Sample records for nasas deep impact

  1. The Making of Deep Impact

    NASA Image and Video Library

    2006-10-19

    This image shows NASA Deep Impact spacecraft being built at Ball Aerospace & Technologies Corporation, Boulder, Colo. on July 2, 2005. The spacecraft impactor was released from Deep Impact flyby spacecraft.

  2. Deep Impact Spots Quarry

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Sixty-nine days before it gets up-close-and-personal with a comet, NASA's Deep Impact spacecraft successfully photographed its quarry, comet Tempel 1, at a distance of 39.7 million miles. The image, taken on April 25, 2005, is the first of many comet portraits Deep Impact will take leading up to its historic comet encounter on July 4.

  3. Deep Impact Spacecraft Collides With Comet Tempel 1 (Video)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After 172 days and 268 million miles of deep space travel, the NASA Deep Impact spacecraft successfully reached out and touched comet Tempel 1. The collision between the coffee table-sized space probe and city-sized comet occurred July 4, 2005 at 12:52 a.m. CDT. Comprised of images taken by the targeting sensor aboard the impactor probe, this movie shows the spacecraft approaching the comet up to just seconds before impact. Mission scientists expect Deep Impact to provide answers to basic questions about the formation of the solar system. Principal investigator for Deep Impact, Dr. Michael A'Hearn of the University of Maryland in College Park, is responsible for the mission, and project management is handled by the Jet Propulsion Laboratory in Pasadena, California. The program office at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama assisted the Science Mission Directorate at NASA Headquarters in Washington with program management, technology planning, systems assessment, flight assurance and public outreach. The spacecraft was built for NASA by Ball Aerospace & Technologies Corporation of Boulder, Colorado. (NASA/JPL-Caltech/UMD)

  4. Deep Impact Spots Quarry

    NASA Image and Video Library

    2005-04-27

    Taken on April 25, 2005, sixty-nine days before it gets up-close-and-personal with a comet, NASA Deep Impact spacecraft successfully photographed its quarry, comet Tempel 1, at a distance of 39.7 million miles.

  5. Deep Impact on Its Way

    NASA Image and Video Library

    2005-01-18

    The high speed of NASA Deep Impact spacecraft causes it to appear as a long streak across the sky in the constellation Virgo during the 10-minute exposure time of this photograph taken by Mr. Palomar 200-inch telescope.

  6. Before the Deep Impact Collision

    NASA Image and Video Library

    2011-02-18

    This series of images shows the area where NASA Deep Impact probe collided with the surface of comet Tempel 1 in 2005. The view zooms in as the images progress from top left to right, and then bottom left to right.

  7. Deep Impact Spacecraft Collides With Comet Tempel 1-Video

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After 172 days and 268 million miles of deep space travel, the NASA Deep Impact spacecraft successfully reached out and touched comet Tempel 1. The collision between the coffee table-sized space probe and city-sized comet occurred July 4, 2005 at 12:52 a.m. CDT. The objects met at 23,000 miles per hour. The heat produced by the impact was at least several thousand degrees Kelvin and at that extreme temperature, just about any material begins to glow. This movie, made up of images taken by the medium resolution camera aboard the spacecraft, from May 1 to July 2, shows the Deep Impact approach to comet Tempel 1. The spacecraft detected 3 outbursts during this time period, on June 14th, June 22nd, and July 2nd. The movie ends during the final outburst. Mission scientists expect Deep Impact to provide answers to basic questions about the formation of the solar system. Principal investigator, Dr. Michael A'Hearn of the University of Maryland in College Park, is responsible for the mission, and project management is handled by the Jet Propulsion Laboratory in Pasadena, California. The program office at Marshall Space Flight Center MSFC) in Huntsville, Alabama, assisted the Science Mission Directorate at NASA Headquarters in Washington with program management, technology planning, systems assessment, flight assurance and public outreach. The spacecraft was built for NASA by Ball Aerospace & Technologies Corporation of Boulder, Colorado. (NASA/JPL-Caltech/UMD)

  8. Separation Anxiety Over for Deep Impact

    NASA Image and Video Library

    2005-07-04

    This image of NASA Deep Impact impactor probe was taken by the mission mother ship, or flyby spacecraft, after the two separated at 11:07 p.m. Pacific time, July 2 2:07 a.m. Eastern time, July 3, 2005.

  9. Future Plans for NASA's Deep Space Network

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Preston, Robert A.; Geldzahler, Barry J.

    2008-01-01

    This slide presentation reviews the importance of NASA's Deep Space Network (DSN) to space exploration, and future planned improvements to the communication capabilities that the network allows, in terms of precision, and communication power.

  10. The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2017-01-01

    In 2011, NASA released a report assessing the market for commercial crew and cargo services to low Earth orbit (LEO). The report stated that NASA had spent a few hundred million dollars in the Commercial Orbital Transportation Services (COTS) program on the portion related to the development of the Falcon 9 launch vehicle. Yet a NASA cost model predicted the cost would have been significantly more with a non-commercial cost-plus contracting approach. By 2016 a NASA request for information stated it must "maximize the efficiency and sustainability of the Exploration Systems development programs", as "critical to free resources for reinvestment...such as other required deep space exploration capabilities." This work joins the previous two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for "...other required deep space exploration capabilities." These other capabilities include landers, stages and more. We mature the concept of "costed baseball cards", adding cost estimates to NASA's space systems "baseball cards." We show some potential costs, including analysis, the basis of estimates, data sources and caveats to address a critical question - based on initial assessment, are significant agency resources justified for more detailed analysis and due diligence to understand and invest in public private partnerships for human deep space exploration systems? The cost analysis spans commercial to cost-plus contracting approaches, for smaller elements vs. larger, with some variation for lunar or Mars. By extension, we delve briefly into the potentially much broader significance of the individual cost estimates if taken together as a NASA investment portfolio where public private partnership are stitched together for deep space exploration. How might multiple improvements in individual systems add up to NASA human deep space exploration achievements, realistically, affordably

  11. Deep Impact's EPO Program: Final Report

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Warner, E. M.; McLaughlin, S.; Behne, J.; Ristvey, J.; Rountree-Brown, M.

    2006-09-01

    NASA's Deep Impact mission sent an impactor spacecraft into the path of periodic comet 9P/Tempel 1 on July 4, 2005. The Education and Public Outreach goals of the mission were to effectively communicate the mission to target audiences, particularly educators and students with an emphasis on critical thinking using science, math and engineering concepts. A second goal was to invite audiences to participate throughout the mission using products and interactive programs. In the six-years of the mission, we built a community of scientists, educators, students, and both amateur and technically proficient astronomers, who brought the excitement of the mission to their own community. The web site was the focus of the program (http://deepimpact.umd.edu or deepimpact.jpl.nasa.gov). A monthly electronic newsletter sent to an ever- growing distribution list kept subscribers up to date on mission activities. A program to send your name to the comet engaged the public. Curriculum enhancements covering the physics of crater formation, nature of comets and a case study in optimized decision-making designed for students are available (http://deepimpact.umd.edu/educ/index.html). Mathematical (http://deepimpact.umd.edu/disczone/challenge.html) and conceptual questions of a technical nature (http://deepimpact.umd.edu/disczone/braintwist.html) are posed and solved in Mission Challenges and Brain Twisters. Materials provided for students and amateur astronomers to acquire comet observing skills are available (http://deepimpact.umd.edu/amateur/index.shtml).The Small Telescope Science Program was a successful pro-amateur collaboration providing information on brightness variations of the comet both before and after impact (http://deepimpact.umd.edu/stsp/). The night, of impact, events were held at public venues around the world where the excitement of a successful mission exploring the inside of a comet was felt. Results are at http://deepimpact.umd.edu/results/index.html. The

  12. Developing a Fault Management Guidebook for Nasa's Deep Space Robotic Missions

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Jacome, Raquel Weitl

    2015-01-01

    NASA designs and builds systems that achieve incredibly ambitious goals, as evidenced by the Curiosity rover traversing on Mars, the highly complex International Space Station orbiting our Earth, and the compelling plans for capturing, retrieving and redirecting an asteroid into a lunar orbit to create a nearby a target to be investigated by astronauts. In order to accomplish these feats, the missions must be imbued with sufficient knowledge and capability not only to realize the goals, but also to identify and respond to off-nominal conditions. Fault Management (FM) is the discipline of establishing how a system will respond to preserve its ability to function even in the presence of faults. In 2012, NASA released a draft FM Handbook in an attempt to coalesce the field by establishing a unified terminology and a common process for designing FM mechanisms. However, FM approaches are very diverse across NASA, especially between the different mission types such as Earth orbiters, launch vehicles, deep space robotic vehicles and human spaceflight missions, and the authors were challenged to capture and represent all of these views. The authors recognized that a necessary precursor step is for each sub-community to codify its FM policies, practices and approaches in individual, focused guidebooks. Then, the sub-communities can look across NASA to better understand the different ways off-nominal conditions are addressed, and to seek commonality or at least an understanding of the multitude of FM approaches. This paper describes the development of the "Deep Space Robotic Fault Management Guidebook," which is intended to be the first of NASA's FM guidebooks. Its purpose is to be a field-guide for FM practitioners working on deep space robotic missions, as well as a planning tool for project managers. Publication of this Deep Space Robotic FM Guidebook is expected in early 2015. The guidebook will be posted on NASA's Engineering Network on the FM Community of Practice

  13. NASA light emitting diode medical applications from deep space to deep sea

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Buchmann, Ellen V.; Whelan, Noel T.; Turner, Scott G.; Cevenini, Vita; Stinson, Helen; Ignatius, Ron; Martin, Todd; Cwiklinski, Joan; Meyer, Glenn A.; Hodgson, Brian; Gould, Lisa; Kane, Mary; Chen, Gina; Caviness, James

    2001-02-01

    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. We present the results of LED-treatment of cells grown in culture and the effects of LEDs on patients' chronic and acute wounds. LED-technology is also biologically optimal for photodynamic therapy of cancer and we discuss our successes using LEDs in conjunction with light-activated chemotherapeutic drugs. .

  14. Emergency Communications for NASA's Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Lee, Charles H.; Morabito, David D.; Cesarone, Robert J.; Abraham, Douglas S.

    2011-01-01

    The ability to communicate with spacecraft during emergencies is a vital service that NASA's Deep Space Network (DSN) provides to all deep space missions. Emergency communications is characterized by low data rates(typically is approximately10 bps) with the spacecraft using either a low-gain antenna (LGA, including omnidirectional antennas) or,in some cases, a medium-gain antenna (MGA). Because of the use of LGAs/MGAs for emergency communications, the transmitted power requirements both on the spacecraft andon the ground are substantially greater than those required for normal operations on the high-gain antenna (HGA) despite the lower data rates. In this paper, we look at currentand future emergency communications capabilities available to NASA's deep-space missions and discuss their limitations in the context of emergency mode operations requirements.These discussions include the use of the DSN 70-m diameter antennas, the use of the 34-m diameter antennas either alone or arrayed both for the uplink (Earth-to-spacecraft) and the downlink (spacecraft-to-Earth), upgrades to the ground transmitters, and spacecraft power requirements both with unitygain (0 dB) LGAs and with antennas with directivity (>0 dB gain, either LGA or MGA, depending on the gain). Also discussed are the requirements for forward-error-correctingcodes for both the uplink and the downlink. In additional, we introduce a methodology for proper selection of a directionalLGA/MGA for emergency communications.

  15. CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.

    2007-01-01

    As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.

  16. Preliminary Results of a U.S. Deep South Warm Season Deep Convective Initiation Modeling Experiment using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Medlin, Jeffrey M.; Wood, Lance; Zavodsky, Brad; Case, Jon; Molthan, Andrew

    2012-01-01

    The initiation of deep convection during the warm season is a forecast challenge in the relative high instability and low wind shear environment of the U.S. Deep South. Despite improved knowledge of the character of well known mesoscale features such as local sea-, bay- and land-breezes, observations show the evolution of these features fall well short in fully describing the location of first initiates. A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA s Short-term Prediction Research and Transition (SPoRT) Center was undertaken during the 2012 warm season to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System. The NASA products were: a 4-km Land Information System data, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with a 9 km outer grid spacing and a 3 km inner nest spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the forecast timing and location of the first initiates, with a focus on the impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  17. The NASA Deep Space Network (DSN) Array

    NASA Technical Reports Server (NTRS)

    Gatti, Mark

    2006-01-01

    The DSN Array Project is currently working with Senior Management at both JPL and NASA to develop strategies towards starting a major implementation project. Several studies within NASA are concluding, all of which recommend that any future DSN capability include arraying of antennas to increase performance. Support of Deep Space, Lunar, and CEV (crewed exploration vehicle) missions is possible. High data rate and TDRSS formatting is being investigated. Any future DSN capacity must include Uplink. Current studies ongoing to investigate and develop technologies for uplink arraying; provides advantages in three ways: 1) N2 effect. EIRP grows as N2(-vs-N for a downlink array); 2) Improved architectural options (can separate uplink and downlink); and 3) Potential for more cost effective transmitters for fixed EIRP.

  18. NASA deep space network operations planning and preparation

    NASA Technical Reports Server (NTRS)

    Jensen, W. N.

    1982-01-01

    The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.

  19. The terminal Velocity of the Deep Impact dust Ejecta

    NASA Astrophysics Data System (ADS)

    Rengel, M.; Küppers, M.; Keller, H. U.; Gutierrez, P.; Hviid, S. F.

    2009-05-01

    The collision of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 generated a hot plume. Afterwards ejecta were created, and material moved slowly in a form of a dust cloud, which dissipated during several days after the impact. Here we report a study about the distribution of terminal velocities of the particles ejected by the impact. This is performed by the development and application of an ill-conditioned inverse problem approach. We model the light-curves as seen by the Narrow Angle Camera (NAC) of OSIRIS onboard the ESA spacecraft Rosetta, and we compare them with the OSIRIS observations. Terminal velocities are derived using a maximum likelihood estimator. The dust velocity distribution is well constrained, and peaks at around 220 m s^{-1}, which is in good agreement with published estimates of the expansion velocities of the dust cloud. Measured and modeled velocity of the dust cloud suggests that the impact ejecta were quickly accelerated by the gas in the cometary coma. This analysis provides a more thorough understanding of the properties (velocity and mass of dust) of the Deep Impact dust cloud.

  20. NASA's Space Launch System: SmallSat Deployment to Deep Space

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Creech, Stephen D.

    2017-01-01

    Leveraging the significant capability it offers for human exploration and flagship science missions, NASA's Space Launch System (SLS) also provides a unique opportunity for lower-cost deep-space science in the form of small-satellite secondary payloads. Current plans call for such opportunities to begin with the rocket's first flight; a launch of the vehicle's Block 1 configuration, capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO), which will send the Orion crew vehicle around the moon and return it to Earth. On that flight, SLS will also deploy 13 CubeSat-class payloads to deep-space destinations. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. While the SLS Program is making significant progress toward that first launch, preparations are already under way for the second, which will see the booster evolve to its more-capable Block 1B configuration, able to deliver 105t to LEO. That configuration will have the capability to carry large payloads co-manifested with the Orion spacecraft, or to utilize an 8.4-meter (m) fairing to carry payloads several times larger than are currently possible. The Block 1B vehicle will be the workhorse of the Proving Ground phase of NASA's deep-space exploration plans, developing and testing the systems and capabilities necessary for human missions into deep space and ultimately to Mars. Ultimately, the vehicle will evolve to its full Block 2 configuration, with a LEO capability of 130 metric tons. Both the Block 1B and Block 2 versions of the vehicle will be able to carry larger secondary payloads than the Block 1 configuration, creating even more opportunities for affordable scientific exploration of deep space. This paper will outline the progress being made toward flying smallsats on the first

  1. The Deep Impact Network Experiment Operations Center

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh; Clare, Loren; Wang, Shin-Ywan

    2009-01-01

    Delay/Disruption Tolerant Networking (DTN) promises solutions in solving space communications challenges arising from disconnections as orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other phenomena. DTN has been identified as the basis for the future NASA space communications network backbone, and international standardization is progressing through both the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF). JPL has developed an implementation of the DTN architecture, called the Interplanetary Overlay Network (ION). ION is specifically implemented for space use, including design for use in a real-time operating system environment and high processing efficiency. In order to raise the Technology Readiness Level of ION, the first deep space flight demonstration of DTN is underway, using the Deep Impact (DI) spacecraft. Called the Deep Impact Network (DINET), operations are planned for Fall 2008. An essential component of the DINET project is the Experiment Operations Center (EOC), which will generate and receive the test communications traffic as well as "out-of-DTN band" command and control of the DTN experiment, store DTN flight test information in a database, provide display systems for monitoring DTN operations status and statistics (e.g., bundle throughput), and support query and analyses of the data collected. This paper describes the DINET EOC and its value in the DTN flight experiment and potential for further DTN testing.

  2. NASA Habitat Demonstration Unit (HDU) Deep Space Habitat Analog

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Kennedy, Kriss J.; Gill, Tracy

    2013-01-01

    The NASA Habitat Demonstration Unit (HDU) vertical cylinder habitat was established as a exploration habitat testbed platform for integration and testing of a variety of technologies and subsystems that will be required in a human-occupied planetary surface outpost or Deep Space Habitat (DSH). The HDU functioned as a medium-fidelity habitat prototype from 2010-2012 and allowed teams from all over NASA to collaborate on field analog missions, mission operations tests, and system integration tests to help shake out equipment and provide feedback for technology development cycles and crew training. This paper documents the final 2012 configuration of the HDU, and discusses some of the testing that took place. Though much of the higher-fidelity functionality has 'graduated' into other NASA programs, as of this writing the HDU, renamed Human Exploration Research Analog (HERA), will continue to be available as a volumetric and operational mockup for NASA Human Research Program (HRP) research from 2013 onward.

  3. The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2017-01-01

    This work joins two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for other required deep space exploration capabilities. These other capabilities include landers, stages and more. We mature the concept of costed baseball cards, adding cost estimates to NASAs space systems baseball cards.

  4. Rocket Science in 60 Seconds: Insulating NASA's New Deep-space Rocket

    NASA Image and Video Library

    2018-02-09

    Rocket Science in 60 Seconds gives you an inside look at work being done at NASA to explore deep space like never before. In the first episode, we take a look at the thermal protection application on the launch vehicle stage adapter for the first flight of NASA's new rocket, the Space Launch System. Engineer Amy Buck takes us behind the scenes at Marshall Space Flight Center in Huntsville, Alabama, for a peek at how she is helping build the rocket and protect it as extreme hot and cold collide during launch! For more information about SLS and the OSA, visit nasa.gov/sls.

  5. Deep Impact Delta II Launch Vehicle Cracked Thick Film Coating on Electronic Packages Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Cameron, Kenneth D.; Kichak, Robert A.; Piascik, Robert S.; Leidecker, Henning W.; Wilson, Timmy R.

    2009-01-01

    The Deep Impact spacecraft was launched on a Boeing Delta II rocket from Cape Canaveral Air Force Station (CCAFS) on January 12, 2005. Prior to the launch, the Director of the Office of Safety and Mission Assurance (OS&MA) requested the NASA Engineering and Safety Center (NESC) lead a team to render an independent opinion on the rationale for flight and the risk code assignments for the hazard of cracked Thick Film Assemblies (TFAs) in the E-packages of the Delta II launch vehicle for the Deep Impact Mission. The results of the evaluation are contained in this report.

  6. Propagation Effects of Importance to the NASA/JPL Deep Space Network (DSN)

    NASA Technical Reports Server (NTRS)

    Slobin, Steve

    1999-01-01

    This paper presents Propagation Effects of Importance To The NASA/JPL Deep Space Network (DSN). The topics include: 1) DSN Antennas; 2) Deep Space Telecom Link Basics; 3) DSN Propagation Region of Interest; 4) Ka-Band Weather Effects Models and Examples; 5) Existing Goldstone Ka-Band Atmosphere Attenuation Model; 6) Existing Goldstone Atmosphere Noise Temperature Model; and 7) Ka-Band delta (G/T) Relative to Vacuum Condition. This paper summarizes the topics above.

  7. Ramp time synchronization. [for NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Hietzke, W.

    1979-01-01

    A new method of intercontinental clock synchronization has been developed and proposed for possible use by NASA's Deep Space Network (DSN), using a two-way/three-way radio link with a spacecraft. Analysis of preliminary data indicates that the real-time method has an uncertainty of 0.6 microsec, and it is very likely that further work will decrease the uncertainty. Also, the method is compatible with a variety of nonreal-time analysis techniques, which may reduce the uncertainty down to the tens of nanosecond range.

  8. Throttling Impacts on Hall Thruster Performance, Erosion, and Qualification for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; DeHoyos, Amado

    2007-01-01

    With the SMART-1, Department of Defense, and commercial industry successes in Hall thruster technologies, NASA has started considering Hall thrusters for science missions. The recent Discovery proposals included a Hall thruster science mission and the In-Space Propulsion Project is investing in Hall thruster technologies. As the confidence in Hall thrusters improve, ambitious multi-thruster missions are being considered. Science missions often require large throttling ranges due to the 1/r(sup 2) power drop-off from the sun. Deep throttling of Hall thrusters will impact the overall system performance. Also, Hall thrusters can be throttled with both current and voltage, impacting erosion rates and performance. Last, electric propulsion thruster lifetime qualification has previously been conducted with long duration full power tests. Full power tests may not be appropriate for NASA science missions, and a combination of lifetime testing at various power levels with sufficient analysis is recommended. Analyses of various science missions and throttling schemes using the Aerojet BPT-4000 and NASA 103M HiVHAC thruster are presented.

  9. Deep Impact comet encounter: design, development, and operations of the Big Event at Tempel 1

    NASA Technical Reports Server (NTRS)

    Wissler, Steven

    2005-01-01

    Deep Impact is NASA's eighth Discovery mission. This low-cost, focused planetary science investigation gathered the data necessary to help scientists unlock early secrets of our solar system. The comet encounter with Tempel 1 was a complex event - requiring extremely accurate timing, robutstness to an unknown environment, and flight team adaptability. The mission operations and flight systems performance were spectacular for approach, impact, and lookback imaging on July 4, 2005.

  10. Deep Impact comet encounter: design, development, and operations of the big event at Tempel 1

    NASA Technical Reports Server (NTRS)

    Wissler, Steven; Rocca, Jennifer; Kubitschek, Daniel

    2005-01-01

    Deep Impact is NASA's eighth Discovery mission. This low-cost, focused planetary science investigation gathered the data necessary to help scientists unlock early secrets of our solar system. The comet encounter with Tempel 1 was a complex event - requiring extremely accurate timing, robustness to an unknown environment, and flight team adaptibility. The mission operations and flight systems performance were spectacular for approach, impact, and lookback imaging on July 4, 2005.

  11. NASA experiments onboard the controlled impact demonstration

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.; Alfaro-Bou, E.; Fasanella, E. L.

    1985-01-01

    The structural crashworthiness tests conducted by NASA on the December 1, 1984 controlled impact demonstration are discussed. The components and locations of the data acquisition and photographic systems developed by NASA to evaluate impact loads throughout the aircraft structure and the transmission of loads into the dummies are described. The effectiveness of the NASA designed absorbing seats and the vertical, longitudinal, and transverse impact loads are measured. Data that is extremely applicable to crash dynamics structural research was obtained by the data acquisition system and very low load levels were measured for the NASA energy absorbing seats.

  12. Preliminary Results of a U.S. Deep South Modeling Experiment Using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Wood, Lance; Medlin, Jeffrey M.; Case, Jon

    2012-01-01

    A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA Short-term Prediction Research and Transition (SPoRT) Center began during the 2011-2012 cold season, and continued into the 2012 warm season. The focus was on two frequent U.S. Deep South forecast challenges: the initiation of deep convection during the warm season; and heavy precipitation during the cold season. We wanted to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System in improving the model representation of mesoscale boundaries such as the local sea-, bay- and land-breezes (which often leads to warm season convective initiation); and improving the model representation of slow moving, or quasi-stationary frontal boundaries (which focus cold season storm cell training and heavy precipitation). The NASA products were: the 4-km Land Information System, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with an outer grid with a 9 km spacing and an inner nest with a 3 km grid spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the positive and negative impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  13. NASA's Space Launch System: Deep-Space Delivery for Smallsats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    prize competitions to stimulate innovation. The NASA Science Mission Directorate (SMD) was allocated two payload opportunities on the EM-1 mission. The CubeSat Mission to Study Solar Particles (CuSP) payload will study the sources and acceleration mechanisms of solar and interplanetary particles in near-Earth orbit, support space weather research by determining proton radiation levels during Solar Energetic Particle (SEP) events and identifying suprathermal properties that could help predict geomagnetic storms. The LunaH-Map payload will help scientists understand the quantity of H-bearing materials in lunar cold traps (10 km), determine the concentration of H-bearing materials with 1m depth, and constrain the vertical distribution of H-bearing materials. The final three payload opportunities for the EM-1 mission were allocated for NASA's international space agency counterparts. The flight opportunities are intended to benefit the international space agency and NASA as well as further the collective space exploration goals. ArgoMoon is sponsored by ESA/ASI and will fly along with the ICPS on its disposal trajectory to perform proximity operations with the ICPS post-disposal, take external imagery of engineering and historical significance, and perform an optical communications demonstration. EQUULEUS, sponsored by JAXA, will fly to a libration orbit around the Earth-Moon L2 point and demonstrate trajectory control techniques within the Sun-Earth- Moon region for the first time by a nano spacecraft. The mission will also contribute to the future human exploration scenario by understanding the radiation environment in geospace and deep space, characterizing the flux of impacting meteors on the far side of the moon, and demonstrating the future deep space exploration scenario using the "deep space port" at Lagrange points. OMOTENASHI, also sponsored by JAXA, will land the smallest lunar lander to date on the lunar surface to demonstrate the feasibility of the hardware for

  14. Deep drilling in the Chesapeake Bay impact structure - An overview

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  15. NASA's next generation all-digital deep space network breadboard receiver

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami

    1993-01-01

    This paper describes the breadboard advanced receiver (ARX) that is currently being built for future use in NASA's deep space network (DSN). This receiver has unique requirements in having to operate with very weak signals from deep space probes and provide high quality telemetry and tracking data. The hybrid analog/digital receiver performs multiple functions including carrier, subcarrier and symbol synchronization. Tracking can be achieved for either residual, suppressed or hybrid carriers and for both sinusoidal and square wave subcarriers. System requirements are specified and a functional description of the ARX is presented. The various digital signal processing algorithms used are also discussed and illustrated with block diagrams. Other functions such as time tagged Doppler extraction and monitor/control are also discussed including acquisition algorithms and lock detection schemes.

  16. Impact Testing for Materials Science at NASA - MSFC

    NASA Technical Reports Server (NTRS)

    Sikapizye, Mitch

    2010-01-01

    The Impact Testing Facility (ITF) at NASA - Marshall Space Flight Center is host to different types of guns used to study the effects of high velocity impacts. The testing facility has been and continues to be utilized for all NASA missions where impact testing is essential. The Facility has also performed tests for the Department of Defense, other corporations, as well as universities across the nation. Current capabilities provided by Marshall include ballistic guns, light gas guns, exploding wire gun, and the Hydrometeor Impact Gun. A new plasma gun has also been developed which would be able to propel particles at velocities of 20km/s. This report includes some of the guns used for impact testing at NASA Marshall and their capabilities.

  17. Deep Space Mission Applications for NEXT: NASA's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oh, David; Benson, Scott; Witzberger, Kevin; Cupples, Michael

    2004-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is designed to address a need for advanced ion propulsion systems on certain future NASA deep space missions. This paper surveys seven potential missions that have been identified as being able to take advantage of the unique capabilities of NEXT. Two conceptual missions to Titan and Neptune are analyzed, and it is shown that ion thrusters could decrease launch mass and shorten trip time, to Titan compared to chemical propulsion. A potential Mars Sample return mission is described, and compassion made between a chemical mission and a NEXT based mission. Four possible near term applications to New Frontiers and Discovery class missions are described, and comparisons are made to chemical systems or existing NSTAR ion propulsion system performance. The results show that NEXT has potential performance and cost benefits for missions in the Discovery, New Frontiers, and larger mission classes.

  18. NASA's Space Launch System: Deep-Space Opportunities for SmallSats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Schorr, Andrew A.

    2017-01-01

    open prize competitions to stimulate innovation. The NASA Science Mission Directorate (SMD) was allocated two payload opportunities on the EM-1 mission. The CubeSat Mission to Study Solar Particles (CuSP) payload will study the sources and acceleration mechanisms of solar and interplanetary particles in near-Earth orbit, support space weather research by determining proton radiation levels during Solar Energetic Particle (SEP) events and identifying suprathermal properties that could help predict geomagnetic storms. The LunaH-Map payload will help scientists understand the quantity of H-bearing materials in lunar cold traps (10 km), determine the concentration of H-bearing materials with 1m depth, and constrain the vertical distribution of H-bearing materials. The final three payload opportunities for the EM-1 mission were allocated for NASA's international space agency counterparts. The flight opportunities are intended to benefit the international space agency and NASA as well as further the collective space exploration goals. ArgoMoon is sponsored by ESA/ASI and will fly along with the ICPS on its disposal trajectory to perform proximity operations with the ICPS post-disposal, take external imagery of engineering and historical significance, and perform an optical communications demonstration. EQUULEUS, sponsored by JAXA, will fly to a libration orbit around the Earth-Moon L2 point and demonstrate trajectory control techniques within the Sun-Earth-Moon region for the first time by a nano spacecraft. The mission will also contribute to the future human exploration scenario by understanding the radiation environment in geospace and deep space, characterizing the flux of impacting meteors on the far side of the moon, and demonstrating the future deep space exploration scenario using the "deep space port" at Lagrange points. OMOTENASHI, also sponsored by JAXA, will land the smallest lunar lander to date on the lunar surface to demonstrate the feasibility of the hardware

  19. Coherent Frequency Reference System for the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Tucker, Blake C.; Lauf, John E.; Hamell, Robert L.; Gonzaler, Jorge, Jr.; Diener, William A.; Tjoelker, Robert L.

    2010-01-01

    The NASA Deep Space Network (DSN) requires state-of-the-art frequency references that are derived and distributed from very stable atomic frequency standards. A new Frequency Reference System (FRS) and Frequency Reference Distribution System (FRD) have been developed, which together replace the previous Coherent Reference Generator System (CRG). The FRS and FRD each provide new capabilities that significantly improve operability and reliability. The FRS allows for selection and switching between frequency standards, a flywheel capability (to avoid interruptions when switching frequency standards), and a frequency synthesis system (to generate standardized 5-, 10-, and 100-MHz reference signals). The FRS is powered by redundant, specially filtered, and sustainable power systems and includes a monitor and control capability for station operations to interact and control the frequency-standard selection process. The FRD receives the standardized 5-, 10-, and 100-MHz reference signals and distributes signals to distribution amplifiers in a fan out fashion to dozens of DSN users that require the highly stable reference signals. The FRD is also powered by redundant, specially filtered, and sustainable power systems. The new DSN Frequency Distribution System, which consists of the FRS and FRD systems described here, is central to all operational activities of the NASA DSN. The frequency generation and distribution system provides ultra-stable, coherent, and very low phase-noise references at 5, l0, and 100 MHz to between 60 and 100 separate users at each Deep Space Communications Complex.

  20. Automating Mid- and Long-Range Scheduling for the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Tran, Daniel

    2012-01-01

    NASA has recently deployed a new mid-range scheduling system for the antennas of the Deep Space Network (DSN), called Service Scheduling Software, or S(sup 3). This system was designed and deployed as a modern web application containing a central scheduling database integrated with a collaborative environment, exploiting the same technologies as social web applications but applied to a space operations context. This is highly relevant to the DSN domain since the network schedule of operations is developed in a peer-to-peer negotiation process among all users of the DSN. These users represent not only NASA's deep space missions, but also international partners and ground-based science and calibration users. The initial implementation of S(sup 3) is complete and the system has been operational since July 2011. This paper describes some key aspects of the S(sup 3) system and on the challenges of modeling complex scheduling requirements and the ongoing extension of S(sup 3) to encompass long-range planning, downtime analysis, and forecasting, as the next step in developing a single integrated DSN scheduling tool suite to cover all time ranges.

  1. Education And Public Outreach For NASA's EPOXI Mission

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Warner, E. M.; Crow, C. A.; Ristvey, J. D.; Counley, J.

    2008-09-01

    NASA's EPOXI mission has two scientific objectives in using the Deep Impact flyby spacecraft for further studies of comets and adding studies of extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission, observations of extrasolar planets transiting their parent stars are observed to further knowledge and understanding of planetary systems. Observations of Earth allow for comparison with Earth-like planets around other stars. A movie of Earth during a day when the Moon passed between Earth and the spacecraft is an educational highlight with scientific significance. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comets with a flyby of comet Hartley 2 in November 2010 to further explore the properties of comets and their formation. The EPOXI Education and Public Outreach (E/PO) program builds upon existing materials related to exploring comets and the Deep Impact mission, updating and modifying activities based on results from Deep Impact. An educational activity called Comparing Comets is under development that will guide students in conducting analyses similar to those that DIXI scientists will perform after observing comet Hartley 2. Existing educational materials related to planet finding from other NASA programs are linked from EPOXI's web page. Journey Through the Universe at the National Air and Space Museum encourages education in family and community groups and reaches out to underrepresented minorities. EPOXI's E/PO program additionally offers a newsletter to keep the public, teachers, and space enthusiasts apprised of mission activities. For more information visit: http://epoxi.umd.edu.

  2. NASA's Impact in Florida: A Tech Transfer Perspective

    NASA Technical Reports Server (NTRS)

    Dunn, Carol

    2009-01-01

    The Innovative Partnerships Program (IPP) Office at NASA's Kennedy Space Center is dedicated to forming partnerships that can positively contribute to -- and benefit from -- NASA's research and development (R&D) and technology innovations. This document discusses the IPP-driven impacts of NASA in Florida.

  3. NASA Lunar Impact Monitoring

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.; Moser, D. E.

    2015-01-01

    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in press

  4. Reach and its Impact: NASA and US Aerospace Communities

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.

    2011-01-01

    REACH is a European law that threatens to impact materials used within the US aerospace communities, including NASA. The presentation briefly covers REACH and generally, its perceived impacts to NASA and the aerospace community within the US.

  5. Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; McDougal, John; Barley, Bryan; Stephens Karen; Fesq, Lorraine M.

    2010-01-01

    Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the

  6. Proposed Array-based Deep Space Network for NASA

    NASA Technical Reports Server (NTRS)

    Bagri, Durgadas S.; Statman, Joseph I.; Gatti, Mark S.

    2007-01-01

    The current assets of the Deep Space Network (DSN) of the National Aeronautics and Space Administration (NASA), especially the 70-m antennas, are aging and becoming less reliable. Furthermore, they are expensive to operate and difficult to upgrade for operation at Ka-band (321 GHz). Replacing them with comparable monolithic large antennas would be expensive. On the other hand, implementation of similar high-sensitivity assets can be achieved economically using an array-based architecture, where sensitivity is measured by G/T, the ratio of antenna gain to system temperature. An array-based architecture would also provide flexibility in operations and allow for easy addition of more G/T whenever required. Therefore, an array-based plan of the next-generation DSN for NASA has been proposed. The DSN array would provide more flexible downlink capability compared to the current DSN for robust telemetry, tracking and command services to the space missions of NASA and its international partners in a cost effective way. Instead of using the array as an element of the DSN and relying on the existing concept of operation, we explore a broader departure in establishing a more modern concept of operations to reduce the operations costs. This paper presents the array-based architecture for the next generation DSN. It includes system block diagram, operations philosophy, user's view of operations, operations management, and logistics like maintenance philosophy and anomaly analysis and reporting. To develop the various required technologies and understand the logistics of building the array-based lowcost system, a breadboard array of three antennas has been built. This paper briefly describes the breadboard array system and its performance.

  7. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  8. Stirling Radioisotope Power System as an Alternative for NASAs Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Shaltens, R. K.; Mason, L. S.; Schreiber, J. G.

    2001-01-01

    The NASA Glenn Research Center (GRC) and the Department of Energy (DOE) are developing a free-piston Stirling convertor for a Stirling Radioisotope Power System (SRPS) to provide on-board electric power for future NASA deep space missions. The SRPS currently being developed provides about 100 watts and reduces the amount of radioisotope fuel by a factor of four over conventional Radioisotope Thermoelectric Generators (RTG). The present SRPS design has a specific power of approximately 4 W/kg which is comparable to an RTG. GRC estimates for advanced versions of the SRPS with improved heat source integration, lightweight Stirling convertors, composite radiators, and chip-packaged controllers improves the specific mass to about 8 W/kg. Additional information is contained in the original extended abstract.

  9. NASA's Space Launch System: Deep-Space Deployment for SmallSats

    NASA Technical Reports Server (NTRS)

    Schorr, Andy

    2017-01-01

    From its upcoming first flight, NASA's new Space Launch System (SLS) will represent a game-changing opportunity for smallsats. On that launch, which will propel the Orion crew vehicle around the moon, the new exploration-class launch vehicle will deploy 13 6U CubeSats into deep-space, where they will continue to a variety of destinations to perform diverse research and demonstrations. Following that first flight, SLS will undergo the first of a series of performance upgrades, increasing its payload capability to low Earth orbit from 70 to 105 metric tons via the addition of a powerful upper stage. With that change to the vehicle's architecture, so too will its secondary payload accommodation for smallsats evolve, with current plans calling for a change from the first-flight limit of 6U to accommodating a range of sizes up to 27U and potentially ESPA-class payloads. This presentation will provide an overview and update on the first launch of SLS and the secondary payloads it will deploy. Currently, flight hardware has been produced for every element of the vehicle, testing of the vehicle's propulsion elements has been ongoing for years, and structural testing of its stages has begun. Major assembly and testing of the Orion Stage Adapter, including the secondary payload accommodations, will be completed this year, and the structure will then be shipped to Kennedy Space Center for integration of the payloads. Progress is being made on those CubeSats, which will include studies of asteroids, Earth, the sun, the moon, and the impacts of radiation on organisms in deep space. They will feature revolutionary innovations for smallsats, including demonstrations of use of a solar sail as propulsion for a rendezvous with an asteroid, and the landing of a CubeSat on the lunar surface. The presentation will also provide an update on progress of the SLS Block 1B configuration that will be used on the rocket's second flight, a discussion of planned secondary payload accommodations

  10. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  11. The economic impact of NASA R and D spending: Executive summary

    NASA Technical Reports Server (NTRS)

    Evans, M. K.

    1976-01-01

    An evaluation of the economic impact of NASA research and development programs is made. The methodology and the results revolve around the interrelationships existing between the demand and supply effects of increased research and development spending, in particular, NASA research and development spending. The INFORUM Inter-Industry Forecasing Model is used to measure the short-run economic impact of alternative levels of NASA expenditures for 1975. An aggregate production function approach is used to develop the data series necessary to measure the impact of NASA research and development spending, and other determinants of technological progress, on the rate of growth in productivity of the U. S. economy. The measured relationship between NASA research and development spending and technological progress is simulated in the Chase Macroeconometric Model to measure the immediate, intermediate, and long-run economic impact of increased NASA research and development spending over a sustained period.

  12. NASA's Space Launch System: Deep-Space Delivery for SmallSats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). Planning is underway for smallsat accomodations on future configurations of the vehicle, which will present additional opportunities. This paper will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward first launch. It will also explain the current and future opportunities the vehicle offers for small satellites, including an overview of the CubeSat manifest for Exploration Mission-1 in 2018 and a discussion of future capabilities.

  13. NASA Astrophysics E/PO Impact: NASA SOFIA AAA Program Evaluation Results

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; Backman, Dana E.; Clark, Coral; Inverness Research Sofia Aaa Evaluation Team, Wested Sofia Aaa Evaluation Team

    2015-01-01

    SOFIA is an airborne observatory, studying the universe at infrared wavelengths, capable of making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA also inspires the development of new scientific instrumentation and fosters the education of young scientists and engineers.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program and Outreach Offices are located at NASA Ames Research center. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division.Data will be collected to study many different kinds of astronomical objects and phenomena, including star cycles, solar system formation, identification of complex molecules in space, our solar system, galactic dust, nebulae and ecosystems.Airborne Astronomy Ambassador (AAA) Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to elevate public scientific and technical literacy.The AAA effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Evaluation has confirmed the program's positive impact on the teacher participants, on their students, and in their communities. The inspirational experience has positively impacted their practice and career trajectory. AAAs have incorporated content knowledge and specific components of their experience into their curricula, and have given

  14. Flight Software Implementation of the Beacon Monitor Expreiment On the NASA New Millennium Deep Space 1 (DS-1) Mission

    NASA Technical Reports Server (NTRS)

    Foster, R.; Schlutsmeyer, A.

    1997-01-01

    A new technology that can lower the cost of mission operations on future spacecraft will be tested on the NASA New Millennium Deep Space 1 (DS-1) Mission. This technology, the Beacon Monitor Experiment (BMOX), can be used to reduce the Deep Space Network (DSN) tracking time and its associated costs on future missions.

  15. Numerical Modelling of the Deep Impact Mission Experiment

    NASA Technical Reports Server (NTRS)

    Wuennemann, K.; Collins, G. S.; Melosh, H. J.

    2005-01-01

    NASA s Deep Impact Mission (launched January 2005) will provide, for the first time ever, insights into the interior of a comet (Tempel 1) by shooting a approx.370 kg projectile onto the surface of a comets nucleus. Although it is usually assumed that comets consist of a very porous mixture of water ice and rock, little is known about the internal structure and in particular the constitutive material properties of a comet. It is therefore difficult to predict the dimensions of the excavated crater. Estimates of the crater size are based on laboratory experiments of impacts into various target compositions of different densities and porosities using appropriate scaling laws; they range between 10 s of meters up to 250 m in diameter [1]. The size of the crater depends mainly on the physical process(es) that govern formation: Smaller sizes are expected if (1) strength, rather than gravity, limits crater growth; and, perhaps even more crucially, if (2) internal energy losses by pore-space collapse reduce the coupling efficiency (compaction craters). To investigate the effect of pore space collapse and strength of the target we conducted a suite of numerical experiments and implemented a novel approach for modeling porosity and the compaction of pores in hydrocode calculations.

