mass was disclosed within the rostral fossa, extending caudally from the cribriform plate into the left nasal sinus. Surgical excision was performed and the diagnosis was histological grade III (Hyams grading scheme) olfactory neuroblastoma. Based on human CT criteria this was high stage (modified Kadish stage C). Surgical excision was incomplete and was followed by curative-intent radiation therapy using a linear accelerator to a total dose of 48 Gy. The dog survived 20 months after diagnosis. Although olfactory neuroblastoma is a rare tumour in dogs, aggressive local therapy may allow for prolonged survival, even when the tumour is advanced. © 2017 Australian Veterinary Association.

  13. β3GnT2 Maintains Adenylyl Cyclase-3 Signaling and Axon Guidance Molecule Expression in the Olfactory Epithelium

    PubMed Central

    Faden, Ashley A.; Knott, Thomas K.

    2011-01-01

    In the olfactory epithelium (OE), odorant receptor stimulation generates cAMP signals that function in both odor detection and the regulation of axon guidance molecule expression. The enzyme that synthesizes cAMP, adenylyl cyclase 3 (AC3), is coexpressed in olfactory sensory neurons (OSNs) with poly-N-acetyllactosamine (PLN) oligosaccharides determined by the glycosyltransferase β3GnT2. The loss of either enzyme results in similar defects in olfactory bulb (OB) innervation and OSN survival, suggesting that glycosylation may be important for AC3 function. We show here that AC3 is extensively modified with N-linked PLN, which is essential for AC3 activity and localization. On Western blots, AC3 from the wild-type OE migrates diffusely as a heavily glycosylated 200 kDa band that interacts with the PLN-binding lectin LEA. AC3 from the β3GnT2−/− OE loses these PLN modifications, migrating instead as a 140 kDa glycoprotein. Furthermore, basal and forskolin-stimulated cAMP production is reduced 80–90% in the β3GnT2−/− OE. Although AC3 traffics normally to null OSN cilia, it is absent from axon projections that aberrantly target the OB. The cAMP-dependent guidance receptor neuropilin-1 is also lost from β3GnT2−/− OSNs and axons, while semaphorin-3A ligand expression is upregulated. In addition, kirrel2, a mosaically expressed adhesion molecule that functions in axon sorting, is absent from β3GnT2−/− OB projections. These results demonstrate that PLN glycans are essential in OSNs for proper AC3 localization and function. We propose that the loss of cAMP-dependent guidance cues is also a critical factor in the severe axon guidance defects observed in β3GnT2−/− mice. PMID:21525298

  14. The optimal evaluation and management of patients with a gradual onset of olfactory loss.

    PubMed

    Enriquez, Karla; Lehrer, Eduardo; Mullol, Joaquim

    2014-02-01

    The aim of this review is to provide an overview of the causes of olfactory dysfunction, their evaluation and management, with a main focus on the gradual/progressive loss of smell. As the sense of smell gives us essential information about our environment, its loss can cause nutritional and social problems while threatening an individual's safety. Recent surveys have shown quite a substantial prevalence of hyposmia (one out of four people) and anosmia (one out of 200 people) in a variety of populations. Nasal inflammatory diseases such as allergic rhinitis and predominantly chronic rhinosinusitis account for the major and common causes of gradual/progressive loss of smell. However, they are also among the most successfully treated forms of olfactory dysfunction. The management of gradual/progressive smell deficit must always address its etiological causes. In most cases, a detailed medical history and nasal examination, smell testing, and imaging will help to establish an appropriate diagnosis. In addition to anti-inflammatory therapy, mainly nasal and systemic corticosteroids, recent investigations on smell training suggest that the controlled exposure to selected odors may increase olfactory performance. See the Video Supplementary Digital Content 1 (http://links.lww.com/COOH/A8).

  15. Numerical Comparison of Nasal Aerosol Administration Systems for Efficient Nose-to-Brain Drug Delivery.

    PubMed

    Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Chan, Hak-Kim; Tu, Jiyuan

    2017-12-29

    Nose-to-brain drug administration along the olfactory and trigeminal nerve pathways offers an alternative route for the treatment of central nervous system (CNS) disorders. The characterization of particle deposition remains difficult to achieve in experiments. Alternative numerical approach is applied to identify suitable aerosol particle size with maximized inhaled doses. This study numerically compared the drug delivery efficiency in a realistic human nasal cavity between two aerosol drug administration systems targeting the olfactory region: the aerosol mask system and the breath-powered bi-directional system. Steady inhalation and exhalation flow rates were applied to both delivery systems. The discrete phase particle tracking method was employed to capture the aerosol drug transport and deposition behaviours in the nasal cavity. Both overall and regional deposition characteristics were analysed in detail. The results demonstrated the breath-powered drug delivery approach can produce superior olfactory deposition with peaking olfactory deposition fractions for diffusive 1 nm particles and inertial 10 μm. While for particles in the range of 10 nm to 2 μm, no significant olfactory deposition can be found, indicating the therapeutic agents should avoid this size range when targeting the olfactory deposition. The breath-powered bi-directional aerosol delivery approach shows better drug delivery performance globally and locally, and improved drug administration doses can be achieved in targeted olfactory region.

  16. Identification of olfactory receptor genes in the Japanese grenadier anchovy Coilia nasus.

    PubMed

    Zhu, Guoli; Wang, Liangjiang; Tang, Wenqiao; Wang, Xiaomei; Wang, Cong

    2017-01-01

    Olfaction is essential for fish to detect odorant elements in the environment and plays a critical role in navigating, locating food and detecting predators. Olfactory function is produced by the olfactory transduction pathway and is activated by olfactory receptors (ORs) through the binding of odorant elements. Recently, four types of olfactory receptors have been identified in vertebrate olfactory epithelium, including main odorant receptors (MORs), vomeronasal type receptors (VRs), trace-amine associated receptors (TAARs) and formyl peptide receptors (FPRs). It has been hypothesized that migratory fish, which have the ability to perform spawning migration, use olfactory cues to return to natal rivers. Therefore, obtaining OR genes from migratory fish will provide a resource for the study of molecular mechanisms that underlie fish spawning migration behaviors. Previous studies of OR genes have mainly focused on genomic data, however little information has been gained at the transcript level. In this study, we identified the OR genes of an economically important commercial fish Coilia nasus through searching for olfactory epithelium transcriptomes. A total of 142 candidate MOR, 52 V2R/OlfC, 32 TAAR and two FPR putative genes were identified. In addition, through genomic analysis we identified several MOR genes containing introns, which is unusual for vertebrate MOR genes. The transcriptome-scale mining strategy proved to be fruitful in identifying large sets of OR genes from species whose genome information is unavailable. Our findings lay the foundation for further research into the possible molecular mechanisms underlying the spawning migration behavior in C. nasus .

  17. Long term serious olfactory loss in colds and/or flu.

    PubMed

    de Haro-Licer, Josep; Roura-Moreno, Jordi; Vizitiu, Anabella; González-Fernández, Adela; González-Ares, Josep Antón

    2013-01-01

    In the general population, we can find 2-3% of lifelong olfactory disorders (from hyposmia to anosmia). Two of the most frequent aetiologies are the common cold and flu. The aim of this study was to show the degree of long-term olfactory dysfunction caused by a cold or flu. This study was based on 240 patients, with olfactory loss caused only by flu or a cold. We excluded all patients with concomitant illness (66 patients), the rest of patients (n=174) consisted of 51 men (29.3%) and 123 women (70.7%). They all underwent olfactometry study (i and v cranial nerve) and a nasal sinus computed tomography scan, as well as magnetic resonance imaging of the brain. Results were compared with a control group (n=120). Very significant differences in levels of olfactory impairment for the olfactory nerve (P<.00001) and trigeminal nerve (P<.0001) were confirmed. People that suffer olfactory dysfunction for more than 6 months, from flu or a cold, present serious impairment of olfactory abilities. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  18. Olfactory cleft computed tomography analysis and olfaction in chronic rhinosinusitis

    PubMed Central

    Kohli, Preeti; Schlosser, Rodney J.; Storck, Kristina

    2016-01-01

    Background: Volumetric analysis of the olfactory cleft by using computed tomography has been associated with olfaction in patients with chronic rhinosinusitis (CRS). However, existing studies have not comprehensively measured olfaction, and it thus remains unknown whether correlations differ across specific dimensions of odor perception. Objective: To use comprehensive measures of patient-reported and objective olfaction to evaluate the relationship between volumetric olfactory cleft opacification and olfaction. Methods: Olfaction in patients with CRS was evaluated by using “Sniffin' Sticks” tests and a modified version of the Questionnaire of Olfactory Disorders. Olfactory cleft opacification was quantified by using two- and three-dimensional, computerized volumetric analysis. Correlations between olfactory metrics and olfactory cleft opacification were then calculated. Results: The overall CRS cohort included 26 patients without nasal polyposis (CRSsNP) (68.4%) and 12 patients with nasal polyposis (CRSwNP) (31.6%). Across the entire cohort, total olfactory cleft opacification was 82.8%, with greater opacification in the CRSwNP subgroup compared with CRSsNP (92.3 versus 78.4%, p < 0.001). The percent total volume opacification correlated with the total Sniffin' Sticks score (r = −0.568, p < 0.001) as well as individual threshold, discrimination, and identification scores (p < 0.001 for all). Within the CRSwNP subgroup, threshold (r = −0.616, p = 0.033) and identification (r = −0.647, p = 0.023) remained highly correlated with total volume opacification. In patients with CRSsNP, the threshold correlated with total volume scores (r = −0.457, p = 0.019), with weaker and nonsignificant correlations for discrimination and identification. Correlations between total volume opacification and the Questionnaire of Olfactory Disorders were qualitatively similar to objective olfactory findings in both CRSwNP (r = −0.566, p = 0.070) and CRSsNP (r = −0.310, p

  19. Neuronal nitric oxide synthase in the olfactory system of an adult teleost fish Oreochromis mossambicus.

    PubMed

    Singru, Praful S; Sakharkar, Amul J; Subhedar, Nishikant

    2003-07-11

    The aim of the present study is to explore the distribution of nitric oxide synthase in the olfactory system of an adult teleost, Oreochromis mossambicus using neuronal nitric oxide synthase (nNOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry methods. Intense nNOS immunoreactivity was noticed in several olfactory receptor neurons (ORNs), in their axonal extensions over the olfactory nerve and in some basal cells of the olfactory epithelium. nNOS containing fascicles of the ORNs enter the bulb from its rostral pole, spread in the olfactory nerve layer in the periphery of the bulb and display massive innervation of the olfactory glomeruli. Unilateral ablation of the olfactory organ resulted in dramatic loss of nNOS immunoreactivity in the olfactory nerve layer of the ipsilateral bulb. In the olfactory bulb of intact fish, some granule cells showed intense immunoreactivity; dendrites arising from the granule cells could be traced to the glomerular layer. Of particular interest is the occurrence of nNOS immunoreactivity in the ganglion cells of the nervus terminalis. nNOS containing fibers were also encountered in the medial olfactory tracts as they extend to the telencephalon. The NADPHd staining generally coincides with that of nNOS suggesting that it may serve as a marker for nNOS in the olfactory system of this fish. However, mismatch was encountered in the case of mitral cells, while all are nNOS-negative, few were NADPHd positive. The present study for the first time revealed the occurrence of nNOS immunoreactivity in the ORNs of an adult vertebrate and suggests a role for nitric oxide in the transduction of odor stimuli, regeneration of olfactory epithelium and processing of olfactory signals.

  20. Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium.

    PubMed

    Kim, Sujin; Kim, Min-Ji; Park, Do Yang; Chung, Hyo Jin; Kim, Chang-Hoon; Yoon, Joo-Heon; Kim, Hyun Jik

    2015-07-01

    The innate immune system of the nasal epithelium serves as a first line of defense against invading respiratory viruses including influenza A virus (IAV). Recently, it was verified that interferon (IFN)-related immune responses play a critical role in local antiviral innate immunity. Reactive oxygen species (ROS) generation by exogenous pathogens has also been demonstrated in respiratory epithelial cells and modulation of ROS has been reported to be important for respiratory virus-induced innate immune mechanisms. Passage-2 normal human nasal epithelial (NHNE) cells were inoculated with IAV (WS/33, H1N1) to assess the sources of IAV-induced ROS and the relationship between ROS and IFN-related innate immune responses. Both STAT1 and STAT2 phosphorylation and the mRNA levels of IFN-stimulated genes, including Mx1, 2,5-OAS1, IFIT1, and CXCL10, were induced after IAV infection up to three days post infection. Similarly, we observed that mitochondrial ROS generation increased maximally at 2 days after IAV infection. After suppression of mitochondrial ROS generation, IAV-induced phosphorylation of STAT and mRNA levels of IFN-stimulated genes were attenuated and actually, viral titers of IAV were significantly higher in cases with scavenging ROS. Our findings suggest that mitochondrial ROS might be responsible for controlling IAV infection and may be potential sources of ROS generation, which is required to initiate an innate immune response in NHNE cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Insm1 promotes the transition of olfactory progenitors from apical and proliferative to basal, terminally dividing and neuronogenic.

    PubMed

    Rosenbaum, Jason N; Duggan, Anne; García-Añoveros, Jaime

    2011-02-01

    Insm1 is a zinc-finger transcription factor transiently expressed throughout the developing nervous system in late progenitors and nascent neurons. Insm1 is also highly expressed in medulloblastomas and other neuroendocrine tumors. We generated mice lacking the Insm1 gene and used them to elucidate its role in neurogenic proliferation of the embryonic olfactory epithelium. We found that deletion of Insm1 results in more apical cells and fewer nascent and mature neurons. In the embryonic olfactory epithelium of Insm1 mutants we detect fewer basal progenitors, which produce neurons, and more apical progenitors, which at this stage produce additional progenitors. Furthermore, in the mutants we detect fewer progenitors expressing NEUROD1, a marker of terminally dividing, neuronogenic (neuron-producing) progenitors (immediate neuronal precursors), and more progenitors expressing ASCL1, a marker of the transit amplifying progenitors that migrate from the apical to the basal edges of the epithelium while dividing to generate the terminal, neuronogenic progenitors. Finally, with timed administration of nucleoside analogs we demonstrate that the Insm1 mutants contain fewer terminally dividing progenitors at embryonic day 12.5. Altogether, these results suggest a role for Insm1 in promoting the transition of progenitors from apical and proliferative to basal, terminal and neuronogenic. This role appears partially conserved with that of its nematode ortholog, egl-46. The similar effects of Insm1 deletion on progenitors of embryonic olfactory epithelium and cortex point to striking parallels in the development of these neuroepithelia, and particularly between the basal progenitors of olfactory epithelium and the subventricular zone progenitors of cortex.

  2. Inhalation of diethylamine--acute nasal effects and subjective response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundqvist, G.R.; Yamagiwa, M.; Pedersen, O.F.

    1992-03-01

    Adult volunteers were exposed to 25 ppm (75 mg/m3) diethylamine in a climate chamber for 15 min in order to study the acute nasal reactions to an exposure equivalent to the present threshold limit value-short-term exposure limit. Changes in nasal volume and nasal resistance were measured by acoustic rhinometry and by rhinomanometry. Acute change in nasal volume, usually seen as acute nasal mucosa response to thermal stimuli, was not observed, nor was an acute change in nasal airway resistance. In a subsequent experiment, the aim was to measure acute sensory effects. Exposure to a concentration increasing from 0 to 12more » ppm took place for 60 min, equal to an average concentration of 10 ppm (30 mg/m3). A moderate to strong olfactory response and distinct nasal and eye irritation were observed. In spite of considerable individual variation, the results were in agreement with sensory effect estimates obtained from animal studies.« less

  3. Prevalence of olfactory impairment in older adults.

    PubMed

    Murphy, Claire; Schubert, Carla R; Cruickshanks, Karen J; Klein, Barbara E K; Klein, Ronald; Nondahl, David M

    2002-11-13

    Older adults represent the fastest-growing segment of the US population, and prevalences of vision and hearing impairment have been extensively evaluated. However, despite the importance of sense of smell for nutrition and safety, the prevalence of olfactory impairment in older US adults has not been studied. To determine the prevalence of olfactory impairment in older adults. A total of 2491 Beaver Dam, Wis, residents aged 53 to 97 years participating in the 5-year follow-up examination (1998-2000) for the Epidemiology of Hearing Loss Study, a population-based, cross-sectional study. Olfactory impairment, assessed by the San Diego Odor Identification Test and self-report. The mean (SD) prevalence of impaired olfaction was 24.5% (1.7%). The prevalence increased with age; 62.5% (95% confidence interval [CI], 57.4%-67.7%) of 80- to 97-year-olds had olfactory impairment. Olfactory impairment was more prevalent among men (adjusted prevalence ratio, 1.92; 95% CI, 1.65-2.19). Current smoking, stroke, epilepsy, and nasal congestion or upper respiratory tract infection were also associated with increased prevalence of olfactory impairment. Self-reported olfactory impairment was low (9.5%) and this measure became less accurate with age. In the oldest group, aged 80 to 97 years, sensitivity of self-report was 12% for women and 18% for men. This study demonstrates that prevalence of olfactory impairment among older adults is high and increases with age. Self-report significantly underestimated prevalence rates obtained by olfaction testing. Physicians and caregivers should be particularly alert to the potential for olfactory impairment in the elderly population.

  4. Regulation of inflammation-associated olfactory neuronal death and regeneration by the type II tumor necrosis factor receptor.

    PubMed

    Pozharskaya, Tatyana; Liang, Jonathan; Lane, Andrew P

    2013-09-01

    Olfactory loss is a debilitating symptom of chronic rhinosinusitis. To study the impact of inflammation on the olfactory system, the inducible olfactory inflammation (IOI) transgenic mouse was created in which inflammation can be turned on and off within the olfactory epithelium. In this study, the type II tumor necrosis factor (TNF) receptor (TNFR2) was knocked out, and the effect on the olfactory loss phenotype was assessed. IOI mice were bred to TNFR2 knockout mice to yield progeny IOI mice lacking the TNFR2 receptor (TNFR2(-/-) ). TNF-α expression was induced within the olfactory epithelium for 6 weeks to generate chronic inflammation. Olfactory function was assayed by electro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. Compared to IOI mice with wild-type TNFR2, IOI mice lacking the TNFR2 demonstrated similar levels of inflammatory infiltration and enlargement of the subepithelial layer. However, IOI-TNFR2(-/-) mice differed markedly in that the neuronal layer was largely preserved and active progenitor cell proliferation was present. Odorant responses were maintained in the IOI-TNFR2(-/-) mice, in contrast to IOI mice. TNFR2 is the minor receptor for TNF-α, but appears to play an important role in mediating TNF-induced disruption of the olfactory system. This finding suggests that neuronal death and inhibition of proliferation in CRS may be mediated by TNFR2 on olfactory neurons and progenitor cells. Further studies are needed to elucidate the subcellular pathways involved and develop novel therapies for treating olfactory loss in the setting of CRS. © 2013 ARS-AAOA, LLC.

  5. A Comparative Study of Airflow and Odorant Deposition in the Mammalian Nasal Cavity

    NASA Astrophysics Data System (ADS)

    Richter, Joseph; Rumple, Christopher; Ranslow, Allison; Quigley, Andrew; Pang, Benison; Neuberger, Thomas; Krane, Michael; van Valkenburgh, Blaire; Craven, Brent

    2013-11-01

    The complex structure of the mammalian nasal cavity provides a tortuous airflow path and a large surface area for respiratory air conditioning, filtering of inspired contaminants, and olfaction. Due to the small and contorted structure of the nasal turbinals, nasal anatomy and function remains poorly understood in most mammals. Here, we utilize high-resolution MRI scans to reconstruct anatomically-accurate models of the mammalian nasal cavity. These data are used to compare the form and function of the mammalian nose. High-fidelity computational fluid dynamics (CFD) simulations of nasal airflow and odorant deposition are presented and used to compare olfactory function across species (primate, rodent, canine, feline, ungulate).

  6. Breathing life into dinosaurs: tackling challenges of soft-tissue restoration and nasal airflow in extinct species.

    PubMed

    Bourke, Jason M; Porter, W M Ruger; Ridgely, Ryan C; Lyson, Tyler R; Schachner, Emma R; Bell, Phil R; Witmer, Lawrence M

    2014-11-01

    The nasal region plays a key role in sensory, thermal, and respiratory physiology, but exploring its evolution is hampered by a lack of preservation of soft-tissue structures in extinct vertebrates. As a test case, we investigated members of the "bony-headed" ornithischian dinosaur clade Pachycephalosauridae (particularly Stegoceras validum) because of their small body size (which mitigated allometric concerns) and their tendency to preserve nasal soft tissues within their hypermineralized skulls. Hypermineralization directly preserved portions of the olfactory turbinates along with an internal nasal ridge that we regard as potentially an osteological correlate for respiratory conchae. Fossil specimens were CT-scanned, and nasal cavities were segmented and restored. Soft-tissue reconstruction of the nasal capsule was functionally tested in a virtual environment using computational fluid dynamics by running air through multiple models differing in nasal soft-tissue conformation: a bony-bounded model (i.e., skull without soft tissue) and then models with soft tissues added, such as a paranasal septum, a scrolled concha, a branched concha, and a model combining the paranasal septum with a concha. Deviations in fluid flow in comparison to a phylogenetically constrained sample of extant diapsids were used as indicators of missing soft tissue. Models that restored aspects of airflow found in extant diapsids, such as appreciable airflow in the olfactory chamber, were judged as more likely. The model with a branched concha produced airflow patterns closest to those of extant diapsids. These results from both paleontological observation and airflow modeling indicate that S. validum and other pachycephalosaurids could have had both olfactory and respiratory conchae. Although respiratory conchae have been linked to endothermy, such conclusions require caution in that our re-evaluation of the reptilian nasal apparatus indicates that respiratory conchae may be more widespread

  7. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit.

    PubMed

    Hawkins, Sara J; Weiss, Lukas; Offner, Thomas; Dittrich, Katarina; Hassenklöver, Thomas; Manzini, Ivan

    2017-01-01

    Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.

  8. Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit

    PubMed Central

    Hawkins, Sara J.; Weiss, Lukas; Offner, Thomas; Dittrich, Katarina; Hassenklöver, Thomas; Manzini, Ivan

    2017-01-01

    Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks. PMID:29234276

  9. Expression of peroxisome proliferator-activated receptor gamma (PPAR-gamma) in canine nasal carcinomas.

    PubMed

    Paciello, O; Borzacchiello, G; Varricchio, E; Papparella, S

    2007-10-01

    Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-gamma is expressed in multiple normal and neoplastic tissues, such as the breast, colon, lung, ovary and placenta. In addition to adipogenic and anti-inflammatory effects, PPAR-gamma activation has been shown to be anti-proliferative by its differentiation-promoting effect, suggesting that activation of PPAR-gamma may be useful in slowing or arresting the proliferation of de-differentiated tumour cells. In this study, we investigated the expression of PPAR-gamma in normal and neoplastic canine nasal epithelium. Twenty-five samples composed of five normal nasal epithelia and 20 canine nasal carcinomas, were immunohistochemically stained for PPAR-gamma. The specificity of the antibody was verified by Western Blot analysis. Confocal laser scanning microscopical investigation was also performed. In normal epithelium, the staining pattern was cytoplasmic and polarized at the cellular free edge. In carcinomas, the neoplastic cells showed mainly strong cytoplasmatic PPAR-gamma expression; moreover, perinuclear immunoreactivity was also detected and few neoplastic cells exhibited a nuclear positivity. Our results demonstrate different patterns of PPAR-gamma expression in normal canine nasal epithelium when compared with canine nasal carcinoma. The importance of this transcription factor in the pathophysiology of several different tumours has stimulated much research in this field and has opened new opportunities for the treatment of the tumours.

  10. Olfaction in Endoscopic Sinus and Skull Base Surgery.

    PubMed

    Thompson, Christopher F; Kern, Robert C; Conley, David B

    2015-10-01

    Olfactory dysfunction is a common complaint for patients with chronic rhinosinusitis, because smell loss decreases a patient's quality of life. Smell loss is caused by obstruction from polyps, nasal discharge, and mucosal edema, as well as inflammatory changes within the olfactory epithelium. Addressing olfaction before endoscopic sinus and skull base surgery is important in order to set postoperative expectations, because an improvement in smell is difficult to predict. Several commercially available olfactory testing measures are available and can easily be administered in clinic. During surgery, careful dissection within the olfactory cleft is recommended in order to optimize postoperative olfactory function. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb

    PubMed Central

    RASH, JOHN E.; DAVIDSON, KIMBERLY G. V.; KAMASAWA, NAOMI; YASUMURA, THOMAS; KAMASAWA, MASAMI; ZHANG, CHUNBO; MICHAELS, ROBIN; RESTREPO, DIEGO; OTTERSEN, OLE P.; OLSON, CARL O.; NAGY, JAMES I.

    2006-01-01

    Odorant/receptor binding and initial olfactory information processing occurs in olfactory receptor neurons (ORNs) within the olfactory epithelium. Subsequent information coding involves high-frequency spike synchronization of paired mitral/tufted cell dendrites within olfactory bulb (OB) glomeruli via positive feedback between glutamate receptors and closely-associated gap junctions. With mRNA for connexins Cx36, Cx43 and Cx45 detected within ORN somata and Cx36 and Cx43 proteins reported in ORN somata and axons, abundant gap junctions were proposed to couple ORNs. We used freeze-fracture replica immunogold labeling (FRIL) and confocal immunofluorescence microscopy to examine Cx36, Cx43 and Cx45 protein in gap junctions in olfactory mucosa, olfactory nerve and OB in adult rats and mice and early postnatal rats. In olfactory mucosa, Cx43 was detected in gap junctions between virtually all intrinsic cell types except ORNs and basal cells; whereas Cx45 was restricted to gap junctions in sustentacular cells. ORN axons contained neither gap junctions nor any of the three connexins. In OB, Cx43 was detected in homologous gap junctions between almost all cell types except neurons and oligodendrocytes. Cx36 and, less abundantly, Cx45 were present in neuronal gap junctions, primarily at “mixed” glutamatergic/electrical synapses between presumptive mitral/tufted cell dendrites. Genomic analysis revealed multiple miRNA (micro interfering RNA) binding sequences in 3′-untranslated regions of Cx36, Cx43 and Cx45 genes, consistent with cell-type-specific post-transcriptional regulation of connexin synthesis. Our data confirm absence of gap junctions between ORNs, and support Cx36- and Cx45-containing gap junctions at glutamatergic mixed synapses between mitral/tufted cells as contributing to higher-order information coding within OB glomeruli. PMID:16841170

  12. Evaluation of the effect of cigarette smoking on the olfactory neuroepithelium of New Zealand white rabbit, using scanning electron microscope.

    PubMed

    Iskander, Nagi M; El-Hennawi, Diaa M; Yousef, Tarek F; El-Tabbakh, Mohammed T; Elnahriry, Tarek A

    2017-06-01

    To detect ultra-structural changes of Rabbit's olfactory neuro-epithelium using scanning electron microscope after exposure to cigarette smoking. Sixty six rabbits (Pathogen free New Zealand white rabbits weighing 1-1.5 kg included in the study were randomly assigned into one of three groups: control group did not expose to cigarette smoking, study group 1 was exposed to cigarette smoking for 3 months and study group 2 was exposed to cigarette smoking 3 months and then stopped for 2 months. Olfactory neuro-epithelium from all rabbits were dissected and examined under Philips XL-30 scanning electron microscope. Changes that were found in the rabbits of study group 1 in comparison to control group were loss of microvilli of sustentacular cells (p = 0.016) and decreases in distribution of specialized cilia of olfactory receptor cells (p = 0.046). Also respiratory metaplasia was detected. These changes were reversible in study group 2. Cigarette smoking causes ultra-structural changes in olfactory neuro-epithelium which may explain why smell was affected in cigarette smokers. Most of these changes were reversible after 45 days of cessation of cigarette smoking to the rabbits.

  13. Heat shock protein 70 in the rat nasal cavity: localisation and response to hyperthermia.

    PubMed

    Simpson, Sharon A; Alexander, David J; Reed, Celia J

    2004-06-01

    Heat shock proteins (HSPs) are a group of proteins that are rapidly induced in response to physiological stress, including hyperthermia and exposure to toxicants. Thus they may provide a useful index of toxicity in in vitro systems for screening for toxicity. We have recently developed a rat nasal explant system for investigating upper respiratory tract toxicity, and the aims of this study were to localise HSP70 within the rat nasal cavity and to characterise its response to hyperthermia. Constitutively, HSP70 was found to be predominantly localised to the sustentacular cells, basal cells and Bowman's glands of the olfactory epithelium (OE), with the most intense immunohistochemical staining at levels 3 and 4 of the posterior of the rat nasal cavity. Ethmoturbinates (ETs) and liver slices were exposed to heat shock (37 degrees and 43 degrees C, respectively) for 45 min and then returned to normal culture temperatures (31 degrees and 37 degrees C, respectively) for 24 h. In ETs, HSP72 was maximally induced 4-fold at 4 h after heat shock, and levels then returned to those of control tissue. ATP concentrations were markedly decreased up to 4 h after heat shock and then returned to control levels. In contrast, HSP72 levels in liver slices increased and ATP levels decreased steadily throughout the 24 h culture period. ETs were also able to withstand a 45-min heat shock at 43 degrees C, that is 12 degrees C above normal culture temperature. Incubation of ETs with cycloheximide prior to heat shock reduced the ability of the OE to recover from heat shock at 37 degrees C. Thus the OE of the rat nasal cavity expresses HSP72, and this protein appears to play an important role in the ability of the tissue to withstand hyperthermia.

  14. The nervus terminalis in the chick: a FMRFamide-immunoreactive and AChE-positive nerve.

    PubMed

    Wirsig-Wiechmann, C R

    1990-07-16

    The chick terminal nerve (TN) was examined by immunocytochemical and histochemical methods. Molluscan cardioexcitatory peptide-immunoreactive (FMRFamide-ir) and acetylcholinesterase (AChE)-positive TN perikarya and fibers were distributed along olfactory and trigeminal nerves. FMRFamide-ir TN fibers terminated in the olfactory lamina propria and epithelium and in ganglia along the rostroventral nasal septum. This initial description of several populations of avian TN neurons should provide the foundation for future developmental studies of this system.

  15. Scents and Nonsense: Olfactory Dysfunction in Schizophrenia

    PubMed Central

    Turetsky, Bruce I.; Hahn, Chang-Gyu; Borgmann-Winter, Karin; Moberg, Paul J.

    2009-01-01

    Among the sensory modalities, olfaction is most closely associated with the frontal and temporal brain regions that are implicated in schizophrenia and most intimately related to the affective and mnemonic functions that these regions subserve. Olfactory probes may therefore be ideal tools through which to assess the structural and functional integrity of the neural substrates that underlie disease-related cognitive and emotional disturbances. Perhaps more importantly, to the extent that early sensory afferents are also disrupted in schizophrenia, the olfactory system—owing to its strategic anatomic location—may be especially vulnerable to such disruption. Olfactory dysfunction may therefore be a sensitive indicator of schizophrenia pathology and may even serve as an “early warning” sign of disease vulnerability or onset. In this article, we review the evidence supporting a primary olfactory sensory disturbance in schizophrenia. Convergent data indicate that structural and functional abnormalities extend from the cortex to the most peripheral elements of the olfactory system. These reflect, in part, a genetically mediated neurodevelopmental etiology. Gross structural and functional anomalies are mirrored by cellular and molecular abnormalities that suggest decreased or faulty innervation and/or dysregulation of intracellular signaling. A unifying mechanistic hypothesis may be the epigenetic regulation of gene expression. With the opportunity to obtain olfactory neural tissue from live patients through nasal epithelial biopsy, the peripheral olfactory system offers a uniquely accessible window through which the pathophysiological antecedents and sequelae of schizophrenia may be observed. This could help to clarify underlying brain mechanisms and facilitate identification of clinically relevant biomarkers. PMID:19793796

  16. Expression of corticosteroid binding globulin in the rat olfactory system.

    PubMed

    Dölz, Wilfried; Eitner, Annett; Caldwell, Jack D; Jirikowski, Gustav F

    2013-05-01

    Glucocorticoids are known to act on the olfactory system although their mode of action is still unclear since nuclear glucocorticoid receptors are mostly absent in the olfactory mucosa. In this study we used immunocytochemistry, in situ hybridization, and RT-PCR to study the expression and distribution of corticosteroid binding globulin (CBG) in the rat olfactory system. Mucosal goblet cells could be immunostained for CBG. Nasal secretion contained measurable amounts of CBG suggesting that CBG is liberated. CBG immunoreactivity was localized in many of the basal cells of the olfactory mucosa, while mature sensory cells contained CBG only in processes as determined by double immunostaining with the olfactory marker protein OMP. This staining was most pronounced in the vomeronasal organ (VNO). The appearance of CBG in the non-sensory and sensory parts of the VNO and in nerve terminals in the accessory bulb indicated axonal transport. Portions of the periglomerular cells, the mitral cells and the tufted cells were also CBG positive. CBG encoding transcripts were confirmed by RT-PCR in homogenates of the olfactory mucosa and VNO. Olfactory CBG may be significant for uptake, accumulation and transport of glucocorticoids, including aerosolic cortisol. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Effect of strong fragrance on olfactory detection threshold.

    PubMed

    Fasunla, Ayotunde James; Douglas, David Dayo; Adeosun, Aderemi Adeleke; Steinbach, Silke; Nwaorgu, Onyekwere George Benjamin

    2014-09-01

    To assess the olfactory threshold of healthy volunteers at the University College Hospital, Ibadan and to investigate the effect of perfume on their olfactory detection thresholds. A quasi-experimental study on olfactory detection thresholds of healthy volunteers from September 2013 to November 2013. Tertiary health institution. A structured questionniare was administered to the participants in order to obtain information on sociodemographics, occupation, ability to perceive smell, use of perfume, effects of perfume on appetite and self-confidence, history of allergy, and previous nasal surgery. Participants subjectively rated their olfactory performance. Subsequently, they had olfactory detection threshold testing done at baseline and after exposure to perfume with varied concentrations of n-butanol in a forced triple response and staircase fashion. Healthy volunteers, 37 males and 63 females, were evaluated. Their ages ranged from 19 to 59 years with a mean of 31 years ± 8. Subjectively, 94% of the participants had excellent olfactory function. In the pre-exposure forced triple response, 88% were able to detect the odor at ≤.25 mmol/l concentration while in the post-exposure forced triple response, only 66% were able to detect the odor at ≤.25 mmol/l concentration. There is also a statistical significant difference in the olfactory detection threshold score between the pre-exposure and post-exposure period in the participants (P < .05). Use of strong fragrances affects the olfactory detection threshold. Therefore patients and clinicians should be aware of this and its effects on the outcome of test of olfaction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  18. [Clinicopathologic study of sinonasal teratocarcinosarcoma and its contrast with olfactory neuroblastoma].

    PubMed

    Li, Xue; Liu, Hong-Gang; Xie, Xin-Ji; Han, Yi-Ding; Li, Ming

    2008-07-01

    primitive mesenchymal tissue expressed vimentin, and the mucoid materials and glycogen were positive for PAS. GFAP was negative in all cases. The 34 cases of ONB, included 18 men and 16 women, the age ranged from 12 to 72 years (mean 42.8 years). Microscopically, the tumor shows epithelial nests, net of angioma-like fibrous connective tissues, small round and spindle cells, glandular, squamous-like cells, and cells of rhabdomyoblastic differentiation, Homer-Wright and Flexner rosette, bundles of neurofibrils, etc. NSE and CgA were expressed in small cells. S-100 protein was positive in the areas of bunches of neurofibril. Cytokeratin (pan) was positive in epithelial cells. Myoglobin was positive in the cells of rhabdomyoblastic differentiation. The single case of immature malignant teratoma exhibited primitive nerve tissue, but fetal clear cell squamous epithelium was not found. In the immature embryonic tissue, rudimentary organs were formed, with fetal clear cell squamous epithelium lining present on the nasal and oral cavities surface. SNTCS is a rare and aggressive malignant neoplasm. Most of ONB are low-grade malignant tumors. Morphological differences are the most important basis to make differentiate SNTCS from ONB. As SNTCS may demonstrate a multiplicity of structures and pleomorphism, inadequate sampling at biopsy, therefore, may lead to errors in diagnosis. No evidence show that SNTCS are derived from germ cells and sinonasal teratoid carcinosarcoma may be a more proper name. SNTCS probably arises from primitive totipotential cells of olfactory/sinonasal membrane, and the relationship between SNTCS and ONB needs further study.

  19. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats

    PubMed Central

    Fontanini, Alfredo

    2017-01-01

    The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. SIGNIFICANCE STATEMENT Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate

  20. Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.

    PubMed

    Samuelsen, Chad L; Fontanini, Alfredo

    2017-01-11

    The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate chemosensory stimuli

  1. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers

    PubMed Central

    Xi, Jinxiang; Zhang, Ze; Si, Xiuhua A

    2015-01-01

    Background Although direct nose-to-brain drug delivery has multiple advantages, its application is limited by the extremely low delivery efficiency (<1%) to the olfactory region where drugs can enter the brain. It is crucial to developing new methods that can deliver drug particles more effectively to the olfactory region. Materials and methods We introduced a delivery method that used magnetophoresis to improve olfactory delivery efficiency. The performance of the proposed method was assessed numerically in an image-based human nose model. Influences of the magnet layout, magnet strength, drug-release position, and particle diameter on the olfactory dosage were examined. Results and discussion Results showed that particle diameter was a critical factor in controlling the motion of nasally inhaled ferromagnetic drug particles. The optimal particle size was found to be approximately 15 μm for effective magnetophoretic guidance while avoiding loss of particles to the walls in the anterior nose. Olfactory delivery efficiency was shown to be sensitive to the position and strength of magnets and the release position of drug particles. The results of this study showed that clinically significant olfactory doses (up to 45%) were feasible using the optimal combination of magnet layout, selective drug release, and microsphere-carrier diameter. A 64-fold-higher delivery of dosage was predicted in the magnetized nose compared to the control case, which did not have a magnetic field. However, the sensitivity of olfactory dosage to operating conditions and the unstable nature of magnetophoresis make controlled guidance of nasally inhaled aerosols still highly challenging. PMID:25709443

  2. Olfactory Receptor Multigene Family in Vertebrates: From the Viewpoint of Evolutionary Genomics

    PubMed Central

    Niimura, Yoshihito

    2012-01-01

    Olfaction is essential for the survival of animals. Diverse odor molecules in the environment are detected by the olfactory receptors (ORs) in the olfactory epithelium of the nasal cavity. There are ~400 and ~1,000 OR genes in the human and mouse genomes, respectively, forming the largest multigene family in mammals. The relationships between ORs and odorants are multiple-to-multiple, which allows for discriminating almost unlimited number of different odorants by a combination of ORs. However, the OR-ligand relationships are still largely unknown, and predicting the quality of odor from its molecular structure is unsuccessful. Extensive bioinformatic analyses using the whole genomes of various organisms revealed a great variation in number of OR genes among species, reflecting the diversity of their living environments. For example, higher primates equipped with a well-developed vision system and dolphins that are secondarily adapted to the aquatic life have considerably smaller numbers of OR genes than most of other mammals do. OR genes are characterized by extremely frequent gene duplications and losses. The OR gene repertories are also diverse among human individuals, explaining the diversity of odor perception such as the specific anosmia. OR genes are present in all vertebrates. The number of OR genes is smaller in teleost fishes than in mammals, while the diversity is higher in the former than the latter. Because the genome of amphioxus, the most basal chordate species, harbors vertebrate-like OR genes, the origin of OR genes can be traced back to the common ancestor of the phylum Chordata. PMID:23024602

  3. [Organization of olfactory system of the Indian major carp Labeo rohita (Ham.): a study using scanning and transmission microscopy].

    PubMed

    Bhute, Y V; Baile, V V

    2007-01-01

    Catla catla, Labeo rohita, and Cirrhinus mrigala are important alimentary fish in India. Their reproduction (breeding) depends on season. The fish perceive external factors-stimuli and chemical signals through the olfactory system that plays the key role in the central regulation of reproduction. However, in the available literature, any electron microscopy data on organization of olfactory elements in these fish are absent. We have studied ultrastructure of the olfactory organ in male L. rohita by using scanning (SEM) and transmission electron microscopy (TEM). The olfactory organ consists of olfactory epithelium, a short nerve, and olfactory bulb. The organ has oval shape and consists of approximately 47-52 lamellae in adult fish and of 14-20 lamellae in fish at the stage of fingerling. These lamellae originate from the midline raphe. By using SEM, the presence of microvillar sensory and ciliated non-sensory cells in these lamellae is shown. By using TEM, a microvillar receptor cell is revealed, which has rough endoplasmic reticulum and Golgi apparatus towards the apical end. Basal cells are found at the base of the receptor cell; supporting cells are located adjacent to olfactory receptor neurons, while epithelial cells--in the non-sensory part of olfactory epithelium. Mast, blastema and macrophages cells are also found in the basal lamina. This work is the first publication on structural organization of olfactory system of the Indian major carp, which provides information about morphological and ultrastructural organization of olfactory system and opens new opportunities for study of chemical neuroanatomy, sensory signal processing, and nervous regulation of reproduction of the Indian major carp.

  4. Interaction of Bordetella bronchiseptica and Its Lipopolysaccharide with In Vitro Culture of Respiratory Nasal Epithelium

    PubMed Central

    Middleton, Andrew M.; Martínez, Nhora; Romero, Stefany; Iregui, Carlos

    2013-01-01

    The nasal septa of fetal rabbits at 26 days of gestation were harvested by cesarean section of the does while under anesthesia and then exposed to Bordetella bronchiseptica or its lipopolysaccharide (LPS) for periods of 2 and 4 hours. A total of 240 explants were used. The tissues were examined using the Hematoxylin & Eosin technique. Then, semithin sections (0.5 μm) were stained with toluidine blue and examined with indirect immunoperoxidase (IPI) and lectin histochemistry. The most frequent and statistically significant findings were as follows: (1) cell death and increased goblet cell activity when exposed to bacteria and (2) cell death, cytoplasmic vacuolation and infiltration of polymorphonuclear leukocytes when exposed to LPS. The lesions induced by the bacterium were more severe than with LPS alone, except for the cytoplasmic vacuolation in epithelial cells. IPI stained the ciliated border of the epithelium with the bacterium more intensely, while LPS lectin histochemistry preferentially labeled the cytoplasm of goblet cell. These data indicate that B. bronchiseptica and its LPS may have an affinity for specific glycoproteins that would act as adhesion receptors in both locations. PMID:23555071

  5. Numerical simulation of two consecutive nasal respiratory cycles: toward a better understanding of nasal physiology.

    PubMed

    de Gabory, Ludovic; Reville, Nicolas; Baux, Yannick; Boisson, Nicolas; Bordenave, Laurence

    2018-01-16

    Computational fluid dynamic (CFD) simulations have greatly improved the understanding of nasal physiology. We postulate that simulating the entire and repeated respiratory nasal cycles, within the whole sinonasal cavities, is mandatory to gather more accurate observations and better understand airflow patterns. A 3-dimensional (3D) sinonasal model was constructed from a healthy adult computed tomography (CT) scan which discretized in 6.6 million cells (mean volume, 0.008 mm 3 ). CFD simulations were performed with ANSYS©FluentTMv16.0.0 software with transient and turbulent airflow (k-ω model). Two respiratory cycles (8 seconds) were simulated to assess pressure, velocity, wall shear stress, and particle residence time. The pressure gradients within the sinus cavities varied according to their place of connection to the main passage. Alternations in pressure gradients induced a slight pumping phenomenon close to the ostia but no movement of air was observed within the sinus cavities. Strong movements were observed within the inferior meatus during expiration contrary to the inspiration, as in the olfactory cleft at the same time. Particle residence time was longer during expiration than inspiration due to nasal valve resistance, as if the expiratory phase was preparing the next inspiratory phase. Throughout expiration, some particles remained in contact with the lower turbinates. The posterior part of the olfactory cleft was gradually filled with particles that did not leave the nose at the next respiratory cycle. This pattern increased as the respiratory cycle was repeated. CFD is more efficient and reliable when the entire respiratory cycle is simulated and repeated to avoid losing information. © 2018 ARS-AAOA, LLC.

  6. Specific mesenchymal/epithelial induction of olfactory receptor, vomeronasal, and gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Rawson, N.E; Lischka, F. W.; Yee, K.K.; Peters, A.Z.; Tucker, E.S.; Meechan, D.W.; Zirlinger, M.; Maynard, T.M.; Burd, G.B.; Dulac, C.; Pevny, L.; LaMantia, A-S.

    2013-01-01

    We asked whether specific mesenchymal/epithelial (M/E) induction generates olfactory receptor neurons (ORNs), vomeronasal neurons (VRNs) and gonadotropin releasing hormone (GnRH) neurons—the major neuron classes associated with the olfactory epithelium (OE). To assess specificity of M/E-mediated neurogenesis, we compared the influence of frontonasal mesenchyme on frontonasal epithelium, which becomes the OE, with that of the forelimb bud. Despite differences in position, morphogenetic and cytogenic capacity, both mesenchymal tissues support neurogenesis, expression of several signaling molecules and neurogenic transcription factors in the frontonasal epithelium. Only frontonasal mesenchyme, however, supports OE-specific patterning and activity of a subset of signals and factors associated with OE differentiation. Moreover, only appropriate pairing of frontonasal epithelial and mesenchymal partners yields ORNs, VRNs, and GnRH neurons. Accordingly, the position and molecular identity of specialized frontonasal epithelia and mesenchyme early in gestation and subsequent inductive interactions, specifies the genesis and differentiation of peripheral chemosensory and neuroendocrine neurons. PMID:20503368

  7. The effect of hyperbaric conditions on olfactory functions.

    PubMed

    Ay, Hakan; Salihoglu, Murat; Altundag, Aytug; Tekeli, Hakan; Memis, Ali; Cayonu, Melih

    2014-01-01

    The aim of this study was to investigate the effect of increased atmospheric pressure (AP) on olfactory function. The present study included 40 healthy volunteers with no history of chronic rhinosinusitis and nasal polyposis. The experimental procedure consisted of two episodes: (a) baseline episode, with normal AP; 1 absolute atmosphere (atm abs) in a test room at sea level; (b) experimental episode, increased level of AP; 2.4 atm abs in the hyperbaric chamber. Sino-nasal outcome test-20, Trail Making Test A and olfactory testing were performed in each episodes. The study group consisted of 23 men (57.5%) and 17 women (42.5%); the mean age of the study population was 38.7 +/- 9 years (range 23-58 years). The current investigation produced two major findings: (1) the mean of odor threshold scores was significantly increased in the hyperbaric condition when compared to the normobaric condition; (2) rather, there was no significant change in odor discrimination and identification scores in the hyperbaric condition. Based on two measurements taken at two different barometric pressures and the same temperature and relative humidity, this study suggests that odor threshold scores increase under hyperbaric conditions.

  8. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    PubMed

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  9. Early Stage olfactory neuroblastoma and the impact of resecting dura and olfactory bulb.

    PubMed

    Mays, Ashley C; Bell, Diana; Ferrarotto, Renata; Phan, Jack; Roberts, Dianna; Fuller, Clifton D; Frank, Steven J; Raza, Shaan M; Kupferman, Michael E; DeMonte, Franco; Hanna, Ehab Y; Su, Shirley Y

    2018-06-01

    Compare outcomes of patients with olfactory neuroblastoma (ONB) without skull base involvement treated with and without resection of the dura and olfactory bulb. Retrospective review of ONB patients treated from 1992 to 2013 at the MD Anderson Cancer Center (The University of Texas, Houston, Texas, U.S.A.). Primary outcomes were overall and disease-free survival. Thirty-five patients were identified. Most patients had Kadish A/B. tumors (97%), Hyams grade 2 (70%), with unilateral involvement (91%), and arising from the nasal cavity (68%). Tumor involved the mucosa abutting the skull base in 42% of patients. Twenty-five patients (71%) received surgery and radiation, whereas the remainder had surgery alone. Five patients (14%) had bony skull base resection, and eight patients (23%) had resection of bony skull base, dura, and olfactory bulb. Surgical margins were grossly positive in one patient (3%) and microscopically positive in four patients (12%). The 5- and 10-year overall survival were 93% and 81%, respectively. The 5- and 10-year disease-free survival (DFS) were 89% and 78%, respectively. Bony cribriform plate resection was associated with better DFS (P = 0.05), but dura and olfactory bulb resection was not (P = 0.11). There was a trend toward improved DFS in patients with negative resection margins (P = 0.19). Surgical modality (open vs. endoscopic) and postoperative radiotherapy did not impact DFS. Most Kadish A/B ONB tumors have low Hyams grade, unilateral involvement, and favorable survival outcomes. Resection of the dura and olfactory bulb is not oncologically advantageous in patients without skull base involvement who are surgically treated with negative resection margins and cribriform resection. 4. Laryngoscope, 128:1274-1280, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins.

