Sample records for nascent epilithic stream

  1. Sampler collection gadget for epilithic diatoms.

    PubMed

    Salomoni, S E; Torgan, L C; Rocha, O

    2007-11-01

    This work present a new gadget for sampling epilithic diatoms from both lentic and lotic enviroments. The sampler consists of a polystyrene cylinder, left to float on the surface of the water, to which stone substrates are attached. This epilithic diatom sampler (EDS) can be used to detect spatial and temporal richness and density variation in the study of the diatom community, as well as in water quality monitoring.

  2. Epilithic Chamaesiphon (Synechococcales, Cyanobacteria) species in mountain streams of the Alps-interspecific differences in photo-physiological traits.

    PubMed

    Aigner, Siegfried; Herburger, Klaus; Holzinger, Andreas; Karsten, Ulf

    2018-01-01

    Many alpine streams inhabit conspicuous epilithic biofilms on pebbles and rocks that are formed by members of the cyanobacterial genus Chamaesiphon (Synechococcales). In the Austrian Alps, some Chamaesiphon species can even overgrow up to 70% of the surface of river rocks, and hence they must play an important but still unstudied ecological role in the organic matter flux. Since photo-biological traits have not been investigated so far, photosynthetic features, pigments, and UV-sunscreen compounds were studied in three Chamaesiphon morphospecies ( C. geitleri , C. polonicus , C. starmachii ). These species form conspicuously differently colored spots on cobbles and boulders in the alpine streams. While C. polonicus typically forms red crusts on flat pebble conglomerate, C. geitleri and C. starmachii are characterized by dark brown and black biofilms in the field, respectively. Photosynthesis-irradiance (PE) curves indicate that all three Chamaesiphon species have different light requirements for photosynthesis, with C. starmachii and C. polonicus preferring high and low photon fluence rates, respectively, while C. geitleri takes a position in between. This low-light requirement of C. polonicus is also reflected in ca. ten-times lower chlorophyll a , zeaxanthin, and ß-carotene concentrations, as well as in a lack of the UV-sunscreen scytonemin. All Chamaesiphon morphospecies exhibit the mycosporine-like amino acid porphyra-334. The physiological and biochemical data indicate strong intraspecific differences in photosynthetic activity and pigment patterns, which explain well the distinct preferences of the three studied Chamaesiphon morphospecies for sun-exposed or shaded habitats.

  3. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes.

    PubMed

    Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2012-11-01

    Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than

  4. Downstream change in leucine aminopeptidase activity and leucine assimilation by epilithic microbiota along the River Swale, northern England.

    PubMed

    Ainsworth, A M; Goulder, R

    2000-05-05

    Parallel determinations of epilithic extracellular leucine aminopeptidase activity and leucine assimilation were made at five sites along 112 km of the River Swale and also in two tributaries, the River Wiske and Cod Beck. Epilithic leucine aminopeptidase activity along the Swale increased with distance downstream; this increase was gradual, rather than stepwise in response to specific sewage-works outfalls. Epilithic leucine assimilation, in contrast, did not consistently increase along the river. Epilithic leucine aminopeptidase activity and leucine assimilation were both potentially controlled by epilithic microbial variables (bacterial abundance and chlorophyll a) while leucine aminopeptidase activity was also strongly related to water-quality variables, especially temperature, pH and conductivity. Epilithic leucine aminopeptidase activity and leucine assimilation were coupled, but the magnitude of aminopeptidase activity was always substantially greater than that of leucine assimilation. Arguments are presented, however, which suggest that this did not necessarily indicate the constant availability of excess leucine, and by inference amino-acid nitrogen, to epilithic bacteria. Values of epilithic leucine aminopeptidase activity and leucine assimilation, expressed relative to rates in overlying water, suggested that most activity and assimilation was epilithic rather than planktonic, although the planktonic contribution was proportionately greater at the deeper, more downstream, sites. In the tributaries, River Wiske and Cod Beck, values of epilithic leucine aminopeptidase activity and epilithic microbial abundance, as well as those of many water-quality variables, resembled values in the middle and lower Swale. Thus, these tributaries were essentially lowland, enriched watercourses being very different from the headstreams of the main river.

  5. The influence of Dworshak Dam on epilithic community metabolism in the Clearwater River, U.S.A.

    USGS Publications Warehouse

    Munn, M.D.; Brusven, M.A.

    2004-01-01

    Epilithic community metabolism was determined on a seasonal basis over two years in nonregulated and regulated reaches of the Clearwater River in northern Idaho, U.S.A. Metabolism was estimated using three, 12-liter recirculating chambers and the dissolved oxygen method, with parameters expressed as g O2 m−2 d−1. In the nonregulated reach above the reservoir, gross community productivity (GCP) ranged from 0.8 to 3.2, community respiration (CR24) from 0.3 to 1.2, and production/respiration (P/R) ratios from 1.2 to 3.3. Epilithic metabolism in the regulated reach immediately below the dam increased sharply; GCP ranged from 4.2 to 25.5, CR24 from 1.9 to 9.7, and P/R ratios from 1.4 to 5.7. Increased primary production and respiration in the regulated reach was a result of extensive growth of an aquatic moss (Fontanalis neo-mexicanus). The influence of the dam on epilithic community metabolism was mitigated 2.5 km downstream of the dam due to the regulated North Fork of the Clearwater River (NFCR) merging with the larger, nonregulated Clearwater River. While the regulated Clearwater River below the confluence was somewhat affected by the regulated NFCR flows upstream, metabolism was similar to that found above the reservoir (GCP = 1.2 – 2.6, CR24 = 0.6 – 1.3, and P/R = 1.4 – 2.2). This study demonstrates that while Dworshak Dam has altered both primary production and respiration directly below the dam, the placement of the dam only 2.5 km upstream from a nonregulated reach greatly mitigates its effects on stream metabolism downstream.

  6. Succession and seasonal variation in epilithic biofilms on artificial reefs in culture waters of the sea cucumber Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Liu, Liming; Du, Rongbin; Zhang, Xiaoling; Dong, Shuanglin; Sun, Shichun

    2017-01-01

    Periphytic biofilms in aquaculture waters are thought to improve water quality, provide an additional food source, and improve the survival and growth of some reared animals. In the Asia- Pacific region, particularly in China, artificial reefs are commonly used in the commercial farming of sea cucumbers. However, few studies have examined the epilithic biofilms on the artificial reefs. To gain a better understanding of the succession of epilithic biofilms and their ecological processes in sea cucumber culture waters, two experiments were conducted in culture waters of the sea cucumber Apostichopus japonicus in Rongcheng, China, using artificial test panels. On the test panels of succession experiment, more than 67 species were identified in the biofilms. On the test panels of seasonal variation experiment, more than 46 species were recorded in the biofilms. In both experiments, communities of epilithic biofilms were dominated by diatoms, green algae and the annelid Spirorbis sp. In the initial colonization, the dominant diatoms were Cocconeis sp., Amphora spp. and Nitzschia closterium in June, which were succeeded by species of Navicula, Cocconeis and Nitzschia (July to September), and then by Licmophora abbreviata, Nitzschia closterium and Synedra spp. in the following months. A diatom bloom in the autumn and filamentous green algae burst in the summer were also observed. Ecological indices well annotated the succession and seasonal changes in epilithic communities. Multidimensional scaling (MDS) analysis found significant differences in diatom community composition among months and seasons. Fast growth of biofilms was observed in the summer and autumn, whereas the biomass of summer biofilms was largely made up of filamentous green algae. Present results show that the components of epilithic biofilms are mostly optimal foods of A. japonicus, suggesting that biofilms on artificial reefs may contribute important nutritional sources for sea cucumbers during their

  7. Temperature and Nutrients Interact to Control Nitrogen Fixation in a Subalpine Stream: An Experimental Examination

    NASA Astrophysics Data System (ADS)

    Marcarelli, A. M.

    2005-05-01

    To test the importance of factors controlling N-fixation in subalpine streams, I conducted a stream-side mesocosm experiment with epilithic communities and nutrient diffusing substrates (NDS) to test how temperature and nutrients interact to influence algal communities. Within two days, warm temperature (18°C) stimulated N-fixation by Calothrix in the epilithic community 2X above cold temperature (13°C), indicating a strong physiological response. Community responses measured on NDS indicated that cold-water diatoms dominated by day 45 in the cold treatment, while diatoms containing N-fixing endosymbionts dominated only in warm treatments with added phosphorus. There was a significant interaction between nutrient supply and temperature on N-fixation rates in the experiment. On nutrient controls, warm temperature boosted fixation 2X above cold temperature, but when P was added, temperature increased fixation 20X. This study indicates that N-fixation is stimulated both by temperature and nutrients in this stream, but the magnitude of response to phosphorus was much greater than to temperature. Furthermore, our results support the hypothesis that biological characteristics in streams, including community structure and biogeochemical processes, can be altered in complex ways by disturbances like grazing and logging that alter multiple controlling factors simultaneously.

  8. Epilithic lichens in the Beacon sandstone formation, Victoria Land, Antarctica

    NASA Technical Reports Server (NTRS)

    Hale, M. E.; Friedmann, E. I. (Principal Investigator)

    1987-01-01

    The epilithic lichen flora on the Beacon sandstone formation in Victoria Land consists of seven species: Acarospora gwynnii Dodge & Rudolph, Buellia grisea Dodge & Baker, B. pallida Dodge & Baker, Carbonea capsulata (Dodge & Baker) Hale comb. nov., Lecanora fuscobrunnea Dodge & Baker, Lecidea cancriformis Dodge & Baker, and L. siplei Dodge & Baker. The typification of the species is given along with descriptions and distribution in Antarctica.

  9. Food availability on the shore: Linking epilithic and planktonic microalgae to the food ingested by two intertidal gastropods.

    PubMed

    Ding, Meng-Wen; Wang, Zhao-Kai; Dong, Yun-Wei

    2018-05-01

    Research on the interaction of primary producers and consumers is crucial for understanding trophic transfer in intertidal food webs. This study explores the association between epilithic and planktonic microalgae, and gut contents of two targeted intertidal gastropods, the periwinkle Echinolittorina radiata (splash zone) and the limpet Cellana toreuma (mid-intertidal zone). With the application of gut fluorescence technique and metabarcoding, this study investigates the quantity and composition of two different sources of microalgae (epilithic and planktonic) and the food ingested by the gastropods. The results suggest the following findings: 1) The planktonic microalgae have higher compositional similarity to the gut contents of grazing gastropods. 2) Increased gut pigment content in C. toreuma is observed with increasing abundance of epilithic and planktonic microalgae. However, there was no such pattern observed for E. radiata. This difference could be attributed to potentially divergent foraging behaviours of the two species that inhabit different shore heights. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site.

    PubMed

    McNamara, Christopher J; Perry, Thomas D; Bearce, Kristen A; Hernandez-Duque, Guillermo; Mitchell, Ralph

    2006-01-01

    Biodeterioration of archaeological sites and historic buildings is a major concern for conservators, archaeologists, and scientists involved in preservation of the world's cultural heritage. The Maya archaeological sites in southern Mexico, some of the most important cultural artifacts in the Western Hemisphere, are constructed of limestone. High temperature and humidity have resulted in substantial microbial growth on stone surfaces at many of the sites. Despite the porous nature of limestone and the common occurrence of endolithic microorganisms in many habitats, little is known about the microbial flora living inside the stone. We found a large endolithic bacterial community in limestone from the interior of the Maya archaeological site Ek' Balam. Analysis of 16S rDNA clones demonstrated disparate communities (endolithic: >80% Actinobacteria, Acidobacteria, and Low GC Firmicutes; epilithic: >50% Proteobacteria). The presence of differing epilithic and endolithic bacterial communities may be a significant factor for conservation of stone cultural heritage materials and quantitative prediction of carbonate weathering.

  11. Analysis on biomass and productivity of epilithic algae and their relations to environmental factors in the Gufu River basin, Three Gorges Reservoir area, China.

    PubMed

    Ge, Jiwen; Wu, Shuyuan; Touré, Dado; Cheng, Lamei; Miao, Wenjie; Cao, Huafen; Pan, Xiaoying; Li, Jianfeng; Yao, Minmin; Feng, Liang

    2017-12-01

    The main purpose of this study conducted from August 2010 was to find biomass and productivity of epilithic algae and their relations to environmental factors and try to explore the restrictive factors affecting the growth of algae in the Gufu River, the one of the branches of Xiangxi River located in the Three Gorges Reservoir of the Yangtze River, Hubei Province, Central China. An improved method of in situ primary productivity measurement was utilized to estimate the primary production of the epilithic algae. It was shown that in rivers, lakes, and reservoirs, algae are the main primary producers and have a central role in the ecosystem. Chlorophyll a concentration and ash-free dry mass (AFDM) were estimated for epilithic algae of the Gufu River basin in Three Gorges Reservoir area. Environmental factors in the Gufu River ecosystem highlighted differences in periphyton chlorophyll a ranging from 1.49 mg m -2 (origin) to 69.58 mg m -2 (terminal point). The minimum and maximum gross primary productivity of epilithic algae were 96.12 and 1439.89 mg C m -2  day -1 , respectively. The mean net primary productivity was 290.24 mg C m -2  day -1 . The mean autotrophic index (AFDM:chlorophyll a) was 407.40. The net primary productivity, community respiration ratio (P/R ratio) ranged from 0.98 to 9.25 with a mean of 2.76, showed that autotrophic productivity was dominant in the river. Relationship between physicochemical characteristics and biomass was discussed through cluster and stepwise regression analysis which indicated that altitude, total nitrogen (TN), NO 3 - -N, and NH 4 + -N were significant environmental factors affecting the biomass of epilithic algae. However, a negative logarithmic relationship between altitude and the chlorophyll a of epilithic algae was high. The results also highlighted the importance of epilithic algae in maintaining the Gufu River basin ecosystems health.

  12. Interactive effects of ocean acidification and warming on coral reef associated epilithic algal communities under past, present-day and future ocean conditions

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Cantin, N. E.; Strahl, J.; Kaniewska, P.; Bay, L.; Wild, C.; Uthicke, S.

    2016-06-01

    Epilithic algal communities play critical ecological roles on coral reefs, but their response to individual and interactive effects of ocean warming (OW) and ocean acidification (OA) is still largely unknown. We investigated growth, photosynthesis and calcification of early epilithic algal community assemblages exposed for 6 months to four temperature profiles (-1.1, ±0.0, +0.9, +1.6 °C) that were crossed with four carbon dioxide partial pressure (pCO2) levels (360, 440, 650, 940 µatm), under flow-through conditions and natural light regimes. Additionally, we compared the cover of heavily calcified crustose coralline algae (CCA) and lightly calcified red algae of the genus Peyssonnelia among treatments. Increase in cover of epilithic communities showed optima under moderately elevated temperatures and present pCO2, while cover strongly decreased under high temperatures and high-pCO2 conditions, particularly due to decreasing cover of CCA. Similarly, community calcification rates were strongly decreased at high pCO2 under both measured temperatures. While final cover of CCA decreased under high temperature and pCO2 (additive negative effects), cover of Peyssonnelia spp. increased at high compared to annual average and moderately elevated temperatures. Thus, cover of Peyssonnelia spp. increased in treatment combinations with less CCA, which was supported by a significant negative correlation between organism groups. The different susceptibility to stressors most likely derived from a different calcification intensity and/or mineral. Notably, growth of the epilithic communities and final cover of CCA were strongly decreased under reduced-pCO2 conditions compared to the present. Thus, CCA may have acclimatized from past to present-day pCO2 conditions, and changes in carbonate chemistry, regardless in which direction, negatively affect them. However, if epilithic organisms cannot further acclimatize to OW and OA, the interacting effects of both factors may change

  13. Relative importance of P and N in macrophyte and epilithic algae biomass in a wastewater-impacted oligotrophic river.

    PubMed

    Taube, Nadine; He, Jianxun; Ryan, M Cathryn; Valeo, Caterina

    2016-08-01

    The role of nutrient loading on biomass growth in wastewater-impacted rivers is important in order to effectively optimize wastewater treatment to avoid excessive biomass growth in the receiving water body. This paper directly relates wastewater treatment plant (WWTP) effluent nutrients (including ammonia (NH3-N), nitrate (NO3-N) and total phosphorus (TP)) to the temporal and spatial distribution of epilithic algae and macrophyte biomass in an oligotrophic river. Annual macrophyte biomass, epilithic algae data and WWTP effluent nutrient data from 1980 to 2012 were statistically analysed. Because discharge can affect aquatic biomass growth, locally weighted scatterplot smoothing (LOWESS) was used to remove the influence of river discharge from the aquatic biomass (macrophytes and algae) data before further analysis was conducted. The results from LOWESS indicated that aquatic biomass did not increase beyond site-specific threshold discharge values in the river. The LOWESS-estimated biomass residuals showed a variable response to different nutrients. Macrophyte biomass residuals showed a decreasing trend concurrent with enhanced nutrient removal at the WWTP and decreased effluent P loading, whereas epilithic algae biomass residuals showed greater response to enhanced N removal. Correlation analysis between effluent nutrient concentrations and the biomass residuals (both epilithic algae and macrophytes) suggested that aquatic biomass is nitrogen limited, especially by NH3-N, at most sampling sites. The response of aquatic biomass residuals to effluent nutrient concentrations did not change with increasing distance to the WWTP but was different for P and N, allowing for additional conclusions about nutrient limitation in specific river reaches. The data further showed that the mixing process between the effluent and the river has an influence on the spatial distribution of biomass growth.

  14. Distribution of Escherichia coli, coliphages and enteric viruses in water, epilithic biofilms and sediments of an urban river in Germany.

    PubMed

    Mackowiak, Martin; Leifels, Mats; Hamza, Ibrahim Ahmed; Jurzik, Lars; Wingender, Jost

    2018-06-01

    Fecal contamination of surface water is commonly evaluated by quantification of bacterial or viral indicators such as Escherichia coli and coliphages, or by direct testing for pathogens such as enteric viruses. Retention of fecally derived organisms in biofilms and sediments is less frequently considered. In this study, we assessed the distribution of E. coli, somatic coliphages, and enteric viruses including human adenovirus (HAdV), enterovirus (EV), norovirus genogroup GII (NoV GII) and group A rotavirus (RoV) in an urban river environment in Germany. 24 samples each of water, epilithic biofilms and sediments were examined. E. coli and somatic coliphages were prevalent not only in the flowing water, but also in epilithic biofilms and sediments, where they were accumulated compared to the overlying water. During enhanced rainfall, E. coli and coliphage concentrations increased by approximately 2.5 and 1 log unit, respectively, in the flowing water, whereas concentrations did not change significantly in epilithic biofilms and sediments. The occurrence of human enteric viruses detected by qPCR was higher in water than in biofilms and sediments. 87.5% of all water samples were positive for HAdV. Enteric viruses found less frequently were EV, RoV and NoV GII in 20.8%, 16.7% and 8.3% of the water samples, respectively. In epilithic biofilms and sediments, HAdV was found in 54.2% and 50.0% of the samples, respectively, and EV was found in 4.2% of both biofilm and sediment samples. RoV and NoV GII were not detected in any of the biofilms and sediments. Overall, the prevalence of enteric viruses was in the order of HAdV > EV > RoV ≥ NoV GII. In conclusion, epilithic biofilms and sediments can be reservoirs for fecal indicators and enteric viruses and thus should be taken into consideration when assessing microbial pollution of surface water environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Some aspects of water quality in a polluted lowland river in relation to the intracellular chemical levels in planktonic and epilithic diatoms.