  16. The Columbia Accident Investigation and The NASA Glenn Ballistic Impact Laboratory Contributions Supporting NASA's Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2007-01-01

    On February 1, 2003, the Space Shuttle Columbia broke apart during reentry, resulting in loss of the vehicle and its seven crewmembers. For the next several months, an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA, concluded in August, 2003 that the most likely cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into the mission's launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of left wing, which ultimately led to the breakup of the orbiter. The findings of the CAIB were supported by ballistic impact tests, which simulated the physics of External Tank Foam impact on the RCC wing leading edge material. These tests ranged from fundamental material characterization tests to full-scale Orbiter Wing Leading Edge tests. Following the accident investigation, NASA spent the next 18 months focused on returning the shuttle safely to flight. In order to fully evaluate all potential impact threats from the many debris sources on the Space Shuttle during ascent, NASA instituted a significant impact testing program. The results from these tests led to the validation of high-fidelity computer models, capable of predicting actual or potential Shuttle impact events, were used in the certification of STS-114, NASA s Return to Flight Mission, as safe to fly. This presentation will provide a look into the inner workings of the Space Shuttle and a behind the scenes perspective on the impact analysis and testing done for the Columbia Accident Investigation and

  17. The economic impact of NASA R and D spending

    NASA Technical Reports Server (NTRS)

    Evans, M. K.

    1976-01-01

    The economic impact of R and D spending, particularly NASA R and D spending, on the U. S. economy was evaluated. The crux of the methodology and hence the results revolve around the fact that it was necessary to consider both the demand effects of increased spending and the supply effects of a higher rate of technological growth and a larger total productive capacity. The demand effects are primarily short-run in nature, while the supply effects do not begin to have a significant effect on aggregate economic activity until the fifth year after increased expenditures have taken place. The short-term economic impact of alternative levels of NASA expenditures for 1975 was first examined. The long-term economic impact of increased levels of NASA R and D spending over a sustained period was then evaluated.

  18. Lunar Impact Flash Locations from NASA's Lunar Impact Monitoring Program

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    Meteoroids are small, natural bodies traveling through space, fragments from comets, asteroids, and impact debris from planets. Unlike the Earth, which has an atmosphere that slows, ablates, and disintegrates most meteoroids before they reach the ground, the Moon has little-to-no atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact, the meteoroid's kinetic energy is partitioned into crater excavation, seismic wave production, and the generation of a debris plume. A flash of light associated with the plume is detectable by instruments on Earth. Following the initial observation of a probable Taurid impact flash on the Moon in November 2005,1 the NASA Meteoroid Environment Office (MEO) began a routine monitoring program to observe the Moon for meteoroid impact flashes in early 2006, resulting in the observation of over 330 impacts to date. The main objective of the MEO is to characterize the meteoroid environment for application to spacecraft engineering and operations. The Lunar Impact Monitoring Program provides information about the meteoroid flux in near-Earth space in a size range-tens of grams to a few kilograms-difficult to measure with statistical significance by other means. A bright impact flash detected by the program in March 2013 brought into focus the importance of determining the impact flash location. Prior to this time, the location was estimated to the nearest half-degree by visually comparing the impact imagery to maps of the Moon. Better accuracy was not needed because meteoroid flux calculations did not require high-accuracy impact locations. But such a bright event was thought to have produced a fresh crater detectable from lunar orbit by the NASA spacecraft Lunar Reconnaissance Orbiter (LRO). The idea of linking the observation of an impact flash with its crater was an appealing one, as it would validate NASA photometric calculations and crater scaling laws developed from hypervelocity gun testing. This idea was

  19. CECE: Expanding the Envelope of Deep Throttling in Liquid Oxygen/Liquid Hydrogen Rocket Engines For NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop technology and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Three series of demonstrator engine tests, the first in April-May 2006, the second in March-April 2007 and the third in November-December 2008, have demonstrated up to 13:1 throttling (104% to 8% thrust range) of the hydrogen/oxygen expander cycle engine. The first two test series explored a propellant feed system instability ("chug") environment at low throttled power levels. Lessons learned from these two tests were successfully applied to the third test series, resulting in stable operation throughout the 13:1 throttling range. The first three tests have provided an early demonstration of an enabling cryogenic propulsion concept, accumulating over 5,000 seconds of hot fire time over 27 hot fire tests, and have provided invaluable system-level technology data toward design and development risk mitigation for the NASA Altair and future lander propulsion system applications. This paper describes the results obtained from the highly successful third test series as well as the test objectives and early results obtained from a

  20. NASA's Lunar Impact Monitoring Program

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.; Cooke, William; Swift, Wesley; Hollon, Nicholas

    2007-01-01

    NASA's Meteoroid Environment Office nas implemented a program to monitor the Moon for meteoroid impacts from the Marshall Space Flight Center. Using off-the-shelf telescopes and video equipment, the moon is monitored for as many as 10 nights per month, depending on weather. Custom software automatically detects flashes which are confirmed by a second telescope, photometrically calibrated using background stars, and published on a website for correlation with other observations, Hypervelocity impact tests at the Ames Vertical Gun Facility have been performed to determine the luminous efficiency ana ejecta characteristics. The purpose of this research is to define the impact ejecta environment for use by lunar spacecraft designers of the Constellation (manned lunar) Program. The observational techniques and preliminary results will be discussed.

  1. Ground-Based Observations of 9P/Tempel 1 - The Deep Impact Mission

    NASA Astrophysics Data System (ADS)

    Meech, K. J.; Bauer, J. M.; A'Hearn, M. F.

    1999-09-01

    The Deep Impact mission, one of the two recently approved Discovery missions, will deliver a 500 kg copper projectile to the comet 9P/Tempel 1 on July 4, 2005, to excavate a crater. The goal will be to watch the cratering event, measure the change in activity level caused by the impact, and will be the first experiment to sample deeply below the surface of a comet. In preparation for a successful mission, we will begin a vigorous ground-based observing campaign to characterize the nucleus of 9P/Tempel 1. The ground-based observations will characterize the pre-impact activity levels for comparison after the impact, characterize the nucleus in terms of a rotational light curve and pole position, get an estimate of the nucleus size and albedo, model the dust production rates, and search for the appearance of gaseous species as the comet approaches perihelion. The observing campaign as already begun with some intensive observations of the comet during the following observing runs: UT Date & Nts & Telescope & r[AU] & No. & Exp 12/97 & 1 &Keck II & 4.48 & 2 & 240 1/98 & 1 &UH 2.2m & 4.44 & 7 & 4200 2/98 & 1 &CTIO1.5m & 4.36 & 3 & 1800 4/98 & 2 &UH 2.2m & 4.26 & 8 & 4800 1/99 & 6 &UH 2.2m & 3.14 &133 &17220 3/99 & 4 &UH 2.2m & 2.88 &181 &54000 5/99 & 2 &UH 2.2m & 2.47 & 9 & 810 7 /99 & 2 &UH 2.2m & 2.19 & 9 & 1620 The 1999 January and March observations were made to search for the rotation period of the comet, as well as to obtain deep images to model the coma. The results of the rotational light curve observations will be presented, as well as a compilation of the heliocentric light curve from the data from earlier epochs. In addition, a detailed, comprehensive multi-wavelength ground-based observing plan will be presented to characterize the nucleus before the 2005 July 4 Deep Impact encounter with the comet. This project has been funded through the NASA Planetary Astronomy Program to date, NAG 4494.

  2. A System for Fault Management for NASA's Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Spirkovska, Liljana; Aaseng, Gordon B.; Mccann, Robert S.; Baskaran, Vijayakumar; Ossenfort, John P.; Smith, Irene Skupniewicz; Iverson, David L.; Schwabacher, Mark A.

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy.

  3. Deep-water longline fishing has reduced impact on Vulnerable Marine Ecosystems

    PubMed Central

    Pham, Christopher K.; Diogo, Hugo; Menezes, Gui; Porteiro, Filipe; Braga-Henriques, Andreia; Vandeperre, Frederic; Morato, Telmo

    2014-01-01

    Bottom trawl fishing threatens deep-sea ecosystems, modifying the seafloor morphology and its physical properties, with dramatic consequences on benthic communities. Therefore, the future of deep-sea fishing relies on alternative techniques that maintain the health of deep-sea ecosystems and tolerate appropriate human uses of the marine environment. In this study, we demonstrate that deep-sea bottom longline fishing has little impact on vulnerable marine ecosystems, reducing bycatch of cold-water corals and limiting additional damage to benthic communities. We found that slow-growing vulnerable species are still common in areas subject to more than 20 years of longlining activity and estimate that one deep-sea bottom trawl will have a similar impact to 296–1,719 longlines, depending on the morphological complexity of the impacted species. Given the pronounced differences in the magnitude of disturbances coupled with its selectivity and low fuel consumption, we suggest that regulated deep-sea longlining can be an alternative to deep-sea bottom trawling. PMID:24776718

  4. Will Deep Impact Make a Splash?

    NASA Technical Reports Server (NTRS)

    Sheldon, Robert B.; Hoover, Richard B.

    2005-01-01

    Recent cometary observations from spacecraft flybys support the hypothesis that short-period comets have been substantially modified by the presence of liquid water. Such a model can resolve many outstanding questions of cometary dynamics, as well as the differences between the flyby observations and the dirty snowball paradigm. The model also predicts that the Deep Impact mission, slated for a July 4, 2005 collision with Comet Temple-1, will encounter a layered, heterogenous nucleus with subsurface liquid water capped by dense crust. Collision ejecta will include not only vaporized material, but liquid water and large pieces of crust. Since the water will immediately boil, we predict that the water vapor signature of Deep Impact may be an order of magnitude larger than that expected from collisional vaporization alone.

  5. NASA's CubeQuest Challenge - From Ground Tournaments to Lunar and Deep Space Derby

    NASA Technical Reports Server (NTRS)

    Hyde, Elizabeth Lee; Cockrell, James J.

    2017-01-01

    The First Flight of NASA's Space Launch System will feature 13 CubeSats that will launch into cis-lunar space. Three of these CubeSats are winners of the CubeQuest Challenge, part of NASA's Space Technology Mission Directorate (STMD) Centennial Challenge Program. In order to qualify for launch on EM-1, the winning teams needed to win a series of Ground Tournaments, periodically held since 2015. The final Ground Tournament, GT-4, was held in May 2017, and resulted in the Top 3 selection for the EM-1 launch opportunity. The Challenge now proceeds to the in-space Derbies, where teams must build and test their spacecraft before launch on EM-1. Once in space, they will compete for a variety of Communications and Propulsion-based challenges. This is the first Centennial Challenge to compete in space and is a springboard for future in-space Challenges. In addition, the technologies gained from this challenge will also propel development of deep space CubeSats.

  6. NASA's New Astronauts to Conduct Research Off the Earth , For the Earth and Deep Space Missions

    NASA Image and Video Library

    2017-06-07

    After receiving a record-breaking number of applications to join an exciting future of space exploration, NASA has selected its largest astronaut class since 2000. Rising to the top of more than 18,300 applicants, NASA chose 12 women and men as the agency’s new astronaut candidates. Vice President Mike Pence joined Acting NASA Administrator Robert Lightfoot, Johnson Space Center Director Ellen Ochoa, and Flight Operations Director Brian Kelly to welcome the new astronaut candidates during an event June 7 at the agency’s Johnson Space Center in Houston. The astronaut candidates will return to Johnson in August to begin two years of training. Then they could be assigned to any of a variety of missions: performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and departing for deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket.

  7. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  8. Late Eocene impact events recorded in deep-sea sediments

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1988-01-01

    Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.

  9. Secondary Payload Opportunities on NASA's Space Launch System (SLS) Enable Science and Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). With this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. This first launch of SLS and the Orion Spacecraft is planned no later than November 2018 and will fly along a trans-lunar trajectory, testing the performance of the SLS and Orion systems for future missions. NASA is making investments to expand the science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1) will include thirteen 6U Cubesat small satellites to be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for the advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload

  10. NASA's Space Launch System: Deep-Space Delivery for SmallSats

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, an uncrewed test of the Orion spacecraft into distant retrograde orbit around the moon, accompanying Orion on SLS will be 13 small-satellite secondary payloads, which will deploy in cislunar space. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. The Space Launch System Program is working actively with the developers of the payloads toward vehicle integration. Following its first flight and potentially as early as its second, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO, and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from those on the first launch, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for small satellites. This

  11. NASA workshop on impact damage to composites

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1991-01-01

    A compilation of slides presented at the NASA Workshop on Impact Damage to Composites held on March 19 and 20, 1991, at the Langley Research Center, Hampton, Virginia is given. The objective of the workshop was to review technology for evaluating impact damage tolerance of composite structures and identify deficiencies. Research, development, design methods, and design criteria were addressed. Actions to eliminate technology deficiencies were developed. A list of those actions and a list of attendees are also included.

  12. How does mesoscale impact deep convection? Answers from ensemble Northwestern Mediterranean Sea simulations.

    NASA Astrophysics Data System (ADS)

    Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jérôme; Giordani, Hervé; Pennel, Romain; Sevault, Florence; Testor, Pierre

    2017-04-01

    Ocean deep convection is a major process of interaction between surface and deep ocean. The Gulf of Lions is a well-documented deep convection area in the Mediterranean Sea, and mesoscale dynamics is a known factor impacting this phenomenon. However, previous modelling studies don't allow to address the robustness of its impact with respect to the physical configuration and ocean intrinsic variability. In this study, the impact of mesoscale on ocean deep convection in the Gulf of Lions is investigated using a multi-resolution ensemble simulation of the northwestern Mediterranean sea. The eddy-permitting Mediterranean model NEMOMED12 (6km resolution) is compared to its eddy-resolving counterpart with the 2-way grid refinement AGRIF in the northwestern Mediterranean (2km resolution). We focus on the well-documented 2012-2013 period and on the multidecadal timescale (1979-2013). The impact of mesoscale on deep convection is addressed in terms of its mean and variability, its impact on deep water transformations and on associated dynamical structures. Results are interpreted by diagnosing regional mean and eddy circulation and using buoyancy budgets. We find a mean inhibition of deep convection by mesoscale with large interannual variability. It is associated with a large impact on mean and transient circulation and a large air-sea flux feedback.

  13. Education and Public Outreach for NASA's EPOXI Mission.

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Crow, C. A.; Behne, J.; Brown, R. N.; Counley, J.; Livengood, T. A.; Ristvey, J. D.; Warner, E. M.

    2009-09-01

    NASA's EPOXI mission is reusing the Deep Impact (DI) flyby spacecraft to study comets and extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission extrasolar planets transiting their parent stars were observed to gain further knowledge and understanding of planetary systems. Observations of Earth also allowed for characterization of Earth as an extrasolar planet. A movie of a lunar transit of the Earth created from EPOCh images and links to existing planet finding activities from other NASA missions are available on the EPOXI website. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comet properties and formation by observing comet Hartley 2 in November 2010. The EPOXI Education and Public Outreach (E/PO) program is both creating new materials and updating and modifying existing Deep Impact materials based on DI mission results. Comparing Comets is a new educational activity under development that will guide students in conducting analyses of comet surface features similar to those the DIXI scientists will perform after observing comet Hartley 2. A new story designed to stimulate student creativity was developed in alignment with national educational standards. EPOXI E/PO also funded Family Science Night (FSN), a program bringing together students, families, and educators for an evening at the National Air and Space Museum in Washington, DC. FSN events include time for families to explore the museum, a presentation by a space scientist, and an astronomy themed IMAX film. Nine events were held during the 2008-2009 school year with a total attendance of 3,145 (attendance since inception reached 44,732). Half of attendance is reserved for schools with high percentages of underrepresented minorities. EPOXI additionally offers a bi-monthly newsletter to keep the public, teachers, and space enthusiasts updated on current mission activities. For more

  14. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  15. The Ejecta Evolution of Deep Impact: Insight from Experiments

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.; Schultz, P. H.; Heineck, J. T.

    2010-12-01

    The Deep Impact (DI) probe impacted comet 9P/Tempel 1 at an angle of ~30° from local horizontal with a velocity of 10.2 km/s. Examination of the resulting ballistic (e.g., non-vapor driven) ejecta revealed phenomena that largely followed expectations from laboratory investigations of oblique impacts into low-density porous material, including a downrange bias, uprange zone of avoidance, and cardioid (curved) rays (Schultz, et al, 2005, 2007). Modeling of the impact based on canonical models and scaling laws (Richardson, et al, 2007) allowed a first-order reconstruction of the event, but did not fully represent the three-dimensional nature of the ejecta flow-field in an oblique impact essential for interpretation of the DI data. In this study, we present new experimental measurements of the early-time ejecta dynamics in oblique impacts that allow a more complete reconstruction of the ballistic ejecta from the impact, including visualization of the DI encounter and predictions for the upcoming re-encounter with Tempel 1. A suite of hypervelocity 30° impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR) for the purpose of interpreting the Deep Impact event. A technique based on Particle Tracking Velocimetry (PTV) permitted non-intrusive measurement of the ejecta velocity within the ejecta curtain. The PTV system developed at the AVGR utilizes a laser light sheet projected parallel to the impact surface to illuminate horizontal “slices” of the ejecta curtain that are then recorded by multiple cameras. Particle displacement between successive frames and cameras allows determination of the three-component velocity of the ejecta curtain. Pioneering efforts with a similar technique (Anderson, et al, 2003, 2006) characterized the main-stage ejecta velocity distributions and demonstrated that asymmetries in velocity and ejection angle persist well into the far-field for oblique impacts. In this study, high-speed cameras

  16. Impact disruption and recovery of the deep subsurface biosphere.

    PubMed

    Cockell, Charles S; Voytek, Mary A; Gronstal, Aaron L; Finster, Kai; Kirshtein, Julie D; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S; Sanford, Ward E; Horton, J Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S

    2012-03-01

    Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ∼35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ∼35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.

  17. Impact disruption and recovery of the deep subsurface biosphere

    USGS Publications Warehouse

    Cockell, Charles S.; Voytek, Mary A.; Gronstal, Aaron L.; Finster, Kai; Kirshtein, Julie D.; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S.; Sanford, Ward E.; Horton, J. Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S.

    2012-01-01

    Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ~35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ~35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.

  18. Economic impact of large public programs: The NASA experience

    NASA Technical Reports Server (NTRS)

    Ginzburg, E.; Kuhn, J. W.; Schnee, J.; Yavitz, B.

    1976-01-01

    The economic impact of NASA programs on weather forecasting and the computer and semiconductor industries is discussed. Contributions to the advancement of the science of astronomy are also considered.

  19. Impacts on the deep-sea ecosystem by a severe coastal storm.

    PubMed

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26(th) of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.

  20. CECE: Expanding the Envelope of Deep Throttling Technology in Liquid Oxygen/Liquid Hydrogen Rocket Engines for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data

  1. Deep Space Telecommunications

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  2. Impact Flash Monitoring Facility on the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Needham, D. H.; Moser, D. E.; Suggs, R. M.; Cooke, W. J.; Kring, D. A.; Neal, C. R.; Fassett, C. I.

    2018-02-01

    Cameras mounted to the Deep Space Gateway exterior will detect flashes caused by impacts on the lunar surface. Observed flashes will help constrain the current lunar impact flux and assess hazards faced by crews living and working in cislunar space.

  3. The NASA Lewis Research Center: An Economic Impact Study

    NASA Technical Reports Server (NTRS)

    Austrian, Ziona

    1996-01-01

    The NASA Lewis Research Center (LeRC), established in 1941, is one of ten NASA research centers in the country. It is situated on 350 acres of land in Cuyahoga County and occupies more than 140 buildings and over 500 specialized research and test facilities. Most of LeRC's facilities are located in the City of Cleveland; some are located within the boundaries of the cities of Fairview Park and Brookpark. LeRC is a lead center for NASA's research, technology, and development in the areas of aeropropulsion and selected space applications. It is a center of excellence for turbomachinery, microgravity fluid and combustion research, and commercial communication. The base research and technology disciplines which serve both aeronautics and space areas include materials and structures, instrumentation and controls, fluid physics, electronics, and computational fluid dynamics. This study investigates LeRC's economic impact on Northeast Ohio's economy. It was conducted by The Urban Center's Economic Development Program in Cleveland State University's Levin College of Urban Affairs. The study measures LeRC's direct impact on the local economy in terms of jobs, output, payroll, and taxes, as well as the indirect impact of these economic activities when they 'ripple' throughout the economy. To fully explain LeRC's overall impact on the region, its contributions in the areas of technology transfer and education are also examined. The study uses a highly credible and widely accepted research methodology. First, regional economic multipliers based on input-output models were used to estimate the effect of LERC spending on the Northeast Ohio economy. Second, the economic models were complemented by interviews with industrial, civic, and university leaders to qualitatively assess LeRC's impact in the areas of technology transfer and education.

  4. Groth Deep Image

    NASA Image and Video Library

    2003-07-25

    This ultraviolet color blowup of the Groth Deep Image was taken by NASA Galaxy Evolution Explorer on June 22 and June 23, 2003. Many hundreds of galaxies are detected in this portion of the image. NASA astronomers believe the faint red galaxies are 6 billion light years away. http://photojournal.jpl.nasa.gov/catalog/PIA04625

  5. Impacts on the Deep-Sea Ecosystem by a Severe Coastal Storm

    PubMed Central

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M.; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B.; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084

  6. Report on the survey for electrostatic discharges on Mars using NASA's Deep Space Network (DSN)

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Majid, W.; Geldzahler, B.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Mars atmosphere has strong dust activity. It is suggested that the larger regional storms are capable of producing electric fields large enough to initiate electrostatic discharges. The storms have charging process similar to terrestrial dust devils and have hot cores and complicated vortex winds similar to terrestrial thunderstorms. However, due to uncertainties in our understanding of the electrical environment of the storms and absence of related in-situ measurements, the existence (or non-existence) of such electrostatic discharges on the planet is yet to be confirmed. Knowing about the electrical activity on Mars is essential for future human explorations of the planet. We have recently launched a long-term monitoring campaign at NASA's Madrid Deep Space Communication Complex (MDSCC) to search for powerful discharges on Mars. The search occurs during routine tracking of Mars orbiting spacecraft by Deep Space Network (DSN) radio telescope. In this presentation, we will report on the result of processing and analysis of the data from the first six months of our campaign.

  7. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  8. The Future of NASA's Deep Space Network and Applications to Planetary Probe Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Preston, Robert A.; Vrotsos, Peter

    2010-01-01

    NASA's Deep Space Network (DSN) has been an invaluable tool in the world's exploration of space. It has served the space-faring community for more than 45 years. The DSN has provided a primary communication pathway for planetary probes, either through direct- to-Earth links or through intermediate radio relays. In addition, its radiometric systems are critical to probe navigation and delivery to target. Finally, the radio link can also be used for direct scientific measurement of the target body ('radio science'). This paper will examine the special challenges in supporting planetary probe missions, the future evolution of the DSN and related spacecraft technology, the advantages and disadvantages of radio relay spacecraft, and the use of the DSN radio links for navigation and scientific measurements.

  9. Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Simpson, Morgan; Wheeler, Raymond M.; Newsham, Gerald; Stutte, Gary W.

    2013-01-01

    In preparation for future human exploration missions to space, NASA evaluates habitat concepts to assess integration issues, power requirements, crew operations, technology, and system performance. The concept of a Food Production System utilizes fresh foods, such as vegetables and small fruits, harvested on a continuous basis, to improve the crew's diet and quality of life. The system would need to fit conveniently into the habitat and not interfere with other components or operations. To test this concept, a plant growing "atrium" was designed to surround the lift between the lower and upper modules of the Deep Space Habitat and deployed at NASA Desert Research and Technology Studies (DRATS) test site in 2011 and at NASA Johnson Space Center in 2012. With this approach, no-utilized volume provided an area for vegetable growth. For the 2011 test, mizuna, lettuce, basil, radish and sweetpotato plants were grown in trays using commercially available red I blue LED light fixtures. Seedlings were transplanted into the atrium and cared for by the. crew. Plants were then harvested two weeks later following completion of the test. In 2012, mizuna, lettuce, and radish plants were grown similarly but under flat panel banks of white LEDs. In 2012, the crew went through plant harvesting, including sanitizing tlie leafy greens and radishes, which were then consumed. Each test demonstrated successful production of vegetables within a functional hab module. The round red I blue LEDs for the 2011 test lighting cast a purple light in the hab, and were less uniformly distributed over the plant trays. The white LED panels provided broad spectrum light with more uniform distribution. Post-test questionnaires showed that the crew enjoyed tending and consuming the plants and that the white LED light in 2012 provided welcome extra light for the main HAB AREA.

  10. Man and the Last Great Wilderness: Human Impact on the Deep Sea

    PubMed Central

    Ramirez-Llodra, Eva; Tyler, Paul A.; Baker, Maria C.; Bergstad, Odd Aksel; Clark, Malcolm R.; Escobar, Elva; Levin, Lisa A.; Menot, Lenaick; Rowden, Ashley A.; Smith, Craig R.; Van Dover, Cindy L.

    2011-01-01

    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short

  11. Deep Impact: 19 gigajoules can make quite an impression

    NASA Technical Reports Server (NTRS)

    Kubitschek, D.; Bank, T.; Frazier, W.; Blume, W.; Null, G.; Mastrodemos, N.; Synnott, S.

    2001-01-01

    Deep Impact will impact the comet Tempel-1 on July 4, 2005. The impact event will be clearly visible from small telescopes on Earth, especially in the IR bands. When combined with observations taken from the Flyby spacecraft, this science data set will provide unique insight into the materials and structure within the comet, and the strength of the surface.

  12. NASA Vision. Volume 1, No. 4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Contents in this newsletter include the following: Honor award ceremony. NASA robotic geologist named Spirit began its seven-month journey to Mars. Around the Centers. NASA web site wins Webby Award. Global garden. Grows greener. NASA newest UAV makes successful flight. Summer interns join the NASA team. NASA maps bolts of lightning. Monumental tribute. Secret lives of galaxies unveiled in deep survey. New program sends nation's teachers "Back to school".

  13. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  14. Deep Impact: excavating comet Tempel 1.

    PubMed

    A'Hearn, M F; Belton, M J S; Delamere, W A; Kissel, J; Klaasen, K P; McFadden, L A; Meech, K J; Melosh, H J; Schultz, P H; Sunshine, J M; Thomas, P C; Veverka, J; Yeomans, D K; Baca, M W; Busko, I; Crockett, C J; Collins, S M; Desnoyer, M; Eberhardy, C A; Ernst, C M; Farnham, T L; Feaga, L; Groussin, O; Hampton, D; Ipatov, S I; Li, J-Y; Lindler, D; Lisse, C M; Mastrodemos, N; Owen, W M; Richardson, J E; Wellnitz, D D; White, R L

    2005-10-14

    Deep Impact collided with comet Tempel 1, excavating a crater controlled by gravity. The comet's outer layer is composed of 1- to 100-micrometer fine particles with negligible strength (<65 pascals). Local gravitational field and average nucleus density (600 kilograms per cubic meter) are estimated from ejecta fallback. Initial ejecta were hot (>1000 kelvins). A large increase in organic material occurred during and after the event, with smaller changes in carbon dioxide relative to water. On approach, the spacecraft observed frequent natural outbursts, a mean radius of 3.0 +/- 0.1 kilometers, smooth and rough terrain, scarps, and impact craters. A thermal map indicates a surface in equilibrium with sunlight.

  15. Creating a NASA-Wide Museum Alliance

    NASA Technical Reports Server (NTRS)

    Sohus, Anita M.

    2006-01-01

    NASA's Museum Alliance is a nationwide network of informal educators at museums, science centers, and planetariums that present NASA information to their local audiences. Begun in 2002 as the Mars Museum Visualization Alliance with advisors from a dozen museums, the network has grown to over 300 people from 200 organizations, including a dozen or so international partners. The network has become a community of practice among these informal educators who work with students, educators, and the general public on a daily basis, presenting information and fielding questions about space exploration. Communications are primarily through an active listserve, regular telecons, and a pass word protected website. Professional development is delivered via telecons and downloadable presentations. Current content offerings include Mars exploration, Cassini, Stardust, Genesis, Deep Impact, Earth observations, STEREO, and missions to explore beyond our solar system.

  16. The NASA JSC Hypervelocity Impact Test Facility (HIT-F)

    NASA Technical Reports Server (NTRS)

    Crews, Jeanne L.; Christiansen, Eric L.

    1992-01-01

    The NASA Johnson Space Center Hypervelocity Impact Test Facility was created in 1980 to study the hypervelocity impact characteristics of composite materials. The facility consists of the Hypervelocity Impact Laboratory (HIRL) and the Hypervelocity Analysis Laboratory (HAL). The HIRL supports three different-size light-gas gun ranges which provide the capability of launching particle sizes from 100 micron spheres to 12.7 mm cylinders. The HAL performs three functions: (1) the analysis of data collected from shots in the HIRL, (2) numerical and analytical modeling to predict impact response beyond test conditions, and (3) risk and damage assessments for spacecraft exposed to the meteoroid and orbital debris environments.

  17. Development of Carbon Dioxide Removal Systems for NASA's Deep Space Human Exploration Missions 2016-2017

    NASA Technical Reports Server (NTRS)

    Knox, James C.

    2017-01-01

    NASA has embarked on an endeavor that will enable humans to explore deep space, with the ultimate goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas, as resupply is unavailable in the Mars transit phase and early return is not possible. Additionally, mass, power, volume, and other resources must be minimized for all subsystems to reduce propulsion needs. Among the critical areas identified for development are life support systems, which will require increases in reliability and reductions in resources. This paper discusses current and planned developments in the area of carbon dioxide removal to support crewed Mars-class missions.

  18. Footprint of Deepwater Horizon blowout impact to deep-water coral communities

    PubMed Central

    Fisher, Charles R.; Hsing, Pen-Yuan; Kaiser, Carl L.; Yoerger, Dana R.; Roberts, Harry H.; Shedd, William W.; Cordes, Erik E.; Shank, Timothy M.; Berlet, Samantha P.; Saunders, Miles G.; Larcom, Elizabeth A.; Brooks, James M.

    2014-01-01

    On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations. PMID:25071200

  19. Viton's Impact on NASA Standard Initiator Propellant Properties

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl; Tipton, Bill, Jr.

    2000-01-01

    This paper discusses some of the properties of Viton that are relevant to its use as a pyrotechnic binder in a NASA standard initiator (NSI) propellant. Nearly every aspect of NSI propellant manufacture and use is impacted by the binder system. The effect of Viton's molecular weight on solubility, solution viscosity, glass transition temperature, and strength characteristics as applied to NSI production and performance are reviewed. Emphasis is placed on the Viton fractionation that occurs during the precipitation cycle and its impact on bridgewire functions. Special consideration is given to the production of bridgewire slurry mixtures.

  20. Calibration and performance measurements for the nasa deep space network aperture enhancement project (daep)

    NASA Astrophysics Data System (ADS)

    LaBelle, Remi C.; Rochblatt, David J.

    2018-06-01

    The NASA Deep Space Network (DSN) has recently constructed two new 34-m antennas at the Canberra Deep Space Communications Complex (CDSCC). These new antennas are part of the larger DAEP project to add six new 34-m antennas to the DSN, including two in Madrid, three in Canberra and one in Goldstone (California). The DAEP project included development and implementation of several new technologies for the X, and Ka (32 GHz) -band uplink and downlink electronics. The electronics upgrades were driven by several different considerations, including parts obsolescence, cost reduction, improved reliability and maintainability, and capability to meet future performance requirements. The new antennas are required to support TT&C links for all of the NASA deep-space spacecraft, as well as for several international partners. Some of these missions, such as Voyager 1 and 2, have very limited link budgets, which results in demanding requirements for system G/T performance. These antennas are also required to support radio science missions with several spacecraft, which dictate some demanding requirements for spectral purity, amplitude stability and phase stability for both the uplink and downlink electronics. After completion of these upgrades, a comprehensive campaign of tests and measurements took place to characterize the electronics and calibrate the antennas. Radiometric measurement techniques were applied to characterize, calibrate, and optimize the performance of the antenna parameters. These included optical and RF high-resolution holographic and total power radiometry techniques. The methodology and techniques utilized for the measurement and calibration of the antennas is described in this paper. Lessons learned (not all discussed in this paper) from the commissioning of the first antenna (DSS-35) were applied to the commissioning of the second antenna (DSS-36). These resulted in achieving antenna aperture efficiency of 66% (for DSS-36), at Ka-Band (32-Ghz), which is

  1. Lessons Learned from Daily Uplink Operations during the Deep Impact Mission

    NASA Technical Reports Server (NTRS)

    Stehly, Joseph S.

    2006-01-01

    The daily preparation of uplink products (commands and files) for Deep Impact was as problematic as the final encounter images were spectacular. The operations team was faced with many challenges during the six-month mission to comet Tempel One of the biggest difficulties was that the Deep Impact Flyby and Impactor vehicles necessitated a high volume of uplink products while also utilizing a new uplink file transfer capability. The Jet Propulsion Laboratory (JPL) Multi-Mission Ground Systems and Services (MGSS) Mission Planning and Sequence Team (MPST) had the responsibility of preparing the uplink products for use on the two spacecraft. These responsibilities included processing nearly 15,000 flight products, modeling the states of the spacecraft during all activities for subsystem review, and ensuring that the proper commands and files were uplinked to the spacecraft. To guarantee this transpired and the health and safety of the two spacecraft were not jeopardized several new ground scripts and procedures were developed while the Deep Impact Flyby and Impactor spacecraft were en route to their encounter with Tempel-1. These scripts underwent several adaptations throughout the entire mission up until three days before the separation of the Flyby and Impactor vehicles. The problems presented by Deep Impact's daily operations and the development of scripts and procedures to ease those challenges resulted in several valuable lessons learned. These lessons are now being integrated into the design of current and future MGSS missions at JPL.

  2. Separation Anxiety Over for Deep Impact

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image of Deep Impact's impactor probe was taken by the mission's mother ship, or flyby spacecraft, after the two separated at 11:07 p.m. Pacific time, July 2 (2:07 a.m. Eastern time, July 3). The impactor is scheduled to collide with comet Tempel 1 at 10:52 p.m. Pacific time, July 3 (1:52 a.m. Eastern time, July 4). The impactor can be seen at the center of the image.

  3. NASA's Impacts Towards Improving International Water Management Using Satellites

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lawford, R. G.; Mohr, K. I.; Lee, C. M.

    2013-12-01

    Key objectives of the NASA's Water Resources and Capacity Building Programs are to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management. This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts to international partners, particularly developing countries. NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and internationally to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. This presentation will outline and describe NASA's international water related research, applications and capacity building programs' efforts to address developing countries critical water challenges in Asia, African and Latin America. This will specifically highlight impacts and case studies from NASA's programs in Water Resources (e.g., drought, snow

  4. Deep Space Habitat Wireless Smart Plug

    NASA Technical Reports Server (NTRS)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  5. Involving Scientists in the NASA / JPL Solar System Educators Program

    NASA Astrophysics Data System (ADS)

    Brunsell, E.; Hill, J.

    2001-11-01

    The NASA / JPL Solar System Educators Program (SSEP) is a professional development program with the goal of inspiring America's students, creating learning opportunities, and enlightening inquisitive minds by engaging them in the Solar System exploration efforts conducted by the Jet Propulsion Laboratory (JPL). SSEP is a Jet Propulsion Laboratory program managed by Space Explorers, Inc. (Green Bay, WI) and the Virginia Space Grant Consortium (Hampton, VA). The heart of the program is a large nationwide network of highly motivated educators. These Solar System Educators, representing more than 40 states, lead workshops around the country that show teachers how to successfully incorporate NASA materials into their teaching. During FY2001, more than 9500 educators were impacted through nearly 300 workshops conducted in 43 states. Solar System Educators attend annual training institutes at the Jet Propulsion Laboratory during their first two years in the program. All Solar System Educators receive additional online training, materials and support. The JPL missions and programs involved in SSEP include: Cassini Mission to Saturn, Galileo Mission to Jupiter, STARDUST Comet Sample Return Mission, Deep Impact Mission to a Comet, Mars Exploration Program, Outer Planets Program, Deep Space Network, JPL Space and Earth Science Directorate, and the NASA Office of Space Science Solar System Exploration Education and Public Outreach Forum. Scientists can get involved with this program by cooperatively presenting at workshops conducted in their area, acting as a content resource or by actively mentoring Solar System Educators. Additionally, SSEP will expand this year to include other missions and programs related to the Solar System and the Sun.

  6. Global Long-Term SeaWiFS Deep Blue Aerosol Products available at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Sayer, A. M.; Bettenhausen, Corey; Wei, Jennifer C.; Ostrenga, Dana M.; Vollmer, Bruce E.; Hsu, Nai-Yung; Kempler, Steven J.

    2012-01-01

    Long-term climate data records about aerosols are needed in order to improve understanding of air quality, radiative forcing, and for many other applications. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides a global well-calibrated 13- year (1997-2010) record of top-of-atmosphere radiance, suitable for use in retrieval of atmospheric aerosol optical depth (AOD). Recently, global aerosol products derived from SeaWiFS with Deep Blue algorithm (SWDB) have become available for the entire mission, as part of the NASA Making Earth Science data records for Use in Research for Earth Science (MEaSUREs) program. The latest Deep Blue algorithm retrieves aerosol properties not only over bright desert surfaces, but also vegetated surfaces, oceans, and inland water bodies. Comparisons with AERONET observations have shown that the data are suitable for quantitative scientific use [1],[2]. The resolution of Level 2 pixels is 13.5x13.5 km2 at the center of the swath. Level 3 daily and monthly data are composed by using best quality level 2 pixels at resolution of both 0.5ox0.5o and 1.0ox1.0o. Focusing on the southwest Asia region, this presentation shows seasonal variations of AOD, and the result of comparisons of 5-years (2003- 2007) of AOD from SWDB (Version 3) and MODIS Aqua (Version 5.1) for Dark Target (MYD-DT) and Deep Blue (MYD-DB) algorithms.

  7. Deep-Draft Navigation User Charges : Recovery Options and Impacts

    DOT National Transportation Integrated Search

    1977-08-01

    Alternative cost recovery options for Federal deep-draft navigation expenditures are investigated and the impacts of user charges on waterborne trades and commodity traffic, both foreign and domestic (Great Lakes and coastwise), are assessed. In addi...

  8. Nasa astronauts, prosthetics and the manned space program.

    PubMed

    Frenger, Paul

    2014-01-01

    The author has collaborated with NASA astronauts, scientists and engineers since 2006. Manned deep space missions, beyond the Moon’s orbit, are being planned in this post-Shuttle era. The spacecraft required for longer flights will have relatively restricted crew interior volume. To decrease the negative impact of these tight quarters, the author has proposed recruiting smaller astronauts (abbreviated SAs), persons about one-half the height of current near-Earth crewmembers. This includes achondroplastic dwarfs, lower extremity amputees and persons with certain height-reducing birth defects such as phocomelia. To overcome issues of physical competence, strength and mobility of SAs, the author describes using advanced cybernetic prostheses for those with limb amputations or deformities, and motorized exoskeletons for the others. Muscle and bone-sparing space exercise programs for SAs should be simpler. For example, a motorized exoskeleton used for routine duties in space would also provide both resistance workouts and passive range of motion conditioning for the astronauts, even while resting. Complex personalized artificial intelligence functions may be added. These initial suggestions previously presented to NASA offer a starting point for deep space manned missions to the asteroid belt, Mars and beyond.

  9. Microbial abundance in the deep subsurface of the Chesapeake Bay impact crater: Relationship to lithology and impact processes

    USGS Publications Warehouse

    Cockell, Charles S.; Gronstal, Aaron L.; Voytek, Mary A.; Kirshtein, Julie D.; Finster, Kai; Sanford, Ward E.; Glamoclija, Mihaela; Gohn, Gregroy S.; Powars, David S.; Horton, J. Wright

    2009-01-01

    Asteroid and comet impact events are known to cause profound disruption to surface ecosystems. The aseptic collection of samples throughout a 1.76-km-deep set of cores recovered from the deep subsurface of the Chesapeake Bay impact structure has allowed the study of the subsurface biosphere in a region disrupted by an impactor. Microbiological enumerations suggest the presence of three major microbiological zones. The upper zone (127–867 m) is characterized by a logarithmic decline in microbial abundance from the surface through the postimpact section of Miocene to Upper Eocene marine sediments and across the transition into the upper layers of the impact tsunami resurge sediments and sediment megablocks. In the middle zone (867–1397 m) microbial abundances are below detection. This zone is predominantly quartz sand, primarily composed of boulders and blocks, and it may have been mostly sterilized by the thermal pulse delivered during impact. No samples were collected from the large granite block (1096–1371 m). The lowest zone (below 1397 m) of increasing microbial abundance coincides with a region of heavily impact-fractured, hydraulically conductive suevite and fractured schist. These zones correspond to lithologies influenced by impact processes. Our results yield insights into the influence of impacts on the deep subsurface biosphere.

  10. Ecological impacts of large-scale disposal of mining waste in the deep sea.

    PubMed

    Hughes, David J; Shimmield, Tracy M; Black, Kenneth D; Howe, John A

    2015-05-05

    Deep-Sea Tailings Placement (DSTP) from terrestrial mines is one of several large-scale industrial activities now taking place in the deep sea. The scale and persistence of its impacts on seabed biota are unknown. We sampled around the Lihir and Misima island mines in Papua New Guinea to measure the impacts of ongoing DSTP and assess the state of benthic infaunal communities after its conclusion. At Lihir, where DSTP has operated continuously since 1996, abundance of sediment infauna was substantially reduced across the sampled depth range (800-2020 m), accompanied by changes in higher-taxon community structure, in comparison with unimpacted reference stations. At Misima, where DSTP took place for 15 years, ending in 2004, effects on community composition persisted 3.5 years after its conclusion. Active tailings deposition has severe impacts on deep-sea infaunal communities and these impacts are detectable at a coarse level of taxonomic resolution.