    PubMed Central

    Giannasca, P J; Boden, J A; Monath, T P

    1997-01-01

    The nasal cavity of a rodent is lined by an epithelium organized into distinct regional domains responsible for specific physiological functions. Aggregates of nasal lymphoid tissue (NALT) located at the base of the nasal cavity are believed to be sites of induction of mucosal immune responses to airborne antigens. The epithelium overlying NALT contains M cells which are specialized for the transcytosis of immunogens, as demonstrated in other mucosal tissues. We hypothesized that NALT M cells are characterized by distinct glycoconjugate receptors which influence antigen uptake and immune responses to transcytosed antigens. To identify glycoconjugates that may distinguish NALT M cells from other cells of the respiratory epithelium (RE), we performed lectin histochemistry on sections of the hamster nasal cavity with a panel of lectins. Many classes of glycoconjugates were found on epithelial cells in this region. While most lectins bound to sites on both the RE and M cells, probes capable of recognizing alpha-linked galactose were found to label the follicle-associated epithelium (FAE) almost exclusively. By morphological criteria, the FAE contains >90% M cells. To determine if apical glycoconjugates on M cells were accessible from the nasal cavity, an M-cell-selective lectin and a control lectin in parallel were administered intranasally to hamsters. The M-cell-selective lectin was found to specifically target the FAE, while the control lectin did not. Lectin bound to M cells in vivo was efficiently endocytosed, consistent with the role of M cells in antigen transport. Intranasal immunization with lectin-test antigen conjugates without adjuvant stimulated induction of specific serum immunoglobulin G, whereas antigen alone or admixed with lectin did not. The selective recognition of NALT M cells by a lectin in vivo provides a model for microbial adhesin-host cell receptor interactions on M cells and the targeted delivery of immunogens to NALT following intranasal

  11. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  12. Esthesioneuroblastoma: treatment of skull-base recurrence.

    PubMed

    Jackson, I T; Somers, P; Marsh, W R

    1985-08-01

    Thirty-nine patients with esthesioneuroblastoma are reviewed. The presentation of the tumor, symptomatology, investigation, and treatment are discussed. A recommended treatment regimen is outlined. Histologic typing is valueless in predicting tumor behavior. An illustrative and difficult case of recurrent base of skull esthesioneuroblastoma is presented. The resection performed is described, and the problem of extradural oropharyngeal communication is discussed. The solution was to use a temporalis and galeal frontalis flap. Reconstruction was with an external and intraoral prosthesis. Optimal treatment in a fresh lesion is radical surgery with or without radiation therapy. Esthesioneuroblastoma is a rare and often misdiagnosed malignant tumor of the olfactory epithelium. Originally described by Bergen et al. in 1924 as "esthesioneuroepithelioma olfactif," it was introduced into the North American literature by Schall and Lineback in 1951. Since then, fewer than 200 cases have been collected. The various terms used to describe it--olfactory esthesioneuroblastoma, esthesioneurocytoma, and olfactory neuroblastoma--all denote origin from the neural crest. The sensory nerves of smell are short bundles of fibers that originate in the olfactory bulb and pass through the cribriform plate to the olfactory area of the nasal mucosa. This mucosa is located in the most superior part of both nasal fossae. Thus the usual primary sites of occurrence include the superior nasal cavity or nasal septum, and turbinates, the ethmoid, or the cribriform plate, although an extranasal site of origin has been suggested. Symptoms are usually progressive and range from nasal obstruction or epistaxis to diplopia, ocular pain, and headaches in the more advanced disease state.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Analyses and treatments of postoperative nasal complications after endonasal transsphenoidal resection of pituitary neoplasms

    PubMed Central

    Cheng, You; Xue, Fei; Wang, Tian-You; Ji, Jun-Feng; Chen, Wei; Wang, Zhi-Yi; Xu, Li; Hang, Chun-Hua; Liu, Xin-Feng

    2017-01-01

    Abstract In this study, we analyze and discuss the treatments of postoperative nasal complications after endonasal transsphenoidal resection of pituitary neoplasms (PNs). We performed 129 endonasal transsphenoidal resections of PNs and analyzed and treated cases with nasal complications. After endonasal transsphenoidal resection of PNs, there were 26 cases of postoperative nasal complications (20.1%), including nasal hemorrhage (4.8%), cerebrospinal fluid rhinorrhea (6.9%), sphenoid sinusitis (2.3%), atrophic rhinitis (1.6%), olfactory disorder (1.6%), perforation of nasal septum (0.8%), and nasal adhesion (2.3%). All patients clinically recovered after therapy, which included treatment of the cavity through nasal endoscopy, intranasal corticosteroids, and nasal irrigation. We propose that regular nasal endoscopic review, specific nasal medications, and regular nasal irrigation can effectively clear nasal mucosal hyperemia-induced edema and nasal/nasoantral secretions, as well as promote regeneration of nasal mucosa, prevent nasal adhesion, maintain the sinus cavity drainage, and accelerate the recovery of the physiological function of the paranasal sinus. Timely treatment of patients with nasal complications after endonasal transsphenoidal resections of PNs could greatly relieve the clinical symptoms. Nasal cleaning is very beneficial to patients after surgery recovery. PMID:28403108

  14. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, C.; Ginzkey, C.; Friehs, G.

    Cytotoxicity and genotoxicity of nitrogen dioxide (NO{sub 2}) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO{sub 2} in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO{sub 2}, 0.1 ppm NO{sub 2}, 1 ppm NO{sub 2}, 10 ppm NO{sub 2} and synthetic air for half an hour. After exposure, genotoxicity wasmore » evaluated by the alkaline single-cell microgel electophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO{sub 2} in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO{sub 2} in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.« less

  15. Causality Assessment of Olfactory and Gustatory Dysfunction Associated with Intranasal Fluticasone Propionate: Application of the Bradford Hill Criteria.

    PubMed

    Muganurmath, Chandrashekhar S; Curry, Amy L; Schindzielorz, Andrew H

    2018-02-01

    Causality assessment is crucial to post-marketing pharmacovigilance and helps optimize safe and appropriate use of medicines by patients in the real world. Self-reported olfactory and gustatory dysfunction are common in the general population as well as in patients with allergic rhinitis and nasal polyposis. Intranasal corticosteroids, including intranasal fluticasone propionate (INFP), are amongst the most effective drugs indicated in the treatment of allergic rhinitis and nasal polyposis. While intranasal corticosteroids are associated with olfactory and gustatory dysfunction and are currently labeled for these adverse events, causality assessment has not been performed to date. Although there is no single widely accepted method to assess causality in pharmacovigilance, the Bradford Hill criteria offer a robust and comprehensive approach because nine distinct aspects of an observed potential drug-event association are assessed. In this literature-based narrative review, Hill's criteria were applied to determine causal inference between INFP and olfactory and gustatory dysfunction.

  16. Odorant-Binding Protein: Localization to Nasal Glands and Secretions

    NASA Astrophysics Data System (ADS)

    Pevsner, Jonathan; Sklar, Pamela B.; Snyder, Solomon H.

    1986-07-01

    An odorant-binding protein (OBP) was isolated from bovine olfactory and respiratory mucosa. We have produced polyclonal antisera to this protein and report its immunohistochemical localization to mucus-secreting glands of the olfactory and respiratory mucosa. Although OBP was originally isolated as a pyrazine binding protein, both rat and bovine OBP also bind the odorants [3H]methyldihydrojasmonate and 3,7-dimethyl-octan-1-ol as well as 2-isobutyl-3-[3H]methoxypyrazine. We detect substantial odorant-binding activity attributable to OBP in secreted rat nasal mucus and tears but not in saliva, suggesting a role for OBP in transporting or concentrating odorants.

  17. Examination of the reticular epithelium of the bovine pharyngeal tonsil

    USDA-ARS?s Scientific Manuscript database

    The nasopharyngeal tonsil (adenoid), located at the posterior of the nasopharynx is ideally positioned to sample antigens entering through the nasal cavity or oral cavity. Entering antigens will first contact tonsilar epithelium. To better understand the cellular composition of this important epithe...

  18. SENSORY REACTIONS OF NASAL PUNGENCY AND ODOR TO VOLATILE ORGANIC COMPOUNDS: THE ALKYLBENZENES

    EPA Science Inventory

    Research assessed the independent contribution of the trigeminal and olfactory nerves to the detection of airborne chemicals by measuring nasal detection thresholds in subjects clinically diagnosed as lacking a functional sense of smell (anosmics) and in matched normal controls (...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corley, Richard A; Minard, Kevin R; Kabilan, Senthil

    The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflows calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions inmore » rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (~50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.« less

  20. Histopathologic changes of the nasal mucosa in southwest Metropolitan Mexico City inhabitants.

    PubMed Central

    Calderon-Garcidueñas, L.; Osorno-Velazquez, A.; Bravo-Alvarez, H.; Delgado-Chavez, R.; Barrios-Marquez, R.

    1992-01-01

    Metropolitan Mexico City (MMC) is one of the most polluted urban areas in the world. The authors characterized the morphologic nasal mucosal changes in short-term (less than 30 days) and long-term (more than 60 days) exposures to the polluted southwest MMC atmosphere with high levels of ozone and other contaminants versus a control group of subjects living in a nonpolluted, low-ozone Mexican port. Seventy-six inferior turbinate biopsies were examined. The control group showed normal mucociliary epithelium, whereas the short-exposure group displayed loss of normal epithelium, basal cell hyperplasia, and mild dysplasia (17.64%). In the long-term exposure group, 78.72% of dysplasias were found (59.45% mild and 40.54% moderate) together with severe loss of normal respiratory epithelium, prominent basal cell hyperplasia, squamous metaplasia, and submucosal vascular proliferation. Our findings suggest that southwest metropolitan Mexico City inhabitants develop histopathologic changes in their nasal mucosa on exposure to the polluted city atmosphere. Images Figure 5 Figure 6 Figure 7 PMID:1731527

  1. A descriptive and comparative lectin histochemical study of the vomeronasal system in pigs and sheep

    PubMed Central

    SALAZAR, IGNACIO; SANCHEZ-QUINTEIRO, PABLO; LOMBARDERO, MATILDE; CIFUENTES, JOSE MANUEL

    2000-01-01

    The accessory olfactory bulb (AOB) is the primary target of the sensory epithelium of the vomeronasal organ (VNO), and thus constitutes a fundamental component of the accessory olfactory system, which is involved in responses to behaviour-related olfactory stimuli. In this study we investigated the characteristics of the AOB, VNO, vomeronasal nerves (VNNs) and caudal nasal nerve (CdNN) in pigs and sheep, species in which olfaction plays a key behavioural role both in the neonatal period and in adulthood. The patterns of staining of the AOB by the Bandeiraea simplicifolia and Lycopersicon esculentum lectins were the same in the 2 species, whereas the Ulex europeus and Dolichos biflorus lectins gave different patterns. In both species, lectin staining of the AOB was consistent with that of the VNNs, while the CdNN did not label any of the structures studied. The entire sensory epithelium of the pig was labelled by Ulex europeus and Lycopersicum esculentum lectins, and all 4 lectins used labelled the mucomicrovillar surface of the sensory epithelium in sheep. PMID:10697284

  2. Odorant-stimulated phosphoinositide signaling in mammalian olfactory receptor neurons

    PubMed Central

    Klasen, K.; Corey, E.A.; Kuck, F.; Wetzel, C.H.; Hatt, H.; Ache, B.W.

    2009-01-01

    Recent evidence has revived interest in the idea that phosphoinositides (PIs) may play a role in signal transduction in mammalian olfactory receptor neurons (ORNs). To provide direct evidence that odorants indeed activate PI signaling in ORNs, we used adenoviral vectors carrying two different fluorescently tagged probes, the pleckstrin homology (PH) domains of phospholipase Cδ1 (PLCδ1) and the general receptor of phosphoinositides (GRP1), to monitor PI activity in the dendritic knobs of ORNs in vivo. Odorants mobilized PI(4,5)P2/IP3 and PI(3,4,5)P3, the substrates and products of PLC and PI3K. We then measured odorant activation of PLC and PI3K in olfactory ciliary-enriched membranes in vitro using a phospholipid overlay assay and ELISAs. Odorants activated both PLC and PI3K in the olfactory cilia within 2 sec of odorant stimulation. Odorant-dependent activation of PLC and PI3K in the olfactory epithelium could be blocked by enzyme-specific inhibitors. Odorants activated PLC and PI3K with partially overlapping specificity. These results provide direct evidence that odorants indeed activate PI signaling in mammalian ORNs in a manner that is consistent with the idea that PI signaling plays a role in olfactory transduction. PMID:19781634

  3. The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies.

    PubMed

    Jennes, L

    1987-01-01

    The distribution of gonadotropin-releasing hormone (GnRH)-containing neurons and fibers in the olfactory bulb was studied with light and electron microscopic immunohistochemistry in combination with retrograde transport of "True Blue" and horseradish peroxidase and lesion experiments. GnRH-positive neurons are found in the septal roots of the nervus terminalis, in the ganglion terminale, intrafascicularly throughout the nervus terminalis, in a dorso-ventral band in the caudal olfactory bulb, in various layers of the main and accessory olfactory bulb, and in the basal aspects of the nasal epithelium. Electron microscopic studies show that the nerve fibers in the nervus terminalis are not myelinated and are not surrounded by Schwann cell sheaths. In the ganglion terminale, "smooth" GnRH neurons are seen in juxtaposition to immunonegative neurons. Occasionally, axosomatic specializations are found in the ganglion terminale, but such synaptic contacts are not seen intrafascicularly in the nervus terminalis. Retrograde transport studies indicate that certain GnRH neurons in the septal roots of the nervus terminalis were linked to the amygdala. In addition, a subpopulation of nervus terminalis-related GnRH neurons has access to fenestrated capillaries whereas other GnRH neurons terminate at the nasal epithelium. Lesions of the nervus terminalis caudal to the ganglion terminale result in sprouting of GnRH fibers at both sites of the knife cut. The results suggest that GnRH in the olfactory system of the mouse can influence a variety of target sites either via the blood stream, via the external cerebrospinal fluid or via synaptic/asynaptic contacts with, for example, the receptor cells in the nasal mucosa.

  4. Development of the olfactory pathways in platypus and echidna.

    PubMed

    Ashwell, Ken W S

    2012-01-01

    The two groups of living monotremes (platypus and echidnas) have remarkably different olfactory structures in the adult. The layers of the main olfactory bulb of the short-beaked echidna are extensively folded, whereas those of the platypus are not. Similarly, the surface area of the piriform cortex of the echidna is large and its lamination complex, whereas in the platypus it is small and simple. It has been argued that the modern echidnas are derived from a platypus-like ancestor, in which case the extensive olfactory specializations of the modern echidnas would have developed relatively recently in monotreme evolution. In this study, the development of the constituent structures of the olfactory pathway was studied in sectioned platypus and echidna embryos and post-hatchlings at the Museum für Naturkunde, Berlin, Germany. The aim was to determine whether the olfactory structures follow a similar maturational path in the two monotremes during embryonic and early post-hatching ages or whether they show very different developmental paths from the outset. The findings indicate that anatomical differences in the central olfactory system between the short-beaked echidna and the platypus begin to develop immediately before hatching, although details of differences in nasal cavity architecture emerge progressively during late post-hatching life. These findings are most consistent with the proposition that the two modern monotreme lineages have followed independent evolutionary paths from a less olfaction-specialized ancestor. The monotreme olfactory pathway does not appear to be sufficiently structurally mature at birth to allow olfaction-mediated behaviour, because central components of both the main and accessory olfactory system have not differentiated at the time of hatching. Copyright © 2011 S. Karger AG, Basel.

  5. Gender-typical olfactory regulation of sexual behavior in goldfish

    PubMed Central

    Kawaguchi, Yutaro; Nagaoka, Akira; Kitami, Asana; Mitsuhashi, Tomomi; Hayakawa, Youichi; Kobayashi, Makito

    2014-01-01

    It is known that olfaction is essential for the occurrence of sexual behavior in male goldfish. Sex pheromones from ovulatory females elicit male sexual behavior, chasing, and sperm releasing act. In female goldfish, ovarian prostaglandin F2α (PGF) elicits female sexual behavior, egg releasing act. It has been considered that olfaction does not affect sexual behavior in female goldfish. In the present study, we re-examined the involvement of olfaction in sexual behavior of female goldfish. Olfaction was blocked in male and female goldfish by two methods: nasal occlusion (NO) which blocks the reception of olfactants, and olfactory tract section (OTX) which blocks transmission of olfactory information from the olfactory bulb to the telencephalon. Sexual behavior of goldfish was induced by administration of PGF to females, an established method for inducing goldfish sexual behavior in both sexes. Sexual behavior in males was suppressed by NO and OTX as previously reported because of lack of pheromone stimulation. In females, NO suppressed sexual behavior but OTX did not affect the occurrence of sexual behavior. Females treated with both NO and OTX performed sexual behavior normally. These results indicate that olfaction is essential in female goldfish to perform sexual behavior as in males but in a different manner. The lack of olfaction in males causes lack of pheromonal stimulation, resulting in no behavior elicited. Whereas the results of female experiments suggest that lack of olfaction in females causes strong inhibition of sexual behavior mediated by the olfactory pathway. Olfactory tract section is considered to block the pathway and remove this inhibition, resulting in the resumption of the behavior. By subtract sectioning of the olfactory tract, it was found that this inhibition was mediated by the medial olfactory tracts, not the lateral olfactory tracts. Thus, it is concluded that goldfish has gender-typical olfactory regulation for sexual behavior. PMID

  6. The olfactory fascia: an evo-devo concept of the fibrocartilaginous nose.

    PubMed

    Jankowski, Roger; Rumeau, Cécile; de Saint Hilaire, Théophile; Tonnelet, Romain; Nguyen, Duc Trung; Gallet, Patrice; Perez, Manuela

    2016-12-01

    Evo-devo is the science that studies the link between evolution of species and embryological development. This concept helps to understand the complex anatomy of the human nose. The evo-devo theory suggests the persistence in the adult of an anatomical entity, the olfactory fascia, that unites the cartilages of the nose to the olfactory mucosa. We dissected two fresh specimens. After resecting the superficial tissues of the nose, dissection was focused on the disarticulation of the fibrocartilaginous noses from the facial and skull base skeleton. Dissection shows two fibrocartilaginous sacs that were invaginated side-by-side in the midface and attached to the anterior skull base. These membranous sacs were separated in the midline by the perpendicular plate of the ethmoid. Their walls contained the alar cartilages and the lateral expansions of the septolateral cartilage, which we had to separate from the septal cartilage. The olfactory mucosa was located inside their cranial ends. The olfactory fascia is a continuous membrane uniting the nasal cartilages to the olfactory mucosa. Its origin can be found in the invagination and differentiation processes of the olfactory placodes. The fibrous portions of the olfactory fascia may be described as ligaments that unit the different components of the olfactory fascia one to the other and the fibrocartilaginous nose to the facial and skull base skeleton. The basicranial ligaments, fixing the fibrocartilaginous nose to the skull base, represent key elements in the concept of septorhinoplasty by disarticulation.

  7. Expression of cyclooxygenase-1 and -2 in canine nasal carcinomas.

    PubMed

    Borzacchiello, G; Paciello, O; Papparella, S

    2004-07-01

    Cyclooxygenase-1 (COX-1) and cyclooxygenase -2 (COX-2) are known to play a role in the carcinogenesis of many human and animal primary epithelial tumours. However, expression of COX-1 and -2 has not been investigated in canine nasal epithelial carcinoma, a rare form of neoplasia. COX-1 immunolabelling was demonstrated in normal canine nasal mucosa and in a minority of neoplastic specimens. Cytoplasmic COX-2, however, was strongly expressed in the majority of canine nasal carcinomas. In addition, COX-2 expression was demonstrated in dysplastic epithelium and in a proportion of stromal cells. Co-expression of both enzyme isoforms was revealed by confocal laser scanning microscopy. The results indicate that COX-2 is overexpressed in a proportion of naturally occurring canine nasal carcinomas, suggesting its possible role in canine nasal tumorigenesis. Copyright 2004 Elsevier Ltd.

  8. Stable olfactory sensory neuron in vivo physiology during normal aging.

    PubMed

    Kass, Marley D; Czarnecki, Lindsey A; McGann, John P

    2018-05-08

    Normal aging is associated with a number of smell impairments that are paralleled by age-dependent changes in the peripheral olfactory system, including decreases in olfactory sensory neurons (OSNs) and in the regenerative capacity of the epithelium. Thus, an age-dependent degradation of sensory input to the brain is one proposed mechanism for the loss of olfactory function in older populations. Here, we tested this hypothesis by performing in vivo optical neurophysiology in 6-, 12-, 18-, and 24-month-old mice. We visualized odor-evoked neurotransmitter release from populations of OSNs into olfactory bulb glomeruli, and found that these sensory inputs are actually quite stable during normal aging. Specifically, the magnitude and number of odor-evoked glomerular responses were comparable across all ages, and there was no effect of age on the sensitivity of OSN responses to odors or on the neural discriminability of different sensory maps. These results suggest that the brain's olfactory bulbs do not receive deteriorated input during aging and that local bulbar circuitry might adapt to maintain stable nerve input. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Prognostic significance of specific magnetic resonance imaging features in canine nasal tumours treated by radiotherapy.

    PubMed

    Agthe, P; Caine, A R; Gear, R N A; Dobson, J M; Richardson, K J; Herrtage, M E

    2009-12-01

    To investigate the prognostic significance of the magnetic resonance (MR) findings of meningeal hyperintensity of the olfactory bulbs and tumour extension into the caudal nasal recess (CNR) in dogs with nasal tumours treated by radiotherapy. MR images of 41 dogs with nasal tumours treated with radiotherapy were reviewed. The occurrence of neurological signs and survival of patients with and without meningeal hyperintensity of the olfactory bulbs and tumour extension into the CNR were analysed together with possible confounding factors including intracranial extension and patient age. There was no significant association between the presence of meningeal hyperintensity or CNR involvement and the occurrence of neurological signs. Although there was a tendency towards shorter survival in dogs with tumour extension into the CNR, multivariable analysis showed no significant difference in survival between dogs with/without CNR involvement, meningeal hyperintensity or intracranial tumour extension (P=0.12, 0.50 and 0.57, respectively). In dogs with nasal tumours treated with radiotherapy, tumour extension into the cranium is not necessarily associated with shorter survival in patients without neurological signs at time of diagnosis. Although a definite influence of CNR involvement on case outcome could not be demonstrated, studies with a larger population are warranted.

  10. Expression of Olfactory Signaling Genes in the Eye

    PubMed Central

    Velmeshev, Dmitry; Faghihi, Mohammad; Shestopalov, Valery I.; Slepak, Vladlen Z.

    2014-01-01

    Purpose To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. Methods Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. Results We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. Conclusions Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment. PMID:24789354

  11. The activity-dependent histone variant H2BE modulates the life span of olfactory neurons

    PubMed Central

    Santoro, Stephen W; Dulac, Catherine

    2012-01-01

    We have identified a replication-independent histone variant, Hist2h2be (referred to herein as H2be), which is expressed exclusively by olfactory chemosensory neurons. Levels of H2BE are heterogeneous among olfactory neurons, but stereotyped according to the identity of the co-expressed olfactory receptor (OR). Gain- and loss-of-function experiments demonstrate that changes in H2be expression affect olfactory function and OR representation in the adult olfactory epithelium. We show that H2BE expression is reduced by sensory activity and that it promotes neuronal cell death, such that inactive olfactory neurons display higher levels of the variant and shorter life spans. Post-translational modifications (PTMs) of H2BE differ from those of the canonical H2B, consistent with a role for H2BE in altering transcription. We propose a physiological function for H2be in modulating olfactory neuron population dynamics to adapt the OR repertoire to the environment. DOI: http://dx.doi.org/10.7554/eLife.00070.001 PMID:23240083

  12. Gastrin-releasing peptide in human nasal mucosa.

    PubMed

    Baraniuk, J N; Lundgren, J D; Goff, J; Peden, D; Merida, M; Shelhamer, J; Kaliner, M

    1990-04-01

    Gastrin-releasing peptide (GRP), the 27 amino acid mammalian form of bombesin, was studied in human inferior turbinate nasal mucosa. The GRP content of the mucosa measured by radioimmunoassay was 0.60 +/- 0.25 pmol/g tissue (n = 9 patients; mean +/- SEM). GRP-immunoreactive nerves detected by the immunogold method of indirect immunohistochemistry were found predominantly in small muscular arteries, arterioles, venous sinusoids, and between submucosal gland acini. 125I-GRP binding sites determined by autoradiography were exclusively and specifically localized to nasal epithelium and submucosal glands. There was no binding to vessels. The effects of GRP on submucosal gland product release were studied in short-term explant culture. GRP (10 microM) significantly stimulated the release of the serous cell-specific product lactoferrin, and [3H]glucosamine-labeled glycoconjugates which are products of epithelial goblet cells and submucosal gland cells. These observations indicate that GRP released from nerve fibers probably acts on glandular GRP receptors to induce glycoconjugate release from submucosal glands and epithelium and lactoferrin release from serous cells, but that GRP would probably not affect vascular permeability.

  13. Plasticity in Olfactory Epithelium: Is It a Sniffer or Shape Shifter?

    PubMed

    Konkimalla, Arvind; Tata, Purushothama Rao

    2017-12-07

    Precise lineage trajectories and the cellular sources that contribute to regeneration after injury are largely unknown in many tissues. In this issue of Cell Stem Cell, Gadye et al. (2017) and Lin et al. (2017) show that olfactory epithelial cells transit through unique and unfamiliar paths of differentiation and undergo lineage reversion, respectively, during regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Species and sex differences in susceptibility to olfactory lesions among the mouse, rat and monkey following an intravenous injection of vincristine sulphate.

    PubMed

    Kai, Kiyonori; Sahto, Hiroshi; Yoshida, Mitsuyoshi; Suzuki, Takami; Shikanai, Yukari; Kajimura, Tetsuyo; Furuhama, Kazuhisa

    2006-01-01

    Species and sex differences in susceptibility to vincristine sulphate (VCR)-induced olfactory epithelial lesions were investigated among the BALB/c mice, Crj: CD(SD) IGS rats and common marmoset monkeys following a single intravenous administration on day 1. As dosage levels, the 0.17-fold LD10, 0.6-fold LD10 and LD10 were used for mice and rats, and a maximum tolerated dose (MTD) was chosen only for monkeys. The order of strength of VCR action on peripheral neuropathic signs, body weight gain, and hematological parameters was mice > rats > monkeys, without clear sex differences. Histopathologically, on day 2, single cell death in the olfactory epithelium and vomeronasal organ was observed only in male mice at LD10, and in female mice at 0.6-fold LD10 or more. On day 5, the olfactory epithelium in these mice showed regenerative proliferation suggesting a sign of recovery. On day 10, axonopathy and demyelination in the sciatic and trigeminal nerves were noted in mice of both sexes at 0.6-fold LD10 or more. In rats and monkeys of either sex, however, no morphological changes were observed at any dose level. In conclusion, mice, particularly females, were shown to be more susceptible to VCR-induced apoptosis in the olfactory epithelium than rats and monkeys.

  15. A new ex vivo method for the study of nasal drops on ciliary function.

    PubMed

    Levrier, J; Molon-Noblot, S; Duval, D; Lloyd, K G

    1989-01-01

    Any pharmaceutical nasal preparation should respect the physiological function of the mucociliary transport system and should undergo testing to this effect. An experimental protocol has been developed using the guinea pig in order to assess the effects of commercial nasal drop preparations on mucociliary function. The method presented here consists of applying in vivo the test solution on the nasal respiratory epithelium. After a specified contact time and following rapid sacrifice of the animal, the mucosa is removed; the beating frequency of the cilia is then recorded ex vivo by micro-photo-oscillography. The method is sensitive to compounds known to diminish mucociliary function as sodium mercurothiolate inhibits ciliary movement of the nasal epithelium ex vivo. This inhibition of ciliary movement is long-lasting, although reversible. This method can be used to test the action of intranasally administered pharmaceutical preparations on mucociliary function. Commercially available solutions of the nasal vasoconstrictors tymazoline, fenoxazoline or oxymetazoline do not alter ciliary movement ex vivo at dose levels equal to or greater than those clinically utilized. ATP significantly enhances nasal ciliary frequency in instances where a low basal rate occurred. Thus, this method can be used for the testing of the maintenance of nasal ciliary function in the presence of compounds and preparations which will be applied into the nostrils. The advantages over previous techniques include a closer approach to the therapeutic utilization and the maintained physiological conditions of the mucosa during drug administration.

  16. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function

    PubMed Central

    Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A.

    2016-01-01

    The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2–12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16–0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. SIGNIFICANCE STATEMENT Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence

  17. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function.

    PubMed

    Zelano, Christina; Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A

    2016-12-07

    The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2-12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16-0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment

  18. Ethmoid Histopathology Does Not Predict Olfactory Outcomes after Endoscopic Sinus Surgery

    PubMed Central

    Soler, Zachary M.; Sauer, David A.; Mace, Jess C.; Smith, Timothy L.

    2010-01-01

    BACKGROUND Histologic inflammation correlates with the degree of baseline olfactory dysfunction in patients with chronic rhinosinusitis (CRS), however factors associated with improvement in olfactory status after endoscopic sinus surgery (ESS) remain elusive. OBJECTIVE Our purpose was to compare histopathologic findings in CRS patients with olfactory loss and evaluate whether inflammatory markers can predict long-term olfactory improvement after ESS. METHODS Adult (≥18 years) patients with CRS were prospectively enrolled after electing ESS due to failed medical management. Mucosal tissue specimens were collected at the time of surgery and underwent pathlogic review in a blinded fashion. Subjects completed the 40-item Smell Identification Test (SIT) preoperatively and at least 6 months postoperatively. Multivariate logistic regression was used to identify histologic factors associated with postoperative improvement in SIT score. RESULTS The final cohort was comprised of 101 patients with a mean follow-up of 16.7 ± 6.0 months. Mean mucosal eosinophil count was higher in patients with hyposmia and anosmia (p<0.001). Patients with preoperative anosmia were more likely to have greater severity of BM thickening compared to subjects with hyposmia or normosmia (p=0.021). In patients with olfactory dysfunction, 54.7% reported olfactory improvement of at least 4 points on postoperative SIT scores. After controlling for nasal polyposis, histologic variables were not associated with postoperative improvement in olfaction. CONCLUSIONS Patients with severe olfactory dysfunction were more likely to have mucosal eosinophilia and basement membrane thickening on ethmoid histopathologic examination compared to normosmics. The presence of specific histologic inflammatory findings did not however predict olfactory improvement after surgery. PMID:20819467

  19. PEGylation of zinc nanoparticles amplifies their ability to enhance olfactory responses to odorant

    PubMed Central

    Singletary, Melissa; Hagerty, Samantha; Muramoto, Shin; Daniels, Yasmine; MacCrehan, William A.; Stan, Gheorghe; Lau, June W.; Pustovyy, Oleg; Globa, Ludmila; Morrison, Edward E.; Sorokulova, Iryna

    2017-01-01

    Olfactory responses are intensely enhanced with the addition of endogenous and engineered primarily-elemental small zinc nanoparticles (NPs). With aging, oxidation of these Zn nanoparticles eliminated the observed enhancement. The design of a polyethylene glycol coating to meet storage requirements of engineered zinc nanoparticles is evaluated to achieve maximal olfactory benefit. The zinc nanoparticles were covered with 1000 g/mol or 400 g/mol molecular weight polyethylene glycol (PEG). Non-PEGylated and PEGylated zinc nanoparticles were tested by electroolfactogram with isolated rat olfactory epithelium and odorant responses evoked by the mixture of eugenol, ethyl butyrate and (±) carvone after storage at 278 K (5 oC), 303 K (30 oC) and 323 K (50 oC). The particles were analyzed by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and laser Doppler velocimetry. Our data indicate that stored ZnPEG400 nanoparticles maintain physiologically-consistent olfactory enhancement for over 300 days. These engineered Nanoparticles support future applications in olfactory research, sensitive detection, and medicine. PMID:29261701

  20. Impaired olfaction in mice lacking aquaporin-4 water channels.

    PubMed

    Lu, Daniel C; Zhang, Hua; Zador, Zsolt; Verkman, A S

    2008-09-01

    Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had approximately 12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 +/- 0.7 vs. 55 +/- 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 +/- 0.07 vs. 0.28 +/- 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K(+) buffering in the olfactory epithelium.

  1. Uptake and transport of manganese in primary and secondary olfactory neurones in pike.

    PubMed

    Tjälve, H; Mejàre, C; Borg-Neczak, K

    1995-07-01

    gamma-spectrometry and autoradiography were used to examine the axoplasmic flow of manganese in the olfactory nerves and to study the uptake of the metal in the brain after application of 54Mn2+ in the olfactory chambers of pikes. The results show that the 54Mn2+ is taken up in the olfactory receptor cells and is transported at a constant rate along the primary olfactory neurones into the brain. The maximal velocity for the transported 54Mn2+ was 2.90 +/- 0.21 mm/hr (mean +/- S.E.) at 10 degrees, which was the temperature used in the experiments. The 54Mn2+ accumulated in the entire olfactory bulbs, although most marked in central and caudal parts. The metal was also seen to migrate into large areas of the telencephalon, apparently mainly via the secondary olfactory axons present in the medial olfactory tract. A transfer along fibres of the medial olfactory tract probably also explains the labelling which was seen in the diencephalon down to the hypothalamus. The results also showed that there is a pathway connecting the two olfactory bulbs of the pike and that this can carry the metal. Our data further showed a marked accumulation of 54Mn2+ in the meningeal epithelium and in the contents of the meningeal sacs surrounding the olfactory bulbs. It appears from our study that manganese has the ability to pass the synaptic junctions between the primary and the secondary olfactory neurones in the olfactory bulbs and to migrate along secondary olfactory pathways into the telencephalon and the diencephalon.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Olfactory toxicity in fishes.

    PubMed

    Tierney, Keith B; Baldwin, David H; Hara, Toshiaki J; Ross, Peter S; Scholz, Nathaniel L; Kennedy, Christopher J

    2010-01-21

    Olfaction conveys critical environmental information to fishes, enabling activities such as mating, locating food, discriminating kin, avoiding predators and homing. All of these behaviors can be impaired or lost as a result of exposure to toxic contaminants in surface waters. Historically, teleost olfaction studies have focused on behavioral responses to anthropogenic contaminants (e.g., avoidance). More recently, there has been a shift towards understanding the underlying mechanisms and functional significance of contaminant-mediated changes in fish olfaction. This includes a consideration of how contaminants affect the olfactory nervous system and, by extension, the downstream physiological and behavioral processes that together comprise a normal response to naturally occurring stimuli (e.g., reproductive priming or releasing pheromones). Numerous studies spanning several species have shown that ecologically relevant exposures to common pollutants such as metals and pesticides can interfere with fish olfaction and disrupt life history processes that determine individual survival and reproductive success. This represents one of the pathways by which toxic chemicals in aquatic habitats may increasingly contribute to the decline and at-risk status of many commercially and ecologically important fish stocks. Despite our emerging understanding of the threats that pollution poses for chemical communication in aquatic communities, many research challenges remain. These include: (1) the determination of specific mechanisms of toxicity in the fish olfactory sensory epithelium; (2) an understanding of the impacts of complex chemical mixtures; (3) the capacity to assess olfactory toxicity in fish in situ; (4) the impacts of toxins on olfactory-mediated behaviors that are still poorly understood for many fish species; and (5) the connections between sublethal effects on individual fish and the long-term viability of wild populations. This review summarizes and integrates

  3. Impaired airway mucociliary function reduces antigen-specific IgA immune response to immunization with a claudin-4-targeting nasal vaccine in mice.

    PubMed

    Suzuki, Hidehiko; Nagatake, Takahiro; Nasu, Ayaka; Lan, Huangwenxian; Ikegami, Koji; Setou, Mitsutoshi; Hamazaki, Yoko; Kiyono, Hiroshi; Yagi, Kiyohito; Kondoh, Masuo; Kunisawa, Jun

    2018-02-13

    Vaccine delivery is an essential element for the development of mucosal vaccine, but it remains to be investigated how physical barriers such as mucus and cilia affect vaccine delivery efficacy. Previously, we reported that C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) targeted claudin-4, which is expressed by the epithelium associated with nasopharynx-associated lymphoid tissue (NALT), and could be effective as a nasal vaccine delivery. Mice lacking tubulin tyrosine ligase-like family, member 1 (Ttll1-KO mice) showed mucus accumulation in nasal cavity due to the impaired motility of respiratory cilia. Ttll1-KO mice nasally immunized with C-CPE fused to pneumococcal surface protein A (PspA-C-CPE) showed reduced PspA-specific nasal IgA responses, impaired germinal center formation, and decreased germinal center B-cells and follicular helper T cells in the NALT. Although there was no change in the expression of claudin-4 in the NALT epithelium in Ttll1-KO mice, the epithelium was covered by a dense mucus that prevented the binding of PspA-C-CPE to NALT. However, administration of expectorant N-acetylcysteine removed the mucus and rescued the PspA-specific nasal IgA response. These results show that the accumulation of mucus caused by impaired respiratory cilia function is an interfering factor in the C-CPE-based claudin-4-targeting nasal vaccine.

  4. Distinct amyloid precursor protein processing machineries of the olfactory system.

    PubMed

    Kim, Jae Yeon; Rasheed, Ameer; Yoo, Seung-Jun; Kim, So Yeun; Cho, Bongki; Son, Gowoon; Yu, Seong-Woon; Chang, Keun-A; Suh, Yoo-Hun; Moon, Cheil

    2018-01-01

    Processing of amyloid precursor protein (APP) occurs through sequential cleavages first by β-secretase and then by the γ-secretase complex. However, abnormal processing of APP leads to excessive production of β-amyloid (Aβ) in the central nervous system (CNS), an event which is regarded as a primary cause of Alzheimer's disease (AD). In particular, gene mutations of the γ-secretase complex-which contains presenilin 1 or 2 as the catalytic core-could trigger marked Aβ accumulation. Olfactory dysfunction usually occurs before the onset of typical AD-related symptoms (eg, memory loss or muscle retardation), suggesting that the olfactory system may be one of the most vulnerable regions to AD. To date however, little is known about why the olfactory system is affected so early by AD prior to other regions. Thus, we examined the distribution of secretases and levels of APP processing in the olfactory system under either healthy or pathological conditions. Here, we show that the olfactory system has distinct APP processing machineries. In particular, we identified higher expressions levels and activity of γ-secretase in the olfactory epithelium (OE) than other regions of the brain. Moreover, APP c-terminal fragments (CTF) are markedly detected. During AD progression, we note increased expression of presenilin2 of γ-secretases in the OE, not in the OB, and show that neurotoxic Aβ*56 accumulates more quickly in the OE. Taken together, these results suggest that the olfactory system has distinct APP processing machineries under healthy and pathological conditions. This finding may provide a crucial understanding of the unique APP-processing mechanisms in the olfactory system, and further highlights the correlation between olfactory deficits and AD symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Down-regulation of EMP1 is associated with epithelial hyperplasia and metaplasia in nasal polyps.

    PubMed

    Yu, Xue Min; Li, Chun Wei; Li, Ying Ying; Liu, Jing; Lin, Zhi Bin; Li, Tian Ying; Zhao, Li; Pan, Xin Liang; Shi, Li; Wang, De Yun

    2013-11-01

    The aim of this study was to assess protein and mRNA expression of epithelial membrane protein 1 (EMP1) in the nasal mucosa of patients with nasal polyps (NP), and to determine what changes occur in response to glucocorticosteroid (GC) treatment. NP tissue was obtained from 55 patients, 18 of whom were treated with nasal GCs (i.e. these 18 patients had NP biopsies taken before and after treatment). Biopsies of inferior turbinate mucosa from 30 healthy subjects were used as controls. Quantitative PCR and immunohistochemistry were performed to determine the expression levels of EMP1. EMP1 mRNA expression was significantly lower (2.77-fold) in tissues from NP patients before GC treatment when compared to controls, but was increased in these patients after GC treatment. EMP1 staining in nasal epithelium co-localized with both basal (p63(+)) and differentiated (CK18(+)) epithelial cells. Their immunoreactivity was significantly greater in controls than NP patients. EMP1 mRNA levels were lower in the epithelium with severe hyperplasia (1.79-fold) or with metaplasia (1.85-fold) as compared to those with mild to moderate hyperplasia or non-metaplastic epithelium, respectively. Positive correlations between EMP1 and other epithelial cell-related gene (e.g. JUN, PTGS2, AREG etc.) mRNAs were observed. EMP1 could be a biomarker for aberrant epithelial remodelling and metaplasia in chronic inflammatory upper airway mucosa (e.g. NP). © 2013 John Wiley & Sons Ltd.

  6. Nasal irrigation: From empiricism to evidence-based medicine. A review.

    PubMed

    Bastier, P-L; Lechot, A; Bordenave, L; Durand, M; de Gabory, L

    2015-11-01

    Nasal irrigation plays a non-negligible role in the treatment of numerous sinonasal pathologies and postoperative care. There is, however, a wide variety of protocols. The present review of the evidence-based literature sought objective arguments for optimization and efficacy. It emerged that large-volume low-pressure nasal douche optimizes the distribution and cleansing power of the irrigation solution in the nasal cavity. Ionic composition and pH also influence mucociliary clearance and epithelium trophicity. Seawater is less rich in sodium ions and richer in bicarbonates, potassium, calcium and magnesium than is isotonic normal saline, while alkaline pH and elevated calcium concentration optimized ciliary motility in vitro. Bicarbonates reduce secretion viscosity. Potassium and magnesium promote healing and limit local inflammation. These results show that the efficacy of nasal irrigation is multifactorial. Large-volume low-pressure nasal irrigation using undiluted seawater seems, in the present state of knowledge, to be the most effective protocol. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Ontogenetic development of the nervus terminalis in toothed whales. Evidence for its non-olfactory nature.

    PubMed

    Buhl, E H; Oelschläger, H A

    1986-01-01

    For the first time in cetaceans, the development of the terminalis system and its continuity between the olfactory placode and the telencephalon has been demonstrated by light microscopy. In the early development of toothed whales (Odontoceti) this system is partially incorporated within the fila olfactoria which grow out from the olfactory placode. As the peripheral olfactory system is reduced in later stages, a strongly developed ganglionlike structure (terminalis ganglion) remains within the primitive meninx. Peripherally it is connected via the cribriform plate with ganglionic cell clusters near the septal mucosa. Centrally it is attached to the telencephalon (olfactory tubercle, septal region) by several nerve fibre bundles. In contrast to all other mammalian groups, toothed whales and dolphins are anosmatic while being totally adapted to aquatic life. Therefore the remaining ganglion and plexus must have non-olfactory properties. They may be responsible for the autonomic innervation of intracranial arteries and of the large mucous epithelia in the accessory nasal air sacs. The morphology, evolution and functional implications of the terminalis system in odontocetes and other mammals are discussed.

  8. The development of the olfactory organs in newly hatched monotremes and neonate marsupials

    PubMed Central

    Schneider, Nanette Yvette

    2011-01-01

    Olfactory cues are thought to play a crucial role in the detection of the milk source at birth in mammals. It has been shown that a marsupial, the tammar wallaby, can detect olfactory cues from its mother's pouch at birth. This study investigates whether the main olfactory and accessory olfactory system are similarly well developed in other marsupials and monotremes at birth/hatching as in the tammar. Sections of the head of various marsupial and two monotreme species were investigated by light microscopy. Both olfactory systems were less well developed in the kowari and Eastern quoll. No olfactory or vomeronasal or terminal nerves could be observed; the main olfactory bulb (MOB) had only two layers while no accessory olfactory bulb or ganglion terminale were visible. All other investigated marsupials and monotremes showed further developed olfactory systems with olfactory, vomeronasal and terminal nerves, a three-layered MOB, and in the marsupials a prominent ganglion terminale. The main olfactory system was further developed than the accessory olfactory system in all species investigated. The olfactory systems were the least developed in species in which the mother's birth position removed most of the difficulty in reaching the teat, placing the neonate directly in the pouch. In monotremes they were the furthest developed as Bowman glands were found underlying the main olfactory epithelium. This may reflect the need to locate the milk field each time they drink as they cannot permanently attach to it, unlike therian mammals. While it still needs to be determined how an odour signal could be further processed in the brain, this study suggests that marsupials and monotremes possess well enough developed olfactory systems to be able to detect an odour cue from the mammary area at birth/hatching. It is therefore likely that neonate marsupials and newly hatched monotremes find their way to the milk source using olfactory cues, as has been previously suggested for the

  9. The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    PubMed Central

    2007-01-01

    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use. PMID:17903277

  10. Functional identification and reconstitution of an odorant receptor in single olfactory neurons

    PubMed Central

    Touhara, Kazushige; Sengoku, Shintaro; Inaki, Koichiro; Tsuboi, Akio; Hirono, Junzo; Sato, Takaaki; Sakano, Hitoshi; Haga, Tatsuya

    1999-01-01

    The olfactory system is remarkable in its capacity to discriminate a wide range of odorants through a series of transduction events initiated in olfactory receptor neurons. Each olfactory neuron is expected to express only a single odorant receptor gene that belongs to the G protein coupled receptor family. The ligand–receptor interaction, however, has not been clearly characterized. This study demonstrates the functional identification of olfactory receptor(s) for specific odorant(s) from single olfactory neurons by a combination of Ca2+-imaging and reverse transcription–coupled PCR analysis. First, a candidate odorant receptor was cloned from a single tissue-printed olfactory neuron that displayed odorant-induced Ca2+ increase. Next, recombinant adenovirus-mediated expression of the isolated receptor gene was established in the olfactory epithelium by using green fluorescent protein as a marker. The infected neurons elicited external Ca2+ entry when exposed to the odorant that originally was used to identify the receptor gene. Experiments performed to determine ligand specificity revealed that the odorant receptor recognized specific structural motifs within odorant molecules. The odorant receptor-mediated signal transduction appears to be reconstituted by this two-step approach: the receptor screening for given odorant(s) from single neurons and the functional expression of the receptor via recombinant adenovirus. The present approach should enable us to examine not only ligand specificity of an odorant receptor but also receptor specificity and diversity for a particular odorant of interest. PMID:10097159

  11. Olfactory ensheathing cells: nitric oxide production and innate immunity.

    PubMed

    Harris, Julie A; West, Adrian K; Chuah, Meng Inn

    2009-12-01

    Olfactory nerves extend from the nasal cavity to the central nervous system and provide therefore, a direct route for pathogenic infection of the brain. Since actual infection by this route remains relatively uncommon, powerful endogenous mechanisms for preventing microbial infection must exist, but these remain poorly understood. Our previous studies unexpectedly revealed that the unique glial cells that ensheath olfactory nerves, olfactory ensheathing cells (OECs), expressed components of the innate immune response. In this study, we show that OECs are able to detect and respond to bacterial challenge via the synthesis of nitric oxide. In vitro studies revealed that inducible nitric oxide synthase (iNOS) mRNA and protein were present in Escherichia coli- and Staphylococcus aureus-incubated OECs, but were barely detectable in untreated OECs. Neuronal NOS and endothelial NOS were not expressed by OECs pre- and post-bacterial incubation. Nuclear translocation of nuclear factor kappa B (NFkappaB), detectable in the majority of OECs 1 h following bacterial incubation, preceded iNOS induction which resulted in the production of nitric oxide. N(G)-methyl-L-arginine significantly attenuated nitric oxide (P < 0.001) and nitrite production (P < 0.001) by OECs. In rat olfactory mucosa which was compromised by irrigation with 0.17M zinc sulfate or 0.7% Triton X-100 to facilitate bacterial infiltration, OECs contributed to a robust synthesis of iNOS. These data strongly support the hypothesis that OECs are an essential component of the innate immune response against bacterial invasion of the central nervous system via olfactory nerves.

  12. Discovery of unique and ENM— specific pathophysiologic pathways: Comparison of the translocation of inhaled iridium nanoparticles from nasal epithelium versus alveolar epithelium towards the brain of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreyling, Wolfgang G., E-mail: kreyling@helmholtz-muenchen.de

    The biokinetics of inhaled nanoparticles (NP) is more complex than that of larger particles since NP may NP deposited on the nasal mucosa of the upper respiratory tract (URT) may translocate to the olfactory bulb of the brain and also via the trigeminus (URT neuronal route); and (b) NP deposited in the lower respiratory tract (LRT) may cross the ABB into blood and enter the brain across the blood-brain-barrier (BBB) or take a neuronal route from enervated tracheo-bronchial epithelia via the vagus nerve. Translocation from both - the URT and the LRT - are quantified during the first 24 hmore » after a 1-hour aerosol inhalation of 20 nm-sized, {sup 192}Ir radiolabeled iridium NP by healthy adult rats using differential exposures: (I) nose-only exposure of the entire respiratory tract or (II) intratracheal (IT) inhalation of intubated and ventilated rats, thereby bypassing the URT and extrathoracic nasal passages. After nose-only exposure brain accumulation (BrAcc) is significantly nine-fold higher than after IT inhalation since the former results from both pathways (a + b) while the latter exposure comes only from pathway (b). Interestingly, there are significantly more circulating NP in blood 24 h after nose-only inhalation than after IT inhalation. Distinguishing translocation from URT versus LRT estimated from the differential inhalation exposures, the former is significantly higher (8-fold) than from the LRT. Although the BrAcc fraction is rather low compared to total NP deposition after this short-term exposure, this study proofs that inhaled insoluble NP can accumulate in the brain from both – URT and LRT which may trigger and/or modulate adverse health effects in the central nervous system (CNS) during chronic exposure. - Highlights: • Nanoparticle (NP) translocation from nose versus lungs to brain is differentiated. • Differential exposure of 20 nm radio-NP:nose-only versus intratracheal inhalation • The nose-brain path precedes via nerves, the

  13. Microvasculature of the Olfactory Organ in the Japanese Monkey (Macaca fuscata fuscata)

    NASA Astrophysics Data System (ADS)

    Okada, Shigenori; Schraufnagel, Dean E.