    PubMed

    Tien, Chien-Jung

    2004-04-01

    Changes in elemental concentrations of diatoms and river water from the river Erh-Jen were determined using scanning electron microscopy energy-dispersive X-ray microanalysis and inductively coupled plasma mass spectrometry. Relatively large amounts of copper and lead found in both planktonic and epilithic diatoms implied these algae might play an important role in biogeochemical cycles and in the transfer of those elements to higher trophic levels in the aquatic environment. Changes in elemental concentrations within diatom cells were found to vary with other elements within cells and the same or different elements in water. Planktonic and epilithic cells showed different correlation patterns. For epilithic diatoms, negative correlations were found between concentrations of total phosphorus and phosphate in water and those of phosphorus within cells, and between concentrations of lead in water and in cells. Concentrations of chromium and mercury within planktonic cells and those of phosphorus, manganese and lead within epilithic ones were found to be easily influenced by other elements in river water, indicating appearance of the competitive manner on uptake of such elements by algal cells. Relatively high concentration factors (CFs) for cadmium, mercury and lead by diatoms in this study suggested they are good accumulators for these heavy metals. Significant negative corrections were found between the CFs of diatoms and the concentrations of elements in river water.

  16. Epilithic Cyanobacterial Communities of a Marine Tropical Beach Rock (Heron Island, Great Barrier Reef): Diversity and Diazotrophy▿

    PubMed Central

    Díez, Beatriz; Bauer, Karolina; Bergman, Birgitta

    2007-01-01

    The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification “microbialite” origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria

  17. Nascent Phosphorus Oxide

    NASA Astrophysics Data System (ADS)

    Sumida, David Shuji

    PO(X('2)(PI)) is produced via the collision-free infrared multiple photon dissociation (IRMPD) of volatile organophosphorus molecules, and is detected by 2-frequency 2-photon ionization, using the B('2)(SIGMA)('+) state to provide a spectral signature from which X('2)(PI) populations are obtained. Sequential dissociations occur during the IR laser photolysis, in which nascent fragments continue to undergo IRMPD, and PO(X('2)(PI)) accrues from a series of bond fission reactions. Nascent vibrational, rotational, and translational excitations are in sensible accord with this mechanism, except for a few rotational states near J = 19.5. Unlike the nuclear degrees of freedom, the PO(X('2)(PI)) spin-orbit states are populated quite selectively. The ('2)(PI)(,3/2) state, lying only 224 cm('-1) above the ('2)(PI)(,1/2) ground state, contains only (TURN)11% of the population, compared to 34% for a 300K sample. This result is unambiguous; it persists with all precursors, laser fluences, etc., and is verified by comparisons to spectra obtained using a microwave discharge, a flame, and when thermalizing nascent excitations with an inert diluent. This result underscores the sanctity of the separate potential surfaces which correlate to the product spin -orbit states, and the small amount of ('2)(PI)(,3/2) population can be accounted for by non-adiabatic coupling during dissociation, and/or 'freezing' the amount of S(,1) character in an excited precursor in which S(,0) and S(,1) are coupled non-radiatively. We note that such electronic specificity should be dealt with in the analogous recombination reactions. (Copies available exclusively from Micrographics Department, Doheny Library, USC, Los Angeles, CA 90089.).

  18. Seipin is required for converting nascent to mature lipid droplets

    PubMed Central

    Wang, Huajin; Becuwe, Michel; Housden, Benjamin E; Chitraju, Chandramohan; Porras, Ashley J; Graham, Morven M; Liu, Xinran N; Thiam, Abdou Rachid; Savage, David B; Agarwal, Anil K; Garg, Abhimanyu; Olarte, Maria-Jesus; Lin, Qingqing; Fröhlich, Florian; Hannibal-Bach, Hans Kristian; Upadhyayula, Srigokul; Perrimon, Norbert; Kirchhausen, Tomas; Ejsing, Christer S; Walther, Tobias C; Farese, Robert V

    2016-01-01

    How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation—the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs. DOI: http://dx.doi.org/10.7554/eLife.16582.001 PMID:27564575

  19. How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation.

    PubMed

    Choi, Junhong; Grosely, Rosslyn; Prabhakar, Arjun; Lapointe, Christopher P; Wang, Jinfan; Puglisi, Joseph D

    2018-06-20

    Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.

  20. Pervasive Targeting of Nascent Transcripts by Hfq.

    PubMed

    Kambara, Tracy K; Ramsey, Kathryn M; Dove, Simon L

    2018-05-01

    Hfq is an RNA chaperone and an important post-transcriptional regulator in bacteria. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), we show that Hfq associates with hundreds of different regions of the Pseudomonas aeruginosa chromosome. These associations are abolished when transcription is inhibited, indicating that they reflect Hfq binding to transcripts during their synthesis. Analogous ChIP-seq analyses with the post-transcriptional regulator Crc reveal that it associates with many of the same nascent transcripts as Hfq, an activity we show is Hfq dependent. Our findings indicate that Hfq binds many transcripts co-transcriptionally in P. aeruginosa, often in concert with Crc, and uncover direct regulatory targets of these proteins. They also highlight a general approach for studying the interactions of RNA-binding proteins with nascent transcripts in bacteria. The binding of post-transcriptional regulators to nascent mRNAs may represent a prevalent means of controlling translation in bacteria where transcription and translation are coupled. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Stream Communities Along a Catchment Land-Use Gradient: Subsidy-Stress Responses to Pastoral Development

    NASA Astrophysics Data System (ADS)

    Niyogi, Dev K.; Koren, Mark; Arbuckle, Chris J.; Townsend, Colin R.

    2007-02-01

    When native grassland catchments are converted to pasture, the main effects on stream physicochemistry are usually related to increased nutrient concentrations and fine-sediment input. We predicted that increasing nutrient concentrations would produce a subsidy-stress response (where several ecological metrics first increase and then decrease at higher concentrations) and that increasing sediment cover of the streambed would produce a linear decline in stream health. We predicted that the net effect of agricultural development, estimated as percentage pastoral land cover, would have a nonlinear subsidy-stress or threshold pattern. In our suite of 21 New Zealand streams, epilithic algal biomass and invertebrate density and biomass were higher in catchments with a higher proportion of pastoral land cover, responding mainly to increased nutrient concentration. Invertebrate species richness had a linear, negative relationship with fine-sediment cover but was unrelated to nutrients or pastoral land cover. In accord with our predictions, several invertebrate stream health metrics (Ephemeroptera-Plecoptera-Trichoptera density and richness, New Zealand Macroinvertebrate Community Index, and percent abundance of noninsect taxa) had nonlinear relationships with pastoral land cover and nutrients. Most invertebrate health metrics usually had linear negative relationships with fine-sediment cover. In this region, stream health, as indicated by macroinvertebrates, primarily followed a subsidy-stress pattern with increasing pastoral development; management of these streams should focus on limiting development beyond the point where negative effects are seen.

  2. RESPONSE OF NUTRIENTS, BIOFILM, AND BENTHIC INSECTS TO SALMON CARCASS ADDITION

    EPA Science Inventory

    Salmon carcass addition to streams is expected to increase stream productivity at multiple trophic levels. This study examined stream nutrient (nitrogen, phosphorus, and carbon), epilithic biofilm (ash-free dry mass and chlorophyll a), leaf-litter decomposition, and macroinverte...

  3. Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy.

    PubMed

    Eichmann, Cédric; Preissler, Steffen; Riek, Roland; Deuerling, Elke

    2010-05-18

    The folding of proteins in living cells may start during their synthesis when the polypeptides emerge gradually at the ribosomal exit tunnel. However, our current understanding of cotranslational folding processes at the atomic level is limited. We employed NMR spectroscopy to monitor the conformation of the SH3 domain from alpha-spectrin at sequential stages of elongation via in vivo ribosome-arrested (15)N,(13)C-labeled nascent polypeptides. These nascent chains exposed either the entire SH3 domain or C-terminally truncated segments thereof, thus providing snapshots of the translation process. We show that nascent SH3 polypeptides remain unstructured during elongation but fold into a compact, native-like beta-sheet assembly when the entire sequence information is available. Moreover, the ribosome neither imposes major conformational constraints nor significantly interacts with exposed unfolded nascent SH3 domain moieties. Our data provide evidence for a domainwise folding of the SH3 domain on ribosomes without significant population of folding intermediates. The domain follows a thermodynamically favorable pathway in which sequential folding units are stabilized, thus avoiding kinetic traps during the process of cotranslational folding.

  4. DYNAMICS OF NASCENT AND ACTIVE ZONE ULTRASTRUCTURE AS SYNAPSES ENLARGE DURING LTP IN MATURE HIPPOCAMPUS

    PubMed Central

    Bell, Maria Elizabeth; Bourne, Jennifer N.; Chirillo, Michael A.; Mendenhall, John M.; Kuwajima, Masaaki; Harris, Kristen M.

    2014-01-01

    Nascent zones and active zones are adjacent synaptic regions that share a postsynaptic density, but nascent zones lack the presynaptic vesicles found at active zones. Here dendritic spine synapses were reconstructed through serial section electron microscopy (3DEM) and EM tomography to investigate nascent zone dynamics during long-term potentiation (LTP) in mature rat hippocampus. LTP was induced with theta-burst stimulation and comparisons were made to control stimulation in the same hippocampal slices at 5 minutes, 30 minutes, and 2 hours post-induction and to perfusion-fixed hippocampus in vivo. Nascent zones were present at the edges of ~35% of synapses in perfusion-fixed hippocampus and as many as ~50% of synapses in some hippocampal slice conditions. By 5 minutes, small dense core vesicles known to transport active zone proteins moved into more presynaptic boutons. By 30 minutes, nascent zone area decreased without significant change in synapse area, suggesting that presynaptic vesicles were recruited to pre-existing nascent zones. By 2 hours, both nascent and active zones were enlarged. Immunogold labeling revealed that glutamate receptors can be found in nascent zones; however, average distances from nascent zones to docked presynaptic vesicles ranged from 170±5 nm in perfusion-fixed hippocampus to 251±4 nm at enlarged synapses by 2 hours during LTP. Prior stochastic modeling suggests that falloff in glutamate concentration reduces the probability of glutamate receptor activation from 0.4 at the center of release to 0.1 just 200 nm away. Thus, conversion of nascent zones to functional active zones likely requires the recruitment of presynaptic vesicles during LTP. PMID:25043676

  5. Response of nutrients, biofilm, and benthic insects to salmon carcass addition.

    Treesearch

    Shannon M. Claeson; Judith L. Li; Jana E. Compton; Peter A. Bisson

    2006-01-01

    Salmon carcass addition to streams is expected to increase stream productivity at multiple trophic levels. This study examined stream nutrient (nitrogen, phosphorus, and carbon), epilithic biofilm (ash-free dry mass and chlorophyll a), leaf-litter decomposition, and macroinvertebrate (density and biomass) responses to carcass addition in three headwater streams of...

  6. Recovery of Three Arctic Stream Reaches From Experimental Nutrient Enrichment.

    NASA Astrophysics Data System (ADS)

    Green, A. C.; Benstead, J. P.; Deegan, L. A.; Peterson, B. J.; Bowden, W. B.; Huryn, A. D.; Slavik, K.; Hershey, A. E.

    2005-05-01

    We examined multi-year patterns in community recovery from experimental low-concentration nutrient (N+P and P only) enrichment in three reaches of two Arctic tundra streams (Kuparuk River and Oksrukuyik Creek) on the North Slope of Alaska (USA). Rates of recovery varied among community components and depended on duration of enrichment (2 to 13 consecutive growing seasons). Biomass and C:P ratio of epilithic algae returned to reference levels rapidly (within 2 years), regardless of enrichment duration. Bryophyte cover, which increased greatly after long-term enrichment (>8 years), recovered to reference levels only after 7 years, when a storm scoured most remnant moss in the recovering reach. Persistence of bryophytes slowed recovery rates of insect taxa that had either been positively (e.g., Ephemerella, most chironomid taxa) or negatively (e.g., Orthocladius rivulorum) affected by this shift in dominant primary producer and its consequence for benthic habitat. Growth of Arctic grayling (adults and young-of-year), the top predator, returned to reference rates within two years. Recovery of these Arctic stream ecosystems from nutrient enrichment was consequently controlled largely by interactions between duration of enrichment and physical disturbance, mediated through physical habitat shifts caused by bryophytes.

  7. Characterization of a novel isoform of alpha-nascent polypeptide-associated complex as IgE-defined autoantigen.

    PubMed

    Mossabeb, Roschanak; Seiberler, Susanne; Mittermann, Irene; Reininger, Renate; Spitzauer, Susanne; Natter, Susanne; Verdino, Petra; Keller, Walter; Kraft, Dietrich; Valenta, Rudolf

    2002-10-01

    The nascent polypeptide-associated complex is required for intracellular translocation of newly synthesized polypeptides in eukaryotic cells. It may also act as a transcriptional coactivator in humans and various eukaryotic organisms and binds to nucleic acids. Recently, we provided evidence that a component of nascent polypeptide-associated complex, alpha-nascent polypeptide-associated complex, represents an IgE-reactive autoantigen for atopic dermatitis patients. By oligonucleotide screening we isolated a complete cDNA coding for a so far unknown alpha-nascent polypeptide-associated complex isoform from a human epithelial cDNA library. Southern blot hybridization experiments provided further evidence that alpha-nascent polypeptide-associated complex is encoded by a gene family. Recombinant alpha-nascent polypeptide-associated complex was expressed in Escherichia coli as a soluble, His-tagged protein, and purified via nickel affinity chromatography. By circular dichroism analysis it is demonstrated that purified recombinant alpha-nascent polypeptide-associated complex represents a folded protein of mixed alpha-helical and beta-sheet conformation with unusual high thermal stability and remarkable refolding capacity. Complete recombinant alpha-nascent polypeptide-associated complex (215 amino acids) and its 86 amino acid C-terminal fragment specifically bound IgE autoantibodies. Recombinant alpha-nascent polypeptide-associated complex also inhibited IgE binding to natural alpha-nascent polypeptide-associated complex, demonstrating the presence of common IgE epitopes between the recombinant and natural protein. Furthermore, recombinant alpha-nascent polypeptide-associated complex induced specific lymphoproliferative responses in peripheral blood mononuclear cells of a sensitized atopic dermatitis patient. As has been proposed for environmental allergens it is possible that T cell responses to IgE-defined autoantigens may contribute to the chronic skin manifestations

  8. Experimental Investigation of Nascent Soot Physical Properties and The Influence on Particle Morphology and Growth

    NASA Astrophysics Data System (ADS)

    Lieb, Sydnie Marie

    Soot released to the atmosphere is a dangerous pollutant for human health and the environment. Understanding the physical properties and surface properties of these particles is important to properly explaining the growth of soot particles in flames as well as their interactions with other particles and gases in the environment. Particles below 15 nm in diameter, nascent soot particles, dominate the early growth stages of soot formation; previously these particles were characterized as hard graphitic spheres. New evidence derived from the current dissertation work, to a large extent, challenges this prior characterization. This dissertation study begins by revisiting the use of atomic force microscope (AFM) as a tool to investigate the structural properties of nascent soot. The impact of tip artifacts, which are known to complicate measurements of features below 10 nm in diameter, are carefully considered so as to provide a concise interpretation of the morphology of nascent soot as seen by AFM. The results of the AFM morphology collaborate with earlier photo- and thermal-fragmentation particle mass spectrometry and Fourier transform infrared spectroscopy that nascent soot is not a graphitized carbon material and that they are not spherical. Furthermore, phase mode imaging is introduced as a method to investigate the physical properties of nascent soot particles in a greater detail and finer resolution. The helium ion microscope (HIM) has been identified as a useful technique for the imaging of nascent soot. Using this imaging method nascent soot particles were imaged with a high resolution that had not been obtained by prior techniques. The increased contrast provides a closer look at the nascent soot particles and further suggested that these particles are not as structurally homogeneous as previously thought. Geometric shape analysis was performed to characterize the particles in terms of sphericity, circularity, and fractal dimension. The geometric analysis

  9. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation

    PubMed Central

    Menet, Jerome S; Rodriguez, Joseph; Abruzzi, Katharine C; Rosbash, Michael

    2012-01-01

    A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues. DOI: http://dx.doi.org/10.7554/eLife.00011.001 PMID:23150795

  10. Morphology and ultrastructure of epilithic versus cryptic, microbial growth in lower Cambrian phosphorites from the Montagne Noire, France.

    PubMed

    Alvaro, J J; Clausen, S

    2010-03-01

    The lower Cambrian grainy phosphorites of the northern Montagne Noire occur interbedded with grey to black, laminated to massive shales and limestones deposited along the edge of a continental shelf, associated with slope-related facies and unstable substrates. The concentration of phosphate took place by repeated alternations of low sedimentation rates and condensation (hardgrounds), in situ early-diagenetic precipitation of fluorapatite, winnowing and polyphase reworking of previously phosphatized skeletons and hardground-derived clasts. The succession of repeated cycles of sedimentation, phosphate concentration, and reworking led to multi-event phosphate deposits rich in allochthonous particles. Phosphogenesis was primarily mediated by microbial activity, which is evidenced by the abundance of phosphatized putative microbial remains. These occur as smooth and segmented filaments, sheaths, and ovoid-shaped coccoids. These simple morphologies commonly form composite frameworks as a result of their aggregation and entanglement, leading to the record of biofilms, microbial mats, and complex networks. These infested the calcitic skeletonized microfossils that littered the substrate. Microbial activity evidences epilithic (anisotropic coatings on skeletons), euendolithic (perforating skeletal walls), and cryptoendolithic (lining inter- and intraparticulate pores) strategies, the latter dominated by bundles of filaments and globular clusters that grew along the cavities of helcionellids and hyoliths. According to their epilithic versus cryptic strategies, microbial populations that penetrated and dwelled inside hard skeletal substrates show different network and colonial morphologies. These early Cambrian shell concentrations were the loci of a stepwise colonization made by saprophytic to mutualistic, cyanobacterial-fungal consortia. Their euendolithic and cryptoendolithic ecological niches provided microbial refugia to manage the grazing impact mainly led by metazoans.