  11. Study of Jovian synchrotron emission with the NASA's Deep Space Network for Juno mission

    NASA Astrophysics Data System (ADS)

    Garcia-Miro, Cristina; Horiuchi, Shinji; Levin, Steve; Orton, Glenn S.; Bolton, Scott; Jauncey, David; Kuiper, T. B. H.; Teitelbaum, Lawrence

    2016-10-01

    We are monitoring Jupiter's synchrotron emission with the purpose of connecting the measurements of the Juno mission's MicroWave Radiometer (MWR) experiment to the historical baseline of non-thermal emission, using NASA's Deep Space Network (DSN). The DSN has the most sensitive network of antennas dedicated to tracking spacecraft that are exploring deep space, whose state-of-the-art receivers are considered among the best radio telescopes in the world. Availability for radio astronomy studies is subject to demand from space projects using the DSN. These antennas have previously contributed to the study of the Jovian non-thermal synchroton emission [1].NASA's New Frontiers Juno mission was placed into a nominal orbit on the 4th of July, 2016, allowing it to begin a detailed exploration of Jupiter. Among its scientific objectives is the characterization and exploration of the 3D structure of Jupiter's polar magnetosphere and auroras. It is important to provide a means to connect these detailed MWR measurements with the historical record of synchrotron emission. Ideally, these measurements should be performed on a regular basis during the whole extent of the mission. The DSN has the advantage of being able to perform uninterrupted 24-hour observations using antennas from the different complexes located in USA, Australia and Spain.Additionally, this monitoring program links with and validates the Jupiter observations currently performed by the triplet of educational programs GAVRT, STARS and PARTNeR in USA, Australia and Spain, respectively. These educational programs are partially supported by the DSN and use some of its antennas for teaching purposes, involving students in professional research and exploration.We will describe the DSN single-dish continuum observations of Jupiter in detail: the antennas, receivers and the equipment used to collect the data, the observing procedure, and the data-reduction process. Preliminary results of the Jupiter beaming curve will

  12. Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities

    USGS Publications Warehouse

    Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda W.J.; Ross, Steve W.; Brooke, Sandra

    2016-01-01

    Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.

  13. The economic impact of NASA R and D spending Appendices

    NASA Technical Reports Server (NTRS)

    Evans, M. K.

    1976-01-01

    Seven appendices related to a previous report on the economic impact of NASA R and D spending were presented. They dealt with: (1) theoretical and empirical development of aggregate production functions, (2) the calculation of the time series for the rate of technological progress, (3) the calculation of the industry mix variable, (4) the estimation of distributed lags, (5) the estimation of the equations for gamma, (6) a ten-year forecast of the U.S. economy, (7) simulations of the macroeconomic model for increases in NASA R and D spending of $1.0, $.0.5, and 0.1 billions.

  14. A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy

  15. Deep Imaging Survey

    NASA Image and Video Library

    2003-07-25

    This is the first Deep Imaging Survey image taken by NASA Galaxy Evolution Explorer. On June 22 and 23, 2003, the spacecraft obtained this near ultraviolet image of the Groth region by adding multiple orbits for a total exposure time of 14,000 seconds. Tens of thousands of objects can be identified in this picture. http://photojournal.jpl.nasa.gov/catalog/PIA04627

  16. Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining

    NASA Astrophysics Data System (ADS)

    Oebius, Horst U.; Becker, Hermann J.; Rolinski, Susanne; Jankowski, Jacek A.

    The evaluation of marine environmental impacts resulting from the exploitation of marine resources requires the numerical description, parametrization, and modelling of such processes in order to be able to transfer, compare, and forecast the effects of anthropogenic activities in the deep sea. One of the controversial effects is the formation and behaviour of sediment clouds as a consequence of anthropogenic activities on the seafloor. Since there is a need for reliable data, two subprojects of the "Interdisciplinary Deep-sea Environmental Protection Group (TUSCH)"-project "Impacts from Technical Activities on the Deep-Sea Ecosystem of the South East Pacific Offshore Peru (ATESEPP)" were devoted to the assembly of such data. Based on the German technical approach for deep-sea mining, the possible environmental impacts by a miner were estimated, the impacts on the seafloor were simulated and investigated by tests with large volume undisturbed sediment samples on board the research vessel and in the laboratory, and the results were evaluated and extrapolated. This report gives a comprehensive presentation of the physical problems, the technical approach, and the results of these investigations.

  17. Ecological impacts of large-scale disposal of mining waste in the deep sea

    PubMed Central

    Hughes, David J.; Shimmield, Tracy M.; Black, Kenneth D.; Howe, John A.

    2015-01-01

    Deep-Sea Tailings Placement (DSTP) from terrestrial mines is one of several large-scale industrial activities now taking place in the deep sea. The scale and persistence of its impacts on seabed biota are unknown. We sampled around the Lihir and Misima island mines in Papua New Guinea to measure the impacts of ongoing DSTP and assess the state of benthic infaunal communities after its conclusion. At Lihir, where DSTP has operated continuously since 1996, abundance of sediment infauna was substantially reduced across the sampled depth range (800–2020 m), accompanied by changes in higher-taxon community structure, in comparison with unimpacted reference stations. At Misima, where DSTP took place for 15 years, ending in 2004, effects on community composition persisted 3.5 years after its conclusion. Active tailings deposition has severe impacts on deep-sea infaunal communities and these impacts are detectable at a coarse level of taxonomic resolution. PMID:25939397

  18. Deep drilling into the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.; Browning, J.V.; Cockell, C.S.; Horton, J. Wright; Kenkmann, T.; Kulpecz, A.A.; Powars, D.S.; Sanford, W.E.; Voytek, M.A.

    2008-01-01

    Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation.

  19. Deep drilling into the Chesapeake Bay impact structure.

    PubMed

    Gohn, G S; Koeberl, C; Miller, K G; Reimold, W U; Browning, J V; Cockell, C S; Horton, J W; Kenkmann, T; Kulpecz, A A; Powars, D S; Sanford, W E; Voytek, M A

    2008-06-27

    Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation.

  20. NASA Citizen Science: Looking at Impact in the Science Community and Beyond

    NASA Astrophysics Data System (ADS)

    Thaller, M.

    2017-12-01

    NASA's Science Mission Directorate has invested in several citizen scinece programs with the goal of addressing specific scientific goals which will lead to publishable results. For a complete list of these programs, go to https://science.nasa.gov/citizenscientists. In this paper, we will look at preliminary evalution of the impact of these programs, both in the production of scientific papers and the participation of the general public.

  1. Capabilities of NASA/Marshall Space Flight Center's Impact Testing Facility

    NASA Technical Reports Server (NTRS)

    Hovater, Mary; Hubbs, Whitney; Finchum, Andy; Evans, Steve; Nehls, Mary

    2006-01-01

    The Impact Testing Facility (ITF) serves as an important installation for materials science at Marshall Space Flight Center (MSFC). With an array of air, powder, and two-stage light gas guns, a variety of projectile and target types and sizes can be accommodated. The ITF allows for simulation of impactors from rain to micrometeoroids and orbital debris on materials being investigated for space, atmospheric, and ground use. Expendable, relatively simple launch assemblies are used to obtain well-documented results for impact conditions comparable to those from ballistic and rocket sled ranges at considerably lower cost. In addition, for applications requiring study of impacts at speeds in excess of those attainable by gun launches, hydrocode simulations, validated by test data, can be used to extend the velocity range. In addition to serving various NASA directorates, the ITF has performed testing on behalf of the European and Russian space agencies, as well as the Department of Defense, and academic institutions. The m s contributions not only enable safer space flight for NASA s astronauts, but can help design materials and structures to protect soldiers and civilians on Earth, through advances in body armor, aircraft survivability, and a variety of other applications.

  2. The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications.

  3. Impact Testing of a Stirling Converter's Linear Alternator

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with the NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure, and results of the impact testing conducted on the Stirling TDC in May 2001.

  4. Impact testing of a Stirling convertor's linear alternator

    NASA Astrophysics Data System (ADS)

    Suárez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey

    2002-01-01

    The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure and results of the impact testing conducted on the Stirling TDC in May 2001. .

  5. NASA Museum Alliance

    NASA Astrophysics Data System (ADS)

    Sohus, Anita

    2006-12-01

    NASA’s Museum Alliance is a nationwide network of informal educators at museums, science centers, and planetariums that present NASA information to their local audiences. Begun in 2002 as the Mars Museum Visualization Alliance with advisors from a dozen museums, the network has grown to over 300 people from 200 organizations, including a dozen or so international partners. The network has become a community of practice among these informal educators who work with students, educators, and the general public on a daily basis, presenting information and fielding questions about space exploration. Communications are primarily through an active listserve, regular telecons, and a password-protected website. Professional development is delivered via telecons and downloadable presentations. Current content offerings include Mars exploration, Cassini, Stardust, Genesis, Deep Impact, Earth observations, STEREO, and missions to explore beyond our solar system.

  6. Deep Impact on Its Way

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Jan. 13 photograph was taken by Mt Palomar's 200-inch telescope as the Deep Impact spacecraft was at a distance of about 260,000 kilometers (163,000 miles) from Earth and moving at a speed of about 16,000 kilometers per hour (10,000 miles per hour). The high speed of the spacecraft causes it to appear as a long streak across the sky in the constellation Virgo during the 10-minute exposure time of the image.

    The spacecraft will travel to comet Tempel 1 and release an impactor, creating a crater on the surface of the comet. Scientists believe the exposed materials may give clues to the formation of our solar system.

  7. Drop impact into a deep pool: vortex shedding and jet formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agbaglah, G.; Thoraval, M. -J.; Thoroddsen, S. T.

    2015-02-01

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine themore » transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition.« less

  8. Oblique drop impact onto a deep liquid pool

    NASA Astrophysics Data System (ADS)

    Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Visser, Claas Willem; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke

    2017-08-01

    Oblique impact of drops onto a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here we study oblique impact of 100 μ m drops onto a deep liquid pool, where we quantify the splashing threshold, maximum cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Gravity can be neglected in these experiments. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for the drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop irrespectively of the Weber number, while the cavity depth and its displacement with respect to the impact position do depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.

  9. Dynamic Impact Testing and Model Development in Support of NASA's Advanced Composites Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Pereira, J. Michael; Goldberg, Robert; Rassaian, Mostafa

    2018-01-01

    The purpose of this paper is to provide an executive overview of the HEDI effort for NASA's Advanced Composites Program and establish the foundation for the remaining papers to follow in the 2018 SciTech special session NASA ACC High Energy Dynamic Impact. The paper summarizes the work done for the Advanced Composites Program to advance our understanding of the behavior of composite materials during high energy impact events and to advance the ability of analytical tools to provide predictive simulations. The experimental program carried out at GRC is summarized and a status on the current development state for MAT213 will be provided. Future work will be discussed as the HEDI effort transitions from fundamental analysis and testing to investigating sub-component structural concept response to impact events.

  10. NOAA's new deep space solar monitoring satellite launches

    Science.gov Websites

    Related link: NASA Kennedy Space Center DSCOVR Launch Photos on flickr Media Contact: John Leslie 202-527 forecasts February 11, 2015 Watch the DSCOVR launch on NASA's YouTube channel. (Photo: NASA). NOAA's Deep space mission. (Photo: NASA). NOAA's DSCOVR satellite launch. (Photo: NASA). Visit www.nesdis.noaa.gov

  11. Deep drilling at the Siljan Ring impact structure: oxygen-isotope geochemistry of granite

    USGS Publications Warehouse

    Komor, S.C.; Valley, J.W.

    1990-01-01

    The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, ??18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5??? at 5760 m depth. In contrast, feldspar ??18O values decrease with depth from near 10 at the surface to 7.1??? at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of ??18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar ??18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100-300?? C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500?? C) exchange between alkali feldspar and fluids. The high

  12. Deep Space 1 Using its Ion Engine Artist Concept

    NASA Image and Video Library

    2003-07-02

    NASA's New Millennium Deep Space 1 spacecraft approaching the comet 19P/Borrelly. With its primary mission to serve as a technology demonstrator--testing ion propulsion and 11 other advanced technologies--successfully completed in September 1999, Deep Space 1 is now headed for a risky, exciting rendezvous with Comet Borrelly. NASA extended the mission, taking advantage of the ion propulsion and other systems to target the daring encounter with the comet in September 2001. Once a sci-fi dream, the ion propulsion engine has powered the spacecraft for over 12,000 hours. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The first flight in NASA's New Millennium Program, Deep Space 1 was launched October 24, 1998 aboard a Boeing Delta 7326 rocket from Cape Canaveral Air Station, FL. Deep Space 1 successfully completed and exceeded its mission objectives in July 1999 and flew by a near-Earth asteroid, Braille (1992 KD), in September 1999. http://photojournal.jpl.nasa.gov/catalog/PIA04604

  13. The "Deep Blue" Aerosol Project at NASA GSFC

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Carletta, N.; Chen, S.; Esmaili, R.

    2016-01-01

    Atmospheric aerosols such as mineral dust, wildfire smoke, sea spray, and volcanic ash are of interest for a variety of reasons including public health, climate change, hazard avoidance, and more. Deep Blue is a project which uses satellite observations of the Earth from sensors such as SeaWiFS, MODIS, and VIIRS to monitor the global aerosol burden. This talk will cover some basics about aerosols and the principles of aerosol remote sensing, as well as discussing specific results and future directions for the Deep Blue project.

  14. Possible Sea Ice Impacts on Oceanic Deep Convection

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.

    1984-01-01

    Many regions of the world ocean known or suspected to have deep convection are sea-ice covered for at least a portion of the annual cycle. As this suggests that sea ice might have some impact on generating or maintaining this phenomenon, several mechanisms by which sea ice could exert an influence are presented in the following paragraphs. Sea ice formation could be a direct causal factor in deep convection by providing the surface density increase necessary to initiate the convective overturning. As sea ice forms, either by ice accretion or by in situ ice formation in open water or in lead areas between ice floes, salt is rejected to the underlying water. This increases the water salinity, thereby increasing water density in the mixed layer under the ice. A sufficient increase in density will lead to mixing with deeper waters, and perhaps to deep convection or even bottom water formation. Observations are needed to establish whether this process is actually occurring; it is most likely in regions with extensive ice formation and a relatively unstable oceanic density structure.

  15. Placing the Deep Impact Mission into context: Two decades of observations of 9P/Tempel 1 from McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Cochran, A. L.; Barker, E. S.; Caballero, M. D.; Györgey-Ries, J.

    2009-01-01

    We report on low-spectral resolution observations of Comet 9P/Tempel 1 from 1983, 1989, 1994 and 2005 using the 2.7 m Harlan J. Smith telescope of McDonald Observatory. This comet was the target of NASA's Deep Impact mission and our observations allowed us to characterize the comet prior to the impact. We found that the comet showed a decrease in gas production from 1983 to 2005, with the decrease being different factors for different species. OH decreased by a factor 2.7, NH by 1.7, CN by 1.6, C 3 by 1.8, CH by 1.4 and C 2 by 1.3. Despite the decrease in overall gas production and these slightly different decrease factors, we find that the gas production rates of OH, NH, C 3, CH and C 2 ratioed to that of CN were constant over all of the apparitions. We saw no change in the production rate ratios after the impact. We found that the peak gas production occurred about two months prior to perihelion. Comet Tempel 1 is a "normal" comet.

  16. Heritage Systems Engineering Lessons from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications

  17. Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Simpson, Morgan S.; Newsham, Gerard; Stutte, Gary W.; Wheeler, Raymond M.

    2012-01-01

    In preparation for future human exploration missions to space, human habitat designs and concepts need to be tested to assess integration issues, power requirements, crew operations, and technology I subsystem performance. One potential subsystem for early habitats is supplemental food production. Fresh foods, such as vegetables and small fruits, could be harvested on a continuous basis to improve the diet and quality of life. The system would need to fit conveniently into the habitat and not interfere with other components or operations. To test this concept, a plant growing "atrium" was designed to surround the lift between the lower and upper modules of the Deep Space Habitat and deployed at NASA DRA TS test site in 2011 and at NASA's JSC in 20I2. With this approach, un-utilized volume provided an area for vegetable growth. For the 20 II test, mizuna, lettuce, basil, radish and sweetpotato plants were grown in trays using commercially available red I blue LED light fixtures. Seedlings were transplanted into the atrium and cared for by the crew. Plants were then harvested two weeks later following completion of the test. In 20I2, mizuna, lettuce, and radish plants were grown similarly but under flat panel banks of white LEDs. In 20 I2, the crew went through plant harvesting, including sanitizing the leafy greens and radishes, which were then consumed. Each test demonstrated successful production of vegetables within a functional hab module. The round red I blue LEDs for the 20Il test lighting cast a purple light in the hab, and were less uniformly distributed over the plant trays. The white LED panels provided broad spectrum light with more uniform distribution. Post-test questionnaires showed that the crew enjoyed tending and consuming the plants, and that the white LED light in 2012 provided welcome extra light for the main hab area.

  18. Evaluating NASA Technology Programs in Terms of Private Sector Impacts

    NASA Technical Reports Server (NTRS)

    Greenberg, J. S.

    1984-01-01

    NASA is currently developing spacecraft technology for application to NASA scientific missions, military missions and commercial missions which are part of or form the basis of private sector business ventures. The justification of R&D programs that lead to spacecraft technology improvements encompasses the establishment of the benefits in terms of improved scientific knowledge that may result from new and/or improved NASA science missions, improved cost effectiveness of NASA and DOD missions and new or improved services that may be offered by the private sector (for example communications satellite services). It is with the latter of these areas that attention will be focused upon. In particular, it is of interest to establish the economic value of spacecraft technology improvements to private sector communications satellite business ventures. It is proposed to assess the value of spacecraft technology improvements in terms of the changes in cash flow and present value of cash flows, that may result from the use of new and/or improved spacecraft technology for specific types of private sector communications satellite missions (for example domestic point-to-point communication or direct broadcasting). To accomplish this it is necessary to place the new and/or improved technology within typical business scenarios and estimate the impacts of technical performance upon business and financial performance.

  19. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along

  20. Service Quality Assessment for NASA's Deep Space Network: No Longer a Luxury

    NASA Technical Reports Server (NTRS)

    Barkley, Erik; Wolgast, Paul; Zendejas, Silvino

    2010-01-01

    When NASA's Deep Space Network (DSN) was established almost a half century ago, the concept of computer-based service delivery was impractical or infeasible due to the state of information technology As a result, the interface the DSN exposes to its customers tends to be equipment-centric, lacking a clear demarcation between the DSN and the mission operation systems (MOS) of its customers. As the number of customers has continued to increase, the need to improve efficiency and minimize costs has grown. This growth has been the impetus for a DSN transformation from an equipment-forrent provider to a provider of standard services. Service orientation naturally leads to requirements for service management, including proactive measurement of service quality and service levels as well as the efficiency of internal processes and the performance of service provisioning systems. DSN System Engineering has surveyed industry offerings to determine if commercial successes in decision support and Business Intelligence (BI) solutions can be applied to the DSN. A pilot project was initiated, and subsequently executed to determine the feasibility of repurposing a commercial Business Intelligence platform for engineering analysis in conjunction with the platform's intended business reporting and analysis functions.

  1. Investigation and Comparison between New Satellite Impact Test Results and NASA Standard Breakup Model

    NASA Technical Reports Server (NTRS)

    Sakuraba, K.; Tsuruda, Y.; Hanada, T.; Liou, J.-C.; Akahoshi, Y.

    2007-01-01

    This paper summarizes two new satellite impact tests conducted in order to investigate on the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low velocity of 1.5 km/s using a 40-gram aluminum alloy sphere, whereas the second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-gram aluminum alloy sphere by two-stage light gas gun in Kyushu Institute of Technology. To date, approximately 1,500 fragments from each impact test have been collected for detailed analysis. Each piece was analyzed based on the method used in the NASA Standard Breakup Model 2000 revision. The detailed analysis will conclude: 1) the similarity in mass distribution of fragments between low and hyper-velocity impacts encourages the development of a general-purpose distribution model applicable for a wide impact velocity range, and 2) the difference in area-to-mass ratio distribution between the impact experiments and the NASA standard breakup model suggests to describe the area-to-mass ratio by a bi-normal distribution.

  2. Drivers in the Scaling Between Precipitation and Cloud Radiative Impacts in Deep Convection

    NASA Astrophysics Data System (ADS)

    Rapp, A. D.; Sun, L.; Smalley, K.

    2017-12-01

    The coupling between changes in radiation and precipitation has been demonstrated by a number of studies and suggests an important link between cloud and precipitation processes for defining climate sensitivity. Precipitation and radiative fluxes from CloudSat/CALIPSO retrieval products are used to examine the relationship between precipitation and cloud radiative impacts through two dimensionless parameters. The surface radiative cooling impact, Rc, represents the ratio of the surface shortwave cloud radiative effect to latent heating (LH) from precipitation. The atmospheric radiative heating impact, Rh, represents the ratio of the atmospheric cloud radiative effect to LH from precipitation. Together, these parameters describe the relationship between precipitation processes and how efficiently clouds cools the surface or heats the atmosphere. Deep convective clouds are identified using the 2B-GEOPROF-LIDAR joint radar-lidar product and the cloud radiative impact parameters are calculated from the 2B-FLXHR-LIDAR fluxes and 2C-RAIN-PROFILE precipitation. Deep convective clouds will be sampled according to their dynamic and thermodynamic regimes to provide insights into the factors that control the scaling between precipitation and radiative impacts. Preliminary results from analysis of precipitating deep convective pixels indicates a strong increase (decrease) in the ratio of atmospheric heating (surface cooling) and precipitation with thermodynamic environment, especially increasing water vapor; however, it remains to be seen whether these results hold when integrated over an entire deep convective cloud system. Analysis of the dependence of Rc and Rh on the cloud horizontal and vertical structure is also planned, which should lead to a better understanding of the role of non-precipitating anvil characteristics in modulating the relationship between precipitation and surface and atmospheric radiative effects.

  3. Ka-band (32 GHz) allocations for deep space

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1987-01-01

    At the 1979 World Administrative Conference, two new bands were allocated for deep space telecommunications: 31.8 to 32.3 GHz, space-to-Earth, and 34.2 to 34.7 GHz, Earth-to-space. These bands provide opportunity for further development of the Deep Space Network and its support of deep space research. The history of the process by which JPL/NASA developed the rationale, technical background, and statement of requirement for the bands are discussed. Based on this work, United States proposals to the conference included the bands, and subsequent U.S. and NASA participation in the conference led to successful allocations for deep space telecommunications in the 30 GHz region of the spectrum. A detailed description of the allocations is included.

  4. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George R.

    1996-01-01

    It is widely known that the average American citizen has either no idea or the wrong impression of what NASA is doing. The most common impression is that NASA's sole mission is to build and launch spacecraft and that the everyday experience of the common citizen would be impacted very little if NASA failed to exist altogether. Some feel that most of NASA's efforts are much too expensive and that the money would be better used on other efforts. Others feel that most of NASA's efforts either fail altogether or fail to meet their original objectives. Yet others feel that NASA is so mired in bureaucracy that it is no longer able to function. The goal of the NASA Ambassadors Program (NAP) is to educate the general populace as to what NASA's mission and goals actually are, to re-excite the "man on the street" with NASA's discoveries and technologies, and to convince him that NASA really does impact his everyday experience and that the economy of the U.S. is very dependent on NASA-type research. Each of the NASA centers currently run a speakers bureau through its Public Affairs Office (PAO). The speakers, NASA employees, are scheduled on an "as available" status and their travel is paid by NASA. However, there are only a limited number of them and their message may be regarded as being somewhat biased as they are paid by NASA. On the other hand, there are many members of NASA's summer programs which come from all areas of the country. Most of them not only believe that NASA's mission is important but are willing and able to articulate it to others. Furthermore, in the eyes of the public, they are probably more effective as ambassadors for NASA than are the NASA employees, as they do not derive their primary funding from it. Therefore it was decided to organize materials for them to use in presentations to general audiences in their home areas. Each person who accepted these materials was to be called a "NASA Ambassador".

  5. Impact of the Columbia Supercomputer on NASA Space and Exploration Mission

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Kwak, Dochan; Kiris, Cetin; Lawrence, Scott

    2006-01-01

    NASA's 10,240-processor Columbia supercomputer gained worldwide recognition in 2004 for increasing the space agency's computing capability ten-fold, and enabling U.S. scientists and engineers to perform significant, breakthrough simulations. Columbia has amply demonstrated its capability to accelerate NASA's key missions, including space operations, exploration systems, science, and aeronautics. Columbia is part of an integrated high-end computing (HEC) environment comprised of massive storage and archive systems, high-speed networking, high-fidelity modeling and simulation tools, application performance optimization, and advanced data analysis and visualization. In this paper, we illustrate the impact Columbia is having on NASA's numerous space and exploration applications, such as the development of the Crew Exploration and Launch Vehicles (CEV/CLV), effects of long-duration human presence in space, and damage assessment and repair recommendations for remaining shuttle flights. We conclude by discussing HEC challenges that must be overcome to solve space-related science problems in the future.

  6. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission

    NASA Technical Reports Server (NTRS)

    Wyatt, Jay; Burleigh, Scott; Jones, Ross; Torgerson, Leigh; Wissler, Steve

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions. This activity was part of a larger NASA space DTN development program to mature DTN to flight readiness for a wide variety of mission types by the end of 2011. This paper describes the DTN protocols, the flight demo implementation, validation metrics which were created for the experiment, and validation results.

  7. The Future of the Deep Space Network: Technology Development for K2-Band Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Bhanji, Alaudin M.

    1999-01-01

    Projections indicate that in the future the number of NASA's robotic deep space missions is likely to increase significantly. A launch rate of up to 4-6 launches per year is projected with up to 25 simultaneous missions active [I]. Future high resolution mapping missions to other planetary bodies as well as other experiments are likely to require increased downlink capacity. These future deep space communications requirements will, according to baseline loading analysis, exceed the capacity of NASA's Deep Space Network in its present form. There are essentially two approaches for increasing the channel capacity of the Deep Space Network. Given the near-optimum performance of the network at the two deep space communications bands, S-Band (uplink 2.025-2.120 GHz, downlink 2.2-2.3 GHz), and X-Band (uplink 7.145-7.19 GHz, downlink 8.48.5 GHz), additional improvements bring only marginal return for the investment. Thus the only way to increase channel capacity is simply to construct more antennas, receivers, transmitters and other hardware. This approach is relatively low-risk but involves increasing both the number of assets in the network and operational costs.

  8. Potential impact of global climate change on benthic deep-sea microbes.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio

    2017-12-15

    Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Groth Deep Locations Image

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer photographed this ultraviolet color blowup of the Groth Deep Image on June 22 and June 23, 2003. Hundreds of galaxies are detected in this portion of the image, and the faint red galaxies are believed to be 6 billion light years away. The white boxes show the location of these distant galaxies, of which more than a 100 can be detected in this image. NASA astronomers expect to detect 10,000 such galaxies after extrapolating to the full image at a deeper exposure level. http://photojournal.jpl.nasa.gov/catalog/PIA04626

  10. Deep Space 1 Using its Ion Engine (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's New Millennium Deep Space 1 spacecraft approaching the comet 19P/Borrelly. With its primary mission to serve as a technology demonstrator--testing ion propulsion and 11 other advanced technologies--successfully completed in September 1999, Deep Space 1 is now headed for a risky, exciting rendezvous with Comet Borrelly. NASA extended the mission, taking advantage of the ion propulsion and other systems to target the daring encounter with the comet in September 2001. Once a sci-fi dream, the ion propulsion engine has powered the spacecraft for over 12,000 hours. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. The first flight in NASA's New Millennium Program, Deep Space 1 was launched October 24, 1998 aboard a Boeing Delta 7326 rocket from Cape Canaveral Air Station, FL. Deep Space 1 successfully completed and exceeded its mission objectives in July 1999 and flew by a near-Earth asteroid, Braille (1992 KD), in September 1999.

  11. DOD/NASA system impact analysis (study 2.1). Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of the tug turnaround cost study and the space transportation system (STS) abort modes and effects study are presented for DOD/NASA system impact analysis. Cost estimates are given for tug turnabout; and vehicle description, abort assessment, and abort performance capability are given for the STS.

  12. Temperature impacts on deep-sea biodiversity.

    PubMed

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  13. Comets, Charisma, and Celebrity: Reflections on Their Deep Impact

    NASA Astrophysics Data System (ADS)

    Olson, R. J. M.; Pasachoff, J. M.

    In celebration of the Deep Impact Mission, this essay explores the influence of comets on the arts and sciences since the beginning of recorded time. Through images, ranging from the sublime to the humorous, it probes the reasons why comets are among the most charismatic visual spectacles in the universe and why, even as scientific missions unmask their mysteries, they remain iconic symbols and harbingers of change.

  14. Deep Space 1 Ion Engine

    NASA Image and Video Library

    2002-12-21

    Kennedy Space Center, Florida. - Deep Space 1 is lifted from its work platform, giving a closeup view of the experimental solar-powered ion propulsion engine. The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Another onboard experiment includes software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. http://photojournal.jpl.nasa.gov/catalog/PIA04232

  15. NASA International Year of Astronomy 2009 Programs: Impacts and Future Plans (Invited)

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Smith, D.; Stockman, S. A.

    2009-12-01

    The opportunity offered by the International Year of Astronomy (IYA) 2009 to increase the exposure of the public and students to NASA discoveries in astronomy resulted in several innovative programs which have reached audiences far and wide. Some examples of the impact of these programs and building on the success of these programs beyond 2009 will be discussed in this talk. The spectacular success of the traveling exhibit of NASA images to public libraries around the country prompted NASA to extend it to include more libraries. As a part of the IYA Cornerstone project From Earth To The Universe, NASA images were displayed at non-traditional sites such as airports, parks, and music festivals, exposing them to an audience which would otherwise have been unaware of them. The NASA IYA Student Ambassadors engaged undergraduate and graduate students throughout the U.S. in outreach programs they created to spread NASA astronomy to their local communities. NASA’s Afterschool Universe provided IYA training to community-based organizations, while pre-launch teacher workshops associated with the Kepler and WISE missions were designed to engage educators in the science of these missions. IYA activities have been associated with several missions launched this year. These include the Hubble Servicing Mission 4, Kepler, Herschel/Planck, LCROSS. NASA’sIYA website and Go Observe! feature remain popular. The associated IYA Discovery Guides and Observing with NASA MicroObservatory activities have guided the public and students to perform their own observations of the night sky and to interpret them. NASA intends to work with its Science Education and Public Outreach Forums (SEPOF) to develop a strategy to take forward the best of its IYA2009 plans forward so as to build on the momentum generated by IYA2009 and continue to keep the public and students engaged in the scientific exploration of the universe.

  16. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.

    PubMed

    Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian

    2014-10-01

    Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex.

    PubMed

    Gjedde, Albert; Geday, Jacob

    2009-12-07

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact of emotive images rated by the patients off the DBS. We then searched for sites in the brain that had significant correlation of the changes of blood flow with the emotional impact rated by the patients. The results indicate a significant link between the emotional impact when patients are not stimulated and the change of blood flow associated with the DBS. In subjects with a low emotional impact, activity measured as blood flow rose when the electrode was turned on, while in subjects of high impact, the activity at this site in the ventromedial prefrontal cortex declined when the electrode was turned on. We conclude that changes of neurotransmission in the ventromedial prefrontal cortex had an effect on the tissue that depends on changes of monoamine concentration interacting with specific combinations of inhibitory and excitatory monoamine receptors.

  18. Calculations of Asteroid Impacts into Deep and Shallow Water

    NASA Astrophysics Data System (ADS)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (<500 m) asteroids do not produce tsunamis that lead to world-wide devastation. In fact the most dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of

  19. A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.

  20. NASA Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1999-01-01

    Managed for NASA by the California Institute of Technology, the Jet Propulsion Laboratory is the lead U.S. center for robotic exploration of the solar system. JPL spacecraft have visited all known planets except Pluto (a Pluto mission is currently under study). In addition to its work for NASA, JPL conducts tasks for a variety of other federal agencies. In addition, JPL manages the worldwide Deep Space Network, which communicates with spacecraft and conducts scientific investigations from its complexes in California's Mojave Desert near Goldstone; near Madrid, Spain; and near Canberra, Australia. JPL employs about 6000 people.

  1. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Peticolas, L.; Schwerin, T.; Shipp, S.; Manning, J. G.

    2014-07-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The NASA SMD EPO program evaluates EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advances STEM education and literacy, and enables students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. Leads of the four NASA SMD Science EPO Forums provided big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact. Attendees gained an increased awareness of the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and the ways current and future EPO programs can build upon the work being done.

  2. Impact of Tropopause Structures on Deep Convective Transport Observed during MACPEX

    NASA Astrophysics Data System (ADS)

    Mullendore, G. L.; Bigelbach, B. C.; Christensen, L. E.; Maddox, E.; Pinkney, K.; Wagner, S.

    2016-12-01

    Deep convection is the most efficient method of transporting boundary layer mass to the upper troposphere and stratosphere (UTLS). The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) was conducted during April of 2011 over the central U.S. With a focus on cirrus clouds, the campaign flights often sampled large cirrus anvils downstream from deep convection and included an extensive observational suite of chemical measurements on a high altitude aircraft. As double-tropopause structures are a common feature in the central U.S. during the springtime, the MACPEX campaign provides a good opportunity to gather cases of deep convective transport in the context of both single and double tropopause structures. Sampling of chemical plumes well downstream from convection allows for sampling in relatively quiescent conditions and analysis of irreversible transport. The analysis presented includes multiple methods to assess air mass source and possible convective processing, including back trajectories and ratios of chemical concentrations. Although missions were flown downstream of deep convection, recent processing by convection does not seem likely in all cases that high altitude carbon monoxide plumes were observed. Additionally, the impact of single and double tropopause structures on deep convective transport is shown to be strongly dependent on high stability layers.

  3. MarCOs Cruise in Deep Space

    NASA Image and Video Library

    2018-03-29

    An artist's rendering of the twin Mars Cube One (MarCO) spacecraft as they fly through deep space. The MarCOs will be the first CubeSats -- a kind of modular, mini-satellite -- attempting to fly to another planet. They're designed to fly along behind NASA's InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight's entry, descent and landing back to Earth. Though InSight's mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. https://photojournal.jpl.nasa.gov/catalog/PIA22314

  4. Statistical porcess control in Deep Space Network operation

    NASA Technical Reports Server (NTRS)

    Hodder, J. A.

    2002-01-01

    This report describes how the Deep Space Mission System (DSMS) Operations Program Office at the Jet Propulsion Laboratory's (EL) uses Statistical Process Control (SPC) to monitor performance and evaluate initiatives for improving processes on the National Aeronautics and Space Administration's (NASA) Deep Space Network (DSN).

  5. Nuclear Electric Propulsion for Deep Space Exploration

    NASA Astrophysics Data System (ADS)

    Schmidt, G.

    Nuclear electric propulsion (NEP) holds considerable promise for deep space exploration in the future. Research and development of this technology is a key element of NASA's Nuclear Systems Initiative (NSI), which is a top priority in the President's FY03 NASA budget. The goal is to develop the subsystem technologies that will enable application of NEP for missions to the outer planets and beyond by the beginning of next decade. The high-performance offered by nuclear-powered electric thrusters will benefit future missions by (1) reducing or eliminating the launch window constraints associated with complex planetary swingbys, (2) providing the capability to perform large spacecraft velocity changes in deep space, (3) increasing the fraction of vehicle mass allocated to payload and other spacecraft systems, and, (3) in some cases, reducing trip times over other propulsion alternatives. Furthermore, the nuclear energy source will provide a power-rich environment that can support more sophisticated science experiments and higher- speed broadband data transmission than current deep space missions. This paper addresses NASA's plans for NEP, and discusses the subsystem technologies (i.e., nuclear reactors, power conversion and electric thrusters) and system concepts being considered for the first generation of NEP vehicles.

  6. Probing below the Surface of Mars. ITEA/NASA-JPL Learning Activity.

    ERIC Educational Resources Information Center

    Urquhart, Mary; Urquhart, Sally

    2000-01-01

    This activity, developed by NASA's Jet Propulsion Laboratory, involves students in recording and graphing temperature data to learn about NASA's Mars Microprobe Mission, Deep Space 2, and how the properties of a material affect the transfer of heat. (Author/JOW)

  7. Deep space communication - Past, present, and future

    NASA Technical Reports Server (NTRS)

    Posner, E. C.; Stevens, R.

    1984-01-01

    This paper reviews the progress made in deep space communication from its beginnings until now, describes the development and applications of NASA's Deep Space Network, and indicates directions for the future. Limiting factors in deep space communication are examined using the upcoming Voyager encounter with Uranus, centered on the downlink telemetry from spacecraft to earth, as an example. A link calculation for Voyager at Uranus over Australia is exhibited. Seven basic deep space communication functions are discussed, and technical aspects of spacecraft communication equipment, ground antennas, and ground electronics and processing are considered.

  8. Deep Impact Sequence Planning Using Multi-Mission Adaptable Planning Tools With Integrated Spacecraft Models

    NASA Technical Reports Server (NTRS)

    Wissler, Steven S.; Maldague, Pierre; Rocca, Jennifer; Seybold, Calina

    2006-01-01

    The Deep Impact mission was ambitious and challenging. JPL's well proven, easily adaptable multi-mission sequence planning tools combined with integrated spacecraft subsystem models enabled a small operations team to develop, validate, and execute extremely complex sequence-based activities within very short development times. This paper focuses on the core planning tool used in the mission, APGEN. It shows how the multi-mission design and adaptability of APGEN made it possible to model spacecraft subsystems as well as ground assets throughout the lifecycle of the Deep Impact project, starting with models of initial, high-level mission objectives, and culminating in detailed predictions of spacecraft behavior during mission-critical activities.

  9. Materials in NASA's Space Launch System: The Stuff Dreams are Made of

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.

  10. NASA Hardware Heads to Kennedy For Flight Preparations

    NASA Image and Video Library

    2018-01-24

    The Orion stage adapter will be part of the first integrated flight of NASA's heavy-lift rocket, the Space Launch System, and the Orion spacecraft. The adapter, approximately 5 feet tall and 18 feet in diameter, was designed and built at NASA's Marshall Space Flight Center in Huntsville, Alabama, with advanced friction stir welding technology. It will connect the SLS interim cryogenic propulsion stage to Orion on the first flight that will help engineers check out and verify the agency's new deep-space exploration systems. Inside the adapter, engineers installed special brackets and cabling for the 13 CubeSats that will fly as secondary payloads. The Cubesats are boot-box-sized science and technology investigations that will help pave the way for future human exploration in deep space. The Orion stage adapter flight article recently finished major testing of the avionics system that will deploy the CubeSats. Technicians at NASA's Kennedy Space Center, Florida, will install the secondary payloads and engineers will examine the hardware before it is stacked on the interim cryogenic propulsion stage in the Vehicle Assembly Building prior to launch. For more information about SLS hardware, visit nasa.gov/sls.

  11. Probing the transition from shallow to deep convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang, Zhiming; Gentine, Pierre

    2016-05-01

    In this funded project we highlighted the components necessary for the transition from shallow to deep convection. In particular we defined a prototype of shallow to deep convection, which is currently being implemented in the NASA GISS model. We also tried to highlight differences between land and oceanic convection.

  12. Alabama Ground Operations during the Deep Convective Clouds and Chemistry Experiment

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Blakeslee, Richard; Koshak, William; Bain, Lamont; Rogers, Ryan; Kozlowski, Danielle; Sherrer, Adam; Saari, Matt; Bigelbach, Brandon; Scott, Mariana; hide

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) field campaign investigates the impact of deep, midlatitude convective clouds, including their dynamical, physical and lighting processes, on upper tropospheric composition and chemistry. DC3 science operations took place from 14 May to 30 June 2012. The DC3 field campaign utilized instrumented aircraft and ground ]based observations. The NCAR Gulfstream ]V (GV) observed a variety of gas ]phase species, radiation and cloud particle characteristics in the high ]altitude outflow of storms while the NASA DC ]8 characterized the convective inflow. Groundbased radar networks were used to document the kinematic and microphysical characteristics of storms. In order to study the impact of lightning on convective outflow composition, VHF ]based lightning mapping arrays (LMAs) provided detailed three ]dimensional measurements of flashes. Mobile soundings were utilized to characterize the meteorological environment of the convection. Radar, sounding and lightning observations were also used in real ]time to provide forecasting and mission guidance to the aircraft operations. Combined aircraft and ground ]based observations were conducted at three locations, 1) northeastern Colorado, 2) Oklahoma/Texas and 3) northern Alabama, to study different modes of deep convection in a variety of meteorological and chemical environments. The objective of this paper is to summarize the Alabama ground operations and provide a preliminary assessment of the ground ]based observations collected over northern Alabama during DC3. The multi ] Doppler, dual ]polarization radar network consisted of the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR), the UAHuntsville Mobile Alabama X ]band (MAX) radar and the Hytop (KHTX) Weather Surveillance Radar 88 Doppler (WSR ]88D). Lightning frequency and structure were observed in near real ]time by the NASA MSFC Northern Alabama LMA (NALMA). Pre ]storm and inflow proximity

  13. Clementine, Deep Space Program Science Experiment

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Clementine, also called the Deep Space Program Science Experiment, is a joint Department of Defense (DoD)/National Aeronautics and Space Administration (NASA) mission with the dual goal of testing small spacecraft, subsystems, and sensors in the deep space environment and also providing a nominal science return. The Clementine mission will provide technical demonstrations of innovative lightweight spacecraft components and sensors, will be launced on a spacecraft developed within 2 years of program start, and will point a way for new planetary mission options under consideration by NASA. This booklet gives the background of the Clementine mission (including the agencies involved), the mission objectives, the mission scenario, the instruments that the mission will carry, and how the data will be analyzed and made accessible.

  14. Deep-sea benthic community and environmental impact assessment at the Atlantic Frontier

    NASA Astrophysics Data System (ADS)

    Gage, John D.