    2002-06-01

    Olfaction is an important and primitive sense. As its importance has changed with evolution, anatomic adjustments have occurred in its structure and vasculature. Primates are a family of vertebrates that have had to develop their visual system to adapt to the arboreal environment and have evolved from a macrosmatic to a microsmatic species as the optic system has enlarged. This has resulted in anatomic changes of a small but critical area at the base of the brain. This paper describes the three-dimensional vascular anatomy of the olfactory organ of the Japanese monkey (Macaca fuscata fuscata). This is best understood by dividing the organ into three parts: the olfactory tract, olfactory bulb, and olfactory nerves in the nasal mucosa. The bulb can be partitioned into an outer or cortical part and inner or medullary part. The vasculature and tissue were examined grossly and with light microscopy and scanning electron microscopy of vascular corrosion casts. The olfactory tract and bulb were supplied by an arteriole from the anterior cerebral artery on each side. The tract was supplied by capillaries running spirally with a coarse network. At the olfactory bulb, the arteriole ramified into the intracortical and medullary branches that formed capillary networks. The bulbar intracortical capillaries were divided into two layers with different densities and vascular patterns. The capillaries of the superficial layer had a ladder-like pattern. The branches that ran into the medulla of the olfactory bulb were more widely spaced. Twigs from the posterior ethmoidal artery ran along the nerve fiber and formed intra- and extrafascicular networks. Each region of the olfactory organ had characteristic three-dimensional vascular patterns that were related to their cellular architecture.

  14. The Induction of Pattern-Recognition Receptor Expression against Influenza A Virus through Duox2-Derived Reactive Oxygen Species in Nasal Mucosa.

    PubMed

    Kim, Hyun Jik; Kim, Chang-Hoon; Kim, Min-Ji; Ryu, Ji-Hwan; Seong, Sang Yeop; Kim, Sujin; Lim, Su Jin; Holtzman, Michael J; Yoon, Joo-Heon

    2015-10-01

    We studied the relative roles of Duox2-derived reactive oxygen species (ROS) in host defense against influenza A virus (IAV) infection in normal human nasal epithelial cells and mouse nasal mucosa. We found that Duox2 primarily generated ROS rapidly after IAV infection in normal human nasal epithelial cells and that knockdown of Duox2 aggravated IAV infection. In addition, Duox2-derived ROS enhancement significantly suppressed IAV infection in nasal epithelium. In particular, Duox2-derived ROS were required for the induction of retinoic acid-inducible gene (RIG)-I and melanoma differentiation-associated protein 5 (MDA5) transcription. After intranasal IAV inoculation into mice, viral infection was significantly aggravated from 3 days postinoculation (dpi) in the nasal mucosa, and the IAV viral titer was highest at 7 dpi. Both RIG-I and MDA5 messenger RNA levels increased dominantly in mouse nasal mucosa from 3 dpi; consistent with this, RIG-I and MDA5 proteins were also induced after IAV infection. RIG-I and MDA5 messenger RNA levels were induced to a lower extent in the nasal mucosa of the mice that were inoculated with Duox2 short hairpin RNA, and the IAV viral titer was significantly higher in nasal lavage. Taken together, Duox2-derived ROS are necessary for the innate immune response and trigger the induction of RIG-I and MDA5 to resist IAV infection in human nasal epithelium and mouse nasal mucosa.

  15. Co-localization of TRPV2 and insulin-like growth factor-I receptor in olfactory neurons in adult and fetal mouse.

    PubMed

    Matsui, Hitoshi; Noguchi, Tomohiro; Takakusaki, Kaoru; Kashiwayanagi, Makoto

    2014-01-01

    TRPV2, a member of the transient receptor potential family, has been isolated as a capsaicin-receptor homolog and is thought to respond to noxious heat. Here we show that TRPV2 mRNA is predominantly expressed in the subpopulation of olfactory sensory neurons (OSNs). We carried out histochemical analyses of TRPV2 and insulin-like growth factor-I receptor (IGF-IR) using in situ hybridization and immunofluorescence in the adult olfactory system. In olfactory mucosa, intensive TRPV2 immunostaining was observed at the olfactory axon bundles but not at the soma. TRPV2-positive labeling was preferentially found in the olfactory nerve layer in the olfactory bulb (OB). Furthermore, we demonstrated that a positive signal for IGF-IR mRNA was detected in OSNs expressing TRPV2 mRNA. In embryonic stages, TRPV2 immunoreactivity was observed on axon bundles of developing OSNs in the nasal region starting from 12.5 d of gestation and through fetal development. Observations in this study suggest that TRPV2 coupled with IGF-IR localizes to growing olfactory axons in the OSNs.

  16. Ectopic Cushing's syndrome secondary to olfactory neuroblastoma.

    PubMed

    Yu, Kenny; Roncaroli, Federico; Kearney, Tara; Ewins, David; Beeharry, Deepa; Naylor, Thomas; Ray, David; Bhalla, Rajiv; Gnanalingham, Kanna

    2018-05-01

    We present the case of a patient with Cushing's syndrome secondary to ectopic ACTH secretion. A MR of the head showed a left-sided nasal mass extending down from the cribriform plate. The patient underwent endoscopic resection with nearly complete removal of the mass. Histological examination showed an ACTH-secreting olfactory neuroblastoma (ONB). The patient's cortisol levels returned to normal range after surgery and have remained normal for over a year. ONB is a rare cause for ectopic ACTH secretion. This case highlights the diagnostic and management difficulties in patients with ectopic ACTH secretion, and provides a brief review of ONB.

  17. Synchronized Activity in The Main and Accessory Olfactory Bulbs and Vomeronasal Amygdala Elicited by Chemical Signals in Freely Behaving Mice.

    PubMed

    Pardo-Bellver, Cecília; Martínez-Bellver, Sergio; Martínez-García, Fernando; Lanuza, Enrique; Teruel-Martí, Vicent

    2017-08-30

    Chemosensory processing in mammals involves the olfactory and vomeronasal systems, but how the activity of both circuits is integrated is unknown. In our study, we recorded the electrophysiological activity in the olfactory bulbs and the vomeronasal amygdala in freely behaving mice exploring a battery of neutral and conspecific stimuli. The exploration of stimuli, including a neutral stimulus, induced synchronic activity in the olfactory bulbs characterized by a dominant theta rhythmicity, with specific theta-gamma coupling, distinguishing between vomeronasal and olfactory structures. The correlated activation of the bulbs suggests a coupling between the stimuli internalization in the nasal cavity and the vomeronasal pumping. In the amygdala, male stimuli are preferentially processed in the medial nucleus, whereas female cues induced a differential response in the posteromedial cortical amygdala. Thus, particular theta-gamma patterns in the olfactory network modulates the integration of chemosensory information in the amygdala, allowing the selection of an appropriate behaviour.

  18. A large contribution of a cyclic AMP-independent pathway to turtle olfactory transduction

    PubMed Central

    1994-01-01

    Although multiple pathways are involved in the olfactory transduction mechanism, cAMP-dependent pathway has been considered to contribute mainly to the transduction. We examined the degree of contribution of cAMP-independent pathway to the turtle olfactory response by recording inward currents from isolated cells, nerve impulses from cilia and olfactory bulbar responses. The results obtained by the three recordings were essentially consistent with each other, but detail studies were carried out by recording the bulbar response to obtain quantitative data. Application of an odorant cocktail to the isolated olfactory neuron after injection of 1 mM cAMP from the patch pipette elicited a large inward current. Mean amplitude of inward currents evoked by the cocktail with 1 mM cAMP in the patch pipette was similar to that without cAMP in the pipette. Application of the cocktail after the response to 50 microM forskolin was adapted also induced a large inward current. Application of the odorant cocktail to the olfactory epithelium, after the response to 50 microM forskolin was adapted, brought about an appreciable increase in the impulse frequency. The bulbar response to forskolin alone reached a saturation level around 10 microM. After the response to 50 microM forskolin was adapted, 11 species of odorants were applied to the olfactory epithelium. The magnitudes of responses to the odorants after forskolin were 45-80% of those of the control responses. There was no essential difference in the degree of the suppression by forskolin between cAMP- and IP3- producing odorants classified in the rat, suggesting that certain part of the forskolin-suppressive component was brought about by nonspecific action of forskolin. Application of a membrane permeant cAMP analogue, cpt-cAMP elicited a large response, and 0.1 mM citralva after 3 mM cpt- cAMP elicited 51% of the control response which was close to the response to citralva after 50 microM forskolin. A membrane permeant c

  19. Downregulation of peroxisome proliferator-activated receptors (PPARs) in nasal polyposis

    PubMed Central

    Cardell, Lars-Olaf; Hägge, Magnus; Uddman, Rolf; Adner, Mikael

    2005-01-01

    Background Peroxisome proliferator-activated receptor (PPAR) α, βδ and γ are nuclear receptors activated by fatty acid metabolites. An anti-inflammatory role for these receptors in airway inflammation has been suggested. Methods Nasal biopsies were obtained from 10 healthy volunteers and 10 patients with symptomatic allergic rhinitis. Nasal polyps were obtained from 22 patients, before and after 4 weeks of local steroid treatment (fluticasone). Real-time RT-PCR was used for mRNA quantification and immunohistochemistry for protein localization and quantification. Results mRNA expression of PPARα, PPARβδ, PPARγ was found in all specimens. No differences in the expression of PPARs were obtained in nasal biopsies from patients with allergic rhinitis and healthy volunteers. Nasal polyps exhibited lower levels of PPARα and PPARγ than normal nasal mucosa and these levels were, for PPARγ, further reduced following steroid treatment. PPARγ immunoreactivity was detected in the epithelium, but also found in smooth muscle of blood vessels, glandular acini and inflammatory cells. Quantitative evaluation of the epithelial immunostaining revealed no differences between nasal biopsies from patients with allergic rhinitis and healthy volunteers. In polyps, the PPARγ immunoreactivity was lower than in nasal mucosa and further decreased after steroid treatment. Conclusion The down-regulation of PPARγ, in nasal polyposis but not in turbinates during symptomatic seasonal rhinitis, suggests that PPARγ might be of importance in long standing inflammations. PMID:16271155

  20. Downregulation of peroxisome proliferator-activated receptors (PPARs) in nasal polyposis.

    PubMed

    Cardell, Lars-Olaf; Hägge, Magnus; Uddman, Rolf; Adner, Mikael

    2005-11-07

    Peroxisome proliferator-activated receptor (PPAR) alpha, betadelta and gamma are nuclear receptors activated by fatty acid metabolites. An anti-inflammatory role for these receptors in airway inflammation has been suggested. Nasal biopsies were obtained from 10 healthy volunteers and 10 patients with symptomatic allergic rhinitis. Nasal polyps were obtained from 22 patients, before and after 4 weeks of local steroid treatment (fluticasone). Real-time RT-PCR was used for mRNA quantification and immunohistochemistry for protein localization and quantification. mRNA expression of PPARalpha, PPARbetadelta, PPARgamma was found in all specimens. No differences in the expression of PPARs were obtained in nasal biopsies from patients with allergic rhinitis and healthy volunteers. Nasal polyps exhibited lower levels of PPARalpha and PPARgamma than normal nasal mucosa and these levels were, for PPARgamma, further reduced following steroid treatment. PPARgamma immunoreactivity was detected in the epithelium, but also found in smooth muscle of blood vessels, glandular acini and inflammatory cells. Quantitative evaluation of the epithelial immunostaining revealed no differences between nasal biopsies from patients with allergic rhinitis and healthy volunteers. In polyps, the PPARgamma immunoreactivity was lower than in nasal mucosa and further decreased after steroid treatment. The down-regulation of PPARgamma, in nasal polyposis but not in turbinates during symptomatic seasonal rhinitis, suggests that PPARgamma might be of importance in long standing inflammations.

  1. Assessment of olfactory threshold in patients undergoing radiotherapy for head and neck malignancies.

    PubMed

    Jalali, Mir Mohammad; Gerami, Hooshang; Rahimi, Abbas; Jafari, Manizheh

    2014-10-01

    Radiotherapy is a common treatment modality for patients with head and neck malignancies. As the nose lies within the field of radiotherapy of the head and neck, the olfactory fibers and olfactory receptors may be affected by radiation. The aim of this study was to evaluate changes in olfactory threshold in patients with head and neck malignancies who have received radiation to the head and neck. The olfactory threshold of patients with head and neck malignancies was assessed prospectively before radiation therapy and serially for up to 6 months after radiotherapy using sniff bottles. In vivo dosimetry was performed using 82 LiF (MCP) chips and a thermoluminescent dosimeter (TLD) system. Sixty-one patients were recruited before radiotherapy was commenced. Seven patients did not return for evaluation after radiation. Fifty-four patients were available for follow-up assessment (28 women, 26 men; age, 22-86 years; median, 49 years). Total radiation dose was 50.1 Gy (range, 30-66 Gy). Mean olfactory threshold scores were found to deteriorate significantly at various timepoints after radiotherapy (11.7 before radiotherapy versus 4.0 at Month 6, general linear model, P<0.0001). With in vivo dosimetry, we found that the median measured dose to the olfactory area was 334 µC. We also identified a cutoff point according to the dose to the olfactory epithelium. Olfactory threshold was significantly decreased 2-6 weeks after initiation of therapy, with cumulative local radiation >135 µC (Mann-Whitney U test, P=0.01). Deterioration in olfactory threshold scores was found at 6 months after initiation of radiation therapy. Provided that these results are reproducible, an evaluation of olfactory functioning in patients with head and neck malignancies using in vivo dosimetry may be useful for determining the optimal dose for patients treated with conformal radiotherapy techniques while avoiding the side effects of radiation.

  2. Burkholderia pseudomallei Rapidly Infects the Brain Stem and Spinal Cord via the Trigeminal Nerve after Intranasal Inoculation

    PubMed Central

    St. John, James A.; Walkden, Heidi; Nazareth, Lynn; Beagley, Kenneth W.; Batzloff, Michael R.

    2016-01-01

    Infection with Burkholderia pseudomallei causes melioidosis, a disease with a high mortality rate (20% in Australia and 40% in Southeast Asia). Neurological melioidosis is particularly prevalent in northern Australian patients and involves brain stem infection, which can progress to the spinal cord; however, the route by which the bacteria invade the central nervous system (CNS) is unknown. We have previously demonstrated that B. pseudomallei can infect the olfactory and trigeminal nerves within the nasal cavity following intranasal inoculation. As the trigeminal nerve projects into the brain stem, we investigated whether the bacteria could continue along this nerve to penetrate the CNS. After intranasal inoculation of mice, B. pseudomallei caused low-level localized infection within the nasal cavity epithelium, prior to invasion of the trigeminal nerve in small numbers. B. pseudomallei rapidly invaded the trigeminal nerve and crossed the astrocytic barrier to enter the brain stem within 24 h and then rapidly progressed over 2,000 μm into the spinal cord. To rule out that the bacteria used a hematogenous route, we used a capsule-deficient mutant of B. pseudomallei that does not survive in the blood and found that it also entered the CNS via the trigeminal nerve. This suggests that the primary route of entry is via the nerves that innervate the nasal cavity. We found that actin-mediated motility could facilitate initial infection of the olfactory epithelium. Thus, we have demonstrated that B. pseudomallei can rapidly infect the brain and spinal cord via the trigeminal nerve branches that innervate the nasal cavity. PMID:27382023

  3. Nasal Cavity Masses Resembling Chondro-osseous Respiratory Epithelial Adenomatoid Hamartomas in 3 Dogs.

    PubMed

    LaDouceur, E E B; Michel, A O; Lindl Bylicki, B J; Cifuentes, F F; Affolter, V K; Murphy, B G

    2016-05-01

    Chondro-osseous respiratory epithelial adenomatoid hamartomas (COREAHs) are rare tumors in the nasal cavity of people, which have not been described in other species. COREAHs in people are minimally invasive and rarely recur following excision. Histologically, these tumors are composed of disorganized, mature, nasal turbinate tissue that is organized into polypoid growths. These growths are lined by respiratory epithelium, contain glandular elements, and are organized around central cores of chondro-osseous matrix. This report describes 3 cases of dogs with nasal tumors that have histomorphology similar to that of COREAH in people. The tumors were all identified within the nasal cavity and were associated with regional bony lysis of the turbinates and surrounding skull bones, a feature that has not been reported in COREAH in people. There was no evidence of metastasis or extension beyond the nasal cavity in any of the 3 cases. © The Author(s) 2015.

  4. Nitrogen dioxide pollution exposure is associated with olfactory dysfunction in older US adults

    PubMed Central

    Adams, Dara R.; Ajmani, Gaurav S.; Pun, Vivian C.; Wroblewski, Kristen E.; Kern, David W.; Schumm, L. Philip; McClintock, Martha K.; Suh, Helen H.; Pinto, Jayant M.

    2017-01-01

    Background Olfactory dysfunction has profound effects on quality of life, physical and social function, and mortality itself. Nitrogen dioxide (NO2) is a pervasive air pollutant that is associated with respiratory diseases. Given the olfactory nerve’s anatomic exposure to airborne pollutants, we investigated the relationship between NO2 exposure and olfactory dysfunction. Methods The ability to identify odors was evaluated using a validated test in respondents from the National Social Life, Health, and Aging Project (NSHAP), a representative probability sample of home-dwelling, older US adults ages 57–85. Exposure to NO2 pollution was assessed using measurements obtained from the US EPA AIRS ambient monitoring site closest to each respondent’s home. We tested the association between NO2 exposure and olfactory dysfunction using multivariate logistic regression. Results Among older adults in the US, 22.6% had impaired olfactory function, defined as ≤ 3 correct (out of 5) on the odor identification test. Median NO2 exposure during the 365 days prior to the interview date was 14.7 ppb (interquartile range [IQR] 10.8–19.7 ppb). An IQR increase in NO2 exposure was associated with increased odds of olfactory dysfunction (OR 1.35, 95% CI: 1.07–1.72), adjusting for age, gender, race/ethnicity, education, cognition, comorbidity, smoking, and season of the home interview (n=1,823). Conclusion We show for the first time that NO2 exposure is associated with olfactory dysfunction in older US adults. These results suggest an important role for NO2 exposure on olfactory dysfunction, and, potentially, nasal disease more broadly. PMID:27620703

  5. Histology, Immunohistochemistry and Ultrastructure of the Bovine Palatine Tonsil with Special Emphasis on Reticular Epithelium

    USDA-ARS?s Scientific Manuscript database

    The paired palatine tonsils are located at the junction of the nasopharynx and oropharynx; ideally positioned to sample antigens entering through either the nasal cavity or oral cavity. Entering antigens will first contact tonsilar epithelium. To better understand the cellular and functional composi...

  6. Permeation and Systemic Absorption of R- and S-Baclofen across the Nasal Mucosa

    PubMed Central

    Zhang, Hefei; Schmidt, Mark; Murry, Daryl J.; Donovan, Maureen D.

    2012-01-01

    Baclofen, an antispasmodic agent that acts as a GABAB agonist, resembles phenylalanine in structure and has been reported to be a substrate of the large amino acid transporter, LAT-1. The objective of this study was to investigate the absorption of baclofen across the nasal mucosa both in vitro and in vivo. Baclofen transport was measured across excised bovine olfactory and respiratory mucosae to investigate site-specific uptake of baclofen, and the intranasal bioavailability of R- and S- baclofen was determined in rats. Increasing flux with increasing baclofen donor concentration and the absence of polarized transport was observed in vitro and similar distribution profiles were observed for both enantiomers following intranasal administration in rats. The absence of stereospecificity in nasal absorption indicates limited involvement of the amino acid or other transporters in the nasal absorption of baclofen. PMID:21283988

  7. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals

    PubMed Central

    Baum, Michael J.

    2012-01-01

    Until recently it was widely believed that the ability of female mammals (with the likely exception of women) to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female's vomeronasal organ (VNO) and their subsequent processing by a neural circuit that includes the accessory olfactory bulb (AOB), vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium (MOE) of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB). Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein) by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the AOB of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition. PMID:22679420

  8. Nasal-to-CNS drug delivery: where are we now and where are we heading? An industrial perspective.

    PubMed

    Landis, Margaret S; Boyden, Tracey; Pegg, Simon

    2012-02-01

    Delivery of drug therapeutics across the blood-brain barrier is a challenging task for pharmaceutical scientists. Nasal-to-CNS drug delivery has shown promising results in preclinical efficacy models and investigatory human clinical trials. The further development of this technology with respect to the establishment of valid, predictable preclinical species models, translatable pharmacokinetic-pharmacodynamic relationships and definition of toxicology impact will help attract additional pharmaceutical investment in this drug-delivery approach. Further discoveries in nasal nanotechnology, targeted delivery devices and diagnostic olfactory imaging will serve to fuel the advancements in this area of drug delivery.

  9. Olfactory function and quality of life after olfaction rehabilitation in total laryngectomees.

    PubMed

    Santos, Christiane Gouvêa Dos; Bergmann, Anke; Coça, Kaliani Lima; Garcia, Angela Albuquerque; Valente, Tânia Cristina de Oliveira

    2016-01-01

    To evaluate the effects of olfaction rehabilitation in the olfactory function and quality of life of total laryngectomized patients. Pre-post intervention clinical study conducted with total laryngectomees submitted to olfaction rehabilitation by means of the Nasal Airflow-Inducing Maneuver (NAIM) using the University of Pennsylvania Smell Identification Test (UPSIT), Olfactory Acuity Questionnaires, a Monitoring Questionnaire, and the University of Washington Quality of Life Questionnaire (UW-QOL). Participants were 45 total laryngectomees. Before olfaction rehabilitation, 48.9% of the participants had their olfactic abilities classified as anosmia, 46.8% as microsmia, and 4.4% were considered within the normal range. After olfaction rehabilitation, 4.4% of the participants were classified as anosmia and 31.1% were within the normal range. In the Smell Identification Test, the mean score after rehabilitation showed statistically significant improvement. Reponses to the Olfactory Acuity Questionnaires after rehabilitation showed improvement in the frequency of perception regarding smell, taste, and the ability to smell perfume, food, leaking gas, and smoke, after learning the maneuver. Although the scores in the Quality of Life Questionnaire already indicated good quality of life before the surgery, post-intervention values were statistically significant. Olfaction rehabilitation improves olfactory function and has a positive impact on the activities of daily living and quality of life of total laryngectomized patients.

  10. Rare occupational cause of nasal septum perforation: Nickel exposure.

    PubMed

    Bolek, Ertugrul Cagri; Erden, Abdulsamet; Kulekci, Cagri; Kalyoncu, Umut; Karadag, Omer

    2017-10-06

    Many etiologies are held accountable for nasal septum perforations. Topical nasal drug usage, previous surgeries, trauma, nose picking, squamous cell carcinoma, some rheumatological disorders such as granulomatosis with polyangiitis (Wegener granulomatosis), some infectious diseases such as syphilis and leprosy are among the causes of the perforations. Occupational heavy metal exposures by inhalation rarely may also cause nasal septum perforation. Here, we present a 29-year-old patient without any known diseases, who is a worker at a metallic coating and nickel-plating factory, referred for investigation of his nasal cartilage septum perforation from an otorhinolaryngology clinic. The patient questioning, physical examination and laboratory assessment about rheumatic and infectious diseases were negative. There was a metallic smell in the breath during the physical examination. The analysis showed serum nickel level at 31 μg/l and urine nickel at 18 μg/l (84.11 μg/g creatinine). Other possible serum and urine heavy metal levels were within normal ranges. Nickel exposure is usually together with other heavy metals (chromium or cadmium), it is rarely alone. Nickel ingested by inhalation usually leads to respiratory problems such as reduced olfactory acuity, ulcers, septum perforation or tumors of the nasal sinuses. This case demonstrates the importance of occupational anamnesis and awareness of diagnosis. Int J Occup Med Environ Health 2017;30(6):963-967. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  11. Two-hour methyl isocyanate inhalation and 90-day recovery study in B6C3F1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boorman, G.A.; Uraih, L.C.; Gupta, B.N.

    1987-06-01

    B6C3F1 mice were exposed by inhalation to 0, 3, 10, and 30 ppm methyl isocyanate for 2 hr followed by a 90-day recovery period. Sixteen of eight (20%) male mice in the 30 ppm group died following exposure. There were no other unscheduled deaths in the mice. Five mice/sex/group were examined at 2 hr or at 1, 3, 7, 14, 28, 49, or 91 days following exposure. Chemical-related changes were restricted to the respiratory system. At 30 ppm there were extensive necrosis and erosion of the respiratory and olfactory epithelium in the nasal cavity. Severe necrosis and epithelial erosion weremore » also found in the trachea and main bronchi. Regeneration of the mucosal epithelium occurred rapidly in the nasal cavity and airways. In the turbinates, mild incomplete olfactory epithelial regeneration persisted to day 91 in the male mice. Intraluminal fibrotic projections covered by respiratory epithelium and bronchial fibrosis were found in the major airways of the 30 ppm male and female mice by day 7. The intraluminal fibrosis persisted to day 91. In males with severe bronchial fibrosis, chronic alveolitis and atelectasis were found. In mice exposed to 3 or 10 ppm, persistent pulmonary changes were not found. These studies indicate that methyl isocyanate inhalation at or near lethal concentrations can cause persistent fibrosis of the major bronchi in mice.« less

  12. Impaired olfaction in mice lacking aquaporin-4 water channels

    PubMed Central

    Lu, Daniel C.; Zhang, Hua; Zador, Zsolt; Verkman, A. S.

    2008-01-01

    Aquaporin-4 (AQP4) is a water-selective transport protein expressed in glial cells throughout the central nervous system. AQP4 deletion in mice produces alterations in several neuroexcitation phenomena, including hearing, vision, epilepsy, and cortical spreading depression. Here, we report defective olfaction and electroolfactogram responses in AQP4-null mice. Immunofluorescence indicated strong AQP4 expression in supportive cells of the nasal olfactory epithelium. The olfactory epithelium in AQP4-null mice had identical appearance, but did not express AQP4, and had ∼12-fold reduced osmotic water permeability. Behavioral analysis showed greatly impaired olfaction in AQP4-null mice, with latency times of 17 ± 0.7 vs. 55 ± 5 s in wild-type vs. AQP4-null mice in a buried food pellet test, which was confirmed using an olfactory maze test. Electroolfactogram voltage responses to multiple odorants were reduced in AQP4-null mice, with maximal responses to triethylamine of 0.80 ± 0.07 vs. 0.28 ± 0.03 mV. Similar olfaction and electroolfactogram defects were found in outbred (CD1) and inbred (C57/bl6) mouse genetic backgrounds. Our results establish AQP4 as a novel determinant of olfaction, the deficiency of which probably impairs extracellular space K+ buffering in the olfactory epithelium.—Lu, D. C., Zhang, H., Zador, Z., Verkman, A. S. Impaired olfaction in mice lacking aquaporin-4 water channels. PMID:18511552

  13. [Measurement of nasal transepithelial potential difference: a diagnostic test for cystic fibrosis].

    PubMed

    Charfi, M R; Matran, R; Regnard, J; Lockhart, A

    1996-01-01

    Measurement of nasal transepithelial potential difference allows the exploration of transepithelial ionic transports in vivo. Cystic fibrosis is an interesting indication of this test. Indeed, this disease is characterized by a chloride and water secretion deficit across respiratory epithelium. We have measured nasal potential in 8 healthy volunteers. Measurements were repeated 3 times a day, during 3 days for each subject. The reproducibility of the data was analysed with factorial variance model. The mean nasal potential in the healthy volunteers group and in 10 patients with cystic fibrosis was compared. In the cystic fibrosis group, the nasal potential was measured 3 times with a 2 mn-interval between the measurements. No significant variation of the nasal potential values was found from day to day or in the same day from one measurement to another. Mean value was -19 +/- 3.5 mv in normal subjects and -42.6 +/- 5.1 mv in cystic fibrosis patients. We conclude that nasal potential measurement is an easy and reproducible test that might be a complementary tool routinely used along with the classical tests in the diagnosis of cystic fibrosis.

  14. Changes in olfactory bulb volume following lateralized olfactory training.

    PubMed

    Negoias, S; Pietsch, K; Hummel, T

    2017-08-01

    Repeated exposure to odors modifies olfactory function. Consequently, "olfactory training" plays a significant role in hyposmia treatment. In addition, numerous studies show that the olfactory bulb (OB) volume changes in disorders associated with olfactory dysfunction. Aim of this study was to investigate whether and how olfactory bulb volume changes in relation to lateralized olfactory training in healthy people. Over a period of 4 months, 97 healthy participants (63 females and 34 males, mean age: 23.74 ± 4.16 years, age range: 19-43 years) performed olfactory training by exposing the same nostril twice a day to 4 odors (lemon, rose, eucalyptus and cloves) while closing the other nostril. Before and after olfactory training, magnetic resonance imaging (MRI) scans were performed to measure OB volume. Furthermore, participants underwent lateralized odor threshold and odor identification testing using the "Sniffin' Sticks" test battery.OB volume increased significantly after olfactory training (11.3 % and 13.1 % respectively) for both trained and untrained nostril. No significant effects of sex, duration and frequency of training or age of the subjects were seen. Interestingly, PEA odor thresholds worsened after training, while olfactory identification remained unchanged.These data show for the first time in humans that olfactory training may involve top-down process, which ultimately lead to a bilateral increase in olfactory bulb volume.

  15. The Stimulus-Dependent Gradient of Cyp26B1+ Olfactory Sensory Neurons Is Necessary for the Functional Integrity of the Olfactory Sensory Map.

    PubMed

    Login, Hande; Håglin, Sofia; Berghard, Anna; Bohm, Staffan

    2015-10-07

    Stimulus-dependent expression of the retinoic acid-inactivating enzyme Cyp26B1 in olfactory sensory neurons (OSNs) forms a dorsomedial (DM)-ventrolateral (VL) gradient in the mouse olfactory epithelium. The gradient correlates spatially with different rates of OSN turnover, as well as the functional organization of the olfactory sensory map, into overlapping zones of OSNs that express different odorant receptors (ORs). Here, we analyze transgenic mice that, instead of a stimulus-dependent Cyp26B1 gradient, have constitutive Cyp26B1 levels in all OSNs. Starting postnatally, OSN differentiation is decreased and progenitor proliferation is increased. Initially, these effects are selective to the VL-most zone and correlate with reduced ATF5 expression and accumulation of OSNs that do not express ORs. Transcription factor ATF5 is known to stabilize OR gene choice via onset of the stimulus-transducing enzyme adenylyl cyclase type 3. During further postnatal development of Cyp26B1 mice, an anomalous DM(high)-VL(low) expression gradient of adenylyl cyclase type 3 appears, which coincides with altered OR frequencies and OR zones. All OR zones expand ventrolaterally except for the VL-most zone, which contracts. The expansion results in an increased zonal overlap that is also evident in the innervation pattern of OSN axon terminals in olfactory bulbs. These findings together identify a mechanism by which postnatal sensory-stimulated vitamin A metabolism modifies the generation of spatially specified neurons and their precise topographic connectivity. The distributed patterns of vitamin A-metabolizing enzymes in the nervous system suggest the possibility that the mechanism may also regulate neuroplasticity in circuits other than the olfactory sensory map. The mouse olfactory sensory map is functionally wired according to precise axonal projections of spatially organized classes of olfactory sensory neurons in the nose. The genetically controlled mechanisms that regulate the

  16. Implications of Airflow Dynamics and Soft-Tissue Reconstructions for the Heat Exchange Potential of Dinosaur Nasal Passages

    NASA Astrophysics Data System (ADS)

    Bourke, Jason Michael

    This study seeks to restore the internal anatomy within the nasal passages of dinosaurs via the use of comparative anatomical methods along with computational fluid dynamic simulations. Nasal airway descriptions and airflow simulations are described for extant birds, crocodylians, and lizards. These descriptions served as a baseline for airflow within the nasal passages of diapsids. The presence of shared airflow and soft-tissue properties found in the nasal passages of extant diapsids, were used to restore soft tissues within the airways of dinosaurs under the assumption that biologically unfeasible airflow patterns (e.g., lack of air movement in olfactory recess) can serve as signals for missing soft tissues. This methodology was tested on several dinosaur taxa. Restored airways in some taxa revealed the potential presence and likely shape of nasal turbinates. Heat transfer efficiency was tested in two dinosaur species with elaborated nasal passages. Results of that analysis revealed that dinosaur noses were efficient heat exchangers that likely played an integral role in maintaining cephalic thermoregulation. Brain cooling via nasal expansion appears to have been necessary for dinosaurs to have achieved their immense body sizes without overheating their brains.

  17. Burkholderia pseudomallei Rapidly Infects the Brain Stem and Spinal Cord via the Trigeminal Nerve after Intranasal Inoculation.

    PubMed

    St John, James A; Walkden, Heidi; Nazareth, Lynn; Beagley, Kenneth W; Ulett, Glen C; Batzloff, Michael R; Beacham, Ifor R; Ekberg, Jenny A K

    2016-09-01

    Infection with Burkholderia pseudomallei causes melioidosis, a disease with a high mortality rate (20% in Australia and 40% in Southeast Asia). Neurological melioidosis is particularly prevalent in northern Australian patients and involves brain stem infection, which can progress to the spinal cord; however, the route by which the bacteria invade the central nervous system (CNS) is unknown. We have previously demonstrated that B. pseudomallei can infect the olfactory and trigeminal nerves within the nasal cavity following intranasal inoculation. As the trigeminal nerve projects into the brain stem, we investigated whether the bacteria could continue along this nerve to penetrate the CNS. After intranasal inoculation of mice, B. pseudomallei caused low-level localized infection within the nasal cavity epithelium, prior to invasion of the trigeminal nerve in small numbers. B. pseudomallei rapidly invaded the trigeminal nerve and crossed the astrocytic barrier to enter the brain stem within 24 h and then rapidly progressed over 2,000 μm into the spinal cord. To rule out that the bacteria used a hematogenous route, we used a capsule-deficient mutant of B. pseudomallei that does not survive in the blood and found that it also entered the CNS via the trigeminal nerve. This suggests that the primary route of entry is via the nerves that innervate the nasal cavity. We found that actin-mediated motility could facilitate initial infection of the olfactory epithelium. Thus, we have demonstrated that B. pseudomallei can rapidly infect the brain and spinal cord via the trigeminal nerve branches that innervate the nasal cavity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4.

    PubMed

    Chen, Binglai; Kim, Eun-Hee; Xu, Pin-Xian

    2009-02-01

    Mouse olfactory epithelium (OE) originates from ectodermally derived placode, the olfactory placode that arises at the anterior end of the neural plate. Tissue grafting and recombination experiments suggest that the placode is derived from a common preplacodal domain around the neural plate and its development is directed by signals arising from the underlying mesoderm and adjacent neuroectoderm. In mice, loss of Six1 affects OE morphogenesis but not placode formation. We show here that embryos lacking both Six1 and Six4 failed to form the olfactory placode but the preplacodal region appeared to be specified as judged by the expression of Eya2, which marks the common preplacodal domain, suggesting a synergistic requirement of Six1 and Six4 in patterning the preplacodal ectoderm to a morphologic placode. Our results show that Six1 and Six4 are coexpressed in the preplacodal ectoderm from E8.0. In the olfactory pit, Six4 expression was observed in the peripheral precursors that overlap with Mash1-expressing cells, the early committed neuronal lineage. In contrast, Six1 is highly distributed in the peripheral regions where stem cells reside at E10.5 and it overlaps with Sox2 expression. Both genes are expressed in the basal and apical neuronal progenitors in the OE. Analyses of Six1;Six4 double mutant embryos demonstrated that the slightly thickened epithelium observed in the mutant was not induced for neuronal development. In contrast, in Six1(-/-) embryos, all neuronal lineage markers were initially expressed but the pattern of their expression was altered. Although very few, the pioneer neurons were initially present in the Six1 mutant OE. However, neurogenesis ceased by E12.5 due to markedly increased cell apoptosis and reduced proliferation, thus defining the cellular defects occurring in Six1(-/-) OE that have not been previously observed. Our findings demonstrate that Six1/4 function at the top of early events controlling olfactory placode formation and

  19. Morphometric and ultrastructural comparison of the olfactory system in elasmobranchs: the significance of structure-function relationships based on phylogeny and ecology.

    PubMed

    Schluessel, Vera; Bennett, Michael B; Bleckmann, Horst; Blomberg, Simon; Collin, Shaun P

    2008-11-01

    This study investigated the relationship between olfactory morphology, habitat occupancy, and lifestyle in 21 elasmobranch species in a phylogenetic context. Four measures of olfactory capability, that is, the number of olfactory lamellae, the surface area of the olfactory epithelium, the mass of the olfactory bulb, and the mass of the olfactory rosette were compared between individual species and groups, comprised of species with similar habitat and/or lifestyle. Statistical analyses using generalized least squares phylogenetic regression revealed that bentho-pelagic sharks and rays possess significantly more olfactory lamellae and larger sensory epithelial surface areas than benthic species. There was no significant correlation between either olfactory bulb or rosette mass and habitat type. There was also no significant difference between the number of lamellae or the size of the sensory surface area in groups comprised of species with similar diets, that is, groups preying predominantly on crustaceans, cephalopods, echinoderms, polychaetes, molluscs, or teleosts. However, some groups had significantly larger olfactory bulb or rosette masses than others. There was little evidence to support a correlation between phylogeny and morphology, indicating that differences in olfactory capabilities are the result of functional rather than phylogenetic adaptations. All olfactory epithelia exhibited microvilli and cilia, with microvilli in both nonsensory and sensory areas, and cilia only in sensory areas. Cilia over the sensory epithelia originated from supporting cells. In contrast to teleosts, which possess ciliated and microvillous olfactory receptor types, no ciliated olfactory receptor cells were observed. This is the first comprehensive study comparing olfactory morphology to several aspects of elasmobranch ecology in a phylogenetic context.

  20. Effect of salinity changes on olfactory memory-related genes and hormones in adult chum salmon Oncorhynchus keta.

    PubMed

    Kim, Na Na; Choi, Young Jae; Lim, Sang-Gu; Jeong, Minhwan; Jin, Deuk-Hee; Choi, Cheol Young

    2015-09-01

    Studies of memory formation have recently concentrated on the possible role of N-methyl-d-aspartate receptors (NRs). We examined changes in the expression of three NRs (NR1, NR2B, and NR2C), olfactory receptor (OR), and adrenocorticotropic hormone (ACTH) in chum salmon Oncorhynchus keta using quantitative polymerase chain reaction (QPCR) during salinity change (seawater→50% seawater→freshwater). NRs were significantly detected in the diencephalon and telencephalon and OR was significantly detected in the olfactory epithelium. The expression of NRs, OR, and ACTH increased after the transition to freshwater. We also determined that treatment with MK-801, an antagonist of NRs, decreased NRs in telencephalon cells. In addition, a reduction in salinity was associated with increased levels of dopamine, ACTH, and cortisol (in vivo). Reductions in salinity evidently caused NRs and OR to increase the expression of cortisol and dopamine. We concluded that memory capacity and olfactory imprinting of salmon is related to the salinity of the environment during the migration to spawning sites. Furthermore, salinity affects the memory/imprinting and olfactory abilities, and cortisol and dopamine is also related with olfactory-related memories during migration. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Postnatal Experience Modulates Functional Properties of Mouse Olfactory Sensory Neurons

    PubMed Central

    He, Jiwei; Tian, Huikai; Lee, Anderson C.; Ma, Minghong

    2012-01-01

    Early experience considerably modulates the organization and function of all sensory systems. In the mammalian olfactory system, deprivation of the sensory inputs via neonatal, unilateral naris closure has been shown to induce structural, molecular, and functional changes from the olfactory epithelium to the olfactory bulb and cortex. However, it remains unknown how early experience shapes functional properties of individual olfactory sensory neurons (OSNs), the primary odor detectors in the nose. To address this question, we examined odorant response properties of mouse OSNs in both the closed and open nostril after four weeks of unilateral naris closure with age-matched untreated animals as control. Using patch-clamp technique on genetically-tagged OSNs with defined odorant receptors (ORs), we found that sensory deprivation increased the sensitivity of MOR23 neurons in the closed side while overexposure caused the opposite effect in the open side. We next analyzed the response properties including rise time, decay time, and adaptation induced by repeated stimulation in MOR23 and M71 neurons. Even though these two types of neurons showed distinct properties in dynamic range and response kinetics, sensory deprivation significantly slowed down the decay phase of odorant-induced transduction events in both types. Using western blotting and antibody staining, we confirmed upregulation of several signaling proteins in the closed side as compared with the open side. This study suggests that early experience modulates functional properties of OSNs, probably via modifying the signal transduction cascade. PMID:22703547

  2. Nasal dermoid sinus cysts in the dog.

    PubMed

    Anderson, Davina M; White, Richard A S

    2002-01-01

    To describe the clinical and morphologic characteristics of nasal dermoid sinus cysts in the dog. Retrospective clinical study. Six client-owned dogs. Medical records (1995 to 1999) of 6 dogs that had a discharging sinus in the midline of the nose removed surgically were reviewed for signalment, physical examination, surgical and histopathologic findings, and outcome. Three golden retrievers, 1 springer spaniel, 1 cocker spaniel, and 1 Brittany spaniel with a history of intermittent discharge from a small opening in the midline on the bridge of the nose at the junction between the nasal planum and the skin were identified. The condition was unresponsive to antibiotic therapy, and previous surgical excision had been unsuccessful in 3 dogs. None of the dogs had any other congenital defects, and all dogs responded to complete surgical excision of the tract and cyst. On histopathologic examination of excised tissue, there were adnexal structures along a tract lined with stratified squamous epithelium, consistent with a developmental abnormality of ectodermal tissue. The lesions were diagnosed as nasal dermoid sinus cysts, similar to the congenital condition described in humans. Nasal dermoid sinus cysts are rare developmental defects related to abnormal development of the pre-nasal space and may extend into the cranial vault causing cerebral abscesses or recurrent meningitis. Complete surgical excision has a good prognosis. This is a new condition that should be added to the surgical differential diagnosis for a discharging sinus over the external nares in dogs. Copyright 2002 by The American College of Veterinary Surgeons

  3. Cilia- and Flagella-Associated Protein 69 Regulates Olfactory Transduction Kinetics in Mice

    PubMed Central

    Dong, Frederick N.

    2017-01-01

    Animals detect odorous chemicals through specialized olfactory sensory neurons (OSNs) that transduce odorants into neural electrical signals. We identified a novel and evolutionarily conserved protein, cilia- and flagella-associated protein 69 (CFAP69), in mice that regulates olfactory transduction kinetics. In the olfactory epithelium, CFAP69 is enriched in OSN cilia, where olfactory transduction occurs. Bioinformatic analysis suggests that a large portion of CFAP69 can form Armadillo-type α-helical repeats, which may mediate protein–protein interactions. OSNs lacking CFAP69, remarkably, displayed faster kinetics in both the on and off phases of electrophysiological responses at both the neuronal ensemble level as observed by electroolfactogram and the single-cell level as observed by single-cell suction pipette recordings. In single-cell analysis, OSNs lacking CFAP69 showed faster response integration and were able to fire APs more faithfully to repeated odor stimuli. Furthermore, both male and female mutant mice that specifically lack CFAP69 in OSNs exhibited attenuated performance in a buried food pellet test when a background of the same odor to the food pellet was present even though they should have better temporal resolution of coding olfactory stimulation at the peripheral. Therefore, the role of CFAP69 in the olfactory system seems to be to allow the olfactory transduction machinery to work at a precisely regulated range of response kinetics for robust olfactory behavior. SIGNIFICANCE STATEMENT Sensory receptor cells are generally thought to evolve to respond to sensory cues as fast as they can. This idea is consistent with mutational analyses in various sensory systems, where mutations of sensory receptor cells often resulted in reduced response size and slowed response kinetics. Contrary to this idea, we have found that there is a kinetic “damper” present in the olfactory transduction cascade of the mouse that slows down the response kinetics and

  4. Cobalt Chloride Treatment Used to Ablate the Lateral Line System Also Impairs the Olfactory System in Three Freshwater Fishes

    PubMed Central

    Butler, Julie M.; Field, Karen E.; Maruska, Karen P.

    2016-01-01

    Fishes use multimodal signals during both inter- and intra-sexual displays to convey information about their sex, reproductive state, and social status. These complex behavioral displays can include visual, auditory, olfactory, tactile, and hydrodynamic signals, and the relative role of each sensory channel in these complex multi-sensory interactions is a common focus of neuroethology. The mechanosensory lateral line system of fishes detects near-body water movements and is implicated in a variety of behaviors including schooling, rheotaxis, social communication, and prey detection. Cobalt chloride is commonly used to chemically ablate lateral line neuromasts, thereby eliminating water-movement cues to test for mechanosensory-mediated behavioral functions. However, cobalt acts as a nonspecific calcium channel antagonist and could potentially disrupt function of all superficially located sensory receptor cells, including those for chemosensing. Here, we examined whether CoCl2 treatment used to ablate the lateral line system also impairs olfaction in three freshwater fishes, the African cichlid fish Astatotilapia burtoni, goldfish Carassius auratus, and the Mexican blind cavefish Astyanax mexicanus. To examine the impact of CoCl2 on the activity of peripheral receptors, we quantified DASPEI fluorescence intensity of the olfactory epithelium from fish exposed to control and CoCl2 solutions. In addition, we examined brain activation in olfactory processing regions of A. burtoni immersed in either control or cobalt solutions. All three species exposed to CoCl2 had decreased DASPEI staining of the olfactory epithelium, and in A. burtoni, cobalt treatment caused reduced neural activation in olfactory processing regions of the brain. To our knowledge this is the first empirical evidence demonstrating that the same CoCl2 treatment used to ablate the lateral line system also impairs olfactory function. These data have important implications for the use of CoCl2 in future

  5. Effects of a 28-Day Cage-Change Interval on Intracage Ammonia Levels, Nasal Histology, and Perceived Welfare of CD1 Mice

    PubMed Central

    Vogelweid, Catherine M; Zapien, Kathleen A; Honigford, Matthew J; Li, Linghui; Li, Hua; Marshall, Heather

    2011-01-01

    We measured daily intracage ammonia levels and performed weekly assessments of CD1 male, female, and breeder mice housed within disposable, ventilated cages that remained unchanged for 28 d. We tested housing groups comprising 1, 3, or 5 sex-matched mice per cage and breeder pairs with litters. Mice housed in cages with higher concentrations of ammonia developed degeneration and inflammatory lesions in the nasal passages. Mean ammonia exposure levels that caused rhinitis were 181 ppm for 18 d. Ammonia exposures of 93 ppm for 16 d caused necrosis of the olfactory epithelium, whereas 52 ppm for 13 d caused epithelial degeneration. Observers could not detect visible signs of rhinitis or identify cages with elevated ammonia levels, nor did they identify any sick or distressed mice. Observers consistently assigned poorer welfare scores as cages became dirtier. We conclude that we can extend the cage-change interval to at least 28 d for disposable, ventilated caging housing a single CD1 mouse. Cages containing 3 CD1 mice of either sex should be changed biweekly, and cages containing 5 CD1 mice or breeder pairs should be changed at least once weekly. PMID:22330779

  6. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    ERIC Educational Resources Information Center

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  7. Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors

    PubMed Central

    Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.