  11. Nascent RNA kinetics: Transient and steady state behavior of models of transcription

    NASA Astrophysics Data System (ADS)

    Choubey, Sandeep

    2018-02-01

    Regulation of transcription is a vital process in cells, but mechanistic details of this regulation still remain elusive. The dominant approach to unravel the dynamics of transcriptional regulation is to first develop mathematical models of transcription and then experimentally test the predictions these models make for the distribution of mRNA and protein molecules at the individual cell level. However, these measurements are affected by a multitude of downstream processes which make it difficult to interpret the measurements. Recent experimental advancements allow for counting the nascent mRNA number of a gene as a function of time at the single-inglr cell level. These measurements closely reflect the dynamics of transcription. In this paper, we consider a general mechanism of transcription with stochastic initiation and deterministic elongation and probe its impact on the temporal behavior of nascent RNA levels. Using techniques from queueing theory, we derive exact analytical expressions for the mean and variance of the nascent RNA distribution as functions of time. We apply these analytical results to obtain the mean and variance of nascent RNA distribution for specific models of transcription. These models of initiation exhibit qualitatively distinct transient behaviors for both the mean and variance which further allows us to discriminate between them. Stochastic simulations confirm these results. Overall the analytical results presented here provide the necessary tools to connect mechanisms of transcription initiation to single-cell measurements of nascent RNA.

  12. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Kramer, M. J.; Bellwood, D. R.; Bellwood, O.

    2012-12-01

    Composed of a collection of algae, detritus, sediment and invertebrates, the epilithic algal matrix (EAM) is an abundant and ubiquitous feature of coral reefs. Despite its prevalence, there is a paucity of information regarding its associated invertebrate fauna. The cryptofaunal invertebrate community of the EAM was quantitatively investigated in Pioneer Bay on Orpheus Island, Great Barrier Reef. Using a vacuum collection method, a diversity of organisms representing 10 different phyla were identified. Crustacea dominated the samples, with harpacticoid copepods being particularly abundant (2025 ± 132 100 cm-2; mean density ± SE). The volume of coarse particulate matter in the EAM was strongly correlated with the abundance of harpacticoid copepods. The estimated biomass of harpacticoid copepods (0.48 ± 0.05 g m-2; wet weight) suggests that this group is likely to be important for reef trophodynamics and nutrient cycling.

  13. Topographic control on the nascent Mediterranean outflow

    NASA Astrophysics Data System (ADS)

    Gasser, M.; Pelegrí, J. L.; Nash, J. D.; Peters, H.; García-Lafuente, J.

    2011-12-01

    Data collected during a 12-day cruise in July 2009 served to examine the structure of the nascent Mediterranean Outflow Water (MOW) immediately west of the Espartel Sill, the westernmost sill in the Strait of Gibraltar. The MOW is characterized by high salinities (>37.0 and reaching 38.3) and high velocities (exceeding 1 m s-1 at 100 m above the seafloor), and follows a submerged valley along a 30 km stretch, the natural western extension of the strait. It is approx. 150 m thick and 10 km wide, and experiences a substantial drop from 420 to 530 m over a distance of some 3 km between two relatively flat regions. Measurements indicate that the nascent MOW behaves as a gravity current with nearly maximal traveling speed; if this condition is maintained, then the maximum MOW velocity would decrease slowly with distance from the Espartel Sill, remaining significantly high until the gravity current excess density is only a small fraction of its original value. The sharp pycnocline between the Mediterranean and the overlying North Atlantic Central waters is dynamically unstable, particularly where the flow interacts with the 100 m decrease in bottom depth. Here, subcritical gradient Richardson numbers coincide with the development of large interfacial undulations and billows. The very energetic downslope flow is likely responsible for the development of a narrow V-shaped channel downstream of the seafloor drop along the axis of the submerged valley, this probably being the very first erosional scour produced by the nascent MOW. The coincidence of subcritical gradient Richardson numbers with relatively high turbidity values above the channel flanks suggests it may be undergoing upstream erosion.

  14. Entrepreneurial Identity and Role Expectations in Nascent Entrepreneurship

    ERIC Educational Resources Information Center

    Lundqvist, Mats; Middleton, Karen Williams; Nowell, Pamela

    2015-01-01

    Entrepreneurship has been defined as an individual?new value creation dialogic. To study how entrepreneurial identity evolves, this article, drawing on entrepreneurial learning theory, adds an entrepreneurial role expectations dialogic. Longitudinal evidence from nascent entrepreneurs working in venture teams on invention disclosures offers an…

  15. Rapid sewage pollution assessment by means of the coverage of epilithic taxa in a coastal area in the SW Atlantic.

    PubMed

    Becherucci, M E; Jaubet, M L; Saracho Bottero, M A; Llanos, E N; Elías, R; Garaffo, G V

    2018-07-01

    The sewage pollution impact over coastal environment represents one of the main reasons explaining the deterioration of marine coastal ecosystems around the globe. This paper aims to detect promptly a putative sewage pollution impact in a Southwestern Atlantic coastal area of Argentina as well as to identify a straightforward way for monitoring, based on the relative abundance coverage of the intertidal epilithic taxa. Four sampling sites were distributed at increased distances from the sewage outfall where the cover of individual epilithic species was visually estimated. The surrounded outfall area (i.e. outfall site) resulted polluted with high percentages of organic matter in sediment and Enterococcus concentration in seawater. The structure of the community showed a remarkable difference between the polluted site (outfall site) and the unpolluted sites. The polychaete Boccardia proboscidea dominated the outfall site with variable abundances of the green algae Ulva sp. during the period of study, decreasing the diversity of the community, while the mussel Brachidontes rodriguezii and variable abundances of several algae species dominated the unpolluted sites. The monitoring of the benthic community represents an effective, non-destructive, relative inexpensive and rapid method to assess the health of the coastal environment in the study area. The large abundance of B. proboscidea along with the absence of B. rodriguezii individuals at <300m to the sewage outfall discharge allowed the success of this classical monitoring method in a temperate marine-coastal ecosystem with certain gradient of pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages

    NASA Astrophysics Data System (ADS)

    Johnson, Maggie D.; Comeau, Steeve; Lantz, Coulson A.; Smith, Jennifer E.

    2017-12-01

    Turf algal assemblages are ubiquitous primary producers on coral reefs, but little is known about the response of this diverse group to ocean acidification (OA) across different temperatures. We tested the hypothesis that CO2 influences the functional response of epilithic and endolithic turf assemblages to increasing temperature. Replicate carbonate plugs covered by turf were collected from the reef and exposed to ambient and high pCO2 (1000 µatm) conditions for 3 weeks. Each pCO2 treatment was replicated across six temperatures (24.0-31.5 °C) that spanned the full seasonal temperature range on a fringing reef in Moorea, French Polynesia, and included one warming treatment (3 °C above daily average temperatures). Temperature and CO2 enrichment had complex, and sometimes interactive, effects on turf metabolism and growth. Photosynthetic and respiration rates were enhanced by increasing temperature, with an interactive effect of CO2 enrichment. Photosynthetic rates were amplified by high CO2 in the warmest temperatures, while the increase in respiration rates with temperature were enhanced under ambient CO2. Epilithic turf growth rates were not affected by temperature, but increased in response to CO2 enrichment. We found that CO2 and temperature interactively affected the endolithic assemblage, with the highest growth rates under CO2 enrichment, but only at the warmest temperatures. These results demonstrate how OA may influence algal physiology and growth across a range of ecologically relevant temperatures, and indicate that the effects of CO2 enrichment on coral-reef turf assemblages can be temperature dependent. The complex effects of CO2 enrichment and temperature across a suite of algal responses illustrates the importance of incorporating multiple stressors into global change experiments.

  17. Accelerators as Authentic Training Experiences for Nascent Entrepreneurs

    ERIC Educational Resources Information Center

    Miles, Morgan P.; de Vries, Huibert; Harrison, Geoff; Bliemel, Martin; de Klerk, Saskia; Kasouf, Chick J.

    2017-01-01

    Purpose: The purpose of this paper is to address the role of accelerators as authentic learning-based entrepreneurial training programs. Accelerators facilitate the development and assessment of entrepreneurial competencies in nascent entrepreneurs through the process of creating a start-up venture. Design/methodology/approach: Survey data from…

  18. Nonenzymatic Role for WRN in Preserving Nascent DNA Strands after Replication Stress

    DOE PAGES

    Su, Fengtao; Mukherjee, Shibani; Yang, Yanyong; ...

    2014-11-20

    WRN, the protein defective in Werner syndrome (WS), is a multifunctional nuclease involved in DNA damage repair, replication, and genome stability maintenance. It was assumed that the nuclease activities of WRN were critical for these functions. Here, we report a nonenzymatic role for WRN in preserving nascent DNA strands following replication stress. We found that lack of WRN led to shortening of nascent DNA strands after replication stress. Furthermore, we discovered that the exonuclease activity of MRE11 was responsible for the shortening of newly replicated DNA in the absence of WRN. Mechanistically, the N-terminal FHA domain of NBS1 recruits WRNmore » to replication-associated DNA double-stranded breaks to stabilize Rad51 and to limit the nuclease activity of its C-terminal binding partner MRE11. Thus, this previously unrecognized nonenzymatic function of WRN in the stabilization of nascent DNA strands sheds light on the molecular reason for the origin of genome instability in WS individuals.« less

  19. Cloning of nascent monkey DNA synthesized early in the cell cycle.

    PubMed

    Kaufmann, G; Zannis-Hadjopoulos, M; Martin, R G

    1985-04-01

    To study the structure and complexity of animal cell replication origins, we have isolated and cloned nascent DNA from the onset of S phase as follows: African green monkey kidney cells arrested in G1 phase were serum stimulated in the presence of the DNA replication inhibitor aphidicolin. After 18 h, the drug was removed, and DNA synthesis was allowed to proceed in vivo for 1 min. Nuclei were then prepared, and DNA synthesis was briefly continued in the presence of Hg-dCTP. The mercury-labeled nascent DNA was purified in double-stranded form by extrusion (M. Zannis-Hadjopoulos, M. Perisco, and R. G. Martin, Cell 27:155-163, 1981) followed by sulfhydryl-agarose affinity chromatography. Purified nascent DNA (ca. 500 to 2,000 base pairs) was treated with mung bean nuclease to remove single-stranded ends and inserted into the NruI site of plasmid pBR322. The cloned fragments were examined for their time of replication by hybridization to cellular DNA fractions synthesized at various intervals of the S phase. Among five clones examined, four hybridized preferentially with early replicating fractions.

  20. Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks

    PubMed Central

    Mejean, Cecile O.; Schaefer, Andrew W.; Buck, Kenneth B.; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W.; Dufresne, Eric R.; Forscher, Paul

    2013-01-01

    Adhesions are multi-molecular complexes that transmit forces generated by a cell’s acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions’ mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement. PMID:24039928

  1. A comparison of nutrient- and light-limited photosynthesis in psammophytic versus epilithic forms of Halimeda (Caulerpales, Halimedaceae) from the Bahamas

    NASA Astrophysics Data System (ADS)

    Littler, Mark M.; Littler, Diane S.; Lapointe, Brian E.

    1988-03-01

    The relative nutritional status, with respect to phosphorus ( P i ) vs. nitrogen ( N) limitation, and light-limited photosynthesis ( P s ) was examined over a broad range of quantum fluxes ( I) for four Halimeda species, Halimeda tuna (Ellis and Solander) Lamouroux, H. simulans Howe, H. lacrimosa Howe and H. copiosa Goreau and Graham, taken from clear, shallow, Bahamian waters. The results support the hypothesis that psammophytic forms (i.e., sand dwellers anchored by a bulbous rhizoidal system) differ in nutrient status from epilithic forms (i.e., attached to rock by inconspicuous rhizoids). Maximum photosynthetic rates ( P max) for the epilithic species H. lacrimos and H. copiosa decreased ( P<0.05) following P i enrichment, but increased ( P<0.05) following N pulses. Conversely, following brief exposures to P i , P max in the sand-dwelling forms H. tuna and H. simulans was elevated ( P<0.05). These findings suggest that shallow species of Halimeda are adapted to take advantage of episodic nutrient pulses, and that partitioning of limiting resources may occur between the various life forms. Shallow water Halimeda species appear well adapted to variable light regimes, including low light conditions. In all cases, light-saturated photosyntheses ( I k ) occurred at irradiances much lower than the ambient levels available on typical sunny days. Associated with low saturation irradiances were low light requirements for photosynthetic compensation ( I c ) and reasonably efficient use of low photon flux densities as indicated by relatively steep slopes (α) of the P s vs. I curves. Of the four species, H. copiosa was the most shade adapted, with considerably higher α values and considerably lower I c , I k and photoinhibition values.

  2. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA

    USGS Publications Warehouse

    Danielson, Thomas J.; Loftin, Cynthia S.; Tsomides, Leonidas; DiFranco, Jeanne L.; Connors, Beth

    2011-01-01

    Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. ?? 2011 by The North American Benthological Society.

  3. Nascent body ego: metapsychological and neurophysiological aspects.

    PubMed

    Lehtonen, Johannes; Partanen, Juhani; Purhonen, Maija; Valkonen-Korhonen, Minna; Kononen, Mervi; Saarikoski, Seppo; Launiala, Kari

    2006-10-01

    For Freud, body ego was the organizing basis of the structural theory. He defined it as a psychic projection of the body surface. Isakower's and Lewin's classical findings suggest that the body surface experiences of nursing provide the infant with sensory-affective stimulation that initiates a projection of sensory processes towards the psychic realm. During nursing, somato-sensory, gustatory and olfactory modalities merge with a primitive somatic affect of satiation, whereas auditory modality is involved more indirectly and visual contact more gradually. Repeated regularly, such nascent experiences are likely to play a part in the organization of the primitive protosymbolic mental experience. In support of this hypothesis, the authors review findings from a neurophysiological study of infants before, during and after nursing. Nursing is associated with a significant amplitude change in the newborn electroencephalogram (EEG), which wanes before the age of 3 months, and is transformed at the age of 6 months into rhythmic 3-5 Hz hedonic theta-activity. Sucking requires active physiological work, which is shown in a regular rise in heart rate. The hypothesis of a sensory-affective organization of the nascent body ego, enhanced by nursing and active sucking, seems concordant with neurophysiological phenomena related to nursing.

  4. Structure of nascent replicative form DNA of coliphage M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, S.; Mitra, S.

    Nascent replicative form type II (RFII) DNA of coliphage M13 synthesized in an Escherichia coli mutant deficient in the 5' ..-->.. 3' exonuclease associated with DNA polymerase I contains ribonucleotides that are retained in the covalently closed RFI DNA sealed in vitro by the joint action of T5 phage DNA polymerase and T4 phage DNA ligase. These RFI molecules are labile to alkali and RNase H, unlike the RFI produced either in vivo or from RFII with E. coli DNA polymerase I and E. coli DNA ligase. The ribonucleotides are located at one site and predominantly in one strand ofmore » the nascent RF DNA. Furthermore, these molecules contain multiple small gaps, randomly located, and one large gap in the intracistronic region.« less

  5. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides

    PubMed Central

    Kostova, Kamena K.; Hickey, Kelsey L.; Osuna, Beatriz A.; Hussmann, Jeffrey A.; Frost, Adam; Weinberg, David E.; Weissman, Jonathan S.

    2017-01-01

    Ribosome stalling leads to recruitment of the Ribosome Quality control Complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a Carboxy-terminal Alanine and Threonine (CAT) tail through a non-canonical elongation reaction. Here we explore the role of CATtailing in nascent-chain degradation in budding yeast. We show that Ltn1p can efficiently access only nascent chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enables degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates. PMID:28751611

  6. Three-dimensional organization of nascent rod outer segment disk membranes.

    PubMed

    Volland, Stefanie; Hughes, Louise C; Kong, Christina; Burgess, Barry L; Linberg, Kenneth A; Luna, Gabriel; Zhou, Z Hong; Fisher, Steven K; Williams, David S

    2015-12-01

    The vertebrate photoreceptor cell contains an elaborate cilium that includes a stack of phototransductive membrane disks. The disk membranes are continually renewed, but how new disks are formed remains poorly understood. Here we used electron microscope tomography to obtain 3D visualization of the nascent disks of rod photoreceptors in three mammalian species, to gain insight into the process of disk morphogenesis. We observed that nascent disks are invariably continuous with the ciliary plasma membrane, although, owing to partial enclosure, they can appear to be internal in 2D profiles. Tomographic analyses of the basal-most region of the outer segment show changes in shape of the ciliary plasma membrane indicating an invagination, which is likely a first step in disk formation. The invagination flattens to create the proximal surface of an evaginating lamella, as well as membrane protrusions that extend between adjacent lamellae, thereby initiating a disk rim. Immediately distal to this initiation site, lamellae of increasing diameter are evident, indicating growth outward from the cilium. In agreement with a previous model, our data indicate that mature disks are formed once lamellae reach full diameter, and the growth of a rim encloses the space between adjacent surfaces of two lamellae. This study provides 3D data of nascent and mature rod photoreceptor disk membranes at unprecedented z-axis depth and resolution, and provides a basis for addressing fundamental questions, ranging from protein sorting in the photoreceptor cilium to photoreceptor electrophysiology.

  7. Prefoldin–Nascent Chain Complexes in the Folding of Cytoskeletal Proteins

    PubMed Central

    Hansen, William J.; Cowan, Nicholas J.; Welch, William J.

    1999-01-01

    In vitro transcription/translation of actin cDNA and analysis of the translation products by native-PAGE was used to study the maturation pathway of actin. During the course of actin synthesis, several distinct actin-containing species were observed and the composition of each determined by immunological procedures. After synthesis of the first ∼145 amino acids, the nascent ribosome-associated actin chain binds to the recently identified heteromeric chaperone protein, prefoldin (PFD). PFD remains bound to the relatively unfolded actin polypeptide until its posttranslational delivery to cytosolic chaperonin (CCT). We show that α- and β-tubulin follow a similar maturation pathway, but to date find no evidence for an interaction between PFD and several noncytoskeletal proteins. We conclude that PFD functions by selectively targeting nascent actin and tubulin chains pending their transfer to CCT for final folding and/or assembly. PMID:10209023

  8. Long-read sequencing of nascent RNA reveals coupling among RNA processing events.

    PubMed

    Herzel, Lydia; Straube, Korinna; Neugebauer, Karla M

    2018-06-14

    Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2 , the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3' end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation. © 2018 Herzel et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web

    USGS Publications Warehouse

    Fellman, Jason; Hood, Eran; Raymond, Peter A.; Hudson, J.H.; Bozeman, Maura; Arimitsu, Mayumi L.