    2001-05-01

    The seabed community provides a sensitive litmus for environmental change. North Sea analysis of benthic populations provides an effective means for monitoring impacts from man's interventions, such as offshore oil exploitation and fishing, against baseline knowledge of the environment. Comparable knowledge of the benthic biology in the deep waters of the Atlantic Frontier beyond the N.E. Atlantic shelf edge is poorly developed. But uncertainties should not encourage assumptions and extrapolations from the better-known conditions on the continental shelf. While sampling at present still provides the best means to assess the health of the deepwater benthic habitat, protocols developed for deep-sea fauna should be applied. These are necessary because of (a) lower faunal densities, (b) higher species richness, (c) smaller body size, and (d) to ensure comparability with other deep-sea data. As in the North Sea, species richness and relative abundance can be analysed from quantitative samples in order to detect impacts. But analysis based on taxonomic sufficiency above species level is premature, even if arguably possible for coastal communities. Measures also need to ensure identifications are not forced to more familiar coastal species without proper study. Species-level analysis may be applied to seabed photographs of megafauna in relation to data on bottom environment, such as currents and the sediment, to monitor the health of the deep-water community. Although the composition of higher taxa in the benthic community is broadly similar to soft sediments on the shelf, concordance in sensitivities is speculative. Moreover, new organisms occur, such as giant protozoan xenophyophores, unknown on the continental shelf, whose sensitivities remain conjectural. Past knowledge of the benthic biology of the deep-water areas off Scotland is based on scattered stations and some more focussed, multidisciplinary studies, and should be significantly augmented by the results from

  15. Impact of volcanic ash on anammox communities in deep sea sediments.

    PubMed

    Song, Bongkeun; Buckner, Caroline T; Hembury, Deborah J; Mills, Rachel A; Palmer, Martin R

    2014-04-01

    Subaerial explosive volcanism contributes substantial amounts of material to the oceans, but little is known about the impact of volcanic ash on sedimentary microbial activity. We have studied anammox communities in deep sea sediments near the volcanically active island of Montserrat, Lesser Antilles. The rates of anammox and denitrification in the sediments were measured using (15)N isotope pairing incubation experiments, while 16S rRNA genes were used to examine anammox community structures. The higher anammox rates were measured in sediment containing the lower accumulation of volcanic ash in the surface sediments, while the lowest activities were found in sediments with the highest ash deposit. 16S rRNA gene analysis revealed the presence of 'Candidatus Scalindua spp.' in the sediments. The lowest diversity of anammox bacteria was observed in the sediments with the highest ash deposit. Overall, this study demonstrates that the deposition of volcanic material in deep sea sediments has negative impacts on activity and diversity of the anammox community. Since anammox may account for up to 79% of N2 production in marine ecosystems, periods of extensive explosive volcanism in Earth history may have had a hitherto unrecognized negative impact on the sedimentary nitrogen removal processes. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Transferring Files Between the Deep Impact Spacecrafts and the Ground Data System Using the CCSDS File Delivery Protocol (CFDP): A Case Study

    NASA Technical Reports Server (NTRS)

    Sanders, Felicia A.; Jones, Grailing, Jr.; Levesque, Michael

    2006-01-01

    The CCSDS File Delivery Protocol (CFDP) Standard could reshape ground support architectures by enabling applications to communicate over the space link using reliable-symmetric transport services. JPL utilized the CFDP standard to support the Deep Impact Mission. The architecture was based on layering the CFDP applications on top of the CCSDS Space Link Extension Services for data transport from the mission control centers to the ground stations. On July 4, 2005 at 1:52 A.M. EDT, the Deep Impact impactor successfully collided with comet Tempel 1. During the final 48 hours prior to impact, over 300 files were uplinked to the spacecraft, while over 6 thousand files were downlinked from the spacecraft using the CFDP. This paper uses the Deep Impact Mission as a case study in a discussion of the CFDP architecture, Deep Impact Mission requirements, and design for integrating the CFDP into the JPL deep space support services. Issues and recommendations for future missions using CFDP are also provided.

  17. Impact cratering in reduced-gravity environments: Early experiments on the NASA KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Hoerz, F.; See, T. H.

    1987-01-01

    Impact experimentation on the NASA KC-135 Reduced-Gravity Aircraft was shown to be possible, practical, and of considerable potential use in examining the role of gravity on various impact phenomena. With a minimal facility, crater dimensional and growth-times were measured, and have demonstrated both agreement and disagreement with predictions. A larger facility with vacuum capability and a high-velocity gun would permit a much wider range of experimentation.

  18. Iris Transponder-Communications and Navigation for Deep Space

    NASA Technical Reports Server (NTRS)

    Duncan, Courtney B.; Smith, Amy E.; Aguirre, Fernando H.

    2014-01-01

    The Jet Propulsion Laboratory has developed the Iris CubeSat compatible deep space transponder for INSPIRE, the first CubeSat to deep space. Iris is 0.4 U, 0.4 kg, consumes 12.8 W, and interoperates with NASA's Deep Space Network (DSN) on X-Band frequencies (7.2 GHz uplink, 8.4 GHz downlink) for command, telemetry, and navigation. This talk discusses the Iris for INSPIRE, it's features and requirements; future developments and improvements underway; deep space and proximity operations applications for Iris; high rate earth orbit variants; and ground requirements, such as are implemented in the DSN, for deep space operations.

  19. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2017-01-01

    Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.

  20. Deep-Sea Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The deep-sea submarine 'Ben Franklin' is being docked in the harbor. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life. It also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effect of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  1. Peering Deep into Jupiter Atmosphere

    NASA Image and Video Library

    2013-03-14

    The dark hot spot in this false-color image from NASA Cassini spacecraft is a window deep into Jupiter atmosphere. All around it are layers of higher clouds, with colors indicating which layer of the atmosphere the clouds are in.

  2. Incorporation of New Convective Ice Microphysics into the NASA GISS GCM and Impacts on Cloud Ice Water Path (IWP) Simulation

    NASA Technical Reports Server (NTRS)

    Elsaesser, Greg; Del Genio, Anthony

    2015-01-01

    The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high latitude ice IWP that decreased by 50 relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by 15 in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of 2. This was largely driven by IWC in deep-convecting regions of the tropics.Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter.GCM simulations with the improved convective parameterization yield a 50 decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.

  3. Incorporation of New Convective Ice Microphysics into the NASA GISS GCM and Impacts on Cloud Ice Water Path (IWP) Simulation

    NASA Astrophysics Data System (ADS)

    Elsaesser, G.; Del Genio, A. D.

    2015-12-01

    The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high-latitude ice IWP that decreased by ~50% relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by ~15% in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (~200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of ~2. This was largely driven by IWC in deep-convecting regions of the tropics. Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter. GCM simulations with the improved convective parameterization yield a ~50% decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.

  4. Automation of PCXMC and ImPACT for NASA Astronaut Medical Imaging Dose and Risk Tracking

    NASA Technical Reports Server (NTRS)

    Bahadori, Amir; Picco, Charles; Flores-McLaughlin, John; Shavers, Mark; Semones, Edward

    2011-01-01

    To automate astronaut organ and effective dose calculations from occupational X-ray and computed tomography (CT) examinations incorporating PCXMC and ImPACT tools and to estimate the associated lifetime cancer risk per the National Council on Radiation Protection & Measurements (NCRP) using MATLAB(R). Methods: NASA follows guidance from the NCRP on its operational radiation safety program for astronauts. NCRP Report 142 recommends that astronauts be informed of the cancer risks from reported exposures to ionizing radiation from medical imaging. MATLAB(R) code was written to retrieve exam parameters for medical imaging procedures from a NASA database, calculate associated dose and risk, and return results to the database, using the Microsoft .NET Framework. This code interfaces with the PCXMC executable and emulates the ImPACT Excel spreadsheet to calculate organ doses from X-rays and CTs, respectively, eliminating the need to utilize the PCXMC graphical user interface (except for a few special cases) and the ImPACT spreadsheet. Results: Using MATLAB(R) code to interface with PCXMC and replicate ImPACT dose calculation allowed for rapid evaluation of multiple medical imaging exams. The user inputs the exam parameter data into the database and runs the code. Based on the imaging modality and input parameters, the organ doses are calculated. Output files are created for record, and organ doses, effective dose, and cancer risks associated with each exam are written to the database. Annual and post-flight exposure reports, which are used by the flight surgeon to brief the astronaut, are generated from the database. Conclusions: Automating PCXMC and ImPACT for evaluation of NASA astronaut medical imaging radiation procedures allowed for a traceable and rapid method for tracking projected cancer risks associated with over 12,000 exposures. This code will be used to evaluate future medical radiation exposures, and can easily be modified to accommodate changes to the risk

  5. Personnel viewing posters showing how NASA activities have made an impact on Costa Rican people

    NASA Image and Video Library

    2004-03-03

    L-R; Jorge Andres Diaz, Director of the Costa Rican National Hangar for Airborne Research division of the National Center for High Technology(CENAT); NASA Administrator Sean O'Keefe; and Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT), viewing posters showing how NASA activities have made an impact on Costa Rican people. Mr. O'Keefe was in Costa Rica to participate in the AirSAR 2004 Mesoamerica campaign, which used NASA DFRC's DC-8 airborne laboratory aircraft. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  6. NASA FDL: Accelerating Artificial Intelligence Applications in the Space Sciences.

    NASA Astrophysics Data System (ADS)

    Parr, J.; Navas-Moreno, M.; Dahlstrom, E. L.; Jennings, S. B.

    2017-12-01

    NASA has a long history of using Artificial Intelligence (AI) for exploration purposes, however due to the recent explosion of the Machine Learning (ML) field within AI, there are great opportunities for NASA to find expanded benefit. For over two years now, the NASA Frontier Development Lab (FDL) has been at the nexus of bright academic researchers, private sector expertise in AI/ML and NASA scientific problem solving. The FDL hypothesis of improving science results was predicated on three main ideas, faster results could be achieved through sprint methodologies, better results could be achieved through interdisciplinarity, and public-private partnerships could lower costs We present select results obtained during two summer sessions in 2016 and 2017 where the research was focused on topics in planetary defense, space resources and space weather, and utilized variational auto encoders, bayesian optimization, and deep learning techniques like deep, recurrent and residual neural networks. The FDL results demonstrate the power of bridging research disciplines and the potential that AI/ML has for supporting research goals, improving on current methodologies, enabling new discovery and doing so in accelerated timeframes.

  7. Deep Search for Satellites Around the Lucy Mission Targets

    NASA Astrophysics Data System (ADS)

    Noll, Keith

    2017-08-01

    By performing the first deep search for Trojan satellites with HST we will obtain unique constraints on satellite-forming processes in this population. We have selected the targets from NASA's Lucy mission because they represent a taxonomically and physically diverse set of targets that allow intercomparisons from a small survey. Also, by searching now to identify any orbiting material around the Lucy targets, it will be possible impact hardware decisions and plan for maximum scientific return from the mission. This search also is a necessary step to assure mission safety as the Lucy spacecraft will fly within 1000 km of the targets, well within the region where stable orbits can exist.

  8. The impact of the NASA Administrator's Fellowship Program on fellows' career choices

    NASA Astrophysics Data System (ADS)

    Graham, Eva M.

    Maintaining diversity in the technical workforce and in higher education has been identified as one way to increase the outreach, recruitment and retention of students and other faculty from underrepresented, underserved and minority populations, especially in Science, Technology, Engineering and Mathematics (STEM) courses of study and careers. The National Aeronautics and Space Administration (NASA) Administrator's Fellowship Program (NAFP) is a professional development program targeting faculty at Minority Serving Institutions and NASA civil servant employees for a two year work-based professional development experience toward increasing the likelihood of retaining them in STEM careers and supporting the recruitment and retention of minority students in STEM courses of study. This evaluation links the activities of the fellowship program to the impact on fellows' career choices as a result of participation through a series of surveys and interviews. Fellows' personal and professional perceptions of themselves and colleagues' and administrators' beliefs about their professional capabilities as a result of selection and participation were also addressed as they related to career outcomes. The findings indicated that while there was no direct impact on fellows' choice of careers, the exposure, direction and focus offered through travel, mentoring, research and teaching had an impact their perceptions of their own capabilities and, their colleagues' and administrators' beliefs about them as professionals and researchers. The career outcomes reported were an increase in the number publications, promotions, change in career and an increased awareness of the culture of science and engineering.

  9. NASA Concludes Summer of RS-25 Testing

    NASA Image and Video Library

    2017-08-30

    NASA engineers closed a summer of hot fire testing Aug. 30 for flight controllers on RS-25 engines that will help power the new Space Launch System (SLS) rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire an RS-25 engine flight controller unit on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi marked another step toward the nation’s return to human deep-space exploration missions.

  10. Jetting from impact of a spherical drop with a deep layer

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Toole, Jameson; Fazzaa, Kamel; Deegan, Robert; Deegan Group Team; X-Ray Science Division, Advanced Photon Source Collaboration

    2011-11-01

    We performed an experimental study of jets during the impact of a spherical drop with a deep layer of same liquid. Using high speed optical and X-ray imaging, we observe two types of jets: the so-called ejecta sheet which emerges almost immediately after impact and the lamella which emerges later. For high Reynolds number the two jets are distinct, while for low Reynolds number the two jets combine into a single continuous jet. We also measured the emergence time, speed, and position of the ejecta sheet and found simple scaling relations for these quantities.

  11. The JPL roadmap for Deep Space navigation

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Abraham, Douglas S.; Berry, David; Bhaskaran, Shyam; Cesarone, Robert J.; Wood, Lincoln

    2006-01-01

    This paper reviews the tentative set of deep space missions that will be supported by NASA's Deep Space Mission System in the next twenty-five years, and extracts the driving set of navigation capabilities that these missions will require. There will be many challenges including the support of new mission navigation approaches such as formation flying and rendezvous in deep space, low-energy and low-thrust orbit transfers, precise landing and ascent vehicles, and autonomous navigation. Innovative strategies and approaches will be needed to develop and field advanced navigation capabilities.

  12. The Deep Impact Network Experiment Operations Center Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan

    2009-01-01

    The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.

  13. Summary of DSN (Deep Space Network) reimbursable launch support

    NASA Technical Reports Server (NTRS)

    Fanelli, N. A.; Wyatt, M. E.

    1988-01-01

    The Deep Space Network is providing ground support to space agencies of foreign governments as well as to NASA and other agencies of the Federal government which are involved in space activities. DSN funding for support of missions other than NASA are on either a cooperative or a reimbursable basis. Cooperative funding and support are accomplished in the same manner as NASA sponsored missions. Reimbursable launch funding and support methods are described.

  14. NASA Sun Earth

    NASA Image and Video Library

    2017-12-08

    CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Ea CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Earth. This left portion is composed of an EIT 304 image superimposed on a LASCO C2 coronagraph. Two to four days later, the CME cloud is shown striking and beginning to be mostly deflected around the Earth’s magnetosphere. The blue paths emanating from the Earth’s poles represent some of its magnetic field lines. The magnetic cloud of plasma can extend to 30 million miles wide by the time it reaches earth. These storms, which occur frequently, can disrupt communications and navigational equipment, damage satellites, and even cause blackouts. (Objects in the illustration are not drawn to scale.) Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  15. NASA Near Earth Network (NEN), Deep Space Network (DSN) and Space Network (SN) Support of CubeSat Communications

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.; Altunc, Serhat; Bussey, George; Shaw, Harry; Horne, Bill; Schier, Jim

    2015-01-01

    There has been a historical trend to increase capability and drive down the Size, Weight and Power (SWAP) of satellites and that trend continues today. Small satellites, including systems conforming to the CubeSat specification, because of their low launch and development costs, are enabling new concepts and capabilities for science investigations across multiple fields of interest to NASA. NASA scientists and engineers across many of NASAs Mission Directorates and Centers are developing exciting CubeSat concepts and welcome potential partnerships for CubeSat endeavors. From a communications and tracking point of view, small satellites including CubeSats are a challenge to coordinate because of existing small spacecraft constraints, such as limited SWAP and attitude control, low power, and the potential for high numbers of operational spacecraft. The NASA Space Communications and Navigation (SCaN) Programs Near Earth Network (NEN), Deep Space Network (DSN) and the Space Network (SN) are customer driven organizations that provide comprehensive communications services for space assets including data transport between a missions orbiting satellite and its Mission Operations Center (MOC). The NASA NEN consists of multiple ground antennas. The SN consists of a constellation of geosynchronous (Earth orbiting) relay satellites, named the Tracking and Data Relay Satellite System (TDRSS). The DSN currently makes available 13 antennas at its three tracking stations located around the world for interplanetary communication. The presentation will analyze how well these space communication networks are positioned to support the emerging small satellite and CubeSat market. Recognizing the potential support, the presentation will review the basic capabilities of the NEN, DSN and SN in the context of small satellites and will present information about NEN, DSN and SN-compatible flight radios and antenna development activities at the Goddard Space Flight Center (GSFC) and across

  16. Creating food for deep space

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-07-01

    Explorers and scientists have to eat, whether they're on top of a mountain, deep in the sea, or in space. NASA scientists are working to develop a viable food program by 2030 that could feed six crew members for a 3-year mission to Mars.

  17. Assessing Oil Spill Impacts to Cold-Water Corals of the Deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    DeLeo, D. M.; Lengyel, S. D.; Cordes, E. E.

    2016-02-01

    The Deepwater Horizon (DWH) disaster and subsequent cleanup efforts resulted in the release of an unprecedented amount of oil and chemical dispersants in the deep waters of the Gulf of Mexico (GoM). Over the years, numerous detrimental effects have been documented including impacts to cold-water coral ecosystems. Assessing and quantifying these effects is crucial to understanding the long-term consequences to affected coral populations as well as their resilience. We conducted live exposure experiments to investigate the toxicity of oil and dispersants on two deep-sea corals, Callogorgia delta and Paramuricea type B3. For both species, the treatments containing dispersants had a more pronounced effect than oil treatments alone. In addition, RNA from unexposed and DWH spill-impacted Paramuricea biscaya was extracted and sequenced using Illumina technology. A de novo reference transcriptome was produced and used to explore stress-induced variations in gene expression. Current findings show overexpression of genes coding for Cytochrome p450 (CYP1A1), Tumor necrosis factor receptor-associated factors (TRAFs), Peroxidasin and additional genes involved in innate immunity and apoptotic pathways. CYP1A1 is involved in the metabolism of xenobiotics and has been previously used as a diagnostic tool for aquatic pollution. TRAFs are responsible for regulating pathways involved in immune and inflammatory responses and were likewise overexpressed in thermally stressed shallow-water corals. Ribosomal proteins were also significantly underexpressed. These genes among others found in our expression data serve as useful biomarker candidates for assessing and monitoring future spill impacts as resource extraction continues in the deep waters of the GoM. Our results also provide insights into the responses of deep-sea corals to toxin exposure, implications of applying dispersants to oil spills and a novel reference assembly for a relatively under-studied group of cold-water corals.

  18. Automating Mid- and Long-Range Scheduling for NASA's Deep Space Network

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Tran, Daniel; Arroyo, Belinda; Sorensen, Sugi; Tay, Peter; Carruth, Butch; Coffman, Adam; Wallace, Mike

    2012-01-01

    NASA has recently deployed a new mid-range scheduling system for the antennas of the Deep Space Network (DSN), called Service Scheduling Software, or S(sup 3). This system is architected as a modern web application containing a central scheduling database integrated with a collaborative environment, exploiting the same technologies as social web applications but applied to a space operations context. This is highly relevant to the DSN domain since the network schedule of operations is developed in a peer-to-peer negotiation process among all users who utilize the DSN (representing 37 projects including international partners and ground-based science and calibration users). The initial implementation of S(sup 3) is complete and the system has been operational since July 2011. S(sup 3) has been used for negotiating schedules since April 2011, including the baseline schedules for three launching missions in late 2011. S(sup 3) supports a distributed scheduling model, in which changes can potentially be made by multiple users based on multiple schedule "workspaces" or versions of the schedule. This has led to several challenges in the design of the scheduling database, and of a change proposal workflow that allows users to concur with or to reject proposed schedule changes, and then counter-propose with alternative or additional suggested changes. This paper describes some key aspects of the S(sup 3) system and lessons learned from its operational deployment to date, focusing on the challenges of multi-user collaborative scheduling in a practical and mission-critical setting. We will also describe the ongoing project to extend S(sup 3) to encompass long-range planning, downtime analysis, and forecasting, as the next step in developing a single integrated DSN scheduling tool suite to cover all time ranges.

  19. Review of NASA approach to space radiation risk assessments for Mars exploration.

    PubMed

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  20. Near Earth Architectural Options for a Future Deep Space Optical Communications Network

    NASA Technical Reports Server (NTRS)

    Edwards, B. L.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    In the near future the National Aeronautics and Space Administration anticipates a significant increase in demand for long-haul communications services from deep space to Earth. Distances will range from 0.1 to 40 AU, with data rate requirements in the 1's to 1000's of Mbits/second. The near term demand is driven by NASA's Space Science Enterprise which wishes to deploy more capable instruments onboard spacecraft and increase the number of deep space missions. The long term demand is driven by missions with extreme communications challenges such as very high data rates from the outer planets, supporting sub-surface exploration, or supporting NASA's Human Exploration and Development of Space Enterprise beyond Earth orbit. Laser communications is a revolutionary communications technology that will dramatically increase NASA's ability to transmit information across the solar system. Lasercom sends information using beams of light and optical elements, such as telescopes and optical amplifiers, rather than RF signals, amplifiers, and antennas. This paper provides an overview of different network options at Earth to meet NASA's deep space lasercom requirements. It is based mainly on work done for the Mars Laser Communications Demonstration Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done for the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telesat Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  1. NASA Tools for Climate Impacts on Water Resources

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Brad

    2010-01-01

    Climate and environmental change are expected to fundamentally alter the nation's hydrological cycle and water availability. Satellites provide global or near-global coverage using instruments, allowing for consistent, well-calibrated, and equivalent-quality data of the Earth system. A major goal for NASA climate and environmental change research is to create multi-instrument data sets to span the multi-decadal time scales of climate change and to combine these data with those from modeling and surface-based observing systems to improve process understanding and predictions. NASA and Earth science data and analyses will ultimately enable more accurate climate prediction, and characterization of uncertainties. NASA's Applied Sciences Program works with other groups, including other federal agencies, to transition demonstrated observational capabilities to operational capabilities. A summary of some of NASA tools for improved water resources management will be presented.

  2. NASA Docking System (NDS) Interface Definitions Document (IDD). Revision C, Nov. 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The NASA Docking System (NDS) mating system supports low approach velocity docking and provides a modular and reconfigurable standard interface, supporting crewed and autonomous vehicles during mating and assembly operations. The NDS is NASA's implementation for the emerging International Docking System Standard (IDSS) using low impact docking technology. All NDS configurations can mate with the configuration specified in the IDSS Interface Definition Document (IDD) released September 21, 2010. The NDS evolved from the Low Impact Docking System (LIDS). The acronym international Low Impact Docking System (iLIDS) is also used to describe this system. NDS and iLIDS may be used interchangeability. Some of the heritage documentation and implementations (e.g., software command names) used on NDS will continue to use the LIDS acronym. The NDS IDD defines the interface characteristics and performance capability of the NDS, including uses ranging from crewed to autonomous space vehicles and from low earth orbit to deep space exploration. The responsibility for developing space vehicles and for making them technically and operationally compatible with the NDS rests with the vehicle providers. Host vehicle examples include crewed/uncrewed spacecraft, space station modules, elements, etc. Within this document, any docking space vehicle will be referred to as the host vehicle. This document defines the NDS-to-NDS interfaces, as well as the NDS-to-host vehicle interfaces and performance capability.

  3. Bedrock Exhumed from the Deep

    NASA Image and Video Library

    2017-01-18

    Roadside bedrock outcrops are all too familiar for many who have taken a long road trip through mountainous areas on Earth. Martian craters provide what tectonic mountain building and man's TNT cannot: crater-exposed bedrock outcrops. Although crater and valley walls offer us roadside-like outcrops from just below the Martian surface, their geometry is not always conducive to orbital views. On the other hand, a crater central peak -- a collection of mountainous rocks that have been brought up from depth, but also rotated and jumbled during the cratering process -- produce some of the most spectacular views of bedrock from orbit. This color composite cutout shows an example of such bedrock that may originate from as deep as 2 miles beneath the surface. The bedrock at this scale is does not appear to be layered or made up of grains, but has a massive appearance riddled with cross-cutting fractures, some of which have been filled by dark materials and rock fragments (impact melt and breccias) generated by the impact event. A close inspection of the image shows that these light-toned bedrock blocks are partially to fully covered by sand dunes and coated with impact melt bearing breccia flows. http://photojournal.jpl.nasa.gov/catalog/PIA12291

  4. Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5

    DOE PAGES

    Wang, Yong; Zhang, Guang J.

    2016-09-29

    In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less

  5. Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; Zhang, Guang J.

    In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less

  6. NASA Integrated Network COOP

    NASA Technical Reports Server (NTRS)

    Anderson, Michael L.; Wright, Nathaniel; Tai, Wallace

    2012-01-01

    Natural disasters, terrorist attacks, civil unrest, and other events have the potential of disrupting mission-essential operations in any space communications network. NASA's Space Communications and Navigation office (SCaN) is in the process of studying options for integrating the three existing NASA network elements, the Deep Space Network, the Near Earth Network, and the Space Network, into a single integrated network with common services and interfaces. The need to maintain Continuity of Operations (COOP) after a disastrous event has a direct impact on the future network design and operations concepts. The SCaN Integrated Network will provide support to a variety of user missions. The missions have diverse requirements and include anything from earth based platforms to planetary missions and rovers. It is presumed that an integrated network, with common interfaces and processes, provides an inherent advantage to COOP in that multiple elements and networks can provide cross-support in a seamless manner. The results of trade studies support this assumption but also show that centralization as a means of achieving integration can result in single points of failure that must be mitigated. The cost to provide this mitigation can be substantial. In support of this effort, the team evaluated the current approaches to COOP, developed multiple potential approaches to COOP in a future integrated network, evaluated the interdependencies of the various approaches to the various network control and operations options, and did a best value assessment of the options. The paper will describe the trade space, the study methods, and results of the study.

  7. Comet Dust After Deep Impact

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  8. NASA Spacecraft Fault Management Workshop Results

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen

    2010-01-01

    Fault Management is a critical aspect of deep-space missions. For the purposes of this paper, fault management is defined as the ability of a system to detect, isolate, and mitigate events that impact, or have the potential to impact, nominal mission operations. The fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and

  9. Distant Perspective of MarCOs Cruise in Deep Space

    NASA Image and Video Library

    2018-03-29

    An artist's rendering of the twin Mars Cube One (MarCO) spacecraft on their cruise in deep space. The MarCOs will be the first CubeSats -- a kind of modular, mini-satellite -- attempting to fly to another planet. They're designed to fly along behind NASA's InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight's entry, descent and landing back to Earth. Though InSight's mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. https://photojournal.jpl.nasa.gov/catalog/PIA22315

  10. An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Barbee, Brent W.

    2015-01-01

    This paper presents the results of a NASA Innovative Advanced Concept (NIAC) Phase 2 study entitled "An Innovative Solution to NASA's Near-Earth Object (NEO) Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development." This NIAC Phase 2 study was conducted at the Asteroid Deflection Research Center (ADRC) of Iowa State University in 2012-2014. The study objective was to develop an innovative yet practically implementable mitigation strategy for the most probable impact threat of an asteroid or comet with short warning time (< 5 years). The mitigation strategy described in this paper is intended to optimally reduce the severity and catastrophic damage of the NEO impact event, especially when we don't have sufficient warning times for non-disruptive deflection of a hazardous NEO. This paper provides an executive summary of the NIAC Phase 2 study results. Detailed technical descriptions of the study results are provided in a separate final technical report, which can be downloaded from the ADRC website (www.adrc.iastate.edu).

  11. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science

    NASA Astrophysics Data System (ADS)

    Leidner, A. K.

    2014-12-01

    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  12. NASA's Current Directions in the CETDP Micro-Technology Thrust Area

    NASA Technical Reports Server (NTRS)

    Stocky, J.

    2000-01-01

    NASA's program in micro-technologies seeks to develop the advanced technologies needed to reduce the mass of Earth-orbiting and deep-space spacecraft by several orders of magnitude over the next decade.

  13. Observing Campaign for Potential Deep Impact Flyby Target 163249 (2002 GT)

    NASA Technical Reports Server (NTRS)

    Pittichova, Jana; Chesley, S. R.; Abell, P. A.; Benner, L. A. M.

    2012-01-01

    The Deep Impact spacecraft is currently on course for a Jan. 4, 2020 flyby of the sub-kilometer near-Earth asteroid 163249 (2002 GT). The re-targeting will be complete with a final small maneuver scheduled for Oct. 4, 2012. 2002 GT, which is also designated as a Potentially Hazardous Asteroid (PHA), has a well-determined orbit and is approx 800 m in diameter (H=18.3). Little more is known about the nature of this object, but in mid-2013 it will pass near the Earth, affording an exceptional opportunity for ground-based characterization. At this apparition 2002 GT will be in range of Arecibo. In addition to Doppler measurements, radar delay observations with precisions of a few microseconds are expected and have a good chance of revealing whether the system is binary or not. The asteroid will be brighter than 16th mag., which will facilitate a host of observations at a variety of wavelengths. Light curve measurements across a wide range of viewing perspectives will reveal the rotation rate and ultimately lead to strong constraints on the shape and pole orientation. Visible and infrared spectra will constrain the mineralogy, taxonomy, albedo and size. Along with the radar observations, optical astrometry will further constrain the orbit, both to facilitate terminal guidance operations and to potentially reveal nongravitational forces acting on the asteroid. Coordinating all of these observations will be a significant task and we encourage interested observers to collaborate in this effort. The 2013 apparition of 2002 GT represents a unique opportunity to characterize a potential flyby target, which will aid interpretation of the high-resolution flyby imagery and aid planning and development of the flyby imaging sequence. The knowledge gained from this flyby will be highly relevant to the human exploration program at NASA, which desires more information on the physical characteristics of sub-kilometer near-Earth asteroids.

  14. User Needs and Assessing the Impact of Low Latency NASA Earth Observation Data Availability on Societal Benefit

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Carroll, Mark L.; Escobar, Vanessa M.

    2014-01-01

    Since the advent of NASA's Earth Observing System, knowledge of the practical benefits of Earth science data has grown considerably. The community using NASA Earth science observations in applications has grown significantly, with increasing sophistication to serve national interests. Data latency, or how quickly communities receive science observations after acquisition, can have a direct impact on the applications and usability of the information. This study was conducted to determine how users are incorporating NASA data into applications and operational processes to benefit society beyond scientific research, as well as to determine the need for data latency of less than 12 h. The results of the analysis clearly show the significant benefit to society of serving the needs of the agricultural, emergency response, environmental monitoring and weather communities who use rapidly delivered, accurate Earth science data. The study also showed the potential of expanding the communities who use low latency NASA science data products to provide new ways of transforming data into information. These benefits can be achieved with a clear and consistent NASA policy on product latency.

  15. Deep-Sea Research Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is an aerial view of the deep-sea research submarine 'Ben Franklin' at dock. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  16. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    PubMed Central

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W. J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems. PMID:22454495

  17. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico.

    PubMed

    White, Helen K; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M; Cordes, Erik E; Quattrini, Andrea M; Nelson, Robert K; Camilli, Richard; Demopoulos, Amanda W J; German, Christopher R; Brooks, James M; Roberts, Harry H; Shedd, William; Reddy, Christopher M; Fisher, Charles R

    2012-12-11

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals' ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  18. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    USGS Publications Warehouse

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W.J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  19. Impacts of the Deepwater Horizon oil spill on deep-sea coral-associated sediment communities

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Cordes, Erik E.; Stamler, Katherine

    2016-01-01

    Cold-water corals support distinct populations of infauna within surrounding sediments that provide vital ecosystem functions and services in the deep sea. Yet due to their sedentary existence, infauna are vulnerable to perturbation and contaminant exposure because they are unable to escape disturbance events. While multiple deep-sea coral habitats were injured by the 2010 Deepwater Horizon (DWH) oil spill, the extent of adverse effects on coral-associated sediment communities is unknown. In 2011, sediments were collected adjacent to several coral habitats located 6 to 183 km from the wellhead in order to quantify the extent of impact of the DWH spill on infaunal communities. Higher variance in macrofaunal abundance and diversity, and different community structure (higher multivariate dispersion) were associated with elevated hydrocarbon concentrations and contaminants at sites closest to the wellhead (MC294, MC297, and MC344), consistent with impacts from the spill. In contrast, variance in meiofaunal diversity was not significantly related to distance from the wellhead and no other community metric (e.g. density or multivariate dispersion) was correlated with contaminants or hydrocarbon concentrations. Concentrations of polycyclic aromatic hydrocarbons (PAH) provided the best statistical explanation for observed macrofaunal community structure, while depth and presence of fine-grained mud best explained meiofaunal community patterns. Impacts associated with contaminants from the DWH spill resulted in a patchwork pattern of infaunal community composition, diversity, and abundance, highlighting the role of variability as an indicator of disturbance. These data represent a useful baseline for tracking post-spill recovery of these deep-sea communities.

  20. Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Simpson, Morgan; Wheeler, Raymond M.; Newsham, Gary; Stutte, Gary W.

    2013-01-01

    Future human space exploration missions will need functional habitat systems. Possible concepts are assessed for integration issues, power requirements, crew operations, technology, and system performance. A food production system concept was analyzed at NASA Desert Research and Technology Studies (DRATS) in 2011, and at NASA JSC in 2012. System utilizes fresh foods (vegetables and small fruits) which are harvested on a continuous basis. Designed to improve crew's diet and quality of life without interfering with other components or operations.

  1. NASA's Space Launch System: Enabling Exploration and Discovery

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew; Robinson, Kimberly F.; Hitt, David

    2017-01-01

    As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 t to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 t to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity

  2. NASA's Space Launch System: Enabling Exploration and Discovery

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Schorr, Andrew

    2017-01-01

    As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 metric tons to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 metric tons to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the

  3. Deep 'Stone Soup' Trenching by Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Digging by NASA's Phoenix Mars Lander on Aug. 23, 2008, during the 88th sol (Martian day) since landing, reached a depth about three times greater than in any trench Phoenix has excavated. The deep trench, informally called 'Stone Soup' is at the borderline between two of the polygon-shaped hummocks that characterize the arctic plain where Phoenix landed.

    The lander's Surface Stereo Imager took this picture of Stone Soup trench on Sol 88 after the day's digging. The trench is about 25 centimeters (10 inches) wide and about 18 centimeters (7 inches) deep.

    When digging trenches near polygon centers, Phoenix has hit a layer of icy soil, as hard as concrete, about 5 centimeters or 2 inches beneath the ground surface. In the Stone Soup trench at a polygon margin, the digging has not yet hit an icy layer like that.

    Stone Soup is toward the left, or west, end of the robotic arm's work area on the north side of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates

    PubMed Central

    Legendre, Pierre; Matabos, Marjolaine; Mihály, Steve; Lee, Raymond W.; Sarradin, Pierre-Marie; Arango, Claudia P.; Sarrazin, Jozée

    2017-01-01

    Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and hydrothermal vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between hydrothermal community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic hydrothermal species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between hydrothermal fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that hydrothermal species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat. PMID:28381618

  5. A history of the deep space network

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1976-01-01

    The Deep Space Network (DSN) has been managed and operated by the Jet Propulsion Laboratory (JPL) under NASA contract ever since NASA was formed in late 1958. The Tracking and data acquisition tasks of the DSN are markedly different from those of the other NASA network, STDN. STDN, which is an amalgamation of the satellite tracking network (STADAN) and the Manned Space Flight Network (MSFN), is primarily concerned with supporting manned and unmanned earth satellites. In contrast, the DSN deals with spacecraft that are thousands to hundreds of millions of miles away. The radio signals from these distant craft are many orders of magnitude weaker than those from nearby satellites. Distance also makes precise radio location more difficult; and accurate trajectory data are vital to deep space navigation in the vicinities of the other planets of the solar system. In addition to tracking spacecraft and acquiring data from them, the DSN is required to transmit many thousands of commands to control the sophisticated planetary probes and interplanetary monitoring stations. To meet these demanding requirements, the DSN has been compelled to be in the forefront of technology.

  6. The NASA Space Communications Data Networking Architecture

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Hooke, Adrian J.; Freeman, Kenneth; Rush, John J.

    2006-01-01

    The NASA Space Communications Architecture Working Group (SCAWG) has recently been developing an integrated agency-wide space communications architecture in order to provide the necessary communication and navigation capabilities to support NASA's new Exploration and Science Programs. A critical element of the space communications architecture is the end-to-end Data Networking Architecture, which must provide a wide range of services required for missions ranging from planetary rovers to human spaceflight, and from sub-orbital space to deep space. Requirements for a higher degree of user autonomy and interoperability between a variety of elements must be accommodated within an architecture that necessarily features minimum operational complexity. The architecture must also be scalable and evolvable to meet mission needs for the next 25 years. This paper will describe the recommended NASA Data Networking Architecture, present some of the rationale for the recommendations, and will illustrate an application of the architecture to example NASA missions.

  7. Analyzing the Impacts of Natural Environments on Launch and Landing Availability for NASA's Eploration Systems Development Programs

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. Lee; Barbre, Robert E.; Leahy, Frank B.

    2014-01-01

    NASA is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development Program, which includes the Space Launch System (SLS) and MultiPurpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from prelaunch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting or exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds.

  8. Mission Advantages of NEXT: Nasa's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Benson, Scott; Patterson, Michael; Noca, Muriel; Sims, Jon

    2002-01-01

    With the demonstration of the NSTAR propulsion system on the Deep Space One mission, the range of the Discovery class of NASA missions can now be expanded. NSTAR lacks, however, sufficient performance for many of the more challenging Office of Space Science (OSS) missions. Recent studies have shown that NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is the best choice for many exciting potential OSS missions including outer planet exploration and inner solar system sample returns. The NEXT system provides the higher power, higher specific impulse, and higher throughput required by these science missions.

  9. Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135

    NASA Astrophysics Data System (ADS)

    Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.

    2002-11-01

    Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for

  10. A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.; Fasanella, E. L.

    2003-01-01

    The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

  11. Applications of NASA TROPICS Data for Tropical Cyclone Analysis, Nowcasting, and Impacts

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Dunion, J. P.; Blackwell, W. J.; Braun, S. A.; Green, D. S.; Velden, C.; Adler, R. F.; Cossuth, J.; Murray, J. J.; Brennan, M. J.

    2017-12-01

    The National Aeronautics and Space Administration (NASA) Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission is a constellation of state-of-the-science observing platforms that will measure temperature and humidity soundings and precipitation with spatial resolution comparable to current operational passive microwave sounders but with unprecedented temporal resolution. TROPICS is a cost-capped ($30M) Venture-class mission funded by the NASA Earth Science Division. The mission is comprised of a constellation of 3 unit (3U) SmallSats, each hosting a 12-channel passive microwave spectrometer based on the Micro-sized Microwave Atmospheric Satellite 2 (MicroMAS-2) developed at MIT LL. TROPICS will provide imagery near 91 and 205 GHz, temperature sounding near 118 GHz, and moisture sounding near 183 GHz. Spatial resolution at nadir will be around 27 km for temperature and 17 km for moisture and precipitation. The swath width is approximately 2000 km. TROPICS enables temporal resolution similar to geostationary orbit but at a much lower cost, demonstrating a technology that could impact the design of future Earth-observing missions. The TROPICS satellites for the mission are slated for delivery to NASA in 2019 with potential launch opportunities in 2020. The primary mission objective of TROPICS is to relate temperature, humidity, and precipitation structure to the evolution of tropical cyclone (TC) intensity. This abstract summarizes the outcomes of the 1st TROPICS Applications Workshop, held from May 8-10, 2017 at the University of Miami. At this meeting, a series of presentations and breakout discussions in the topical areas of Tropical Cyclone Dynamics, Tropical Cyclone Analysis and Nowcasting, Tropical Cyclone Modeling and Data Assimilation, and Terrestrial Impacts were convened to identify applications of the mission data and to begin to establish a community of end-users who will be able to

  12. The NASA Next Generation Stirling Technology Program Overview

    NASA Astrophysics Data System (ADS)

    Schreiber, J. G.; Shaltens, R. K.; Wong, W. A.

    2005-12-01

    NASAs Science Mission Directorate is developing the next generation Stirling technology for future Radioisotope Power Systems (RPS) for surface and deep space missions. The next generation Stirling convertor is one of two advanced power conversion technologies currently being developed for future NASA missions, and is capable of operating for both planetary atmospheres and deep space environments. The Stirling convertor (free-piston engine integrated with a linear alternator) produces about 90 We(ac) and has a specific power of about 90 We/kg. Operating conditions of Thot at 850 degree C and Trej at 90 degree C results in the Stirling convertor estimated efficiency of about 40 per cent. Using the next generation Stirling convertor in future RPS, the "system" specific power is estimated at 8 We/kg. The design lifetime is three years on the surface of Mars and fourteen years in deep space missions. Electrical power of about 160 We (BOM) is produced by two (2) free-piston Stirling convertors heated by two (2) General Purpose Heat Source (GPHS) modules. This development is being performed by Sunpower, Athens, OH with Pratt & Whitney, Rocketdyne, Canoga Park, CA under contract to Glenn Research Center (GRC), Cleveland, Ohio. GRC is guiding the independent testing and technology development for the next generation Stirling generator.

  13. Monitoring Drought Conditions in the Navajo Nation Using NASA Earth Observations

    NASA Technical Reports Server (NTRS)

    Ly, Vickie; Gao, Michael; Cary, Cheryl; Turnbull-Appell, Sophie; Surunis, Anton

    2016-01-01

    The Navajo Nation, a 65,700 sq km Native American territory located in the southwestern United States, has been increasingly impacted by severe drought events and changes in climate. These events are coupled with a lack of domestic water infrastructure and economic resources, leaving approximately one-third of the population without access to potable water in their homes. Current methods of monitoring drought are dependent on state-based monthly Standardized Precipitation Index value maps calculated by the Western Regional Climate Center. However, these maps do not provide the spatial resolution needed to illustrate differences in drought severity across the vast Nation. To better understand and monitor drought events and drought regime changes in the Navajo Nation, this project created a geodatabase of historical climate information specific to the area, and a decision support tool to calculate average Standardized Precipitation Index values for user-specified areas. The tool and geodatabase use Tropical Rainfall Monitoring Mission (TRMM) and Global Precipitation Monitor (GPM) observed precipitation data and Parameter-elevation Relationships on Independent Slopes Model modeled historical precipitation data, as well as NASA's modeled Land Data Assimilation Systems deep soil moisture, evaporation, and transpiration data products. The geodatabase and decision support tool will allow resource managers in the Navajo Nation to utilize current and future NASA Earth observation data for increased decision-making capacity regarding future climate change impact on water resources.