    2015-01-01

    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447

  8. The effect of topical benzamil and amiloride on nasal potential difference in cystic fibrosis.

    PubMed

    Rodgers, H C; Knox, A J

    1999-09-01

    The electrochemical defect in the bronchial epithelium in cystic fibrosis (CF) consists of defective chloride secretion and excessive sodium reabsorption. The sodium channel blocker, amiloride, has been shown to reversibly correct the sodium reabsorption in CF subjects, but long term studies of amiloride have been disappointing due to its short duration of action. Benzamil, a benzyl substituted amiloride analogue, has a longer duration of action than amiloride in cultured human nasal epithelium. The results of the first randomized, placebo controlled, double blind, crossover study are reported here comparing the effects of benzamil and amiloride on nasal potential difference (nasal PD) in CF. Ten adults with CF attended on three occasions. At each visit baseline nasal PD was recorded, the drug (amiloride 1 x 10(-3) M, benzamil 1.7 x 10(-3) M, or 0.9% sodium chloride) was administered topically via a nasal spray, and nasal PD was measured at 15, 30 min, 1, 2, 4 and 8 h. Results were expressed as maximum change in nasal PD from baseline (PDmax), time for PDmax to return to 50% of baseline (t0.5), and the area under the curve (AUC). PDmax values for benzamil (20.6+/-0.9 mV) and amiloride (20.3+/-1.6 mV), were similar. The duration of effect was much longer for benzamil as measured as either AUC or t0.5 AUC values were 11.8+/-1.6 mV for benzamil, 2.8+/-0.4 mV for amiloride and 0.6+/-0.4 mV for placebo. The AUC value for benzamil was significantly greater than amiloride (95% confidence interval (CI) for the difference 5.3-12.7 mV, p<0.0001). t0.5 values were 4.3+/-0.7 h for benzamil and 0.6+/-0.1 h for amiloride (95% CI for the difference 2.0-5.3 h, p<0.001). It is concluded that benzamil has a similar maximal effect to amiloride but a more prolonged duration of action on nasal potential difference in cystic fibrosis. Benzamil may be a useful sodium channel blocker for the long-term treatment of the biochemical defect in the lungs of patients with cystic fibrosis.

  9. Evaluation of olfactory and auditory system effects of the antihyperthyroid drug carbimazole in the Long-Evans rat.

    PubMed

    Genter, M B

    1998-01-01

    Carbimazole (2-carbethoxythio-1-methylimidazole) is a thiocarbamide drug used in the treatment of hyperthyroidism in humans. Side effects associated with carbimazole treatment are reported to include impaired taste, impaired olfaction, and hearing loss. The structurally similar antihyperthyroid drug methimazole (1-methyl-2-mercaptoimidazole), also reportedly associated with impaired taste and olfaction in humans, has recently been demonstrated by this laboratory to be an olfactory toxicant by both the oral and intraperitoneal routes of exposure in rodents. A systematic evaluation of sensory system effects of these compounds, either in rodents or humans, is not available in the literature. Male Long-Evans rats were used to evaluate the auditory and olfactory toxicity of carbimazole by two routes of exposure. Histopathological evaluation of nasal cavities from rats administered carbimazole via i.p. and oral routes revealed olfactory mucosal damage and early evidence of repair; a no-observed effect level (NOEL) of 100 mg/kg was observed for orally administered carbimazole. Further, these studies demonstrate evidence for the generation of the olfactory toxic metabolites of carbimazole by the olfactory mucosa itself, as incubation of carbimazole with an olfactory S9 preparation resulted in NADPH-dependent degradation of carbimazole. Evaluation of the auditory startle response in carbimazole-treated rats revealed no deficits, demonstrating that carbimazole does not cause a global loss of hearing in rats.

  10. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium.

    PubMed

    Hashiguchi, Yasuyuki; Nishida, Mutsumi

    2007-09-01

    The trace amine-associated receptors (TAARs) form a specific family of G protein-coupled receptors in vertebrates. TAARs were initially considered neurotransmitter receptors, but recent study showed that mouse TAARs function as chemosensory receptors in the olfactory epithelium. To clarify the evolutionary dynamics of the TAAR gene family in vertebrates, near-complete repertoires of TAAR genes and pseudogenes were identified from the genomic assemblies of 4 teleost fishes (zebrafish, fugu, stickleback, and medaka), western clawed frogs, chickens, 3 mammals (humans, mice, and opossum), and sea lampreys. Database searches revealed that fishes had many putatively functional TAAR genes (13-109 genes), whereas relatively small numbers of TAAR genes (3-22 genes) were identified in tetrapods. Phylogenetic analysis of these genes indicated that the TAAR gene family was subdivided into 5 subfamilies that diverged before the divergence of ray-finned fishes and tetrapods. In tetrapods, virtually all TAAR genes were located in 1 specific region of their genomes as a gene cluster; however, in fishes, TAAR genes were scattered throughout more than 2 genomic locations. This possibly reflects a whole-genome duplication that occurred in the common ancestor of ray-finned fishes. Expression analysis of zebrafish and stickleback TAAR genes revealed that many TAARs in these fishes were expressed in the olfactory organ, suggesting the relatively high importance of TAARs as chemosensory receptors in fishes. A possible evolutionary history of the vertebrate TAAR gene family was inferred from the phylogenetic and comparative genomic analyses.

  11. The outcome of septorhinoplasty surgery on olfactory function.

    PubMed

    Randhawa, P S; Watson, N; Lechner, M; Ritchie, L; Choudhury, N; Andrews, P J

    2016-02-01

    To assess olfactory outcomes in patients undergoing septorhinoplasty surgery in our unit. Prospective cohort study. The Royal National Throat Nose and Ear Hospital, London. Forty-three patients undergoing functional septorhinoplasty (Males = 26; mean age = 34.1 ± 12.2) were recruited into the study. The primary outcome of olfactory function was assessed using 'Sniffin sticks'. Our secondary outcomes were assessment of patient quality of life using the disease specific Sino-nasal Outcome Test-23 questionnaire (SNOT-23) and a visual analogue scale for sense of smell. These measures were repeated at 12 weeks post operatively. There was a significant change in the Sniffin' sticks score post-operatively (8.3 versus 9.6; P < 0.001). The SNOT-23 score also showed a significant improvement post-operatively (53.5 versus 40.4; P < 0.001). A significant improvement was not found in the smell/taste question (question 21) of the SNOT-23 questionnaire as well as the visual analogue scale for sense of smell. A difference in olfactory outcome was not found between open versus closed approaches, primary versus revision surgery and traumatic versus non traumatic cases. The results show a measured significant improvement in olfaction following functional Septorhinoplasty but not a subjective improvement in the patients perception of their sense of smell and hence not a clinically significant difference. The reasons for the measured improvement are not clear and are likely to be multifactorial. © 2015 John Wiley & Sons Ltd.

  12. Effects of nasal septum perforation repair surgery on three-dimensional airflow: an evaluation using computational fluid dynamics.

    PubMed

    Nomura, Tsutomu; Ushio, Munetaka; Kondo, Kenji; Yamasoba, Tatsuya

    2015-11-01

    The purpose of this research is to determine the cause of nasal perforation symptoms and to predict post-operative function after nasal perforation repair surgery. A realistic three-dimensional (3D) model of the nose with a septal perforation was reconstructed using a computed tomography (CT) scan from a patient with nasal septal defect. The numerical simulation was carried out using ANSYS CFX V13.0. Pre- and post-operative models were compared by their velocity, pressure gradient (PG), wall shear (WS), shear strain rate (SSR) and turbulence kinetic energy in three plains. In the post-operative state, the crossflows had disappeared, and stream lines bound to the olfactory cleft area had appeared. After surgery, almost all of high-shear stress areas were disappeared comparing pre-operative model. In conclusion, the effects of surgery to correct nasal septal perforation were evaluated using a three-dimensional airflow evaluation. Following the surgery, crossflows disappeared, and WS, PG and SSR rate were decreased. A high WS.PG and SSR were suspected as causes of nasal perforation symptoms.

  13. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells.

    PubMed

    Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2015-04-01

    The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.

  14. Viewing Olfactory Affective Responses Through the Sniff Prism: Effect of Perceptual Dimensions and Age on Olfactomotor Responses to Odors

    PubMed Central

    Ferdenzi, Camille; Fournel, Arnaud; Thévenet, Marc; Coppin, Géraldine; Bensafi, Moustafa

    2015-01-01

    Sniffing, which is the active sampling of olfactory information through the nasal cavity, is part of the olfactory percept. It is influenced by stimulus properties, affects how an odor is perceived, and is sufficient (without an odor being present) to activate the olfactory cortex. However, many aspects of the affective correlates of sniffing behavior remain unclear, in particular the modulation of volume and duration as a function of odor hedonics. The present study used a wide range of odorants with contrasted hedonic valence to test: (1) which psychophysical function best describes the relationship between sniffing characteristics and odor hedonics (e.g., linear, or polynomial); (2) whether sniffing characteristics are sensitive to more subtle variations in pleasantness than simple pleasant-unpleasant contrast; (3) how sensitive sniffing is to other perceptual dimensions of odors such as odor familiarity or edibility; and (4) whether the sniffing/hedonic valence relationship is valid in other populations than young adults, such as the elderly. Four experiments were conducted, using 16–48 odorants each, and recruiting a total of 102 participants, including a group of elderly people. Results of the four experiments were very consistent in showing that sniffing was sensitive to subtle variations in unpleasantness but not to subtle variations in pleasantness, and that, the more unpleasant the odor, the more limited the spontaneous sampling of olfactory information through the nasal cavity (smaller volume, shorter duration). This also applied, although to a lesser extent, to elderly participants. Relationships between sniffing and other perceptual dimensions (familiarity, edibility) were less clear. It was concluded that sniffing behavior might be involved in adaptive responses protecting the subject from possibly harmful substances. PMID:26635683

  15. [Inverted papilloma of the nasal cavity - a case report].

    PubMed

    Muszalska, Jadwiga; Zatoński, Tomasz

    2017-02-20

    Inverted papilloma is a rare, benign sinonasal tumor. Its etiology is the most likely related to HPV infection. Inverted papilloma originates from the ciliated respiratory epithelium, typically from the lateral nasal wall. The tumor is characterized by endophytic growth inwards the stroma with adjacent tissues destruction. The clinical symptoms are non-specific, such as: unilateral obstruction of the nasal duct, rhinorrhoea, epistaxis and anosmia. The treatment consists in a complete surgical excision of the tumor. Inverted papilloma has a tendency to recurrence with incomplete resection and a potential to malignant transformation to squamous cell carcinoma. This manuscript presents a case of a young woman who suffered from recurrent epistaxis from ulceration of the mucous of the anterior part of the nasal septum. The patient in the interview had indicated the symptoms since six months and unsuccessful treatment with cetirizine. The woman was qualified to a surgical removal of the lesion with a transnasal approach. The histopahtological examination of the sample revealed Papilloma inversum. One-year follow up did not disclose the recurrence of the tumor.

  16. Magnetite-Based Magnetoreceptor Cells in the Olfactory Organ of Rainbow Trout and Zebrafish

    NASA Astrophysics Data System (ADS)

    Kirschvink, J. L.; Cadiou, H.; Dixson, A. D.; Eder, S.; Kobayashi, A.; McNaughton, P. A.; Muhamad, A. N.; Raub, T. D.; Walker, M. M.; Winklhofer, M.; Yuen, B. B.

    2011-12-01

    Many vertebrate and invertebrate animals have a geomagnetic sensory system, but the biophysics and anatomy of how magnetic stimuli are transduced to the nervous system is a challenging problem. Previous work in our laboratories identified single-domain magnetite chains in olfactory epithelium in cells proximal to the ros V nerve, which, in rainbow trout, responds to magnetic fields. Our objectives are to characterize these magnetite-containing cells and determine whether they form part of the mechanism of magnetic field transduction in teleost fishes, as a model for other Vertebrates. Using a combination of reflection mode confocal microscopy and a Prussian Blue technique modified to stain specifically for magnetite, our Auckland group estimated that both juvenile rainbow trout (ca. 7 cm total length) olfactory rosettes have ~200 magnetite-containing cells. The magnetite present in two types of cells within the olfactory epithelium appears to be arranged in intracellular chains. All of our groups (Munich, Auckland, Cambridge and Caltech) have obtained different types of structural evidence that magnetite chains closely associate with the plasma membrane in the cells, even in disaggregated tissues. In addition, our Cambridge group used Ca2+ imaging to demonstrate a clear response by individual magnetite-containing cells to a step change in the intensity of the external magnetic field and a slow change in Ca2+ activity when the external magnetic field was cancelled. In the teleost, zebrafish (Danio rerio), a small (~4 cm adult length in captivity) genetic and developmental biology model organism, our Caltech group detected ferromagnetic material throughout the body, but concentrated in the rostral trunk, using NRM and IRM scans of whole adults. Our analysis suggests greater than one million, 80-100 nm crystals, with Lowrie-Fuller curves strongly consistent with single-domain magnetite in 100-100,000 magnetocytes. Ferromagentic resonance (FMR) spectra show crystals

  17. On the olfactory anatomy in an archaic whale (Protocetidae, Cetacea) and the minke whale Balaenoptera acutorostrata (Balaenopteridae, Cetacea).

    PubMed

    Godfrey, Stephen J; Geisler, Jonathan; Fitzgerald, Erich M G

    2013-02-01

    The structure of the olfactory apparatus is not well known in both archaic and extant whales; the result of poor preservation in most fossils and locational isolation deep within the skulls in both fossil and Recent taxa. Several specimens now shed additional light on the subject. A partial skull of an archaic cetacean is reported from the Pamunkey River, Virginia, USA. The specimen probably derives from the upper middle Eocene (Piney Point Formation) and is tentatively assigned to the Protocetidae. Uncrushed cranial cavities associated with the olfactory apparatus were devoid of sediment. CT scans clearly reveal the dorsal nasal meatus, ethmoturbinates within the olfactory recess, the cribriform plate, the area occupied by the olfactory bulbs, and the olfactory nerve tract. Several sectioned skulls of the minke whale (Balaenoptera acutorostrata) were also examined, and olfactory structures are remarkably similar to those observed in the fossil skull from the Pamunkey River. One important difference between the two is that the fossil specimen has an elongate olfactory nerve tract. The more forward position of the external nares in extant balaenopterids when compared with those of extant odontocetes is interpreted to be the result of the need to retain a functional olfactory apparatus and the forward position of the supraoccipital/cranial vertex. An increase in the distance between the occipital condyles and the vertex in balaenopterids enhances the mechanical advantage of the epaxial musculature that inserts on the occiput, a specialization that likely stabilizes the head of these enormous mammals during lunge feeding. Copyright © 2012 Wiley Periodicals, Inc.

  18. Nasal biopsies of children exposed to air pollutants.

    PubMed

    Calderón-Garcidueñas, L; Rodriguez-Alcaraz, A; Valencia-Salazar, G; Mora-Tascareño, A; García, R; Osnaya, N; Villarreal-Calderón, A; Devlin, R B; Van Dyke, T

    2001-01-01

    Southwest Metropolitan Mexico City (SWMMC) atmosphere is a complex mixture of air pollutants, including ozone, particulate matter, and aldehydes. Children in SWMMC are exposed chronically and sequentially to numerous toxicants, and they exhibit significant nasal damage. The objective of this study was to assess p53 accumulation by immunohistochemistry in nasal biopsies of SWMMC children. We evaluated 111 biopsies from 107 children (83 exposed SWMMC children and 24 control children residents in a pollutant-compliant Caribbean island). Complete clinical histories and physical examinations, including an ear-nose-throat (ENT) exam were done. There was a significant statistical difference in the upper and lower respiratory symptomatology and ENT findings between control and exposed children (p < 0.001). Control children gave no respiratory symptomatology in the 3 months prior to the study; their biopsies exhibited normal ciliated respiratory epithelium and were p53-negative. SWMMC children complained of epistaxis, nasal obstruction. and crusting. Irregular areas of whitish-gray recessed mucosa over the inferior and middle turbinates were seen in 25% of SWMMC children, and their nasal biopsies displayed basal cell hyperplasia, decreased numbers of ciliated and goblet cells, neutrophilic epithelial infiltrates, squamous metaplasia. and mild dysplasia. Four of 21 SWMMC children with grossly abnormal mucosal changes exhibited strong transmural nuclear p53 staining in their nasal biopsies (p 0.005, odds ratio 26). In the context of lifetime exposures to toxic and potentially carcinogenic air pollutants, p53 nasal induction in children could potentially represent. a) a checkpoint response to toxic exposures, setting up a selective condition for p53 mutation, or b) a p53 mutation has already occurred as a result of such selection. Because the biological significance of p53 nuclear accumulation in the nasal biopsies of these children is not clear at this point, we strongly

  19. Mucosal transmission and pathogenesis of chronic wasting disease in ferrets.

    PubMed

    Perrott, Matthew R; Sigurdson, Christina J; Mason, Gary L; Hoover, Edward A

    2013-02-01

    Chronic wasting disease (CWD) of cervids is almost certainly transmitted by mucosal contact with the causative prion, whether by direct (animal-to-animal) or indirect (environmental) means. Yet the sites and mechanisms of prion entry remain to be further understood. This study sought to extend this understanding by demonstrating that ferrets exposed to CWD via several mucosal routes developed infection, CWD prion protein (PrP(CWD)) amplification in lymphoid tissues, neural invasion and florid transmissible spongiform encephalopathy lesions resembling those in native cervid hosts. The ferrets developed extensive PrP(CWD) accumulation in the nervous system, retina and olfactory epithelium, with lesser deposition in tongue, muscle, salivary gland and the vomeronasal organ. PrP(CWD) accumulation in mucosal sites, including upper respiratory tract epithelium, olfactory epithelium and intestinal Peyer's patches, make the shedding of prions by infected ferrets plausible. It was also observed that regionally targeted exposure of the nasopharyngeal mucosa resulted in an increased attack rate when compared with oral exposure. The latter finding suggests that nasal exposure enhances permissiveness to CWD infection. The ferret model has further potential for investigation of portals for initiation of CWD infection.

  20. Mucosal transmission and pathogenesis of chronic wasting disease in ferrets

    PubMed Central

    Perrott, Matthew R.; Sigurdson, Christina J.; Mason, Gary L.

    2013-01-01

    Chronic wasting disease (CWD) of cervids is almost certainly transmitted by mucosal contact with the causative prion, whether by direct (animal-to-animal) or indirect (environmental) means. Yet the sites and mechanisms of prion entry remain to be further understood. This study sought to extend this understanding by demonstrating that ferrets exposed to CWD via several mucosal routes developed infection, CWD prion protein (PrPCWD) amplification in lymphoid tissues, neural invasion and florid transmissible spongiform encephalopathy lesions resembling those in native cervid hosts. The ferrets developed extensive PrPCWD accumulation in the nervous system, retina and olfactory epithelium, with lesser deposition in tongue, muscle, salivary gland and the vomeronasal organ. PrPCWD accumulation in mucosal sites, including upper respiratory tract epithelium, olfactory epithelium and intestinal Peyer’s patches, make the shedding of prions by infected ferrets plausible. It was also observed that regionally targeted exposure of the nasopharyngeal mucosa resulted in an increased attack rate when compared with oral exposure. The latter finding suggests that nasal exposure enhances permissiveness to CWD infection. The ferret model has further potential for investigation of portals for initiation of CWD infection. PMID:23100363

  1. Stimulation of Electro-Olfactogram Responses in the Main Olfactory Epithelia by Airflow Depend on the Type 3 Adenylyl Cyclase

    PubMed Central

    Chen, Xuanmao; Xia, Zhengui; Storm, Daniel R.

    2012-01-01

    Cilia of olfactory sensory neurons (OSN) are the primary sensory organelles for olfaction. The detection of odorants by the main olfactory epithelium (MOE) depends on coupling of odorant receptors to the type 3 adenylyl cyclase (AC3) in olfactory cilia. We monitored the effect of airflow on electro-olfactogram (EOG) responses and found that the MOE of mice can sense mechanical forces generated by airflow. The airflow-sensitive EOG response in the MOE was attenuated when cAMP was increased by odorants or by forskolin suggesting a common mechanism for airflow and odorant detection. In addition, the sensitivity to airflow was significantly impaired in the MOE from AC3−/− mice. We conclude that AC3 in the MOE is required for detecting the mechanical force of airflow, which in turn may regulate odorant perception during sniffing. PMID:23136416

  2. Alkaline phosphatase in nasal secretion of cattle: biochemical and molecular characterisation.

    PubMed

    Ghazali, M Faizal; Koh-Tan, H H Caline; McLaughlin, Mark; Montague, Paul; Jonsson, Nicholas N; Eckersall, P David

    2014-09-05

    Nasal secretion (NS) was investigated as a source of information regarding the mucosal and systemic immune status of cattle challenged by respiratory disease. A method for the collection of substantial volumes (~12 ml) of NS from cattle was developed to establish a reference range of analytes that are present in the NS of healthy cattle. Biochemical profiles of NS from a group of 38 healthy Holstein-Friesian cows revealed high alkaline phosphatase (AP) activity of up to 2392 IU/L. The character and source of the high activity of AP in bovine NS was investigated. Histochemical analysis confirmed the localization of the AP enzyme activity to epithelial cells and serous glands of the nasal respiratory mucosa. Analysis of mRNA levels from nasal mucosa by end point RT-PCR and PCR product sequencing confirmed that the AP was locally produced and is identical at the nucleotide level to the non-specific AP splice variant found in bovine liver, bone and kidney. Analysis by isoelectric focussing confirmed that AP was produced locally at a high level in nasal epithelium demonstrating that AP from nasal secretion and nasal mucosa had similar pI bands, though differing from those of the liver, kidney, bone and intestine, suggesting different post-translational modification (PTM) of AP in these tissues. A nasal isozyme of AP has been identified that is present at a high activity in NS, resulting from local production and showing distinctive PTM and may be active in NS as an anti-endotoxin mediator.

  3. Olfactory neural cells: an untapped diagnostic and therapeutic resource. The 2000 Ogura Lecture.

    PubMed

    Perry, Christopher; Mackay-Sim, Alan; Feron, Francois; McGrath, John

    2002-04-01

    This is an overview of the cellular biology of upper nasal mucosal cells that have special characteristics that enable them to be used to diagnose and study congenital neurological diseases and to aid neural repair. After mapping the distribution of neural cells in the upper nose, the authors' investigations moved to the use of olfactory neurones to diagnose neurological diseases of development, especially schizophrenia. Olfactory-ensheathing glial cells (OEGs) from the cranial cavity promote axonal penetration of the central nervous system and aid spinal cord repair in rodents. The authors sought to isolate these cells from the more accessible upper nasal cavity in rats and in humans and prove they could likewise promote neural regeneration, making these cells suitable for human spinal repair investigations. The schizophrenia-diagnosis aspect of the study entailed the biopsy of the olfactory areas of 10 schizophrenic patients and 10 control subjects. The tissue samples were sliced and grown in culture medium. The ease of cell attachment to fibronectin (artificial epithelial basement membrane), as well as the mitotic and apoptotic indices, was studied in the presence and absence of dopamine in those cell cultures. The neural repair part of the study entailed a harvesting and insertion of first rat olfactory lamina propria rich in OEGs between cut ends of the spinal cords and then later the microinjection of an OEG-rich suspension into rat spinal cords previously transected by open laminectomy. Further studies were done in which OEG insertion was performed up to 1 month after rat cord transection and also in monkeys. Schizophrenic patients' olfactory tissues do not easily attach to basement membrane compared with control subjects, adding evidence to the theory that cell wall anomalies are part of the schizophrenic "lesion" of neurones. Schizophrenic patient cell cultures had higher mitotic and apoptotic indices compared with control subjects. The addition of

  4. Evaluation of the Olfactory Function With the "Sniffin' Sticks" Test After Endoscopic Transsphenoidal Pituitary Surgery.

    PubMed

    Cingoz, Ilker Deniz; Kizmazoglu, Ceren; Guvenc, Gonul; Sayin, Murat; Imre, Abdulkadir; Yuceer, Nurullah

    2018-06-01

    The aim of this study was to evaluate the olfactory function of patients who had undergone endoscopic transsphenoidal pituitary surgery. In this prospective study, the "Sniffin' Sticks" test was performed between June 2016 and April 2017 at Izmir Katip Celebi University Ataturk Training and Research Hospital. Thirty patients who were scheduled to undergo endoscopic transsphenoidal pituitary surgery were evaluated preoperatively and 8 weeks postoperatively using the Sniffin' Sticks test battery for olfactory function, odor threshold, smell discrimination, and odor identification. The patients were evaluated preoperatively by an otolaryngologist. The patients' demographic data and olfactory functions were analyzed with a t test and Wilcoxon-labeled sequential test. The study group comprised 14 women (46.7%) and 16 men (53.3%) patients. The mean age of the patients was 37.50 ± 9.43 years (range: 16-53 years). We found a significant difference in the preoperative and postoperative values of the odor recognition test (P = 0.017); however, there was no significant difference between the preoperative and postoperative odor threshold values (P = 0.172) and odor discrimination values (P = 0.624). The threshold discrimination identification test scores were not significant (P = 0.110). The olfactory function of patients who were normosmic preoperatively was not affected postoperatively. This study shows that the endoscopic transsphenoidal technique for pituitary surgery without nasal flap has no negative effect on the olfactory function.

  5. Primary olfactory projections and the nervus terminalis in the African lungfish: implications for the phylogeny of cranial nerves.

    PubMed

    von Bartheld, C S; Claas, B; Münz, H; Meyer, D L

    1988-08-01

    Primary olfactory and central projections of the nervus terminalis were investigated by injections of horseradish peroxidase into the olfactory epithelium in the African lungfish. In addition, gonadotropin-releasing hormone (GnRH) immunoreactivity of the nervus terminalis system was investigated. The primary olfactory projections are restricted to the olfactory bulb located at the rostral pole of the telencephalon; they do not extend into caudal parts of the telencephalon. A vomeronasal nerve and an accessory olfactory bulb could not be identified. The nervus terminalis courses through the dorsomedial telencephalon. Major targets include the nucleus of the anterior commissure and the nucleus praeopticus pars superior. some fibers cross to the contralateral side. A few fibers reach the diencephalon and mesencephalon. No label is present in the "posterior root of the nervus terminalis" (= "Pinkus's nerve" or "nervus praeopticus"). GnRH immunoreactivity is lacking in the "anterior root of the nervus terminalis," whereas it is abundant in nervus praeopticus (Pinkus's nerve). These findings may suggest that the nervus terminalis system originally consisted of two distinct cranial nerves, which have fused-in evolution-in most vertebrates. Theories of cranial nerve phylogeny are discussed in the light of the assumed "binerval origin" of the nervus terminalis system.

  6. Exfoliated Human Olfactory Neuroepithelium: A Source of Neural Progenitor Cells.

    PubMed

    Jiménez-Vaca, Ana L; Benitez-King, Gloria; Ruiz, Víctor; Ramírez-Rodríguez, Gerardo B; Hernández-de la Cruz, Beatriz; Salamanca-Gómez, Fabio A; González-Márquez, Humberto; Ramírez-Sánchez, Israel; Ortíz-López, Leonardo; Vélez-Del Valle, Cristina; Ordoñez-Razo, Rosa Ma

    2018-03-01

    Neural progenitor cells (NPC) contained in the human adult olfactory neuroepithelium (ONE) possess an undifferentiated state, the capability of self-renewal, the ability to generate neural and glial cells as well as being kept as neurospheres in cell culture conditions. Recently, NPC have been isolated from human or animal models using high-risk surgical methods. Therefore, it was necessary to improve methodologies to obtain and maintain human NPC as well as to achieve better knowledge of brain disorders. In this study, we propose the establishment and characterization of NPC cultures derived from the human olfactory neuroepithelium, using non-invasive procedures. Twenty-two healthy individuals (29.7 ± 4.5 years of age) were subjected to nasal exfoliation. Cells were recovered and kept as neurospheres under serum-free conditions. The neural progenitor origin of these neurospheres was determined by immunocytochemistry and qPCR. Their ability for self-renewal and multipotency was analyzed by clonogenic and differentiation assays, respectively. In the cultures, the ONE cells preserved the phenotype of the neurospheres. The expression levels of Nestin, Musashi, Sox2, and βIII-tubulin demonstrated the neural origin of the neurospheres; 48% of the cells separated could generate neurospheres, determining that they retained their self-renewal capacity. Neurospheres were differentiated in the absence of growth factors (EGF and FGF), and their multipotency ability was maintained as well. We were also able to isolate and grow human neural progenitor cells (neurospheres) through nasal exfoliates (non-invasive method) of the ONE from healthy adults, which is an extremely important contribution for the study of brain disorders and for the development of new therapies.

  7. Keratoacanthoma of the Nasal Septum Secondary to Ranibizumab Use.

    PubMed

    Cohn, Jason E; Caruso Sales, Hilary M; Nguyen, Giang Huong; Spector, Harvey; Briskin, Kenneth

    2017-01-01

    Keratoacanthoma (KA) is a benign epithelial tumor that typically presents as a firm, cone-shaped, flesh-colored nodule with a central horn-filled crater. KA is considered to be a low-grade variant of squamous cell carcinoma (SCC). We report a rare case of a 72-year-old male who presented with a KA involving the nasal septum, possibly related to ranibizumab use. A flesh-colored lesion on the right anterior nasal septum lesion was visualized on examination. Histologic examination revealed a well-circumscribed, dome-shaped central crater filled with keratin, well-differentiated squamous epithelium with ground-glass cytoplasm with pushing margins, and intraepithelial microabscesses establishing the diagnosis of KA. KA of the nasal septum has only been reported once in the literature. This case is unusual because it normally presents on sun-exposed areas. Additionally, this patient was taking ranibizumab, a vascular endothelial growth factor (VEGF) inhibitor for macular degeneration. Despite ranibizumab not being directly linked to precancerous and cancerous skin lesions, agents in this medication class have been. Although it is difficult to prove associations in this isolated case, the role of ranibizumab causing cutaneous lesions should be further investigated.

  8. Intranasal Adeno-Associated Virus Mediated Gene Delivery and Expression of Human Iduronidase in the Central Nervous System: A Noninvasive and Effective Approach for Prevention of Neurologic Disease in Mucopolysaccharidosis Type I.

    PubMed

    Belur, Lalitha R; Temme, Alexa; Podetz-Pedersen, Kelly M; Riedl, Maureen; Vulchanova, Lucy; Robinson, Nicholas; Hanson, Leah R; Kozarsky, Karen F; Orchard, Paul J; Frey, William H; Low, Walter C; McIvor, R Scott

    2017-07-01

    Mucopolysaccharidosis type I (MPS I) is a progressive, multi-systemic, inherited metabolic disease caused by deficiency of α-L-iduronidase (IDUA). Current treatments for this disease are ineffective in treating central nervous system (CNS) disease due to the inability of lysosomal enzymes to traverse the blood-brain barrier. A noninvasive and effective approach was taken in the treatment of CNS disease by intranasal administration of an IDUA-encoding adeno-associated virus serotype 9 (AAV9) vector. Adult IDUA-deficient mice aged 3 months were instilled intranasally with AAV9-IDUA vector. Animals sacrificed 5 months post instillation exhibited IDUA enzyme activity levels that were up to 50-fold that of wild-type mice in the olfactory bulb, with wild-type levels of enzyme restored in all other parts of the brain. Intranasal treatment with AAV9-IDUA also resulted in the reduction of tissue glycosaminoglycan storage materials in the brain. There was strong IDUA immunofluorescence staining of tissue sections observed in the nasal epithelium and olfactory bulb, but there was no evidence of the presence of transduced cells in other portions of the brain. This indicates that reduction of storage materials most likely occurred as a result of enzyme diffusion from the olfactory bulb and the nasal epithelium into deeper areas of the brain. At 8 months of age, neurocognitive testing using the Barnes maze to assess spatial navigation demonstrated that treated IDUA-deficient mice were no different from normal control animals, while untreated IDUA-deficient mice exhibited significant learning and navigation deficits. This novel, noninvasive strategy for intranasal AAV9-IDUA instillation could potentially be used to treat CNS manifestations of human MPS I.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckpitt, Alan, E-mail: arbuckpitt@ucdavis.edu; Morin, Dexter; Murphy, Shannon

    Naphthalene produces species and cell selective injury to respiratory tract epithelial cells of rodents. In these studies we determined the apparent K{sub m}, V{sub max}, and catalytic efficiency (V{sub max}/K{sub m}) for naphthalene metabolism in microsomal preparations from subcompartments of the respiratory tract of rodents and non-human primates. In tissues with high substrate turnover, major metabolites were derived directly from naphthalene oxide with smaller amounts from conjugates of diol epoxide, diepoxide, and 1,2- and 1,4-naphthoquinones. In some tissues, different enzymes with dissimilar K{sub m} and V{sub max} appeared to metabolize naphthalene. The rank order of V{sub max} (rat olfactory epitheliummore » > mouse olfactory epithelium > murine airways ≫ rat airways) correlated well with tissue susceptibility to naphthalene. The V{sub max} in monkey alveolar subcompartment was 2% that in rat nasal olfactory epithelium. Rates of metabolism in nasal compartments of the monkey were low. The catalytic efficiencies of microsomes from known susceptible tissues/subcompartments are 10 and 250 fold higher than in rat airway and monkey alveolar subcompartments, respectively. Although the strong correlations between catalytic efficiencies and tissue susceptibility suggest that non-human primate tissues are unlikely to generate metabolites at a rate sufficient to produce cellular injury, other studies showing high levels of formation of protein adducts support the need for additional studies. - Highlights: • Naphthalene is metabolized with high catalytic efficiency in susceptible tissue. • Naphthalene is metabolized at low catalytic efficiency in non-susceptible tissue. • Respiratory tissues of the non human primate metabolize naphthalene slowly.« less

  10. Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation.

    PubMed

    Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Lee, Shu Jin; Wang, De Yun

    2011-01-31

    Nasal airflow is one of the most important determinants for nasal physiology. During the long evolution of human beings, different races have developed their own attributes of nasal morphologies which result in variations of nasal airflow patterns and nasal functions. This study evaluated and compared the effects of differences of nasal morphology among three healthy male subjects from Caucasian, Chinese and Indian ethnic groups on nasal airflow patterns using computational fluid dynamics simulation. By examining the anterior nasal airway, the nasal indices and the nostril shapes of the three subjects were found to be similar to nasal cavities of respective ethnic groups. Computed tomography images of these three subjects were obtained to reconstruct 3-dimensional models of nasal cavities. To retain the flow characteristics around the nasal vestibules, a 40 mm-radius semi sphere was assembled around the human face for the prescription of zero ambient gauge pressure. The results show that more airflow tends to pass through the middle passage of the nasal airway in the Caucasian model, and through the inferior portion in the Indian model. The Indian model was found with extremely low flow flux flowing through the olfactory region. The sizes of vortexes near the anterior cavity were found to be correlated with the angles between the upper nasal valve wall and the anterior head of the nasal cavity. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    PubMed

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  12. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wray, S.; Grant, P.; Gainer, H.

    1989-10-01

    In situ hybridization histochemistry and immunocytochemistry were used to study the prenatal expression of luteinizing hormone-releasing hormone (LHRH) cells in the mouse. Cells expressing LHRH mRNA and peptide product were first detected on embryonic day 11.5 (E11.5) in the olfactory pit. On E12.5, the majority of LHRH cells were located on tracks extending from the olfactory pit to the base of the telencephalon. From E12.5 to E15.5, LHRH cells were detected in a rostral-to-caudal gradient in forebrain areas. Prior to E12.5, cells expressing LHRH mRNA were not detected in forebrain areas known to contain LHRH cells in postnatal animals. Quantitationmore » of cells expressing LHRH mRNA showed that the number of labeled cells on E12.5 (approximately 800) equaled the number of LHRH cells in postnatal animals, but more than 90% of these cells were located in nasal regions. Between E12.5 and E15.5, the location of LHRH cells shifted. The number of LHRH cells in the forebrain increased, while the number of LHRH cells in nasal regions decreased over this same period. These findings establish that cells first found in the olfactory pit and thereafter in forebrain areas express the LHRH gene and correspond to the position of LHRH immunopositive cells found at these developmental times. To further examine the ontogeny of the LHRH system, immunocytochemistry in combination with (3H)thymidine autoradiography was used to determine when LHRH cells left the mitotic cycle. We show that LHRH neurons exhibit a discrete time of birth, suggesting that they arise as a single neuronal population between E10.0 and E11.0. Postnatal LHRH neurons were birth-dated shortly after differentiation of the olfactory placode and before LHRH mRNA was expressed in cells in the olfactory pit.« less

  13. Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds?

    PubMed Central

    Steiger, Silke S; Fidler, Andrew E; Valcu, Mihai; Kempenaers, Bart

    2008-01-01

    Among vertebrates, the sense of smell is mediated by olfactory receptors (ORs) expressed in sensory neurons within the olfactory epithelium. Comparative genomic studies suggest that the olfactory acuity of mammalian species correlates positively with both the total number and the proportion of functional OR genes encoded in their genomes. In contrast to mammals, avian olfaction is poorly understood, with birds widely regarded as relying primarily on visual and auditory inputs. Here, we show that in nine bird species from seven orders (blue tit, Cyanistes caeruleus; black coucal, Centropus grillii; brown kiwi, Apteryx australis; canary, Serinus canaria; galah, Eolophus roseicapillus; red jungle fowl, Gallus gallus; kakapo, Strigops habroptilus; mallard, Anas platyrhynchos; snow petrel, Pagodroma nivea), the majority of amplified OR sequences are predicted to be from potentially functional genes. This finding is somewhat surprising as one previous report suggested that the majority of OR genes in an avian (red jungle fowl) genomic sequence are non-functional pseudogenes. We also show that it is not the estimated proportion of potentially functional OR genes, but rather the estimated total number of OR genes that correlates positively with relative olfactory bulb size, an anatomical correlate of olfactory capability. We further demonstrate that all the nine bird genomes examined encode OR genes belonging to a large gene clade, termed γ-c, the expansion of which appears to be a shared characteristic of class Aves. In summary, our findings suggest that olfaction in birds may be a more important sense than generally believed. PMID:18628122

  14. Orbito-nasal cyst in a young European short-haired cat.

    PubMed

    Zemljič, Tadej; Matheis, Franziska L; Venzin, Claudio; Makara, Mariano; Grest, Paula; Spiess, Bernhard M; Pot, Simon A

    2011-09-01

    To describe a case of an orbito-nasal cyst in a cat. An 18-month-old male European short-haired cat was presented to the Ophthalmology service of the Vetsuisse Faculty, University of Zurich for a subcutaneous swelling in the medial canthal region of the right eye (OD). Ophthalmologic, ultrasound and CT examinations, and fine needle aspiration were performed. After lesion excision, the removed tissue was submitted for histopathology. CT examination was repeated 5 months after removal of the cyst. Ophthalmologic examination revealed a large fluctuant swelling inferonasal to OD. Despite patent lacrimal puncta, only the first few mm of the lacrimal canaliculi could be cannulated. A normal globe with moderate enophthalmos was present. Ultrasound examination showed a well-defined lobulated cyst-like structure in the right orbit, inferonasal and anterior to the eye. CT examination revealed extension of this lesion through the medial orbital wall into the right nasal cavity. Fine needle aspiration confirmed the cystic nature of the lesion. An orbito-nasal cyst was diagnosed. The orbital part of the cyst was dissected from the surrounding tissue and excised from the periosteum in the medial orbital wall defect. Part of the maxillary bone was removed to allow removal of the cyst from the nasal cavity. Histologically, the cyst wall consisted of a single to multilayered, mostly cuboidal epithelium and surrounding connective tissue. Follow-up revealed a good functional result and no recurrence 7 months after cyst removal. Similar orbito-nasal cystic structures were reported in dogs but not in cats. © 2011 American College of Veterinary Ophthalmologists.

  15. Expression Patterns of Odorant Receptors and Response Properties of Olfactory Sensory Neurons in Aged Mice

    PubMed Central

    Lee, Anderson C.; Tian, Huikai; Grosmaitre, Xavier

    2009-01-01

    The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)—2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3–27 months). The cell density for different ORs peaked at different time points and a decline was observed for 6 of 9 ORs at advanced ages. Using patch clamp recordings, we then examined the odorant responses of individual OSNs coexpressing a defined OR (MOR23) and green fluorescent protein. The MOR23 neurons recorded from aged animals maintained a similar sensitivity and dynamic range in response to the cognate odorant (lyral) as those from younger mice. The results indicate that although the cell densities of OSNs expressing certain types of ORs decline at advanced ages, individual OSNs can retain their sensitivity. The implications of these findings in age-related olfactory deterioration are discussed. PMID:19759360

  16. Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice.

    PubMed

    Lee, Anderson C; Tian, Huikai; Grosmaitre, Xavier; Ma, Minghong

    2009-10-01

    The sense of smell deteriorates in normal aging, but the underling mechanisms are still elusive. Here we investigated age-related alterations in expression patterns of odorant receptor (OR) genes and functional properties of olfactory sensory neurons (OSNs)-2 critical factors that define the odor detection threshold in the olfactory epithelium. Using in situ hybridization for 9 representative OR genes, we compared the cell densities of each OR in coronal nose sections at different ages (3-27 months). The cell density for different ORs peaked at different time points and a decline was observed for 6 of 9 ORs at advanced ages. Using patch clamp recordings, we then examined the odorant responses of individual OSNs coexpressing a defined OR (MOR23) and green fluorescent protein. The MOR23 neurons recorded from aged animals maintained a similar sensitivity and dynamic range in response to the cognate odorant (lyral) as those from younger mice. The results indicate that although the cell densities of OSNs expressing certain types of ORs decline at advanced ages, individual OSNs can retain their sensitivity. The implications of these findings in age-related olfactory deterioration are discussed.

  17. Substance P and neurokinin A in human nasal mucosa.

    PubMed

    Baraniuk, J N; Lundgren, J D; Okayama, M; Goff, J; Mullol, J; Merida, M; Shelhamer, J H; Kaliner, M A

    1991-03-01

    The tachykinins substance P (SP) and neurokinin A (NKA) were studied in human inferior turbinate nasal mucosa by radioimmunoassay, immunohistochemistry, and autoradiography and for their effect upon mucus release in an in vitro culture system in order to infer their potential functions in the upper respiratory tract. Similar amounts of SP (1.03 +/- 0.12 pmol/g wet weight; mean +/- SEM; n = 26) and NKA (0.76 +/- 0.23; n = 7) were found. NKA and SP immunoreactive nerve fibers were found in the walls of arterioles, venules, and sinusoids and as individual fibers in gland acini, near the basement membrane, and in the epithelium. [125I]SP bound to arterioles, venules, and glands. [125I]NKA bound only to arterioles. In short-term explant culture of fragments of human nasal mucosa, both 1 microM SP and 1 microM NKA stimulated release of [3H]glucosamine-labeled respiratory glycoconjugates. These results indicate that SP and NKA have similar distributions in nociceptive sensory nerves in human nasal mucosa. The distribution of [125I]SP binding sites is consistent with a role for SP as a vasodilator and mucous secretagogue. The presence of [125I] NKA binding sites on vessels suggests a primary role for NKA in regulating vasomotor tone.

  18. The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception.

    PubMed

    Courtiol, Emmanuelle; Wilson, Donald A

    2017-01-01

    Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.

  19. Transduction in Drosophila olfactory receptor neurons is invariant to air speed

    PubMed Central

    Zhou, Yi

    2012-01-01

    In the vertebrate nose, increasing air speed tends to increase the magnitude of odor-evoked activity in olfactory receptor neurons (ORNs), given constant odor concentration and duration. It is often assumed that the same is true of insect olfactory organs, but this has not been directly tested. In this study, we examined the effect of air speed on ORN responses in Drosophila melanogaster. We constructed an odor delivery device that allowed us to independently vary concentration and air speed, and we used a fast photoionization detector to precisely measure the actual odor concentration at the antenna while simultaneously recording spikes from ORNs in vivo. Our results demonstrate that Drosophila ORN odor responses are invariant to air speed, as long as odor concentration is kept constant. This finding was true across a >100-fold range of air speeds. Because odor hydrophobicity has been proposed to affect the air speed dependence of olfactory transduction, we tested a >1,000-fold range of hydrophobicity values and found that ORN responses are invariant to air speed across this full range. These results have implications for the mechanisms of odor delivery to Drosophila ORNs. Our findings are also significant because flies have a limited ability to control air flow across their antennae, unlike terrestrial vertebrates, which can control air flow within their nasal cavity. Thus, for the fly, invariance to air speed may be adaptive because it confers robustness to changing wind conditions. PMID:22815404

  20. Functional recovery of odor representations in regenerated sensory inputs to the olfactory bulb

    PubMed Central

    Cheung, Man C.; Jang, Woochan; Schwob, James E.; Wachowiak, Matt

    2014-01-01

    The olfactory system has a unique capacity for recovery from peripheral damage. After injury to the olfactory epithelium (OE), olfactory sensory neurons (OSNs) regenerate and re-converge on target glomeruli of the olfactory bulb (OB). Thus far, this process has been described anatomically for only a few defined populations of OSNs. Here we characterize this regeneration at a functional level by assessing how odor representations carried by OSN inputs to the OB recover after massive loss and regeneration of the sensory neuron population. We used chronic imaging of mice expressing synaptopHluorin in OSNs to monitor odor representations in the dorsal OB before lesion by the olfactotoxin methyl bromide and after a 12 week recovery period. Methyl bromide eliminated functional inputs to the OB, and these inputs recovered to near-normal levels of response magnitude within 12 weeks. We also found that the functional topography of odor representations recovered after lesion, with odorants evoking OSN input to glomerular foci within the same functional domains as before lesion. At a finer spatial scale, however, we found evidence for mistargeting of regenerated OSN axons onto OB targets, with odorants evoking synaptopHluorin signals in small foci that did not conform to a typical glomerular structure but whose distribution was nonetheless odorant-specific. These results indicate that OSNs have a robust ability to reestablish functional inputs to the OB and that the mechanisms underlying the topography of bulbar reinnervation during development persist in the adult and allow primary sensory representations to be largely restored after massive sensory neuron loss. PMID:24431990

  1. Design of experiments to optimize an in vitro cast to predict human nasal drug deposition.

    PubMed

    Shah, Samir A; Dickens, Colin J; Ward, David J; Banaszek, Anna A; George, Chris; Horodnik, Walter

    2014-02-01

    Previous studies showed nasal spray in vitro tests cannot predict in vivo deposition, pharmacokinetics, or pharmacodynamics. This challenge makes it difficult to assess deposition achieved with new technologies delivering to the therapeutically beneficial posterior nasal cavity. In this study, we determined best parameters for using a regionally divided nasal cast to predict deposition. Our study used a model suspension and a design of experiments to produce repeatable deposition results that mimic nasal deposition patterns of nasal suspensions from the literature. The seven-section (the nozzle locator, nasal vestibule, front turbinate, rear turbinate, olfactory region, nasopharynx, and throat filter) nylon nasal cast was based on computed tomography images of healthy humans. It was coated with a glycerol/Brij-35 solution to mimic mucus. After assembling and orienting, airflow was applied and nasal spray containing a model suspension was sprayed. After disassembling the cast, drug depositing in each section was assayed by HPLC. The success criteria for optimal settings were based on nine in vivo studies in the literature. The design of experiments included exploratory and half factorial screening experiments to identify variables affecting deposition (angles, airflow, and airflow time), optimization experiments, and then repeatability and reproducibility experiments. We found tilt angle and airflow time after actuation affected deposition the most. The optimized settings were flow rate of 16 L/min, postactuation flow time of 12 sec, a tilt angle of 23°, nozzle angles of 0°, and actuation speed of 5 cm/sec. Neither cast nor operator caused significant variation of results. We determined cast parameters to produce results resembling suspension nasal sprays in the literature. The results were repeatable and unaffected by operator or cast. These nasal spray parameters could be used to assess deposition from new devices or formulations. For human deposition

  2. Morphologic expression of glandular differentiation in the epidermoid nasal carcinomas induced by phenylglycidyl ether inhalation.

    PubMed Central

    Lee, K. P.; Schneider, P. W.; Trochimowicz, H. J.

    1983-01-01

    Charles River-CD Sprague-Dawley rats in 3 equal groups of 100 males and 100 females each were exposed to 12, 1, and 0 ppm of phenylglycidyl ether vapor for 24 months. Nasal tumors were first detected after 621 days' exposure at 12 ppm with an incidence of 11% in males and 4.4% in females. No nasal tumors were found at 1 ppm in rats exposed for 24 months. The nasal tumors, mostly epidermoid carcinomas, were derived from the respiratory epithelium and nasal glands, both of which revealed squamous metaplasia or dysplasia in the anterior nasal cavity. Most nasal tumors were confined to the anterior nasal cavity and occasionally invaded the dorsonasal bones and posterior nasal cavity. The undifferentiated glandular cells appear to differentiate to neoplastic squamous cells, because the ultrastructure of epidermoid carcinoma revealed traits of glandular cell differentiation in the neoplastic squamous cells. The features of glandular cell differentiation in the neoplastic squamous cells were intercellular or intracellular glandular lumens, secretory vesicles, mucus droplets, and intermediate cells showing both glandular and squamous differentiation. Squamous cells in the well-differentiated epidermoid carcinomas revealed abundant tonofibrils, desmosomes, glycogen particulates, and interdigitated cytoplasmic processes. These markers of squamous-cell differentiation were markedly reduced in the undifferentiated epidermoid carcinomas. The spindle-cell squamous carcinoma showed both squamous and fibroblastic-like differentiations. Some spindle cells had only fibroblastic-like differentiation, suggesting spindle-cell metaplasia of the squamous cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:6846500

  3. Repeated measurement of nasal lavage fluid chemokines in school-age children with asthma.

    PubMed

    Noah, Terry L; Tudor, Gail E; Ivins, Sally S; Murphy, Paula C; Peden, David B; Henderson, Frederick W

    2006-02-01

    Inflammatory processes at the mucosal surface may play a role in maintenance of asthma pathophysiology. Cross-sectional studies in asthmatic patients suggest that chemokines such as interleukin 8 (IL-8) are overproduced by respiratory epithelium. To test the hypothesis that chemokine levels are persistently elevated in the respiratory secretions of asthmatic children at a stable baseline. We measured nasal lavage fluid (NLF) levels of chemokines and other mediators at 3- to 4-month intervals in a longitudinal study of asthmatic children, with nonasthmatic siblings as controls. In a linear mixed-model analysis, both family and day of visit had significant effects on nasal mediators. Thus, data for 12 asthmatic-nonasthmatic sibling pairs who had 3 or more same-day visits were analyzed separately. For sibling pairs, median eosinophil cationic protein levels derived from serial measurements in NLF were elevated in asthmatic patients compared with nonasthmatic patients, with a near-significant tendency for elevation of total protein and eotaxin levels as well. However, no significant differences were found for IL-8 or several other chemokines. Ratios of IL-13 or IL-5 to interferon-gamma released by house dust mite antigen-stimulated peripheral blood mononuclear cells, tested on a single occasion, were significantly increased for asthmatic patients. Substantial temporal and family-related variability exists in nasal inflammation in asthmatic children. Although higher levels of eosinophil cationic protein are usually present in NLF of patients with stable asthma compared with patients without asthma, chemokines other than eotaxin are not consistently increased. Eosinophil activation at the mucosal surface is a more consistent predictor of asthmatic symptoms than nonspecific elevation of epithelium-derived inflammatory chemokine levels.