    2015-01-01

    We used natural abundance δ13C, δ15N, and Δ14C to compare trophic linkages between potential carbon sources (leaf litter, epilithic biofilm, and particulate organic matter) and consumers (aquatic macroinvertebrates and fish) in a nonglacial stream and two reaches of the heavily glaciated Herbert River. We tested the hypothesis that proglacial stream food webs are sustained by organic carbon released from glacial ecosystems. Carbon sources and consumers in the nonglacial stream had carbon isotope values that ranged from -30‰ to -25‰ for δ13C and from -14‰ to 53‰ for Δ14C reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial stream sites was highly Δ14C-depleted (-215‰ to 175‰) relative to the nonglacial stream consistent with the assimilation of ancient glacier organic carbon. IsoSource modeling showed that in upper Herbert River, macroinvertebrates (Δ14C = -171‰ to 22‰) and juvenile salmonids (Δ14C = −102‰ to 17‰) reflected a feeding history of both biofilm (~ 56%) and leaf litter (~ 40%). We estimate that in upper Herbert River on average 36% of the carbon incorporated into consumer biomass is derived from the glacier ecosystem. Thus, 14C-depleted glacial organic carbon was likely transferred to higher trophic levels through a feeding history of bacterial uptake of dissolved organic carbon and subsequent consumption of 14C-depleted biofilm by invertebrates and ultimately fish. Our findings show that the metazoan food web is sustained in part by glacial organic carbon such that future changes in glacial runoff could influence the stability and trophic structure of proglacial aquatic ecosystems.

  10. CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides.

    PubMed

    Kostova, Kamena K; Hickey, Kelsey L; Osuna, Beatriz A; Hussmann, Jeffrey A; Frost, Adam; Weinberg, David E; Weissman, Jonathan S

    2017-07-28

    Ribosome stalling leads to recruitment of the ribosome quality control complex (RQC), which targets the partially synthesized polypeptide for proteasomal degradation through the action of the ubiquitin ligase Ltn1p. A second core RQC component, Rqc2p, modifies the nascent polypeptide by adding a carboxyl-terminal alanine and threonine (CAT) tail through a noncanonical elongation reaction. Here we examined the role of CAT-tailing in nascent-chain degradation in budding yeast. We found that Ltn1p efficiently accessed only nascent-chain lysines immediately proximal to the ribosome exit tunnel. For substrates without Ltn1p-accessible lysines, CAT-tailing enabled degradation by exposing lysines sequestered in the ribosome exit tunnel. Thus, CAT-tails do not serve as a degron, but rather provide a fail-safe mechanism that expands the range of RQC-degradable substrates. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Recovery of three arctic stream reaches from experimental nutrient enrichment

    USGS Publications Warehouse

    Benstead, J.P.; Green, A.C.; Deegan, Linda A.; Peterson, B.J.; Slavik, K.; Bowden, W.B.; Hershey, A.E.

    2007-01-01

    1. Nutrient enrichment and resulting eutrophication is a widespread anthropogenic influence on freshwater ecosystems, but recovery from nutrient enrichment is poorly understood, especially in stream environments. We examined multi-year patterns in community recovery from experimental low-concentration nutrient enrichment (N + P or P only) in three reaches of two Arctic tundra streams (Kuparuk River and Oksrukuyik Creek) on the North Slope of Alaska (U.S.A.). 2. Rates of recovery varied among community components and depended on duration of enrichment (2-13 consecutive growing seasons). Biomass of epilithic algae returned to reference levels rapidly (within 2 years), regardless of nutrients added or enrichment duration. Aquatic bryophyte cover, which increased greatly in the Kuparuk River only after long-term enrichment (8 years), took 8 years of recovery to approach reference levels, after storms had scoured most remnant moss in the recovering reach. 3. Multi-year persistence of bryophytes in the Kuparuk River appeared to prevent recovery of insect populations that had either been positively (e.g. the mayfly Ephemerella, most chironomid midge taxa) or negatively (e.g. the tube-building chironomid Orthocladius rivulorum) affected by this shift in dominant primary producer. These lags in recovery (of >3 years) were probably driven by the persistent effect of bryophytes on physical benthic habitat. 4. Summer growth rates of Arctic grayling (both adults and young-of-year) in Oksrukuyik Creek (fertilised for 6 years with no bryophyte colonisation), which were consistently increased by nutrient addition, returned to reference rates within 1-2 years. 5. Rates of recovery of these virtually pristine Arctic stream ecosystems from low-level nutrient enrichment appeared to be controlled largely by duration of enrichment, mediated through physical habitat shifts caused by eventual bryophyte colonisation, and subsequent physical disturbance that removed bryophytes. Nutrient

  12. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams.

    PubMed

    Kamjunke, Norbert; Herzsprung, Peter; Neu, Thomas R

    2015-02-15

    Streams and rivers are important sites of organic carbon mineralization which is dependent on the land use within river catchments. Here we tested whether planktonic and epilithic biofilm bacteria differ in their response to the quality of dissolved organic carbon (DOC). Thus, planktonic and biofilm bacterial production was compared with patterns of DOC along a land-use gradient in the Bode catchment area (Germany). The freshness index of DOC was positively related to the proportion of agricultural area in the catchment. The humification index correlated with the proportion of forest area. Abundance and production of planktonic bacteria were lower in headwaters than at downstream sites. Planktonic production was weakly correlated to the total concentration of DOC but more strongly to quality-measures as revealed by spectra indexes, i.e. positively to the freshness index and negatively to the humification index. In contrast to planktonic bacteria, abundance and production of biofilm bacteria were independent of DOC quality. This finding may be explained by the association of biofilm bacteria with benthic algae and an extracellular matrix which represent additional substrate sources. The data show that planktonic bacteria seem to be regulated at a landscape scale controlled by land use, whereas biofilm bacteria are regulated at a biofilm matrix scale controlled by autochthonous production. Thus, the effects of catchment-scale land use changes on ecosystem processes are likely lower in small streams dominated by biofilm bacteria than in larger streams dominated by planktonic bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The role of periphyton in mediating the effects of pollution in a stream ecosystem.

    PubMed

    Hill, Walter R; Ryon, Michael G; Smith, John G; Adams, S Marshall; Boston, Harry L; Stewart, Arthur J

    2010-03-01

    The effects of pollutants on primary producers ramify through ecosystems because primary producers provide food and structure for higher trophic levels and they mediate the biogeochemical cycling of nutrients and contaminants. Periphyton (attached algae) were studied as part of a long-term biological monitoring program designed to guide remediation efforts by the Department of Energy's Y-12 National Security Complex on East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee. High concentrations of nutrients entering EFPC were responsible for elevated periphyton production and placed the stream in a state of eutrophy. High rates of primary production at upstream locations in EFPC were associated with alterations in both invertebrate and fish communities. Grazers represented >50% of the biomass of invertebrates and fish near the Y-12 Complex but <10% at downstream and reference sites. An index of epilithic periphyton production accounted for 95% of the site-to-site variation in biomass of grazing fish. Analyses of heavy metals in EFPC periphyton showed that concentrations of zinc, cadmium, copper and nickel in periphyton decreased exponentially with distance downstream from Y-12. Zinc uptake by periphyton was estimated to reduce the concentration of this metal in stream water approximately 60% over a 5-km reach of EFPC. Management options for mitigating eutrophy in EFPC include additional reductions in nutrient inputs and/or allowing streamside trees to grow and shade the stream. However, reducing periphyton growth may lead to greater downstream transport of contaminants while simultaneously causing higher concentrations of mercury and PCBs in fish at upstream sites.

  14. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy.

    PubMed

    Cassaignau, Anaïs M E; Launay, Hélène M M; Karyadi, Maria-Evangelia; Wang, Xiaolin; Waudby, Christopher A; Deckert, Annika; Robertson, Amy L; Christodoulou, John; Cabrita, Lisa D

    2016-08-01

    During biosynthesis on the ribosome, an elongating nascent polypeptide chain can begin to fold, in a process that is central to all living systems. Detailed structural studies of co-translational protein folding are now beginning to emerge; such studies were previously limited, at least in part, by the inherently dynamic nature of emerging nascent chains, which precluded most structural techniques. NMR spectroscopy is able to provide atomic-resolution information for ribosome-nascent chain complexes (RNCs), but it requires large quantities (≥10 mg) of homogeneous, isotopically labeled RNCs. Further challenges include limited sample working concentration and stability of the RNC sample (which contribute to weak NMR signals) and resonance broadening caused by attachment to the large (2.4-MDa) ribosomal complex. Here, we present a strategy to generate isotopically labeled RNCs in Escherichia coli that are suitable for NMR studies. Uniform translational arrest of the nascent chains is achieved using a stalling motif, and isotopically labeled RNCs are produced at high yield using high-cell-density E. coli growth conditions. Homogeneous RNCs are isolated by combining metal affinity chromatography (to isolate ribosome-bound species) with sucrose density centrifugation (to recover intact 70S monosomes). Sensitivity-optimized NMR spectroscopy is then applied to the RNCs, combined with a suite of parallel NMR and biochemical analyses to cross-validate their integrity, including RNC-optimized NMR diffusion measurements to report on ribosome attachment in situ. Comparative NMR studies of RNCs with the analogous isolated proteins permit a high-resolution description of the structure and dynamics of a nascent chain during its progressive biosynthesis on the ribosome.

  15. Different Heavy Metal Accumulation Strategies of Epilithic Lichens Colonising Artificial Post-Smelting Wastes.

    PubMed

    Rola, Kaja; Osyczka, Piotr; Kafel, Alina

    2016-02-01

    Lichens appear to be essential and effective colonisers of bare substrates including the extremely contaminated wastes of slag dumps. This study examines the metal accumulation capacity of epilithic lichens growing directly on the surface of artificial slag sinters. Four species representing different growth forms, i.e., crustose Candelariella aurella, Lecanora muralis, and Lecidea fuscoatra and fruticose Stereocaulon nanodes, were selected to evaluate the relationships between zinc, lead, cadmium, and nickel contents in their thalli and host substrates. Bioaccumulation factors of examined crustose lichens showed their propensity to hyperaccumulate heavy metals. Contrarily, concentrations of metals in fruticose thalli of S. nanodes were, as a rule, lower than in the corresponding substrates. This indicates that the growth form of thalli and degree of thallus adhesion to the substrate has a significant impact on metal concentrations in lichens colonising post-smelting wastes. Nonlinear regression models described by power functions show that at greater levels of Pb concentration in the substrate, the ability of C. aurella, L. muralis and L. fuscoatra to accumulate the metal experiences a relative decrease, whereas hyperbolic function describes a similar trend in relation to Ni content in S. nanodes. This phenomenon may be an important attribute of lichens that facilitates their colonisation of the surface of slag wastes.

  16. Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors.

    PubMed

    Frossard, Aline; Gerull, Linda; Mutz, Michael; Gessner, Mark O

    2012-03-01

    A fundamental issue in microbial and general ecology is the question to what extent environmental conditions dictate the structure of communities and the linkages with functional properties of ecosystems (that is, ecosystem function). We approached this question by taking advantage of environmental gradients established in soil and sediments of small stream corridors in a recently created, early successional catchment. Specifically, we determined spatial and temporal patterns of bacterial community structure and their linkages with potential microbial enzyme activities along the hydrological flow paths of the catchment. Soil and sediments were sampled in a total of 15 sites on four occasions spread throughout a year. Denaturing gradient gel electrophoresis (DGGE) was used to characterize bacterial communities, and substrate analogs linked to fluorescent molecules served to track 10 different enzymes as specific measures of ecosystem function. Potential enzyme activities varied little among sites, despite contrasting environmental conditions, especially in terms of water availability. Temporal changes, in contrast, were pronounced and remarkably variable among the enzymes tested. This suggests much greater importance of temporal dynamics than spatial heterogeneity in affecting specific ecosystem functions. Most strikingly, bacterial community structure revealed neither temporal nor spatial patterns. The resulting disconnect between bacterial community structure and potential enzyme activities indicates high functional redundancy within microbial communities even in the physically and biologically simplified stream corridors of early successional landscapes.

  17. Bioorthogonal Metabolic Labeling of Nascent RNA in Neurons Improves the Sensitivity of Transcriptome-Wide Profiling.

    PubMed

    Zajaczkowski, Esmi L; Zhao, Qiong-Yi; Zhang, Zong Hong; Li, Xiang; Wei, Wei; Marshall, Paul R; Leighton, Laura J; Nainar, Sarah; Feng, Chao; Spitale, Robert C; Bredy, Timothy W

    2018-06-15

    Transcriptome-wide expression profiling of neurons has provided important insights into the underlying molecular mechanisms and gene expression patterns that transpire during learning and memory formation. However, there is a paucity of tools for profiling stimulus-induced RNA within specific neuronal cell populations. A bioorthogonal method to chemically label nascent (i.e., newly transcribed) RNA in a cell-type-specific and temporally controlled manner, which is also amenable to bioconjugation via click chemistry, was recently developed and optimized within conventional immortalized cell lines. However, its value within a more fragile and complicated cellular system such as neurons, as well as for transcriptome-wide expression profiling, has yet to be demonstrated. Here, we report the visualization and sequencing of activity-dependent nascent RNA derived from neurons using this labeling method. This work has important implications for improving transcriptome-wide expression profiling and visualization of nascent RNA in neurons, which has the potential to provide valuable insights into the mechanisms underlying neural plasticity, learning, and memory.

  18. The recruitment of the U5 snRNP to nascent transcripts requires internal loop 1 of U5 snRNA.

    PubMed

    Kim, Rebecca; Paschedag, Joshua; Novikova, Natalya; Bellini, Michel

    2012-12-01

    In this study, we take advantage of the high spatial resolution offered by the nucleus and lampbrush chromosomes of the amphibian oocyte to investigate the mechanisms that regulate the intranuclear trafficking of the U5 snRNP and its recruitment to nascent transcripts. We monitor the fate of newly assembled fluorescent U5 snRNP in Xenopus oocytes depleted of U4 and/or U6 snRNAs and demonstrate that the U4/U6.U5 tri-snRNP is not required for the association of U5 snRNP with Cajal bodies, splicing speckles, and nascent transcripts. In addition, using a mutational analysis, we show that a non-functional U5 snRNP can associate with nascent transcripts, and we further characterize internal loop structure 1 of U5 snRNA as a critical element for licensing U5 snRNP to target both nascent transcripts and splicing speckles. Collectively, our data support the model where the recruitment of snRNPs onto pre-mRNAs is independent of spliceosome assembly and suggest that U5 snRNP may promote the association of the U4/U6.U5 tri-snRNP with nascent transcripts.

  19. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling.

    PubMed

    Das, Debasis; Samanta, Dibyendu; Bhattacharya, Arpita; Basu, Arunima; Das, Anindita; Ghosh, Jaydip; Chakrabarti, Abhijit; Das Gupta, Chanchal

    2017-01-01

    Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein-EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here.

  20. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling

    PubMed Central

    Das, Debasis; Samanta, Dibyendu; Bhattacharya, Arpita; Basu, Arunima; Das, Anindita; Ghosh, Jaydip; Chakrabarti, Abhijit; Das Gupta, Chanchal

    2017-01-01

    Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein–EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here. PMID:28099529

  1. Role of the visual experience-dependent nascent proteome in neuronal plasticity

    PubMed Central

    Liu, Han-Hsuan; McClatchy, Daniel B; Schiapparelli, Lucio; Shen, Wanhua; Yates, John R

    2018-01-01

    Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity. PMID:29412139

  2. Theory of Force Regulation by Nascent Adhesion Sites

    PubMed Central

    Bruinsma, Robijn

    2005-01-01

    The mechanical coupling of a cell with the extracellular matrix relies on adhesion sites, clusters of membrane-associated proteins that communicate forces generated along the F-Actin filaments of the cytoskeleton to connecting tissue. Nascent adhesion sites have been shown to regulate these forces in response to tissue rigidity. Force-regulation by substrate rigidity of adhesion sites with fixed area is not possible for stationary adhesion sites, according to elasticity theory. A simple model is presented to describe force regulation by dynamical adhesion sites. PMID:15849245

  3. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains

    PubMed Central

    Shen, Peter S.; Park, Joseph; Qin, Yidan; Li, Xueming; Parsawar, Krishna; Larson, Matthew H.; Cox, James; Cheng, Yifan; Lambowitz, Alan M.; Weissman, Jonathan S.; Brandman, Onn; Frost, Adam

    2015-01-01

    In Eukarya, stalled translation induces 40S dissociation and recruitment of the Ribosome Quality control Complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here, we report cryoEM structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S at sites exposed after 40S dissociation, placing the Ltn1p RING domain near the exit channel and Rqc2p over the P-site tRNA. We further demonstrate that Rqc2p recruits alanine and threonine charged tRNA to the A-site and directs elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis in which a protein—not an mRNA—determines tRNA recruitment and the tagging of nascent chains with Carboxy-terminal Ala and Thr extensions (“CAT tails”). PMID:25554787

  4. Alteration of the Fates and Fluxes of Nitrogen by Detritivorous Fish: a Whole-Stream Manipulation and a 15N-tracer Addition

    NASA Astrophysics Data System (ADS)

    Taylor, B. W.; Hall, R. O.; Flecker, A. S.; Fisher, C. A.; Grant, M. B.; Jeffs, L.; Richmond, E. L.; Thomas, S. A.

    2005-05-01

    The key roles played by a few species and the non-random order of human-induced biodiversity loss provide compelling reasons for predicting the consequences of individual species losses on ecosystem functioning. This is especially true for vertebrates such as fish that are more vulnerable to extinction and are often over-harvested. Here we test the consequences of losing a single detritivorous fish species, Prochilodus mariae that constitutes 80% of the South American freshwater fishery and is declining. We used a large-scale experimental approach to remove Prochilodus from a diverse assemblage, and measured the effects of its loss on the stream nitrogen cycle using a 15NH4-N addition during years with high and low fish abundance. There was no difference in gross uptake of dissolved 15NH4-N, but when detritivorous fish were present nitrification was 30% higher. The flux of nitrogen into fine benthic particulate compartments was 46% greater when detritivorous fish were removed, but long-term N loss was much higher from these compartments. In contrast, in the presence of detritivorous fish N was retained by more stable epilithic biofilms. In the ecologically intact system, detritivorous fish influence the fates and fluxes of N, which increases N storage by this headwater stream.