  14. Architectural Options for a Future Deep Space Optical Communications Network

    NASA Technical Reports Server (NTRS)

    Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  15. The Impact of Space Commercialization on Space Agencies: the Case of NASA

    NASA Astrophysics Data System (ADS)

    Zervos, Vasilis

    2002-01-01

    The purpose of this paper is to examine the hypothesis that commercialisation of space results in inefficient contracting policies by the space agencies, using the US NASA as a case study. Though commercialisation is seen by many as a way to reduce costs in space programmes, as the space industry is seen as a decreasing costs industry, this is not a problem-free process. Commercialisation of space has affected the US and European space industries and policies in two major ways. The first is that the public sector actively encourages mergers and acquisitions of major contractors, confined, however, within the geographical borders of the US and Europe. This follows largely from the perceived benefits of economies of size when competing in global commercial markets. The second is the formation of an increasing number of public-private partnerships (PPPs) in space programmes and a more `cosy' relationship between the two within a public-assistance strategic trade theoretic framework. As ESA's contracting policy of `juste retour' is marked by limited competition, the paper focuses on the case of NASA, which is expected to be more pro- competitive, to examine the impact of commercialisation. With the use of quantitative methods based on time series econometric analysis, the paper shows that NASA's contracting policy, results in increasingly less competition and more rent-favouring contracting. This is attributed to the decreasing number of major contractors in conjunction with the preferential treatment of the domestic space industry (`Buy American'). The results of the paper verify that the support of the domestic space industry in commercial and public space markets results in inefficient contracting policies, with NASA facing the conflicting tasks of a stated policy of enhancing competition and efficiency in contracting, as well as, supporting the competitiveness of the domestic space industry. The paper concludes with an analysis and assessment of solutions to this

  16. With Eyes on the Future, Marshall Leads the Way to Deep Space in 2017

    NASA Image and Video Library

    2017-12-27

    NASA's Marshall Space Flight Center in Huntsville, Alabama, led the way in space exploration in 2017. Marshall's work is advancing how we explore space and preparing for deep-space missions to the Moon, Mars and beyond. Progress continued on NASA's Space Launch System that will enable missions beyond Earth's orbit, while flight controllers at "Science Central" for the International Space Station coordinated research and experiments with astronauts in orbit, learning how to live in space. At Marshall, 2017 was also marked with ground-breaking discoveries, innovations that will send us into deep space, and events that will inspire future generations of explorers. Follow along in 2018 as Marshall continues to advance space exploration: www.nasa.gov/marshall

  17. Hydrodynamic Modeling of the Deep Impact Mission into Comet Tempel 1

    NASA Astrophysics Data System (ADS)

    Sorli, Kya; Remington, Tané; Bruck Syal, Megan

    2018-01-01

    Kinetic impact is one of the primary strategies to deflect hazardous objects off of an Earth-impacting trajectory. The only test of a small-body impact is the 2005 Deep Impact mission into comet Tempel 1, where a 366-kg mass impactor collided at ~10 km/s into the comet, liberating an enormous amount of vapor and ejecta. Code comparisons with observations of the event represent an important source of new information about the initial conditions of small bodies and an extraordinary opportunity to test our simulation capabilities on a rare, full-scale experiment. Using the Adaptive Smoothed Particle Hydrodynamics (ASPH) code, Spheral, we explore how variations in target material properties such as strength, composition, porosity, and layering affect impact results, in order to best match the observed crater size and ejecta evolution. Benchmarking against this unique small-body experiment provides an enhanced understanding of our ability to simulate asteroid or comet response to future deflection missions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-739336-DRAFT.

  18. Validation Testing of a Peridynamic Impact Damage Model Using NASA's Micro-Particle Gun

    NASA Technical Reports Server (NTRS)

    Baber, Forrest E.; Zelinski, Brian J.; Guven, Ibrahim; Gray, Perry

    2017-01-01

    Through a collaborative effort between the Virginia Commonwealth University and Raytheon, a peridynamic model for sand impact damage has been developed1-3. Model development has focused on simulating impacts of sand particles on ZnS traveling at velocities consistent with aircraft take-off and landing speeds. The model reproduces common features of impact damage including pit and radial cracks, and, under some conditions, lateral cracks. This study focuses on a preliminary validation exercise in which simulation results from the peridynamic model are compared to a limited experimental data set generated by NASA's recently developed micro-particle gun (MPG). The MPG facility measures the dimensions and incoming and rebound velocities of the impact particles. It also links each particle to a specific impact site and its associated damage. In this validation exercise parameters of the peridynamic model are adjusted to fit the experimentally observed pit diameter, average length of radial cracks and rebound velocities for 4 impacts of 300 µm glass beads on ZnS. Results indicate that a reasonable fit of these impact characteristics can be obtained by suitable adjustment of the peridynamic input parameters, demonstrating that the MPG can be used effectively as a validation tool for impact modeling and that the peridynamic sand impact model described herein possesses not only a qualitative but also a quantitative ability to simulate sand impact events.

  19. Preparing for Orion Recovery Test on This Week @NASA - August 1, 2014

    NASA Image and Video Library

    2014-08-01

    NASA and the U.S. Navy were busy recently – preparing for tests scheduled off the coast of San Diego, California. Crews will run through the procedures to recover NASA's Orion spacecraft from the ocean, following its water landing from deep space missions. Kennedy Space Center, Johnson Space Center, and Lockheed Martin Space Operations are all involved in the recovery effort. Also, Mars 2020 rover and beyond, Opportunity: 25 miles and counting, Updated K-Rex rover, Automated Transfer Vehicle launch and NASA Technology Days!

  20. Amateur Radio Communications with a Deep Space Probe (Yes, It's Possible)

    NASA Astrophysics Data System (ADS)

    Cudnik, Brian; Rahman, Mahmudur; Saganti, Seth; Erickson, Gary M.; Saganti, Premkumar

    2015-05-01

    Prairie View A&M University through the collaboration with NASA-Johnson Space Center has partnered with the Kyushu Institute of Technology (KIT), Japan and developed a payload for the Shinen-2 spacecraft that was launched from Japan on December 3, 2014 as part of the Hayabusa2 mission. The main purpose of the Shinen-2 spacecraft is deep space communication experiment to test the feasibility of deep-space radio communications from the spacecraft to Earth without the need of the Deep Space Network (DSN) of NASA. This presents an opportunity to the wider community of amateur astronomers, ham radio operators, and other research personnel in that they will have the opportunity to work with deep space communication such as Shinen-2 spacecraft. It should be possible to detect a signal as an increased strength from Shinen-2 spacecraft at a rest frequency of 437.385 MHz, using commercially available equipment procured at low-cost, when the spacecraft approaches to within 3,000,000 km of the Earth during December 2015.

  1. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  2. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight

  3. Impact of DYNAMO observations on NASA GEOS-5 reanalyses and the representation of MJO initiation

    NASA Astrophysics Data System (ADS)

    Achuthavarier, D.; Wang, H.; Schubert, S. D.; Sienkiewicz, M.

    2017-01-01

    This study examines the impact of the Dynamics of the Madden-Julian Oscillation (DYNAMO) campaign in situ observations on NASA Goddard Earth Observing System version 5 (GEOS-5) reanalyses and the improvements gained thereby in the representation of the Madden-Julian Oscillation (MJO) initiation processes. To this end, we produced a global, high-resolution (1/4° spatially) reanalysis that assimilates the level-4, quality-controlled DYNAMO upper air soundings from about 87 stations in the equatorial Indian Ocean region along with a companion data-denied control reanalysis. The DYNAMO reanalysis produces a more realistic vertical structure of the temperature and moisture in the central tropical Indian Ocean by correcting the model biases, namely, the cold and dry biases in the lower troposphere and warm bias in the upper troposphere. The reanalysis horizontal winds are substantially improved, in that, the westerly acceleration and vertical shear of the zonal wind are enhanced. The DYNAMO reanalysis shows enhanced low-level diabatic heating, moisture anomalies and vertical velocity during the MJO initiation. Due to the warmer lower troposphere, the deep convection is invigorated, which is evident in convective cloud fraction. The GEOS-5 atmospheric general circulation model (AGCM) employed in the reanalysis is overall successful in assimilating the additional DYNAMO observations, except for an erroneous model response for medium rain rates, between 700 and 600 hPa, reminiscent of a bias in earlier versions of the AGCM. The moist heating profile shows a sharp decrease there due to the excessive convective rain re-evaporation, which is partly offset by the temperature increment produced by the analysis.

  4. Impact and promise of NASA aeropropulsion technology

    NASA Technical Reports Server (NTRS)

    Saunders, Neal T.; Bowditch, David N.

    1990-01-01

    The aeropropulsion industry in the U.S. has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. NASA's aeropropulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstration. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane are discussed.

  5. Analysis of Near-field of Circular Aperture Antennas with Application to Study of High Intensity Radio Frequency (HIRF) Hazards to Aviation from JPL/NASA Deep Space Network Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Statman, Joseph

    2013-01-01

    This work includes a simplified analysis of the radiated near to mid-field from JPL/NASA Deep Space Network (DSN) reflector antennas and uses an averaging technique over the main beam region and beyond for complying with FAA regulations in specific aviation environments. The work identifies areas that require special attention, including the implications of the very narrow beam of the DSN transmitters. The paper derives the maximum averaged power densities allowed and identifies zones where mitigation measures are required.

  6. Deep Space Gateway Science Opportunities

    NASA Technical Reports Server (NTRS)

    Quincy, C. D.; Charles, J. B.; Hamill, Doris; Sidney, S. C.

    2018-01-01

    The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment.

  7. Using Autonomous Bio Nanosatellites for Deep Space Exploration

    NASA Astrophysics Data System (ADS)

    Santa Maria, S. R.; Liddell, L. C.; Tieze, S. M.; Ricco, A. J.; Hanel, R.; Bhattacharya, S.

    2018-02-01

    NASA's BioSentinel mission will conduct the first study of biological response to deep-space radiation in 45 years. It is an automated nanosatellite that will measure the DNA damage response to ambient space radiation in a model biological organism.

  8. Space Suit Technologies Protect Deep-Sea Divers

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Working on NASA missions allows engineers and scientists to hone their skills. Creating devices for the high-stress rigors of space travel pushes designers to their limits, and the results often far exceed the original concepts. The technologies developed for the extreme environment of space are often applicable here on Earth. Some of these NASA technologies, for example, have been applied to the breathing apparatuses worn by firefighters, the fire-resistant suits worn by racecar crews, and, most recently, the deep-sea gear worn by U.S. Navy divers.

  9. jsc2017m000738_NASA Tests Orion Crew Egress_July 2017

    NASA Image and Video Library

    2017-07-18

    NASA Tests Orion Crew Exit Plans in Gulf of Mexico A NASA and Department of Defense team evaluated the techniques that will be used to make sure astronauts can exit Orion in a variety of scenarios upon splashdown after deep space missions, using the waters off the coast of Galveston, Texas, to test their procedures in July. The team used a mockup of the spacecraft to examine how crew will get out of Orion with assistance and alone. The testing is helping NASA prepare for Orion and Space Launch System missions with crew beginning with Exploration Mission-2 in the early 2020s.

  10. Diverse Studies in the Reactivated NASA/Ames Radiation Facility: From Shock Layer Spectroscopy to Thermal Protection System Impact

    NASA Technical Reports Server (NTRS)

    Miller, Robert J.; Hartman, G. Joseph (Technical Monitor)

    1994-01-01

    NASA/Ames' Hypervelocity Free-Flight Radiation Facility has been reactivated after having been decommissioned for some 15 years, first tests beginning in early 1994. This paper discusses two widely different studies from the first series, one involving spectroscopic analysis of model shock-layer radiation, and the other the production of representative impact damage in space shuttle thermal protection tiles for testing in the Ames arc-jet facilities. These studies emphasize the interorganizational and interdisciplinary value of the facility in the newly-developing structure of NASA.

  11. Modeling the ejecta cloud in the first seconds after Deep Impact

    NASA Astrophysics Data System (ADS)

    Nagdimunov, L.; Kolokolova, L.; Wolff, M.; A'Hearn, M.; Farnham, T.

    2014-07-01

    Although the Deep Impact experiment was performed nine years ago, analysis of its data continues to shed light on our understanding of cometary atmospheres, surfaces, and interiors. We analyze the images acquired by the Deep Impact spacecraft High Resolution Instrument (HRI) in the first seconds after impact. These early images reflect the development of the material excavation from the cometary nucleus, enabling a study of fresh, unprocessed nuclear material, and potentially allowing a peek into the interior. Simply studying the brightness of the ejecta plume and its distribution as a function of height and time after impact could provide some insight into the characteristics of the ejecta. However, the optical thickness of the ejecta offers an additional source of information through the resultant shadow on the surface of the nucleus and brightness variations within it. Our goal was to reproduce both the distribution of brightness in the plume and in its shadow, thus constraining the characteristics of the ejecta. To achieve this, we used a 3D radiative-transfer package HYPERION [1], which allows an arbitrary spatial distribution and multiple dust components, for simulations of multiple scattering with realistic scattering and observational geometries. The parameters of our dust modeling were composition, size distribution, and number density of particles at the base of the ejecta cone (the last varied with the height, h, as h^{-3}). Composition was created as a mixture of so called Halley-like dust (silicates, carbon, and organics, see [2]), ice, and voids to account for particle porosity. We performed a parameter survey, searching for dust/ice ratios and particle porosity that could reproduce a density of the individual particles equal to the bulk density of the nucleus, 0.4 g/(cm^3), or 1.75 g/(cm^3) used in [3] to model crater development. The size distribution was taken from [4] and the number density was varied to achieve the best fit. To further constrain

  12. NASA Ames Contributes to Orion / EFT-1 Test Flight (Reporter Pkg)

    NASA Image and Video Library

    2014-12-03

    NASA's Orion spacecraft is built to take humans farther than they've ever gone before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. NASA's Ames Research Center played a critical role in the development and preparation for the flight test designated Exploration Flight Test 1, or EFT-1.

  13. The Space Launch System: NASA's Exploration Rocket

    NASA Technical Reports Server (NTRS)

    Blackerby, Christopher; Cate, Hugh C., III

    2013-01-01

    Powerful, versatile, and capable vehicle for entirely new missions to deep space. Vital to NASA's exploration strategy and the Nation's space agenda. Safe, affordable, and sustainable. Engaging the U.S. aerospace workforce and infrastructure. Competitive opportunities for innovations that affordably upgrade performance. Successfully meeting milestones in preparation for Preliminary Design Review in 2013. On course for first flight in 2017.

  14. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. The evolved configurations of SLS, including both the 105 t Block 1B and the 130 t Block 2, offer opportunities for launching co-manifested payloads and a new class of secondary payloads with the Orion crew vehicle, and also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle, delivering unmatched mass-lift capability, payload volume, and C3.

  15. NASA directory of observation station locations, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs is presented. A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems. The principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes are discussed. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Observation stations in the NASA Geodetic Satellites Program are included along with stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.

  16. Journey to Mars Update on This Week @NASA – September 30, 2016

    NASA Image and Video Library

    2016-09-30

    NASA Administrator Charlie Bolden joined other leaders of the world’s space agencies to discuss the latest technological breakthroughs and developments in space exploration at the 67th International Astronautical Congress, Sept. 26-30th in Guadalajara, Mexico. At the event, NASA discussed new elements to its multi-phase Journey to Mars to extend the human footprint all the way to the Red Planet. NASA will continue operations aboard the International Space Station through 2024. Work currently underway aboard the station to encourage commercial development of low-Earth orbit, develop deep space systems, life support and human health is part of the Earth Reliant phase of the Journey to Mars. In the 2020s, during the Proving Ground phase when NASA steps out farther, the agency now plans to send an astronaut crew on a yearlong mission to a deep space destination near the moon. They will conduct activities to verify habitation and test our readiness for Mars. A round-trip robotic Mars sample return mission is being targeted for the 2020s, as part of the Earth Independent phase before finally sending humans on a mission to orbit Mars in the early 2030s. Also, Zurbuchen Named Head of NASA Science, Hubble Spots Possible Water Plumes on Europa, Rosetta’s Mission Ends, and Armstrong Celebrates 70 Years of Flight Research!

  17. Deep Space 1 arrives at KSC and processing begins in the PHSF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Deep Space 1 spacecraft waits in the Payload Hazardous Servicing Facility for prelaunch processing. Targeted for launch on a Boeing Delta 7326 rocket on Oct. 15, 1998, the first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  18. Growth rates and ages of deep-sea corals impacted by the Deepwater Horizon oil spill

    USGS Publications Warehouse

    Prouty, Nancy G.; Fisher, Charles R.; Demopoulos, Amanda W. J.; Druffel, Ellen R. M.

    2016-01-01

    The impact of the April 2010 Deepwater Horizon (DWH) spill on deep-sea coral communities in the Gulf of Mexico (GoM) is still under investigation, as is the potential for these communities to recover. Impacts from the spill include observation of corals covered with flocculent material, with bare skeleton, excessive mucous production, sloughing tissue, and subsequent colonization of damaged areas by hydrozoans. Information on growth rates and life spans of deep-sea corals is important for understanding the vulnerability of these ecosystems to both natural and anthropogenic perturbations, as well as the likely duration of any observed adverse impacts. We report radiocarbon ages and radial and linear growth rates based on octocorals (Paramuricea spp. and Chrysogorgia sp.) collected in 2010 and 2011 from areas of the DWH impact. The oldest coral radiocarbon ages were measured on specimens collected 11 km to the SW of the oil spill from the Mississippi Canyon (MC) 344 site: 599 and 55 cal yr BP, suggesting continuous life spans of over 600 years for Paramuricea biscaya, the dominant coral species in the region. Calculated radial growth rates, between 0.34 μm yr−1 and 14.20 μm yr−1, are consistent with previously reported proteinaceous corals from the GoM. Anomalously low radiocarbon (Δ14C) values for soft tissue from some corals indicate that these corals were feeding on particulate organic carbon derived from an admixture of modern surface carbon and a low 14C carbon source. Results from this work indicate fossil carbon could contribute 5–10% to the coral soft tissue Δ14C signal within the area of the spill impact. The influence of a low 14C carbon source (e.g., petro-carbon) on the particulate organic carbon pool was observed at all sites within 30 km of the spill site, with the exception of MC118, which may have been outside of the dominant northeast-southwest zone of impact. The quantitatively assessed extreme longevity and slow growth rates documented

  19. OSIRIS-REx Executes First Deep Space Maneuver

    NASA Image and Video Library

    2017-12-08

    NASA's Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer, OSIRIS-REx, spacecraft executed its first deep space maneuver Dec. 28, 2016, putting it on course for an Earth flyby in September 2017. The team will continue to examine telemetry and tracking data as it becomes available at the current low data rate and will have more information in January. Image credit: University of Arizona NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA-STD-6001B Test 1 Upward Flame Propagation; Sample Length Impact on MOC Investigation

    NASA Technical Reports Server (NTRS)

    Harper, Susana Tapia; Juarez, Alfredo; Woods, Brenton L.; Beeson, Harold D.

    2017-01-01

    Understanding the combustion behavior of materials in the elevated oxygen environments of habitable spacecraft is of utmost importance to crew safety and mission success. Currently, certification for unrestricted flight usage of a material with respect to flammability involves passing the Upward Flame Propagation Test of NASA-STD-6001B (Test 1). This test evaluates materials in a standardized test configuration for two failure criteria: self-extinguishment within 15 cm (6 in.) and the propensity of flame propagation by means of flaming material transfer. By the NASA standard, full-length samples are 30 cm (12 in.) in length; however, factors independent of the test method such as limited material availability or various nonstandard test configurations limit the full pretest sample lengths available for test. This paper characterizes the dependence, if any, of pretest sample length on NASA-STD-6001B Test 1 results. Testing was performed using the Maximum Oxygen Concentration (MOC) Threshold Method to obtain a data set for each sample length tested. In addition, various material types, including cloth (Nomex), foam (TA-301) and solids (Ultem), were tested to investigate potential effects of test specimen types. Though additional data needs to be generated to provide statistical confidence, preliminary findings are that use of variable sample lengths has minimal impact on NASA-STD-6001B flammability performance and MOC determination.

  1. NASA's Electronic Procurement System and the Impact on Small Business

    NASA Technical Reports Server (NTRS)

    Dozier, Ken

    1998-01-01

    Three workshops, held in Lancaster, Orange County and Compton, were produced by the Los Angeles Regional Technology Alliance (LARTA) and NASA Far West Technology Transfer Center (FWRTTC). The workshops were held on December 12, 1997, February 5, 1998, and March 30, 1998, respectively. The purpose behind these workshops was to spread information regarding NASA procurement opportunities to small businesses in the region. This was accomplished by inviting economic and business development organizations to the three workshops, presenting NASA procurement resources to them, and asking them to distribute this information to the small businesses in their communities. With the assistance of LARTA, marketing and publicity in the form of direct mail, telemarketing, and promotion via a web site was implemented to publicize the workshops. These methods were remarkably effective because they enabled the workshops to attain its full capacity. Further publicity was provided by Wendy Reed of Valley Focus Magazine, an Antelope Valley Magazine aimed at business people. Her article entitled, "Doing Business with the Government" recapped the Lancaster workshop that she had attended and made references to several presentations. In the article, she discussed selling to the government via electronic commerce, and specifically mentioned Robert Medina, the NASA Dryden Small Business Specialist, as a contact person for those interested in pursuing procurement opportunities. The feedback provided by the participants is illustrated by the enclosed graphs and charts. These figures represent the number of participants who have frequented web sites presented at workshops, specifically the NASA procurement resources, and how extensive information dissemination was. Input from participants was favorable and encouraged more NASA Dryden workshops directly to the small business communities. There was an overwhelming response to the benefit of the NASA procurement opportunities presented at the

  2. Comet Tempel 1 Six Years Later

    NASA Image and Video Library

    2011-02-18

    This image shows the surface of comet Tempel 1 before and after NASA Deep Impact mission sent a probe into the comet in 2005. The region was imaged by Deep Impact before the collision left, then six years later on by NASA Stardust-NExT mission.

  3. Space Weather Impacts to Conjunction Assessment: A NASA Robotic Orbital Safety Perspective

    NASA Technical Reports Server (NTRS)

    Ghrist, Richard; Ghrist, Richard; DeHart, Russel; Newman, Lauri

    2013-01-01

    National Aeronautics and Space Administration (NASA) recognizes the risk of on-orbit collisions from other satellites and debris objects and has instituted a process to identify and react to close approaches. The charter of the NASA Robotic Conjunction Assessment Risk Analysis (CARA) task is to protect NASA robotic (unmanned) assets from threats posed by other space objects. Monitoring for potential collisions requires formulating close-approach predictions a week or more in the future to determine analyze, and respond to orbital conjunction events of interest. These predictions require propagation of the latest state vector and covariance assuming a predicted atmospheric density and ballistic coefficient. Any differences between the predicted drag used for propagation and the actual drag experienced by the space objects can potentially affect the conjunction event. Therefore, the space environment itself, in particular how space weather impacts atmospheric drag, is an essential element to understand in order effectively to assess the risk of conjunction events. The focus of this research is to develop a better understanding of the impact of space weather on conjunction assessment activities: both accurately determining the current risk and assessing how that risk may change under dynamic space weather conditions. We are engaged in a data-- ]mining exercise to corroborate whether or not observed changes in a conjunction event's dynamics appear consistent with space weather changes and are interested in developing a framework to respond appropriately to uncertainty in predicted space weather. In particular, we use historical conjunction event data products to search for dynamical effects on satellite orbits from changing atmospheric drag. Increased drag is expected to lower the satellite specific energy and will result in the satellite's being 'later' than expected, which can affect satellite conjunctions in a number of ways depending on the two satellites' orbits

  4. Impact and promise of NASA aeropropulsion technology

    NASA Technical Reports Server (NTRS)

    Saunders, Neal T.; Bowditch, David N.

    1987-01-01

    The aeropropulsion industry in the United States has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. The NASA aeropropulsion propulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstrations such as the Refan, Engine Component Improvement, and the Energy Efficient Engine Programs. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane (NASP) are discussed.

  5. Development Status of the CECE Cryogenic Deep Throttling Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As one of the first technology development programs awarded by NASA under the U.S. Space Exploration Policy (USSEP), the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA's Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RLI0, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Two series of demonstrator engine tests, the first in April-May 2006 and the second in March-April 2007, have demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. Both test series have explored a combustion instability ("chug") environment at low throttled power levels. These tests have provided an early demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future CECE Demonstrator engine tests.

  6. Evolutionary Scheduler for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Guillaume, Alexandre; Lee, Seungwon; Wang, Yeou-Fang; Zheng, Hua; Chau, Savio; Tung, Yu-Wen; Terrile, Richard J.; Hovden, Robert

    2010-01-01

    A computer program assists human schedulers in satisfying, to the maximum extent possible, competing demands from multiple spacecraft missions for utilization of the transmitting/receiving Earth stations of NASA s Deep Space Network. The program embodies a concept of optimal scheduling to attain multiple objectives in the presence of multiple constraints.

  7. NASA Acting Administrator Robert Lightfoot presents the 2018 "St

    NASA Image and Video Library

    2018-02-12

    NASA Acting Administrator Robert Lightfoot delivers the "State of NASA", February 12, 2018, at the Marshall Space Flight Center in Huntsville, Alabama. In his address, Lightfoot discussed what the President's Fiscal Year 2019 budget request means for America's space agency. According to Lightfoot, it "reflects the administration's confidence that America will lead the way back to the Moon and take the next giant leap". Lightfoot delivered the "State of NASA" address in Marshall's Center for Advanced Manufacturing where engineers are pushing boundaries in the fields of additive manufacturing, 3D printing, and more. Hardware for NASA's Space Launch System and a model of the agency's Orion spacecraft served as a backdrop for the annual event. SLS, which is managed by Marshall, will enable a new era of exploration beyond Earth's orbit by launching astronauts on missions to deep-space destinations including the Moon and Mars.

  8. Estimation of effective temperatures in a quantum annealer: Towards deep learning applications

    NASA Astrophysics Data System (ADS)

    Realpe-Gómez, John; Benedetti, Marcello; Perdomo-Ortiz, Alejandro

    Sampling is at the core of deep learning and more general machine learning applications; an increase in its efficiency would have a significant impact across several domains. Recently, quantum annealers have been proposed as a potential candidate to speed up these tasks, but several limitations still bar them from being used effectively. One of the main limitations, and the focus of this work, is that using the device's experimentally accessible temperature as a reference for sampling purposes leads to very poor correlation with the Boltzmann distribution it is programmed to sample from. Based on quantum dynamical arguments, one can expect that if the device indeed happens to be sampling from a Boltzmann-like distribution, it will correspond to one with an instance-dependent effective temperature. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a quantum annealer for Boltzmann sampling processes. In this work, we propose a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the quantum-assisted training of Boltzmann machines, which can serve as a building block for deep learning architectures. This work was supported by NASA Ames Research Center.

  9. NASA's Space Launch System: A Transformative Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Cook, Jerry; Hitt, David

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 tons to LEO or co-manifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6-unit smallsat payloads

  10. NASA's Space Launch System: A Transformative Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Cook, Jerry

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 t to LEO or comanifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 t to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6U smallsat payloads, representing multiple

  11. Impact cratering experiments in brittle targets with variable thickness: Implications for deep pit craters on Mars

    NASA Astrophysics Data System (ADS)

    Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.

    2014-06-01

    High-resolution images reveal that numerous pit craters exist on the surface of Mars. For some pit craters, the depth-to-diameter ratios are much greater than for ordinary craters. Such deep pit craters are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit crater might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact cratering into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the crater formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. Craters are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when craters on the opposite sides of the target connect with each other. In this case, the cross section of crater somehow attains a flat hourglass-like shape. We also find that the crater diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the crater on the opposite side than from the crater on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit craters lack a raised rim and have the ejecta deposit on their floor instead. Craters are formed on the opposite impact side even when no penetration

  12. Making Data Mobile: The Hubble Deep Field Academy iPad app

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Cordes, K.; Davis, S.; Eisenhamer, J.

    2013-01-01

    Many school districts are purchasing iPads for educators and students to use as learning tools in the classroom. Educators often prefer these devices to desktop and laptop computers because they offer portability and an intuitive design, while having a larger screen size when compared to smart phones. As a result, we began investigating the potential of adapting online activities for use on Apple’s iPad to enhance the dissemination and usage of these activities in instructional settings while continuing to meet educators’ needs. As a pilot effort, we are developing an iPad app for the “Hubble Deep Field Academy” - an activity that is currently available online and commonly used by middle school educators. The Hubble Deep Field Academy app features the HDF-North image while centering on the theme of how scientists use light to explore and study the universe. It also includes features such as embedded links to vocabulary, images and videos, teacher background materials, and readings about Hubble’s other deep field surveys. It is our goal is to impact students’ engagement in STEM-related activities, while enhancing educators’ usage of NASA data via new and innovative mediums. We also hope to develop and share lessons learned with the E/PO community that can be used to support similar projects. We plan to test the Hubble Deep Field Academy app during the school year to determine if this new activity format is beneficial to the education community.

  13. Coordinated Radio, Electron, and Waves Experiment (CREWE) for the NASA Comet Rendezvous and Asteroid Flyby (CRAF) instrument

    NASA Technical Reports Server (NTRS)

    Scudder, Jack D.

    1992-01-01

    The Coordinated Radio, Electron, and Waves Experiment (CREWE) was designed to determine density, bulk velocity and temperature of the electrons for the NASA Comet Rendezvous and Asteroid Flyby Spacecraft, to define the MHD-SW IMF flow configuration; to clarify the role of impact ionization processes, to comment on the importance of anomalous ionization phenomena (via wave particle processes), to quantify the importance of wave turbulence in the cometary interaction, to establish the importance of photoionization via the presence of characteristic lines in a structured energy spectrum, to infer the presence and grain size of significant ambient dust column density, to search for the theoretically suggested 'impenetrable' contact surface, and to quantify the flow of heat (in the likelihood that no surface exists) that will penetrate very deep into the atmosphere supplying a good deal of heat via impact and charge exchange ionization. This final report provides an instrument description, instrument test plans, list of deliverables/schedule, flight and support equipment and software schedule, CREWE accommodation issues, resource requirements, status of major contracts, an explanation of the non-NASA funded efforts, status of EIP and IM plan, descope options, and Brinton questions.

  14. NASA's Space Launch System: A Transformative Capability for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2017-01-01

    Already making substantial progress toward its first launches, NASA’s Space Launch System (SLS) exploration-class launch vehicle presents game-changing new opportunities in spaceflight, enabling human exploration of deep space, as well as a variety of missions and mission profiles that are currently impossible. Today, the initial configuration of SLS, able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), is well into final production and testing ahead of its planned first flight, which will send NASA’s new Orion crew vehicle around the moon and will deploy 13 CubeSats, representing multiple disciplines, into deep space. At the same time, production work is already underway toward the more-capable Block 1B configuration, planned to debut on the second flight of SLS, and capable of lofting 105 tons to LEO or of co-manifesting large exploration systems with Orion on launches to the lunar vicinity. Progress being made on the vehicle for that second flight includes initial welding of its core stage and testing of one of its engines, as well as development of new elements such as the powerful Exploration Upper Stage and the Universal Stage Adapter “payload bay.” Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO to support humans missions to Mars. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles or substantially increased spacecraft mass. In the field of astrophysics, SLS’ high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe. This presentation will give an overview of SLS

  15. NASA's current activities in free space optical communications

    NASA Astrophysics Data System (ADS)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  16. Sharing NASA's Scientific Explorations with Communities Across the Country: A Study of Public Libraries Collaborating with NASA STEM Experts

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Holland, A.; Harold, J. B.; Johnson, A.; Randall, C.; Fitzhugh, G.

    2017-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, how our Sun varies and impacts the heliosphere, and defining the conditions necessary to support life beyond Earth. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are also developing new ways to engage their patrons in STEM learning. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. NCIL's STAR Library Network (STAR_Net) is providing important leverage to expand its community of practice that serves both librarians and STEM professionals. Seventy-five libraries were selected through a competitive application process to receive NASA STEM Facilitation Kits, NASA STEM Backpacks for circulation, financial resources, training, and partnership opportunities. Initial survey data from the 75 NASA@ My Library partners showed that, while they are actively providing programming, few STEM programs connected with NASA science and engineering. With the launch of the initiative - including training, resources, and STEM-related event opportunities - all 75 libraries are engaged in offering NASA-focused programs, including with NASA subject matter experts. This talk will highlight the impacts the initiative is having on both public library partners and many others across the country.

  17. NASA Airborne Campaigns Focus on Climate Impacts in the Arctic

    NASA Image and Video Library

    2017-12-08

    This red plane is a DHC-3 Otter, the plane flown in NASA's Operation IceBridge-Alaska surveys of mountain glaciers in Alaska. Credit: Chris Larsen, University of Alaska-Fairbanks Over the past few decades, average global temperatures have been on the rise, and this warming is happening two to three times faster in the Arctic. As the region’s summer comes to a close, NASA is hard at work studying how rising temperatures are affecting the Arctic. NASA researchers this summer and fall are carrying out three Alaska-based airborne research campaigns aimed at measuring greenhouse gas concentrations near Earth’s surface, monitoring Alaskan glaciers, and collecting data on Arctic sea ice and clouds. Observations from these NASA campaigns will give researchers a better understanding of how the Arctic is responding to rising temperatures. The Arctic Radiation – IceBridge Sea and Ice Experiment, or ARISE, is a new NASA airborne campaign to collect data on thinning sea ice and measure cloud and atmospheric properties in the Arctic. The campaign was designed to address questions about the relationship between retreating sea ice and the Arctic climate. Arctic sea ice reflects sunlight away from Earth, moderating warming in the region. Loss of sea ice means more heat from the sun is absorbed by the ocean surface, adding to Arctic warming. In addition, the larger amount of open water leads to more moisture in the air, which affects the formation of clouds that have their own effect on warming, either enhancing or reducing it. Read more: www.nasa.gov/earthrightnow NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Deep Space 1 is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Payload Hazardous Servicing Facility prepare Deep Space 1 for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near- Earth asteroid, 1992 KD, has also been selected for a possible flyby.

  19. Deep Space 1 arrives at KSC and processing begins in the PHSF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Wearing special protective suits, workers ready NASA's Deep Space 1 spacecraft for prelaunch processing in the Payload Hazardous Servicing Facility at KSC. Targeted for launch on a Boeing Delta 7326 rocket on Oct. 15, 1998, the first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  20. Deep Space 1 arrives at KSC and processing begins in the PHSF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Wearing special protective suits, workers look over NASA's Deep Space 1 spacecraft before prelaunch processing in the Payload Hazardous Servicing Facility at KSC. Targeted for launch on a Boeing Delta 7326 rocket on Oct. 15, 1998, the first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  1. Deep Space 1 arrives at KSC and processing begins in the PHSF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Wearing special protective suits, workers maneuver NASA's Deep Space 1 spacecraft into place for prelaunch processing in the Payload Hazardous Servicing Facility at KSC. Targeted for launch on a Boeing Delta 7326 rocket on Oct. 15, 1998, the first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  2. Deep Space 1 arrives at KSC and processing begins in the PHSF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Wearing special protective suits, workers move NASA's Deep Space 1 spacecraft into another room in the Payload Hazardous Servicing Facility for prelaunch processing . Targeted for launch on a Boeing Delta 7326 rocket on Oct. 15, 1998, the first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  3. Design and Parametric Sizing of Deep Space Habitats Supporting NASA'S Human Space Flight Architecture Team

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Simon, Matthew; Smitherman, David; Spexarth, Gary

    2012-01-01

    NASA's Human Space Flight Architecture Team (HAT) is a multi-disciplinary, cross-agency study team that conducts strategic analysis of integrated development approaches for human and robotic space exploration architectures. During each analysis cycle, HAT iterates and refines the definition of design reference missions (DRMs), which inform the definition of a set of integrated capabilities required to explore multiple destinations. An important capability identified in this capability-driven approach is habitation, which is necessary for crewmembers to live and work effectively during long duration transits to and operations at exploration destinations beyond Low Earth Orbit (LEO). This capability is captured by an element referred to as the Deep Space Habitat (DSH), which provides all equipment and resources for the functions required to support crew safety, health, and work including: life support, food preparation, waste management, sleep quarters, and housekeeping.The purpose of this paper is to describe the design of the DSH capable of supporting crew during exploration missions. First, the paper describes the functionality required in a DSH to support the HAT defined exploration missions, the parameters affecting its design, and the assumptions used in the sizing of the habitat. Then, the process used for arriving at parametric sizing estimates to support additional HAT analyses is detailed. Finally, results from the HAT Cycle C DSH sizing are presented followed by a brief description of the remaining design trades and technological advancements necessary to enable the exploration habitation capability.

  4. NASA Chief Technologist Douglas Terrier Tours Jacobs' Engineering Development Facility

    NASA Image and Video Library

    2017-08-10

    NASA Chief Technologist Douglas Terrier joins Jacobs General Manager Lon Miller during a tour of the company's Engineering Development Facility in Houston. Jacobs provides advanced technologies used aboard the International Space Station and for deep space exploration. From left: NASA’s Johnson Space Center Chief Technologist Chris Culbert, Chief Technologist Douglas Terrier, Jacobs Clear Lake Group Deputy General Manager Joy Kelly and Jacobs Clear Lake Group General Manager Lon Miller. Date: 08-10-2017 Location: B1 & Jacobs Engineering Subject: NASA Acting Chief Technology Officer Douglas Terrier Tours JSC and Jacobs Photographer: David DeHoyos

  5. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.

    PubMed

    Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D

    2013-12-03

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.

  6. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean

    PubMed Central

    Smith, Kenneth L.; Ruhl, Henry A.; Kahru, Mati; Huffard, Christine L.; Sherman, Alana D.

    2013-01-01

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (∼4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections. PMID:24218565

  7. Deep 'Stone Soup' Trenching by Phoenix (Stereo)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Digging by NASA's Phoenix Mars Lander on Aug. 23, 2008, during the 88th sol (Martian day) since landing, reached a depth about three times greater than in any trench Phoenix has excavated. The deep trench, informally called 'Stone Soup' is at the borderline between two of the polygon-shaped hummocks that characterize the arctic plain where Phoenix landed.

    Stone Soup is in the center foreground of this stereo view, which appears three dimensional when seen through red-blue glasses. The view combines left-eye and right-eye images taken by the lander's Surface Stereo Imager on Sol 88 after the day's digging. The trench is about 25 centimeters (10 inches) wide and about 18 centimeters (7 inches) deep.

    When digging trenches near polygon centers, Phoenix has hit a layer of icy soil, as hard as concrete, about 5 centimeters or 2 inches beneath the ground surface. In the Stone Soup trench at a polygon margin, the digging has not yet hit an icy layer like that.

    Stone Soup is toward the left, or west, end of the robotic arm's work area on the north side of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Study of sleeper’s impact on the deep-water pipeline lateral global buckling

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Li, Bin

    2017-08-01

    Pipelines are the most important transportation way for offshore oil and gas, and the lateral buckling is the main global buckling form for deep-water pipelines. The sleeper is an economic and efficient device to trigger the lateral buckling in preset location. This paper analyzed the lateral buckling features for on-bottom pipeline and pipeline with sleeper. The stress and strain variation during buckling process is shown to reveal the impact of sleeper on buckling.

  9. Comparative genomic analysis of oil spill impacts on deep water shipwreck microbiomes in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hamdan, L. J.; Damour, M.; McGown, C.; Figan, C.; Kassahun, Z.; Blackwell, K.; Horrell, C.; Gillevet, P.

    2014-12-01

    Shipwrecks serve as artificial reefs in the deep ocean. Because of their inherent diversity compared to their surrounding environment and their random distribution, shipwrecks are ideal ecosystems to study pollution impacts and microbial distribution patterns in the deep biosphere. This study provides a comparative assessment of Deepwater Horizon spill impacts on shipwreck and local sedimentary microbiomes and the synergistic effects of contaminants on these communities and the physical structures that support them. For this study, microbiomes associated with wooden 19th century shipwrecks and World War II era steel shipwrecks in the northern Gulf of Mexico were investigated using next generation sequencing. Samples derived from in situ biofilm monitoring platforms deployed adjacent to 5 shipwrecks for 4 months, and sediment collected from distances ranging from 2-200m from each shipwreck were evaluated for shifts in microbiome structure and gene function relative to proximity to the spill, and oil spill related contaminants in the local environment. The goals of the investigation are to determine impacts to recruitment and community structure at sites located within and outside of areas impacted by the spill. Taxonomic classification of dominant and rare members of shipwreck microbiomes and metabolic information extracted from sequence data yield new understanding of microbial processes associated with site formation. The study provides information on the identity of microbial inhabitants of shipwrecks, their role in site preservation, and impacts of the Deepwater Horizon spill on the primary colonizers of artificial reefs in the deep ocean. This approach could inform about the role of microorganisms in establishment and maintenance of the artificial reef environment, while providing information about ecosystem feedbacks resulting from spills.

  10. NASA High-Speed 2D Photogrammetric Measurement System

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2012-01-01

    The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.

  11. NASA Acting Administrator Robert Lightfoot presents the 2018 "St

    NASA Image and Video Library

    2018-02-12

    Marshall Space Flight Center Director Todd May introduces NASA Acting Adminstrator Robert Lightfoot prior to his delivery of the "State of NASA", February 12, 2018, at the Marshall Space Flight Center in Huntsville, Alabama. In his address, Lightfoot discussed what the President's Fiscal Year 2019 budget request means for America's space agency. According to Lightfoot, it "reflects the administration's confidence that America will lead the way back to the Moon and take the next giant leap". Lightfoot delivered the "State of NASA" address in Marshall's Center for Advanced Manufacturing where engineers are pushing boundaries in the fields of additive manufacturing, 3D printing, and more. Hardware for NASA's Space Launch System and a model of the agency's Orion spacecraft served as a backdrop for the annual event. SLS, which is managed by Marshall, will enable a new era of exploration beyond Earth's orbit by launching astronauts on missions to deep-space destinations including the Moon and Mars.

  12. The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform

    NASA Technical Reports Server (NTRS)

    Bhattacharya, S.

    2018-01-01

    Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.

  13. Microbial stowaways: Addressing oil spill impacts and the artificial reef effect on deep-sea microbiomes

    NASA Astrophysics Data System (ADS)

    Hamdan, L. J.; Salerno, J. L.; Blackwell, C. A.; Little, B.; McGown, C.; Fitzgerald, L. A.; Damour, M.