  4. A centrifugal pathway to the mouse accessory olfactory bulb from the medial amygdala conveys gender-specific volatile pheromonal signals

    PubMed Central

    Martel, Kristine L.; Baum, Michael J.

    2009-01-01

    We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer, cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours one week later. We found CTB- labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA), and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory - MeA -AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction. PMID:19077123

  5. Bilateral respiratory epithelial adenomatoid hamartoma of the olfactory cleft penetrating into the endocranium.

    PubMed

    Mladina, Ranko; Skitarelić, Neven; Poje, Gorazd; Vuković, Katarina

    2011-09-01

    Respiratory epithelial adenomatoid hamartomas (REAHs) of the nose and paranasal sinuses are relatively rare. These tumors usually do not extend over the boundaries of the nose and sinuses. The authors presented a 65-year-old man experiencing progressive hyposmia, followed by intermittent stubborn headache. The symptoms lasted for almost 2 years and were getting worse very slowly. Fiberendoscopy showed relatively discrete polypoid tissue occupying the olfactory cleft bilaterally. The computed tomography and magnetic resonance imaging suggested the possible lack of the cribriform plate and the unity and uniformity of the tissues located both in the endocranium and high in the nasal cavity. The clinical picture resembled very much a esthesineuroblastoma.The patient underwent endoscopic sinus surgery under the general hypotensive anesthesia. Frozen sections during the surgery showed REAH. The entire tumor was removed in a piece meal way, including both olfactory bulbs because they were involved within the pathologic tissue as well.This case showed that REAH could also be a locally aggressive process, penetrating even into the endocranium.

  6. The golden ratio of nasal width to nasal bone length.

    PubMed

    Goynumer, G; Yayla, M; Durukan, B; Wetherilt, L

    2011-01-01

    To calculate the ratio of fetal nasal width over nasal bone length at 14-39 weeks' gestation in Caucasian women. Fetal nasal bone length and nasal width at 14-39 weeks' gestation were measured in 532 normal fetuses. The mean and standard deviations of fetal nasal bone length, nasal width and their ratio to one another were calculated in normal fetuses according to the gestational age to establish normal values. A positive and linear correlation was detected between the nasal bone length and the gestational week, as between the nasal width and the gestational week. No linear growth pattern was found between the gestational week and the ratio of nasal width to nasal bone length, nearly equal to phi, throughout gestation. The ratio of nasal width to nasal bone length, approximately equal to phi, can be calculated at 14-38 weeks' gestation. This might be useful in evaluating fetal abnormalities.

  7. Home-cage odors spatial cues elicit theta phase/gamma amplitude coupling between olfactory bulb and dorsal hippocampus.

    PubMed

    Pena, Roberta Ribas; Medeiros, Daniel de Castro; Guarnieri, Leonardo de Oliveira; Guerra, Julio Boriollo; Carvalho, Vinícius Rezende; Mendes, Eduardo Mazoni Andrade Marçal; Pereira, Grace Schenatto; Moraes, Márcio Flávio Dutra

    2017-11-05

    The brain oscillations may play a critical role in synchronizing neuronal assemblies in order to establish appropriate sensory-motor integration. In fact, studies have demonstrated phase-amplitude coupling of distinct oscillatory rhythms during cognitive processes. Here we investigated whether olfacto-hippocampal coupling occurs when mice are detecting familiar odors located in a spatially restricted area of a new context. The spatial olfactory task (SOT) was designed to expose mice to a new environment in which only one quadrant (target) contains odors provided by its own home-cage bedding. As predicted, mice showed a significant higher exploration preference to the target quadrant; which was impaired by olfactory epithelium lesion (ZnSO 4 ). Furthermore, mice were able to discriminate odors from a different cage and avoided the quadrant with predator odor 2,4,5-trimethylthiazoline (TMT), reinforcing the specificity of the SOT. The local field potential (LFP) analysis of non-lesioned mice revealed higher gamma activity (35-100Hz) in the main olfactory bulb (MOB) and a significant theta phase/gamma amplitude coupling between MOB and dorsal hippocampus, only during exploration of home-cage odors (i.e. in the target quadrant). Our results suggest that exploration of familiar odors in a new context involves dynamic coupling between the olfactory bulb and dorsal hippocampus. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Olfactory function and quality of life following microscopic endonasal transsphenoidal pituitary surgery.

    PubMed

    Wang, Shousen; Chen, Yehuang; Li, Jianzhong; Wei, Liangfeng; Wang, Rumi

    2015-01-01

    Olfactory outcomes as well as oronasal postoperative complications of transsphenoidal pituitary surgery have not been well studied. The objective of this study was to investigate nasal symptoms including olfactory function as well as quality of life following transsphenoidal pituitary surgery. The study is designed as a prospective cohort study set in a single tertiary hospital. A total of 53 patients with pituitary adenomas were included. All patients underwent pituitary surgery with the right-sided endonasal transsphenoidal approach. Outcomes were assessed with the Chinese version of the Medical Outcomes Study Short Form-36 (SF-36) to survey patient health, the Chinese version of the 22-item Sinonasal Outcome Test (SNOT-22), and a Toyota and Takagi (T&T) olfactometer. Assessments were carried out before surgery and at 1 week, and 1 and 4 months after surgery. The overall SF-36 scores were significantly lower, but the SNOT-22 scores were higher at 1 week and 1 month postoperatively compared with baseline (all P < 0.001). The results of T&T olfactometer testing showed that there was a significant decline in the ability to detect odors postoperatively, even at 4 months. Multivariate linear regression analysis showed that lower education level, partial tumor removal, and longer duration of surgery were independent risk factors for a higher SNOT-22 score at 1 week after surgery. The findings show that microscopic endonasal transsphenoidal pituitary surgery impairs olfactory function in most patients for at least 4 months after surgery.

  9. Olfactory Function and Quality of Life Following Microscopic Endonasal Transsphenoidal Pituitary Surgery

    PubMed Central

    Wang, Shousen; Chen, Yehuang; Li, Jianzhong; Wei, Liangfeng; Wang, Rumi

    2015-01-01

    Abstract Olfactory outcomes as well as oronasal postoperative complications of transsphenoidal pituitary surgery have not been well studied. The objective of this study was to investigate nasal symptoms including olfactory function as well as quality of life following transsphenoidal pituitary surgery. The study is designed as a prospective cohort study set in a single tertiary hospital. A total of 53 patients with pituitary adenomas were included. All patients underwent pituitary surgery with the right-sided endonasal transsphenoidal approach. Outcomes were assessed with the Chinese version of the Medical Outcomes Study Short Form-36 (SF-36) to survey patient health, the Chinese version of the 22-item Sinonasal Outcome Test (SNOT-22), and a Toyota and Takagi (T&T) olfactometer. Assessments were carried out before surgery and at 1 week, and 1 and 4 months after surgery. The overall SF-36 scores were significantly lower, but the SNOT-22 scores were higher at 1 week and 1 month postoperatively compared with baseline (all P < 0.001). The results of T&T olfactometer testing showed that there was a significant decline in the ability to detect odors postoperatively, even at 4 months. Multivariate linear regression analysis showed that lower education level, partial tumor removal, and longer duration of surgery were independent risk factors for a higher SNOT-22 score at 1 week after surgery. The findings show that microscopic endonasal transsphenoidal pituitary surgery impairs olfactory function in most patients for at least 4 months after surgery. PMID:25634190

  10. Nasal polyps

    MedlinePlus

    ... get rid of nasal polyps. Nasal steroid sprays shrink polyps. They help clear blocked nasal passages and ... is stopped. Corticosteroid pills or liquid may also shrink polyps, and can reduce swelling and nasal congestion. ...

  11. Comparison of Nasal Acceleration and Nasalance across Vowels

    ERIC Educational Resources Information Center

    Thorp, Elias B.; Virnik, Boris T.; Stepp, Cara E.

    2013-01-01

    Purpose: The purpose of this study was to determine the performance of normalized nasal acceleration (NNA) relative to nasalance as estimates of nasalized versus nonnasalized vowel and sentence productions. Method: Participants were 18 healthy speakers of American English. NNA was measured using a custom sensor, and nasalance was measured using…

  12. Vanadium Exposure Induces Olfactory Dysfunction in an Animal Model of Metal Neurotoxicity

    PubMed Central

    Ngwa, Hilary Afeseh; Kanthasamy, Arthi; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2014-01-01

    Epidemiological evidence indicates chronic environmental exposure to transition metals may play a role in chronic neurodegenerative conditions such as Parkinson’s disease (PD). Chronic inhalation exposure to welding fumes containing metal mixtures may be associated with development of PD. A significant amount of vanadium is present in welding fumes, as vanadium pentoxide (V2O5), and incorporation of vanadium in the production of high strength steel has become more common. Despite the increased vanadium use in recent years, the neurotoxicological effects of this metal are not well characterized. Recently, we demonstrated that V2O5 induces dopaminergic neurotoxicity via protein kinase C delta (PKCδ)-dependent oxidative signaling mechanisms in dopaminergic neuronal cells. Since anosmia (inability to perceive odors) and non-motor deficits are considered to be early symptoms of neurological diseases, in the present study, we examined the effect of V2O5 on the olfactory bulb in animal models. To mimic the inhalation exposure, we intranasally administered C57 black mice a low-dose of 182 µg of V2O5 three times a week for one month, and behavioral, neurochemical and biochemical studies were performed. Our results revealed a significant decrease in olfactory bulb weights, tyrosine hydroxylase (TH) levels, levels of dopamine (DA) and its metabolite, 3, 4-dihydroxyphenylacetic acid (DOPAC) and increases in astroglia of the glomerular layer of the olfactory bulb in the treatment groups relative to vehicle controls. Neurochemical changes were accompanied by impaired olfaction and locomotion. These findings suggest that nasal exposure to V2O5 adversely affects olfactory bulbs, resulting in neurobehavioral and neurochemical impairments. These results expand our understanding of vanadium neurotoxicity in environmentally-linked neurological conditions. PMID:24362016

  13. Dexpanthenol: An Overview of its Contribution to Symptom Relief in Acute Rhinitis Treated with Decongestant Nasal Sprays.

    PubMed

    Mösges, Ralph; Shah-Hosseini, Kija; Hucke, Hans-Peter; Joisten, Marie-Josefine

    2017-08-01

    Nasal blockage is the most bothersome symptom of acute rhinitis. Nasal decongestant sprays containing alpha-sympathomimetics, such as oxymetazoline and xylometazoline, have a rapid onset of action. However, this effect decreases with repeated application and, furthermore, the ciliary function of the nasal mucosa is practically paralyzed. Dexpanthenol promotes cell proliferation and protects the epithelium. Combining these two agents has demonstrated beneficial synergetic effects on the symptoms of acute rhinitis. In a post hoc analysis of a large-scale double-blind, active-controlled study including 152 patients, we could demonstrate that the benefit of added dexpanthenol appears as early as on the third day of the combined application of xylometazoline and dexpanthenol in terms of complete or near-to-complete freedom from symptoms. After 5 days, 47% of the patients were cured under the combined treatment compared with only 1% under xylometazoline monotherapy. These data show that the addition of dexpanthenol to an alpha-sympathomimetic nasal spray not only improves its tolerability but also further increases its effectiveness and leads to expedited cure. Klosterfrau Healthcare Group.

  14. Nasal deposition of ciclesonide nasal aerosol and mometasone aqueous nasal spray in allergic rhinitis patients.

    PubMed

    Emanuel, Ivor A; Blaiss, Michael S; Meltzer, Eli O; Evans, Philip; Connor, Alyson

    2014-01-01

    Sensory attributes of intranasal corticosteroids, such as rundown to the back of the throat, may influence patient treatment preferences. This study compares the nasal deposition and nasal retention of a radiolabeled solution of ciclesonide nasal aerosol (CIC-hydrofluoroalkane [HFA]) with a radiolabeled suspension of mometasone furoate monohydrate aqueous nasal spray (MFNS) in subjects with either perennial allergic rhinitis (AR) or seasonal AR. In this open-label, single-dose, randomized, crossover scintigraphy study, 14 subjects with symptomatic AR received a single dose of radiolabeled 74-μg CIC-HFA (37 μg/spray, 1 spray/each nostril) via a nasal metered-dose inhaler or a single dose of radiolabeled 200-μg MFNS (50 μg/spray, 2 sprays/each nostril), with a minimum 5-day washout period between treatments. Initial deposition (2 minutes postdose) of radiolabeled CIC-HFA and MFNS in the nasal cavity, nasopharynx, and on nasal wipes, and retention of radioactivity in the nasal cavity and nasal run-out on nasal wipes at 2, 4, 6, 8, and 10 minutes postdose were quantified with scintigraphy. At 2 and 10 minutes postdose, deposition of radiolabeled CIC-HFA was significantly higher in the nasal cavity versus radiolabeled MFNS (99.42% versus 86.50% at 2 minutes, p = 0.0046; and 81.10% versus 54.31% at 10 minutes, p < 0.0001, respectively; p values unadjusted for multiplicity). Deposition of radioactivity on nasal wipes was significantly higher with MFNS versus CIC-HFA at all five time points, and posterior losses of radiolabeled formulation were significantly higher with MFNS at 6, 8, and 10 minutes postdose. In this scintigraphic study, significantly higher nasal deposition and retention of radiolabeled aerosol CIC-HFA were observed versus radiolabeled aqueous MFNS in subjects with AR.

  15. Immunocytochemistry of the olfactory marker protein.

    PubMed

    Monti-Graziadei, G A; Margolis, F L; Harding, J W; Graziadei, P P

    1977-12-01

    The olfactory marker protein has been localized, by means of immunohistochemical techniques in the primary olfactory neurons of mice. The olfactory marker protein is not present in the staminal cells of the olfactory neuroepithelium, and the protein may be regarded as indicative of the functional stage of the neurons. Our data indicate that the olfactory marker protein is present in the synaptic terminals of the olfactory neurons at the level of the olfactory bulb glomeruli. The postsynaptic profiles of both mitral and periglomerular cells are negative.

  16. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease.

    PubMed

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.

  17. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    PubMed Central

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372

  18. Ionotropic crustacean olfactory receptors.

    PubMed

    Corey, Elizabeth A; Bobkov, Yuriy; Ukhanov, Kirill; Ache, Barry W

    2013-01-01

    The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs), the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs), as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  19. Rapidly fluctuating anosmia: A clinical sign for unilateral smell impairment.

    PubMed

    Negoias, Simona; Friedrich, Hergen; Caversaccio, Marco D; Landis, Basile N

    2016-02-01

    Reports about fluctuating olfactory deficits are rare, as are reports of unilateral olfactory loss. We present a case of unilateral anosmia with contralateral normosmia, presenting as rapidly fluctuating anosmia. The olfactory fluctuation occurred in sync with the average nasal cycle duration. Examination after nasal decongestion, formal smell testing, and imaging revealed unilateral, left-sided anosmia of sinonasal cause, with right-sided normosmia. We hypothesize that the nasal cycle induced transient anosmia when blocking the normosmic side. Fluctuating olfactory deficits might hide a unilateral olfactory loss and require additional unilateral testing and thorough workup. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Modulatory Effects of Sex Steroids Progesterone and Estradiol on Odorant Evoked Responses in Olfactory Receptor Neurons

    PubMed Central

    Scholz, Paul; Mohrhardt, Julia; Gisselmann, Günter; Hatt, Hanns

    2016-01-01

    The influence of the sex steroid hormones progesterone and estradiol on physiology and behavior during menstrual cycles and pregnancy is well known. Several studies indicate that olfactory performance changes with cyclically fluctuating steroid hormone levels in females. Knowledge of the exact mechanisms behind how female sex steroids modulate olfactory signaling is limited. A number of different known genomic and non-genomic actions that are mediated by progesterone and estradiol via interactions with different receptors may be responsible for this modulation. Next generation sequencing-based RNA-Seq transcriptome data from the murine olfactory epithelium (OE) and olfactory receptor neurons (ORNs) revealed the expression of several membrane progestin receptors and the estradiol receptor Gpr30. These receptors are known to mediate rapid non-genomic effects through interactions with G proteins. RT-PCR and immunohistochemical staining results provide evidence for progestin and estradiol receptors in the ORNs. These data support the hypothesis that steroid hormones are capable of modulating the odorant-evoked activity of ORNs. Here, we validated this hypothesis through the investigation of steroid hormone effects by submerged electro-olfactogram and whole cell patch-clamp recordings of ORNs. For the first time, we demonstrate that the sex steroid hormones progesterone and estradiol decrease odorant-evoked signals in the OE and ORNs of mice at low nanomolar concentrations. Thus, both of these sex steroids can rapidly modulate the odor responsiveness of ORNs through membrane progestin receptors and the estradiol receptor Gpr30. PMID:27494699

  1. Activation of EGF Receptor Mediates Receptor Axon Sorting and Extension in the Developing Olfactory System of the Moth Manduca sexta

    PubMed Central

    Gibson, Nicholas J.; Tolbert, Leslie P.

    2008-01-01

    During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally-derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies that indicate that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer, as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. PMID:16498681

  2. Zincergic innervation from the anterior olfactory nucleus to the olfactory bulb displays plastic responses after mitral cell loss.

    PubMed

    Airado, Carmen; Gómez, Carmela; Recio, Javier S; Baltanás, Fernando C; Weruaga, Eduardo; Alonso, José R

    2008-12-01

    Zinc ions are selectively accumulated in certain neurons (zinc-enriched neurons). The mouse olfactory bulb is richly innervated by zinc-enriched terminals. Here, the plasticity of the zincergic system was studied in the olfactory bulb of the Purkinje Cell Degeneration mutant mouse, an animal with specific postnatal neurodegeneration of the main projection neurons of the olfactory bulb. The analysis focused particularly on the anterior olfactory nucleus since most centrifugal afferents coming to the olfactory bulb arise from this structure. Zinc-enriched terminals in the olfactory bulb and zinc-enriched somata in the anterior olfactory nucleus were visualized after selenite injections. Immunohistochemistry against the vesicular zinc transporter was also carried out to confirm the distribution pattern of zinc-enriched terminals in the olfactory bulb. The mutant mice showed a clear reorganization of zincergic centrifugal projections from the anterior olfactory nucleus to the olfactory bulb. First, all zincergic contralateral neurons projecting to the olfactory bulb were absent in the mutant mice. Second, a significant increase in the number of stained somata was detected in the ipsilateral anterior olfactory nucleus. Since no noticeable changes were observed in the zinc-enriched terminals in the olfactory bulb, it is conceivable that mitral cell loss could induce a reorganization of zinc-enriched projections coming from the anterior olfactory nucleus, probably directed at balancing the global zincergic centrifugal modulation. These results show that zincergic anterior olfactory nucleus cells projecting to the olfactory bulb undergo plastic changes to adapt to the loss of mitral cells in the olfactory bulb of Purkinje Cell Degeneration mutant mice.

  3. Innate Predator Odor Aversion Driven by Parallel Olfactory Subsystems that Converge in the Ventromedial Hypothalamus

    PubMed Central

    Pérez-Gómez, Anabel; Bleymehl, Katherin; Stein, Benjamin; Pyrski, Martina; Birnbaumer, Lutz; Munger, Steven D.; Leinders-Zufall, Trese; Zufall, Frank; Chamero, Pablo

    2015-01-01

    Summary The existence of innate predator aversion evoked by predator-derived chemostimuli called kairomones offers a strong selective advantage for potential prey animals. However, it is unclear how chemically-diverse kairomones can elicit similar avoidance behaviors. Using a combination of behavioral analyses and single-cell Ca2+ imaging in wild-type and gene-targeted mice, we show that innate predator-evoked avoidance is driven by parallel, non-redundant processing of volatile and nonvolatile kairomones through the activation of multiple olfactory subsystems including the Grueneberg ganglion, the vomeronasal organ, and chemosensory neurons within the main olfactory epithelium. Perturbation of chemosensory responses in specific subsystems through disruption of genes encoding key sensory transduction proteins (Cnga3, Gnao1) or by surgical axotomy abolished avoidance behaviors and/or cellular Ca2+ responses to different predator odors. Stimulation of these different subsystems resulted in the activation of widely distributed target regions in the olfactory bulb, as assessed by c-Fos expression. However, in each case this c-Fos increase was observed within the same subnuclei of the medial amygdala and ventromedial hypothalamus, regions implicated in fear, anxiety and defensive behaviors. Thus, the mammalian olfactory system has evolved multiple, parallel mechanisms for kairomone detection that converge in the brain to facilitate a common behavioral response. Our findings provide significant insights into the genetic substrates and circuit logic of predator-driven, innate aversion and may serve as a valuable model for studying instinctive fear [1] and human emotional and panic disorders [2, 3]. PMID:25936549

  4. Innate Predator Odor Aversion Driven by Parallel Olfactory Subsystems that Converge in the Ventromedial Hypothalamus.

    PubMed

    Pérez-Gómez, Anabel; Bleymehl, Katherin; Stein, Benjamin; Pyrski, Martina; Birnbaumer, Lutz; Munger, Steven D; Leinders-Zufall, Trese; Zufall, Frank; Chamero, Pablo

    2015-05-18

    The existence of innate predator aversion evoked by predator-derived chemostimuli called kairomones offers a strong selective advantage for potential prey animals. However, it is unclear how chemically diverse kairomones can elicit similar avoidance behaviors. Using a combination of behavioral analyses and single-cell Ca(2+) imaging in wild-type and gene-targeted mice, we show that innate predator-evoked avoidance is driven by parallel, non-redundant processing of volatile and nonvolatile kairomones through the activation of multiple olfactory subsystems including the Grueneberg ganglion, the vomeronasal organ, and chemosensory neurons within the main olfactory epithelium. Perturbation of chemosensory responses in specific subsystems through disruption of genes encoding key sensory transduction proteins (Cnga3, Gnao1) or by surgical axotomy abolished avoidance behaviors and/or cellular Ca(2+) responses to different predator odors. Stimulation of these different subsystems resulted in the activation of widely distributed target regions in the olfactory bulb, as assessed by c-Fos expression. However, in each case, this c-Fos increase was observed within the same subnuclei of the medial amygdala and ventromedial hypothalamus, regions implicated in fear, anxiety, and defensive behaviors. Thus, the mammalian olfactory system has evolved multiple, parallel mechanisms for kairomone detection that converge in the brain to facilitate a common behavioral response. Our findings provide significant insights into the genetic substrates and circuit logic of predator-driven innate aversion and may serve as a valuable model for studying instinctive fear and human emotional and panic disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Objective Measure of Nasal Air Emission Using Nasal Accelerometry

    ERIC Educational Resources Information Center

    Cler, Meredith J.; Lien, Yu-An, S.; Braden, Maia N.; Mittleman, Talia; Downing, Kerri; Stepp, Cara, E.

    2016-01-01

    Purpose: This article describes the development and initial validation of an objective measure of nasal air emission (NAE) using nasal accelerometry. Method: Nasal acceleration and nasal airflow signals were simultaneously recorded while an expert speech language pathologist modeled NAEs at a variety of severity levels. In addition, microphone and…

  6. Evolution of olfactory receptors.

    PubMed

    Hoover, Kara C

    2013-01-01

    Olfactory receptors are a specialized set of receptor cells responsible for the detection of odors. These cells are G protein-coupled receptors and expressed in the cell membranes of olfactory sensory neurons. Once a cell is activated by a ligand, it initiates a signal transduction cascade that produces a nerve impulse to the brain where odor perception is processed. Vertebrate olfactory evolution is characterized by birth-and-death events, a special case of the stochastic continuous time Markov process. Vertebrate fish have three general types of receptor cells (two dedicated to pheromones). Terrestrial animals have different epithelial biology due to the specialized adaptation to detecting airborne odors. Two general classes of olfactory receptor gene reflect the vertebrate marine heritage (Class I) and the derived amphibian, reptile, and mammal terrestrial heritage (Class II). While we know much about olfactory receptor cells, there are still areas where our knowledge is insufficient, such as intra-individual diversity throughout the life time, epigenetic processes acting on olfactory receptors, and association of ligands to specific cells.

  7. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination.

    PubMed

    Enwere, Emeka; Shingo, Tetsuro; Gregg, Christopher; Fujikawa, Hirokazu; Ohta, Shigeki; Weiss, Samuel

    2004-09-22

    Previous studies demonstrating olfactory interneuron involvement in olfactory discrimination and decreased proliferation in the forebrain subventricular zone with age led us to ask whether olfactory neurogenesis and, consequently, olfactory discrimination were impaired in aged mice. Pulse labeling showed that aged mice (24 months of age) had fewer new interneurons in the olfactory bulb than did young adult (2 months of age) mice. However, the aged mice had more olfactory interneurons in total than their younger counterparts. Aged mice exhibited no differences from young adult mice in their ability to discriminate between two discrete odors but were significantly poorer at performing discriminations between similar odors (fine olfactory discrimination). Leukemia inhibitory factor receptor heterozygote mice, which have less neurogenesis and fewer olfactory interneurons than their wild-type counterparts, performed more poorly at fine olfactory discrimination than the wild types, suggesting that olfactory neurogenesis, rather than the total number of interneurons, was responsible for fine olfactory discrimination. Immunohistochemistry and Western blot analyses revealed a selective reduction in expression levels of epidermal growth factor (EGF) receptor (EGFR) signaling elements in the aged forebrain subventricular zone. Waved-1 mutant mice, which express reduced quantities of transforming growth factor-alpha, the predominant EGFR ligand in adulthood, phenocopy aged mice in olfactory neurogenesis and performance on fine olfactory discrimination tasks. These results suggest that the impairment in fine olfactory discrimination with age may result from a reduction in EGF-dependent olfactory neurogenesis.

  8. Evaluation of polyvinylidene fluoride nasal sensor to assess deviated nasal septum in comparision with peak nasal inspiratory flow measurements.

    PubMed

    Manjunatha, Roopa G; Rajanna, K; Mahapatra, D Roy; Prakash, Surya

    2014-01-01

    Deviated nasal septum (DNS) is one of the major causes of nasal obstruction. Polyvinylidene fluoride (PVDF) nasal sensor is the new technique developed to assess the nasal obstruction caused by DNS. This study evaluates the PVDF nasal sensor measurements in comparison with PEAK nasal inspiratory flow (PNIF) measurements and visual analog scale (VAS) of nasal obstruction. Because of piezoelectric property, two PVDF nasal sensors provide output voltage signals corresponding to the right and left nostril when they are subjected to nasal airflow. The peak-to-peak amplitude of the voltage signal corresponding to nasal airflow was analyzed to assess the nasal obstruction. PVDF nasal sensor and PNIF were performed on 30 healthy subjects and 30 DNS patients. Receiver operating characteristic was used to analyze the DNS of these two methods. Measurements of PVDF nasal sensor strongly correlated with findings of PNIF (r = 0.67; p < 0.01) in DNS patients. A significant difference (p < 0.001) was observed between PVDF nasal sensor measurements and PNIF measurements of the DNS and the control group. A cutoff between normal and pathological of 0.51 Vp-p for PVDF nasal sensor and 120 L/min for PNIF was calculated. No significant difference in terms of sensitivity of PVDF nasal sensor and PNIF (89.7% versus 82.6%) and specificity (80.5% versus 78.8%) was calculated. The result shows that PVDF measurements closely agree with PNIF findings. Developed PVDF nasal sensor is an objective method that is simple, inexpensive, fast, and portable for determining DNS in clinical practice.

  9. Prevalence of olfactory and other developmental anomalies in patients with central hypogonadotropic hypogonadism.

    PubMed

    Della Valle, Elisa; Vezzani, Silvia; Rochira, Vincenzo; Granata, Antonio Raffaele Michele; Madeo, Bruno; Genovese, Elisabetta; Pignatti, Elisa; Marino, Marco; Carani, Cesare; Simoni, Manuela

    2013-01-01

    Hypogonadotropic hypogonadism (HH) is a heterogeneous disease caused by mutations in several genes. Based on the presence of hyposmia/anosmia it is distinguished into Kallmann syndrome (KS) and isolated HH. The prevalence of other developmental anomalies is not well established. We studied 36 patients with HH (31 males, 5 females, mean age 41.5), 9 with familial and 27 with sporadic HH (33 congenital, 3 adult-onset), by physical examination, smell test (BSIT Sensonics), audiometry, renal ultrasound, and magnetic resonance imaging of the olfactory structures. Based on the smell test, patients were classified as normosmic (n = 21, 58.3%) and hypo/anosmic (n = 15, 41.6%). Hypoplasia/agenesis of olfactory bulbs was found in 40% of patients (10/25; 75% hypo/anosmic, 7.6% normosmic, p < 0.01, Fisher's test). Remarkably, olfactory structures were normal in two anosmic patients, while one normosmic patient presented a unilateral hypoplastic bulb. Fourteen of 33 patients (42.4%) presented neurosensorial hearing loss of various degrees (28.5% hypo/anosmic, 52.6% normosmic, p = NS). Renal ultrasound revealed 27.7% of cases with renal anomalies (26.6% hypo/anosmic, 28.5% normosmic, p = NS). At least one midline defect was found in 50% of the patients (53.3% hypo/anosmic, 47.6% normosmic, p = NS), including abnormal palate, dental anomalies, pectus excavatum, bimanual synkinesis, iris coloboma, and absent nasal cartilage. Anamnestically 4/31 patients reported cryptorchidism (25% hypo/anosmic, 5.2% normosmic, p = NS). Hypo/anosmia is significantly related to anatomical anomalies of the olfactory bulbs/tracts but the prevalence of other developmental anomalies, especially midline defects and neurosensorial hearing loss, is high both in HH and KS and independent of the presence of anosmia/hyposmia. From the clinical standpoint KS and normosmic HH should be considered as the same complex, developmental disease.

  10. Olfactory transduction pathways in the Senegalese sole Solea senegalensis.

    PubMed

    Velez, Z; Hubbard, P C; Barata, E N; Canário, A V M

    2013-09-01

    This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro-olfactogram. Receptor mechanisms were assessed by cross-adaptation with amino acids (L-cysteine, L-phenylalanine and 1-methyl-L-tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1-methyl-L-tryptophan and L-phenylalanine (food-related odorants) in the lower epithelium, and for taurocholic acid (conspecific-derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC-mediated transduction (IC50 ; 15-55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) (using SQ-22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non-PLC and non-AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non-PLC and non-AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms. © 2013 The Fisheries Society of the British Isles.

  11. Epithelium

    MedlinePlus

    The term "epithelium" refers to layers of cells that line hollow organs and glands. It is also those cells that make ... Kierszenbaum AL, Tres LL. Epithelium. In: Kierszenbaum AL, Tres LL, ... to Pathology . 4th ed. Philadelphia, PA: Elsevier Saunders; ...

  12. Naegleria fowleri immunization modifies lymphocytes and APC of nasal mucosa.

    PubMed

    Carrasco-Yepez, M M; Campos-Rodríguez, R; Reséndiz-Albor, A A; Peña-Juárez, C; Contis-Montes de Oca, A; Arciniega-Martínez, I M; Bonilla-Lemus, P; Rojas-Hernandez, S

    2018-03-01

    We investigated whether intranasal immunization with amoebic lysates plus cholera toxin modified the populations of T and B lymphocytes, macrophages and dendritic cells by flow cytometry from nose-associated lymphoid tissue (NALT), cervical lymph nodes (CN), nasal passages (NP) and spleen (SP). In all immunized groups, the percentage of CD4 was higher than CD8 cells. CD45 was increased in B cells from mice immunized. We observed IgA antibody-forming cell (IgA-AFC) response, mainly in NALT and NP. Macrophages from NP and CN expressed the highest levels of CD80 and CD86 in N. fowleri lysates with either CT or CT alone immunized mice, whereas dendritic cells expressed high levels of CD80 and CD86 in all compartment from immunized mice. These were lower than those expressed by macrophages. Only in SP from CT-immunized mice, these costimulatory molecules were increased. These results suggest that N. fowleri and CT antigens are taking by APCs, and therefore, protective immunity depends on interactions between APCs and T cells from NP and CN. Consequently, CD4 cells stimulate the differentiation from B lymphocytes to AFC IgA-positive; antibody that we previously found interacting with trophozoites in the nasal lumen avoiding the N. fowleri attachment to nasal epithelium. © 2017 John Wiley & Sons Ltd.

  13. Evaulation of cancer and non-cancer effects of cumene ...

    EPA Pesticide Factsheets

    Cumene, also known as isopropyl benzene, is a volatile liquid. We have systematically reviewed published literature to evaluate cancer and noncancer effects of cumene. Cumene, readily absorbed via inhalation is distributed in several tissues, metabolized extensively by cytochrome P-450 isozymes within hepatic and extra-hepatic tissues and excreted through urine. Although, there are no epidemiological cancer studies for humans, chronic inhalation exposure studies in rat and mouse have shown increased nasal lesions including atrophy, basal cell hyperplasia, atypical hyperplasia and hyperplasia of the olfactory epithelium glands. To present the information at the Society of Toxicology Meeting.

  14. Gray Matter Volume Reduction of Olfactory Cortices in Patients With Idiopathic Olfactory Loss

    PubMed Central

    Yao, Linyin; Pinto, Jayant Marian; Yi, Xiaoli; Li, Li; Peng, Peng

    2014-01-01

    Idiopathic olfactory loss (IOL) is a common olfactory disorder. Little is known about the pathophysiology of this disease. Previous studies demonstrated decreased olfactory bulb (OB) volume in IOL patients when compared with controls. The aim of our study was to investigate structural brain alterations in areas beyond the OB. We acquired T1-weighted magnetic resonance images from 16 patients with IOL and from 16 age- and sex-matched controls on a 3T scanner. Voxel-based morphometry (VBM) was performed using VBM8 toolbox and SPM8 in a Matlab environment. Psychophysical testing confirmed that patients had higher scores for Toyota and Takagi olfactometer and lower scores for Sniffin’ Sticks olfactory test than controls (t = 46.9, P < 0.001 and t = 21.4, P < 0.001, respectively), consistent with olfactory dysfunction. There was a significant negative correlation between the 2 olfactory tests (r = −0.6, P = 0.01). In a volume of interest analysis including primary and secondary olfactory areas, we found patients with IOL to exhibit gray matter volume loss in the orbitofrontal cortex, anterior cingulate cortex, insular cortex, parahippocampal cortex, and the piriform cortex. The present study indicates that changes in the central brain structures proximal to the OB occur in IOL. Further investigations of this phenomenon may be helpful to elucidate the etiology of IOL. PMID:25240014

  15. Activation of epidermal growth factor receptor mediates receptor axon sorting and extension in the developing olfactory system of the moth Manduca sexta.

    PubMed

    Gibson, Nicholas J; Tolbert, Leslie P

    2006-04-10

    During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. Copyright 2006 Wiley-Liss, Inc.

  16. Similarity and Enhancement: Nasality from Moroccan Arabic Pharyngeals and Nasals

    ERIC Educational Resources Information Center

    Zellou, Georgia Eve

    2012-01-01

    Experimental studies of the articulation, acoustics, and perception of nasal and pharyngeal consonants and adjacent vowels were conducted to investigate nasality in Moroccan Arabic (MA). The status of nasality in MA is described as coarticulatorily complex, where two phoneme types (pharyngeal segments and nasal segments) yield similar…

  17. Saline nasal washes

    MedlinePlus

    ... nasal wash helps flush pollen, dust, and other debris from your nasal passages. It also helps remove excess mucus (snot) and adds moisture. Your nasal passages are open spaces behind your nose. Air passes through your nasal ...

  18. Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination.

    PubMed

    Nunez-Parra, Alexia; Maurer, Robert K; Krahe, Krista; Smith, Richard S; Araneda, Ricardo C

    2013-09-03

    Granule cells (GCs) are the most abundant inhibitory neuronal type in the olfactory bulb and play a critical role in olfactory processing. GCs regulate the activity of principal neurons, the mitral cells, through dendrodendritic synapses, shaping the olfactory bulb output to other brain regions. GC excitability is regulated precisely by intrinsic and extrinsic inputs, and this regulation is fundamental for odor discrimination. Here, we used channelrhodopsin to stimulate GABAergic axons from the basal forebrain selectively and show that this stimulation generates reliable inhibitory responses in GCs. Furthermore, selective in vivo inhibition of GABAergic neurons in the basal forebrain by targeted expression of designer receptors exclusively activated by designer drugs produced a reversible impairment in the discrimination of structurally similar odors, indicating an important role of these inhibitory afferents in olfactory processing.

  19. [Clinical observation of isolated congenital anosmia].

    PubMed

    Li, Li; Wei, Yong-xiang; Wang, Ning-yu; Miao, Xu-tao; Yang, Ling; Ge, Xiao-hui; Wu, Ying; Liu, Jia; Tian, Jun; Li, Kun-yan; Liu, Chun-li

    2013-12-01

    To introduce 8 patients with isolated congenital anosmia and to discuss the clinical manifestations, imaging characteristics and family characteristics of this rarely seen disorder. Eight patients with isolated congenital anosmia treated between April 2007 and April 2012 were reviewed retrospectively. There were 4 males and 4 females. A detailed medical history collection, physical examination, nasal endoscopy, T&T and Sniffin'Sticks subjective olfactory function tests, olfactory event-related potentials sinonasal computed tomography scan and sex hormones level monitoring were performed in all patients. Seven cases underwent magnetic resonance image of olfactory pathway examination. All patients were anosmia without evidence of other defects. ENT physical examination, nasal endoscopy and computed tomography scan were normal except 4 cases with obvious nasal septum deviation, 2 cases with concha bullosa. Subjective olfactory test indicated all of them were anosmia. Olfactory event-related potentials were obtained in only 1 patient. Magnetic resonance imaging revealed the smaller or atrophy olfactory bulb and olfactory tract in five cases, the absence of olfactory bulbs and tracts in two case. A female patient did not have MRI examination because of wearing IUDs. Detection of 8 patients of sex hormones were normal. Family characteristics: 3 patients showed family inheritance pattern. The diagnosis of isolated congenital anosmia should be based on chief complaint, medical history, physical examination, olfactory test, nasal endoscopy, olfactory testing, olfactory imaging and olfactory event-related potentials. Magnetic resonance image of olfactory pathway and olfactory event-related potentials have important value for the diagnosis. More attention should be paid to the genetic susceptibility of the family.

  20. [Clinical analysis of nasal resistance and pulmonary function testing in patients with chronic nasal-sinusitis and nasal polyps].

    PubMed

    Liao, Hua; Shen, Ying; Wang, Pengjun

    2015-05-01

    To study the pulmonary function and nasal resistance characteristics of patients with chronic nose-sinusitis and nasal polyps (CRSwNP), to explore the evaluation role of nasal resistance in nasal ventilation function and the effect of endoscopic sinus surgery on pulmonary function in patients with CRSwNP. Fifty CRSwNP patients that met the study criteria were selected . The patients were performed endoscopic surgeries according to Messerklinger surgical procedures under general anesthesia. Extent of surgery was based on preoperative CT showing the range of the lesion of disease and endoscopic findings. Perioperative treatments contained intranasal corticosteroids, cephalosporin or penicillin antibiotics, nasal irrigation and other treatments. Main outcome measures included visual analog scale (VAS), endoscopic Lind-Kennedy scores, nasal resistence, pulmonary function in patientsone week before and after surgery, three months and six months after surgery. Pulmonary function includes forced expiratory volume in one second (FEV1), forced vital capacity FEV1/FVC and peak expiratory flow (PEF). The study found that there were significantly positive correlations among VAS score, Lund-Kennedy score and nasal resistance (P < 0.05) in CRSwNP patients, but there is a significantly negative correlation between VAS score, Lund-Kennedy score, nasal resistance and pulmonary function indexes of FEV1, FVC and PEF (P < 0.05). The VAS score, Lund-Kennedy score and nasal resistance values of CRSwNP patients were decreased significantly after comprehensive treatments with nasal endoscopic operation as the major one, the difference was statistically different (P < 0.05). And the pulmonary function indexs (FEV1, FVC, PEF) were significantly increased after surgery in CRSwNP patients. The nasal resistance can objectively and reliably reflect the degree of nasal congestion and the recovery of nasal function in CRSwNP patients after endoscopic sinus surgery. The detection method of nasal

  1. Acetylcholine and Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  2. Diesel exhaust particulates enhance eosinophil adhesion to nasal epithelial cells and cause degranulation.

    PubMed

    Terada, N; Maesako, K; Hiruma, K; Hamano, N; Houki, G; Konno, A; Ikeda, T; Sai, M

    1997-10-01

    Diesel exhaust particulates (DEP) are a common air pollutant from diesel-engine-powered car exhaust and are thought to cause chronic airway diseases. On the other hand, eosinophils are major components of allergic inflammatory disorders such as asthma, nasal allergy and atopic dermatitis. We examined the effects of DEP and DEP extract (extract of polyaromatic hydrocarbons) on eosinophil adhesion, survival rate and degranulation. Eosinophils, human mucosal microvascular endothelial cells (HMMECs) and human nasal epithelial cells (HNECs) were preincubated in the presence or absence of DEP and DEP extract. 35S-labeled eosinophils were allowed to adhere to monolayers of HMMECs and HNECs. After washing, 35S radioactivity was determined and numbers of adherent eosinophils were calculated using each standard curve. The effects of DEP and DEP extract on eosinophil survival rate and degranulation were also determined. Although neither DEP nor DEP extract affected the adhesiveness of HMMECs and HNECs to eosinophils, 5 ng/ml of DEP extract and 50 ng/ml of DEP extract each significancy increased eosinophil adhesiveness to HNECs (134+/-9 and 143+/-8%, respectively; p<0.01 vs. control), but neither effected eosinophil adhesiveness to HMMECs. DEP extract also induced eosinophil degranulation without changing the eosinophil survival rate. Given that eosinophil-derived lipid mediators and toxic proteins play important roles in the development of nasal allergy, the above findings strongly suggest that DEP plays an important role in promoting the nasal hypersensitivity induced by enhanced eosinophil infiltration of epithelium and eosinophil degranulation.

  3. Molecular response of nasal mucosa to therapeutic exposure to broad-band ultraviolet radiation

    PubMed Central

    Mitchell, David; Paniker, Lakshmi; Sanchez, Guillermo; Bella, Zsolt; Garaczi, Edina; Szell, Marta; Hamid, Qutayba; Kemeny, Lajos; Koreck, Andrea

    2010-01-01

    Abstract Ultraviolet radiation (UVR) phototherapy is a promising new treatment for inflammatory airway diseases. However, the potential carcinogenic risks associated with this treatment are not well understood. UV-specific DNA photoproducts were used as biomarkers to address this issue. Radioimmunoassay was used to quantify cyclobutane pyrimidine dimers (CPDs) and (6–4) photoproducts in DNA purified from two milieus: nasal mucosa samples from subjects exposed to intranasal phototherapy and human airway (EpiAirway™) and human skin (EpiDerm™) tissue models. Immunohistochemistry was used to detect CPD formation and persistence in human nasal biopsies and human tissue models. In subjects exposed to broadband ultraviolet radiation, DNA damage frequencies were determined prior to as well as immediately after treatment and at increasing times post-treatment. We observed significant levels of DNA damage immediately after treatment and efficient removal of the damage within a few days. No residual damage was observed in human subjects exposed to multiple UVB treatments several weeks after the last treatment. To better understand the molecular response of the nasal epithelium to DNA damage, parallel experiments were conducted in EpiAirway and EpiDerm model systems. Repair rates in these two tissues were very similar and comparable to that observed in human skin. The data suggest that the UV-induced DNA damage response of respiratory epithelia is very similar to that of the human epidermis and that nasal mucosa is able to efficiently repair UVB induced DNA damage. PMID:18671762

  4. Assessment of nasalance and nasality in patients with a repaired cleft palate.

    PubMed

    Sinko, Klaus; Gruber, Maike; Jagsch, Reinhold; Roesner, Imme; Baumann, Arnulf; Wutzl, Arno; Denk-Linnert, Doris-Maria

    2017-07-01

    In patients with a repaired cleft palate, nasality is typically diagnosed by speech language pathologists. In addition, there are various instruments to objectively diagnose nasalance. To explore the potential of nasalance measurements after cleft palate repair by NasalView ® , we correlated perceptual nasality and instrumentally measured nasalance of eight speech items and determined the relationship between sensitivity and specificity of the nasalance measures by receiver-operating characteristics (ROC) analyses and AUC (area under the curve) computation for each single test item and specific item groups. We recruited patients with a primarily repaired cleft palate receiving speech therapy during follow-up. During a single day visit, perceptive and instrumental assessments were obtained in 36 patients and analyzed. The individual perceptual nasality was assigned to one of four categories; the corresponding instrumental nasalance measures for the eight specific speech items were expressed on a metric scale (1-100). With reference to the perceptual diagnoses, we observed 3 nasal and one oral test item with high sensitivity. However, the specificity of the nasality indicating measures was rather low. The four best speech items with the highest sensitivity provided scores ranging from 96.43 to 100%, while the averaged sensitivity of all eight items was below 90%. We conclude that perceptive evaluation of nasality remains state of the art. For clinical follow-up, instrumental nasalance assessment can objectively document subtle changes by analysis of four speech items only. Further studies are warranted to determine the applicability of instrumental nasalance measures in the clinical routine, using discriminative items only.

  5. Tunicamycin impairs olfactory learning and synaptic plasticity in the olfactory bulb.

    PubMed

    Tong, Jia; Okutani, Fumino; Murata, Yoshihiro; Taniguchi, Mutsuo; Namba, Toshiharu; Wang, Yu-Jie; Kaba, Hideto

    2017-03-06

    Tunicamycin (TM) induces endoplasmic reticulum (ER) stress and inhibits N-glycosylation in cells. ER stress is associated with neuronal death in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and most patients complain of the impairment of olfactory recognition. Here we examined the effects of TM on aversive olfactory learning and the underlying synaptic plasticity in the main olfactory bulb (MOB). Behavioral experiments demonstrated that the intrabulbar infusion of TM disabled aversive olfactory learning without affecting short-term memory. Histological analyses revealed that TM infusion upregulated C/EBP homologous protein (CHOP), a marker of ER stress, in the mitral and granule cell layers of MOB. Electrophysiological data indicated that TM inhibited tetanus-induced long-term potentiation (LTP) at the dendrodendritic excitatory synapse from mitral to granule cells. A low dose of TM (250nM) abolished the late phase of LTP, and a high dose (1μM) inhibited the early and late phases of LTP. Further, high-dose, but not low-dose, TM reduced the paired-pulse facilitation ratio, suggesting that the inhibitory effects of TM on LTP are partially mediated through the presynaptic machinery. Thus, our results support the hypothesis that TM-induced ER stress impairs olfactory learning by inhibiting synaptic plasticity via presynaptic and postsynaptic mechanisms in MOB. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Effect of vehicle on the nasal absorption of epinephrine during cardiopulmonary resuscitation.

    PubMed

    Bleske, B E; Rice, T L; Warren, E W; Giacherio, D A; Gilligan, L J; Massey, K D; Chrisp, C E; Tait, A R

    1996-01-01

    We have shown in previous studies that epinephrine administered intranasally is a feasible route of administration during cardiopulmonary resuscitation (CPR). To promote the absorption of epinephrine we administered phentolamine prior to epinephrine and used a bile salt as a vehicle to dissolve the epinephrine. The purpose of this study was to compare the effect of two different vehicles (bile salt vs surfactant) in promoting the absorption of nasally administered epinephrine during CPR and to determine their effects on the nasal mucosa. A randomized, blinded study. A controlled laboratory environment. Eleven mongrel dogs. Each dog underwent 3 minutes of unassisted ventricular fibrillation (VF) followed by 7 minutes of VF with CPR. Five minutes after the start of VF, 10 dogs received intranasal phentolamine 0.25 mg/kg/nostril followed 1 minute later by intranasal epinephrine 7.5 mg/kg/nostril. The epinephrine was dissolved in a randomly assigned vehicle consisting of either taurodeoxycholic acid (group A, bile salt) or polyoxyethylene-9-lauryl ether (group B, surfactant). One animal acted as a control and received 0.9% sodium chloride nasally. Data from eight dogs (one control) were included for analysis. Histology of the nasal cavity demonstrated severe multifocal erosion and ulceration of the respiratory epithelium for groups A and B compared with the control. The severity was similar between the two groups. In addition, no significant differences in plasma epinephrine concentrations or blood pressure responses were seen between the groups. Based on histology, polyoxyethylene-9-lauryl ether offered no advantage over taurodeoxycholic acid in its effect on the nasal mucosa. The data available for changes in epinephrine concentration and pressure also suggest no difference between the two vehicles in promoting the absorption of epinephrine during CPR in an animal model.