  5. An Annotation Agnostic Algorithm for Detecting Nascent RNA Transcripts in GRO-Seq.

    PubMed

    Azofeifa, Joseph G; Allen, Mary A; Lladser, Manuel E; Dowell, Robin D

    2017-01-01

    We present a fast and simple algorithm to detect nascent RNA transcription in global nuclear run-on sequencing (GRO-seq). GRO-seq is a relatively new protocol that captures nascent transcripts from actively engaged polymerase, providing a direct read-out on bona fide transcription. Most traditional assays, such as RNA-seq, measure steady state RNA levels which are affected by transcription, post-transcriptional processing, and RNA stability. GRO-seq data, however, presents unique analysis challenges that are only beginning to be addressed. Here, we describe a new algorithm, Fast Read Stitcher (FStitch), that takes advantage of two popular machine-learning techniques, hidden Markov models and logistic regression, to classify which regions of the genome are transcribed. Given a small user-defined training set, our algorithm is accurate, robust to varying read depth, annotation agnostic, and fast. Analysis of GRO-seq data without a priori need for annotation uncovers surprising new insights into several aspects of the transcription process.

  6. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome

    PubMed Central

    Ullers, Ronald S.; Houben, Edith N.G.; Raine, Amanda; ten Hagen-Jongman, Corinne M.; Ehrenberg, Måns; Brunner, Joseph; Oudega, Bauke; Harms, Nellie; Luirink, Joen

    2003-01-01

    As newly synthesized polypeptides emerge from the ribosome, they interact with chaperones and targeting factors that assist in folding and targeting to the proper location in the cell. In Escherichia coli, the chaperone trigger factor (TF) binds to nascent polypeptides early in biosynthesis facilitated by its affinity for the ribosomal proteins L23 and L29 that are situated around the nascent chain exit site on the ribosome. The targeting factor signal recognition particle (SRP) interacts specifically with the signal anchor (SA) sequence in nascent inner membrane proteins (IMPs). Here, we have used photocross-linking to map interactions of the SA sequence in a short, in vitro–synthesized, nascent IMP. Both TF and SRP were found to interact with the SA with partially overlapping binding specificity. In addition, extensive contacts with L23 and L29 were detected. Both purified TF and SRP could be cross-linked to L23 on nontranslating ribosomes with a competitive advantage for SRP. The results suggest a role for L23 in the targeting of IMPs as an attachment site for TF and SRP that is close to the emerging nascent chain. PMID:12756233

  7. Are Longitudinal Patterns of Bacterial Community Composition and Dissolved Organic Matter Composition Linked Across a River Continuum? (Invited)

    NASA Astrophysics Data System (ADS)

    Mosher, J.; Kaplan, L. A.; Kan, J.; Findlay, R. H.; Podgorski, D. C.; McKenna, A. M.; Branan, T. L.; Griffith, C.

    2013-12-01

    The River Continuum Concept (RCC), an early meta-ecosystem idea, was developed without the benefit of new frontiers in molecular microbial ecology and ultra-high resolution mass spectrometry. We have applied technical advances in these areas to address a hypothesis implicit in the RCC that the upstream legacy of DOM processing contributes to the structure and function of downstream bacterial communities. DOM molecular structure and microbial community structure were measured across river networks within three distinct forested catchments. High-throughput pyrosequencing of bacterial 16S rRNA amplicons and phospholipid fatty acid analysis were used to characterize bacterial communities, and ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry characterized the molecular composition of stream water DOM. Total microbial biomass varied among river networks but showed a trend of decreasing biomass in sediment with increasing stream order. There were distinct shifts in bacterial community structure and a trend of decreasing richness was observed traveling downstream in both sediment and epilithic habitats. The bacterial richness in the first order stream sediment habitats was 7728 genera which decreased to 6597 genera in the second order sites and 4867 genera in the third order streams. The richness in the epilithic biofilm habitats was 2830 genera in the first order, 2322 genera in the second order and 1629 genera in the third order sites. Over 45% of the sediment biofilm genera and 37% of the epilithic genera were found in all three orders. In addition to shifts in bacterial richness, we observed a longitudinal shift in bacterial functional-types. In the sediment biofilms, Rhodoplanes spp. (containing rhodopsin pigment) and Bradyrhizobium spp. (nitrogen fixing bacteria) were predominately found in the heavily forested first order streams, while the cyanobacteria Limnothrix spp. was dominant in the second order streams. The third order

  8. Mechanisms of nascent fiber formation during avian skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    McCormick, K. M.; Schultz, E.

    1992-01-01

    This study examined two putative mechanisms of new fiber formation in postnatal skeletal muscle, namely longitudinal fragmentation of existing fibers and de novo formation. The relative contributions of these two mechanisms to fiber formation in hypertrophying anterior latissimus dorsi (ALD) muscle were assessed by quantitative analysis of their nuclear populations. Muscle hypertrophy was induced by wing-weighting for 1 week. All nuclei formed during the weighting period were labeled by continuous infusion of 5-bromo-2'-deoxyuridine (BrdU), a thymidine analog, and embryonic-like fibers were identified using an antibody to ventricular-like embryonic (V-EMB) myosin. The number of BrdU-labeled and unlabeled nuclei in V-EMB-positive fibers were counted. Wing-weighting resulted in significant muscle enlargement and the appearance of many V-EMB+ fibers. The majority of V-EMB+ fibers were completely independent of mature fibers and had a nuclear density characteristics of developing fibers. Furthermore, nearly 100% of the nuclei in independent V-EMB+ fibers were labeled. These findings strongly suggest that most V-EMB+ fibers were nascent fibers formed de novo during the weighting period by satellite cell activation and fusion. Nascent fibers were found primarily in the space between fascicles where they formed a complex anastomosing network of fibers running at angles to one another. Although wing-weighting induced an increase in the number of branched fibers, there was no evidence that V-EMB+ fibers were formed by longitudinal fragmentation. The location of newly formed fibers in wing-weighted and regenerating ALD muscle was compared to determine whether satellite cells in the ALD muscle were unusual in that, if stimulated to divide, they would form fibers in the inter- and intrafascicular space. In contrast to wing-weighted muscle, nascent fibers were always found closely associated with necrotic fibers. These results suggest that wing-weighting is not simply another

  9. The Fate of Nascent APP in Hippocampal Neurons: A Live Cell Imaging Study.

    PubMed

    DelBove, Claire E; Deng, Xian-Zhen; Zhang, Qi

    2018-06-21

    Amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD) because its proteolytic products form amyloid plaques and its mutations are linked to familial AD patients. As a membrane protein, APP is involved in neuronal development and plasticity. However, it remains unclear how nascent APP is distributed and transported to designated membrane compartments to execute its diverse functions. Here, we employed a dual-tagged APP fusion protein in combination with a synaptic vesicle marker to study the surface trafficking and cleavage of APP in hippocampal neurons immediately after its synthesis. Using long-term time-lapse imaging, we found that a considerable amount of nascent APP was directly transported to the somatodendritic surface, from which it propagates to distal neurites. Some APP in the plasma membrane was endocytosed and some was cleaved by α-secretase. Hence, we conclude that surface transportation of APP is a major step preceding its proteolytic processing and neuritic distribution.

  10. RNA polymerase pausing and nascent RNA structure formation are linked through clamp domain movement

    PubMed Central

    Hein, Pyae P.; Kolb, Kellie E.; Windgassen, Tricia; Bellecourt, Michael J.; Darst, Seth A.; Mooney, Rachel A.; Landick, Robert

    2014-01-01

    The rates of RNA synthesis and nascent RNA folding into biologically active structures are linked via pausing by RNA polymerase (RNAP). Structures that form within the RNA exit channel can increase pausing by interacting with bacterial RNAP or decrease pausing by preventing backtracking. Conversely, pausing is required for proper folding of some RNAs. Opening of the RNAP clamp domain is proposed to mediate some effects of nascent RNA structures. However, the connections among RNA structure formation, clamp movement, and catalytic activity remain uncertain. We assayed exit-channel structure formation in Escherichia coli RNAP together with disulfide crosslinks that favor closed or open clamp conformations and found that clamp position directly influences RNA structure formation and catalytic activity. We report that exit-channel RNA structures slow pause escape by favoring clamp opening and through interactions with the flap that slow translocation. PMID:25108353

  11. Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction

    PubMed Central

    Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.

    1998-01-01

    Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994

  12. Substantial Goodness and Nascent Human Life.

    PubMed

    Floyd, Shawn

    2015-09-01

    Many believe that moral value is--at least to some extent--dependent on the developmental states necessary for supporting rational activity. My paper rejects this view, but does not aim simply to register objections to it. Rather, my essay aims to answer the following question: if a human being's developmental state and occurrent capacities do not bequeath moral standing, what does? The question is intended to prompt careful consideration of what makes human beings objects of moral value, dignity, or (to employ my preferred term) goodness. Not only do I think we can answer this question, I think we can show that nascent human life possesses goodness of precisely this sort. I appeal to Aquinas's metaethics to establish the conclusion that the goodness of a human being--even if that being is an embryo or fetus--resides at the substratum of her existence. If she possesses goodness, it is because human existence is good.

  13. Reactive uptake of HOCl to laboratory generated sea salt particles and nascent sea-spray aerosol

    NASA Astrophysics Data System (ADS)

    Campbell, N. R.; Ryder, O. S.; Bertram, T. H.

    2013-12-01

    Field observations suggest that the reactive uptake of HOCl on marine aerosol particles is an important source of chlorine radicals, particularly under low NOx conditions. However to date, laboratory measurements disagree on the magnitude of the reactive uptake coefficient for HOCl by a factor of 5 (γ(HOCl) ranges between 0.0004 and 0.0018), and there are no measurements of γ(HOCl) on nascent sea-spray aerosol. Here, we present measurements of the reactive uptake of HOCl to laboratory generated sodium chloride and sea-spray aerosol particles generated in a novel Marine Aerosol Reference Tank (MART), coupled to an entrained aerosol flow reactor and Chemical Ionization Mass Spectrometer (CIMS). Measurements of γ(HOCl) retrieved here are compared against those in the literature, and the role of organic coatings on nascent sea-spray aerosol is explored.

  14. Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation

    PubMed Central

    Vallerga, María Belén; Mansilla, Sabrina F.; Federico, María Belén; Bertolin, Agustina P.; Gottifredi, Vanesa

    2015-01-01

    After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates. PMID:26627254

  15. The use of epilithic Antarctic lichens (Usnea aurantiacoatra and U. antartica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica.

    PubMed

    Poblet, A; Andrade, S; Scagliola, M; Vodopivez, C; Curtosi, A; Pucci, A; Marcovecchio, J

    1997-11-27

    Trace-metal contents were recorded for the epilithic antarctic lichens Usnea aurantiacoatra and U. antartica, sampled close to the Argentine scientific station 'Jubany' on '25 de Mayo' (King George) Island, in the Southern Shetland Archipelago (Antarctica). The corresponding heavy-metal levels have been measured through atomic absorption spectrophotometry, following internationally accepted analytical methods. The results obtained support the hypothesis that an atmospheric circulation of trace metals exists on the assessed area, and the activities developed at the different scientific stations located on this island would be a potential source of heavy metals to the evaluated environment. The geographical distribution of trace metals atmospherically transported in the area close to 'Jubany Station' was studied through the corresponding metal contents of the assessed lichens. Finally, the suitability of both analyzed lichen species, Usnea aurantiacoatra and U. antartica, as biological indicators for quantitative monitoring of airborne metals for this antarctic environment was recognized.

  16. Nascent starbursts: a missing link in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Roussel, Helene; Beck, Rainer; Condon, Jim; Helou, George; Smith, John-David

    2005-06-01

    We have identified a rare category of galaxies characterized by an extreme deficiency in synchro- tron radiation, relative to dust emission, and very high dust temperatures. We studied in detail the most extreme such object, and concluded in favor of a starburst just breaking out, less than one megayear old, in a galaxy having undergone no major star formation episode in the last 100 Myr. Such systems offer a perfect setting to study the initial conditions and early dynamics of starbursts and understand better the regulation of the infrared-radio continuum correlation in galaxies. For the prototypical nascent starburst, the mid-infrared spectrum is quite peculiar, suggesting tran- sient dust species and high optical depth; tracers of dust and molecular gas are the only indicators of unusual activity, and the active regions are likely very compact and dust-bounded, suppressing ionization. Only Spitzer data can provide the needed physical diagnostics for such regions. A sample of 25 nascent starbursts was drawn from the cross-correlation of the IRAS Faint Source Catalog and the NVSS VLA radio survey, and carefully selected based on our multi-wavelength VLA maps to span a range of infrared to radio ratios and luminosities. This sample allows a first step beyond studying prototypes toward a statistical analysis addressing systematic physical pro- perties, classification and search for starburst development sequences. We propose imaging and spectroscopic observations from 3 to 160 microns to characterize the state of the interstellar medium and the gas and dust excitation origin. Our aim is to learn from these unique systems how a star formation burst may develop in its very earliest phases, how it affects the fueling material and the host galaxy. Acquired observations of the radio continuum, cold molecular gas and tracers of shocks and HII regions will help us interpret the rich Spitzer data set and extract a coherent picture of the interstellar medium in our targets.

  17. The Fluid Dynamics of Nascent Biofilms

    NASA Astrophysics Data System (ADS)

    Farthing, Nicola; Snow, Ben; Wilson, Laurence; Bees, Martin

    2017-11-01

    Many anti-biofilm approaches target mature biofilms with biochemical or physio-chemical interventions. We investigate the mechanics of interventions at an early stage that aim to inhibit biofilm maturation, focusing on hydrodynamics as cells transition from planktonic to surface-attached. Surface-attached cells generate flow fields that are relatively long-range compared with cells that are freely-swimming. We look at the effect of these flows on the biofilm formation. In particular, we use digital inline holographic microscopy to determine the three-dimensional flow due to a surface-attached cell and the effect this flow has on both tracers and other cells in the fluid. We compare experimental data with two models of cells on boundaries. The first approach utilizes slender body theory and captures many of the features of the experimental field. The second model develops a simple description in terms of singularity solutions of Stokes' flow, which produces qualitatively similar dynamics to both the experiments and more complex model but with significant computational savings. The range of validity of multiple cell arrangements is investigated. These two descriptions can be used to investigate the efficacy of actives developed by Unilever on nascent biofilms.

  18. SWI/SNF Associates with Nascent Pre-mRNPs and Regulates Alternative Pre-mRNA Processing

    PubMed Central

    Tyagi, Anu; Ryme, Jessica; Brodin, David; Östlund Farrants, Ann Kristin; Visa, Neus

    2009-01-01

    The SWI/SNF chromatin remodeling complexes regulate the transcription of many genes by remodeling nucleosomes at promoter regions. In Drosophila, SWI/SNF plays an important role in ecdysone-dependent transcription regulation. Studies in human cells suggest that Brahma (Brm), the ATPase subunit of SWI/SNF, regulates alternative pre-mRNA splicing by modulating transcription elongation rates. We describe, here, experiments that study the association of Brm with transcribed genes in Chironomus tentans and Drosophila melanogaster, the purpose of which was to further elucidate the mechanisms by which Brm regulates pre-mRNA processing. We show that Brm becomes incorporated into nascent Balbiani ring pre-mRNPs co-transcriptionally and that the human Brm and Brg1 proteins are associated with RNPs. We have analyzed the expression profiles of D. melanogaster S2 cells in which the levels of individual SWI/SNF subunits have been reduced by RNA interference, and we show that depletion of SWI/SNF core subunits changes the relative abundance of alternative transcripts from a subset of genes. This observation, and the fact that a fraction of Brm is not associated with chromatin but with nascent pre-mRNPs, suggest that SWI/SNF affects pre-mRNA processing by acting at the RNA level. Ontology enrichment tests indicate that the genes that are regulated post-transcriptionally by SWI/SNF are mostly enzymes and transcription factors that regulate postembryonic developmental processes. In summary, the data suggest that SWI/SNF becomes incorporated into nascent pre-mRNPs and acts post-transcriptionally to regulate not only the amount of mRNA synthesized from a given promoter but also the type of alternative transcript produced. PMID:19424417

  19. Probing the Role of Nascent Helicity in p27 Function as a Cell Cycle Regulator

    PubMed Central

    Otieno, Steve; Kriwacki, Richard

    2012-01-01

    p27 regulates the activity of Cdk complexes which are the principal governors of phase transitions during cell division. Members of the p27 family of proteins, which also includes p21 and p57, are called the Cip/Kip cyclin-dependent kinase regulators (CKRs). Interestingly, the Cip/Kip CKRs play critical roles in cell cycle regulation by being intrinsically unstructured, a characteristic contrary to the classical structure-function paradigm. They exhibit nascent helicity which has been localized to a segment referred to as sub-domain LH. The nascent helicity of this sub-domain is conserved and we hypothesize that it is an important determinant of their functional properties. To test this hypothesis, we successfully designed and prepared p27 variants in which domain LH was either more or less helical with respect to the wild-type protein. Thermal denaturation experiments showed that the ternary complexes of the p27 variants bound to Cdk2/Cyclin A were less stable compared to the wild-type complex. Isothermal titration calorimetry experiments showed a decrease in the enthalpy of binding for all the mutants with respect to p27. The free energies of binding varied within a much narrower range. In vitro Cdk2 inhibition assays showed that the p27 variants exhibited disparate inhibitory potencies. Furthermore, when over-expressed in NIH 3T3 mouse fibroblast cells, the less helical p27 variants were less effective in causing cell cycle arrest relative to the wild-type p27. Our results indicate that the nascent helicity of sub-domain LH plays a key role mediating the biological function of p27. PMID:23071750

  20. Live Cell Imaging of the Nascent Inactive X Chromosome during the Early Differentiation Process of Naive ES Cells towards Epiblast Stem Cells

    PubMed Central

    Guyochin, Aurélia; Maenner, Sylvain; Chu, Erin Tsi-Jia; Hentati, Asma; Attia, Mikael; Avner, Philip; Clerc, Philippe

    2014-01-01

    Random X-chromosome inactivation ensures dosage compensation in mammals through the transcriptional silencing of one of the two X chromosomes present in each female cell. Silencing is initiated in the differentiating epiblast of the mouse female embryos through coating of the nascent inactive X chromosome by the non-coding RNA Xist, which subsequently recruits the Polycomb Complex PRC2 leading to histone H3-K27 methylation. Here we examined in mouse ES cells the early steps of the transition from naive ES cells towards epiblast stem cells as a model for inducing X chromosome inactivation in vitro. We show that these conditions efficiently induce random XCI. Importantly, in a transient phase of this differentiation pathway, both X chromosomes are coated with Xist RNA in up to 15% of the XX cells. In an attempt to determine the dynamics of this process, we designed a strategy aimed at visualizing the nascent inactive X-chromosome in live cells. We generated transgenic female XX ES cells expressing the PRC2 component Ezh2 fused to the fluorescent protein Venus. The fluorescent fusion protein was expressed at sub-physiological levels and located in nuclei of ES cells. Upon differentiation of ES cell towards epiblast stem cell fate, Venus-fluorescent territories appearing in interphase nuclei were identified as nascent inactive X chromosomes by their association with Xist RNA. Imaging of Ezh2-Venus for up to 24 hours during the differentiation process showed survival of some cells with two fluorescent domains and a surprising dynamics of the fluorescent territories across cell division and in the course of the differentiation process. Our data reveal a strategy for visualizing the nascent inactive X chromosome and suggests the possibility for a large plasticity of the nascent inactive X chromosome. PMID:25546018

  1. A Primer on the Pathway to Scholarly Writing: Helping Nascent Writers to Unlearn Conditioned Habits

    ERIC Educational Resources Information Center

    McDougall, Dennis; Ornelles, Cecily; Rao, Kavita

    2015-01-01

    In this article, we identify eight common error patterns of nascent writers when they attempt to navigate the pathway to scholarly writing. We illustrate each error pattern via examples and counter-examples (corrections). We also describe how to identify such patterns, why those patterns might occur and persist, and why each pattern is…

  2. A novel compound inhibits rHDL assembly and blocks nascent HDL biogenesis downstream of apoAI binding to ABCA1 expressing cells

    PubMed Central

    Lyssenko, Nicholas N.; Brubaker, Gregory; Smith, Bradley D.; Smith, Jonathan D.