    2016-02-01

    Shipwrecks enhance macro-biological diversity in the deep ocean, but, to date, studies have not explored the reef effect on deep-sea microbiological diversity. This is an important concept to address in a restoration framework, as microbial biogeochemical function impacts recruitment and adhesion of higher trophic levels on artificial reefs. In addition, microbial biofilms influence the preservation of shipwrecks through biologically mediated corrosion. Oil and gas-related activities have potential to disrupt the base of the reef trophic web; therefore, bacterial diversity and gene function at six shipwrecks (3 steel-hulled; 3 wood-hulled) in the northern Gulf of Mexico was investigated as part of the GOM-SCHEMA (Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology, and Archaeology) project. Sites were selected based on proximity to the Deepwater Horizon spill's subsurface plume, depth, hull type, and existing archaeological data. Classification of taxa in sediments adjacent to and at distance from wrecks, in water, and on experimental steel coupons was used to evaluate how the presence of shipwrecks and spill contaminants in the deep biosphere influenced diversity. At all sites, and in all sample types, Proteobacteria were most abundant. Biodiversity was highest in surface sediments and in coupon biofilms adjacent to two steel-hulled wrecks in the study (Halo and Anona) and decreased with sediment depth and distance from the wrecks. Sequences associated with the iron oxidizing Mariprofundus genus were elevated at steel-hulled sites, indicating wreck-specific environmental selection. Despite evidence of the reef effect on microbiomes, bacterial composition was structured primarily by proximity to the spill and secondarily by hull material at all sites. This study provides the first evidence of an artificial reef effect on deep-sea microbial communities and suggests that biodiversity and function of primary colonizers of shipwrecks may be impacted by the spill.

  14. NASA Technology Plan 1998

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA Strategic Plan describes an ambitious, exciting vision for the Agency across all its Strategic Enterprises that addresses a series of fundamental questions of science and research. This vision is so challenging that it literally depends on the success of an aggressive, cutting-edge advanced technology development program. The objective of this plan is to describe the NASA-wide technology program in a manner that provides not only the content of ongoing and planned activities, but also the rationale and justification for these activities in the context of NASA's future needs. The scope of this plan is Agencywide, and it includes technology investments to support all major space and aeronautics program areas, but particular emphasis is placed on longer term strategic technology efforts that will have broad impact across the spectrum of NASA activities and perhaps beyond. Our goal is to broaden the understanding of NASA technology programs and to encourage greater participation from outside the Agency. By relating technology goals to anticipated mission needs, we hope to stimulate additional innovative approaches to technology challenges and promote more cooperative programs with partners outside NASA who share common goals. We also believe that this will increase the transfer of NASA-sponsored technology into nonaerospace applications, resulting in an even greater return on the investment in NASA.

  15. Deep Drilling Into the Chicxulub Impact Crater: Pemex Oil Exploration Boreholes Revisited

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L.

    2007-05-01

    The Chicxulub structure was recognized in the 1940´s from gravity anomalies in oil exploration surveys by Pemex. Geophysical anomalies occur over the carbonate platform in NW Yucatan, where density and magnetic susceptibility contrasts with the carbonates suggested a buried igneous complex or basement uplift. The exploration program developed afterwards included several boreholes, starting with the Chicxulub-1 in 1952 and eventually comprising eight deep boreholes completed through the 1970s. The investigations showing Chicxulub as a large impact crater formed at the K/T boundary have relayed on the Pemex decades-long exploration program. Despite frequent reference to Pemex information, original data have not been openly available for detailed evaluation and incorporation with results from recent efforts. Logging data and core samples remain to be analyzed, reevaluated and integrated in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we discuss the paleontological data, stratigraphic columns and geophysical logs for the Chicxulub-1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m) and Ticul-1 (3575m) boreholes. These boreholes remain the deepest ones drilled in Chicxulub and the only ones providing samples of the melt-rich breccias and melt sheet. Other boreholes include the Y1 (3221m), Y2 (3474m), Y4 (2398m) and Y5A (3003m), which give information on pre-impact stratigraphy and crystalline basement. We concentrate on log and microfossil data, stratigraphic columns, lateral correlation, integration with UNAM and ICDP borehole data, and analyses of sections of melt, impact breccias and basal Paleocene carbonates. Current plans for deep drilling in Chicxulub crater focus in the peak ring zone and central sector, with proposed marine and on-land boreholes to the IODP and ICDP programs. Future ICDP borehole will be located close to Chicxulub-1 and Sacapuc-1, which intersected

  16. Stardust-NExT, Deep Impact, and the Accelerating Spin of 9P/Tempel One

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Meech, Karen J.; Chesley, Steven; Pittichova, Jana; Carcich, Brian; Drahus, Michal; Harris, Alan; Gillam, Stephen; Veverka, Joseph; A'Hearn, Michael F.; hide

    2011-01-01

    The evolution of the spin rate of comet 9P/Tempel 1 through two perihelion passages (CYs 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13y as part of a World-Wide observing campaign and 2888 observations taken over a period of 50d from the Deep Impact spacecraft. We determine the following sidereal spin rates (periods): 209.023 +/- 0.025 degrees /day (41.335 +/- 0.005 h) prior to the 2000 perihelion passage, 210.448 +/- 0.016 degrees/day (41.055 +/- 0.003 h) for the interval between the 2000 and 2005 perihelion passages, 211.856 +/- 0.030 degrees/day (40.783 +/- 0.006 h) from Deep Impact photometry just prior to the 2005 perihelion passage, and 211.625 +/- 0.012 degrees /day (40.827 +/- 0.002 h) in the interval 2006-2010 following the 2005 perihelion passage. The period decreased by 16.8 +/- 0.3 min during the 2000 passage and by 13.7 +/- 0.2 min during the 2005 passage suggesting a secular decrease in the net torque. The change in spin rate is asymmetric with respect to perihelion with the maximum net torque being applied on approach to perihelion. The Deep Impact data alone show that the spin rate was increasing at a rate of 0.024 +/- 0.003 degree/d/d at JD2453530.60510 (i.e., 25.134 d before impact) and provides independent confirmation of the change seen in the Earth-based observations. The rotational phase of the nucleus at times before and after each perihelion and at the Deep Impact encounter is estimated based on the Thomas et al. pole and longitude system. The possibility of a 180 degree error in the rotational phase is assessed and found to be significant. Analytical and physical modeling of the behavior of the spin rate through of each perihelion is presented and used as a basis to predict the rotational state of the nucleus at the time of the nominal (i.e., prior to February 2010) Stardust-NExT encounter on 2011 February 14 20:42. We find that a net torque in the range of 0.3 - 2.5 x 10(exp 7) kg.square m2/square

  17. Building Knowledge Graphs for NASA's Earth Science Enterprise

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lee, T. J.; Ramachandran, R.; Shi, R.; Bao, Q.; Gatlin, P. N.; Weigel, A. M.; Maskey, M.; Miller, J. J.

    2016-12-01

    Inspired by Google Knowledge Graph, we have been building a prototype Knowledge Graph for Earth scientists, connecting information and data in NASA's Earth science enterprise. Our primary goal is to advance the state-of-the-art NASA knowledge extraction capability by going beyond traditional catalog search and linking different distributed information (such as data, publications, services, tools and people). This will enable a more efficient pathway to knowledge discovery. While Google Knowledge Graph provides impressive semantic-search and aggregation capabilities, it is limited to search topics for general public. We use the similar knowledge graph approach to semantically link information gathered from a wide variety of sources within the NASA Earth Science enterprise. Our prototype serves as a proof of concept on the viability of building an operational "knowledge base" system for NASA Earth science. Information is pulled from structured sources (such as NASA CMR catalog, GCMD, and Climate and Forecast Conventions) and unstructured sources (such as research papers). Leveraging modern techniques of machine learning, information retrieval, and deep learning, we provide an integrated data mining and information discovery environment to help Earth scientists to use the best data, tools, methodologies, and models available to answer a hypothesis. Our knowledge graph would be able to answer questions like: Which articles discuss topics investigating similar hypotheses? How have these methods been tested for accuracy? Which approaches have been highly cited within the scientific community? What variables were used for this method and what datasets were used to represent them? What processing was necessary to use this data? These questions then lead researchers and citizen scientists to investigate the sources where data can be found, available user guides, information on how the data was acquired, and available tools and models to use with this data. As a proof of

  18. Strategic Technologies for Deep Space Transport

    NASA Technical Reports Server (NTRS)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  19. The NASA SETI sky survey - Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.; Gulkis, Samuel; Olsen, Edward T.; Renzetti, Nicholas A.

    1988-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complimentary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory have primary responsibility to develop and carry out the sky survey part of the Microwave Observing Project. The paper describes progress that has been made to develop the major elements of the survey including a two-million channel wideband spectrum analyzer system that is being developed and constructed by JPL for the Deep Space Network. The new system will be a multiuser instrument that will serve as a prototype for the SETI Sky Survey processor. This system will be used to test the signal detection and observational strategies on deep-space network antennas in the near future.

  20. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers.

    PubMed

    Little, Mark G; Jackson, Robert B

    2010-12-01

    Carbon Capture and Storage may use deep saline aquifers for CO(2) sequestration, but small CO(2) leakage could pose a risk to overlying fresh groundwater. We performed laboratory incubations of CO(2) infiltration under oxidizing conditions for >300 days on samples from four freshwater aquifers to 1) understand how CO(2) leakage affects freshwater quality; 2) develop selection criteria for deep sequestration sites based on inorganic metal contamination caused by CO(2) leaks to shallow aquifers; and 3) identify geochemical signatures for early detection criteria. After exposure to CO(2), water pH declines of 1-2 units were apparent in all aquifer samples. CO(2) caused concentrations of the alkali and alkaline earths and manganese, cobalt, nickel, and iron to increase by more than 2 orders of magnitude. Potentially dangerous uranium and barium increased throughout the entire experiment in some samples. Solid-phase metal mobility, carbonate buffering capacity, and redox state in the shallow overlying aquifers influence the impact of CO(2) leakage and should be considered when selecting deep geosequestration sites. Manganese, iron, calcium, and pH could be used as geochemical markers of a CO(2) leak, as their concentrations increase within 2 weeks of exposure to CO(2).

  1. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true

  2. 2012 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2012-01-01

    This report provides a NASA Range Safety (NRS) overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various NASA Range Safety Program (RSP) activities performed during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be conducted in the future. Specific topics discussed in the 2012 NASA Range Safety Annual Report include a program overview and 2012 highlights; Range Safety Training; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities.

  3. The DOE/NASA SRG110 Program Overview

    NASA Astrophysics Data System (ADS)

    Shaltens, R. K.; Richardson, R. L.

    2005-12-01

    The Department of Energy is developing the Stirling Radioisotope Generator (SRG110) for NASAs Science Mission Directorate for potential surface and deep space missions. The SRG110 is one of two new radioisotope power systems (RPSs) currently being developed for NASA space missions, and is capable of operating in a range of planetary atmospheres and in deep space environments. It has a mass of approximately 27 kg and produces more than 125We(dc) at beginning of mission (BOM), with a design lifetime of fourteen years. Electrical power is produced by two (2) free-piston Stirlings convertor heated by two General Purpose Heat Source (GPHS) modules. The complete SRG110 system is approximately 38 cm x 36 cm and 76 cm long. The SRG110 generator is being designed in 3 stages: Engineering Model, Qualification Generator, and Flight Generator. Current plans call for the Engineering Model to be fabricated and tested by October 2006. Completion of testing of the Qualification Generator is scheduled for mid-2009. This development is being performed by Lockheed Martin, Valley Forge, PA and Infinia Corporation, Kennewick, WA under contract to the Department of Energy, Germantown, Md. Glenn Research Center, Cleveland, Ohio is providing independent testing and support for the technology transition for the SRG110 Program.

  4. Deep Space 1 arrives at KSC and processing begins in the PHSF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Wearing special protective suits, workers remove the protective covering from NASA's Deep Space 1 spacecraft in the Payload Hazardous Servicing Facility at KSC to prepare it for prelaunch processing. Targeted for launch on a Boeing Delta 7326 rocket on Oct. 15, 1998, the first flight in NASA's New Millennium Program is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  5. The Contingency of Success: Operations for Deep Impact's Planet Hunt

    NASA Technical Reports Server (NTRS)

    Rieber, Richard R.; Sharrow, Robert F.

    2009-01-01

    The Deep Impact Flyby spacecraft completed its prime mission in August 2005. It was reactivated for a mission of opportunity add-on called EPOXI on September 25, 2007. The first portion of EPOXI, called EPOCh (Extra-solar Planetary Observation & CHaracterization), occurred from January 21, 2008 through August 31, 2008. Its purpose was to characterize transiting hot-Jupiters by measuring the effects the planet has on the luminosity of its parent star. These observations entailed using the spacecraft in ways it was never intended. A new green-light, success-oriented operational strategy was devised that entailed high amounts of automation and minimal intervention from the ground. The specifics, techniques, and key challenges to obtaining the 172,209 usable science images from EPOCh are discussed in detail.

  6. Simulation of droplet impact onto a deep pool for large Froude numbers in different open-source codes

    NASA Astrophysics Data System (ADS)

    Korchagova, V. N.; Kraposhin, M. V.; Marchevsky, I. K.; Smirnova, E. V.

    2017-11-01

    A droplet impact on a deep pool can induce macro-scale or micro-scale effects like a crown splash, a high-speed jet, formation of secondary droplets or thin liquid films, etc. It depends on the diameter and velocity of the droplet, liquid properties, effects of external forces and other factors that a ratio of dimensionless criteria can account for. In the present research, we considered the droplet and the pool consist of the same viscous incompressible liquid. We took surface tension into account but neglected gravity forces. We used two open-source codes (OpenFOAM and Gerris) for our computations. We review the possibility of using these codes for simulation of processes in free-surface flows that may take place after a droplet impact on the pool. Both codes simulated several modes of droplet impact. We estimated the effect of liquid properties with respect to the Reynolds number and Weber number. Numerical simulation enabled us to find boundaries between different modes of droplet impact on a deep pool and to plot corresponding mode maps. The ratio of liquid density to that of the surrounding gas induces several changes in mode maps. Increasing this density ratio suppresses the crown splash.

  7. Deep Space 1 is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Payload Hazardous Servicing Facility test equipment on Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby.

  8. Deep Space 1 is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Payload Hazardous Servicing Facility check equipment on Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby.

  9. Deep Space 1 is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Payload Hazardous Servicing Facility remove a solar panel from Deep Space 1 as part of the preparations for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near- Earth asteroid, 1992 KD, has also been selected for a possible flyby.

  10. Deep Space 1 is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Payload Hazardous Servicing Facility check out Deep Space 1 to prepare it for launch aboard a Boeing Delta 7326 rocket in October. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Most of its mission objectives will be completed within the first two months. A near-Earth asteroid, 1992 KD, has also been selected for a possible flyby.

  11. NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.

    NASA Image and Video Library

    2017-11-01

    NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.

  12. Ion Engine and Hall Thruster Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Patterson, Michael J.; Jankovsky, Robert S.

    2002-01-01

    NASA's Glenn Research Center has been selected to lead development of NASA's Evolutionary Xenon Thruster (NEXT) system. The central feature of the NEXT system is an electric propulsion thruster (EPT) that inherits the knowledge gained through the NSTAR thruster that successfully propelled Deep Space 1 to asteroid Braille and comet Borrelly, while significantly increasing the thruster power level and making improvements in performance parameters associated with NSTAR. The EPT concept under development has a 40 cm beam diameter, twice the effective area of the Deep-Space 1 thruster, while maintaining a relatively-small volume. It incorporates mechanical features and operating conditions to maximize the design heritage established by the flight NSTAR 30 cm engine, while incorporating new technology where warranted to extend the power and throughput capability. The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1.) the development of a laboratory Hall thruster capable of providing high thrust at high power; 2.) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program, These additional activities are related to issues such as thruster lifetime and spacecraft integration.

  13. Composite View of Asteroid Braille from Deep Space 1

    NASA Image and Video Library

    1999-08-03

    The two images on the left hand side of this composite image frame were taken 914 seconds and 932 seconds after the NASA Deep Space 1 encounter with the asteroid 9969 Braille. The image on the right was created by combining the two images on the left.

  14. The Deep Space Network: The challenges of the next 20 years - The 21st century

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.; Edwards, C. D.; Hall, J. R.; Posner, E. C.

    1990-01-01

    The Deep Space Network (DSN) has been the radio navigation and communications link between NASA's lunar and deep space missions for 30 years. In this paper, new mission opportunities over the next 20 years are discussed. The system design drivers and the DSN architectural concepts for those challenges are briefly considered.

  15. Deep Space Habitat Concept Demonstrator

    NASA Technical Reports Server (NTRS)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  16. NASA Case Sensitive Review and Audit Approach

    NASA Astrophysics Data System (ADS)

    Lee, Arthur R.; Bacus, Thomas H.; Bowersox, Alexandra M.; Newman, J. Steven

    2005-12-01

    As an Agency involved in high-risk endeavors NASA continually reassesses its commitment to engineering excellence and compliance to requirements. As a component of NASA's continual process improvement, the Office of Safety and Mission Assurance (OSMA) established the Review and Assessment Division (RAD) [1] to conduct independent audits to verify compliance with Agency requirements that impact safe and reliable operations. In implementing its responsibilities, RAD benchmarked various approaches for conducting audits, focusing on organizations that, like NASA, operate in high-risk environments - where seemingly inconsequential departures from safety, reliability, and quality requirements can have catastrophic impact to the public, NASA personnel, high-value equipment, and the environment. The approach used by the U.S. Navy Submarine Program [2] was considered the most fruitful framework for the invigorated OSMA audit processes. Additionally, the results of benchmarking activity revealed that not all audits are conducted using just one approach or even with the same objectives. This led to the concept of discrete, unique "audit cases."

  17. Future Opportunities for Dynamic Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    2007-01-01

    Dynamic power systems have the potential to be used in Radioisotope Power Systems (RPS) and Fission Surface Power Systems (FSPS) to provide high efficiency, reliable and long life power generation for future NASA applications and missions. Dynamic power systems have been developed by NASA over the decades, but none have ever operated in space. Advanced Stirling convertors are currently being developed at the NASA Glenn Research Center. These systems have demonstrated high efficiencies to enable high system specific power (>8 W(sub e)/kg) for 100 W(sub e) class Advanced Stirling Radioisotope Generators (ASRG). The ASRG could enable significant extended and expanded operation on the Mars surface and on long-life deep space missions. In addition, advanced high power Stirling convertors (>150 W(sub e)/kg), for use with surface fission power systems, could provide power ranging from 30 to 50 kWe, and would be enabling for both lunar and Mars exploration. This paper will discuss the status of various energy conversion options currently under development by NASA Glenn for the Radioisotope Power System Program for NASA s Science Mission Directorate (SMD) and the Prometheus Program for the Exploration Systems Mission Directorate (ESMD).

  18. JPL-20180505-INSIGHf-0001-NASA InSight on Its Way to Mars

    NASA Image and Video Library

    2018-05-05

    Making history as the first interplanetary launch from the West Coast, NASA's InSight spacecraft is now soaring towards Mars. The spacecraft, which lifted off from Vandenberg Air Force Base in Central California, will be the first mission to study the deep interior of Mars. Its instruments include a seismometer to detect marsquakes for the first time and a heat flow p[robe that will embed itself as deep as about 16 feet (5 meters) below the surface of Mars.

  19. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  20. Stardust-NExT, Deep Impact, and the Accelerating Spin of 9P/Tempel 1

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Meech, Karen J.; Chesley, Steven; Pittichova, Jana; Carcich, Brian; Drahus, Michal; Harris, Alan; Gillam, Stephen; Veverka, Joseph; Mastrodemos, Nicholas; hide

    2011-01-01

    The evolution of the spin rate of Comet 9P/Tempel 1 through two perihelion passages (in 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13 year as part of a World-Wide observing campaign and from 2888 observations taken over a period of 50 days from the Deep Impact spacecraft. We determine the following sidereal spin rates (periods): 209.023 +/- 0.025deg/dy (41.335 0.005 h) prior to the 2000 perihelion passage, 210.448 +/- 0.016deg/dy (41.055 +/- 0.003 h) for the interval between the 2000 and 2005 perihelion passages, 211.856 +/- 0.030deg/dy (40.783 +/- 0.006 h) from Deep Impact photometry just prior to the 2005 perihelion passage, and 211.625 +/- 0.012deg/dy (40.827 +/- 0.002 h) in the interval 2006-2010 following the 2005 perihelion passage. The period decreased by 16.8 +/- 0.3 min during the 2000 passage and by 13.7 +/- 0.2 min during the 2005 passage suggesting a secular decrease in the net torque. The change in spin rate is asymmetric with respect to perihelion with the maximum net torque being applied on approach to perihelion. The Deep Impact data alone show that the spin rate was increasing at a rate of 0.024 +/- 0.003deg/dy/dy at JD2453530.60510 (i.e., 25.134 dy before impact), which provides independent confirmation of the change seen in the Earth-based observations. The rotational phase of the nucleus at times before and after each perihelion and at the Deep Impact encounter is estimated based on the Thomas et al. (Thomas et al. [2007]. Icarus 187, 4-15) pole and longitude system. The possibility of a 180deg error in the rotational phase is assessed and found to be significant. Analytical and physical modeling of the behavior of the spin rate through of each perihelion is presented and used as a basis to predict the rotational state of the nucleus at the time of the nominal (i.e., prior to February 2010) Stardust-NExT encounter on 2011 February 14 at 20:42. We find that a net torque in the range of 0.3-2.5 x 10(exp

  1. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    PubMed

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  2. NASA information resources management handbook

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This National Aeronautics and Space Administration (NASA) Handbook (NHB) implements recent changes to Federal laws and regulations involving the acquisition, management, and use of Federal Information Processing (FIP) resources. This document defines NASA's Information Resources Management (IRM) practices and procedures and is applicable to all NASA personnel. The dynamic nature of the IRM environment requires that the controlling management practices and procedures for an Agency at the leading edge of technology, such as NASA, must be periodically updated to reflect the changes in this environment. This revision has been undertaken to accommodate changes in the technology and the impact of new laws and regulations dealing with IRM. The contents of this document will be subject to a complete review annually to determine its continued applicability to the acquisition, management, and use of FIP resources by NASA. Updates to this document will be accomplished by page changes. This revision cancels NHB 2410.1D, dated April 1985.

  3. NASA InSight Lander in Spacecraft Back Shell

    NASA Image and Video Library

    2015-08-18

    In this photo, NASA's InSight Mars lander is stowed inside the inverted back shell of the spacecraft's protective aeroshell. It was taken on July 13, 2015, in a clean room of spacecraft assembly and test facilities at Lockheed Martin Space Systems, Denver, during preparation for vibration testing of the spacecraft. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19813

  4. Preparing NASA InSight Spacecraft for Vibration Test

    NASA Image and Video Library

    2015-08-18

    Spacecraft specialists at Lockheed Martin Space Systems, Denver, prepare NASA's InSight spacecraft for vibration testing as part of assuring that it is ready for the rigors of launch from Earth and flight to Mars. The spacecraft is oriented with its heat shield facing up in this July 13, 2015, photograph. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19815

  5. NASA's EPIC View of 2017 Eclipse Across America

    NASA Image and Video Library

    2017-08-22

    From a million miles out in space, NASA’s Earth Polychromatic Imaging Camera (EPIC) captured natural color images of the moon’s shadow crossing over North America on Aug. 21, 2017. EPIC is aboard NOAA’s Deep Space Climate Observatory (DSCOVR), where it photographs the full sunlit side of Earth every day, giving it a unique view of total solar eclipses. EPIC normally takes about 20 to 22 images of Earth per day, so this animation appears to speed up the progression of the eclipse. To see the images of Earth every day, go to: epic.gsfc.nasa.gov NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Deep space navigation systems and operations

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.

    1981-01-01

    The history of the deep space navigation system developed by NASA is outlined. Its application to Mariner, Viking and Pioneer missions is reviewed. Voyager navigation results for Jupiter and Saturn are commented on and velocity correction in relation to fuel expenditure and computer time are discussed. The navigation requirements of the Gahleo and Venus orbiting imaging radar (VOIR) missions are assessed. The measurement and data processing systems are described.

  7. Remote observing with NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.

    2012-09-01

    The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.

  8. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets

    NASA Astrophysics Data System (ADS)

    Castillo-Orozco, Eduardo; Davanlou, Ashkan; Choudhury, Pretam K.; Kumar, Ranganathan

    2015-11-01

    The impact of droplets on a deep pool has applications in cleaning up oil spills, spray cooling, painting, inkjet printing, and forensic analysis, relying on the changes in properties such as viscosity, interfacial tension, and density. Despite the exhaustive research on different aspects of droplet impact, it is not clear how liquid properties can affect the instabilities leading to Rayleigh jet breakup and number of daughter drops formed after its pinch-off. In this article, through systematic experiments we investigate the droplet impact phenomena by varying viscosity and surface tension of liquids as well as impact speeds. Further, using numerical simulations, we show that Rayleigh-Plateau instability is influenced by these parameters, and capillary time scale is the appropriate scale to normalize the breakup time. Based on Ohnesorge number (Oh) and impact Weber number (We), a regime map for no breakup, Rayleigh jet breakup, and crown splash is suggested. Interestingly, crown splash is observed to occur at all Ohnesorge numbers; however, at high Oh, a large portion of kinetic energy is dissipated, and thus the Rayleigh jet is suppressed regardless of high impact velocity. The normalized required time for the Rayleigh jet to reach its peak varies linearly with the critical height of the jet.

  9. Design of stabilized platforms for deep space optical communications (DSOC)

    NASA Astrophysics Data System (ADS)

    Jacka, N.; Walter, R.; Laughlin, D.; McNally, J.

    2017-02-01

    Numerous Deep Space Optical Communications (DSOC) demonstrations are planned by NASA to provide the basis for future implementation of optical communications links in planetary science missions and eventually manned missions to Mars. There is a need for a simple, robust precision optical stabilization concept for long-range free space optical communications applications suitable for optical apertures and masses larger than the current state of the art. We developed a stabilization concept by exploiting the ultra-low noise and wide bandwidth of ATA-proprietary Magnetohydrodynamic (MHD) angular rate sensors and building on prior practices of flexure-based isolation. We detail a stabilization approach tailored for deep space optical communications, and present an innovative prototype design and test results. Our prototype system provides sub-micro radian stabilization for a deep space optical link such as NASA's integrated Radio frequency and Optical Communications (iROC) and NASA's DSOC programs. Initial test results and simulations suggest that >40 dB broadband jitter rejection is possible without placing unrealistic expectations on the control loop bandwidth and flexure isolation frequency. This approach offers a simple, robust method for platform stabilization without requiring a gravity offload apparatus for ground testing or launch locks to survive a typical launch environment. This paper reviews alternative stabilization concepts, their advantages and disadvantages, as well as, their applicability to various optical communications applications. We present results from testing that subjected the prototype system to realistic spacecraft base motion and confirmed predicted sub-micro radian stabilization performance with a realistic 20-cm aperture.

  10. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1363 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  11. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1341 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky

  12. NASA Education Recommendation Report - Education Design Team 2011

    NASA Technical Reports Server (NTRS)

    Pengra, Trish; Stofan, James

    2011-01-01

    NASA people are passionate about their work. NASA's missions are exciting to learners of all ages. And since its creation in 1958, NASA's people have been passionate about sharing their inspiring discoveries, research and exploration with students and educators. In May 2010, NASA administration chartered an Education Design Team composed of 12 members chosen from the Office of Education, NASA's Mission Directorates and Centers for their depth of knowledge and education expertise, and directed them to evaluate the Agency's program in the context of current trends in education. By improving NASA's educational offerings, he was confident that the Agency can play a leading role in inspiring student interest in science, technology, engineering and mathematics (STEM) as few other organizations can. Through its unique workforce, facilities, research and innovations, NASA can expand its efforts to engage underserved and underrepresented communities in science and mathematics. Through the Agency's STEM education efforts and science and exploration missions, NASA can help the United States successfully compete, prosper and be secure in the 21st century global community. After several months of intense effort, including meeting with education experts; reviewing Administration policies, congressional direction and education research; and seeking input from those passionate about education at NASA, the Education Design Team made six recommendations to improve the impact of NASA's Education Program: (1) Focus the NASA Education Program to improve its impact on areas of greatest national need (2) Identify and strategically manage NASA Education partnerships (3) Participate in National and State STEM Education policy discussions (4) Establish a structure to allow the Office of Education, Centers and Mission Directorates to implement a strategically integrated portfolio (5) Expand the charter of the Education Coordinating Committee to enable deliberate Education Program design (6

  13. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  14. Impact on demersal fish of a large-scale and deep sand extraction site with ecosystem-based landscaped sandbars

    NASA Astrophysics Data System (ADS)

    de Jong, Maarten F.; Baptist, Martin J.; van Hal, Ralf; de Boois, Ingeborg J.; Lindeboom, Han J.; Hoekstra, Piet

    2014-06-01

    For the seaward harbour extension of the Port of Rotterdam in the Netherlands, approximately 220 million m3 sand was extracted between 2009 and 2013. In order to decrease the surface area of direct impact, the authorities permitted deep sand extraction, down to 20 m below the seabed. Biological and physical impacts of large-scale and deep sand extraction are still being investigated and largely unknown. For this reason, we investigated the colonization of demersal fish in a deep sand extraction site. Two sandbars were artificially created by selective dredging, copying naturally occurring meso-scale bedforms to increase habitat heterogeneity and increasing post-dredging benthic and demersal fish species richness and biomass. Significant differences in demersal fish species assemblages in the sand extraction site were associated with variables such as water depth, median grain size, fraction of very fine sand, biomass of white furrow shell (Abra alba) and time after the cessation of sand extraction. Large quantities of undigested crushed white furrow shell fragments were found in all stomachs and intestines of plaice (Pleuronectes platessa), indicating that it is an important prey item. One and two years after cessation, a significant 20-fold increase in demersal fish biomass was observed in deep parts of the extraction site. In the troughs of a landscaped sandbar however, a significant drop in biomass down to reference levels and a significant change in species assemblage was observed two years after cessation. The fish assemblage at the crests of the sandbars differed significantly from the troughs with tub gurnard (Chelidonichthys lucerna) being a Dufrêne-Legendre indicator species of the crests. This is a first indication of the applicability of landscaping techniques to induce heterogeneity of the seabed although it remains difficult to draw a strong conclusion due the lack of replication in the experiment. A new ecological equilibrium is not reached after 2

  15. Data compression for near Earth and deep space to Earth transmission

    NASA Technical Reports Server (NTRS)

    Erickson, Daniel E.

    1991-01-01

    Key issues of data compression for near Earth and deep space to Earth transmission discussion group are briefly presented. Specific recommendations as made by the group are as follows: (1) since data compression is a cost effective way to improve communications and storage capacity, NASA should use lossless data compression wherever possible; (2) NASA should conduct experiments and studies on the value and effectiveness of lossy data compression; (3) NASA should develop and select approaches to high ratio compression of operational data such as voice and video; (4) NASA should develop data compression integrated circuits for a few key approaches identified in the preceding recommendation; (5) NASA should examine new data compression approaches such as combining source and channel encoding, where high payoff gaps are identified in currently available schemes; and (6) users and developers of data compression technologies should be in closer communication within NASA and with academia, industry, and other government agencies.

  16. Qualification of Commercial XIPS(R) Ion Thrusters for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Polk, James E.; Wirz, Richard E.; Snyder, J.Steven; Mikellides, Ioannis G.; Katz, Ira; Anderson, John

    2008-01-01

    Electric propulsion systems based on commercial ion and Hall thrusters have the potential for significantly reducing the cost and schedule-risk of Ion Propulsion Systems (IPS) for deep space missions. The large fleet of geosynchronous communication satellites that use solar electric propulsion (SEP), which will approach 40 satellites by year-end, demonstrates the significant level of technical maturity and spaceflight heritage achieved by the commercial IPS systems. A program to delta-qualify XIPS(R) ion thrusters for deep space missions is underway at JPL. This program includes modeling of the thruster grid and cathode life, environmental testing of a 25-centimeter electromagnetic (EM) thruster over DAWN-like vibe and temperature profiles, and wear testing of the thruster cathodes to demonstrate the life and benchmark the model results. This paper will present the delta-qualification status of the XIPS thruster and discuss the life and reliability with respect to known failure mechanisms.

  17. A numerical calculation method of environmental impacts for the deep sea mining industry - a review.

    PubMed

    Ma, Wenbin; van Rhee, Cees; Schott, Dingena

    2018-03-01

    Since the gradual decrease of mineral resources on-land, deep sea mining (DSM) is becoming an urgent and important emerging activity in the world. However, until now there has been no commercial scale DSM project in progress. Together with the reasons of technological feasibility and economic profitability, the environmental impact is one of the major parameters hindering its industrialization. Most of the DSM environmental impact research focuses on only one particular aspect ignoring that all the DSM environmental impacts are related to each other. The objective of this work is to propose a framework for the numerical calculation methods of the integrated DSM environmental impacts through a literature review. This paper covers three parts: (i) definition and importance description of different DSM environmental impacts; (ii) description of the existing numerical calculation methods for different environmental impacts; (iii) selection of a numerical calculation method based on the selected criteria. The research conducted in this paper provides a clear numerical calculation framework for DSM environmental impact and could be helpful to speed up the industrialization process of the DSM industry.

  18. Modeling the Deep Impact Near-nucleus Observations of H2O and CO2 in Comet 9P/Tempel 1 Using Asymmetric Spherical Coupled Escape Probability

    NASA Astrophysics Data System (ADS)

    Gersch, Alan M.; A’Hearn, Michael F.; Feaga, Lori M.

    2018-04-01

    We have applied our asymmetric spherical adaptation of Coupled Escape Probability to the modeling of optically thick cometary comae. Expanding on our previously published work, here we present models including asymmetric comae. Near-nucleus observations from the Deep Impact mission have been modeled, including observed coma morphology features. We present results for two primary volatile species of interest, H2O and CO2, for comet 9P/Tempel 1. Production rates calculated using our best-fit models are notably greater than those derived from the Deep Impact data based on the assumption of optically thin conditions, both for H2O and CO2 but more so for CO2, and fall between the Deep Impact values and the global pre-impact production rates measured at other observatories and published by Schleicher et al. (2006), Mumma et al. (2005), and Mäkinen et al. (2007).

  19. Thermal Impact of Medium Deep Borehole Thermal Energy Storage on the Shallow Subsurface

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Schulte, Daniel O.; Rühaak, Wolfram; Bär, Kristian; Sass, Ingo

    2017-04-01

    Borehole heat exchanger arrays are a well-suited and already widely applied method for exploiting the shallow subsurface as seasonal heat storage. However, in most of the populated regions the shallow subsurface also comprises an important aquifer system used for drinking water production. Thus, the operation of shallow geothermal heat storage systems leads to a significant increase in groundwater temperatures in the proximity of the borehole heat exchanger array. The magnitude of the impact on groundwater quality and microbiology associated with this temperature rise is controversially discussed. Nevertheless, the protection of shallow groundwater resources has priority. Accordingly, water authorities often follow restrictive permission policies for building such storage systems. An alternative approach to avoid this issue is the application of medium deep borehole heat exchanger arrays instead of shallow ones. The thermal impact on shallow aquifers can be significantly reduced as heat is stored at larger depth. Moreover, it can be further diminished by the installation of a thermally insulating materials in the upper section of the borehole heat exchangers. Based on a numerical simulation study, the advantageous effects of medium deep borehole thermal energy storage are demonstrated and quantified. A finite element software is used to model the heat transport in the subsurface in 3D, while the heat transport in the borehole heat exchangers is solved analytically in 1D. For this purpose, an extended analytical solution is implemented, which also allows for the consideration of a thermally insulating borehole section.

  20. Operational Phase Life Cycle Assessment of Select NASA Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George H.; Marshall, Timothy J.; McGinnis, Sean

    2011-01-01

    NASA's Aeronautics Test Program (ATP) is responsible for many large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. In order to accomplish these national objectives, significant energy and resources are consumed. A select group of facilities was analyzed using life-cycle assessment (LCA) to determine carbon footprint and environmental impacts. Most of these impacts stem from electricity and natural gas consumption, used directly at the facility and to generate support processes such as compressed air and steam. Other activities were analyzed but determined to be smaller in scale and frequency with relatively negligible environmental impacts. More specialized facilities use R-134a, R-14, jet fuels, or nitrogen gas, and these unique inputs can have a considerable effect on a facility s overall environmental impact. The results of this LCA will be useful to ATP and NASA as the nation looks to identify its top energy consumers and NASA looks to maximize research output and minimize environmental impact. Keywords: NASA, Aeronautics, Wind tunnel, Keyword 4, Keyword 5

  1. Modeling of the Terminal Velocities of the Dust Ejected Material by the Impact

    NASA Astrophysics Data System (ADS)

    Rengel, M.; Küppers, M.; Keller, H. U.; Gutiérrez, P.

    We compute the distribution of velocities of the particles ejected by the impact of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 on the successive 20 h following the collision. This is performed by the development and use of an ill-conditioned inverse problem approach, whose main ingredients are a set of observations taken by the Narrow Angle Camera (NAC) of OSIRIS onboard the Rosetta spacecraft, and a set of simple models of the expansion of the dust ejecta plume for different velocities. Terminal velocities are derived using a maximum likelihood estimator.

  2. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Lockett, Tiffany

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high Delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m(exp. 2) solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four approximately 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.

  3. Dining in the Deep: The Feeding Ecology of Deep-Sea Fishes

    NASA Astrophysics Data System (ADS)

    Drazen, Jeffrey C.; Sutton, Tracey T.

    2017-01-01

    Deep-sea fishes inhabit ˜75% of the biosphere and are a critical part of deep-sea food webs. Diet analysis and more recent trophic biomarker approaches, such as stable isotopes and fatty-acid profiles, have enabled the description of feeding guilds and an increased recognition of the vertical connectivity in food webs in a whole-water-column sense, including benthic-pelagic coupling. Ecosystem modeling requires data on feeding rates; the available estimates indicate that deep-sea fishes have lower per-individual feeding rates than coastal and epipelagic fishes, but the overall predation impact may be high. A limited number of studies have measured the vertical flux of carbon by mesopelagic fishes, which appears to be substantial. Anthropogenic activities are altering deep-sea ecosystems and their services, which are mediated by trophic interactions. We also summarize outstanding data gaps.

  4. Interior View of the Deep-Sea Research Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is an interior view of the living quarters of the deep-sea research submarine 'Ben Franklin.' Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep- ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effect of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  5. The Great Observatories Origins Deep Survey (GOODS) Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; GOODS Team

    2004-12-01

    The Great Observatories Origins Deep Survey (GOODS) is an anthology of observing programs that are creating a rich, public, multiwavelength data set for studying galaxy formation and evolution. GOODS is observing two fields, one in each hemisphere, with extremely deep imaging and spectroscopy using the most powerful telescopes in space and on the ground. The GOODS Spitzer Legacy Science Program completes the trio of observations from NASA's Great Observatories, joining already-completed GOODS data from Chandra and Hubble. Barring unforeseen difficulties, the GOODS Spitzer observing program will have been completed by the end of 2004, and the first data products will have been released to the astronomical community. In this Special Oral Session, and in an accompanying poster session, the GOODS team presents early scientific results from this Spitzer Legacy program, as well as new research based on other GOODS data sets. I will introduce the session with a brief description of the Legacy observations and data set. Support for this work, part of the Spitzer Space Telescope Legacy Science Program, was provided by NASA through Contract Number 1224666 issued by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  6. NASA's First Laser Communication System

    NASA Image and Video Library

    2017-12-08

    A new NASA-developed, laser-based space communication system will enable higher rates of satellite communications similar in capability to high-speed fiber optic networks on Earth. The space terminal for the Lunar Laser Communication Demonstration (LLCD), NASA's first high-data-rate laser communication system, was recently integrated onto the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. LLCD will demonstrate laser communications from lunar orbit to Earth at six times the rate of the best modern-day advanced radio communication systems. Credit: NASA ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing

  7. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  8. A crater and its ejecta: An interpretation of Deep Impact

    NASA Astrophysics Data System (ADS)

    Holsapple, Keith A.; Housen, Kevin R.

    2007-03-01

    We apply recently updated scaling laws for impact cratering and ejecta to interpret observations of the Deep Impact event. An important question is whether the cratering event was gravity or strength-dominated; the answer gives important clues about the properties of the surface material of Tempel 1. Gravity scaling was assumed in pre-event calculations and has been asserted in initial studies of the mission results. Because the gravity field of Tempel 1 is extremely weak, a gravity-dominated event necessarily implies a surface with essentially zero strength. The conclusion of gravity scaling was based mainly on the interpretation that the impact ejecta plume remained attached to the comet during its evolution. We address that feature here, and conclude that even strength-dominated craters would result in a plume that appeared to remain attached to the surface. We then calculate the plume characteristics from scaling laws for a variety of material types, and for gravity and strength-dominated cases. We find that no model of cratering alone can match the reported observation of plume mass and brightness history. Instead, comet-like acceleration mechanisms such as expanding vapor clouds are required to move the ejected mass to the far field in a few-hour time frame. With such mechanisms, and to within the large uncertainties, either gravity or strength craters can provide the levels of estimated observed mass. Thus, the observations are unlikely to answer the questions about the mechanical nature of the Tempel 1 surface.

  9. A crater and its ejecta: An interpretation of Deep Impact

    NASA Astrophysics Data System (ADS)

    Holsapple, Keith A.; Housen, Kevin R.

    We apply recently updated scaling laws for impact cratering and ejecta to interpret observations of the Deep Impact event. An important question is whether the cratering event was gravity or strength-dominated; the answer gives important clues about the properties of the surface material of Tempel 1. Gravity scaling was assumed in pre-event calculations and has been asserted in initial studies of the mission results. Because the gravity field of Tempel 1 is extremely weak, a gravity-dominated event necessarily implies a surface with essentially zero strength. The conclusion of gravity scaling was based mainly on the interpretation that the impact ejecta plume remained attached to the comet during its evolution. We address that feature here, and conclude that even strength-dominated craters would result in a plume that appeared to remain attached to the surface. We then calculate the plume characteristics from scaling laws for a variety of material types, and for gravity and strength-dominated cases. We find that no model of cratering alone can match the reported observation of plume mass and brightness history. Instead, comet-like acceleration mechanisms such as expanding vapor clouds are required to move the ejected mass to the far field in a few-hour time frame. With such mechanisms, and to within the large uncertainties, either gravity or strength craters can provide the levels of estimated observed mass. Thus, the observations are unlikely to answer the questions about the mechanical nature of the Tempel 1 surface.

  10. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1342 (02/11/2015) --- Backdropped by a bright blue sky, the SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, soars away from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky..