  7. Genomics of Mature and Immature Olfactory Sensory Neurons

    PubMed Central

    Nickell, Melissa D.; Breheny, Patrick; Stromberg, Arnold J.; McClintock, Timothy S.

    2014-01-01

    The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes. PMID:22252456

  8. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    PubMed

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  9. Olfactory Cleft Endoscopy Scale correlates with olfactory metrics in patients with chronic rhinosinusitis

    PubMed Central

    Soler, Zachary M.; Hyer, J. Madison; Karnezis, Tom T.; Schlosser, Rodney J.

    2015-01-01

    Introduction Olfactory loss affects a majority of patients with chronic rhinosinusitis (CRS). Traditional objective measures of disease severity, including endoscopy scales, focus upon the paranasal sinuses and often have weak correlation to olfaction. Methods Adults with CRS were prospectively evaluated by blinded reviewers with a novel Olfactory Cleft Endoscopy Scale (OCES) that evaluated discharge, polyps, edema, crusting and scarring of the olfactory cleft. Objective olfactory function was assessed using “Sniffin’ Sticks testing, including composite threshold-discrimination-identification (TDI) scores. Olfactory-specific quality-of-life was evaluated using the short modified version of the Questionnaire of Olfactory Disorders (QOD-NS). Inter- and intra-rater reliability was assessed among 3 reviewers for OCES grading. Multivariate linear regression was then used to test associations between OCES scores and measures of olfaction, controlling for potential confounding factors. Results The OCES score was evaluated in 38 patients and had a high overall reliability (ICC=0.92; 95% CI: 0.91–0.96). The OCES significantly correlated with objective olfaction as measured by TDI score (p<0.001), with TDI score falling by 1.13 points for every 1 point increase in OCES score. Similar significant associations were found for threshold, discrimination, and identification scores (p<0.003 for all) after controlling for age, gender, race, and reviewer/review. The OCES was also highly associated with patient-reported QOD-NS scores (p=0.009). Conclusion A novel olfactory cleft endoscopy scale shows high reliability and correlates with both objective and patient-reported olfaction in patients with CRS. Further studies to determine prognostic value and responsiveness to change are warranted. PMID:26718315

  10. Autoradiographic disposition of (1-methyl-/sup 14/C)- and (2-/sup 14/C)caffeine in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lachance, M.P.; Marlowe, C.; Waddell, W.J.

    1983-11-01

    Male, C57B1/6J mice received either (1-methyl-14C)caffeine or (2-14C)caffeine via the tail vein at a dose of 0.7 or 11 mg/kg, respectively. At 0.1, 0.33, 1, 3, 9, and 24 hr after treatment, the mice were anesthetized with ether and frozen by immersion in dry ice/hexane. The mice were processed for whole-body autoradiography by the Ullberg technique; this procedure does not allow thawing or contact with solvents. All autoradiographs revealed some retention of radioactivity at early time intervals in the lacrimal glands, seminal vesicle fluid, nasal and olfactory epithelium, and retinal melanocytes. The remaining portion of the animal was densitometrically uniformmore » except for the lower levels noted in the CNS and adipose tissues. Excretion of radioactivity by the liver and kidneys seems to be the major routes of elimination. Localization in the liver at late time intervals was confined principally to the centrilobular region. Late sites of retention, observed only after (1-methyl-14C)caffeine administration, included the pancreas, minor and major salivary glands, splenic red pulp, thymal cortex, bone marrow, and gastrointestinal epithelium. Sites of localization present in both studies included the olfactory epithelium, lacrimal glands, hair follicles, and retinal melanocytes. Further studies are needed to determine whether the localization at these various sites is due to metabolic degradation, active transport, or possibly a specific receptor interaction.« less

  11. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth.

    PubMed

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-05-02

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period.

  12. Olfactory Functioning in First-Episode Psychosis.

    PubMed

    Kamath, Vidyulata; Lasutschinkow, Patricia; Ishizuka, Koko; Sawa, Akira

    2018-04-06

    Though olfactory deficits are well-documented in schizophrenia, fewer studies have examined olfactory performance profiles across the psychosis spectrum. The current study examined odor identification, discrimination, and detection threshold performance in first-episode psychosis (FEP) patients diagnosed with schizophrenia, schizoaffective disorder, bipolar disorder with psychotic features, major depression with psychotic features, and other psychotic conditions. FEP patients (n = 97) and healthy adults (n = 98) completed birhinal assessments of odor identification, discrimination, and detection threshold sensitivity for lyral and citralva. Participants also completed measures of anticipatory pleasure, anhedonia, and empathy. Differences in olfactory performances were assessed between FEP patients and controls and within FEP subgroups. Sex-stratified post hoc analyses were employed for a complete analysis of sex differences. Relationships between self-report measures and olfactory scores were also examined. Individuals with psychosis had poorer scores across all olfactory measures when compared to the control group. Within the psychosis cohort, patients with schizophrenia-associated psychosis had poorer odor identification, discrimination, and citralva detection threshold scores relative to controls. In schizophrenia patients, greater olfactory disturbance was associated with increased negative symptomatology, greater self-reported anhedonia, and lower self-reported anticipatory pleasure. Patients with mood-associated psychosis performed comparable to controls though men and women in this cohort showed differential olfactory profiles. These findings indicate that olfactory deficits extend beyond measures of odor identification in FEP with greater deficits observed in schizophrenia-related subgroups of psychosis. Studies examining whether greater olfactory dysfunction confers greater risk for developing schizophrenia relative to other forms of psychosis are

  13. Phenotypic and physiologic variability in nasal epithelium cultured from smokers and non-smokers exposed to secondhand tobacco smoke

    EPA Science Inventory

    The emergence of air-liquid interface (ALI) culturing of mammalian airway epithelium is a recent innovation for experimental modeling of airway epithelial development, function, and pathogenic mechanisms associated with infectious agent and irritant exposure. This construct provi...

  14. 3-D nasal cultures: Systems toxicological assessment of a candidate modified-risk tobacco product.

    PubMed

    Iskandar, Anita R; Mathis, Carole; Martin, Florian; Leroy, Patrice; Sewer, Alain; Majeed, Shoaib; Kuehn, Diana; Trivedi, Keyur; Grandolfo, Davide; Cabanski, Maciej; Guedj, Emmanuel; Merg, Celine; Frentzel, Stefan; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2017-01-01

    In vitro toxicology approaches have evolved from a focus on molecular changes within a cell to understanding of toxicity-related mechanisms in systems that can mimic the in vivo environment. The recent development of three dimensional (3-D) organotypic nasal epithelial culture models offers a physiologically robust system for studying the effects of exposure through inhalation. Exposure to cigarette smoke (CS) is associated with nasal inflammation; thus, the nasal epithelium is relevant for evaluating the pathophysiological impact of CS exposure. The present study investigated further the application of in vitro human 3-D nasal epithelial culture models for toxicological assessment of inhalation exposure. Aligned with 3Rs strategy, this study aimed to explore the relevance of a human 3-D nasal culture model to assess the toxicological impact of aerosols generated from a candidate modified risk tobacco product (cMRTP), the Tobacco Heating System (THS) 2.2, as compared with smoke generated from reference cigarette 3R4F. A series of experimental repetitions, where multiple concentrations of THS2.2 aerosol and 3R4F smoke were applied, were conducted to obtain reproducible measurements to understand the cellular/molecular changes that occur following exposure. In agreement with "Toxicity Testing in the 21st Century - a Vision and a Strategy", this study implemented a systems toxicology approach and found that for all tested concentrations the impact of 3R4F smoke was substantially greater than that of THS2.2 aerosol in terms of cytotoxicity levels, alterations in tissue morphology, secretion of pro-inflammatory mediators, impaired ciliary function, and increased perturbed transcriptomes and miRNA expression profiles.

  15. Nasal Anatomy and Function.

    PubMed

    Patel, Ruchin G

    2017-02-01

    The nose is a complex structure important in facial aesthetics and in respiratory physiology. Nasal defects can pose a challenge to reconstructive surgeons who must re-create nasal symmetry while maintaining nasal function. A basic understanding of the underlying nasal anatomy is thus necessary for successful nasal reconstruction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth

    PubMed Central

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-01-01

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period. PMID:24785116

  17. Island composite nasal flap for nasal dorsum skin defects.

    PubMed

    Skitarelić, Neven; Mladina, Ranko; Mraovic, Boris; Simurina, Tatjana; Skitarelić, Nataa; Vuković, Katarina

    2009-08-01

    Skin defects on the nasal dorsum remain a challenge for the plastic surgeon. There are few local nasal flap options for the repair of proximally positioned nasal skin defects. During a 3-year period, 22 patients were treated after excision of skin cancer in the proximal two-thirds of the nose. Nine patients (41%) were female and 13 (59%) were male, with an average age of 69 years. All patients were operated on under local anesthesia. The average follow-up was 25 months. In all patients, after tumor ablation, the skin defect was closed with an island composite nasal skin flap. Pathohistologic analysis confirmed that the margins of the removed tumor were free of malignant cells. Six patients (27.3%) had squamous cell and 16 (72.7%) had basal cell carcinoma. There was no total or partial flap loss. None of the patients has suffered from recurrence of the tumor. The island composite nasal flap is a reliable technique for the closure of proximal nasal skin defects. Complications in the elevation of the island composite flap were rare, and the final result was acceptable.

  18. Your Nose

    MedlinePlus

    ... the space behind your nose) is the olfactory epithelium (say: ol-FAK-tuh-ree eh-puh-THEE- ... that has to do with smelling. The olfactory epithelium contains special receptors that are sensitive to odor ...

  19. Modern psychophysical tests to assess olfactory function.

    PubMed

    Eibenstein, A; Fioretti, A B; Lena, C; Rosati, N; Amabile, G; Fusetti, M

    2005-07-01

    The sense of smell significantly contributes to quality of life. In recent years much progress has been made in understanding the biochemistry, physiology and pathology of the human olfactory system. Olfactory disorders may arise not only from upper airway phlogosis but also from neurodegenerative disease. Hyposmia may precede motor signs in Parkinson's disease and cognitive deficit in Alzheimer's disease. These findings suggest the complementary role of olfactory tests in the diagnosis and management of neurodegenerative diseases. In this report we present a review of modern olfactory tests and their clinical applications. Although rarely employed in routine clinical practice, the olfactory test evaluates the ability of odour identification and is a useful diagnostic tool for olfaction evaluation. Olfactory screening tests are also available. In this work we strongly recommend the importance of an ENT evaluation before the test administration and dissuade from a self-administration of an olfactory test.

  20. Correlation of Nasal Mucosal Temperature With Subjective Nasal Patency in Healthy Individuals

    PubMed Central

    Bailey, Ryan S.; Casey, Kevin P.; Pawar, Sachin S.; Garcia, Guilherme J. M.

    2016-01-01

    Importance Historically, otolaryngologists have focused on nasal resistance to airflow and minimum airspace cross-sectional area as objective measures of nasal obstruction using methods such as rhinomanometry and acoustic rhinometry. However, subjective sensation of nasal patency may be more associated with activation of cold receptors by inspired air than with respiratory effort. Objective To investigate whether subjective nasal patency correlates with nasal mucosal temperature in healthy subjects. Design, Setting, and Participants Twenty-two healthy adults were recruited for this study. Subjects first completed the Nasal Obstruction Symptom Evaluation (NOSE) and a unilateral visual analog scale (VAS) to quantify subjective nasal patency. A miniaturized thermocouple sensor was then used to record nasal mucosal temperature bilaterally in two locations along the nasal septum: at the vestibule and across from the inferior turbinate head. Results The range of temperature oscillations during the breathing cycle, defined as the difference between end-expiratory and end-inspiratory temperatures, was greater during deep breaths (ΔTexp-insp = 6.2 ± 2.6°C) than during resting breathing (ΔTexp-insp = 4.2 ± 2.3°C) in both locations (p < 10−13). Mucosal temperature measured at the right vestibule had a statistically significant correlation with both right-side VAS score (Pearson r = −0.55, p=0.0076) and NOSE score (Pearson r = −0.47, p=0.028). No other statistically significant correlations were found between mucosal temperature and subjective nasal patency scores. Nasal mucosal temperature was lower in the first cavity to be measured, which was the right cavity in all subjects. Conclusions and Relevance The greater mucosal temperature oscillations during deep breathing is consistent with the common experience that airflow sensation is enhanced during deep breaths, thus supporting the hypothesis that mucosal cooling plays a central role in nasal airflow sensation

  1. Linking local circuit inhibition to olfactory behavior: a critical role for granule cells in olfactory discrimination.

    PubMed

    Strowbridge, Ben W

    2010-02-11

    In this issue of Neuron, Abraham et al. report a direct connection between inhibitory function and olfactory behavior. Using molecular methods to alter glutamate receptor subunit composition in olfactory bulb granule cells, the authors found a selective modulation in the time required for difficult, but not simple, olfactory discrimination tasks. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Influence of cooling face masks on nasal air conditioning and nasal geometry.

    PubMed

    Lindemann, J; Hoffmann, T; Koehl, A; Walz, E M; Sommer, F

    2017-06-01

    Nasal geometries and temperature of the nasal mucosa are the primary factors affecting nasal air conditioning. Data on intranasal air conditioning after provoking the trigeminal nerve with a cold stimulus simulating the effects of an arctic condition is still missing. The objective was to investigate the influence of skin cooling face masks on nasal air conditioning, mucosal temperature and nasal geometry. Standardized in vivo measurements of intranasal air temperature, humidity and mucosal temperature were performed in 55 healthy subjects at defined detection sites before and after wearing a cooling face mask. Measurements of skin temperature, rhinomanometry and acoustic rhinometry were accomplished. After wearing the face mask the facial skin temperature was significantly reduced. Intranasal air temperature did not change. Absolute humidity and mucosal temperature increased significantly. The acoustic rhinometric results showed a significant increase of the volumes and the cross-sectional areas. There was no change in nasal airflow. Nasal mucosal temperature, humidity of inhaled air, and volume of the anterior nose increased after application of a cold face mask. The response is mediated by the trigeminal nerve. Increased mucosal temperatures as well as changes in nasal geometries seem to guarantee sufficient steady intranasal nasal air conditioning.

  3. Reduced nasal growth after primary nasal repair combined with cleft lip surgery.

    PubMed

    Yoshimura, Y; Okumoto, T; Iijima, Y; Inoue, Y

    2015-11-01

    Nasal growth after cleft lip surgery with or without primary nasal repair was evaluated using lateral cephalograms. In 14 patients who underwent simultaneous nasal repair with primary cleft lip repair and 12 patients without simultaneous nasal repair, lateral cephalograms were obtained at 5 and 10 years of age. Lateral cephalograms of normal Japanese children were used as a control. At 5 years of age, there were significant differences in the nasal height and columellar angle among the three groups. Children without simultaneous nasal repair had shorter noses with more upward tilt of the columella compared with the controls, while children with simultaneous nasal repair had much shorter noses and more upward tilt than those without repair. At 10 years of age, the children without simultaneous nasal repair showed no differences from the control group, while those with simultaneous repair still had shorter noses and more upward tilt of the columella. These findings suggest that performing nasal repair at the same time as primary cleft lip surgery has an adverse influence on the subsequent growth of the nose. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. [Endoscopic treatment of small osteoma of nasal sinuses manifested as nasal and facial pain].

    PubMed

    Li, Yu; Zheng, Tianqi; Li, Zhong; Deng, Hongyuan; Guo, Chaoxian

    2015-12-01

    To discuss the clinical features, diagnosis and endoscopic surgical intervention for small steoma of nasal sinuses causing nasal and facial pain. A retrospective review was performed on 21 patients with nasal and facial pain caused by small osteoma of nasal sinuses, and nasal endoscopic surgery was included in the treatment of all cases. The nasal and facial pain of all the patients was relieved. Except for one ase exhibiting periorbital bruise after operation, the other patients showed no postoperative complications. Nasal and facial pain caused by small osteoma of nasal sinuses was clinically rare, mostly due to the neuropathic pain of nose and face caused by local compression resulting from the expansion of osteoma. Early diagnosis and operative treatment can significantly relieve nasal and facial pain.

  5. Olfactory receptor neuron profiling using sandalwood odorants.

    PubMed

    Bieri, Stephan; Monastyrskaia, Katherine; Schilling, Boris

    2004-07-01

    The mammalian olfactory system can discriminate between volatile molecules with subtle differences in their molecular structures. Efforts in synthetic chemistry have delivered a myriad of smelling compounds of different qualities as well as many molecules with very similar olfactive properties. One important class of molecules in the fragrance industry are sandalwood odorants. Sandalwood oil and four synthetic sandalwood molecules were selected to study the activation profile of endogenous olfactory receptors when exposed to compounds from the same odorant family. Dissociated rat olfactory receptor neurons were exposed to the sandalwood molecules and the receptor activation studied by monitoring fluxes in the internal calcium concentration. Olfactory receptor neurons were identified that were specifically stimulated by sandalwood compounds. These neurons expressed olfactory receptors that can discriminate between sandalwood odorants with slight differences in their molecular structures. This is the first study in which an important class of perfume compounds was analyzed for its ability to activate endogenous olfactory receptors in olfactory receptor neurons.

  6. Oxymetazoline Nasal Spray

    MedlinePlus

    ... is recommended by a doctor. Children 6 to 12 years of age should use oxymetazoline nasal spray carefully and under adult supervision. Oxymetazoline is in a class of medications called nasal decongestants. It works by narrowing the blood vessels in the nasal passages.

  7. Validation of polyvinylidene fluoride nasal sensor to assess nasal obstruction in comparison with subjective technique.

    PubMed

    Roopa Manjunatha, G; Mahapatra, D Roy; Prakash, Surya; Rajanna, K

    2015-01-01

    The aim of this study is to validate the applicability of the PolyVinyliDene Fluoride (PVDF) nasal sensor to assess the nasal airflow, in healthy subjects and patients with nasal obstruction and to correlate the results with the score of Visual Analogue Scale (VAS). PVDF nasal sensor and VAS measurements were carried out in 50 subjects (25-healthy subjects and 25 patients). The VAS score of nasal obstruction and peak-to-peak amplitude (Vp-p) of nasal cycle measured by PVDF nasal sensors were analyzed for right nostril (RN) and left nostril (LN) in both the groups. Spearman's rho correlation was calculated. The relationship between PVDF nasal sensor measurements and severity of nasal obstruction (VAS score) were assessed by ANOVA. In healthy group, the measurement of nasal airflow by PVDF nasal sensor for RN and LN were found to be 51.14±5.87% and 48.85±5.87%, respectively. In patient group, PVDF nasal sensor indicated lesser nasal airflow in the blocked nostrils (RN: 23.33±10.54% and LN: 32.24±11.54%). Moderate correlation was observed in healthy group (r=-0.710, p<0.001 for RN and r=-0.651, p<0.001 for LN), and moderate to strong correlation in patient group (r=-0.751, p<0.01 for RN and r=-0.885, p<0.0001 for LN). PVDF nasal sensor method is a newly developed technique for measuring the nasal airflow. Moderate to strong correlation was observed between PVDF nasal sensor data and VAS scores for nasal obstruction. In our present study, PVDF nasal sensor technique successfully differentiated between healthy subjects and patients with nasal obstruction. Additionally, it can also assess severity of nasal obstruction in comparison with VAS. Thus, we propose that the PVDF nasal sensor technique could be used as a new diagnostic method to evaluate nasal obstruction in routine clinical practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system.

    PubMed

    Kaplan, Bernhard A; Lansner, Anders

    2014-01-01

    Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin-Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian-Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian-Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures.

  9. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system

    PubMed Central

    Kaplan, Bernhard A.; Lansner, Anders

    2014-01-01

    Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin–Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian–Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian–Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures. PMID

  10. A Review of the Comparative Anatomy, Histology, Physiology and Pathology of the Nasal Cavity of Rats, Mice, Dogs and Non-human Primates. Relevance to Inhalation Toxicology and Human Health Risk Assessment.

    PubMed

    Chamanza, R; Wright, J A

    2015-11-01

    There are many significant differences in the structural and functional anatomy of the nasal cavity of man and laboratory animals. Some of the differences may be responsible for the species-specific nasal lesions that are often observed in response to inhaled toxicants. This paper reviews the comparative anatomy, physiology and pathology of the nasal cavity of the rat, mouse, dog, monkey and man, highlighting factors that may influence the distribution of nasal lesions. Gross anatomical variations such as turbinate structure, folds or grooves on nasal walls, or presence or absence of accessory structures, may influence nasal airflow and species-specific uptake and deposition of inhaled material. In addition, interspecies variations in the morphological and biochemical composition and distribution of the nasal epithelium may affect the local tissue susceptibility and play a role in the development of species-specific nasal lesions. It is concluded that, while the nasal cavity of the monkey might be more similar to that of man, each laboratory animal species provides a model that responds in a characteristic and species-specific manner. Therefore for human risk assessment, careful consideration must be given to the anatomical differences between a given animal model and man. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. An isotope dilution gas chromatography/mass spectrometry method for trace analysis of xylene and its metabolites in tissues following threshold limit value exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyon, K.H.; Kracko, D.A.; Strunk, M.R.

    1995-12-01

    The existence of a nose-brain barrier that functions to protect the central nervous system (CNS) from inhaled toxicants has been postulated. Just as a blood-brain barrier protects the CNS from systemic toxicants, the nose-brain barrier may have similar characteristic functions. One component of interest is nasal xenobiotic metabolism and its effect on the transport of pollutants into the CNS at environmentally plausible levels of exposure. Previous results have shown that inhaled xylene are dimethyl phenol (DMP) and methyl benzyl alcohol (MBA), and the nonvolatile metabolites are toluic acid (TA) and methyl hippuric acid (MHA). The nonvolatile metabolites of xylene, alongmore » with a small quantity of volatiles, representing either parent xylene or volatile metabolites, are transported via the olfactory epithelium to the glomeruli within the olfactory bulbs of the brain. Further work will be done to establish the linearity for each analyte at the actual highest detection limit of the GC/MS.« less

  12. Diagnosis and clinical characteristics of congenital anosmia: case series report.

    PubMed

    Qu, Qiuyi; Liu, Jianfeng; Ni, Daofeng; Zhang, Qiuhang; Yang, Dazhang; Wang, Naya; Wu, Xueyan; Han, Honglei

    2010-12-01

    congenital anosmia is extremely rare and tends to present late. We report on a series of patients with congenital anosmia to analyze its clinical characteristics and present illustrative cases. retrospective chart review. tertiary care centre. thirty-five patients with congenital anosmia were reviewed. A thorough medical history taking, physical examination, and nasal endoscopy were performed in all patients. T&T olfactory testing (n = 33), olfactory event-related potentials (OERPs) (n = 33), and sinonasal computed tomography (CT) (n = 35) were carried out. Magnetic resonance images (MRIs) of the olfactory pathway (n = 34) were available. Serum sex hormones were tested (n = 33). physical examination, olfactory testing, MRI of the olfactory pathway, and serum sex hormones. twenty cases were isolated congenital anosmia (ICA). Fifteen cases were congenital anosmia with other anomalies, including 12 cases with Kallmann syndrome (KS), two with CHARGE syndrome, and one with hypoplasia of the nasal cavity and nasal sinus. T&T olfactory testing indicated anosmia (n = 33). No OERP was obtained (n = 33). CT scans indicated three abnormal patients, including two with unilateral choanal atresia and one with hypoplasia of the nasal cavity and sinus. MRI demonstrated aplasia or hypoplasia of the olfactory bulbs, tracts, and olfactory sulci (n = 34). Serum sex hormones were low in 12 patients with KS. early diagnosis of congenital anosmia on the basis of olfactory symptoms is difficult. MRI of the olfactory pathway plays an important role in anatomic location. ICA is the most common congenital anosmia. KS is the primary presentation of congenital anosmia with other anomalies.

  13. Correlation of Nasal Mucosal Temperature With Subjective Nasal Patency in Healthy Individuals.

    PubMed

    Bailey, Ryan S; Casey, Kevin P; Pawar, Sachin S; Garcia, Guilherme J M

    2017-01-01

    Historically, otolaryngologists have focused on nasal resistance to airflow and minimum airspace cross-sectional area as objective measures of nasal obstruction using methods such as rhinomanometry and acoustic rhinometry. However, subjective sensation of nasal patency may be more associated with activation of cold receptors by inspired air than with respiratory effort. To investigate whether subjective nasal patency correlates with nasal mucosal temperature in healthy individuals. Healthy adult volunteers first completed the Nasal Obstruction Symptom Evaluation (NOSE) and a unilateral visual analog scale to quantify subjective nasal patency. A miniaturized thermocouple sensor was then used to record nasal mucosal temperature bilaterally in 2 locations along the nasal septum: at the vestibule and across from the inferior turbinate head. Nasal mucosal temperature and subjective patency scores in healthy individuals. The 22 healthy adult volunteers (12 [55%] male; mean [SD] age, 28.3 [7.0] years) had a mean (SD) NOSE score of 5.9 (8.4) (range, 0-30) and unilateral VAS score of 1.2 (1.4) (range, 0-5). The range of temperature oscillations during the breathing cycle, defined as the difference between end-expiratory and end-inspiratory temperatures, was greater during deep breaths (mean [SD] change in temperature, 6.2°C [2.6°C]) than during resting breathing (mean [SD] change in temperature, 4.2°C [2.3°C]) in both locations (P < .001). Mucosal temperature measured at the right vestibule had a statistically significant correlation with both right-side visual analog scale score (Pearson r = -0.55; 95% CI, -0.79 to -0.17; P = .008) and NOSE score (Pearson r = -0.47; 95% CI, -0.74 to -0.06; P = .03). No other statistically significant correlations were found between mucosal temperature and subjective nasal patency scores. Nasal mucosal temperature was lower (mean of 1.5°C lower) in the first cavity to be measured, which was the right cavity in all

  14. Identification of second messenger mediating signal transduction in the olfactory receptor cell.

    PubMed

    Takeuchi, Hiroko; Kurahashi, Takashi

    2003-11-01

    One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed "InsP3 odorants"). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells ( approximately 2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants.

  15. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    PubMed

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  16. Individual olfactory perception reveals meaningful nonolfactory genetic information

    PubMed Central

    Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam

    2015-01-01

    Each person expresses a potentially unique subset of ∼400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the “olfactory fingerprint.” Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10−10), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10−4), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10−6). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information. PMID:26100865

  17. Alterations of brain grey matter density and olfactory bulb volume in patients with olfactory loss after traumatic brain injury.

    PubMed

    Han, Pengfei; Winkler, Nicole; Hummel, Cornelia; Hähner, Antje; Gerber, Johannes; Hummel, Thomas

    2018-04-27

    Olfactory loss and traumatic brain injury (TBI) both lead to anatomical brain alterations in humans. Little research has been done on the structural brain changes for TBI patients with olfactory loss. Using voxel-based morphometry, the grey matter (GM) density was examined for twenty-two TBI patients with hyposmia, twenty-four TBI patients with anosmia, and twenty-two age-matched controls. Olfactory bulb (OB) volumes were measured by manual segmentation of acquired T2 weighted coronal slices using a standardized protocol. Brain lesions in the olfactory relevant areas were also examined for TBI patients. Results showed that patients with anosmia have more frequent lesions in the OB, orbitofrontal cortex (OFC) and the temporal lobe pole, as compared to patients with hyposmia. GM density in the primary olfactory area was decreased in both groups of patients. In addition, compared to controls, patients with anosmia showed GM density reduction in several secondary olfactory eloquent regions, including the gyrus rectus, medial OFC, anterior cingulate cortex, insula, and cerebellum. However, patients with hyposmia showed a lesser degree of GM reduction compared to healthy controls. Smaller OB volumes were found for patients with olfactory loss as compared to controls. TBI patients with anosmia had the smallest OB volumes which were caused by the lesions for OB. In addition, post-TBI duration was negatively correlated with GM density in the secondary olfactory areas in patients with hyposmia, but was positively correlated with GM density in the frontal and temporal gyrus in patients with anosmia. The GM density and OB volume reduction among TBI patients with olfactory loss was largely depend on the location and severity of brain lesions in olfactory relevant regions. Longer post-TBI duration had an impact on brain GM density changes, which indicate a decreased olfactory function in patients with hyposmia and possible compensatory mechanisms in patients with anosmia.

  18. Routine magnetic resonance imaging for idiopathic olfactory loss: a modeling-based economic evaluation.

    PubMed

    Rudmik, Luke; Smith, Kristine A; Soler, Zachary M; Schlosser, Rodney J; Smith, Timothy L

    2014-10-01

    Idiopathic olfactory loss is a common clinical scenario encountered by otolaryngologists. While trying to allocate limited health care resources appropriately, the decision to obtain a magnetic resonance imaging (MRI) scan to investigate for a rare intracranial abnormality can be difficult. To evaluate the cost-effectiveness of ordering routine MRI in patients with idiopathic olfactory loss. We performed a modeling-based economic evaluation with a time horizon of less than 1 year. Patients included in the analysis had idiopathic olfactory loss defined by no preceding viral illness or head trauma and negative findings of a physical examination and nasal endoscopy. Routine MRI vs no-imaging strategies. We developed a decision tree economic model from the societal perspective. Effectiveness, probability, and cost data were obtained from the published literature. Litigation rates and costs related to a missed diagnosis were obtained from the Physicians Insurers Association of America. A univariate threshold analysis and multivariate probabilistic sensitivity analysis were performed to quantify the degree of certainty in the economic conclusion of the reference case. The comparative groups included those who underwent routine MRI of the brain with contrast alone and those who underwent no brain imaging. The primary outcome was the cost per correct diagnosis of idiopathic olfactory loss. The mean (SD) cost for the MRI strategy totaled $2400.00 ($1717.54) and was effective 100% of the time, whereas the mean (SD) cost for the no-imaging strategy totaled $86.61 ($107.40) and was effective 98% of the time. The incremental cost-effectiveness ratio for the MRI strategy compared with the no-imaging strategy was $115 669.50, which is higher than most acceptable willingness-to-pay thresholds. The threshold analysis demonstrated that when the probability of having a treatable intracranial disease process reached 7.9%, the incremental cost-effectiveness ratio for MRI vs no

  19. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  20. Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP(3)-odors".

    PubMed

    Chen, S; Lane, A P; Bock, R; Leinders-Zufall, T; Zufall, F

    2000-07-01

    Vertebrate olfactory receptor neurons (ORNs) transduce odor stimuli into electrical signals by means of an adenylyl cyclase/cAMP second messenger cascade, but it remains widely debated whether this cAMP cascade mediates transduction for all odorants or only certain odor classes. To address this problem, we have analyzed the generator currents induced by odors that failed to produce cAMP in previous biochemical assays but instead produced IP(3) ("IP(3)-odors"). We show that in single salamander ORNs, sensory responses to "cAMP-odors" and IP(3)-odors are not mutually exclusive but coexist in the same cells. The currents induced by IP(3)-odors exhibit identical biophysical properties as those induced by cAMP odors or direct activation of the cAMP cascade. By disrupting adenylyl cyclase to block cAMP formation using two potent antagonists of adenylyl cyclase, SQ22536 and MDL12330A, we show that this molecular step is necessary for the transduction of both odor classes. To assess whether these results are also applicable to mammals, we examine the electrophysiological responses to IP(3)-odors in intact mouse main olfactory epithelium (MOE) by recording field potentials. The results show that inhibition of adenylyl cyclase prevents EOG responses to both odor classes in mouse MOE, even when "hot spots" with heightened sensitivity to IP(3)-odors are examined.

  1. Survival of mature mouse olfactory sensory neurons labeled genetically perinatally.

    PubMed

    Holl, Anna-Maria

    2018-04-01

    The main olfactory epithelium (MOE) of an adult mouse harbors a few million mature olfactory sensory neurons (OSNs), which are traditionally defined as mature by their expression of the olfactory marker protein (OMP). Mature OSNs differentiate in situ from stem cells at the base of the MOE. The consensus view is that mature OSNs have a defined lifespan and then undergo programmed cell death, and that the adult MOE maintains homeostasis by generating new mature OSNs from stem cells. But there is also evidence for mature OSNs that are long-lived. Thus far modern genetic tools have not been applied to quantify survival of a population of OSNs that are mature at a given point in time. Here, a genetic strategy was developed to label irreversibly OMP-expressing OSNs in mice. A gene-targeted OMP-CreERT2 strain was generated in which mature OSNs express an enzymatically inactive version of the Cre recombinase. The fusion protein CreERT2 becomes transiently active when exposed to tamoxifen, and in the presence of a Cre reporter in the genome such as tdRFP, CreERT2-expressing cells become irreversibly labeled. A cohort of mice was generated with the same day of birth by in vitro fertilization and embryo transfer, and injected tamoxifen in their mothers at E18.5 of gestation. I counted RFP immunoreactive cells in the MOE and vomeronasal organ of 36 tamoxifen-exposed OMP-CreERT2 × tdRFP mice from 7 age groups: postnatal day (PD)1.5, PD3.5, PD6.5, 3 weeks, 9 weeks, 6 months, and 12 months. Approximately 7.8% of perinatally labeled cells remain at 12 months, confirming that some mature OSNs are indeed long-lived. The survival curve of the population of perinatally labeled MOE cells can be modeled with a mean half-life of 26 days for the population as a whole, excluding the long-lived cells. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.

  2. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    ERIC Educational Resources Information Center

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  3. [Dexpanthenol nasal spray in comparison to dexpanthenol nasal ointment. A prospective, randomised, open, cross-over study to compare nasal mucociliary clearance].

    PubMed

    Verse, T; Klöcker, N; Riedel, F; Pirsig, W; Scheithauer, M O

    2004-07-01

    Recent technical developments in metered pump systems allow the production and use of preservative-free nasal products. The aim of the current study is to compare the tolerability of a preservative-free dexpanthenol (5%) nasal spray with that of the established dexpanthenol (5%) nasal ointment, also without preservatives. The main outcome measure was in vivo mucociliary clearance. Mucociliary clearance was assessed by saccharin migration time in 20 volunteers. Wash-out phases were 7 days and the spray or ointment was always applied 20 min before the saccharin test. The study was designed to test for non-inferiority. Saccharin migration time was slightly longer after ointment administration, however, these were not significantly different to nasal spray. The saccharin migration time showed a significant correlation with the age of the volunteers. The upper confidence limit of dexpanthenol nasal spray was markedly less than that of the ointment. Therefore, dexpanthenol nasal spray is at least equal to if not better than dexpanthenol nasal ointment. Due to its ease of administration, preservative-free dexpanthenol nasal spray offers a valuable therapeutic alternative.

  4. Nasal Cancer

    MedlinePlus

    ... the way to your throat as you breathe. Cancer of the nasal cavity and paranasal sinuses is ... be like those of infections. Doctors diagnose nasal cancer with imaging tests, lighted tube-like instruments that ...

  5. [Odor sensing system and olfactory display].

    PubMed

    Nakamoto, Takamichi

    2014-01-01

    In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care.

  6. Nasal Physiology

    MedlinePlus

    ... Anatomy Virtual Anatomy Disclosure Statement Printer Friendly Nasal Physiology Jeremiah A. Alt, MD, PhD Noam Cohen, MD, ... control the inflammation. CONCLUSION An understanding of the physiology of the nose is critical to understand nasal ...

  7. Pharmacokinetic evaluation of ipamorelin and other peptidyl growth hormone secretagogues with emphasis on nasal absorption.

    PubMed

    Johansen, P B; Hansen, K T; Andersen, J V; Johansen, N L

    1998-11-01

    1. The pharmacokinetics of three new peptidyl growth hormone secretagogues, ipamorelin (NNC 26-0161), NNC 26-0194 and NNC 26-0235, were compared with two well-known hexapeptides, GHRP-2 and GHRP-6, in the male rat following different routes of administration. 2. Following i.v. bolus injection, plasma concentrations of the peptides declined biexponentially. Ipamorelin differed markedly from the other peptides investigated, demonstrating a systemic plasma clearance 5-fold lower than that of GHRP-6. Ipamorelin was mainly excreted in the urine, whereas GHRP-6 was predominantly excreted in the bile. NNC 26-0194 and NNC 26-0235 also showed high biliary excretions. Ipamorelin and the two NNC peptides were moderately resistant towards metabolism as 60-80% of the administered dose could be recovered from bile and urine as intact peptide. 3. After intranasal application, the bioavailability of ipamorelin was estimated at approximately 20%. Higher bioavailabilities of approximately 50% were determined for NNC 26-0235, NNC 26-0194 and GHRP-2, whereas the nasal absorption of GHRP-6 was somewhat lower. Thus, the peptides could be easily transported across the nasal epithelium suggesting that the nasal route seems promising for systemic delivery of this family of peptidyl growth hormone secretagogues.

  8. Gene Expression Changes in the Olfactory Bulb of Mice Induced by Exposure to Diesel Exhaust Are Dependent on Animal Rearing Environment

    PubMed Central

    Yokota, Satoshi; Hori, Hiroshi; Umezawa, Masakazu; Kubota, Natsuko; Niki, Rikio; Yanagita, Shinya; Takeda, Ken

    2013-01-01

    There is an emerging concern that particulate air pollution increases the risk of cranial nerve disease onset. Small nanoparticles, mainly derived from diesel exhaust particles reach the olfactory bulb by their nasal depositions. It has been reported that diesel exhaust inhalation causes inflammation of the olfactory bulb and other brain regions. However, these toxicological studies have not evaluated animal rearing environment. We hypothesized that rearing environment can change mice phenotypes and thus might alter toxicological study results. In this study, we exposed mice to diesel exhaust inhalation at 90 µg/m3, 8 hours/day, for 28 consecutive days after rearing in a standard cage or environmental enrichment conditions. Microarray analysis found that expression levels of 112 genes were changed by diesel exhaust inhalation. Functional analysis using Gene Ontology revealed that the dysregulated genes were involved in inflammation and immune response. This result was supported by pathway analysis. Quantitative RT-PCR analysis confirmed 10 genes. Interestingly, background gene expression of the olfactory bulb of mice reared in a standard cage environment was changed by diesel exhaust inhalation, whereas there was no significant effect of diesel exhaust exposure on gene expression levels of mice reared with environmental enrichment. The results indicate for the first time that the effect of diesel exhaust exposure on gene expression of the olfactory bulb was influenced by rearing environment. Rearing environment, such as environmental enrichment, may be an important contributive factor to causation in evaluating still undefined toxic environmental substances such as diesel exhaust. PMID:23940539

  9. Following the canyon to reach and remove olfactory groove meningiomas.

    PubMed

    Stefini, Roberto; Zenga, Francesco; Giacomo, Esposito; Bolzoni, Andrea; Tartara, Fulvio; Spena, Giannantonio; Ambrosi, Claudia; Fontanella, Marco M

    2017-04-01

    Olfactory groove meningiomas (OGMs) represent approximately 10% of all intracranial meningiomas. They arise in the olfactory fossa, a variable depression delimited by the lateral lamella and perpendicular plate. The cribriform plate with the lateral lamella and ethmoidal and orbital roof could be viewed as a 'canyon' with the frontal sinus as the main entrance. Between January 2000 and December 2013, 32 consecutive patients underwent removal of OGMs through this 'canyon' at the Department of Neurosurgery of Brescia and Turin. Complete removal was achieved in all patients with this trans-frontal sinus subcranial approach (Simpson grade I; mean lesion volume, 46.6 cm3). Five patients (15.6%) experienced nasal CSF leakage, treated with external lumbar drain positioning for 4 days and resolved in all cases but one, which was re-operated. Two patients (6.2%) during the CSF leakage experienced meningitis at day 7 after surgery, both successfully treated by intravenous antibiotic therapy. After one month, one patient developed hydrocephalus, treated with a ventricular peritoneal shunt. In one patient, traction on the OGM caused bleeding of the callosomarginal artery, which was coagulated with superior frontal gyrus ischemia without neurological consequences. Glasgow Outcome Scale Score at 6 months was V in 29 patients, IV in one patient, and I in two patients. Advantages with this approach may include easy and early control of blood supply from its insertion in the skull base, minimal frontal lobe retraction, preservation of the frontal veins draining to the sagittal sinus, and a satisfactory aesthetic outcome.

  10. [Effect of absorption enhancers on nasal ginsenoside Rg1 delivery and its nasal ciliotoxicity].

    PubMed

    Chen, Xin-mei; Zhu, Jia-bi; Sun, Wei-dong; Zhang, Li-jian

    2006-02-01

    The enhancing activity and safety of several absorption enhancers were evaluated as potential nasal absorption enhancers to increase intranasal absorption of ginsenoside Rg1. Nasal circulatory perfusion test in vivo had been employed to investigate the effect of absorption enhancers for nasal mucosa absorption of ginsenoside Rgl in rats. The safety of the absorption enhancers were evaluated by testing cilia movement of the in situ toad palate model, the hemolysis of erythrocyte membrane of the rabbit, leaching of protein and LDH from the mice nasal mucosa and the effect on cilia structural and specific cellular changes of nasal mucosa. Absorption enhancers were necessary to facilitate ginsenoside Rg1 absorption by nasal mucosa. Among the absorption enhancers 1% sodium deoxycholate had great effect to facilite ginsenoside Rgl absorption by nasal mucosa; 1% dipotassium glycyrrhizinate and 1% azone had moderate effect to facilitate ginsenoside Rg1 absorption by nasal mucosa; 1% Tween-80, 2% beta-cyclodextrin, 0.5% borneol (dissolved in paraffin liquid), 0.5% chitosan, 5% hydroxypropyl-beta-cyclodextrin and 0.1% EDTA had low effect to facilitate ginsenoside Rgl absorption by nasal mucosa. 1% sodium deoxycholate, 1% azone and 1% dipotassium glycyrrhizinate had serious nasal toxicity; 1% Tween-80, 2% beta-cyclodextrin, 5% hydroxypropyl-beta-cyclodextrin had moderate nasal toxicity; 0.5% borneol (dissolved in paraffin liquid), 0.5% chitosan and 0.1% EDTA have little nasal toxicity. 0.5% borneol and 0.5% chitosan were the promising candidates having a good balance between enhancing activity and safety for nasal ginsenoside Rg1 delivery.

  11. Giant Olfactory Meningiomas

    PubMed Central

    d'Avella, Domenico; Salpietro, Francesco M.; Alafaci, Cetty; Tomasello, Francesco

    1999-01-01

    Olfactory groove meningiomas may attain surprisingly large size. The subfrontal approach is currently the route preferred by most neurosurgeons for their excision. The pterional-transsylvian route represents an alternate exposure for microsurgery of frontobasal tumors. Although this approach has been already described for olfactory meningiomas, tumors of giant size were not specifically addressed in the literature. We report the application of the pterional-transsylvian approach in six patients with giant olfactory meningiomas. This series is unique because it includes only patients with tumors exceeding 6 cm in diameter with bilateral symmetrical development. A radical removal was achieved in all patients and all of them made a full recovery. To investigate the relevance of the pterional-transsylvian approach for minimizing surgical morbidity, a magnetic resonance imaging protocol was designed to characterize even subtle postoperative frontal lobe structural changes. These changes, limited to the frontal lobe ipsilateral to exposure and localized in specific anatomical domains of the prefrontal area, included cystic degenerative alterations, parenchymal gliosis, and associated persistent white matter edema. Results from the present series strengthen the usefulness of the pterional-transsylvian approach as a safe surgical route for lesions affecting the anterior skull base, even with huge bilateral symmetrical expansion, such as giant olfactory meningiomas. ImagesFigure 1Figure 2Figure 3p26-bFigure 4p27-bFigure 5Figure 6Figure 7 PMID:17171078

  12. Human olfactory receptor responses to odorants

    PubMed Central

    Mainland, Joel D; Li, Yun R; Zhou, Ting; Liu, Wen Ling L; Matsunami, Hiroaki

    2015-01-01

    Although the human olfactory system is capable of discriminating a vast number of odors, we do not currently understand what chemical features are encoded by olfactory receptors. In large part this is due to a paucity of data in a search space covering the interactions of hundreds of receptors with billions of odorous molecules. Of the approximately 400 intact human odorant receptors, only 10% have a published ligand. Here we used a heterologous luciferase assay to screen 73 odorants against a clone library of 511 human olfactory receptors. This dataset will allow other researchers to interrogate the combinatorial nature of olfactory coding. PMID:25977809

  13. Topographic mapping--the olfactory system.

    PubMed

    Imai, Takeshi; Sakano, Hitoshi; Vosshall, Leslie B

    2010-08-01

    Sensory systems must map accurate representations of the external world in the brain. Although the physical senses of touch and vision build topographic representations of the spatial coordinates of the body and the field of view, the chemical sense of olfaction maps discontinuous features of chemical space, comprising an extremely large number of possible odor stimuli. In both mammals and insects, olfactory circuits are wired according to the convergence of axons from sensory neurons expressing the same odorant receptor. Synapses are organized into distinctive spherical neuropils--the olfactory glomeruli--that connect sensory input with output neurons and local modulatory interneurons. Although there is a strong conservation of form in the olfactory maps of mammals and insects, they arise using divergent mechanisms. Olfactory glomeruli provide a unique solution to the problem of mapping discontinuous chemical space onto the brain.

  14. Olfactory Hallucinations without Clinical Motor Activity: A Comparison of Unirhinal with Birhinal Phantosmia

    PubMed Central

    Henkin, Robert I.; Potolicchio, Samuel J.; Levy, Lucien M.

    2013-01-01

    Olfactory hallucinations without subsequent myoclonic activity have not been well characterized or understood. Herein we describe, in a retrospective study, two major forms of olfactory hallucinations labeled phantosmias: one, unirhinal, the other, birhinal. To describe these disorders we performed several procedures to elucidate similarities and differences between these processes. From 1272, patients evaluated for taste and smell dysfunction at The Taste and Smell Clinic, Washington, DC with clinical history, neurological and otolaryngological examinations, evaluations of taste and smell function, EEG and neuroradiological studies 40 exhibited cyclic unirhinal phantosmia (CUP) usually without hyposmia whereas 88 exhibited non-cyclic birhinal phantosmia with associated symptomology (BPAS) with hyposmia. Patients with CUP developed phantosmia spontaneously or after laughing, coughing or shouting initially with spontaneous inhibition and subsequently with Valsalva maneuvers, sleep or nasal water inhalation; they had frequent EEG changes usually ipsilateral sharp waves. Patients with BPAS developed phantosmia secondary to several clinical events usually after hyposmia onset with few EEG changes; their phantosmia could not be initiated or inhibited by any physiological maneuver. CUP is uncommonly encountered and represents a newly defined clinical syndrome. BPAS is commonly encountered, has been observed previously but has not been clearly defined. Mechanisms responsible for phantosmia in each group were related to decreased gamma-aminobutyric acid (GABA) activity in specific brain regions. Treatment which activated brain GABA inhibited phantosmia in both groups. PMID:24961619

  15. Numerical Simulation of Airflow Fields in Two Typical Nasal Structures of Empty Nose Syndrome: A Computational Fluid Dynamics Study

    PubMed Central

    Di, Meng-Yang; Jiang, Zhe; Gao, Zhi-Qiang; Li, Zhi; An, Yi-Ran; Lv, Wei

    2013-01-01

    Background The pathogenesis of empty nose syndrome (ENS) has not been elucidated so far. Though postulated, there remains a lack of experimental evidence about the roles of nasal aerodynamics on the development of ENS. Objective To investigate the nasal aerodynamic features of ENS andto explore the role of aerodynamic changes on the pathogenesis of ENS. Methods Seven sinonasal models were numerically constructed, based on the high resolution computed tomography images of seven healthy male adults. Bilateral radical inferior/middle turbinectomy were numerically performed to mimic the typical nasal structures of ENS-inferior turbinate (ENS-IT) and ENS-middle turbinate (ENS-MT). A steady laminar model was applied in calculation. Velocity, pressure, streamlines, air flux and wall shear stress were numerically investigated. Each parameter of normal structures was compared with those of the corresponding pathological models of ENS-IT and ENS-MT, respectively. Results ENS-MT: Streamlines, air flux distribution, and wall shear stress distribution were generally similar to those of the normal structures; nasal resistances decreased. Velocities decreased locally, while increased around the sphenopalatine ganglion by 0.20±0.17m/s and 0.22±0.10m/s during inspiration and expiration, respectively. ENS-IT: Streamlines were less organized with new vortexes shown near the bottom wall. The airflow rates passing through the nasal olfactory area decreased by 26.27%±8.68% and 13.18%±7.59% during inspiration and expiration, respectively. Wall shear stresses, nasal resistances and local velocities all decreased. Conclusion Our CFD simulation study suggests that the changes in nasal aerodynamics may play an essential role in the pathogenesis of ENS. An increased velocity around the sphenopalatine ganglion in the ENS-MT models could be responsible for headache in patients with ENS-MT. However, these results need to be validated in further studies with a larger sample size and more

  16. Nasal computed tomography.

    PubMed

    Kuehn, Ned F

    2006-05-01

    Chronic nasal disease is often a challenge to diagnose. Computed tomography greatly enhances the ability to diagnose chronic nasal disease in dogs and cats. Nasal computed tomography provides detailed information regarding the extent of disease, accurate discrimination of neoplastic versus nonneoplastic diseases, and identification of areas of the nose to examine rhinoscopically and suspicious regions to target for biopsy.