    2011-01-01

    Objective Nascent high-density lipoprotein (HDL) particles form from cellular lipids and extracellular lipid-free apolipoprotein AI (apoAI) in a process mediated by ATP-binding cassette transporter A1 (ABCA1). We have sought out compounds that inhibit nascent HDL biogenesis without affecting ABCA1 activity. Methods and Results Reconstituted HDL (rHDL) formation and cellular cholesterol efflux assays were used to show that two compounds that bond via hydrogen with phospholipids inhibit rHDL and nascent HDL production. In rHDL formation assays, the inhibitory effect of compound 1 (methyl 3α-acetoxy-7α,12α-di[(phenylaminocarbonyl)amino]-5β-cholan-24-oate), the more active of the two, depended on its ability to associate with phospholipids. In cell assays, compound 1 suppressed ABCA1-mediated cholesterol efflux to apoAI, the 18A peptide, and taurocholate with high specificity, without affecting ABCA1-independent cellular cholesterol efflux to HDL and endocytosis of acetylated low-density lipoprotein (AcLDL) and transferrin. Furthermore, compound 1 did not affect ABCA1 activity adversely, as ABCA1-mediated shedding of microparticles proceeded unabated and apoAI binding to ABCA1-expressing cells increased in its presence. Conclusions The inhibitory effects of compound 1 support a three-step model of nascent HDL biogenesis: plasma membrane remodeling by ABCA1, apoAI binding to ABCA1, and lipoprotein particle assembly. The compound inhibits the final step, causing accumulation of apoAI in ABCA1-expressing cells. PMID:21836073

  3. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila

    PubMed Central

    Hur, Junho K.; Luo, Yicheng; Moon, Sungjin; Ninova, Maria; Marinov, Georgi K.; Chung, Yun D.; Aravin, Alexei A.

    2016-01-01

    The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis. PMID:27036967

  4. Gravitational radiation from rapidly rotating nascent neutron stars

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Shapiro, Stuart L.

    1995-01-01

    We study the secular evolution and gravitational wave signature of a newly formed, rapidly rotating neutron star. The neutron star may arise from core collapse in a massive star or from the accretion-induced collapse of a white dwarf. After a brief dynamical phase, the nascent neutron star settles into an axisymmetric, secularly unstable state. Gravitational radiation drives the star to a nonaxisymmetric, stationary equilibrium configuration via the bar-mode instability. The emitted quasi-periodic gravitational waves have a unique signature: the wave frequency sweeps downward from a few hundred Hertz to zero, while the wave amplitude increase from zero to a maximum and then decays back to zero. Such a wave signal could detected by broadband gravitational wave interferometers currently being constructed. We also characterize two other types of gravitational wave signals that could arise in principle from a rapidly rotating, secularly unstable neutron star: a high-frequency (f greater than or approximately = 1000 Hz) wave which increases the pattern-speed of the star, and a wave that actually increases the angular momentum of the star.

  5. Does Ethicality Wane with Adulthood? A Study of the Ethical Values of Entrepreneurship Students and Nascent Entrepreneurs

    ERIC Educational Resources Information Center

    Lourenço, Fernando; Sappleton, Natalie; Cheng, Ranis

    2015-01-01

    The authors examined the following questions: Does gender influence the ethicality of enterprise students to a greater extent than it does nascent entrepreneurs? If this is the case, then is it due to factors associated with adulthood such as age, work experience, marital status, and parental status? Sex-role socialization theory and moral…

  6. Self-assembly of marine exudate particles and their impact on the CCN properties of nascent marine aerosol

    NASA Astrophysics Data System (ADS)

    Schill, S.; Zimmermann, K.; Ryder, O. S.; Campbell, N.; Collins, D. B.; Gianneschi, N.; Bertram, T. H.

    2013-12-01

    Spontaneous self-assembly of marine exudate particles has previously been observed in filtered seawater samples. The chemicophysical properties of these particles may alter the chemical composition and CCN properties of nascent marine aerosol, yet to date simultaneous measurement of seawater exudate particle formation rates and number distributions, with aerosol particle formation rates and CCN activity are lacking. Here, we use a novel Marine Aerosol Reference Tank (MART) system to experimentally mimic a phytoplankton bloom via sequential addition of biological surrogates, including sterol, galactose, lipopolysaccharide, BSA protein, and dipalmitoylphosphatidylcholine. Nascent sea-spray aerosol are generated in the MART system via a continuous plunging waterfall. Exudate particle assembly in the water is monitored via dynamic light scattering (DLS) and transmission electron microscopy (TEM) to obtain both the assembly kinetics of the particles as well as particle number distributions Simultaneous characterization of both particle production rates and super-saturated particle hygroscopicity are also discussed. This study permits analysis of the controlling role of the molecular composition of dissolved organic carbon in setting the production rates of colloidal material in the surface oceans.

  7. The Exosome Associates Cotranscriptionally with the Nascent Pre-mRNP through Interactions with Heterogeneous Nuclear Ribonucleoproteins

    PubMed Central

    Hessle, Viktoria; Björk, Petra; Sokolowski, Marcus; de Valdivia, Ernesto González; Silverstein, Rebecca; Artemenko, Konstantin; Tyagi, Anu; Maddalo, Gianluca; Ilag, Leopold; Helbig, Roger; Zubarev, Roman A.

    2009-01-01

    Eukaryotic cells have evolved quality control mechanisms to degrade aberrant mRNA molecules and prevent the synthesis of defective proteins that could be deleterious for the cell. The exosome, a protein complex with ribonuclease activity, is a key player in quality control. An early quality checkpoint takes place cotranscriptionally but little is known about the molecular mechanisms by which the exosome is recruited to the transcribed genes. Here we study the core exosome subunit Rrp4 in two insect model systems, Chironomus and Drosophila. We show that a significant fraction of Rrp4 is associated with the nascent pre-mRNPs and that a specific mRNA-binding protein, Hrp59/hnRNP M, interacts in vivo with multiple exosome subunits. Depletion of Hrp59 by RNA interference reduces the levels of Rrp4 at transcription sites, which suggests that Hrp59 is needed for the exosome to stably interact with nascent pre-mRNPs. Our results lead to a revised mechanistic model for cotranscriptional quality control in which the exosome is constantly recruited to newly synthesized RNAs through direct interactions with specific hnRNP proteins. PMID:19494042

  8. Binding of transcription termination protein nun to nascent RNA and template DNA.

    PubMed

    Watnick, R S; Gottesman, M E

    1999-12-17

    The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.

  9. Eccentricity Evolution of Extrasolar Multiple Planetary Systems Due to the Depletion of Nascent Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Nagasawa, M.; Lin, D. N. C.; Ida, S.

    2003-04-01

    Most extrasolar planets are observed to have eccentricities much larger than those in the solar system. Some of these planets have sibling planets, with comparable masses, orbiting around the same host stars. In these multiple planetary systems, eccentricity is modulated by the planets' mutual secular interaction as a consequence of angular momentum exchange between them. For mature planets, the eigenfrequencies of this modulation are determined by their mass and semimajor axis ratios. However, prior to the disk depletion, self-gravity of the planets' nascent disks dominates the precession eigenfrequencies. We examine here the initial evolution of young planets' eccentricity due to the apsidal libration or circulation induced by both the secular interaction between them and the self-gravity of their nascent disks. We show that as the latter effect declines adiabatically with disk depletion, the modulation amplitude of the planets' relative phase of periapsis is approximately invariant despite the time-asymmetrical exchange of angular momentum between planets. However, as the young planets' orbits pass through a state of secular resonance, their mean eccentricities undergo systematic quantitative changes. For applications, we analyze the eccentricity evolution of planets around υ Andromedae and HD 168443 during the epoch of protostellar disk depletion. We find that the disk depletion can change the planets' eccentricity ratio. However, the relatively large amplitude of the planets' eccentricity cannot be excited if all the planets had small initial eccentricities.

  10. Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts--dosimetric experiments in the hyperarid core of the Atacama Desert.

    PubMed

    Cockell, Charles S; McKay, Christopher P; Warren-Rhodes, Kim; Horneck, Gerda

    2008-02-27

    Experiments were conducted during November 2003 in the dry core of the Atacama Desert, Yungay, Chile to test the hypothesis that UV radiation, in environments where liquid water is not available, and thus enzymatic repair of UV-induced damage is inhibited, can prevent epilithic colonization. Novel dosimeters made from the cryptoendolithic, desiccation and radiation-resistant cyanobacterium Chroococcidiopsis sp. isolated from the dry Negev desert, Israel, showed that monolayers of this organism were killed within one day. The diurnal profile of microbial loss of viability was investigated with dosimeters of Bacillus subtilis, which similarly showed cell death within one day. Soil grains obtained from south of Yungay where liquid water is more abundant and transported to the hyperarid core showed killing of indigenous vegetative organisms within one day. Gypsum and mineral grain coverings of 1mm were sufficient to prevent measurable UV-induced damage of Chroococcidiopsis and B. subtilis after 8d exposure. These results show that under extreme desiccation and an ambient UV flux the surface of rocks can potentially be rendered sterile, but that millimetre thick mineral coverings can protect organisms from UV-induced killing, consistent with the observed patterns of lithophytic colonization in the Atacama Desert. These data further show that UV radiation can be an important limiting factor in surface biological rock weathering in arid regions.

  11. A Proteomic Characterization of Factors Enriched at Nascent DNA Molecules

    PubMed Central

    Lopez-Contreras, Andres J.; Ruppen, Isabel; Nieto-Soler, Maria; Murga, Matilde; Rodriguez-Acebes, Sara; Remeseiro, Silvia; Rodrigo-Perez, Sara; Rojas, Ana M.; Mendez, Juan; Muñoz, Javier; Fernandez-Capetillo, Oscar

    2013-01-01

    SUMMARY DNA replication is facilitated by multiple factors that concentrate in the vicinity of replication forks. Here, we developed an approach that combines the isolation of proteins on nascent DNA chains with mass spectrometry (iPOND-MS), allowing a comprehensive proteomic characterization of the human replisome and replisome-associated factors. In addition to known replisome components, we provide a broad list of proteins that reside in the vicinity of the replisome, some of which were not previously associated with replication. For instance, our data support a link between DNA replication and the Williams-Beuren syndrome and identify ZNF24 as a replication factor. In addition, we reveal that SUMOylation is wide-spread for factors that concentrate near replisomes, which contrasts with lower UQylation levels at these sites. This resource provides a panoramic view of the proteins that concentrate in the surroundings of the replisome, which should facilitate future investigations on DNA replication and genome maintenance. PMID:23545495

  12. Diversity and Biomineralization Potential of the Epilithic Bacterial Communities Inhabiting the Oldest Public Stone Monument of Cluj-Napoca (Transylvania, Romania)

    PubMed Central

    Andrei, Adrian-Ştefan; Păuşan, Manuela R.; Tămaş, Tudor; Har, Nicolae; Barbu-Tudoran, Lucian; Leopold, Nicolae; Banciu, Horia L.

    2017-01-01

    In this study, we investigated the biomineralization potential and diversity of the epilithic bacterial communities dwelling on the limestone statue of Saint Donatus, the oldest public monument of Cluj-Napoca city (Transylvania region, NW Romania). Their spatial distribution together with phylogenetic and metabolic diversity, as well as their capacity to precipitate calcium carbonate was evaluated by combining molecular and phenotypic fingerprinting methods with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron-microscopy analyses. The results of real-time quantitative PCR, molecular fingerprinting and community-level physiological profiling showed that diverse and abundant bacterial assemblages that differ in relation to their collection site colonized the statue. The cultivation and molecular identification procedures allowed the characterization of 79 bacterial isolates belonging to Proteobacteria (73.4%), Firmicutes (19%), and Actinobacteria (7.6%). Amongst them, the 22 strains identified as being capable of calcium carbonate precipitation were found to belong mostly to Bacillus and Pseudomonas genera. We found that bacteria acted as nucleation sites, inducing the formation of nanoscale aggregates that were shown to be principally composed of vaterite. Furthermore, we expanded the current knowledge on culturable diversity of carbonatogenic bacteria by providing evidence for biogenic vaterite/calcite formation mediated by: Pseudomonas synxantha, P. graminis, Brevibacterium iodinum, Streptomyces albidoflavus, and Stenotrophomonas chelatiphaga. Overall, this study highlights the need to evaluate the carbonatogenetic potential of all the bacterial communities present on stone artwork prior to designing an efficient conservation treatment based on biomineralization. PMID:28326074

  13. Sall1 Maintains Nephron Progenitors and Nascent Nephrons by Acting as Both an Activator and a Repressor

    PubMed Central

    Kanda, Shoichiro; Tanigawa, Shunsuke; Ohmori, Tomoko; Taguchi, Atsuhiro; Kudo, Kuniko; Suzuki, Yutaka; Sato, Yuki; Hino, Shinjiro; Sander, Maike; Perantoni, Alan O.; Sugano, Sumio; Nakao, Mitsuyoshi

    2014-01-01

    The balanced self-renewal and differentiation of nephron progenitors are critical for kidney development and controlled, in part, by the transcription factor Six2, which antagonizes canonical Wnt signaling-mediated differentiation. A nuclear factor, Sall1, is expressed in Six2-positive progenitors as well as differentiating nascent nephrons, and it is essential for kidney formation. However, the molecular functions and targets of Sall1, especially the functions and targets in the nephron progenitors, remain unknown. Here, we report that Sall1 deletion in Six2-positive nephron progenitors results in severe progenitor depletion and apoptosis of the differentiating nephrons in mice. Analysis of mice with an inducible Sall1 deletion revealed that Sall1 activates genes expressed in progenitors while repressing genes expressed in differentiating nephrons. Sall1 and Six2 co-occupied many progenitor-related gene loci, and Sall1 bound to Six2 biochemically. In contrast, Sall1 did not bind to the Wnt4 locus suppressed by Six2. Sall1-mediated repression was also independent of its binding to DNA. Thus, Sall1 maintains nephron progenitors and their derivatives by a unique mechanism, which partly overlaps but is distinct from that of Six2: Sall1 activates progenitor-related genes in Six2-positive nephron progenitors and represses gene expression in Six2-negative differentiating nascent nephrons. PMID:24744442

  14. Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Ayaka, E-mail: atamura@hiroshima-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya

    2015-05-07

    We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of themore » short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.« less

  15. Stream network and stream segment temperature models software

    USGS Publications Warehouse

    Bartholow, John

    2010-01-01

    This set of programs simulates steady-state stream temperatures throughout a dendritic stream network handling multiple time periods per year. The software requires a math co-processor and 384K RAM. Also included is a program (SSTEMP) designed to predict the steady state stream temperature within a single stream segment for a single time period.

  16. Stream-profile analysis and stream-gradient index

    USGS Publications Warehouse

    Hack, John T.

    1973-01-01

    The generally regular three-dimensional geometry of drainage networks is the basis for a simple method of terrain analysis providing clues to bedrock conditions and other factors that determine topographic forms. On a reach of any stream, a gradient-index value can be obtained which allows meaningful comparisons of channel slope on streams of different sizes. The index is believed to reflect stream power or competence and is simply the product of the channel slope at a point and channel length measured along the longest stream above the pointwhere the calculation is made. In an adjusted topography, changes in gradient-index values along a stream generally correspond to differences in bedrock or introduced load. In any landscape the gradient index of a stream is related to total relief and stream regimen. Thus, climate, tectonic events, and geomorphic history must be considered in using the gradient index. Gradient-index values can be obtained quickly by simple measurements on topographic maps, or they can be obtained by more sophisticated photogrammetric measurements that involve simple computer calculations from x, y, z coordinates.

  17. A two-way street: regulatory interplay between RNA polymerase and nascent RNA structure

    PubMed Central

    Zhang, Jinwei; Landick, Robert

    2016-01-01

    The vectorial (5′-to-3′ at varying velocity) synthesis of RNA by cellular RNA polymerases creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNA polymerase and nascent RNA structure. We categorize and attempt to rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies. PMID:26822487

  18. A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure.

    PubMed

    Zhang, Jinwei; Landick, Robert

    2016-04-01

    The vectorial (5'-to-3' at varying velocity) synthesis of RNA by cellular RNA polymerases (RNAPs) creates a rugged kinetic landscape, demarcated by frequent, sometimes long-lived, pauses. In addition to myriad gene-regulatory roles, these pauses temporally and spatially program the co-transcriptional, hierarchical folding of biologically active RNAs. Conversely, these RNA structures, which form inside or near the RNA exit channel, interact with the polymerase and adjacent protein factors to influence RNA synthesis by modulating pausing, termination, antitermination, and slippage. Here, we review the evolutionary origin, mechanistic underpinnings, and regulatory consequences of this interplay between RNAP and nascent RNA structure. We categorize and rationalize the extensive linkage between the transcriptional machinery and its product, and provide a framework for future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    EPA Pesticide Factsheets

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  20. Effects of fish density and river fertilization on algal standing stocks, invertebrates communities, and fish production in an Arctic River

    USGS Publications Warehouse

    Deegan, Linda A.; Peterson, B.J.; Golden, H.; McIvor, C.C.; Miller, M.C.