  11. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    Open Image KSC-2015-1368.KSC-2015-1368 (02/11/2015) --- The SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Tony Gray and Tim Powers

  12. Petascale Computing: Impact on Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Brooks, Walter

    2006-01-01

    This slide presentation reviews NASA's use of a new super computer, called Columbia, capable of operating at 62 Tera Flops. This computer is the 4th fastest computer in the world. This computer will serve all mission directorates. The applications that it would serve are: aerospace analysis and design, propulsion subsystem analysis, climate modeling, hurricane prediction and astrophysics and cosmology.

  13. NASA Capabilities That Could Impact Terrestrial Smart Grids of the Future

    NASA Technical Reports Server (NTRS)

    Beach, Raymond F.

    2015-01-01

    Incremental steps to steadily build, test, refine, and qualify capabilities that lead to affordable flight elements and a deep space capability. Potential Deep Space Vehicle Power system characteristics: power 10 kilowatts average; two independent power channels with multi-level cross-strapping; solar array power 24 plus kilowatts; multi-junction arrays; lithium Ion battery storage 200 plus ampere-hours; sized for deep space or low lunar orbit operation; distribution120 volts secondary (SAE AS 5698); 2 kilowatt power transfer between vehicles.

  14. Analyzing the Impacts of Natural Environments on Launch and Landing Availability for NASA's Exploration Systems Development Programs

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. Lee; Barbre, Robert E., Jr.; Leahy, Frank B.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth orbit. Natural environments information is an important asset for NASA's development of the next generation space transportation system as part of the Exploration Systems Development (ESD) Programs, which includes the Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) Programs. Natural terrestrial environment conditions - such as wind, lightning and sea states - can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Space vehicles are particularly sensitive to these environments during the launch/ascent and the entry/landing phases of mission operations. The Marshall Space Flight Center (MSFC) Natural Environments Branch provides engineering design support for NASA space vehicle projects and programs by providing design engineers and mission planners with natural environments definitions as well as performing custom analyses to help characterize the impacts the natural environment may have on vehicle performance. One such analysis involves assessing the impact of natural environments to operational availability. Climatological time series of operational surface weather observations are used to calculate probabilities of meeting/exceeding various sets of hypothetical vehicle-specific parametric constraint thresholds. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will discuss how climate analyses are performed by the MSFC Natural Environments Branch to support the ESD Launch Availability (LA) Technical Performance Measure (TPM), the SLS Launch Availability due to Natural Environments TPM, and several MPCV (Orion) launch and landing availability analyses - including the 2014 Orion Exploration Flight Test 1 (EFT-1) mission.

  15. The Impact of the Aerosol Direct Radiative Forcing on Deep Convection and Air Quality in the Pearl River Delta Region

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.

    2018-05-01

    Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.

  16. NASA Integrated Space Communications Network

    NASA Technical Reports Server (NTRS)

    Tai, Wallace; Wright, Nate; Prior, Mike; Bhasin, Kul

    2012-01-01

    The NASA Integrated Network for Space Communications and Navigation (SCaN) has been in the definition phase since 2010. It is intended to integrate NASA s three existing network elements, i.e., the Space Network, Near Earth Network, and Deep Space Network, into a single network. In addition to the technical merits, the primary purpose of the Integrated Network is to achieve a level of operating cost efficiency significantly higher than it is today. Salient features of the Integrated Network include (a) a central system element that performs service management functions and user mission interfaces for service requests; (b) a set of common service execution equipment deployed at the all stations that provides return, forward, and radiometric data processing and delivery capabilities; (c) the network monitor and control operations for the entire integrated network are conducted remotely and centrally at a prime-shift site and rotating among three sites globally (a follow-the-sun approach); (d) the common network monitor and control software deployed at all three network elements that supports the follow-the-sun operations.

  17. NASA Contributions to the Development and Testing of Climate Indicators

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Leidner, A. K.; Tsaoussi, L.; Kaye, J. A.

    2014-12-01

    NASA is a major contributor the U.S. National Climate Assessment (NCA), a central component of the 2012-2022 U.S. Global Change Research Program's Strategic Plan. NASA supports a range of global climate and related environmental assessment activities through its data records, models, and model-produced data sets, as well as through involvement of agency personnel. These assessments provide important information on climate change and are used by policymakers, especially with the recent increased interest in climate vulnerability, impacts, and adaptation. Climate indicators provide a clear and concise way of communicating to the NCA audiences about not only status and trends of physical drivers of the climate system, but also the ecological and socioeconomic impacts, vulnerabilities, and responses to those drivers. NASA is enhancing its participation in future NCAs by encouraging the developing and testing of potential indicators that best address the needs expressed in the NCA indicator vision and that leverage NASA's capabilities. This presentation will highlight a suite of new climate indicators that draws significantly from NASA -produced data and/or modeling products, to support decisions related to impacts, adaptation, vulnerability, and mitigation associated with climate and global change.

  18. ROBOTIC MINING COMPETITORS BREAKFAST WITH NASA WOMEN ENGINEERS AND SCIENTISTS

    NASA Image and Video Library

    2017-05-25

    More than 40 female NASA engineers and scientists shared insights into their successful careers with several hundred students at NASA’s Women in STEM Mentoring Breakfast on Thursday, May 25, at Kennedy Space Center’s Debus Center in Florida. The students, members of the 45 teams in the 2017 NASA Robotic Mining Competition, sat alongside the female mentors and, between bites, learned of what paths the women took to establish their own careers in a field of science, technology, engineering and math, also known as STEM. Managed by, and held annually at Kennedy Space Center, the Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in STEM fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars. SOTs (In order of appearance): Janet Petro, Deputy Director, NASA Kennedy Space Center Camille Stimpson, Melbourne Central Catholic High School (Florida), Observer of Event Lynette Sugatan, Oakton Comminity College (Illinois), “Oaktobotics”

  19. Implementing NASA's Capability-Driven Approach: Insight into NASA's Processes for Maturing Exploration Systems

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie; Arney, Dale; Rodgers, Erica; Antol, Jeff; Simon, Matthew; Hay, Jason; Larman, Kevin

    2015-01-01

    NASA is engaged in transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities focused on low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond the Earth for extended periods of time. However, pioneering space involves more than the daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. This shift also requires a change in operating processes for NASA. The Agency can no longer afford to engineer systems for specific missions and destinations and instead must focus on common capabilities that enable a range of destinations and missions. NASA has codified a capability driven approach, which provides flexible guidance for the development and maturation of common capabilities necessary for human pioneers beyond LEO. This approach has been included in NASA policy and is captured in the Agency's strategic goals. It is currently being implemented across NASA's centers and programs. Throughout 2014, NASA engaged in an Agency-wide process to define and refine exploration-related capabilities and associated gaps, focusing only on those that are critical for human exploration beyond LEO. NASA identified 12 common capabilities ranging from Environmental Control and Life Support Systems to Robotics, and established Agency-wide teams or working groups comprised of subject matter experts that are responsible for the maturation of these exploration capabilities. These teams, called the System Maturation Teams (SMTs) help formulate, guide and resolve performance gaps associated with the identified exploration capabilities. The SMTs are defining performance parameters and goals for each of the 12 capabilities

  20. Carbon-Based Ion Optics Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Haag, Thomas; Patterson, Michael; Rawlin, Vince; Soulas, George

    2002-01-01

    With recent success of the NSTAR ion thruster on Deep Space 1, there is continued interest in long term, high propellant throughput thrusters to perform energetic missions. This requires flight qualified thrusters that can operate for long periods at high beam density, without degradation in performance resulting from sputter induced grid erosion. Carbon-based materials have shown nearly an order of magnitude improvement in sputter erosion resistance over molybdenum. NASA Glenn Research Center (GRC) has been active over the past several years pursuing carbon-based grid development. In 1995, NASA GRC sponsored work performed by the Jet Propulsion Laboratory to fabricate carbon/carbon composite grids using a machined panel approach. In 1999, a contract was initiated with a commercial vendor to produce carbon/carbon composite grids using a chemical vapor infiltration process. In 2001, NASA GRC purchased pyrolytic carbon grids from a commercial vendor. More recently, a multi-year contract was initiated with North Carolina A&T to develop carbon/carbon composite grids using a resin injection process. The following paper gives a brief overview of these four programs.

  1. NASA Hubble Finds a True Blue Planet

    NASA Image and Video Library

    2017-12-08

    This illustration shows HD 189733b, a huge gas giant that orbits very close to its host star HD 189733. The planet's atmosphere is scorching with a temperature of over 1000 degrees Celsius, and it rains glass, sideways, in howling 7000 kilometre-per-hour winds. At a distance of 63 light-years from us, this turbulent alien world is one of the nearest exoplanets to Earth that can be seen crossing the face of its star. By observing this planet before, during, and after it disappeared behind its host star during orbit, astronomers were able to deduce that HD 189733b is a deep, azure blue — reminiscent of Earth's colour as seen from space. Credit: NASA, ESA, M. Kornmesser Read more: 1.usa.gov/1dnDZPu NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Cutting Edge RFID Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.

    2007-01-01

    This viewgraph document reviews the use of Radio-frequency identification (RFID) for NASA applications. Some of the uses reviewed are: inventory management in space; potential RFID uses in a remote human outpost; Ultra-Wideband RFID for tracking; Passive, wireless sensors in NASA applications such as Micrometeoroid impact detection and Sensor measurements in environmental facilities; E-textiles for wireless and RFID.

  3. Impact of intentionally injected carbon dioxide hydrate on deep-sea benthic foraminiferal survival.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhard, Joan M; Barry, James P; Buck, Kurt R

    2009-08-01

    Abstract Sequestration of carbon dioxide (CO2) in the ocean is being considered as a feasible mechanism to mitigate the alarming rate in its atmospheric rise. Little is known, however, about how the resulting hypercapnia and ocean acidification may affect marine fauna. In an effort to understand better the protistan reaction to such an environmental perturbation, the survivorship of benthic foraminifera, which is a prevalent group of protists, was studied in response to deep-sea CO2 release. The survival response of calcareous, agglutinated, and thecate foraminifera was determined in two experiments at ~3.1 and 3.3 km water depth in Monterey Bay (California,more » USA). Approximately five weeks after initial seafloor CO2 release, in situ incubations of the live-dead indicator CellTracker Green were executed within seafloor-emplaced pushcores. Experimental treatments included direct exposure to CO2 hydrate, two levels of lesser exposure adjacent to CO2 hydrate, and controls, which were far removed from the CO2 hydrate release. Results indicate that survivorship rates of agglutinated and thecate foraminifera were not significantly impacted by direct exposure but the survivorship of calcareous foraminifera was significantly lower in direct exposure treatments compared to controls. Observations suggest that, if large scale CO2 sequestration is enacted on the deep-sea floor, survival of two major groups of this prevalent protistan taxon will likely not be severely impacted, while calcareous foraminifera will face considerable challenges to maintain their benthic populations in areas directly exposed to CO2 hydrate.« less

  4. Deep Space 1 fairing arrives at pad 17A for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The fairing for Deep Space 1 is raised upright before being lifted on the Mobile Service Tower to its place on the Boeing Delta 7326 rocket that will launch on Oct. 15, 1998. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  5. Deep Space 1 fairing arrives at pad 17A for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The fairing for Deep Space 1 nears the top of the Mobile Service Tower before being attached to the Boeing Delta 7326 rocket that will launch on Oct. 15, 1998. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  6. Deep Space 1 fairing arrives at pad 17A for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers watch as the fairing for Deep Space 1 is lifted on the Mobile Service Tower to its place on the Boeing Delta 7326 rocket that will launch on Oct. 15, 1998. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  7. Dr. von Braun on top of the Deep-Sea Research Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This photograph depicts Dr. von Braun (at right, showing his back) and other NASA officials surveying the deep-sea research submarine 'Ben Franklin.' Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  8. Dr. von Braun on Top of the Deep-Sea Research Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This photograph depicts Dr. von Braun (fourth from far right) and other NASA officials surveying the deep-sea research submarine 'Ben Franklin.' Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  9. Web-Enhanced Instruction and Learning: Findings of a Short- and Long-Term Impact Study and Teacher Use of NASA Web Resources

    NASA Technical Reports Server (NTRS)

    McCarthy, Marianne C.; Grabowski, Barbara L.; Koszalka, Tiffany

    2003-01-01

    Over a three-year period, researchers and educators from the Pennsylvania State University (PSU), University Park, Pennsylvania, and the NASA Dryden Flight Research Center (DFRC), Edwards, California, worked together to analyze, develop, implement and evaluate materials and tools that enable teachers to use NASA Web resources effectively for teaching science, mathematics, technology and geography. Two conference publications and one technical paper have already been published as part of this educational research series on Web-based instruction and learning. This technical paper, Web-Enhanced Instruction and Learning: Findings of a Short- and Long-Term Impact Study, is the culminating report in this educational research series and is based on the final report submitted to NASA. This report describes the broad spectrum of data gathered from teachers about their experiences using NASA Web resources in the classroom. It also describes participating teachers responses and feedback about the use of the NASA Web-Enhanced Learning Environment Strategies reflection tool on their teaching practices. The reflection tool was designed to help teachers merge the vast array of NASA resources with the best teaching methods, taking into consideration grade levels, subject areas and teaching preferences. The teachers described their attitudes toward technology and innovation in the classroom and their experiences and perceptions as they attempted to integrate Web resources into science, mathematics, technology and geography instruction.

  10. Deep Space Networking Experiments on the EPOXI Spacecraft

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  11. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2010-01-01

    NASA-MSFC directive MID 5340.1 requires FOD prevention for all flight hardware projects, and requires all support organizations to comply. MSFC-STD-3598 implements a standard approach for FOD prevention, tailored from NAS 412. Three levels of FOD Sensitive Area are identified, adopting existing practices at other NASA facilities. Additional emphasis is given to prevention of impact damage and mitigation of facility FOD sources, especially leaks and spills. Impact Damage Susceptible (IDS) items are identified as FOD-sensitive as well as hardware vulnerable to entrapment of small items.

  12. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2011-01-01

    NASA now requires all flight hardware projects to develop and implement a Foreign Object Damage (FOD) Prevention Program. With the increasing use of composite and bonded structures, NASA now also requires an Impact Damage Protection Plan for these items. In 2009, Marshall Space Flight Center released an interim directive that required all Center organizations to comply with FOD protocols established by on-site Projects, to include prevention of impact damage. The MSFC Technical Standards Control Board authorized the development of a new MSFC technical standard for FOD Prevention.

  13. Data, Meet Compute: NASA's Cumulus Ingest Architecture

    NASA Technical Reports Server (NTRS)

    Quinn, Patrick

    2018-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has looked to the cloud to address these needs, building its Cumulus system to manage the ingest of diverse data in a wide variety of formats into the cloud. In this talk, we look at what Cumulus is from a high level and then take a deep dive into how it manages complexity and versioning associated with multiple AWS Lambda and ECS microservices communicating through AWS Step Functions across several disparate installations

  14. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning

    PubMed Central

    Preuer, Kristina; Lewis, Richard P I; Hochreiter, Sepp; Bender, Andreas; Bulusu, Krishna C; Klambauer, Günter

    2018-01-01

    Abstract Motivation While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinations to test, based on recently available large-scale combination screening data. Recently, Deep Learning has had an impact in many research areas by achieving new state-of-the-art model performance. However, Deep Learning has not yet been applied to drug synergy prediction, which is the approach we present here, termed DeepSynergy. DeepSynergy uses chemical and genomic information as input information, a normalization strategy to account for input data heterogeneity, and conical layers to model drug synergies. Results DeepSynergy was compared to other machine learning methods such as Gradient Boosting Machines, Random Forests, Support Vector Machines and Elastic Nets on the largest publicly available synergy dataset with respect to mean squared error. DeepSynergy significantly outperformed the other methods with an improvement of 7.2% over the second best method at the prediction of novel drug combinations within the space of explored drugs and cell lines. At this task, the mean Pearson correlation coefficient between the measured and the predicted values of DeepSynergy was 0.73. Applying DeepSynergy for classification of these novel drug combinations resulted in a high predictive performance of an AUC of 0.90. Furthermore, we found that all compared methods exhibit low predictive performance when extrapolating to unexplored drugs or cell lines, which we suggest is due to limitations in the size and diversity of the dataset. We envision that DeepSynergy could be a valuable tool for selecting novel synergistic drug combinations. Availability and implementation DeepSynergy is available via www.bioinf.jku.at/software/DeepSynergy. Contact klambauer

  15. Impact of Destructive California Wildfire Captured by NASA Spacecraft

    NASA Image and Video Library

    2016-07-01

    The Erskine wildfire, northeast of Bakersfield, California, is the state's largest to date in 2016. After starting on June 23, the fire has consumed 47,000 acres (19,020 hectares), destroyed more than 250 single residences, and is responsible for two fatalities. As of June 30, the fire was 70 percent contained; full containment was estimated by July 5. This image, obtained June 30 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft, displays vegetation in red. The image covers an area of 19 by 21 miles (31 by 33 kilometers), and is located at 35.6 degrees north, 118.5 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20741

  16. NASA's 3D Flight Computer for Space Applications

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    2000-01-01

    The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).

  17. Advancing Navigation, Timing, and Science with the Deep Space Atomic Clock

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Seubert, Jill; Bell, Julia

    2014-01-01

    NASA's Deep Space Atomic Clock mission is developing a small, highly stable mercury ion atomic clock with an Allan deviation of at most 1e-14 at one day, and with current estimates near 3e-15. This stability enables one-way radiometric tracking data with accuracy equivalent to and, in certain conditions, better than current two-way deep space tracking data; allowing a shift to a more efficient and flexible one-way deep space navigation architecture. DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC would be a key component to fully-autonomous onboard radio navigation useful for time-sensitive situations. Potential deep space applications of DSAC are presented, including orbit determination of a Mars orbiter and gravity science on a Europa flyby mission.

  18. NASA direct detection laser diode driver

    NASA Technical Reports Server (NTRS)

    Seery, B. D.; Hornbuckle, C. A.

    1989-01-01

    TRW has developed a prototype driver circuit for GaAs laser diodes as part of the NASA/Goddard Space Flight Center's Direct Detection Laser Transceiver (DDLT) program. The circuit is designed to drive the laser diode over a range of user-selectable data rates from 1.7 to 220 Mbps, Manchester-encoded, while ensuring compatibility with 8-bit and quaternary pulse position modulation (QPPM) formats for simulating deep space communications. The resulting hybrid circuit has demonstrated 10 to 90 percent rise and fall times of less than 300 ps at peak currents exceeding 100 mA.

  19. Habitat Demonstration Unit-Deep Space Habitat (HDU-DSH) Integration and Preparation for Desert RATS 2011

    NASA Technical Reports Server (NTRS)

    Barbeau, Zack

    2011-01-01

    The Habitat Demonstration Unit, or HDU, is a multi-purpose test bed that allows NASA scientists and engineers to design, develop, and test new living quarters, laboratories, and workspaces for the next generation space mission. Previous testing and integration has occurred during 2010 at the annual Desert Research and Technology Studies (Desert RATS) field testing campaign in the Arizona desert. There the HDU team tests the configuration developed for the fiscal year, or FY configuration. For FY2011, the NASA mission calls for simulating a deep space condition. The HDU-DSH, or Deep Space Habitat, will be configured with new systems and modules that will outfit the test bed with new deep space capabilities. One such addition is the new X-HAB (eXploration Habitat) Inflatable Loft. With any deep space mission there is the need for safe, suitable living quarters. The current HDU configuration does not allow for any living space at all. In fact, Desert RATS 2010 saw the crew sleeping in the Space Exploration Vehicles (SEV) instead of the HDU. The X-HAB Challenge pitted three universities against each other: Oklahoma State University, University of Maryland, and the University of Wisconsin. The winning team will have their design implemented by NASA for field testing at DRATS 2011. This paper will highlight the primary objective of getting the X-HAB field ready which involves the implementation of an elevator/handrail system along with smaller logistical and integration tasks associated with getting the HDU-DSH ready for shipment to DRATS.

  20. The Deep Space Network: An instrument for radio astronomy research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Levy, G. S.; Kuiper, T. B. H.; Walken, P. R.; Chandlee, R. C.

    1988-01-01

    The NASA Deep Space Network operates and maintains the Earth-based two-way communications link for unmanned spacecraft exploring the solar system. It is NASA's policy to also make the Network's facilities available for radio astronomy observations. The Network's microwave communication systems and facilities are being continually upgraded. This revised document, first published in 1982, describes the Network's current radio astronomy capabilities and future capabilities that will be made available by the ongoing Network upgrade. The Bibliography, which includes published papers and articles resulting from radio astronomy observations conducted with Network facilities, has been updated to include papers to May 1987.

  1. NASA Launches Rocket Into Active Auroras

    NASA Image and Video Library

    2017-12-08

    A test rocket is launched the night of Feb. 17 from the Poker Flat Research Range in Alaska. Test rockets are launched as part of the countdown to test out the radar tracking systems. NASA is launching five sounding rockets from the Poker Range into active auroras to explore the Earth's magnetic environment and its impact on Earth’s upper atmosphere and ionosphere. The launch window for the four remaining rockets runs through March 3. Credit: NASA/Terry Zaperach NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. 2009 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This year, NASA Range Safety transitioned to a condensed annual report to allow for Secretariat support to the Range Safety Group, Risk Committee. Although much shorter than in previous years, this report contains full-length articles concerning various subject areas, as well as links to past reports. Additionally, summaries from various NASA Range Safety Program activities that took place throughout the year are presented, as well as information on several projects that may have a profound impact on the way business will be done in the future. The sections include a program overview and 2009 highlights; Range Safety Training; Range Safety Policy; Independent Assessments Support to Program Operations at all ranges conducting NASA launch operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities.

  3. Viking telecommunication effects of GEOS satellite interference based on testing at the Madrid deep space station

    NASA Technical Reports Server (NTRS)

    Stuhr, F. V.; Kent, S. S.; Galvez, J. L.; Luaces, B. G.; Pasero, G. R.; Urech, J. M.

    1976-01-01

    In support of the ongoing NASA-European Space Agency (ESA) effort to understand and control possible interference between missions, testing was conducted at the Madrid Deep Space Station from July 1975 to February 1976 to characterize the effect on Viking 1975 telecommunication link performance of Geodetic Earth-Orbiting Satellite (GEOS) downlink signals. The prime use of the data was to develop a capability to predict GEOS interference effects for evaluation of Viking 1975 mission impacts and possible temporary GEOS shutdown. Also, the data would serve as a basis for assessment of the GEOS impact on missions other than Viking as well as for more general interference applications. Performances of the reference receiver, telemetry, and planetary ranging were measured in the presence of various types of GEOS-related interference, including an unmodulated GEOS carrier and simulation of the actual spectrum by an ESA-supplied GEOS suitcase model.

  4. Bringing NASA Technology Down to Earth

    NASA Technical Reports Server (NTRS)

    Lockney, Daniel P.; Taylor, Terry L.

    2018-01-01

    Whether putting rovers on Mars or sustaining life in extreme conditions, NASA develops technologies to solve some of the most difficult challenges ever faced. Through its Technology Transfer Program, the agency makes the innovations behind space exploration available to industry, academia, and the general public. This paper describes the primary mechanisms through which NASA disseminates technology to solve real-life problems; illustrates recent program accomplishments; and provides examples of spinoff success stories currently impacting everyday life.

  5. NASA GRC Technology Development Project for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.

  6. Thermal Impacts in Vibration-assisted Laser Deep Penetration Welding of Aluminum

    NASA Astrophysics Data System (ADS)

    Radel, T.

    Mechanical vibrations affect the nucleation and grain growth conditions during welding. In order to understand the vibration-induced influences on the grain formation conditions in laser beam welding of aluminum the thermal impacts of simultaneously applied vibrations are analyzed in this study. Therefore, laser deep penetration welding at vibration frequencies between 0.5 kHz and 5 kHz is investigated. Besides full penetration, partial penetration experiments were carried out. The results show that the thermal and absorption efficiencies are not significantly affected by the applied excitation. The solidification time increases in case of applied excitation which is rather disadvantageous regarding grain refinement. Thus, mechanical-metallurgical and not thermal-metallurgical effects should be responsible for the change in grain nucleation and grain growth conditions in laser beam welding with simultaneously applied vibrations.

  7. Development of a prototype real-time automated filter for operational deep space navigation

    NASA Technical Reports Server (NTRS)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  8. NASA Operation IceBridge Flies Into the Classroom!

    NASA Astrophysics Data System (ADS)

    Kane, M.

    2017-12-01

    Field research opportunities for educators is leveraged as an invaluable tool to increase public engagement in climate research and the geosciences. We investigate the influence of educator's authentic fieldwork by highlighting the post-field impacts of a PolarTREC Teacher who participated in two campaigns, including NASA Operation IceBridge campaign over Antarctica in 2016. NASA's Operation IceBridge has hosted PolarTREC teachers since 2012, welcoming five teachers aboard multiple flights over the Arctic and one over Antarctica. The continuity of teacher inclusion in Operation IceBridge campaigns has facilitated a platform for collaborative curriculum development and revision, integration of National Snow and Ice Data Center (NSIDC) data into multiple classrooms, and given us a means whereby students can interact with science team members. I present impacts to my teaching and classrooms as I grapple with "Big Data" to allow students to work directly with lidar and radar data, I examine public outreach impacts through analytics from virtual networking tools including social media, NASA's Mission Tools Suite for Education, and field blog interactions.

  9. NASA Cassini Mission Prepares for “Grand Finale” on This Week @NASA – April 7, 2017

    NASA Image and Video Library

    2017-04-07

    NASA held a news conference April 4 at the Jet Propulsion Laboratory, with participation from NASA headquarters, to preview the final phase of the Cassini spacecraft’s mission to Saturn. On April 26, Cassini will begin its “Grand Finale” – a series of deep dives between the planet and its rings. No other mission has ever explored this unique region that is so close to the planet. Cassini will make 22 orbits that swoop between the rings and the planet before ending its 20-year mission on Sept. 15, with a final plunge into Saturn. The mission team hopes to gain powerful insights into the planet's internal structure and the origins of the rings, obtain the first-ever sampling of Saturn's atmosphere and particles coming from the main rings, and capture the closest-ever views of Saturn's clouds and inner rings. Also, Next Space Station Crew Travels to Launch Site, New Target Launch Date for Orbital ATK Mission to ISS, Lightfoot Visits Industry Partners, Human Exploration Rover Challenge, and John Glenn Interred at Arlington National Cemetery.

  10. A NASA study of the impact of technology on future carrier based tactical aircraft - Overview

    NASA Technical Reports Server (NTRS)

    Wilson, S. B., III

    1992-01-01

    This paper examines the impact of technology on future carrier based tactical aircraft. The results were used in the Center for Naval Analysis Future Carrier Study. The NASA Team designed three classes of aircraft ('Fighter', 'Attack', and 'Multimission') with two different technology levels. The Multimission aircraft were further analyzed by examining the penalty on the aircraft for both catapult launch/arrested landing recovery (Cat/trap) and short take-off/vertical landing (STOVL). The study showed the so-called STOVL penalty was reduced by engine technology and the next generation Strike Fighter will pay more penalty for Cat/trap than for STOVL capability.

  11. NASA-427: A New Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  12. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  13. Stirling Technology Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2001-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  14. Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2016-01-01

    NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux.

  15. Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity

    PubMed Central

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl

    2014-01-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both ‘action’ and ‘resting’ motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the ‘effective’ connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network—disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses. PMID:24566670

  16. Using the Deep Space Atomic Clock for Navigation and Science.

    PubMed

    Ely, Todd A; Burt, Eric A; Prestage, John D; Seubert, Jill M; Tjoelker, Robert L

    2018-06-01

    Routine use of one-way radiometric tracking for deep space navigation and radio science is not possible today because spacecraft frequency and time references that use state-of-the-art ultrastable oscillators introduce errors from their intrinsic drift and instability on timescales past 100 s. The Deep Space Atomic Clock (DSAC), currently under development as a NASA Technology Demonstration Mission, is an advanced prototype of a space-flight suitable, mercury-ion atomic clock that can provide an unprecedented frequency and time stability in a space-qualified clock. Indeed, the ground-based results of the DSAC space demonstration unit have already achieved an Allan deviation of at one day; space performance on this order will enable the use of one-way radiometric signals for deep space navigation and radio science.

  17. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Community Collaborations

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Lawton, B. L.; Bartolone, L.; Schultz, G. R.; Blair, W. P.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum is one of four scientist-educator teams that support NASA's Science Mission Directorate and its nationwide education and public outreach community in increasing the coherence, efficiency, and effectiveness of their education and public outreach efforts. NASA Astrophysics education and outreach teams collaborate with each other through the Astrophysics Forum to place individual programs in context, connect with broader education and public outreach activities, learn and share successful strategies and techniques, and develop new partnerships. This poster highlights examples of collaborative efforts designed to engage youth and adults across the full spectrum of learning environments, from public outreach venues, to centers of informal learning, to K-12 and higher education classrooms. These include coordinated efforts to support major outreach events such as the USA Science and Engineering Festival; pilot "Astro4Girls" activities in public libraries to engage girls and their families in science during Women’s History Month; and a pilot "NASA's Multiwavelength Universe" online professional development course for middle and high school educators. Resources to assist scientists and Astro101 instructors in incorporating NASA Astrophysics discoveries into their education and public outreach efforts are also discussed.

  18. The NASA data systems standardization program - Radio frequency and modulation

    NASA Technical Reports Server (NTRS)

    Martin, W. L.

    1983-01-01

    The modifications being considered by the NASA-ESA Working Group (NEWG) for space-data-systems standardization to maximize the commonality of the NASA and ESA RF and modulation systems linking spaceborne scientific experiments with ground stations are summarized. The first phase of the NEWG project shows that the NASA MK-IVA Deep Space Network and Shuttle Interrogator (SI) systems in place or planned for 1985 are generally compatible with the ESA Network, but that communications involving the Tracking and Data Relay Satellite (TDRS) are incompatible due to its use of spread-spectrum modulation, pseudonoise ranging, multiple-access channels, and Mbit/s data rates. Topics under study for the post-1985 period include low-bit-rate capability for the ESA Network, an optional 8-kHz command subcarrier for the SI, fixing the spacecraft-transponder frequency-multiplication ratios for possible X-band uplinks or X-band nondeep-space downlinks, review of incompatible TDRS features, and development of the 32-GHz band.

  19. NASA's In Space Propulsion Technology Program Accomplishments and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Johnson, Les C.; Harris, David

    2008-01-01

    NASA's In-Space Propulsion Technology (ISPT) Program was managed for 5 years at the NASA MSFC and significant strides were made in the advancement of key transportation technologies that will enable or enhance future robotic science and deep space exploration missions. At the program's inception, a set of technology investment priorities were established using an NASA-wide, mission-driven prioritization process and, for the most part, these priorities changed little - thus allowing a consistent framework in which to fund and manage technology development. Technologies in the portfolio included aerocapture, advanced chemical propulsion, solar electric propulsion, solar sail propulsion, electrodynamic and momentum transfer tethers, and various very advanced propulsion technologies with significantly lower technology readiness. The program invested in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program was to lay the technological foundation for travel to nearby interstellar space. The ambitious goals of the program at its inception included supporting the development of technologies that could support all of NASA's missions, both human and robotic. As time went on and budgets were never as high as planned, the scope of the program was reduced almost every year, forcing the elimination of not only the broader goals of the initial program, but also of

  20. Climate, carbon cycling, and deep-ocean ecosystems.

    PubMed

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  1. Deep Space 1 fairing arrives at pad 17A for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers check the position of the fairing for Deep Space 1 as it reaches the top of the Mobile Service Tower where it will be attached to the Boeing Delta 7326 rocket that will launch on Oct. 15, 1998. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  2. 2010 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2010-01-01

    this report provides a NASA Range Safety overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various NASA Range Safety Program activities conducted during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be done in the future. Specific topics discussed in the 2010 NASA Range Safety Annual Report include a program overview and 2010 highlights; Range Safety Training; Range Safety Policy revision; Independent Assessments; Support to Program Operations at all ranges conducting NASA launch/flight operations; a continuing overview of emerging range safety-related technologies; and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. Once again, the web-based format was used to present the annual report.

  3. Deep Space Test Bed for Radiation Studies

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan

    2006-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other Exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation and flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status.

  4. Feel the Rumble! RS-25 Engine Test on This Week @NASA – January 19, 2018

    NASA Image and Video Library

    2018-01-19

    Firing the engine that will power humans to deep space, testing a potential source of power for future exploration, and practicing water recovery of the Orion spacecraft – a few of the stories to tell you about – This Week at NASA!

  5. Application of the Deep Space Network (DSN) to the testing of general relativity

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Levy, G. S.; Renzetti, N. A.

    1986-01-01

    The NASA Deep Space Network, a precision telecommunications and radio navigation facility, is described in detail. The first spacecraft relativity test with Mariner 6 and Mariner 7 at solar conjunction is discussed as well as more accurate tests using the Mariner 9 anchored to Mars. Consideration is also given to solar system tests of relativistic celestial mechanics and future prospects. It is noted that the NASA Mars Observer orbital mission is under development and is expected to reach Mars in 1991.

  6. KSC-05PD-0136

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Engulfed by flames and smoke, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  7. KSC-05PD-0130

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. With a burst of flames, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  8. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Blackford, Jerry; Stahl, Henrik; Bull, Jonathan M.; Bergès, Benoît J. P.; Cevatoglu, Melis; Lichtschlag, Anna; Connelly, Douglas; James, Rachael H.; Kita, Jun; Long, Dave; Naylor, Mark; Shitashima, Kiminori; Smith, Dave; Taylor, Peter; Wright, Ian; Akhurst, Maxine; Chen, Baixin; Gernon, Tom M.; Hauton, Chris; Hayashi, Masatoshi; Kaieda, Hideshi; Leighton, Timothy G.; Sato, Toru; Sayer, Martin D. J.; Suzumura, Masahiro; Tait, Karen; Vardy, Mark E.; White, Paul R.; Widdicombe, Steve

    2014-11-01

    Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate, yet many economies will remain reliant on these technologies for several decades. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system. In many regions storage reservoirs are located offshore, over a kilometre or more below societally important shelf seas. Therefore, concerns about the possibility of leakage and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d-1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.

  9. NASA's Planetary Defense Coordination Office at NASA HQ

    NASA Astrophysics Data System (ADS)

    Daou, D.; Johnson, L.; Fast, K. E.; Landis, R.; Friedensen, V. P.; Kelley, M.

    2017-09-01

    NASA and its partners maintain a watch for near-Earth objects (NEOs), asteroids and comets that pass close to the Earth, as part of an ongoing effort to discover, catalog, and characterize these bodies. The PDCO is responsible for: • Ensuring the early detection of potentially hazardous objects (PHOs) - asteroids and comets whose orbit are predicted to bring them within 0.05 Astronomical Units of Earth; and of a size large enough to reach Earth's surface - that is, greater than perhaps 30 to 50 meters; • Tracking and characterizing PHOs and issuing warnings about potential impacts; • Providing timely and accurate communications about PHOs; and • Performing as a lead coordination node in U.S. Government planning for response to an actual impact threat. The PDCO collaborates with other U.S. Government agencies, other national and international agencies, and professional and amateur astronomers around the world. The PDCO also is responsible for facilitating communications between the science community and the public should any potentially hazardous NEO be discovered. In addition, the PDCO works closely with the United Nations Office of Outer Space Affairs, its Committee on the Peaceful Uses of Outer Space, and its Action Team on Near Earth Objects (also known as Action Team 14). The PDCO is a leading member of the International Asteroid Warning Network (IAWN) and the Space Missions Planning Advisory Group (SMPAG), multinational endeavors recommended by the United Nations for an international response to the NEO impact hazard and established and operated by the spacecapable nations. The PDCO also communicates with the scientific community through channels such as NASA's Small Bodies Assessment Group (SBAG). In this talk, we will provide an update to the office's various efforts and new opportunities for partnerships in the continuous international effort for Planetary Defense.

  10. NASA's Planetary Defense Coordination Office at NASA HQ

    NASA Astrophysics Data System (ADS)

    Daou, D.; Johnson, L.; Fast, K. E.; Landis, R.; Friedensen, V. P.; Kelley, M.

    2017-12-01

    NASA and its partners maintain a watch for near-Earth objects (NEOs), asteroids and comets that pass close to the Earth, as part of an ongoing effort to discover, catalog, and characterize these bodies. The PDCO is responsible for: Ensuring the early detection of potentially hazardous objects (PHOs) - asteroids and comets whose orbit are predicted to bring them within 0.05 Astronomical Units of Earth; and of a size large enough to reach Earth's surface - that is, greater than perhaps 30 to 50 meters; Tracking and characterizing PHOs and issuing warnings about potential impacts; Providing timely and accurate communications about PHOs; and Performing as a lead coordination node in U.S. Government planning for response to an actual impact threat. The PDCO collaborates with other U.S. Government agencies, other national and international agencies, and professional and amateur astronomers around the world. The PDCO also is responsible for facilitating communications between the science community and the public should any potentially hazardous NEO be discovered. In addition, the PDCO works closely with the United Nations Office of Outer Space Affairs, its Committee on the Peaceful Uses of Outer Space, and its Action Team on Near Earth Objects (also known as Action Team 14). The PDCO is a leading member of the International Asteroid Warning Network (IAWN) and the Space Missions Planning Advisory Group (SMPAG), multinational endeavors recommended by the United Nations for an international response to the NEO impact hazard and established and operated by the space-capable nations. The PDCO also communicates with the scientific community through channels such as NASA's Small Bodies Assessment Group (SBAG). In this talk, we will provide an update to the office's various efforts and new opportunities for partnerships in the continuous international effort for Planetary Defense.

  11. Deep Space Network Antenna Monitoring Using Adaptive Time Series Methods and Hidden Markov Models

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic; Mellstrom, Jeff

    1993-01-01

    The Deep Space Network (DSN)(designed and operated by the Jet Propulsion Laboratory for the National Aeronautics and Space Administration (NASA) provides end-to-end telecommunication capabilities between earth and various interplanetary spacecraft throughout the solar system.

  12. Urine Pretreatment History and Perspective in NASA Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Adam, Niklas; Chambers, Antja; Broyan, James

    2015-01-01

    Urine pretreatment is a technology that may seem to have small mass impacts in future spaceflight missions, but can have significant impacts on reliability, life, and performance of the rest of the wastewater management and recovery systems. NASA has experience with several different urine pretreatment systems, including those flow on the space shuttle, evaluated for NASA waste collection systems or used in Russian commodes on ISS, or developed by NASA or industry as alternatives. Each has had unique requirements for shelf life, operational life, and the life or conditions of the stored, treated urine. Each was evaluated under different test conditions depending on mission, and depending on testing experience developed over NASA's history. Those that were flown led to further lessons learned about hardware compatibility and control. As NASA looks forward to human spaceflight missions beyond low Earth orbit, these techniques need to be evaluated in new light. Based on published design reference missions, candidate requirements can be derived for future systems. Initial comparisons between these requirements and previous performance or test results can be performed. In many cases these comparisons reveal data gaps. Successful previous performance is not enough to address current needs.

  13. Overview of NASARTI (NASA Radiation Track Image) Program: Highlights of the Model Improvement and the New Results

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Plante, I.; George, Kerry; Cornforth, M. N.; Loucas, B. D.; Wu, Honglu

    2014-01-01

    This presentation summarizes several years of research done by the co-authors developing the NASARTI (NASA Radiation Track Image) program and supporting it with scientific data. The goal of the program is to support NASA mission to achieve a safe space travel for humans despite the perils of space radiation. The program focuses on selected topics in radiation biology that were deemed important throughout this period of time, both for the NASA human space flight program and to academic radiation research. Besides scientific support to develop strategies protecting humans against an exposure to deep space radiation during space missions, and understanding health effects from space radiation on astronauts, other important ramifications of the ionizing radiation were studied with the applicability to greater human needs: understanding the origins of cancer, the impact on human genome, and the application of computer technology to biological research addressing the health of general population. The models under NASARTI project include: the general properties of ionizing radiation, such as particular track structure, the effects of radiation on human DNA, visualization and the statistical properties of DSBs (DNA double-strand breaks), DNA damage and repair pathways models and cell phenotypes, chromosomal aberrations, microscopy data analysis and the application to human tissue damage and cancer models. The development of the GUI and the interactive website, as deliverables to NASA operations teams and tools for a broader research community, is discussed. Most recent findings in the area of chromosomal aberrations and the application of the stochastic track structure are also presented.

  14. Mass extinctions in the deep sea

    NASA Technical Reports Server (NTRS)

    Thomas, E.

    1988-01-01

    The character of mass extinctions can be assessed by studying extinction patterns of organisms, the fabric of the extinction, and assessing the environmental niche and mode of life of survivors. Deep-sea benthic foraminifera have been listed as little affected by the Cretaceous-Tertiary (K-T) mass extinction, but very few quantitative data are available. New data on deep-sea Late Maestrichtian-Eocene benthic foraminifera from Maud Rise (Antractica) indicate that about 10 percent of the species living at depths of 2000 to 2500 m had last appearances within 1 my of the Cretaceous-Tertiary (K-T) boundary, versus about 25 percent of species at 1000 to 1500 m. Many survivors from the Cretaceous became extinct in a period of global deep-sea benthic foraminiferal extinction at the end of the Paleocene, a time otherwise marked by very few extinctions. Preliminary conclusions suggest that the deep oceanic environment is essentially decoupled from the shallow marine and terrestrial environment, and that even major disturbances of one of these will not greatly affect the other. This gives deep-sea benthic faunas a good opportunity to recolonize shallow environments from greater depths and vice versa after massive extinctions. The decoupling means that data on deep-sea benthic boundary was caused by the environmental effects of asteriod impact or excessive volcanism. The benthic foraminiferal data strongly suggest, however, that the environmental results were strongest at the Earth's surface, and that there was no major disturbance of the deep ocean; this pattern might result both from excessive volcanism and from an impact on land.

  15. Evolution of Software-Only-Simulation at NASA IV and V

    NASA Technical Reports Server (NTRS)

    McCarty, Justin; Morris, Justin; Zemerick, Scott

    2014-01-01

    Software-Only-Simulations have been an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations that have ranged from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).This paper describes the evolution of ITCs technologies and processes that have been utilized to design, implement, and deploy end-to-end simulation environments for various NASA missions. A comparison of mission simulators are discussed with focus on technology and lessons learned in complexity, hardware modeling, and continuous integration. The paper also describes the methods for executing the missions unmodified flight software binaries (not cross-compiled) for verification and validation activities.