  17. When the Nose Doesn’t Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota

    PubMed Central

    Jenkins, Eileen K.; DeChant, Mallory T.; Perry, Erin B.

    2018-01-01

    The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic changes, along with the unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the species. Inflammation, alterations in blood flow and hydration, and systemic diseases alter olfaction and may impact working efficiency of detection canines. The scientific literature contains abundant information on the potential impact of pharmaceuticals on olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been studied in the canine. Physical stressors including exercise, lack of conditioning, and high ambient temperature impact olfaction directly or indirectly in the canine. Dietary fat content, amount of food per meal, and timing of meals have been demonstrated to impact olfaction in mice and dogs. Gastrointestinal (GI) microbiota likely impacts olfaction via bidirectional communication between the GI tract and brain, and the microbiota is impacted by exercise, diet, and stress. The objective of this literature review is to discuss the specific effects of health, management, and microbiota shifts on olfactory performance in working canines. PMID:29651421

  18. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  19. Co-administration of cholera toxin and apple polyphenol extract as a novel and safe mucosal adjuvant strategy.

    PubMed

    Yoshino, Naoto; Fujihashi, Kohtaro; Hagiwara, Yukari; Kanno, Hiroyuki; Takahashi, Kiyomi; Kobayashi, Ryoki; Inaba, Noriyuki; Noda, Masatoshi; Sato, Shigehiro

    2009-07-30

    Although native cholera toxin (CT) is an extremely effective adjuvant, its toxicity prevents its use in humans. We report here that apple polyphenol extract (APE), obtained from unripe apples, reduces CT-induced morphological changes and cAMP accumulation. Based upon this finding, we have attempted to design a novel, effective and safe mucosal vaccine by using CT with several dosages of APE as nasal adjuvants. Mice nasally immunized with OVA plus CT and an optimal dosage of APE showed significantly reduced levels of inflammatory responses as well as total and OVA-specific IgE antibodies when compared with mice given without APE. However, levels of both mucosal and systemic OVA-specific antibody responses were maintained. Further, APE significantly down-regulated accumulation of CT in the olfactory nerves and epithelium. In summary, an optimal dosage of APE would take full advantage of mucosal adjuvanticity of native CT without any toxicity for application in humans.

  20. Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study.

    PubMed

    Kiparizoska, Sara; Ikuta, Toshikazu

    2017-09-01

    Evidence for olfactory dysfunction in schizophrenia has been firmly established. However, in the typical understanding of schizophrenia, olfaction is not recognized to contribute to or interact with the illness. Despite the solid presence of olfactory dysfunction in schizophrenia, its relation to the rest of the illness remains largely unclear. Here, we aimed to examine functional connectivity of the olfactory bulb, olfactory tract, and piriform cortices and isolate the network that would account for the altered olfaction in schizophrenia. We examined the functional connectivity of these specific olfactory regions in order to isolate other brain regions associated with olfactory processing in schizophrenia. Using the resting state functional MRI data from the Center for Biomedical Research Excellence in Brain Function and Mental Illness, we compared 84 patients of schizophrenia and 90 individuals without schizophrenia. The schizophrenia group showed disconnectivity between the anterior piriform cortex and the nucleus accumbens, between the posterior piriform cortex and the middle frontal gyrus, and between the olfactory tract and the visual cortices. The current results suggest functional disconnectivity of olfactory regions in schizophrenia, which may account for olfactory dysfunction and disrupted integration with other sensory modalities in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  1. Comparison of Realistic and Idealized Breathing Patterns in Computational Models of Airflow and Vapor Dosimetry in the Rodent Upper Respiratory Tract

    PubMed Central

    Jacob, Richard E.; Kuprat, Andrew P.; Einstein, Daniel R.; Corley, Richard A.

    2016-01-01

    Context Computational fluid dynamics (CFD) simulations of airflows coupled with physiologically-based pharmacokinetic (PBPK) modeling of respiratory tissue doses of airborne materials have traditionally used either steady-state inhalation or a sinusoidal approximation of the breathing cycle for airflow simulations despite their differences from normal breathing patterns. Objective Evaluate the impact of realistic breathing patterns, including sniffing, on predicted nasal tissue concentrations of a reactive vapor that targets the nose in rats as a case study. Materials and methods Whole-body plethysmography measurements from a free-breathing rat were used to produce profiles of normal breathing, sniffing, and combinations of both as flow inputs to CFD/PBPK simulations of acetaldehyde exposure. Results For the normal measured ventilation profile, modest reductions in time- and tissue depth-dependent areas under the curve (AUC) acetaldehyde concentrations were predicted in the wet squamous, respiratory, and transitional epithelium along the main airflow path, while corresponding increases were predicted in the olfactory epithelium, especially the most distal regions of the ethmoid turbinates, versus the idealized profile. The higher amplitude/frequency sniffing profile produced greater AUC increases over the idealized profile in the olfactory epithelium, especially in the posterior region. Conclusions The differences in tissue AUCs at known lesion-forming regions for acetaldehyde between normal and idealized profiles were minimal, suggesting that sinusoidal profiles may be used for this chemical and exposure concentration. However, depending upon the chemical, exposure system and concentration, and the time spent sniffing, the use of realistic breathing profiles—including sniffing—could become an important modulator for local tissue dose predictions. PMID:26986954

  2. Perception of Better Nasal Patency Correlates with Increased Mucosal Cooling after Surgery for Nasal Obstruction

    NASA Astrophysics Data System (ADS)

    Garcia, Guilherme; Sullivan, Corbin; Frank-Ito, Dennis; Kimbell, Julia; Rhee, John

    2014-11-01

    Nasal airway obstruction (NAO) is a common health problem with 340,000 patients undergoing surgery annually in the United States. Traditionally, otolaryngologists have focused on airspace cross-sectional areas and nasal resistance to airflow as objective measures of nasal patency, but neither of these variables correlated consistently with patients' symptoms. Given that the sensation of nasal airflow is also associated with mucosal cooling (i.e., heat loss) during inspiration, we investigated the correlation between the sensation of nasal obstruction and mucosal cooling in 10 patients before and after NAO surgery. Three-dimensional models of the nasal anatomy were created based on pre- and post-surgery computed tomography scans. Computational fluid dynamics (CFD) simulations were conducted to quantify nasal resistance and mucosal cooling. Patient-reported symptoms were measured by a visual analog scale and the Nasal Obstruction Symptom Evaluation (NOSE), a disease-specific quality of life questionnaire. Our results revealed that the subjective sensation of nasal obstruction correlated with both nasal resistance and heat loss, but the strongest correlation was between the NOSE score and the nasal surface area where heat flux exceeds 50 W /m2 . In conclusion, a significant post-operative increase in mucosal cooling correlates well with patients' perception of better nasal patency after NAO surgery.

  3. Cortical Feedback Control of Olfactory Bulb Circuits

    PubMed Central

    Boyd, Alison M.; Sturgill, James F.; Poo, Cindy; Isaacson, Jeffry S.

    2013-01-01

    SUMMARY Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951

  4. Measurement and Analysis of Olfactory Responses with the Aim of Establishing an Objective Diagnostic Method for Central Olfactory Disorders

    NASA Astrophysics Data System (ADS)

    Uno, Tominori; Wang, Li-Qun; Miwakeichi, Fumikazu; Tonoike, Mitsuo; Kaneda, Teruo

    In order to establish a new diagnostic method for central olfactory disorders and to identify objective indicators, we measured and analyzed brain activities in the parahippocampal gyrus and uncus, region of responsibility for central olfactory disorders. The relationship between olfactory stimulation and brain response at region of responsibility can be examined in terms of fitted responses (FR). FR in these regions may be individual indicators of changes in brain olfactory responses. In the present study, in order to non-invasively and objectively measure olfactory responses, an odor oddball task was conducted on four healthy volunteers using functional magnetic resonance imaging (fMRI) and a odorant stimulator with blast-method. The results showed favorable FR and activation in the parahippocampal gyrus or uncus in all subjects. In some subjects, both the parahippocampal gyrus and uncus were activated. Furthermore, activation was also confirmed in the cingulate gyrus, middle frontal gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus and insula. The hippocampus and uncus are known to be involved in the olfactory disorders associated with early-stage Alzheimer's disease and other olfactory disorders. In the future, it will be necessary to further develop the present measurement and analysis method to clarify the relationship between central olfactory disorders and brain activities and establish objective indicators that are useful for diagnosis.

  5. Olfactory acuity in theropods: palaeobiological and evolutionary implications.

    PubMed

    Zelenitsky, Darla K; Therrien, François; Kobayashi, Yoshitsugu

    2009-02-22

    This research presents the first quantitative evaluation of the olfactory acuity in extinct theropod dinosaurs. Olfactory ratios (i.e. the ratio of the greatest diameter of the olfactory bulb to the greatest diameter of the cerebral hemisphere) are analysed in order to infer the olfactory acuity and behavioural traits in theropods, as well as to identify phylogenetic trends in olfaction within Theropoda. A phylogenetically corrected regression of olfactory ratio to body mass reveals that, relative to predicted values, the olfactory bulbs of (i) tyrannosaurids and dromaeosaurids are significantly larger, (ii) ornithomimosaurs and oviraptorids are significantly smaller, and (iii) ceratosaurians, allosauroids, basal tyrannosauroids, troodontids and basal birds are within the 95% CI. Relative to other theropods, olfactory acuity was high in tyrannosaurids and dromaeosaurids and therefore olfaction would have played an important role in their ecology, possibly for activities in low-light conditions, locating food, or for navigation within large home ranges. Olfactory acuity was the lowest in ornithomimosaurs and oviraptorids, suggesting a reduced reliance on olfaction and perhaps an omnivorous diet in these theropods. Phylogenetic trends in olfaction among theropods reveal that olfactory acuity did not decrease in the ancestry of birds, as troodontids, dromaeosaurids and primitive birds possessed typical or high olfactory acuity. Thus, the sense of smell must have remained important in primitive birds and its presumed decrease associated with the increased importance of sight did not occur until later among more derived birds.

  6. Olfactory acuity in theropods: palaeobiological and evolutionary implications

    PubMed Central

    Zelenitsky, Darla K.; Therrien, François; Kobayashi, Yoshitsugu

    2008-01-01

    This research presents the first quantitative evaluation of the olfactory acuity in extinct theropod dinosaurs. Olfactory ratios (i.e. the ratio of the greatest diameter of the olfactory bulb to the greatest diameter of the cerebral hemisphere) are analysed in order to infer the olfactory acuity and behavioural traits in theropods, as well as to identify phylogenetic trends in olfaction within Theropoda. A phylogenetically corrected regression of olfactory ratio to body mass reveals that, relative to predicted values, the olfactory bulbs of (i) tyrannosaurids and dromaeosaurids are significantly larger, (ii) ornithomimosaurs and oviraptorids are significantly smaller, and (iii) ceratosaurians, allosauroids, basal tyrannosauroids, troodontids and basal birds are within the 95% CI. Relative to other theropods, olfactory acuity was high in tyrannosaurids and dromaeosaurids and therefore olfaction would have played an important role in their ecology, possibly for activities in low-light conditions, locating food, or for navigation within large home ranges. Olfactory acuity was the lowest in ornithomimosaurs and oviraptorids, suggesting a reduced reliance on olfaction and perhaps an omnivorous diet in these theropods. Phylogenetic trends in olfaction among theropods reveal that olfactory acuity did not decrease in the ancestry of birds, as troodontids, dromaeosaurids and primitive birds possessed typical or high olfactory acuity. Thus, the sense of smell must have remained important in primitive birds and its presumed decrease associated with the increased importance of sight did not occur until later among more derived birds. PMID:18957367

  7. [Clinical effects of nasal glucocorticoid on amelioration of nasal obstruction in patients with persistent non-allergic rhinitis].

    PubMed

    Sail, Giyab A; Zuo, Ke-jun; Xu, Geng

    2009-09-01

    To observe the efficacy of nasal glucocorticoid continuously used for 12 weeks on nasal obstruction in patients with persistent non-allergic rhinitis (PNAR). The changes of nasal obstruction, nasal resistance, nasal mucous membrane and quality of life in 47 patients with PNAR were observed. The efficacy of nasal glucocorticoid (Mometasone Furoate Nasal Spray, MFNS 200 microg/day) on patients with PNAR was evaluated. The results of nasal glucocorticoid (MFNS) continuously used for 12 weeks demonstrated: (1) After treatment, the nasal obstruction, nasal discharge, nasal obstruction related dizziness, headache, hyposmia, daily life activity, whole body fatigue, mental status were significantly improved (P < 0.05). (2) Nasal resistance showed significant amelioration (pre-treatment = 0.28 +/- 0.10, post- treatment = 0.16 +/- 0.05; F = 91.471, P < 0.05). (3) SF-36 questionnaire revealed that role physical, bodily pain, general health, role emotional had significant amelioration (P < 0.01). (4) SNOT-20 questionnaire revealed that the defatigation, impaired concentration, pinch the nose, nasal discharging into the throat, sleep quality had significant amelioration (P < 0.01). (5) Continued treatment for 12 weeks was better than 4 weeks, continued treatment had good effect. The study shows that nasal glucocorticoid improved the nasal obstruction, nasal resistance, nasal mucous membrane and quality of life in patients with PNAR.

  8. The prevalence of olfactory dysfunction in chronic rhinosinusitis.

    PubMed

    Kohli, Preeti; Naik, Akash N; Harruff, E Emily; Nguyen, Shaun A; Schlosser, Rodney J; Soler, Zachary M

    2017-02-01

    Many studies have reported that olfactory dysfunction frequently occurs in chronic rhinosinusitis (CRS) populations; however, the prevalence and degree of olfactory loss has not been systematically studied. The aims of this study were to use combined data to report the prevalence of olfactory dysfunction and to calculate weighted averages of olfactory test scores in CRS patients. A search was conducted in PubMed and Scopus, following the methods of Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Studies reporting the prevalence of olfactory dysfunction using objective measures or olfactory test scores using validated scales were included. A total of 47 articles were included in a systematic review and 35 in the pooled data analysis. The prevalence of olfactory dysfunction in chronic rhinosinusitis was found to be 30.0% using the Brief Smell Identification Test, 67.0% using the 40-item Smell Identification Test, and 78.2% using the total Sniffin' Sticks score. Weighted averages ± standard deviation of olfactory test scores were 25.96 ± 7.11 using the 40-item Smell Identification Test, 8.60 ± 2.81 using the Brief Smell Identification Test, 21.96 ± 8.88 using total Sniffin' Sticks score, 5.65 ± 1.51 using Sniffin' Sticks-Threshold, 9.21 ± 4.63 using Sniffin' Sticks-Discrimination, 9.47 ± 3.92 using Sniffin' Sticks-Identification, and 8.90 ± 5.14 using the Questionnaire for Olfactory Disorders-Negative Statements. In CRS populations, a significant percentage of patients experience olfactory dysfunction, and mean olfactory scores are within the dysosmic range. Laryngoscope, 2016 127:309-320, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  9. The Prevalence of Olfactory Dysfunction in Chronic Rhinosinusitis

    PubMed Central

    Kohli, Preeti; Naik, Akash N.; Harruff, E. Emily; Nguyen, Shaun A.; Schlosser, Rodney J.; Soler, Zachary M.

    2016-01-01

    Objective Many studies have reported that olfactory dysfunction frequently occurs in chronic rhinosinusitis (CRS) populations; however, the prevalence and degree of olfactory loss has not been systematically studied. The aims of this study are to use combined data to report the prevalence of olfactory dysfunction and to calculate weighted averages of olfactory test scores in CRS patients. Data Sources A search was conducted in PubMed and Scopus, following the methods of Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Review Methods Studies reporting the prevalence of olfactory dysfunction using objective measures or olfactory test scores using validated scales were included. Results A total of 47 articles were included in systematic review and 35 in the pooled data analysis. The prevalence of olfactory dysfunction in chronic rhinosinusitis was found to be 30.0% using the Brief Smell Identification Test, 67.0% using the 40-item Smell Identification Test, and 78.2% using the total Sniffin’ Sticks score. Weighted averages ± standard deviation of olfactory test scores were 25.96±7.11 using the 40-item Smell Identification Test, 8.60±2.81 using the Brief Smell Identification Test, 21.96±8.88 using total Sniffin’ sticks score, 5.65±1.51 using Sniffin’ Sticks threshold, 9.21±4.63 using Sniffin’ Sticks discrimination, 9.47±3.92 using Sniffin’ Sticks Identification, and 8.90±5.14 using the questionnaire for olfactory disorders-negative statements. Conclusion In chronic rhinosinusitis populations, a significant percentage of patients experience olfactory dysfunction and mean olfactory scores are within the dysosmic range. PMID:27873345

  10. Aquatic adaptations in the nose of carnivorans: evidence from the turbinates

    PubMed Central

    Van Valkenburgh, Blaire; Curtis, Abigail; Samuels, Joshua X; Bird, Deborah; Fulkerson, Brian; Meachen-Samuels, Julie; Slater, Graham J

    2011-01-01

    Inside the mammalian nose lies a labyrinth of bony plates covered in epithelium collectively known as turbinates. Respiratory turbinates lie anteriorly and aid in heat and water conservation, while more posterior olfactory turbinates function in olfaction. Previous observations on a few carnivorans revealed that aquatic species have relatively large, complex respiratory turbinates and greatly reduced olfactory turbinates compared with terrestrial species. Body heat is lost more quickly in water than air and increased respiratory surface area likely evolved to minimize heat loss. At the same time, olfactory surface area probably diminished due to a decreased reliance on olfaction when foraging under water. To explore how widespread these adaptations are, we documented scaling of respiratory and olfactory turbinate surface area with body size in a variety of terrestrial, freshwater, and marine carnivorans, including pinnipeds, mustelids, ursids, and procyonids. Surface areas were estimated from high-resolution CT scans of dry skulls, a novel approach that enabled a greater sampling of taxa than is practical with fresh heads. Total turbinate, respiratory, and olfactory surface areas correlate well with body size (r2 ≥ 0.7), and are relatively smaller in larger species. Relative to body mass or skull length, aquatic species have significantly less olfactory surface area than terrestrial species. Furthermore, the ratio of olfactory to respiratory surface area is associated with habitat. Using phylogenetic comparative methods, we found strong support for convergence on 1 : 3 proportions in aquatic taxa and near the inverse in terrestrial taxa, indicating that aquatic mustelids and pinnipeds independently acquired similar proportions of olfactory to respiratory turbinates. Constraints on turbinate surface area in the nasal chamber may result in a trade-off between respiratory and olfactory function in aquatic mammals. PMID:21198587

  11. Immediate effect of benzalkonium chloride in decongestant nasal spray on the human nasal mucosal temperature.

    PubMed

    Lindemann, J; Leiacker, R; Wiesmiller, K; Rettinger, G; Keck, T

    2004-08-01

    Benzalkonium chloride is a preservative commonly used in nasal decongestant sprays. It has been suggested that benzalkonium chloride may be harmful to the nasal mucosa. Decongestion with the vasoconstrictor xylometazoline containing benzalkonium chloride has been shown to cause a significant reduction of the nasal mucosal temperature. The purpose of the present study was to determine the short-term influence of xylometazoline nasal spray with and without benzalkonium chloride on the nasal mucosal temperature. Healthy volunteers (30) were included in the study. Fifteen volunteers received xylometazoline nasal spray (1.0 mg/mL) containing benzalkonium chloride (0.1 mg/mL) and 15 age-matched subjects, received xylometazoline nasal spray without benzalkonium chloride. Using a miniaturized thermocouple the septal mucosal temperature was continuously measured at defined intranasal detection sites before and after application of the nasal spray. The mucosal temperature values did not significantly differ between the group receiving xylometazoline containing benzalkonium chloride and the group receiving xylometazoline spray without benzalkonium chloride before and after decongestion (P > 0.05). In both study groups septal mucosal temperatures significantly decreased after decongestion (P < 0.05) because of a reduction of the nasal mucosal blood flow following vasoconstriction. This study indicates that benzalkonium chloride itself does not seem to influence nasal blood flow and nasal mucosal temperature in topical nasal decongestants.

  12. Olfactory discrimination: when vision matters?

    PubMed

    Demattè, M Luisa; Sanabria, Daniel; Spence, Charles

    2009-02-01

    Many previous studies have attempted to investigate the effect of visual cues on olfactory perception in humans. The majority of this research has only looked at the modulatory effect of color, which has typically been explained in terms of multisensory perceptual interactions. However, such crossmodal effects may equally well relate to interactions taking place at a higher level of information processing as well. In fact, it is well-known that semantic knowledge can have a substantial effect on people's olfactory perception. In the present study, we therefore investigated the influence of visual cues, consisting of color patches and/or shapes, on people's olfactory discrimination performance. Participants had to make speeded odor discrimination responses (lemon vs. strawberry) while viewing a red or yellow color patch, an outline drawing of a strawberry or lemon, or a combination of these color and shape cues. Even though participants were instructed to ignore the visual stimuli, our results demonstrate that the accuracy of their odor discrimination responses was influenced by visual distractors. This result shows that both color and shape information are taken into account during speeded olfactory discrimination, even when such information is completely task irrelevant, hinting at the automaticity of such higher level visual-olfactory crossmodal interactions.

  13. Surgical management of nasal obstruction.

    PubMed

    Moche, Jason A; Palmer, Orville

    2012-05-01

    The proper evaluation of the patient with nasal obstruction relies on a comprehensive history and physical examination. Once the site of obstruction is accurately identified, the patient may benefit from a trial of medical management. At times however, the definitive treatment of nasal obstruction relies on surgical management. Recognizing the nasal septum, nasal valve, and turbinates as possible sites of obstruction and addressing them accordingly can dramatically improve a patient's nasal breathing. Conservative resection of septal cartilage, submucous reduction of the inferior turbinate, and structural grafting of the nasal valve when appropriate will provide the optimal improvement in nasal airflow and allow for the most stable results. Copyright © 2012. Published by Elsevier Inc.

  14. Snoring and Nasal Congestion

    MedlinePlus

    ... treat the various causes of nasal congestion include: Topical nasal steroid spray Topical nasal antihistamine spray Oral antibiotic (in case of ... include more than just the decrease in oxygen levels at night during the apnea episodes. They also ...

  15. The Pig Olfactory Brain: A Primer

    PubMed Central

    Feldman, Sanford; Osterberg, Stephen K.

    2016-01-01

    Despite the fact that pigs are reputed to have excellent olfactory abilities, few studies have examined regions of the pig brain involved in the sense of smell. The present study provides an overview of the olfactory bulb, anterior olfactory nucleus, and piriform cortex of adult pigs using several approaches. Nissl, myelin, and Golgi stains were used to produce a general overview of the organization of the regions and confocal microscopy was employed to examine 1) projection neurons, 2) GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, 3) neuromodulatory fibers (cholinergic and serotonergic), and 4) glia (astrocytes and microglia). The findings revealed that pig olfactory structures are quite large, highly organized and follow the general patterns observed in mammals. PMID:26936231

  16. [Clinical and magnetic resonance imaging characteristics of isolated congenital anosmia].

    PubMed

    Liu, Jian-feng; Wang, Jian; You, Hui; Ni, Dao-feng; Yang, Da-zhang

    2010-05-25

    To report a series of patients with isolated congenital anosmia and summarize their clinical and magnetic resonance imaging (MRI) characteristics. Twenty patients with isolated congenital anosmia were reviewed retrospectively. A thorough medical and chemosensory history, physical examination, nasal endoscopy, T&T olfactory testing, olfactory event-related potentials, sinonasal computed tomography scan and magnetic resonance image of olfactory pathway were performed in all patients. Neither ENT physical examination nor nasal endoscopy was remarkable. Subjective olfactory testing indicated all of them were of anosmia. No olfactory event-related potentials to maximal stimulus were obtained. Computed tomography scan was normal. MRI revealed the absence of olfactory bulbs and tracts in all cases. And hypoplasia or aplasia of olfactory sulcus was found in all cases. All the patients had normal sex hormone level. The diagnosis of isolated congenital anosmia is established on chief complaints, physical examination, olfactory testing and olfactory imaging. MRI of olfactory pathway is indispensable.

  17. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments.

    PubMed

    Peng, Katherine Y; Mathews, Paul M; Levy, Efrat; Wilson, Donald A

    2017-02-20

    While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Topical nasal decongestant oxymetazoline (0.05%) provides relief of nasal symptoms for 12 hours.

    PubMed

    Druce, H M; Ramsey, D L; Karnati, S; Carr, A N

    2018-05-22

    Nasal congestion, often referred to as stuffy nose or blocked nose is one of the most prevalent and bothersome symptoms of an upper respiratory tract infection. Oxymetazoline, a widely used intranasal decongestant, offers fast symptom relief, but little is known about the duration of effect. The results of 2 randomized, double-blind, vehicle-controlled, single-dose, parallel, clinical studies (Study 1, n=67; Study 2, n=61) in which the efficacy of an oxymetazoline (0.05% Oxy) nasal spray in patients with acute coryzal rhinitis was assessed over a 12-hour time-period. Data were collected on both subjective relief of nasal congestion (6-point nasal congestion scale) and objective measures of nasal patency (anterior rhinomanometry) in both studies. A pooled study analysis showed statistically significant changes from baseline in subjective nasal congestion for 0.05% oxymetazoline and vehicle at each hourly time-point from Hour 1 through Hour 12 (marginally significant at Hour 11). An objective measure of nasal flow was statistically significant at each time-point up to 12 hours. Adverse events on either treatment were infrequent. The number of subjects who achieved an improvement in subjective nasal congestion scores of at least 1.0 was significantly higher in the Oxy group vs. vehicle at all hourly time-points on a 6-point nasal congestion scale. This study shows for the first time, that oxymetazoline provides both statistically significant and clinically meaningful relief of nasal congestion and improves nasal airflow for up to 12 hours following a single dose.

  19. Cortical feedback control of olfactory bulb circuits.

    PubMed

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Olfactory-corporeal reflex: description of a new reflex and its role in the erectile process.

    PubMed

    Shafik, A

    1997-01-01

    The dog approaches the bitch and smells the vulva. The relationship which seems to exist between a special smell in the bitch and sexual arousal in the male dog was investigated. 12 male dogs and 25 bitches were studied. The bitches were divided into five equal groups, each representing 1 of the 5 phases of the estrous cycle. A vaginal swab that soaked in the bitches' vaginal secretions was divided into two pieces: one was sent for estradiol and progesterone determination, and the other was smelt by the male dog. The responses of the intracorporeal pressure (IP) and the electromyographic activity of the bulbo- and ischiocavernosus (BC, IC) muscles of the male dog to the smelling of bitch's vaginal odor were assessed. The pressure response was also determined 10 min and 1 h after either the nasal mucosa or the corporeal tissue was anesthetized. Elevated IP was recorded in 12 of 12, 10 of 12 and 8 of 12 dogs smelling vaginal swabs of bitches in metestrus (p < 0.001), estrus (p < 0.001), and diestrus (p < 0.01), respectively. No pressure response occurred when the vaginal swab was smelt while the nasal mucosa or the corporeal tissue was anesthetized. The BC and IC muscles exhibited no response to smelling of the vaginal swab of bitches in any phase of the estrous cycle. The results were reproducible. The study showed that the IP increased with smelling of vaginal secretions containing high progesterone levels, whereas estradiol-17 beta did not effect IP elevations. The higher the progesterone level, the greater the IP. The increased IP is not due to BC and IC muscle contraction. It is postulated that a reflex relationship exists between IP elevation and olfactory stimulation. This reflex response was reproducible and was not evoked when the two arms of the reflex were anesthetized. We call this reflex 'olfactory-corporeal reflex'. This reflex seems to prime the male dog for sexual intercourse.

  1. Evaluation of nasal IgA secretion in normal subjects by nasal spray and aspiration.

    PubMed

    Fujimoto, Chisa; Kido, Hiroshi; Sawabuchi, Takako; Mizuno, Dai; Hayama, Masaki; Yanagawa, Hiroaki; Takeda, Noriaki

    2009-06-01

    Nasal washing (NW) is a popular method for collecting human nasal lavage fluid. However, for NW the subject must be trained, and the method is unsuitable for field studies on untrained subjects. To overcome this problem, we have developed an easy and painless method, a nasal spray and aspiration (NSA) method. This method is different from NW in that the nasal cavity is misted over with saline, and the nasal lavage fluid is aspirated from the nostrils through a silicon tube. First, nasal lavage fluid was obtained twice by NSA with an interval of a week between lavages to evaluate intraindividual variability, and the IgA and protein levels in the nasal lavage fluid were measured by enzyme-linked immunosorbent assay and bicinchoninic acid assay, respectively. Next, the IgA value determined by NSA was compared with that by NW in another 12 normal subjects 2 days after NSA. In 10 normal subjects, mean volume of saline sprayed into the nose was 0.46+/-0.15 ml (mean+/-S.D.). Mean volume of aspirated nasal lavage fluid containing both sprayed saline and nasal secretion was 0.44+/-0.37 ml. The mean IgA level/mg protein in the nasal lavage fluid determined by NSA was 112+/-18 microg/mg protein at the first and 99+/-20 at the second times of measurement, being highly reproducible. The mean value by NSA was 114+/-19 microg/mg protein, being almost the same as that by NW of 99+/-27. These findings suggest that the IgA level/mg protein in nasal lavage fluid determined by NSA instead of NW might be useful for assessing the variability of nasal IgA secretion.

  2. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    PubMed

    Zhao, Kai; Blacker, Kara; Luo, Yuehao; Bryant, Bruce; Jiang, Jianbo

    2011-01-01

    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  3. Tbr2 Deficiency in Mitral and Tufted Cells Disrupts Excitatory–Inhibitory Balance of Neural Circuitry in the Mouse Olfactory Bulb

    PubMed Central

    Mizuguchi, Rumiko; Naritsuka, Hiromi; Mori, Kensaku; Mao, Chai-An; Klein, William H.; Yoshihara, Yoshihiro

    2013-01-01

    The olfactory bulb (OB) is the first relay station in the brain where odor information from the olfactory epithelium is integrated, processed through its intrinsic neural circuitry, and conveyed to higher olfactory centers. Compared with profound mechanistic insights into olfactory axon wiring from the nose to the OB, little is known about the molecular mechanisms underlying the formation of functional neural circuitry among various types of neurons inside the OB. T-box transcription factor Tbr2 is expressed in various types of glutamatergic excitatory neurons in the brain including the OB projection neurons, mitral and tufted cells. Here we generated conditional knockout mice in which the Tbr2 gene is inactivated specifically in mitral and tufted cells from late embryonic stages. Tbr2 deficiency caused cell-autonomous changes in molecular expression including a compensatory increase of another T-box member, Tbr1, and a concomitant shift of vesicular glutamate transporter (VGluT) subtypes from VGluT1 to VGluT2. Tbr2-deficient mitral and tufted cells also exhibited anatomical abnormalities in their dendritic morphology and projection patterns. Additionally, several non-cell-autonomous phenotypes were observed in parvalbumin-, calbindin-, and 5T4-positive GABAergic interneurons. Furthermore, the number of dendrodendritic reciprocal synapses between mitral/tufted cells and GABAergic interneurons was significantly reduced. Upon stimulation with odorants, larger numbers of mitral and tufted cells were activated in Tbr2 conditional knockout mice. These results suggest that Tbr2 is required for not only the proper differentiation of mitral and tufted cells, but also for the establishment of functional neuronal circuitry in the OB and maintenance of excitatory–inhibitory balance crucial for odor information processing. PMID:22745484

  4. Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory balance of neural circuitry in the mouse olfactory bulb.

    PubMed

    Mizuguchi, Rumiko; Naritsuka, Hiromi; Mori, Kensaku; Mao, Chai-An; Klein, William H; Yoshihara, Yoshihiro

    2012-06-27

    The olfactory bulb (OB) is the first relay station in the brain where odor information from the olfactory epithelium is integrated, processed through its intrinsic neural circuitry, and conveyed to higher olfactory centers. Compared with profound mechanistic insights into olfactory axon wiring from the nose to the OB, little is known about the molecular mechanisms underlying the formation of functional neural circuitry among various types of neurons inside the OB. T-box transcription factor Tbr2 is expressed in various types of glutamatergic excitatory neurons in the brain including the OB projection neurons, mitral and tufted cells. Here we generated conditional knockout mice in which the Tbr2 gene is inactivated specifically in mitral and tufted cells from late embryonic stages. Tbr2 deficiency caused cell-autonomous changes in molecular expression including a compensatory increase of another T-box member, Tbr1, and a concomitant shift of vesicular glutamate transporter (VGluT) subtypes from VGluT1 to VGluT2. Tbr2-deficient mitral and tufted cells also exhibited anatomical abnormalities in their dendritic morphology and projection patterns. Additionally, several non-cell-autonomous phenotypes were observed in parvalbumin-, calbindin-, and 5T4-positive GABAergic interneurons. Furthermore, the number of dendrodendritic reciprocal synapses between mitral/tufted cells and GABAergic interneurons was significantly reduced. Upon stimulation with odorants, larger numbers of mitral and tufted cells were activated in Tbr2 conditional knockout mice. These results suggest that Tbr2 is required for not only the proper differentiation of mitral and tufted cells, but also for the establishment of functional neuronal circuitry in the OB and maintenance of excitatory-inhibitory balance crucial for odor information processing.

  5. Functional anatomy of the nasal bones and adjacent structures. Consequences for nasal surgery.

    PubMed

    Popko, M; Verlinde-Schellekens, S A M W; Huizing, E H; Bleys, R L A W

    2018-03-01

    The periosteum of the nasal bones, the periosteal-perichondrial nasal envelope, and the cartilaginous support of the bony vault were studied in serial coronal sections of four human cadaver noses. To differentiate between the various tissue components, the sections were stained according to Mallory-Cason and Verhoeff-Van Gieson stain. The results demonstrated: 1. the presence of clearly distinguishable layers of the periosteum covering the nasal bones; 2. the presence of a continuous periosteal-perichondrial covering of the bony and cartilaginous nasal vaults; 3. the way the cartilaginous support of the bony vault is constructed. The findings described in the present study may have clinical relevance in nasal surgery.

  6. Maternal odours induce Fos in the main but not the accessory olfactory bulbs of neonatal male and female ferrets.

    PubMed

    Chang, Y M; Kelliher, K R; Baum, M J

    2001-06-01

    Previous research demonstrated that exposing gonadectomized adult ferrets to odours in oestrous female bedding induced nuclear Fos-immunoreactivity (Fos-IR; a marker of neuronal activity) in the main as opposed to the accessory olfactory system in a sexually dimorphic fashion, which was further augmented in both sexes by treatment with testosterone propionate. Ferrets are born in an altricial state and presumably use maternal odour cues to locate the nipples until the eyes open after postnatal (P) day 23. We investigated whether maternal odours augment neuronal Fos preferentially in the main versus accessory olfactory system of neonatal male and female ferret kits. Circulating testosterone levels peak in male ferrets on postnatal day P15, and mothers provide maximal anogenital stimulation (AGS) to males at this same age. Therefore, we assessed the ability of maternal odours to augment Fos-IR in the accessory olfactory bulb (AOB), the main olfactory bulb (MOB) and other forebrain regions of male and female ferret kits on P15 and investigated whether artificial AGS (provided with a paintbrush) would further enhance any effects of maternal odours. After separation from their mothers for 4 h, groups of male and female kits that were placed for 1.5 h with their anaesthetized mother had significantly more Fos-IR cells in the MOB granule cell layer and in the anterior-cortical amygdala, but not in the AOB cell layer, compared to control kits that were left on the heating pad. Artificial AGS failed to amplify these effects of maternal odours. Maternal odours (with or without concurrent AGS) failed to augment neuronal Fos-IR in medial amygdaloid and hypothalamic regions that are activated in adult ferrets by social odours. In neonatal ferrets of both sexes, as in adults, socially relevant odours are detected by the main olfactory epithelium and initially processed by the MOB and the anterior-cortical amygdala. In neonates, unlike adults, medial amygdaloid and hypothalamic

  7. Emotional stimulation alters olfactory sensitivity and odor judgment.

    PubMed

    Pollatos, Olga; Kopietz, Rainer; Linn, Jennifer; Albrecht, Jessica; Sakar, Vehbi; Anzinger, Andrea; Schandry, Rainer; Wiesmann, Martin

    2007-07-01

    Emotions have a strong influence on the perception of visual and auditory stimuli. Only little is known about the relation between emotional stimulation and olfactory functions. The present study investigated the relationship between the presentation of affective pictures, olfactory functions, and sex. Olfactory performance was assessed in 32 subjects (16 male). Olfactory sensitivity was significantly reduced following unpleasant picture presentation for all subjects and following pleasant picture presentation for male subjects only. Pleasantness and intensity ratings of a neutral suprathreshold odor were related to the valence of the pictures: After unpleasant picture presentation, the odor was rated as less pleasant and more intense, whereas viewing positive pictures induced a significant increase in reported odor pleasantness. We conclude that inducing a negative emotional state reduces olfactory sensitivity. A relation to functional deviations within the primary olfactory cortices is discussed.

  8. Comparison between Perceptual Assessments of Nasality and Nasalance Scores

    ERIC Educational Resources Information Center

    Brunnegard, Karin; Lohmander, Anette; van Doorn, Jan

    2012-01-01

    Background: There are different reports of the usefulness of the Nasometer[TM] as a complement to listening, often as correlation calculations between listening and nasalance measurements. Differences between findings have been attributed to listener experience and types of speech stimuli. Aims: To compare nasalance scores from the Nasometer with…

  9. Toxicology and carcinogenesis studies of diethylamine (CAS No. 109-89-7) in F344/N rats and B6C3F1 mice (inhalation studies).

    PubMed

    2011-10-01

    Diethylamine is used mainly as a chemical intermediate to produce the corrosion inhibitor N,N-diethylethanolamine and a lesser amount is used to produce pesticides and insect repellants and in rubber processing. Diethylamine was nominated for study by the National Institute of Environmental Health Sciences based upon its high production volume and ubiquitous natural occurrence in trace amounts and because of the lack of chronic toxicity and carcinogenicity data on the chemical. Male and female F344/N rats and B6C3F1 mice were exposed to diethylamine (approximately 99.9% pure) by inhalation for 2 weeks, 3 months, or 2 years. Genetic toxicology studies were conducted in bacterial mutagenicity tester strains and mouse peripheral blood erythrocytes. 2-WEEK STUDY IN RATS: Groups of five male and five female rats were exposed to diethylamine vapor at concentrations of 0, 31, 62.5, 125, 250, or 500 ppm, 6 hours plus T90 (12 minutes) per day, 5 days per week for 16 days. All rats survived to the end of the study. The mean body weights of 250 and 500 ppm males and females and 125 ppm males were significantly less than those of the chamber controls. Clinical findings included lethargy, nasal/eye discharge, abnormal breathing, thinness, eye abnormalities, and discolored urine. The thymus weights of males exposed to 125 ppm or greater and females exposed to 500 ppm were significantly less than those of the chamber controls. Focal eye lesions were noted at necropsy in four males and three females exposed to 500 ppm and one male exposed to 250 ppm. Crusty noses were observed in most 500 ppm males and females and in two 250 ppm males. Suppurative inflammation, necrosis of the turbinates (except in one 125 ppm female), and squamous metaplasia of the respiratory epithelium of the nose were present in all rats exposed to 125 ppm or greater. Ulcer of the respiratory epithelium and atrophy of the olfactory epithelium occurred in all rats exposed to 250 or 500 ppm, and ulcer of the

  10. Depicting the inner and outer nose: the representation of the nose and the nasal mucosa on the human primary somatosensory cortex (SI).

    PubMed

    Gastl, Mareike; Brünner, Yvonne F; Wiesmann, Martin; Freiherr, Jessica

    2014-09-01

    The nose is important not only for breathing, filtering air, and perceiving olfactory stimuli. Although the face and hands have been mapped, the representation of the internal and external surface of the nose on the primary somatosensory cortex (SI) is still poorly understood. To fill this gap functional magnetic resonance imaging (fMRI) was used to localize the nose and the nasal mucosa in the Brodman areas (BAs) 3b, 1, and 2 of the human postcentral gyrus (PG). Tactile stimulation during fMRI was applied via a customized pneumatically driven device to six stimulation sites: the alar wing of the nose, the lateral nasal mucosa, and the hand (serving as a reference area) on the left and right side of the body. Individual representations could be discriminated for the left and right hand, for the left nasal mucosa and left alar wing of the nose in BA 3b and BA 1 by comparing mean activation maxima and Euclidean distances. Right-sided nasal conditions and conditions in BA 2 could further be separated by different Euclidean distances. Regarding the alar wing of the nose, the results concurred with the classic sensory homunculus proposed by Penfield and colleagues. The nasal mucosa was not only determined an individual and bilateral representation, its position on the somatosensory cortex is also situated closer to the caudal end of the PG compared to that of the alar wing of the nose and the hand. As SI is commonly activated during the perception of odors, these findings underscore the importance of the knowledge of the representation of the nasal mucosa on the primary somatosensory cortex, especially for interpretation of results of functional imaging studies about the sense of smell. Copyright © 2014 Wiley Periodicals, Inc.

  11. Perceiving Nasal Patency through Mucosal Cooling Rather than Air Temperature or Nasal Resistance

    PubMed Central

    Zhao, Kai; Blacker, Kara; Luo, Yuehao; Bryant, Bruce; Jiang, Jianbo

    2011-01-01

    Adequate perception of nasal airflow (i.e., nasal patency) is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive.The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA) were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss) being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool. PMID:22022361

  12. Heterogeneous distribution of G protein alpha subunits in the main olfactory and vomeronasal systems of Rhinella (Bufo) arenarum tadpoles.

    PubMed

    Jungblut, Lucas D; Paz, Dante A; López-Costa, Juan J; Pozzi, Andrea G

    2009-10-01

    We evaluated the presence of G protein subtypes Galpha(o), Galpha(i2), and Galpha(olf) in the main olfactory system (MOS) and accessory or vomeronasal system (VNS) of Rhinella (Bufo) arenarum tadpoles, and here describe the fine structure of the sensory cells in the olfactory epithelium (OE) and vomeronasal organ (VNO). The OE shows olfactory receptor neurons (ORNs) with cilia in the apical surface, and the vomeronasal receptor neurons (VRNs) of the VNO are covered with microvilli. Immunohistochemistry detected the presence of at least two segregated populations of ORNs throughout the OE, coupled to Galpha(olf) and Galpha(o). An antiserum against Galpha(i2) was ineffective in staining the ORNs. In the VNO, Galpha(o) neurons stained strongly but lacked immunoreactivity to any other Galpha subunit in all larval stages analyzed. Western blot analyses and preabsorption experiments confirmed the specificity of the commercial antisera used. The functional significance of the heterogeneous G-protein distribution in R. arenarum tadpoles is not clear, but the study of G- protein distributions in various amphibian species is important, since this vertebrate group played a key role in the evolution of tetrapods. A more complete knowledge of the amphibian MOS and VNS would help to understand the functional organization and evolution of vertebrate chemosensory systems. This work demonstrates, for the first time, the existence of a segregated distribution of G-proteins in the OE of R. arenarum tadpoles.

  13. Parallel processing of afferent olfactory sensory information

    PubMed Central

    Vaaga, Christopher E.

    2016-01-01

    Key points The functional synaptic connectivity between olfactory receptor neurons and principal cells within the olfactory bulb is not well understood.One view suggests that mitral cells, the primary output neuron of the olfactory bulb, are solely activated by feedforward excitation.Using focal, single glomerular stimulation, we demonstrate that mitral cells receive direct, monosynaptic input from olfactory receptor neurons.Compared to external tufted cells, mitral cells have a prolonged afferent‐evoked EPSC, which serves to amplify the synaptic input.The properties of presynaptic glutamate release from olfactory receptor neurons are similar between mitral and external tufted cells.Our data suggest that afferent input enters the olfactory bulb in a parallel fashion. Abstract Primary olfactory receptor neurons terminate in anatomically and functionally discrete cortical modules known as olfactory bulb glomeruli. The synaptic connectivity and postsynaptic responses of mitral and external tufted cells within the glomerulus may involve both direct and indirect components. For example, it has been suggested that sensory input to mitral cells is indirect through feedforward excitation from external tufted cells. We also observed feedforward excitation of mitral cells with weak stimulation of the olfactory nerve layer; however, focal stimulation of an axon bundle entering an individual glomerulus revealed that mitral cells receive monosynaptic afferent inputs. Although external tufted cells had a 4.1‐fold larger peak EPSC amplitude, integration of the evoked currents showed that the synaptic charge was 5‐fold larger in mitral cells, reflecting the prolonged response in mitral cells. Presynaptic afferents onto mitral and external tufted cells had similar quantal amplitude and release probability, suggesting that the larger peak EPSC in external tufted cells was the result of more synaptic contacts. The results of the present study indicate that the monosynaptic

  14. An olfactory demography of a diverse metropolitan population.

    PubMed

    Keller, Andreas; Hempstead, Margaret; Gomez, Iran A; Gilbert, Avery N; Vosshall, Leslie B

    2012-10-10

    Human perception of the odour environment is highly variable. People vary both in their general olfactory acuity as well as in if and how they perceive specific odours. In recent years, it has been shown that genetic differences contribute to variability in both general olfactory acuity and the perception of specific odours. Odour perception also depends on other factors such as age and gender. Here we investigate the influence of these factors on both general olfactory acuity and on the perception of 66 structurally and perceptually different odours in a diverse subject population. We carried out a large human olfactory psychophysics study of 391 adult subjects in metropolitan New York City, an ethnically and culturally diverse North American metropolis. 210 of the subjects were women and the median age was 34.6 years (range 19-75). We recorded ~2,300 data points per subject to obtain a comprehensive perceptual phenotype, comprising multiple perceptual measures of 66 diverse odours. We show that general olfactory acuity correlates with gender, age, race, smoking habits, and body type. Young, female, non-smoking subjects had the highest average olfactory acuity. Deviations from normal body type in either direction were associated with decreased olfactory acuity. Beyond these factors we also show that, surprisingly, there are many odour-specific influences of race, age, and gender on olfactory perception. We show over 100 instances in which the intensity or pleasantness perception of an odour is significantly different between two demographic groups. These data provide a comprehensive snapshot of the olfactory sense of a diverse population. Olfactory acuity in the population is most strongly influenced by age, followed by gender. We also show a large number of diverse correlations between demographic factors and the perception of individual odours that may reflect genetic differences as well as different prior experiences with these odours between demographic groups.