    1997-01-01

    This study examined the relative importance of bottom-up and top-down controls of an arctic stream food web by simultaneous manipulation of the top predator and nutrient availability. We created a two-step trophic system (algae to insects) by removal of the top predator (Arctic grayling, Thymallus arcticus) in fertilized and control stream reaches. Fish abundance was also increased 10 times to examine the effect of high fish density on stream ecosystem dynamics and fish. We measured the response of epilithic algae, benthic and drifting insects, and fish to nutrient enrichment and to changes in fish density. Insect grazers had little effect on algae and fish had little effect on insects. In both the control and fertilized reaches, fish growth, energy storage, and reproductive response of females declined with increased fish density. Fish growth and energy storage were more closely correlated with per capita insect availability than with per capita algal standing stock

  1. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    USGS Publications Warehouse

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  2. Stream-subsurface nutrient dynamics in a groundwater-fed stream

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Niederkorn, A.; Parsons, C. T.; Van Cappellen, P.

    2015-12-01

    The stream-riparian-aquifer interface plays a major role in the regional flow of nutrients and contaminants due to a strong physical-chemical gradient that promotes the transformation, retention, elimination or release of biogenic elements. To better understand the effect of the near-stream zones on stream biogeochemistry, we conducted a field study on a groundwater-fed stream located in the rare Charitable Research Reserve, Cambridge, Ontario, Canada. This study focused on monitoring the spatial and temporal distributions of nutrient elements within the riparian and hyporheic zones of the stream. Several piezometer nests and a series of passive (diffusion) water samplers, known as peepers, were installed along longitudinal and lateral transects centered on the stream to obtain data on the groundwater chemistry. Groundwater upwelling along the stream resulted in distinctly different groundwater types and associated nitrate concentrations between small distances in the riparian zone (<4m). After the upstream source of the stream surface water, concentrations of nutrients (NO3-, NH4+, SO42- and carbon) did not significantly change before the downstream outlet. Although reduction of nitrate and sulphate were found in the riparian zone of the stream, this did not significantly influence the chemistry of the adjacent stream water. Also, minimal retention in the hyporheic zones limited reduction of reactive compounds (NO3- and SO42-) within the stream channel. The results showed that the dissolved organic carbon (DOC) and residence time of water in the hyporheic zone and in surface water limited denitrification.

  3. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain

    PubMed Central

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan

    2017-01-01

    Abstract The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson–Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. PMID:28369621

  4. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain

    PubMed Central

    Lintner, Nathanael G.; McClure, Kim F.; Petersen, Donna; Londregan, Allyn T.; Piotrowski, David W.; Wei, Liuqing; Xiao, Jun; Bolt, Michael; Loria, Paula M.; Maguire, Bruce; Geoghegan, Kieran F.; Huang, Austin; Rolph, Tim; Liras, Spiros; Doudna, Jennifer A.; Dullea, Robert G.

    2017-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts. PMID:28323820

  5. Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones

    PubMed Central

    Pausch, Patrick; Singh, Ujjwala; Ahmed, Yasar Luqman; Pillet, Benjamin; Murat, Guillaume; Altegoer, Florian; Stier, Gunter; Thoms, Matthias; Hurt, Ed; Sinning, Irmgard; Bange, Gert; Kressler, Dieter

    2015-01-01

    Exponentially growing yeast cells produce every minute >160,000 ribosomal proteins. Owing to their difficult physicochemical properties, the synthesis of assembly-competent ribosomal proteins represents a major challenge. Recent evidence highlights that dedicated chaperone proteins recognize the N-terminal regions of ribosomal proteins and promote their soluble expression and delivery to the assembly site. Here we explore the intuitive possibility that ribosomal proteins are captured by dedicated chaperones in a co-translational manner. Affinity purification of four chaperones (Rrb1, Syo1, Sqt1 and Yar1) selectively enriched the mRNAs encoding their specific ribosomal protein clients (Rpl3, Rpl5, Rpl10 and Rps3). X-ray crystallography reveals how the N-terminal, rRNA-binding residues of Rpl10 are shielded by Sqt1's WD-repeat β-propeller, providing mechanistic insight into the incorporation of Rpl10 into pre-60S subunits. Co-translational capturing of nascent ribosomal proteins by dedicated chaperones constitutes an elegant mechanism to prevent unspecific interactions and aggregation of ribosomal proteins on their road to incorporation. PMID:26112308

  6. ASSESSING HEADWATER STREAMS: LINKING LANDSCAPES TO STREAM NETWORKS

    EPA Science Inventory

    Headwater streams represent a significant land-water boundary and drain 70-80% of the landscape. Headwater streams are vital components to drainage systems and are directly linked to our downstream rivers and lakes. However, alteration and loss of headwater streams have occurre...

  7. Tail-extension following the termination codon is critical for release of the nascent chain from membrane-bound ribosomes in a reticulocyte lysate cell-free system.

    PubMed

    Takahara, Michiyo; Sakaue, Haruka; Onishi, Yukiko; Yamagishi, Marifu; Kida, Yuichiro; Sakaguchi, Masao

    2013-01-11

    Nascent chain release from membrane-bound ribosomes by the termination codon was investigated using a cell-free translation system from rabbit supplemented with rough microsomal membrane vesicles. Chain release was extremely slow when mRNA ended with only the termination codon. Tail extension after the termination codon enhanced the release of the nascent chain. Release reached plateau levels with tail extension of 10 bases. This requirement was observed with all termination codons: TAA, TGA and TAG. Rapid release was also achieved by puromycin even in the absence of the extension. Efficient translation termination cannot be achieved in the presence of only a termination codon on the mRNA. Tail extension might be required for correct positioning of the termination codon in the ribosome and/or efficient recognition by release factors. Copyright © 2012. Published by Elsevier Inc.

  8. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    PubMed

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  9. Analyzing indicators of stream health for Minnesota streams

    USGS Publications Warehouse

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  10. Stream Processors

    NASA Astrophysics Data System (ADS)

    Erez, Mattan; Dally, William J.

    Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.

  11. Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing

    DTIC Science & Technology

    2012-12-14

    Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing Matei Zaharia Tathagata Das Haoyuan Li Timothy Hunter Scott Shenker Ion...SUBTITLE Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...time. However, current programming models for distributed stream processing are relatively low-level often leaving the user to worry about consistency of

  12. Selective ribosome profiling as a tool to study the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes

    PubMed Central

    Becker, Annemarie H.; Oh, Eugene; Weissman, Jonathan S.; Kramer, Günter; Bukau, Bernd

    2014-01-01

    A plethora of factors is involved in the maturation of newly synthesized proteins, including chaperones, membrane targeting factors, and enzymes. Many factors act cotranslationally through association with ribosome-nascent chain complexes (RNCs), but their target specificities and modes of action remain poorly understood. We developed selective ribosome profiling (SeRP) to identify substrate pools and points of RNC engagement of these factors. SeRP is based on sequencing mRNA fragments covered by translating ribosomes (general ribosome profiling, RP), combined with a procedure to selectively isolate RNCs whose nascent polypeptides are associated with the factor of interest. Factor–RNC interactions are stabilized by crosslinking, the resulting factor–RNC adducts are then nuclease-treated to generate monosomes, and affinity-purified. The ribosome-extracted mRNA footprints are converted to DNA libraries for deep sequencing. The protocol is specified for general RP and SeRP in bacteria. It was first applied to the chaperone trigger factor and is readily adaptable to other cotranslationally acting factors, including eukaryotic factors. Factor–RNC purification and sequencing library preparation takes 7–8 days, sequencing and data analysis can be completed in 5–6 days. PMID:24136347

  13. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Geoffrey; Jha, Shantenu; Ramakrishnan, Lavanya

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), weremore » conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  14. Stream salamanders as indicators of stream quality in Maryland, USA

    USGS Publications Warehouse

    Southerland, M.T.; Jung, R.E.; Baxter, D.P.; Chellman, I.C.; Mercurio, G.; Volstad, J.H.

    2004-01-01

    Biological indicators are critical to the protection of small, headwater streams and the ecological values they provide. Maryland and other state monitoring programs have determined that fish indicators are ineffective in small streams, where stream salamanders may replace fish as top predators. Because of their life history, physiology, abundance, and ubiquity, stream salamanders are likely representative of biological integrity in these streams. The goal of this study was to determine whether stream salamanders are effective indicators of ecological conditions across biogeographic regions and gradients of human disturbance. During the summers of 2001 and 2002, we intensively surveyed for stream salamanders at 76 stream sites located west of the Maryland Coastal Plain, sites also monitored by the Maryland Biological Stream Survey (MBSS) and City of Gaithersburg. We found 1,584 stream salamanders, including all eight species known in Maryland, using two 15 ? 2 m transects and two 4 m2 quadrats that spanned both stream bank and channel. We performed removal sampling on transects to estimate salamander species detection probabilities, which ranged from 0.67-0.85. Stepwise regressions identified 15 of 52 non-salamander variables, representing water quality, physical habitat, land use, and biological conditions, which best predicted salamander metrics. Indicator development involved (1) identifying reference (non-degraded) and degraded sites (using percent forest, shading, riparian buffer width, aesthetic rating, and benthic macroinvertebrate and fish indices of biotic integrity); (2) testing 12 candidate salamander metrics (representing species richness and composition, abundance, species tolerance, and reproductive function) for their ability to distinguish reference from degraded sites; and (3) combining metrics into an index that effectively discriminated sites according to known stream conditions. Final indices for Highlands, Piedmont, and Non-Coastal Plain

  15. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.

    PubMed

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan; Polacek, Norbert

    2017-06-20

    The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson-Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Photoionization mass spectrometry for the investigation of combustion generated nascent nanoparticles and their relation to laser induced incandescence

    NASA Astrophysics Data System (ADS)

    Grotheer, H.-H.; Wolf, K.; Hoffmann, K.

    2011-08-01

    Premixed laminar flat ethylene flames were investigated for nascent nanoparticles through photoionization mass spectrometry (PIMS). Using an atmospheric McKenna burner and ethylene air flames coupled to an atmospheric sampling system, within a relatively narrow C/O range two modes of these particles were found, which can be clearly distinguished with regard to their temperature dependence, their reactivity, and their ionization behaviour. Behind a diesel engine the same particles were observed. These results were corroborated using a low pressure ethylene-O2 flame coupled to a high resolution mass spectrometer. In this case, due to a special inlet system, it was possible to operate the flame in a fairly wide C/O range without clogging of the inlet nozzles. This allowed pursuing the development of particle size distribution functions (PSDF) well into the regime of mature soot. In addition, on the low mass side of the particle spectra measurements with unity resolution were possible and this allowed gaining information concerning their growth mechanism and structure. Finally, in an attempt to mimic Laser Induced Incandescence (LII) experiments the soot-laden molecular beam was exposed to IR irradiation. This resulted in a near complete destruction of nascent particles under LII typical fluences. Small C clusters between 3 and 17 C atoms were found. In addition and with much higher intensities, clusters comprising several hundreds of C atoms were also detected, the latter even at very low fluences when small clusters were totally absent.

  17. Nascent Transcription Affected by RNA Polymerase IV in Zea mays

    PubMed Central

    Erhard, Karl F.; Talbot, Joy-El R. B.; Deans, Natalie C.; McClish, Allison E.; Hollick, Jay B.

    2015-01-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3ʹ-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance. PMID:25653306

  18. RNA editing in nascent RNA affects pre-mRNA splicing

    PubMed Central

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni

    2018-01-01

    In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3′ acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. PMID:29724793

  19. The Phoenix stream: A cold stream in the southern hemisphere

    DOE PAGES

    Balbinot, E.

    2016-03-17

    In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less

  20. Shifting stream planform state decreases stream productivity yet increases riparian animal production.

    PubMed

    Venarsky, Michael P; Walters, David M; Hall, Robert O; Livers, Bridget; Wohl, Ellen

    2018-05-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging < 200 years ago) are single-channeled with mostly erosional habitat. We tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m -2 ), but values were 2 ×-21 × higher in undisturbed reaches per unit of stream valley (m -1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream-riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  1. Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania

    PubMed Central

    Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J.; Wright, Justin R.; Rosenberger, Abigail; McClure, Erin E.; Grube, Alyssa M.; Peterson, Mark P.; Keddache, Mehdi; Mason, Olivia U.; Hazen, Terry C.; Grant, Christopher J.; Lamendella, Regina

    2014-01-01

    Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA− sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems. PMID:25408683

  2. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    USGS Publications Warehouse

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging < 200 years ago) are single-channeled with mostly erosional habitat. We tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  3. Structural Basis for Recognition and Sequestration of UUUOH 3 ' Temini of Nascent RNA Polymerase III Transcripts by La, a Rheumatic Disease Autoantigen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teplova,M.; Yuan, Y.; Phan, A.

    2006-01-01

    The nuclear phosphoprotein La was identified as an autoantigen in patients with systemic lupus erythematosus and Sjogren's syndrome. La binds to and protects the UUUOH 3' terminii of nascent RNA polymerase III transcripts from exonuclease digestion. We report the 1.85 Angstroms crystal structure of the N-terminal domain of human La, consisting of La and RRM1 motifs, bound to r(U1-G2-C3-U4-G5-U6-U7-U8-U9OH). The U7-U8-U9OH 3' end, in a splayed-apart orientation, is sequestered within a basic and aromatic amino acid-lined cleft between the La and RRM1 motifs. The specificity-determining U8 residue bridges both motifs, in part through unprecedented targeting of the {beta} sheet edge,more » rather than the anticipated face, of the RRM1 motif. Our structural observations, supported by mutation studies of both La and RNA components, illustrate the principles behind RNA sequestration by a rheumatic disease autoantigen, whereby the UUUOH 3' ends of nascent RNA transcripts are protected during downstream processing and maturation events.« less

  4. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins

    PubMed Central

    Foulk, Michael S.; Urban, John M.; Casella, Cinzia; Gerbi, Susan A.

    2015-01-01

    Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand–independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo–controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na+ instead of K+ in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq. PMID:25695952

  5. The Midwest Stream Quality Assessment—Influences of human activities on streams

    USGS Publications Warehouse

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  6. Cash streams: five powerful income streams to increase your net income.

    PubMed

    Means, G B

    1998-01-01

    You can dramatically increase your profits by: Cash stream #1--extending credit and earning interest on the unpaid balance; Cash stream #2--doing all of the undone treatment in your practice; Cash stream #3--providing financing for everyone who deserves it; Cash stream #4--treating bigger cases; Cash stream #5--avoid treating deadbeats. There isn't anything I know of, which will jump start your practice as much as these five cash streams--more new patients, better case acceptance as well as increased cash flow. But you must get good at financing. You must have in place an organized, proven, financing system--just like the finance companies do.

  7. RNA editing in nascent RNA affects pre-mRNA splicing.

    PubMed

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni; Xiao, Xinshu

    2018-06-01

    In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3' acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. © 2018 Hsiao et al.; Published by Cold Spring Harbor Laboratory Press.

  8. A study on a nascent entomopathogenic association between caenorhabditis briggsae and serratia sp.SCBI

    NASA Astrophysics Data System (ADS)

    Abebe-Akele, Feseha

    Life is inconceivable in the absence of interactions which could be cooperative, antagonistic or neutral. Interactions are in constant flux because on one hand it is often difficult to demarcate where one form of interaction ends and the other begins on the other hand what is cooperative at one point in time could evolve into antagonistic or neutral or vice versa. Thus, organisms, as a consequence of mutation, adaptation and natural selection would inevitably enter into natural associations from which they emerge as mutual partners, inveterate enemies or passive cohabitants. Entomopathogenic nematode (EPN) partnerships are tripartite interactions where a nematode-bacteria symbiont duo attacks a third organism -an insect or insect larva-for the mutual benefit of the attacking partners and the detriment of the insect they invade. All three participants in the interaction---the nematode worms with their symbiont bacteria and the target insect host-are among the most ancient, diverse and abundant species on earth, however, these EPN partnerships are not as common as circumstances would suggest. EPN associations, which are arguably at the peak of evolutionary co adaptations, where two primitive forms of life cooperate to take advantage of a larger species are not only fascinating but immensely important for humans. The biological and molecular mechanisms underlying entomopathogenesis have been studied in great detail for decades for their potential as biological control agents against invasive insects. In spite of intense research in The EPN field, the evolutionary history of EPN associations are largely unknown because there are no known intermediate forms. In this thesis, a nascent EPN partnership is described between Caenorhabditid nematodes and Serratia sp. SCBI. Comparative analysis of this association with other EPNs suggests that crucial aspect of EPN associations may be the ability of partners to co-exist without killing each other and that the end results of

  9. Gas stream purifier

    NASA Technical Reports Server (NTRS)

    Adam, Steven J.

    1994-01-01

    A gas stream purifier has been developed that is capable of removing corrosive acid, base, solvent, organic, inorganic, and water vapors as well as particulates from an inert mixed gas stream using only solid scrubbing agents. This small, lightweight purifier has demonstrated the ability to remove contaminants from an inert gas stream with a greater than 99 percent removal efficiency. The Gas Stream Purifier has outstanding market and sales potential in manufacturing, laboratory and science industries, medical, automotive, or any commercial industry where pollution, contamination, or gas stream purification is a concern. The purifier was developed under NASA contract NAS9-18200 Schedule A for use in the international Space Station. A patent application for the Gas Stream Purifier is currently on file with the United States Patent and Trademark Office.

  10. Structural basis for recognition and sequestration of UUU(OH) 3' temini of nascent RNA polymerase III transcripts by La, a rheumatic disease autoantigen.

    PubMed

    Teplova, Marianna; Yuan, Yu-Ren; Phan, Anh Tuân; Malinina, Lucy; Ilin, Serge; Teplov, Alexei; Patel, Dinshaw J

    2006-01-06

    The nuclear phosphoprotein La was identified as an autoantigen in patients with systemic lupus erythematosus and Sjogren's syndrome. La binds to and protects the UUU(OH) 3' terminii of nascent RNA polymerase III transcripts from exonuclease digestion. We report the 1.85 angstroms crystal structure of the N-terminal domain of human La, consisting of La and RRM1 motifs, bound to r(U1-G2-C3-U4-G5-U6-U7-U8-U9OH). The U7-U8-U9OH 3' end, in a splayed-apart orientation, is sequestered within a basic and aromatic amino acid-lined cleft between the La and RRM1 motifs. The specificity-determining U8 residue bridges both motifs, in part through unprecedented targeting of the beta sheet edge, rather than the anticipated face, of the RRM1 motif. Our structural observations, supported by mutation studies of both La and RNA components, illustrate the principles behind RNA sequestration by a rheumatic disease autoantigen, whereby the UUU(OH) 3' ends of nascent RNA transcripts are protected during downstream processing and maturation events.