  16. The JPL optical communications telescope laboratory (OCTL) test bed for the future optical Deep Space Network

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Page, N.; Wu, J.; Srinivasan, M.

    2003-01-01

    Relative to RF, the lower power-consumption and lower mass of high bandwidth optical telecommunications make this technology extremely attractive for returning data from future NASA/JPL deep space probes.

  17. Nasa s near earth object program office

    NASA Astrophysics Data System (ADS)

    Yeomans, D.; Chamberlin, A.; Chesley, S.; Chodas, P.; Giorgini, J.; Keesey, M.

    years in development, the JPL SENTRY system has been brought on line to provide automatic updates of near-Earth asteroid (NEA) orbits and to predict future close Earth approaches along with their associated impact probabilities. For those NEAs that can approach the Earth, a Palermo Scale risk number is computed based upon the object's impact probability at a particular time, the energy upon impact and the time interval before the potential impact. A Palermo Scale number larger than zero implies the predicted impact event has risen above the expected background level of impacts that could occur between now and the predicted time of impact from all NEAs of the same size or larger. Computed Palermo Scale values are used to prioritize automatic Monte Carlo numerical integration runs to determine robust impact probabilities for those NEAs where a future impact cannot be ruled out - usually because of poor orbits and/or close planetary encounters. Our interactive web site at http://neo.jpl.nasa.gov will allow the user access to the latest information on NEOs including coming close Earth approaches, the risk page for poorly determined orbits, the progress toward meeting the Spaceguard Goal, links to the web sites of the NEO search teams, the rationale for studying NEOs, space missions to NEOs, as well as information on the characteristics, future motions, orbits and orbital movies for well over 120,000 comets and asteroids.

  18. Microwave analog fiber-optic link for use in the deep space network

    NASA Technical Reports Server (NTRS)

    Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.

    1990-01-01

    A novel fiber-optic system with dynamic range of up to 150 dB-Hz for transmission of microwave analog signals is described. The design, analysis, and laboratory evaluations of this system are reported, and potential applications in the NASA/JPL Deep Space Network are discussed.

  19. Plastic microfibre ingestion by deep-sea organisms

    PubMed Central

    Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C.

    2016-01-01

    Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics. PMID:27687574

  20. Plastic microfibre ingestion by deep-sea organisms

    NASA Astrophysics Data System (ADS)

    Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C.

    2016-09-01

    Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics.

  1. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and

  2. Louisiana Governor John Bel Edwards Tours NASA Michoud Assembly Facility

    NASA Image and Video Library

    2017-11-01

    This B-roll video shows Louisiana Gov. John Bel Edwards when visited NASA’s Michoud Assembly Facility in New Orleans on Nov. 1, 2017. He spoke about the state’s partnerships with NASA and the 20 companies and government agencies located at the facility. He toured Michoud with Todd May, the director of NASA’s Marshall Space Flight Center, which manages Michoud. NASA is building its new deep space rocket, the Space Launch System (SLS), and the Orion spacecraft at Michoud. New Orleans Mayor Mitch Landrieu and Michoud Director Keith Hefner, along with members of the Louisiana Economic Development accompanied the Edwards and May on the tour. They saw the Vertical Assemby Center where large structures of the SLS core stage are welded.

  3. Update on the NASA GRC Stirling Technology development project

    NASA Astrophysics Data System (ADS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2001-02-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project. .

  4. Update on the NASA GRC Stirling Technology Development Project

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project.

  5. NASA and Superalloys: A Customer, a Participant, and a Referee

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.

    2008-01-01

    NASA has had a long history of research and development in the field of superalloys. These efforts have continued today, where the latest advancements in turbine disk and blade technologies are being developed. Although NASA does support military flight systems, its predominant role is in supporting civilian air transportation systems, and thus has goals for improving fuel efficiency, emissions, noise, and safety of today s aircraft. NASA has traditionally served several distinct but complimentary roles as participants in multi-disciplinary research teams, as customers who fund research and development efforts at industry and universities, and as referees who can address broad issues that affect the entire aeronautics community. Because of our longer range viewpoint, we can take on higher risk, higher reward research topics. NASA can also serve as an intermediary between the basic research performed primarily at universities and the development efforts emphasized by industry. By interacting with individual companies, NASA can identify areas of general interest and problems common to a large portion of the aeronautics community, and devise programs aimed at solving these problems. In space missions, NASA is a direct customer responsible for developing vehicles. In the case of the Space Shuttle, NASA has worked with various contractors to design and build numerous components out of superalloys. Another fascinating area for the use of superalloys is in power systems for long life applications in space. Potential missions include providing electric power for deep space missions, surface rovers, including lunar and Mars, and stationary power generators on the lunar surface.

  6. NASA and Superalloys: A Customer, a Participant, and a Referee

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.

    2008-01-01

    NASA has had a long history of research and development in the field of superalloys. These efforts have continued today, where the latest advancements in turbine disk and blade technologies are being developed Although NASA does support military flight systems, it s predominant role is in supporting civilian air transportation systems, and thus has goals for improving fuel efficiency, emissions, noise, and safety of today s aircraft. NASA has traditionally served several distinct but complimentary roles as participants in multi-disciplinary research teams, as customers who fund research and development efforts at industry and universities, and as referees who can address broad issues that affect the entire aeronautics community. Because of our longer range viewpoint, we can take on higher risk, higher reward research topics. NASA can also serve as an intermediary between the basic research performed primarily at universities and the development efforts emphasized by industry. By interacting with individual companies, NASA can identify areas of general interest and problems common to a large portion of the aeronautics community, and devise programs aimed at solving these problems. In space missions, NASA is a direct customer responsible for developing vehicles. In the case of the Space Shuttle, NASA has worked with various contractors to design and build numerous components out of superalloys. Another fascinating area for the use of superalloys is in power systems for long life applications in space. Potential missions include providing electric power for deep space missions, surface rovers, including lunar and Mars, and stationary power generators on the lunar surface.

  7. Pipeline corridors through wetlands - impacts on plant communities: Deep Creek and Brandy Branch crossings, Nassau County, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shem, L.M.; Van Dyke, G.D.; Zimmerman, R.E.

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of surveys conducted July 14-18, 1992, at the Deep Creek and the Brandy Branch crossings of a pipeline installed during May 1991 in Nassau County, Florida. Both floodplains supported bottomland hardwood forests. The pipeline at the Deep Creek crossing was installed by means ofmore » horizontal directional drilling after the ROW had been clear-cut, while the pipeline at the Brandy Branch crossing was installed by means of conventional open trenching. Neither site was seeded or fertilized. At the time of sampling, a dense vegetative community, made up primarily of native perennial herbaceous species, occupied the ROW within the Deep Creek floodplain. The Brandy Branch ROW was vegetated by a less dense stand of primarily native perennial herbaceous plants. Plant diversity was also lower at the Brandy Branch crossing than at the Deep Creek crossing. The results suggest that some of the differences in plant communities are related to the more hydric conditions at the Brandy Branch floodplain.« less

  8. The Quest for Contact: NASA's Search for Extraterrestrial Intelligence

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This video details the history and current efforts of NASA's Search for Extraterrestrial Intelligence program. The video explains the use of radiotelescopes to monitor electromagnetic frequencies reaching the Earth, and the analysis of this data for patterns or signals that have no natural origin. The video presents an overview of Frank Drake's 1960 'Ozma' experiment, the current META experiment, and planned efforts incorporating an international Deep Space Network of radiotelescopes that will be trained on over 800 stars.

  9. NASA Spacecraft Images Drought Impacts on the Mighty Mississippi

    NASA Image and Video Library

    2012-08-25

    NASA Terra spacecraft acquired this image on Aug. 24, 2012, 13 miles 20 kilometers north of Vicksburg, Miss., as drought continued to afflict the U.S. Midwest, water levels of the Mississippi River approached historic lows.

  10. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  11. Deep Space 1 is encapsulated on launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Launch Pad 17A at Cape Canaveral Air Station, released from its protective payload transportation container, Deep Space 1 waits to have the fairing attached before launch. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  12. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2016-03-01

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2017-12-08

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. NASA's Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2003-01-01

    Marshall Space Flight Center (MSFC) was selected as the Principal Center for review of Clean Air Act (CAA) regulations. The CAA Principal Center is tasked to: 1) Provide centralized support to NASA/HDQ Code JE for the management and leadership of NASA's CAA regulation review process; 2) Identify potential impact from proposed CAA regulations to NASA program hardware and supporting facilities. The Shuttle Environmental Assurance Initiative, one of the responsibilities of the NASA CAA Working Group (WG), is described in part of this viewgraph presentation.

  15. Electronics for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.

    2002-01-01

    Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.

  16. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Tu, Eugene L.; Van Dalsem, William R.

    2006-01-01

    Two years ago, NASA was on the verge of dramatically increasing its HEC capability and capacity. With the 10,240-processor supercomputer, Columbia, now in production for 18 months, HEC has an even greater impact within the Agency and extending to partner institutions. Advanced science and engineering simulations in space exploration, shuttle operations, Earth sciences, and fundamental aeronautics research are occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. This talk describes how the integrated production environment fostered at the NASA Advanced Supercomputing (NAS) facility at Ames Research Center is accelerating scientific discovery, achieving parametric analyses of multiple scenarios, and enhancing safety for NASA missions. We focus on Columbia s impact on two key engineering and science disciplines: Aerospace, and Climate. We also discuss future mission challenges and plans for NASA s next-generation HEC environment.

  17. Dynamic Emulation of NASA Missions for IVandV: A Case Study of JWST and SLS

    NASA Technical Reports Server (NTRS)

    Yokum, Steve

    2015-01-01

    Software-Only-Simulations are an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations ranging from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).

  18. Analysis of 31.4GHz Atmospheric Noise Temperature Measurements at Madrid Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Shambayati, S.; Keihm, S.

    1998-01-01

    The atmospheric noise temperature at 31.4GHz was measured at NASA's Deep Space Communications Complex at Madrid from September 1990 to December 1996 excluding February 1991 and May 1992 using a Water Vapor Radiometer.

  19. Challenges for deep space communications in the 1990s

    NASA Technical Reports Server (NTRS)

    Dumas, Larry N.; Hornstein, Robert M.

    1991-01-01

    The discussion of NASA's Deep Space Network (DSN) examines the evolving character of aerospace missions and the corresponding changes in the DSN architecture. Deep space missions are reviewed, and it is noted that the two 34-m and the 70-m antenna subnets of the DSN are heavily loaded and more use is expected. High operational workload and the challenge of network cross-support are the design drivers for a flexible DSN architecture configuration. Incorporated in the design are antenna arraying for aperture augmentation, beam-waveguide antennas for frequency agility, and connectivity with non-DSN sites for cross-support. Compatibility between spacecraft and ground-facility designs is important for establishing common international standards of communication and data-system specification.

  20. 14 CFR 1206.402 - Documents available for inspection at NASA Information Centers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Cumulative Index to Selected Speeches and News Releases issued by NASA Headquarters; (7) Index/Digest of... index thereto; (9) Copies of Environmental Impact Statements filed by NASA under the National Environmental Policy Act of 1969; (10) Collection of all issues of “NASA Activities”; (11) List of licenses...

  1. 14 CFR 1206.402 - Documents available for inspection at NASA Information Centers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Cumulative Index to Selected Speeches and News Releases issued by NASA Headquarters; (7) Index/Digest of... index thereto; (9) Copies of Environmental Impact Statements filed by NASA under the National Environmental Policy Act of 1969; (10) Collection of all issues of “NASA Activities”; (11) List of licenses...

  2. The Telecommunications and Data Acquisition Report. [Deep Space Network

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1988-01-01

    In space communications, radio navigation, radio science, and ground based radio and radar astronomy, activities of the Deep Space Network and its associated Ground Communications Facility in planning, in supporting research and technology, in implementation, and in operations are reported. Also included is TDA funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA.

  3. NASA GRC Stirling Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2003-01-01

    The Department of Energy, Lockheed Martin (LM), Stirling Technology Company, and NASA Glenn Research Center (GRC) are developing a high-efficiency Stirling Radioisotope Generator (SRG) for potential NASA Space Science missions. The SRG is being developed for multimission use, including providing spacecraft onboard electric power for NASA deep space missions and power for unmanned Mars rovers. NASA GRC is conducting an in- house supporting technology project to assist in developing the Stirling convertor for space qualification and mission implementation. Preparations are underway for a thermalhacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. Heater head life assessment efforts continue, including verification of the heater head brazing and heat treatment schedules and evaluation of any potential regenerator oxidation. Long-term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetization resistance of the permanent magnets used in the linear alternator. Testing of the magnet/lamination epoxy bond for performance and lifetime characteristics is now underway. These efforts are expected to provide key inputs as the system integrator, LM, begins system development of the SRG. GRC is also developing advanced technology for Stirling convertors. Cleveland State University (CSU) is progressing toward a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. Validation efforts at both CSU and the University of Minnesota are complementing the code development. New efforts have been started this year on a lightweight convertor, advanced controllers, high-temperature materials, and an end-to-end system dynamics model. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems.

  4. NASA In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.

  5. NASA's In-Space Propulsion Technology Program: Overview and Status

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.

  6. NASA's In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.

  7. Orders of Magnitude: A History of NACA and NASA, 1915 - 1980

    NASA Technical Reports Server (NTRS)

    Anderson, F. W., Jr.

    1981-01-01

    The history of NACA and NASA from 1915 to 1980 is narrated. The impact of two world wars on aeronautics is reviewed. Research activity before and during World War II is presented. Postwar exploitation of new technologies is summarized. The creation of NASA and a comprehensive space program is discussed. Long range planning for a lunar mission is described. The Gemini project is reviewed. The Apollo project and side effects includng NASA's university and technology transfer programs are presented. Numerous scientific and application satellite projects are reviewed. The impact of budget reductions is explained. The value of space exploration is emphasized. Development of the Space Shuttle is reported.

  8. Automating Deep Space Network scheduling and conflict resolution

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Clement, Bradley

    2005-01-01

    The Deep Space Network (DSN) is a central part of NASA's infrastructure for communicating with active space missions, from earth orbit to beyond the solar system. We describe our recent work in modeling the complexities of user requirements, and then scheduling and resolving conflicts on that basis. We emphasize our innovative use of background 'intelligent' assistants' that carry out search asynchrnously while the user is focusing on various aspects of the schedule.

  9. The impact of post-exercise hydration with deep-ocean mineral water on rehydration and exercise performance.

    PubMed

    Keen, Douglas A; Constantopoulos, Eleni; Konhilas, John P

    2016-01-01

    Dehydration caused by prolonged exercise impairs thermoregulation, endurance and exercise performance. Evidence from animal and human studies validates the potential of desalinated deep-ocean mineral water to positively impact physiological and pathophysiological conditions. Here, we hypothesize that deep-ocean mineral water drawn from a depth of 915 m off the Kona, HI coast enhances recovery of hydration and exercise performance following a dehydrating exercise protocol compared to mountain spring water and a carbohydrate-based sports drink. Subjects (n = 8) were exposed to an exercise-dehydration protocol (stationary biking) under warm conditions (30 °C) to achieve a body mass loss of 3 % (93.4 ± 21.7 total exercise time). During the post-exercise recovery period, subjects received deep-ocean mineral water (Kona), mountain spring water (Spring) or a carbohydrate-based sports drink (Sports) at a volume (in L) equivalent to body mass loss (in Kg). Salivary samples were collected at regular intervals during exercise and post-exercise rehydration. Additionally, each participant performed peak torque knee extension as a measure of lower body muscle performance. Subjects who received Kona during the rehydrating period showed a significantly more rapid return to pre-exercise (baseline) hydration state, measured as the rate of decline in peak to baseline salivary osmolality, compared to Sports and Spring groups. In addition, subjects demonstrated significantly improved recovery of lower body muscle performance following rehydration with Kona versus Sports or Spring groups. Deep-ocean mineral water shows promise as an optimal rehydrating source over spring water and/or sports drink.

  10. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.

    1994-01-01

    Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.

  11. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  12. Ion propulsion engine installed on Deep Space 1 at CCAS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October.

  13. Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease.

    PubMed

    Phillips, Lara; Litcofsky, Kaitlyn A; Pelster, Michael; Gelfand, Matthew; Ullman, Michael T; Charles, P David

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.

  14. Subthalamic Nucleus Deep Brain Stimulation Impacts Language in Early Parkinson's Disease

    PubMed Central

    Phillips, Lara; Litcofsky, Kaitlyn A.; Pelster, Michael; Gelfand, Matthew

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated. PMID:22880117

  15. KSC-05PP-0138

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Emerging through the smoke and steam, the Boeing Delta II rocket carrying NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  16. KSC-05PD-0134

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  17. KSC-05PD-0131

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  18. KSC-05PD-0135

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  19. KSC-05PD-0132

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Guests of NASA gather near the launch site at Cape Canaveral Air Force Station, Fla., to watch the Deep Impact spacecraft as it speeds through the air after a perfect launch at 1:47 p.m. EST. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.

  20. NASA Update

    NASA Image and Video Library

    2010-04-08

    "NASA Update" program with NASA Administrator Charles Bolden, NASA Deputy Administrator Lori Garver and NASA Acting Asistant Administrator for Public Affairs Bob Jacobs as moderator, NASA Headquarters, Thursday, April 8, 2010 in Washington. Photo Credit: (NASA/Bill Ingalls)

  1. Office of Tracking and Data Acquisition. [deep space network and spacecraft tracking

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Office of Tracking and Data Acquisition (OTDA) and its two worldwide tracking network facilities, the Spaceflight Tracking and Data Network and the Deep Space Network, are described. Other topics discussed include the NASA communications network, the tracking and data relay satellite system, other OTDA tracking activities, and OTDA milestones.

  2. The One-Year Crew returns on This Week @NASA – March 4, 2016

    NASA Image and Video Library

    2016-03-04

    After spending nearly a year aboard the International Space Station -- conducting a host of biomedical and psychological research on the impacts of long-duration spaceflight on the human body, NASA’s Scott Kelly and Mikhail Kornienko of the Russian space agency Roscosmos wrapped up their historic mission on March 1 – with a safe parachute landing in Kazakhstan . Just over a day, later – at Houston’s Ellington Field, near Johnson Space Center, a host of family, colleagues and VIPs welcomed Kelly back to the United States, including Second Lady of the United States Dr. Jill Biden, Assistant to the President for Science and Technology Dr. John P. Holdren, and NASA Administrator Charles Bolden. There were cheers, embraces and expressions of appreciation for his efforts to help advance deep space exploration and America’s Journey to Mars. Also, Next ISS crew heads to launch site, “Low boom” aircraft, Orion Service Module’s solar array wing deployment and more!

  3. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    USGS Publications Warehouse

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  4. NASA Space Environments Technical Discipline Team Space Weather Activities

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  5. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  6. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  7. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U. S. Deep South Summer Convection

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Case, J. L.; Zavodsky, B. T.; Srikishen, J.; Medlin, J. M.; Wood, L.

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics parameterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRT Center to select NOAA/NWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boundary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage of lightning activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  8. The Deep Space Network stability analyzer

    NASA Technical Reports Server (NTRS)

    Breidenthal, Julian C.; Greenhall, Charles A.; Hamell, Robert L.; Kuhnle, Paul F.

    1995-01-01

    A stability analyzer for testing NASA Deep Space Network installations during flight radio science experiments is described. The stability analyzer provides realtime measurements of signal properties of general experimental interest: power, phase, and amplitude spectra; Allan deviation; and time series of amplitude, phase shift, and differential phase shift. Input ports are provided for up to four 100 MHz frequency standards and eight baseband analog (greater than 100 kHz bandwidth) signals. Test results indicate the following upper bounds to noise floors when operating on 100 MHz signals: -145 dBc/Hz for phase noise spectrum further than 200 Hz from carrier, 2.5 x 10(exp -15) (tau =1 second) and 1.5 x 10(exp -17) (tau =1000 seconds) for Allan deviation, and 1 x 10(exp -4) degrees for 1-second averages of phase deviation. Four copies of the stability analyzer have been produced, plus one transportable unit for use at non-NASA observatories.

  9. Continuous Risk Management at NASA

    NASA Technical Reports Server (NTRS)

    Hammer, Theodore F.; Rosenberg, Linda

    1999-01-01

    NPG 7120.5A, "NASA Program and Project Management Processes and Requirements" enacted in April, 1998, requires that "The program or project manager shall apply risk management principles..." The Software Assurance Technology Center (SATC) at NASA GSFC has been tasked with the responsibility for developing and teaching a systems level course for risk management that provides information on how to comply with this edict. The course was developed in conjunction with the Software Engineering Institute at Carnegie Mellon University, then tailored to the NASA systems community. This presentation will briefly discuss the six functions for risk management: (1) Identify the risks in a specific format; (2) Analyze the risk probability, impact/severity, and timeframe; (3) Plan the approach; (4) Track the risk through data compilation and analysis; (5) Control and monitor the risk; (6) Communicate and document the process and decisions. This risk management structure of functions has been taught to projects at all NASA Centers and is being successfully implemented on many projects. This presentation will give project managers the information they need to understand if risk management is to be effectively implemented on their projects at a cost they can afford.

  10. Stirling Technology Development at NASA GRC. Revised

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  11. Development of a Ground Test and Analysis Protocol to Support NASA's NextSTEP Phase 2 Habitation Concepts

    NASA Technical Reports Server (NTRS)

    Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Gernhardt, Michael L.

    2018-01-01

    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support extensive human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts have been tasked with developing the ground test protocol that will serve as the primary means by which these Phase 2 prototype habitats will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational products, tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the NextSTEP Phase 2 Habitation Concepts is to consistently evaluate the different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3.

  12. The NASA light-emitting diode medical program-progress in space flight and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Whelan, Harry T.; Houle, John M.; Whelan, Noel T.; Donohoe, Deborah L.; Cwiklinski, Joan; Schmidt, Meic H.; Gould, Lisa; Larson, David L.; Meyer, Glenn A.; Cevenini, Vita; Stinson, Helen

    2000-01-01

    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate cell growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long termspace flight. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. This LED-technology is also biologically optimal for photodynamic therapy of cancer. .

  13. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  14. The study of deep-sea cephalopods.

    PubMed

    Hoving, Henk-Jan T; Perez, Jose Angel A; Bolstad, Kathrin S R; Braid, Heather E; Evans, Aaron B; Fuchs, Dirk; Judkins, Heather; Kelly, Jesse T; Marian, José E A R; Nakajima, Ryuta; Piatkowski, Uwe; Reid, Amanda; Vecchione, Michael; Xavier, José C C

    2014-01-01

    "Deep-sea" cephalopods are here defined as cephalopods that spend a significant part of their life cycles outside the euphotic zone. In this chapter, the state of knowledge in several aspects of deep-sea cephalopod research are summarized, including information sources for these animals, diversity and general biogeography and life cycles, including reproduction. Recommendations are made for addressing some of the remaining knowledge deficiencies using a variety of traditional and more recently developed methods. The types of oceanic gear that are suitable for collecting cephalopod specimens and images are reviewed. Many groups of deep-sea cephalopods require taxonomic reviews, ideally based on both morphological and molecular characters. Museum collections play a vital role in these revisions, and novel (molecular) techniques may facilitate new use of old museum specimens. Fundamental life-cycle parameters remain unknown for many species; techniques developed for neritic species that could potentially be applied to deep-sea cephalopods are discussed. Reproductive tactics and strategies in deep-sea cephalopods are very diverse and call for comparative evolutionary and experimental studies, but even in the twenty-first century, mature individuals are still unknown for many species. New insights into diet and trophic position have begun to reveal a more diverse range of feeding strategies than the typically voracious predatory lifestyle known for many cephalopods. Regular standardized deep-sea cephalopod surveys are necessary to provide insight into temporal changes in oceanic cephalopod populations and to forecast, verify and monitor the impacts of global marine changes and human impacts on these populations. © 2014 Elsevier Ltd All rights reserved.

  15. The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science

    NASA Astrophysics Data System (ADS)

    Manning, James G.; Lawton, Brandon L.; Gurton, Suzanne; Smith, Denise Anne; Schultz, Gregory; Astrophysics Community, NASA

    2015-08-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of the current generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov and specifically from http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.The presentation will describe the collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists

  16. NASA's Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Johnson, Les; McNutt, Leslie; Castillo-Rogez, Julie

    2017-01-01

    NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission and laying the groundwork for their future use in deep space science and exploration missions. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m2 solar sail and will weigh less than 14 kilograms. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 3 microns thick. NEA Scout will launch on the Space Launch System (SLS) first mission in 2018 and deploy from the SLS after the Orion spacecraft is separated from the SLS upper stage. The NEA Scout spacecraft will stabilize its orientation after ejection using an onboard cold-gas thruster system. The same system provides the vehicle Delta-V sufficient for a lunar flyby. After its first encounter with the moon, the 86 m2 sail will deploy, and the sail characterization phase will begin. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. Once the system is checked out, the spacecraft will perform a series of lunar flybys until it achieves optimum departure trajectory to the target asteroid. The spacecraft will then begin its two year-long cruise. About one month before the asteroid flyby, NEA Scout will pause to search for the target and start its approach phase using a combination of radio tracking and optical navigation. The solar sail will provide

  17. Hartley 2 in 3-D

    NASA Image and Video Library

    2010-11-18

    This 3-D image shows the region where NASA Deep Impact mission sent a probe into the surface of comet Tempel 1 in 2005. This picture was taken six years after the Deep Impact collision. 3D glasses are necessary to view this image.

  18. Major technological innovations introduced in the large antennas of the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.

    2002-01-01

    The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.

  19. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  20. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea.

    PubMed

    Lauria, V; Garofalo, G; Fiorentino, F; Massi, D; Milisenda, G; Piraino, S; Russo, T; Gristina, M

    2017-08-14

    Deep-sea coral assemblages are key components of marine ecosystems that generate habitats for fish and invertebrate communities and act as marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to human impacts such as fishing. They are an indicator of vulnerable marine ecosystems (VMEs), therefore their conservation is essential to preserve marine biodiversity. In the Mediterranean Sea deep-sea coral habitats are associated with commercially important crustaceans, consequently their abundance has dramatically declined due to the effects of trawling. Marine spatial planning is required to ensure that the conservation of these habitats is achieved. Species distribution models were used to investigate the distribution of two critically endangered octocorals (Funiculina quadrangularis and Isidella elongata) in the central Mediterranean as a function of environmental and fisheries variables. Results show that both species exhibit species-specific habitat preferences and spatial patterns in response to environmental variables, but the impact of trawling on their distribution differed. In particular F. quadrangularis can overlap with fishing activities, whereas I. elongata occurs exclusively where fishing is low or absent. This study represents the first attempt to identify key areas for the protection of soft and compact mud VMEs in the central Mediterranean Sea.

  1. NASA Docking System (NDS) Technical Integration Meeting

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2010-01-01

    This slide presentation reviews the NASA Docking System (NDS) as NASA's implementation of the International Docking System Standard (IDSS). The goals of the NDS, is to build on proven technologies previously demonstrated in flight and to advance the state of the art of docking systems by incorporating Low Impact Docking System (LIDS) technology into the NDS. A Hardware Demonstration was included in the meeting, and there was discussion about software, NDS major system interfaces, integration information, schedule, and future upgrades.

  2. Orion Spacecraft Parachute Test on This Week @NASA – March 10, 2017

    NASA Image and Video Library

    2017-03-10

    NASA conducted the latest successful test of the Orion spacecraft’s parachute system on March 8 in the skies above the U.S. Army’s Yuma Proving Ground in Arizona. The test was designed to evaluate the parachutes’ performance in an emergency abort situation that would require Orion to be jettisoned from the agency’s Space Launch System rocket during a launch. Even at this relatively low altitude, the parachutes are designed to fully deploy and safely return Orion and its crew to Earth. Also, Shin Honored by Aviation Week, Space Station Resupply Mission Targeted for March 19, Small Business Innovation Proposals Selected, Deep Space Atomic Clock, Modern Figures Virtual Tour, and NASA Aero “Night of Flight”!

  3. Development of Li-Metal Battery Cell Chemistries at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lvovich, Vadim F.

    2015-01-01

    State-of-the-Art lithium-ion battery technology is limited by specific energy and thus not sufficiently advanced to support the energy storage necessary for aerospace needs, such as all-electric aircraft and many deep space NASA exploration missions. In response to this technological gap, our research team at NASA Glenn Research Center has been active in formulating concepts and developing testing hardware and components for Li-metal battery cell chemistries. Lithium metal anodes combined with advanced cathode materials could provide up to five times the specific energy versus state-of-the-art lithium-ion cells (1000 Whkg versus 200 Whkg). Although Lithium metal anodes offer very high theoretical capacity, they have not been shown to successfully operate reversibly.

  4. A Deep Space Network Portable Radio Science Receiver

    NASA Technical Reports Server (NTRS)

    Jongeling, Andre P.; Sigman, Elliott H.; Chandra, Kumar; Trinh, Joseph T.; Navarro, Robert; Rogstad, Stephen P.; Goodhart, Charles E.; Proctor, Robert C.; Finley, Susan G.; White, Leslie A.

    2009-01-01

    The Radio Science Receiver (RSR) is an open-loop receiver installed in NASA s Deep Space Network (DSN), which digitally filters and records intermediate-frequency (IF) analog signals. The RSR is an important tool for the Cassini Project, which uses it to measure perturbations of the radio-frequency wave as it travels between the spacecraft and the ground stations, allowing highly detailed study of the composition of the rings, atmosphere, and surface of Saturn and its satellites.

  5. The Great Observatories Origins Deep Survey (GOODS): Overview and Status

    NASA Astrophysics Data System (ADS)

    Hook, R. N.; GOODS Team

    2002-12-01

    GOODS is a very large project to gather deep imaging data and spectroscopic followup of two fields, the Hubble Deep Field North (HDF-N) and the Chandra Deep Field South (CDF-S), with both space and ground-based instruments to create an extensive multiwavelength public data set for community research on the distant Universe. GOODS includes a SIRTF Legacy Program (PI: Mark Dickinson) and a Hubble Treasury Program of ACS imaging (PI: Mauro Giavalisco). The ACS imaging was also optimized for the detection of high-z supernovae which are being followed up by a further target of opportunity Hubble GO Program (PI: Adam Riess). The bulk of the CDF-S ground-based data presently available comes from an ESO Large Programme (PI: Catherine Cesarsky) which includes both deep imaging and multi-object followup spectroscopy. This is currently complemented in the South by additional CTIO imaging. Currently available HDF-N ground-based data forming part of GOODS includes NOAO imaging. Although the SIRTF part of the survey will not begin until later in the year the ACS imaging is well advanced and there is also a huge body of complementary ground-based imaging and some follow-up spectroscopy which is already publicly available. We summarize the current status of GOODS and give an overview of the data products currently available and present the timescales for the future. Many early science results from the survey are presented in other GOODS papers at this meeting. Support for the HST GOODS program presented here and in companion abstracts was provided by NASA thorugh grant number GO-9425 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  6. NASA Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The Clean Air Act (CAA) regulations have greatly impacted materials and processes utilized in the manufacture of aerospace hardware. Code JE/ NASA's Environmental Management Division at NASA Headquarters recognized the need for a formal, Agency-wide review process of CAA regulations. Marshall Space Flight Center (MSFC) was selected as the 'Principal Center for Review of Clean Air Act Regulations'. This presentation describes the centralized support provided by MSFC for the management and leadership of NASA's CAA regulation review process.

  7. Benefit from NASA

    NASA Image and Video Library

    2004-04-15

    Technology derived by NASA for monitoring control gyros in the Skylab program is directly applicable to the problems of fault detection of railroad wheel bearings. Marhsall Space Flight Center's scientists have developed a detection concept based on the fact that bearing defects excite resonant frequency of rolling elements of the bearing as they impact the defect. By detecting resonant frequency and subsequently analyzing the character of this signal, bearing defects may be detected and identified as to source.

  8. Feasibility of NASA TT&C via Commercial Satellite Services

    NASA Technical Reports Server (NTRS)

    Mitchell, Carl W.; Weiss, Roland

    1997-01-01

    This report presents the results of a study to identify impact and driving requirements by implementing commercial satellite communications service into traditional National Aeronautics and Space Administration (NASA) space-ground communications. The NASA communication system is used to relay spacecraft and instrument commands, telemetry and science data. NASA's goal is to lower the cost of operation and increase the flexibility of spacecraft operations. Use of a commercial network offers the opportunity to contact a spacecraft on a nearly "on-demand" basis with ordinary phone calls to enable real time interaction with science events.

  9. Impact of Northern California Fires Seen in New NASA Satellite Image

    NASA Image and Video Library

    2017-10-23

    As firefighters continue to work toward full containment of the rash of wildfires burning in Northern California, a new image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite shows the growing fire scar on the landscape. In this ASTER image, acquired Oct. 21, 2017, vegetation is red, while burned areas appear dark gray. The image covers an area of 38 by 39 miles (60.5 by 63 kilometers) and is located near 38.5 degrees north, 122.4 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22049

  10. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and NASA Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  11. Technology Development for a Stirling Radioisotope Power System for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Qiu, Songgang; White, Maurice A.

    2000-01-01

    NASA Glenn Research Center and the Department of Energy (DOE) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase 2 SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a 40 to 50 fold reduction in vibrations, compared to an unbalanced convertor, with a synchronous connection of two thermodynamically independent free-piston Stirling convertors. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over a mission lifetime, even in the unlikely event of a failed convertor. This paper discusses the status and results for these two SBIR projects and also presents results for characterizing the friction factor of high-porosity random fiber regenerators that are being used for this application.

  12. Deep Charging Evaluation of Satellite Power and Communication System Components

    NASA Technical Reports Server (NTRS)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    A set of deep charging tests has been carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. The samples, which included solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, were placed in passive and active (powered) circuit configurations and exposed to electron radiation. The energy of the electron radiation was chosen to deeply penetrate insulating (dielectric) materials on each sample. Each circuit configuration was monitored to determine if potentially damaging electrostatic discharge events (arcs) were developed on the coupon as a result of deep charging. The motivation for the test, along with charging levels, experimental setup, sample details, and results will be discussed.

  13. NASA Collaborative Design Processes

    NASA Technical Reports Server (NTRS)

    Jones, Davey

    2017-01-01

    This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.

  14. Impact of the Mesoscale Dynamics on Ocean Deep Convection: The 2012-2013 Case Study in the Northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jerome; Giordani, Herve; Sevault, Florence; Testor, Pierre

    2017-11-01

    Winter 2012-2013 was a particularly intense and well-observed Dense Water Formation (DWF) event in the Northwestern Mediterranean Sea. In this study, we investigate the impact of the mesoscale dynamics on DWF. We perform two perturbed initial state simulation ensembles from summer 2012 to 2013, respectively, mesoscale-permitting and mesoscale-resolving, with the AGRIF refinement tool in the Mediterranean configuration NEMOMED12. The mean impact of the mesoscale on DWF occurs mainly through the high-resolution physics and not the high-resolution bathymetry. This impact is shown to be modest: the mesoscale does not modify the chronology of the deep convective winter nor the volume of dense waters formed. It however impacts the location of the mixed patch by reducing its extent to the west of the North Balearic Front and by increasing it along the Northern Current, in better agreement with observations. The maximum mixed patch volume is significantly reduced from 5.7 ± 0.2 to 4.2 ± 0.6 × 1013 m3. Finally, the spring restratification volume is more realistic and enhanced from 1.4 ± 0.2 to 1.8 ± 0.2 × 1013 m3 by the mesoscale. We also address the mesoscale impact on the ocean intrinsic variability by performing perturbed initial state ensemble simulations. The mesoscale enhances the intrinsic variability of the deep convection geography, with most of the mixed patch area impacted by intrinsic variability. The DWF volume has a low intrinsic variability but it is increased by 2-3 times with the mesoscale. We relate it to a dramatic increase of the Gulf of Lions eddy kinetic energy from 5.0 ± 0.6 to 17.3 ± 1.5 cm2/s2, in remarkable agreement with observations.

  15. Deep Impact, Stardust-NExT and the Behavior of Comet 9P/Tempel 1 from 1997 to 2010

    NASA Technical Reports Server (NTRS)

    Meech, K. J.; Pittichova, J.; Yang, B.; Zenn, A.; Belton, M. J. S.; A'Hearn, M. F.; Bagnulo, S.; Bai, J.; Barrera, L.; Bauer, J. M.; hide

    2011-01-01

    We present observational data for Comet 9P/Tempel 1 taken from 1997 through 2010 in an international collaboration in support of the Deep Impact and Stardust-NExT missions. The data were obtained to characterize the nucleus prior to the Deep Impact 2005 encounter, and to enable us to understand the rotation state in order to make a time of arrival adjustment in February 2010 that would allow us to image at least 25% of the nucleus seen by the Deep Impact spacecraft to better than 80 m/pixel, and to image the crater made during the encounter, if possible. In total, approx.500 whole or partial nights were allocated to this project at 14 observatories worldwide, utilizing 25 telescopes. Seventy percent of these nights yielded useful data. The data were used to determine the linear phase coefficient for the comet in the R-band to be 0.045 +/- 0.001 mag/deg from 1deg to 16deg. Cometary activity was observed to begin inbound near r approx. 4.0 AU and the activity ended near r approx. 4.6 AU as seen from the heliocentric secular light curves, water-sublimation models and from dust dynamical modeling. The light curve exhibits a significant pre- and post-perihelion brightness and activity asymmetry. There was a secular decrease in activity between the 2000 and 2005 perihelion passages of approx. 20%. The post-perihelion light curve cannot be easily explained by a simple decrease in solar insolation or observing geometry. CN emission was detected in the comet at 2.43 AU pre-perihelion, and by r = 2.24 AU emission from C2 and C3 were evident. In December 2004 the production rate of CN increased from 1.8 x 10(exp 23) mol/s to Q(sub CN) = 2.75 x 10(exp 23) mol/s in early January 2005 and 9.3 x 10(exp 24) mol/s on June 6, 2005 at r = 1.53 AU.

  16. Climatic Impact of a Change in North Atlantic Deep Water Formation

    NASA Technical Reports Server (NTRS)

    Rind, D.

    1984-01-01

    The response of the ocean to climate changes is one of the most uncertain questions regarding the impact of increasing CO2 on climate and society. North Atlantic deep water (NADW) formation apparently depends on a complex confluence of different water masses originating in different areas, all of which will presumably be affected by changes in wind, evaporation, etc., as the atmosphere warms. To analyze from first principles what the effect will be on NADW formation is a task which requires an ocean modeling capability not yet available. As a substitute, past climates can be investigated to see if there is any evidence for alterations in NADW formation. In addition, the possible impact of such changes on climate can be explored. An estimate of NADW sensitivity (at least in the past) and of the climate consequences can be studied. The North Atlantic surface water temperatures can be reconstructed to indicate a substantial cooling between 11,000 and 10,000 years B.P. Were NADW formation to have ceased, it would have resulted in cooler surface waters; whether the reconstructed temperatures were due to this or some other effect cannot be determined at this time. Nevertheless, it was decided that it would be useful to see what the effect these colder temperatures would have had on the climate.

  17. NASA's Space Launch System: Progress Report

    NASA Technical Reports Server (NTRS)

    Cook, Jerry; Lyles, Garry

    2017-01-01

    After more than four decades exploring the space environment from low Earth orbit and developing long-duration spaceflight operational experience with the International Space Station (ISS), NASA is once again preparing to send explorers into deep space. Development, test and manufacturing is now underway on the launch vehicle, the crew spacecraft and the ground processing and launch facilities to support human and robotic missions to the moon, Mars and the outer solar system. The enabling launch vehicle for these ambitious new missions is the Space Launch System (SLS), managed by NASA's Marshall Space Flight Center (MSFC). Since the program began in 2011, the design has passed Critical Design Review, and extensive development, test and flight hardware has been produced by every major element of the SLS vehicle. Testing continues on engines, boosters, tanks and avionics. While the program has experienced engineering challenges typical of a new development, it continues to make steady progress toward the first SLS mission in roughly two years and a sustained cadence of missions thereafter. This paper will discuss these and other technical and SLS programmatic successes and challenges over the past year and provide a preview of work ahead before first flight.

  18. New Inquiry into Distribution and Mechanism of Deep Moonquakes with Recently Identified Seismic Events

    NASA Technical Reports Server (NTRS)

    Nakamura, Yosio

    2005-01-01

    The objectives of the project were (1) to complete our preceding effort, supported by NASA grant NAGS-1 1619, of searching for deep moonquakes in the far hemisphere of the Moon among the seismic events detected by the Apollo seismic array; and (2) to re-examine the distribution and mechanism of deep moonquakes in the light of the newly identified deep moonquakes. The project was originally planned for completion in three years, of which only the first year, covered by this report, was funded. As a result, we were able to address only the first objective during the period, and the major part of the second objective was left for the future.

  19. The QBO Impact on Stratospheric Composition as Revealed by the MERRA-2 GMI Simulation and NASA Satellite Observations

    NASA Astrophysics Data System (ADS)

    Oman, L.; Strahan, S. E.

    2017-12-01

    The Quasi-Biennial Oscillation (QBO) is the dominant mode of variability in the tropical stratosphere on interannual time scales. It has been shown to impact both stratospheric dynamics and important trace gas constituent distributions. The QBO timing with respect to the seasonal cycle in each hemisphere is significant in determining its impact on up to decadal scale variability. The composition response to the QBO is examined using the new MERRA-2 GMI "Replay" simulation, an atmospheric composition community resource, run at the native MERRA-2 approximately ½° horizontal resolution on the cubed sphere. MERRA-2 GMI is driven by the online use of key MERRA-2 meteorological quantities (i.e. U, V, T, and P) with all other variables calculated in response to those and boundary condition forcings from 1980-2016. The simulation combined with NASA's UARS and Aura satellite measurements have allowed us to quantify the impact of the QBO on stratospheric composition in more detail than was ever possible before. Revealing preferential pathways and transport timings necessary in understanding the QBO impact on composition throughout the stratosphere.

  20. NASA Experience with CMM and CMMI

    NASA Technical Reports Server (NTRS)

    Crumbley, Tim; Kelly, John C.

    2010-01-01

    This slide presentation reviews the experience NASA has had in using Capability Maturity Model (CMM) and Capability Maturity Model Integration (CMMI). In particular this presentation reviews the agency's experience within the software engineering discipline and the lessons learned and key impacts from using CMMI.