  15. Comparison of Early-period Results of Nasal Splint and Merocel Nasal Packs in Septoplasty

    PubMed Central

    Bingöl, Fatih; Budak, Ali; Şimşek, Eda; Kılıç, Korhan; Bingöl, Buket Özel

    2017-01-01

    Objective Several types of nasal packs are used postoperatively in septoplasty. In this study, we compared two commonly used nasal packing materials, the intranasal septal splint with airway and Merocel tampon, in terms of pain, bleeding, nasal obstruction, eating difficulties, discomfort in sleep, and pain and bleeding during removal of packing in the early period. Methods The study group included 60 patients undergoing septoplasty. Patients were divided into two groups (n=30 in each group). An intranasal splint with airway was used for the patients in the first group after septoplasty, while Merocel nasal packing was used for the second group. Patients were investigated in terms of seven different factors - pain, bleeding while the tampon was in place, nasal obstruction, eating difficulties, night sleep, pain during removal of the nasal packing, and bleeding after removal of packing. Results There was no statistically significant difference between the groups in terms of pain 24 hours after operation (p=0.05), while visual analog scale (VAS) scores for nasal obstruction, night sleep, eating difficulties, and pain during packing removal were lower in the nasal splint group with a statistically significant difference (p<0.05). There was no statistically significant difference between the groups in terms of postoperative bleeding (p=0.23). Significantly less bleeding occurred during removal of the packing in the nasal splint group (p<0.05). Conclusion Our study indicates that the nasal splint was more comfortable and effective in terms of causing lesser bleeding and pain during removal of packing. PMID:29392071

  16. Clinical features of olfactory disorders in patients seeking medical consultation

    PubMed Central

    Chen, Guowei; Wei, Yongxiang; Miao, Xutao; Li, Kunyan; Ren, Yuanyuan; Liu, Jia

    2013-01-01

    Background Olfactory disorders are common complaints in ENT clinics. We investigated causes and relevant features of olfactory disorders and the need for gustatory testing in patients with olfactory dysfunction. Material/Methods A total of 140 patients seeking medical consultations were enrolled. All patients were asked about their olfactory disorders in a structured interview of medical history and underwent thorough otolaryngologic examinations and imaging of the head. Results Causes of olfactory disorders were classified as: upper respiratory tract infection (URTI), sinonasal diseases (NSD), head trauma, idiopathic, endoscopic sinus surgery, congenital anosmia, and other causes. Each of the various causes of olfactory dysfunction had its own distinct clinical features. Nineteen of 54 patients whose gustation was assessed had gustatory disorders. Conclusions The leading causes of olfactory dysfunction were URTI, NSD, head trauma, and idiopathic causes. Gustatory disorders were fairly common in patients with olfactory dysfunction. High priority should be given to complaints of olfactory disorders. PMID:23748259

  17. Nasalance measures in Cantonese-speaking women.

    PubMed

    Whitehill, T L

    2001-03-01

    To establish and evaluate stimulus materials for nasalance measurement in Cantonese speakers, to provide normative data for Cantonese-speaking women, and to evaluate session-to-session reliability of nasalance measures. One hundred forty-one Cantonese-speaking women with normal resonance who were students in the Department of Speech and Hearing Sciences, University of Hong Kong. Participants read aloud four speech stimuli: oral sentences, nasal sentences, an oral paragraph (similar to the Zoo Passage), and an oral-nasal paragraph (similar to the Rainbow Passage). Data were collected and analyzed using the Kay Nasometer 6200. Data collection was repeated for a subgroup of speakers (n = 28) on a separate day. Nasalance materials were evaluated by using statistical tests of difference and correlation. Group mean (standard deviation) nasalance scores for oral sentences, nasal sentences, oral paragraph, and oral-nasal paragraph were 16.79 (5.99), 55.67 (7.38), 13.68 (7.16), and 35.46 (6.22), respectively. There was a significant difference in mean nasalance scores for oral versus nasal materials. Correlations between stimuli were as expected, ranging from 0.43 to 0.91. Session-to-session reliability was within 5 points for over 95% of speakers for the oral stimuli but for less than 76% of speakers for the nasal and oral-nasal stimuli. Standard nasalance materials have been developed for Cantonese, and normative data have been established for Cantonese women. Evaluation of materials indicated acceptable differentiation between oral and nasal materials. Two stimuli (nasal sentences and oral paragraph) are recommended for future use. Comparison with findings from other languages showed similarities in scores; possible language-specific differences are discussed. Session-to-session reliability was poorer for nasal than oral stimuli.

  18. Nasal septal hematoma

    MedlinePlus

    ... medlineplus.gov/ency/article/001292.htm Nasal septal hematoma To use the sharing features on this page, please enable JavaScript. A nasal septal hematoma is a collection of blood within the septum ...

  19. Same Noses, Different Nasalance Scores: Data from Normal Subjects and Cleft Palate Speakers for Three Systems for Nasalance Analysis

    ERIC Educational Resources Information Center

    Bressmann, Tim; Klaiman, Paula; Fischbach, Simone

    2006-01-01

    Nasalance scores from the Nasometer, the NasalView and the OroNasal System were compared. The data was collected from 50 normal participants and 19 hypernasal patients with cleft palate. The Nasometer had the lowest nasalance scores for the non-nasal Zoo Passage and that the OroNasal System had the lowest nasalance scores for the Nasal Sentences.…

  20. Nasal hydropulsion.

    PubMed

    Elizabeth, Ashbaugh

    2013-08-01

    Intranasal tumors of dogs and cats pose a diagnostic and therapeutic challenge for the small animal practitioner. A simplified flushing technique to biopsy and debulk nasal tumors, that often results in immediate clinical relief for the patient is described. This technique can also be utilized to remove nasal foreign bodies. © 2013 Elsevier Inc. All rights reserved.

  1. Minimal olfactory perception during sleep: why odor alarms will not work for humans.

    PubMed

    Carskadon, Mary A; Herz, Rachel S

    2004-05-01

    To examine olfactory arousal threshold during sleep in comparison to an auditory tone. On night 1, participants rated odor intensity when awake and experienced olfactory stimuli during stage 1 sleep. Night 2 involved stage 2, stage 4, and rapid-eye-movement (REM) sleep trials using the "staircase" threshold-detection method. Electroencephalogram, electrooculogram, electromyogram, electrocardiogram, and respiration were recorded along with behavioral response. An 800-Hz tone was given on trials when odors failed to arouse. Participants slept in individual rooms. Stimulus-delivery systems were operated from a separate room, where an experimenter observed physiologic recordings and behavioral responses. Three healthy men and 3 women aged 20 to 25 years (mean, 22 years). Two odorants, peppermint and pyridine, at 4 concentrations were presented through nasal cannulas using an air-dilution olfactometer. Tones were played over a speaker. Behavioral (button press and oral) responses, electroencephalographic activation, and changes in breathing and heart rate were assessed. Participants responded to odors on 92% of stage 1 sleep trials. Peppermint was ineffective in stages 2, 4, and REM sleep. Pyridine produced behavioral threshold on 45% of stage 2 trials, none in stage 4, and one third of REM sleep trials. Tones were effective on at least 75% of trials. Heart rate increased significantly only following behavioral responses to odors or tones across sleep stages. The data indicate that human olfaction is not reliably capable of alerting a sleeper.

  2. Ipratropium Nasal Spray

    MedlinePlus

    ... follow these steps: Remove the clear plastic dust cap and the safety clip from the nasal spray ... the other nostril. Replace the clear plastic dust cap and safety clip. If the nasal tip becomes ...

  3. Nasal fracture - aftercare

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000554.htm Nasal fracture - aftercare To use the sharing features on this ... that gives your nose its shape. A nasal fracture occurs when the bony part of your nose ...

  4. Nasal Wash Treatment

    MedlinePlus

    ... Guidelines Wash your hands. Make the nasal wash solution. Do not use tap water for the nasal ... Whichever water you use to make the saline solution, replace container or water at least weekly. To ...

  5. Beclomethasone Nasal Spray

    MedlinePlus

    ... the lining of the nose) after nasal polyp removal surgery. Beclomethasone nasal spray should not be used ... room temperature and away from excess heat and moisture (not in the bathroom).Unneeded medications should be ...

  6. Nasal Harmony in Aguaruna.

    ERIC Educational Resources Information Center

    Moon, Gui-Sun

    A discussion of the nasal harmony of Aguaruna, a language of the Jivaroan family in South America, approaches the subject from the viewpoint of generative phonology. This theory of phonology proposes an underlying nasal consonant, later deleted, that accounts for vowel nasalization. Complex rules that suppose a complex system of vowel and…

  7. DNA methylation-based reclassification of olfactory neuroblastoma.

    PubMed

    Capper, David; Engel, Nils W; Stichel, Damian; Lechner, Matt; Glöss, Stefanie; Schmid, Simone; Koelsche, Christian; Schrimpf, Daniel; Niesen, Judith; Wefers, Annika K; Jones, David T W; Sill, Martin; Weigert, Oliver; Ligon, Keith L; Olar, Adriana; Koch, Arend; Forster, Martin; Moran, Sebastian; Tirado, Oscar M; Sáinz-Japeado, Miguel; Mora, Jaume; Esteller, Manel; Alonso, Javier; Del Muro, Xavier Garcia; Paulus, Werner; Felsberg, Jörg; Reifenberger, Guido; Glatzel, Markus; Frank, Stephan; Monoranu, Camelia M; Lund, Valerie J; von Deimling, Andreas; Pfister, Stefan; Buslei, Rolf; Ribbat-Idel, Julika; Perner, Sven; Gudziol, Volker; Meinhardt, Matthias; Schüller, Ulrich

    2018-05-05

    Olfactory neuroblastoma/esthesioneuroblastoma (ONB) is an uncommon neuroectodermal neoplasm thought to arise from the olfactory epithelium. Little is known about its molecular pathogenesis. For this study, a retrospective cohort of n = 66 tumor samples with the institutional diagnosis of ONB was analyzed by immunohistochemistry, genome-wide DNA methylation profiling, copy number analysis, and in a subset, next-generation panel sequencing of 560 tumor-associated genes. DNA methylation profiles were compared to those of relevant differential diagnoses of ONB. Unsupervised hierarchical clustering analysis of DNA methylation data revealed four subgroups among institutionally diagnosed ONB. The largest group (n = 42, 64%, Core ONB) presented with classical ONB histology and no overlap with other classes upon methylation profiling-based t-distributed stochastic neighbor embedding (t-SNE) analysis. A second DNA methylation group (n = 7, 11%) with CpG island methylator phenotype (CIMP) consisted of cases with strong expression of cytokeratin, no or scarce chromogranin A expression and IDH2 hotspot mutation in all cases. T-SNE analysis clustered these cases together with sinonasal carcinoma with IDH2 mutation. Four cases (6%) formed a small group characterized by an overall high level of DNA methylation, but without CIMP. The fourth group consisted of 13 cases that had heterogeneous DNA methylation profiles and strong cytokeratin expression in most cases. In t-SNE analysis, these cases mostly grouped among sinonasal adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma. Copy number analysis indicated highly recurrent chromosomal changes among Core ONB with a high frequency of combined loss of chromosome 1-4, 8-10, and 12. NGS sequencing did not reveal highly recurrent mutations in ONB, with the only recurrently mutated genes being TP53 and DNMT3A. In conclusion, we demonstrate that institutionally diagnosed ONB are a heterogeneous group of

  8. Identification of Second Messenger Mediating Signal Transduction in the Olfactory Receptor Cell

    PubMed Central

    Takeuchi, Hiroko; Kurahashi, Takashi

    2003-01-01

    One of the biggest controversial issues in the research of olfaction has been the mechanism underlying response generation to odorants that have been shown to fail to produce cAMP when tested by biochemical assays with olfactory ciliary preparations. Such observations are actually the original source proposing a possibility for the presence of multiple and parallel transduction pathways. In this study the activity of transduction channels in the olfactory cilia was recorded in cells that retained their abilities of responding to odorants that have been reported to produce InsP3 (instead of producing cAMP, and therefore tentatively termed “InsP3 odorants”). At the same time, the cytoplasmic cNMP concentration ([cNMP]i) was manipulated through the photolysis of caged compounds to examine their real-time interactions with odorant responses. Properties of responses induced by both InsP3 odorants and cytoplasmic cNMP resembled each other in their unique characteristics. Reversal potentials of currents were 2 mV for InsP3 odorant responses and 3 mV for responses induced by cNMP. Current and voltage (I-V) relations showed slight outward rectification. Both responses showed voltage-dependent adaptation when examined with double pulse protocols. When brief pulses of the InsP3 odorant and cytoplasmic cNMP were applied alternatively, responses expressed cross-adaptation with each other. Furthermore, both responses were additive in a manner as predicted quantitatively by the theory that signal transduction is mediated by the increase in cytoplasmic cAMP. With InsP3 odorants, actually, remarkable responses could be detected in a small fraction of cells (∼2%), explaining the observation for a small production of cAMP in ciliary preparations obtained from the entire epithelium. The data will provide evidence showing that olfactory response generation and adaptation are regulated by a uniform mechanism for a wide variety of odorants. PMID:14581582

  9. External Nasal Neuralgia: A Neuropathic Pain Within the Territory of the External Nasal Nerve.

    PubMed

    García-Moreno, Héctor; Aledo-Serrano, Ángel; Gimeno-Hernández, Jesús; Cuadrado, María-Luz

    2015-10-01

    Nasal pain is a challenging diagnosis and very little has been reported in the neurological literature. The nose is a sophisticated structure regarding its innervation, which is supplied by the first and second divisions of the trigeminal nerve. Painful cranial neuropathies are an important group in the differential diagnosis, although they have been described only scarcely. Here, we report a case that can conform a non-traumatic external nasal nerve neuralgia. A 76-year-old woman was referred to our office due to pain in her left nose. She was suffering from daily excruciating attacks, which were strictly limited to the territory supplied by her left external nasal nerve (left ala nasi and apex nasi). She denied previous traumatisms and the ancillary tests did not yield any underlying pathology. An anesthetic blockade of her left external nasal nerve achieved a marked reduction of the number of episodes as well as their intensity. External nasal neuralgia seems a specific neuralgia causing nasal pain. Anesthetic blockades of the external nasal nerve may be a valid treatment for this condition. © 2015 American Headache Society.

  10. Dock and Pak regulate olfactory axon pathfinding in Drosophila.

    PubMed

    Ang, Lay-Hong; Kim, Jenny; Stepensky, Vitaly; Hing, Huey

    2003-04-01

    The convergence of olfactory axons expressing particular odorant receptor (Or) genes on spatially invariant glomeruli in the brain is one of the most dramatic examples of precise axon targeting in developmental neurobiology. The cellular and molecular mechanisms by which olfactory axons pathfind to their targets are poorly understood. We report here that the SH2/SH3 adapter Dock and the serine/threonine kinase Pak are necessary for the precise guidance of olfactory axons. Using antibody localization, mosaic analyses and cell-type specific rescue, we observed that Dock and Pak are expressed in olfactory axons and function autonomously in olfactory neurons to regulate the precise wiring of the olfactory map. Detailed analyses of the mutant phenotypes in whole mutants and in small multicellular clones indicate that Dock and Pak do not control olfactory neuron (ON) differentiation, but specifically regulate multiple aspects of axon trajectories to guide them to their cognate glomeruli. Structure/function studies show that Dock and Pak form a signaling pathway that mediates the response of olfactory axons to guidance cues in the developing antennal lobe (AL). Our findings therefore identify a central signaling module that is used by ONs to project to their cognate glomeruli.

  11. Does rhinoplasty improve nasal breathing?

    PubMed

    Xavier, Rui

    2010-08-01

    Rhinoplasty is a surgical procedure that aims to improve nasal aesthetics and nasal breathing. The aesthetic improvement of the nose is usually judged subjectively by the patient and the surgeon, but the degree of improvement of nasal obstruction is difficult to assess by clinical examination only. The measurement of peak nasal inspiratory flow (PNIF) is a reliable tool that has been shown to correlate with other objective methods of assessing nasal breathing and with patients' symptoms of nasal obstruction. Twenty-three consecutive patients undergoing rhinoplasty have been evaluated by measurement of PNIF before and after surgery. All but three patients had an increase in PNIF after surgery. The mean preoperative PNIF was 86.5 L/min and the mean postoperative PNIF was 123.0 L/min ( P < 0.001). Not surprisingly, the greatest improvement in PNIF was achieved when bilateral spreader grafts were used. This study suggests that rhinoplasty does improve nasal breathing. (c) Thieme Medical Publishers

  12. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    PubMed

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. EGR-1 and DUSP-1 are important negative regulators of pro-allergic responses in airway epithelium.

    PubMed

    Golebski, Korneliusz; van Egmond, Danielle; de Groot, Esther J; Roschmann, Kristina I L; Fokkens, Wytske J; van Drunen, Cornelis M

    2015-05-01

    Primary nasal epithelium of house dust mite allergic individuals is in a permanently activated inflammatory transcriptional state. To investigate whether a deregulated expression of EGR-1 and/or DUSP-1, two potential negative regulators of pro-inflammatory responses, could contribute to the activation of the inflammatory state. We silenced the expression of EGR-1 or DUSP-1 in the airway epithelial cell line NCI-H292. The cell lines were stimulated in a 24-h time course with the house dust mite allergen or poly(I:C). RNA expression profiles of cytokines were established using q-PCR and protein levels were determined in supernatants with ELISA. The shRNA-mediated gene silencing reduced expression levels of EGR-1 by 92% (p<0.0001) and of DUSP-1 by 76% (p<0.0001). Both mutant cells lines showed an increased and prolonged response to the HDM allergen. The mRNA induction of IL-6 was 4.6 fold (p=0.02) and 2.4 fold higher (p=0.01) in the EGR-1 and DUSP-1 knock-down, respectively when compared to the induced levels in the control cell line. For IL-8, the induction levels were 4.6 fold (p=0.01) and 13.0 (p=0.001) fold higher. The outcome was largely similar, yet not identical at the secreted protein levels. Furthermore, steroids were able to suppress the poly(I:C) induced cytokine levels by 70-95%. Deregulation of EGR-1 and/or DUSP-1 in nasal epithelium could be responsible for the prolonged activated transcriptional state observed in vivo in allergic disease. This could have clinical consequences as cytokine levels after the steroid treatment in EGR-1 or DUSP-1 knock-down remained higher than in the control cell line. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Management of nasal septal perforation using silicone nasal septal button

    PubMed Central

    Mullace, M; Gorini, E; Sbrocca, M; Artesi, L; Mevio, N

    2006-01-01

    Summary Nasal septal perforation may present with various symptoms: epistaxis, crusting, secondary infection, whistling and nasal obstruction. Perforation may be treated by conservative pharmacological treatment or closed by surgical approach. A useful alternative is mechanical obturation, achieved inserting a prosthesis. The present report refers to a study on 15 patients (10 male, 5 female, mean age 38.5 years) treated by insertion of a one-piece or two-piece silicone septal button (Xomed). In the follow-up period, insertion of the nasal button reduced epistaxis, eliminated whistling during inspiration, and reduced nasal obstruction and crusting around the margin of the perforation. Contraindications are presence of acute infection with osteitis, chronic septal disease (Wegener), neoplasia and extremely large perforations. The latest buttons appear to be superior to the conventional type on account of plasticity and adaptability which offer greater conformity to the septum. This study also reveals that the new septal button is well tolerated by patients. PMID:18236638

  15. An olfactory demography of a diverse metropolitan population

    PubMed Central

    2012-01-01

    Background Human perception of the odour environment is highly variable. People vary both in their general olfactory acuity as well as in if and how they perceive specific odours. In recent years, it has been shown that genetic differences contribute to variability in both general olfactory acuity and the perception of specific odours. Odour perception also depends on other factors such as age and gender. Here we investigate the influence of these factors on both general olfactory acuity and on the perception of 66 structurally and perceptually different odours in a diverse subject population. Results We carried out a large human olfactory psychophysics study of 391 adult subjects in metropolitan New York City, an ethnically and culturally diverse North American metropolis. 210 of the subjects were women and the median age was 34.6 years (range 19–75). We recorded ~2,300 data points per subject to obtain a comprehensive perceptual phenotype, comprising multiple perceptual measures of 66 diverse odours. We show that general olfactory acuity correlates with gender, age, race, smoking habits, and body type. Young, female, non-smoking subjects had the highest average olfactory acuity. Deviations from normal body type in either direction were associated with decreased olfactory acuity. Beyond these factors we also show that, surprisingly, there are many odour-specific influences of race, age, and gender on olfactory perception. We show over 100 instances in which the intensity or pleasantness perception of an odour is significantly different between two demographic groups. Conclusions These data provide a comprehensive snapshot of the olfactory sense of a diverse population. Olfactory acuity in the population is most strongly influenced by age, followed by gender. We also show a large number of diverse correlations between demographic factors and the perception of individual odours that may reflect genetic differences as well as different prior experiences with these

  16. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis.

    PubMed

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  17. Composition of nasal airway surface liquid in cystic fibrosis and other airway diseases determined by X-ray microanalysis.

    PubMed

    Vanthanouvong, V; Kozlova, I; Johannesson, M; Nääs, E; Nordvall, S L; Dragomir, A; Roomans, G M

    2006-04-01

    The ionic composition of the airway surface liquid (ASL) in healthy individuals and in patients with cystic fibrosis (CF) has been debated. Ion transport properties of the upper airway epithelium are similar to those of the lower airways and it is easier to collect nasal ASL from the nose. ASL was collected with ion exchange beads, and the elemental composition of nasal fluid was determined by X-ray microanalysis in healthy subjects, CF patients, CF heterozygotes, patients with rhinitis, and with primary ciliary dyskinesia (PCD). In healthy subjects, the ionic concentrations were approximately isotonic. In CF patients, CF heterozygotes, rhinitis, and PCD patients, [Na] and [Cl] were significantly higher compared when compared with those in controls. [K] was significantly higher in CF and PCD patients compared with that in controls. Severely affected CF patients had higher ionic concentrations in their nasal ASL than in patients with mild or moderate symptoms. Female CF patients had higher levels of Na, Cl, and K than male patients. As higher salt concentrations in the ASL are also found in other patients with airway diseases involving chronic inflammation, it appears likely that inflammation-induced epithelial damage is important in determining the ionic composition of the ASL. Copyright (c) 2006 Wiley-Liss, Inc.

  18. Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction.

    PubMed

    Kimbell, J S; Frank, D O; Laud, Purushottam; Garcia, G J M; Rhee, J S

    2013-10-18

    Surgeries to correct nasal airway obstruction (NAO) often have less than desirable outcomes, partly due to the absence of an objective tool to select the most appropriate surgical approach for each patient. Computational fluid dynamics (CFD) models can be used to investigate nasal airflow, but variables need to be identified that can detect surgical changes and correlate with patient symptoms. CFD models were constructed from pre- and post-surgery computed tomography scans for 10 NAO patients showing no evidence of nasal cycling. Steady-state inspiratory airflow, nasal resistance, wall shear stress, and heat flux were computed for the main nasal cavity from nostrils to posterior nasal septum both bilaterally and unilaterally. Paired t-tests indicated that all CFD variables were significantly changed by surgery when calculated on the most obstructed side, and that airflow, nasal resistance, and heat flux were significantly changed bilaterally as well. Moderate linear correlations with patient-reported symptoms were found for airflow, heat flux, unilateral allocation of airflow, and unilateral nasal resistance as a fraction of bilateral nasal resistance when calculated on the most obstructed nasal side, suggesting that these variables may be useful for evaluating the efficacy of nasal surgery objectively. Similarity in the strengths of these correlations suggests that patient-reported symptoms may represent a constellation of effects and that these variables should be tracked concurrently during future virtual surgery planning. © 2013 Elsevier Ltd. All rights reserved.

  19. Assessment of Olfactory Function in MAPT-Associated Neurodegenerative Disease Reveals Odor-Identification Irreproducibility as a Non-Disease-Specific, General Characteristic of Olfactory Dysfunction.

    PubMed

    Markopoulou, Katerina; Chase, Bruce A; Robowski, Piotr; Strongosky, Audrey; Narożańska, Ewa; Sitek, Emilia J; Berdynski, Mariusz; Barcikowska, Maria; Baker, Matt C; Rademakers, Rosa; Sławek, Jarosław; Klein, Christine; Hückelheim, Katja; Kasten, Meike; Wszolek, Zbigniew K

    2016-01-01

    Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L), which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may reflect the

  20. Ultrastructural study on the follicle-associated epithelium of nasal-associated lymphoid tissue in specific pathogen-free (SPF) and conventional environment-adapted (SPF-CV) rats

    PubMed Central

    JEONG, KWANG IL; SUZUKI, HODAKA; NAKAYAMA, HIROYUKI; DOI, KUNIO

    2000-01-01

    Membranous (M) cells in follicle-associated epithelium (FAE) play an important role in the mucosal immunity through transport of a variety of foreign antigens to the underlying mucosa-associated lymphoid tissue (MALT). We aimed to investigate the ultrastructure of M cells in the FAE covering nasal-associated lymphoid tissue (NALT) both in specific pathogen-free (SPF) rats and in conventional environment-adapted (SPF-CV) rats aged 8–38 wk. In NALT of both SPF and SPF-CV rats, FAE included the nonciliated microvillous cell, which appears to be an analogue of M cell previously described in other MALT. In SPF rats, M cells increased in number only slightly with age, and they maintained morphological uniformity irrespective of age. In SPF-CV rats, M cells selectively increased in number resulting in prominent expansion of FAE surface area in parallel with the duration of maintenance in a conventional environment. In addition, M cells in SPF-CV rats showed heterogeneity in their surface morphology such as the length and number of microvilli and cell surface area and outline. In addition, the FAE was stratified by various subtypes of M cells, which were characterised by several subcellular alterations including the presence of many keratin filaments, homogeneous dark bodies and extensive cytoplasmic interfoliation with wide intercellular spaces filled with amorphous proteinaceous material. These characteristics of M cells in SPF-CV rat were intimately related with a preferential influx of immunocompetent cells into the FAE, which was not seen or was very rare in SPF rats irrespective of age. The results suggest the possibility that NALT may effectively carry out the mucosal immune response against antigenic stimuli of different magnitude through the unique dynamics of M cells which seem to be influenced by the infiltration of immunocompetent cells. PMID:10853966

  1. Comparison of realistic and idealized breathing patterns in computational models of airflow and vapor dosimetry in the rodent upper respiratory tract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Sean M.; Kabilan, Senthil; Jacob, Richard E.

    Abstract Context: Computational fluid dynamics (CFD) simulations of airflows coupled with physiologically based pharmacokinetic (PBPK) modeling of respiratory tissue doses of airborne materials have traditionally used either steady-state inhalation or a sinusoidal approximation of the breathing cycle for airflow simulations despite their differences from normal breathing patterns. Objective: Evaluate the impact of realistic breathing patterns, including sniffing, on predicted nasal tissue concentrations of a reactive vapor that targets the nose in rats as a case study. Materials and methods: Whole-body plethysmography measurements from a free-breathing rat were used to produce profiles of normal breathing, sniffing and combinations of both asmore » flow inputs to CFD/PBPK simulations of acetaldehyde exposure. Results: For the normal measured ventilation profile, modest reductions in time- and tissue depth-dependent areas under the curve (AUC) acetaldehyde concentrations were predicted in the wet squamous, respiratory and transitional epithelium along the main airflow path, while corresponding increases were predicted in the olfactory epithelium, especially the most distal regions of the ethmoid turbinates, versus the idealized profile. The higher amplitude/frequency sniffing profile produced greater AUC increases over the idealized profile in the olfactory epithelium, especially in the posterior region. Conclusions: The differences in tissue AUCs at known lesion-forming regions for acetaldehyde between normal and idealized profiles were minimal, suggesting that sinusoidal profiles may be used for this chemical and exposure concentration. However, depending upon the chemical, exposure system and concentration and the time spent sniffing, the use of realistic breathing profiles, including sniffing, could become an important modulator for local tissue dose predictions.« less

  2. Methods to measure olfactory behavior in mice

    PubMed Central

    Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui

    2015-01-01

    Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse’s olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, to both social and nonsocial odors. PMID:25645244

  3. Olfactory discrimination predicts cognitive decline among community-dwelling older adults

    PubMed Central

    Sohrabi, H R; Bates, K A; Weinborn, M G; Johnston, A N B; Bahramian, A; Taddei, K; Laws, S M; Rodrigues, M; Morici, M; Howard, M; Martins, G; Mackay-Sim, A; Gandy, S E; Martins, R N

    2012-01-01

    The presence of olfactory dysfunction in individuals at higher risk of Alzheimer's disease has significant diagnostic and screening implications for preventive and ameliorative drug trials. Olfactory threshold, discrimination and identification can be reliably recorded in the early stages of neurodegenerative diseases. The current study has examined the ability of various olfactory functions in predicting cognitive decline in a community-dwelling sample. A group of 308 participants, aged 46–86 years old, were recruited for this study. After 3 years of follow-up, participants were divided into cognitively declined and non-declined groups based on their performance on a neuropsychological battery. Assessment of olfactory functions using the Sniffin' Sticks battery indicated that, contrary to previous findings, olfactory discrimination, but not olfactory identification, significantly predicted subsequent cognitive decline (odds ratio=0.869; P<0.05; 95% confidence interval=0.764−0.988). The current study findings confirm previously reported associations between olfactory and cognitive functions, and indicate that impairment in olfactory discrimination can predict future cognitive decline. These findings further our current understanding of the association between cognition and olfaction, and support olfactory assessment in screening those at higher risk of dementia. PMID:22832962

  4. Olfactory discrimination predicts cognitive decline among community-dwelling older adults.

    PubMed

    Sohrabi, H R; Bates, K A; Weinborn, M G; Johnston, A N B; Bahramian, A; Taddei, K; Laws, S M; Rodrigues, M; Morici, M; Howard, M; Martins, G; Mackay-Sim, A; Gandy, S E; Martins, R N

    2012-05-22

    The presence of olfactory dysfunction in individuals at higher risk of Alzheimer's disease has significant diagnostic and screening implications for preventive and ameliorative drug trials. Olfactory threshold, discrimination and identification can be reliably recorded in the early stages of neurodegenerative diseases. The current study has examined the ability of various olfactory functions in predicting cognitive decline in a community-dwelling sample. A group of 308 participants, aged 46-86 years old, were recruited for this study. After 3 years of follow-up, participants were divided into cognitively declined and non-declined groups based on their performance on a neuropsychological battery. Assessment of olfactory functions using the Sniffin' Sticks battery indicated that, contrary to previous findings, olfactory discrimination, but not olfactory identification, significantly predicted subsequent cognitive decline (odds ratio = 0.869; P<0.05; 95% confidence interval = 0.764-0.988). The current study findings confirm previously reported associations between olfactory and cognitive functions, and indicate that impairment in olfactory discrimination can predict future cognitive decline. These findings further our current understanding of the association between cognition and olfaction, and support olfactory assessment in screening those at higher risk of dementia.

  5. Hypothalamus-Olfactory System Crosstalk: Orexin A Immunostaining in Mice

    PubMed Central

    Gascuel, Jean; Lemoine, Aleth; Rigault, Caroline; Datiche, Frédérique; Benani, Alexandre; Penicaud, Luc; Lopez-Mascaraque, Laura

    2012-01-01

    It is well known that olfaction influences food intake, and conversely, that an individual’s nutritional status modulates olfactory sensitivity. However, what is still poorly understood is the neuronal correlate of this relationship, as well as the connections between the olfactory bulb and the hypothalamus. The goal of this report is to analyze the relationship between the olfactory bulb and hypothalamus, focusing on orexin A immunostaining, a hypothalamic neuropeptide that is thought to play a role in states of sleep/wakefulness. Interestingly, orexin A has also been described as a food intake stimulator. Such an effect may be due in part to the stimulation of the olfactory bulbar pathway. In rats, orexin positive cells are concentrated strictly in the lateral hypothalamus, while their projections invade nearly the entire brain including the olfactory system. Therefore, orexin appears to be a good candidate to play a pivotal role in connecting olfactory and hypothalamic pathways. So far, orexin has been described in rats, however, there is still a lack of information concerning its expression in the brains of adult and developing mice. In this context, we revisited the orexin A pattern in adult and developing mice using immunohistological methods and confocal microscopy. Besides minor differences, orexin A immunostaining in mice shares many features with those observed in rats. In the olfactory bulb, even though there are few orexin projections, they reach all the different layers of the olfactory bulb. In contrast to the presence of orexin projections in the main olfactory bulb, almost none have been found in the accessory olfactory bulb. The developmental expression of orexin A supports the hypothesis that orexin expression only appears post-natally. PMID:23162437

  6. Preservation of olfaction in surgery of olfactory groove meningiomas.

    PubMed

    Jang, Woo-Youl; Jung, Shin; Jung, Tae-Young; Moon, Kyung-Sub; Kim, In-Young

    2013-08-01

    Olfaction is commonly considered as secondary among the sensory functions, perhaps reflecting a lack of interest in sparing olfaction after surgery for the olfactory groove meningiomas (OGM). However, considering the repercussions of olfaction for the quality of life, the assessment of post-operative olfaction should be necessary. We retrospectively reviewed the olfactory outcome in patients with OGM and investigated the factors associated with sparing the post-operative olfaction. Between 1993 and 2012, 40 patients with OGM underwent surgical resection and estimated the olfactory function using the Korean version of "Sniffin'Sticks" test (KVSS). Variable factors, such as tumor size, degree of preoperative edema, tumor consistency, preoperative olfactory function, surgical approaches, patient's age, and gender were analyzed with attention to the post-operative olfactory function. Anatomical and functional preservation of olfactory structures were achieved in 26 patients (65%) and 22 patients (55%), respectively. Among the variable factors, size of tumor was significant related to the preservation of post-operative olfaction. (78.6% in size<4 cm and 42.3% in size>4 cm, p=0.035). Sparing the olfaction was significantly better in patients without preoperative olfactory dysfunction (84.6%) compared with ones with preoperative olfactory dysfunction (40.7%, p=0.016). The frontolateral approach achieved much more excellent post-operative olfactory function (71.4%) than the bifrontal approach (36.8%, p=0.032). If the tumor was smaller than 4 cm and the patients did not present olfactory dysfunction preoperatively, the possibility of sparing the post-operative olfaction was high. Among the variable surgical approaches, frontolateral route may be preferable sparing the post-operative olfaction. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Olfactory Neuroblastoma: A Rare Cause of External Ophthalmoplegia, Proptosis and Compressive Optic Neuropathy.

    PubMed

    Kartı, Ömer; Zengin, Mehmet Özgür; Çelik, Ozan; Tokat, Taşkın; Küsbeci, Tuncay

    2018-04-01

    Olfactory neuroblastoma (ONB), which is a neuroectodermal tumor of the nasal cavity, is a rare and locally aggressive malignancy that may invade the orbit via local destruction. In this study, we report a patient with proptosis, external ophthalmoplegia, and compressive optic neuropathy caused by ONB. A detailed clinical examination including ocular imaging and histopathological studies were performed. The 62-year-old female patient presented to our clinic with complaints of proptosis and visual deterioration in the left eye. Her complaints started 2 months prior to admission. Visual acuity in the left eye was counting fingers from 2 meters. There was relative afferent pupillary defect. She had 6 mm of proptosis and limitation of motility. Fundus examination was normal in the right eye, but there was a hyperemic disc, and increased vascular tortuosity and dilation of the retinal veins in the left eye. Computerized tomography and magnetic resonance imaging of the brain and orbits demonstrated a large heterogeneous mass in the left superior nasal cavity with extensions into the ethmoidal sinuses as well as into the left orbit, compressing the medial rectus muscle and optic nerve. Endoscopic biopsy of the lesion was consistent with an ONB (Hyams' grade III). Orbital invasion may occur in patients with ONB. Therefore, it is important to be aware of this malignancy because some patients present with ophthalmic signs such as external ophthalmoplegia, proptosis, or compressive optic neuropathy.

  8. Retro- and orthonasal olfactory function in relation to olfactory bulb volume in patients with hypogonadotrophic hypogonadism.

    PubMed

    Salihoglu, Murat; Kurt, Onuralp; Ay, Seyid Ahmet; Baskoy, Kamil; Altundag, Aytug; Saglam, Muzaffer; Deniz, Ferhat; Tekeli, Hakan; Yonem, Arif; Hummel, Thomas

    2017-08-24

    Idiopathic hypogonadotrophic hypogonadism (IHH) with an olfactory deficit is defined as Kallmann syndrome (KS) and is distinct from normosmic IHH. Because olfactory perception not only consists of orthonasally gained impressions but also involves retronasal olfactory function, in this study we decided to comprehensively evaluate both retronasal and orthonasal olfaction in patients with IHH. This case-control study included 31 controls and 45 IHH patients. All participants whose olfactory and taste functions were evaluated with orthonasal olfaction (discrimination, identification and threshold), retronasal olfaction, taste function and olfactory bulb volume (OBV) measurement. The patients were separated into three groups according to orthonasal olfaction: anosmic IHH (aIHH), hyposmic IHH (hIHH) and normosmic IHH (nIHH). Discrimination, identification and threshold scores of patients with KS were significantly lower than controls. Threshold scores of patients with nIHH were significantly lower than those of controls, but discrimination and identification scores were not significantly different. Retronasal olfaction was reduced only in the aIHH group compared to controls. Identification of bitter, sweet, sour, and salty tastes was not significantly different when compared between the anosmic, hyposmic, and normosmic IHH groups and controls. OBV was lower bilaterally in all patient groups when compared with controls. The OBV of both sides was found to be significantly correlated with TDI scores in IHH patients. 1) There were no significant differences in gustatory function between controls and IHH patients; 2) retronasal olfaction was reduced only in anosmic patients but not in orthonasally hyposmic participants, possibly indicating presence of effective compensatory mechanisms; 3) olfactory bulb volumes were highly correlated with olfaction scores in the HH group. The current results indicate a continuum from anosmia to normosmia in IHH patients. Copyright © 2017

  9. [Deficits in medical counseling in olfactory dysfunction].

    PubMed

    Haxel, B R; Nisius, A; Fruth, K; Mann, W J; Muttray, A

    2012-05-01

    Olfactory dysfunctions are common with a prevalence of up to 20% in the population. An impaired sense of smell can lead to specific dangers, therefore, counseling and warning of hazardous situations to raise patient awareness is an important medical function. In this study 105 patients presenting to the University of Mainz Medical Centre with dysosmia were evaluated using a questionnaire. For quantification of the olfactory dysfunction a standardized olfactory test (Sniffin' Sticks) was used. Of the patients 46% were hyposmic and 40% were functionally anosmic. The median duration of the olfactory impairment was 10 months and the main causes of dysosmia were upper respiratory tract infections and idiopathic disorders. More than 90% of the patients consulted an otorhinolaryngologist and 60% a general practitioner before presenting to the University of Mainz Medical Center. More than two thirds of the patients conducted a professional activity, 95% of patients reported that they had not received any medical counseling and 6% of the subjects were forced to discontinue their profession because of olfactory dysfunction. In patients with olfactory dysfunctions appropriate diagnostics, including olfactometry should be performed. Furthermore, correct medical counseling concerning necessary additional arrangements (e.g. installation of smoke or gas detectors, precautions while cooking or for hygiene) has to be performed. For patients in a profession an analysis of the hazards at work is crucial.

  10. Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose.

    PubMed

    Zhao, Kai; Dalton, Pamela; Yang, Geoffery C; Scherer, Peter W

    2006-02-01

    Human sniffing behavior usually involves bouts of short, high flow rate inhalation (>300 ml/s through each nostril) with mostly turbulent airflow. This has often been characterized as a factor enabling higher amounts of odorant to deposit onto olfactory mucosa than for laminar airflow and thereby aid in olfactory detection. Using computational fluid dynamics human nasal cavity models, however, we found essentially no difference in predicted olfactory odorant flux (g/cm2 s) for turbulent versus laminar flow for total nasal flow rates between 300 and 1000 ml/s and for odorants of quite different mucosal solubility. This lack of difference was shown to be due to the much higher resistance to lateral odorant mass transport in the mucosal nasal airway wall than in the air phase. The simulation also revealed that the increase in airflow rate during sniffing can increase odorant uptake flux to the nasal/olfactory mucosa but lower the cumulative total uptake in the olfactory region when the inspired air/odorant volume was held fixed, which is consistent with the observation that sniff duration may be more important than sniff strength for optimizing olfactory detection. In contrast, in rats, sniffing involves high-frequency bouts of both inhalation and exhalation with laminar airflow. In rat nose odorant uptake simulations, it was observed that odorant deposition was highly dependent on solubility and correlated with the locations of different types of receptors.

  11. Cosmetic and Functional Nasal Deformities

    MedlinePlus

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  12. Cosmetic rostral nasal reconstruction after nasal planum and premaxilla resection: technique and results in two dogs.

    PubMed

    Gallegos, Javier; Schmiedt, Chad W; McAnulty, Jonathan F

    2007-10-01

    To describe a novel reconstructive technique after nasal planum and premaxilla resection. Case report. Dogs (n=2) with squamous cell carcinoma (SCC) of the nasal planum. A 9-year-old neutered female Labrador retriever (dog 1) and an 11-year-old neutered male Golden retriever (dog 2) had resection of the nasal planum and premaxilla for treatment of locally invasive SCC. Reconstruction of a nasal planum facsimile was based on use of the nonhaired pigmented margins of bilateral labial mucocutaneous rotation-advancement flaps. Reconstruction of the premaxilla by construction of a nasal planum facsimile resulted in uncomplicated wound healing and improved cosmesis. There was no tumor recurrence at 1290 (dog 1) and 210 (dog 2) days after surgery. Reconstruction of a nasal planum facsimile was successfully performed without complications in 2 dogs with high owner satisfaction with cosmetic appearance. This technique represents a significant advancement in surgical cosmetic outcome, may potentially reduce postoperative complications, and should be considered for dogs requiring nasal reconstruction after nasal planum resection with premaxillectomy.

  13. Smart Polymers in Nasal Drug Delivery

    PubMed Central

    Chonkar, Ankita; Nayak, Usha; Udupa, N.

    2015-01-01

    Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from the nose before complete absorption through nasal mucosa. Therefore, mucoadhesive polymeric approach can be successfully used to enhance the retention of the drug on nasal mucosal surface. Here, some of the aspects of the stimuli responsive polymers have been discussed which possess liquid state at the room temperature and in response to nasal temperature, pH and ions present in mucous, can undergo in situ gelation in nasal cavity. In this review, several temperature responsive, pH responsive and ion responsive polymers used in nasal delivery, their gelling mechanisms have been discussed. Smart polymers not only able to enhance the retention of the drug in nasal cavity but also provide controlled release, ease of administration, enhanced permeation of the drug and protection of the drug from mucosal enzymes. Thus smart polymeric approach can be effectively used for nasal delivery of peptide drugs, central nervous system dugs and hormones. PMID:26664051

  14. Effects of septoplasty on olfactory function evaluated by the Brief Smell Identification Test: A study of 116 patients.

    PubMed

    Haytoğlu, Süheyl; Dengiz, Ramazan; Muluk, Nuray Bayar; Kuran, Gökhan; Arikan, Osman Kursat

    2017-01-01

    We conducted a prospective study of 116 patients-61 men and 55 women, aged 17 to 64 years (mean: 26.4)-to investigate the effects of septoplasty on olfactory function in patients with septal deviation (SD). The Mladina classification system was used to define SD types, and olfactory function was assessed with the Brief Smell Identification test (BSIT). The BSIT, which includes 12 odorants, was administered preoperatively and at postoperative months 1 and 3. The most common SD types were types 2 (20.7% of patients) and 1 (19.0%), followed by types 3 and 5 (both 16.4%). At postoperative month 1, the mean BSIT score was significantly higher in men than in the women. For patients with types 1 and 2 SD, BSIT scores at 1 month were significantly lower than the scores preoperatively and 3 months postoperatively. For types 3 and 4, BSIT values were significantly higher at 3 months than preoperatively or at 1 month. For type 3 SD, the preoperative mean score was significantly lower than those for types 1, 4, 5, 6, and 7; for type 2 SD, the BSIT score was significantly lower than those of types 5 and 6 only. At 1 month, the scores for types 2 and 3 were significantly lower than those for types 4, 5, 6, and 7. At 3 months, the BSIT score for type 2 was significantly lower than those of types 1, 3, 4, 5, and 6; the type 3 SD score at 3 months was significantly higher than those for types 1, 2, 5, 6, and 7. We conclude that septoplasty surgery for patients with a type 3 SD may improve olfactory function. In contrast, we found that olfactory function in patients with a type 2 SD did not improve to a satisfactory degree, even when good nasal patency was achieved with a corrected septum and an enlarged intranasal volume. Our findings should be investigated further in future studies.

  15. Risk factors for nasal malignancies in German men: the South-German Nasal cancer study.

    PubMed

    Greiser, Eberhard M; Greiser, Karin Halina; Ahrens, Wolfgang; Hagen, Rudolf; Lazszig, Roland; Maier, Heinz; Schick, Bernhard; Zenner, Hans Peter

    2012-11-06

    There are few studies of the effects of nasal snuff and environmental factors on the risk of nasal cancer. This study aimed to investigate the impact of using nasal snuff and of other risk factors on the risk of nasal cancer in German men. A population-based case-control study was conducted in the German Federal States of Bavaria and Baden-Württemberg. Tumor registries and ear, nose and throat departments provided access to patients born in 1926 or later. Telephone interviews were conducted with 427 cases (mean age 62.1 years) and 2.401 population-based controls (mean age 60.8 years). Ever-use of nasal snuff was associated with an odds ratio (OR) for nasal cancer of 1.45 (95% confidence interval [CI] 0.88-2.38) in the total study population, whereas OR in smokers was 2.01 (95% CI 1.00-4.02) and in never smokers was 1.10 (95% CI 0.43-2.80). The OR in ever-smokers vs. never-smokers was 1.60 (95% CI 1.24-2.07), with an OR of 1.06 (95% CI 1.05-1.07) per pack-year smoked, and the risk was significantly decreased after quitting smoking. Exposure to hardwood dust for at least 1 year resulted in an OR of 2.33 (95% CI 1.40-3.91) in the total population, which was further increased in never-smokers (OR 4.89, 95% CI 1.92-12.49) in analyses stratified by smoking status. The OR for nasal cancer after exposure to organic solvents for at least 1 year was 1.53 (1.17-2.01). Ever-use of nasal sprays/nasal lavage for at least 1 month rendered an OR of 1.59 (1.04-2.44). The OR after use of insecticides in homes was 1.48 (95% CI 1.04-2.11). Smoking and exposure to hardwood dust were confirmed as risk factors for nasal carcinoma. There is evidence that exposure to organic solvents, and in-house use of insecticides could represent novel risk factors. Exposure to asbestos and use of nasal snuff were risk factors in smokers only.

  16. Nasal obstruction and human communication.

    PubMed

    Malinoff, R; Moreno, C

    1989-04-01

    Nasal obstruction may cause a variety of communication disorders, particularly in children. The effects of nasal obstruction on hearing, speech, language, and voice are examined. Methods for assessing the effects of nasal obstruction are delineated, and recommendations for therapeutic interventions are described.

  17. 21 CFR 874.3900 - Nasal dilator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nasal dilator. 874.3900 Section 874.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... nasal airflow. The device decreases airway resistance and increases nasal airflow. The external nasal...

  18. 21 CFR 874.3900 - Nasal dilator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasal dilator. 874.3900 Section 874.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... nasal airflow. The device decreases airway resistance and increases nasal airflow. The external nasal...

  19. Bone marrow chimeric mice reveal a role for CX₃CR1 in maintenance of the monocyte-derived cell population in the olfactory neuroepithelium.

    PubMed

    Vukovic, Jana; Blomster, Linda V; Chinnery, Holly R; Weninger, Wolfgang; Jung, Steffen; McMenamin, Paul G; Ruitenberg, Marc J

    2010-10-01

    Macrophages in the olfactory neuroepithelium are thought to play major roles in tissue homeostasis and repair. However, little information is available at present about possible heterogeneity of these monocyte-derived cells, their turnover rates, and the role of chemokine receptors in this process. To start addressing these issues, this study used Cx₃cr1(gfp) mice, in which the gene sequence for eGFP was knocked into the CX₃CR1 gene locus in the mutant allele. Using neuroepithelial whole-mounts from Cx₃cr1(gfp/+) mice, we show that eGFP(+) cells of monocytic origin are distributed in a loose network throughout this tissue and can be subdivided further into two immunophenotypically distinct subsets based on MHC-II glycoprotein expression. BM chimeric mice were created using Cx₃cr1(gfp/+) donors to investigate turnover of macrophages (and other monocyte-derived cells) in the olfactory neuroepithelium. Our data indicate that the monocyte-derived cell population in the olfactory neuroepithelium is actively replenished by circulating monocytes and under the experimental conditions, completely turned over within 6 months. Transplantation of Cx₃cr1(gfp/gfp) (i.e., CX₃CR1-deficient) BM partially impaired the replenishment process and resulted in an overall decline of the total monocyte-derived cell number in the olfactory epithelium. Interestingly, replenishment of the CD68(low)MHC-II(+) subset appeared minimally affected by CX₃CR1 deficiency. Taken together, the established baseline data about heterogeneity of monocyte-derived cells, their replenishment rates, and the role of CX₃CR1 provide a solid basis to further examine the importance of different monocyte subsets for neuroregeneration at this unique frontier with the external environment.

  20. Evaluation of olfactory function in adults with primary hypothyroidism.

    PubMed

    Günbey, Emre; Karlı, Rıfat; Gökosmanoğlu, Feyzi; Düzgün, Berkan; Ayhan, Emre; Atmaca, Hulusi; Ünal, Recep

    2015-10-01

    Sufficient clinical data are not available on the effect of hypothyroidism on olfactory function in adults. In this study, we aimed to evaluate the olfactory function of adult patients diagnosed with primary hypothyroidism. Forty-five patients aged between 18 and 60 years who were diagnosed with clinical primary hypothyroidism and 45 healthy controls who had normal thyroid function tests were included in the study. Sniffin' Sticks olfactory test results of the 2 groups were compared. The relationships between thyroid function tests and olfactory parameters were evaluated. Odor threshold, identification, and discrimination scores of the hypothyroid group were significantly lower than those of the control group (p < 0.001). A significant positive correlation was detected between free triiodothyronine (FT3) levels and odor threshold, identification, and discrimination scores (p < 0.001). There was no significant relationship between thyroid-stimulating hormone (TSH) or free thyroxine (FT4) levels and olfactory parameters. Our study revealed diminished olfactory function in adults with hypothyroidism. FT3 levels were found to have a more significant relationship with olfactory parameters than TSH or FT4 levels. © 2015 ARS-AAOA, LLC.