  11. The Puzzling Ophiuchus Stream

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Dwarf galaxies or globular clusters orbiting the Milky Way can be pulled apart by tidal forces, leaving behind a trail of stars known as a stellar stream. One such trail, the Ophiuchus stream, has posed a serious dynamical puzzle since its discovery. But a recent study has identified four stars that might help resolve this streams mystery.Conflicting TimescalesThe stellar stream Ophiuchus was discovered around our galaxy in 2014. Based on its length, which appears to be 1.6 kpc, we can calculate the time that has passed since its progenitor was disrupted and the stream was created: ~250 Myr. But the stars within it are ~12 Gyr old, and the stream orbits the galaxy with a period of ~350 Myr.Given these numbers, we can assume that Ophiuchuss progenitor completed many orbits of the Milky Way in its lifetime. So why would it only have been disrupted 250 million years ago?Fanning StreamLed by Branimir Sesar (Max Planck Institute for Astronomy), a team of scientists has proposed an idea that might help solve this puzzle. If the Ophiuchus stellar stream is on a chaotic orbit common in triaxial potentials, which the Milky Ways may be then the stream ends can fan out, with stars spreading in position and velocity.The fanned part of the stream, however, would be difficult to detect because of its low surface brightness. As a result, the Ophiuchus stellar stream could actually be longer than originally measured, implying that it was disrupted longer ago than was believed.Search for Fan StarsTo test this idea, Sesar and collaborators performed a search around the ends of the stream, looking for stars thatare of the right type to match the stream,are at the predicted distance of the stream,are located near the stream ends, andhave velocities that match the stream and dont match the background halo stars.Histogram of the heliocentric velocities of the 43 target stars. Six stars have velocities matching the stream velocity. Two of these are located in the main stream; the other

  12. Basal melt beneath whillans ice stream and ice streams A and C

    NASA Technical Reports Server (NTRS)

    Joughin, I.; Teluezyk, S.; Engelhardt, H.

    2002-01-01

    We have used a recently derived map of the velocity of Whillans Ice Stream and Ice Streams A and C to help estimate basal melt. Temperature was modeled with a simple vertical advection-diffusion equation, 'tuned' to match temperature profiles. We find that most of the melt occurs beneath the tributaries where larger basal shear stresses and thicker ice favors greater melt (e.g., 10-20 mm/yr). The occurrence of basal freezing is predicted beneath much of the ice plains of Ice Stream C and Whillans Ice Stream. Modelled melt rates for when Ice Stream C was active suggest there was just enough melt water generated in its tributaries to balance basal freezing on its ice plain. Net basal melt for Whillans Ice Stream is positive due to smaller basal temperature gradients. Modelled temperatures on Whillans Ice Stream, however, were constrained by a single temperature profile at UpB. Basal temperature gradients for Whillans B1 and Ice Stream A may have conditions more similar to those beneath Ice Streams C and D, in which case, there may not be sufficient melt to sustain motion. This would be consistent with the steady deceleration of Whillans stream over the last few decades.

  13. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins.

    PubMed

    Foulk, Michael S; Urban, John M; Casella, Cinzia; Gerbi, Susan A

    2015-05-01

    Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand-independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo-controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na(+) instead of K(+) in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq. © 2015 Foulk et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Prioritized Contact Transport Stream

    NASA Technical Reports Server (NTRS)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  15. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.

    PubMed

    Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei

    2017-10-18

    Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present Stream

  16. Stream metabolism heats up

    NASA Astrophysics Data System (ADS)

    Heffernan, James B.

    2018-06-01

    Higher stream temperatures as the climate warms could lead to lower ecosystem productivity and higher CO2 emissions in streams. An analysis of stream ecosystems finds that such changes will be greatest in the warmest and most productive streams.

  17. Multi-imaging analysis of nascent surface structures generated during femtosecond laser irradiation of silicon in high vacuum

    NASA Astrophysics Data System (ADS)

    Gesuele, F.; JJ Nivas, J.; Fittipaldi, R.; Altucci, C.; Bruzzese, R.; Maddalena, P.; Amoruso, S.

    2018-02-01

    We report a correlative imaging analysis of a crystalline silicon target after irradiation with a low number of 1055 nm, 850 fs laser pulses with several microscopy techniques (e.g., scanning electron microscopy, atomic force microscopy, Raman micro-imaging and confocal optical microscopy). The analysis is carried out on samples irradiated both in high vacuum and at atmospheric pressure conditions, evidencing interesting differences induced by the ambient environment. In high-vacuum conditions, the results evidence the formation of a halo, which is constituted by alternate stripes of amorphous and crystalline silicon, around the nascent ablation crater. In air, such an effect is drastically reduced, due to the significant back-deposition of nanoparticulate material induced by the larger ambient pressure.

  18. Nascent life cycles and the emergence of higher-level individuality.

    PubMed

    Ratcliff, William C; Herron, Matthew; Conlin, Peter L; Libby, Eric

    2017-12-05

    Evolutionary transitions in individuality (ETIs) occur when formerly autonomous organisms evolve to become parts of a new, 'higher-level' organism. One of the first major hurdles that must be overcome during an ETI is the emergence of Darwinian evolvability in the higher-level entity (e.g. a multicellular group), and the loss of Darwinian autonomy in the lower-level units (e.g. individual cells). Here, we examine how simple higher-level life cycles are a key innovation during an ETI, allowing this transfer of fitness to occur 'for free'. Specifically, we show how novel life cycles can arise and lead to the origin of higher-level individuals by (i) mitigating conflicts between levels of selection, (ii) engendering the expression of heritable higher-level traits and (iii) allowing selection to efficiently act on these emergent higher-level traits. Further, we compute how canonical early life cycles vary in their ability to fix beneficial mutations via mathematical modelling. Life cycles that lack a persistent lower-level stage and develop clonally are far more likely to fix 'ratcheting' mutations that limit evolutionary reversion to the pre-ETI state. By stabilizing the fragile first steps of an evolutionary transition in individuality, nascent higher-level life cycles may play a crucial role in the origin of complex life.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  19. An allosteric Sec61 inhibitor traps nascent transmembrane helices at the lateral gate

    PubMed Central

    MacKinnon, Andrew L; Paavilainen, Ville O; Sharma, Ajay; Hegde, Ramanujan S; Taunton, Jack

    2014-01-01

    Membrane protein biogenesis requires the coordinated movement of hydrophobic transmembrane domains (TMD) from the cytosolic vestibule of the Sec61 channel into the lipid bilayer. Molecular insight into TMD integration has been hampered by the difficulty of characterizing intermediates during this intrinsically dynamic process. In this study, we show that cotransin, a substrate-selective Sec61 inhibitor, traps nascent TMDs in the cytosolic vestibule, permitting detailed interrogation of an early pre-integration intermediate. Site-specific crosslinking revealed the pre-integrated TMD docked to Sec61 near the cytosolic tip of the lateral gate. Escape from cotransin-arrest depends not only on cotransin concentration, but also on the biophysical properties of the TMD. Genetic selection of cotransin-resistant cancer cells uncovered multiple mutations clustered near the lumenal plug of Sec61α, thus revealing cotransin’s likely site of action. Our results suggest that TMD/lateral gate interactions facilitate TMD transfer into the membrane, a process that is allosterically modulated by cotransin binding to the plug. DOI: http://dx.doi.org/10.7554/eLife.01483.001 PMID:24497544

  20. Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny.

    PubMed

    Crauste, Fabien; Mafille, Julien; Boucinha, Lilia; Djebali, Sophia; Gandrillon, Olivier; Marvel, Jacqueline; Arpin, Christophe

    2017-03-22

    Primary immune responses generate short-term effectors and long-term protective memory cells. The delineation of the genealogy linking naive, effector, and memory cells has been complicated by the lack of phenotypes discriminating effector from memory differentiation stages. Using transcriptomics and phenotypic analyses, we identify Bcl2 and Mki67 as a marker combination that enables the tracking of nascent memory cells within the effector phase. We then use a formal approach based on mathematical models describing the dynamics of population size evolution to test potential progeny links and demonstrate that most cells follow a linear naive→early effector→late effector→memory pathway. Moreover, our mathematical model allows long-term prediction of memory cell numbers from a few early experimental measurements. Our work thus provides a phenotypic means to identify effector and memory cells, as well as a mathematical framework to investigate their genealogy and to predict the outcome of immunization regimens in terms of memory cell numbers generated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Nascent PO(X 2Π) E,V,R,T excitations from collision-free IR laser photolysis: Specificity toward the PO(X 2Pi 1/2) spin-orbit statea)

    NASA Astrophysics Data System (ADS)

    Chou, Jim-Son; Sumida, David S.; Wittig, C.

    1985-02-01

    PO (X 2Π) is produced via the collision-free infrared multiple photon dissociation (IRMPD) of volatile organophosphorous molecules, and is detected by two-frequency two-photon ionization, using the B 2Σ+ state to provide a spectral signature from which X 2Π populations are obtained. Sequential dissociations occur during the IR laser photolysis, in which nascent fragments continue to undergo IRMPD, and PO (X 2Π) accrues from a series of bond fission reactions. Nascent vibrational, rotational, and translational excitations are in sensible accord with this mechanism, except for a few rotational states near J=19.5. Unlike the nuclear degrees of freedom, the PO (X 2Π) spin-orbit states are populated quite selectively. The 2Π3/2 state, lying only 224 cm-1 above the 2Π1/2 ground state, contains only ˜11% of the population, compared to 34% for a 300 K sample. This result is unambiguous; it persists with all precursors, laser fluences, etc., and is verified by comparisons to spectra obtained using a microwave discharge, a flame, and when thermalizing nascent excitations with an inert diluent. This result underscores the importance of the separate potential surfaces which correlate to the product spin-orbit states, and the small amount of 2Π3/2 population can be accounted for by nonadiabatic coupling during dissociation, and/or ``freezing'' the amount of S1 character in an excited precursor in which S0 and S1 are coupled nonradiatively. We note that such electronic specificity should be dealt with in the analogous recombination reactions.

  2. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments.

    PubMed

    Kolinjivadi, Arun Mouli; Sannino, Vincenzo; De Antoni, Anna; Zadorozhny, Karina; Kilkenny, Mairi; Técher, Hervé; Baldi, Giorgio; Shen, Rong; Ciccia, Alberto; Pellegrini, Luca; Krejci, Lumir; Costanzo, Vincenzo

    2017-09-07

    Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51 T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Experimental and numerical investigation of Acoustic streaming (Eckart streaming)

    NASA Astrophysics Data System (ADS)

    Dridi, Walid; Botton, Valery; Henry, Daniel; Ben Hadid, Hamda

    The application of sound waves in the bulk of a fluid can generate steady or quasi-steady flows reffered to as Acoustic streaming flows. We can distinguish two kind of acoustic streaming: The Rayleigh Streaming is generated when a standing acoustic waves interfere with solid walls to give birth to an acoustic boundary layer. Steady recirculations are then driven out of the boundary layer and can be used in micro-gravity, where the free convection is too weak or absent, to enhance the convective heat or mass transfer and cooling the electronic devises [1]. The second kind is the Eckart streaming, which is a flow generated far from the solid boundaries, it can be used to mix a chemical solutions [2], and to drive a viscous liquids in channels [3-4], in micro-gravity area. Our study focuses on the Eckart streaming configuration, which is investigated both numerical and experimental means. The experimental configuration is restricted to the case of a cylindrical non-heated cavity full of water or of a water+glycerol mixture. At the middle of one side of the cavity, a plane ultrasonic transducer generates a 2MHz wave; an absorber is set at the opposite side of the cavity to avoid any reflections. The velocity field is measured with a standard PIV system. [1] P. Vainshtein, M. Fichman and C. Gutfinger, "Acoustic enhancement of heat transfer between two parallel plates", International Journal of Heat and Mass Transfert, 1995, 38(10), 1893. [2] C. Suri, K. Tekenaka, H. Yanagida, Y. Kojima and K. Koyama, "Chaotic mixing generated by acoustic streaming", Ultrasonics, 2002, 40, 393 [3] O.V. Rudenko and A.A. Sukhorukov, "Nonstationnary Eckart streaming and pumping of liquid in ultrasonic field", Acoustical Physics, 1998, 44, 653. [4] Kenneth D. Frampton, Shawn E. Martin and Keith Minor, "The scaling of acoustic streaming for application in micro-fluidic devices", Applied Acoustics, 2003, 64,681

  4. Benthic invertebrate fauna, small streams

    Treesearch

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  5. Asteroid/meteorite streams

    NASA Astrophysics Data System (ADS)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  6. Asteroid/meteorite streams

    NASA Technical Reports Server (NTRS)

    Drummond, J.

    1991-01-01

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  7. Isolation of nucleoli from Ehrlich ascites tumor cells and dynamics of nascent RNA within isolated nucleoli.

    PubMed

    Thiry, Marc; Ploton, Dominique

    2008-01-01

    Here we describe a new, rapid method for isolating nucleoli from Ehrlich tumor cells that preserves their morphological integrity and high transcriptional activity. Until now, methods for isolation of nucleoli were generally assumed to empty one of their three main compartments, the fibrillar center, of its contents. This new method consists of sonicating cells in an isotonic medium containing MgSO(4), spermidine, and spermine, followed by separation of nucleoli through a Percoll density gradient. Using the nonisotopic approach of labelling with BrUTP, we have further investigated the dynamics of nascent ribosomal RNAs (rRNAs) within morphologically intact isolated nucleoli at the electron microscope level. We show that ribosomal transcripts are elongated in the cortex of the fibrillar center and then enter the surrounding dense fibrillar component.

  8. Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers

    ERIC Educational Resources Information Center

    Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.

    2015-01-01

    The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…

  9. Stream systems.

    Treesearch

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  10. Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience

    NASA Astrophysics Data System (ADS)

    Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.

    2005-05-01

    Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.

  11. Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow

    PubMed Central

    Alexandrova, Antonina Y.; Arnold, Katya; Schaub, Sébastien; Vasiliev, Jury M.; Meister, Jean-Jacques; Bershadsky, Alexander D.; Verkhovsky, Alexander B.

    2008-01-01

    Dynamic actin network at the leading edge of the cell is linked to the extracellular matrix through focal adhesions (FAs), and at the same time it undergoes retrograde flow with different dynamics in two distinct zones: the lamellipodium (peripheral zone of fast flow), and the lamellum (zone of slow flow located between the lamellipodium and the cell body). Cell migration involves expansion of both the lamellipodium and the lamellum, as well as formation of new FAs, but it is largely unknown how the position of the boundary between the two flow zones is defined, and how FAs and actin flow mutually influence each other. We investigated dynamic relationship between focal adhesions and the boundary between the two flow zones in spreading cells. Nascent FAs first appeared in the lamellipodium. Within seconds after the formation of new FAs, the rate of actin flow decreased locally, and the lamellipodium/lamellum boundary advanced towards the new FAs. Blocking fast actin flow with cytochalasin D resulted in rapid dissolution of nascent FAs. In the absence of FAs (spreading on poly-L-lysine-coated surfaces) retrograde flow was uniform and the velocity transition was not observed. We conclude that formation of FAs depends on actin dynamics, and in its turn, affects the dynamics of actin flow by triggering transition from fast to slow flow. Extension of the cell edge thus proceeds through a cycle of lamellipodium protrusion, formation of new FAs, advance of the lamellum, and protrusion of the lamellipodium from the new base. PMID:18800171

  12. Position-specific binding of FUS to nascent RNA regulates mRNA length

    PubMed Central

    Masuda, Akio; Takeda, Jun-ichi; Okuno, Tatsuya; Okamoto, Takaaki; Ohkawara, Bisei; Ito, Mikako; Ishigaki, Shinsuke; Sobue, Gen

    2015-01-01

    More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. However, the underlying mechanisms remain largely elusive. CLIP-seq (cross-linking immunoprecipitation [CLIP] combined with deep sequencing) of FUS (fused in sarcoma) in neuronal cells showed that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) of RNA polymerase II (RNAP II) demonstrated that FUS stalls RNAP II and prematurely terminates transcription. When an APA site is located upstream of an FUS cluster, FUS enhances polyadenylation by recruiting CPSF160 and up-regulates the alternative short transcript. In contrast, when an APA site is located downstream from an FUS cluster, polyadenylation is not activated, and the RNAP II-suppressing effect of FUS leads to down-regulation of the alternative short transcript. CAGE-seq (cap analysis of gene expression [CAGE] combined with deep sequencing) and PolyA-seq (a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts) revealed that position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities. PMID:25995189

  13. Summer stream water temperature models for Great Lakes streams: New York

    USGS Publications Warehouse

    Murphy, Marilyn K.; McKenna, James E.; Butryn, Ryan S.; McDonald, Richard P.

    2010-01-01

    Temperature is one of the most important environmental influences on aquatic organisms. It is a primary driver of physiological rates and many abiotic processes. However, despite extensive research and measurements, synoptic estimates of water temperature are not available for most regions, limiting our ability to make systemwide and large-scale assessments of aquatic resources or estimates of aquatic species abundance and biodiversity. We used subwatershed averaging of point temperature measurements and associated multiscale landscape habitat conditions from over 3,300 lotic sites throughout New York State to develop and train artificial neural network models. Separate models predicting water temperature (in cold, cool, and warm temperature classes) within small catchment–stream order groups were developed for four modeling units, which together encompassed the entire state. Water temperature predictions were then made for each stream segment in the state. All models explained more than 90% of data variation. Elevation, riparian forest cover, landscape slope, and growing degree-days were among the most important model predictors of water temperature classes. Geological influences varied among regions. Predicted temperature distributions within stream networks displayed patterns of generally increasing temperature downstream but were patchy due to the averaging of water temperatures within stream size-classes of small drainages. Models predicted coldwater streams to be most numerous and warmwater streams to be generally associated with the largest rivers and relatively flat agricultural areas and urban areas. Model predictions provide a complete, georeferenced map of summer daytime mean stream temperature potential throughout New York State that can be used for planning and assessment at spatial scales from the stream segment class to the entire state.

  14. Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange

    USGS Publications Warehouse

    Harvey, Judson W.; Wagner, Brian J.; Bencala, Kenneth E.

    1996-01-01

    Stream water was locally recharged into shallow groundwater flow paths that returned to the stream (hyporheic exchange) in St. Kevin Gulch, a Rocky Mountain stream in Colorado contaminated by acid mine drainage. Two approaches were used to characterize hyporheic exchange: sub-reach-scale measurement of hydraulic heads and hydraulic conductivity to compute streambed fluxes (hydrometric approach) and reachscale modeling of in-stream solute tracer injections to determine characteristic length and timescales of exchange with storage zones (stream tracer approach). Subsurface data were the standard of comparison used to evaluate the reliability of the stream tracer approach to characterize hyporheic exchange. The reach-averaged hyporheic exchange flux (1.5 mL s−1 m−1), determined by hydrometric methods, was largest when stream base flow was low (10 L s−1); hyporheic exchange persisted when base flow was 10-fold higher, decreasing by approximately 30%. Reliability of the stream tracer approach to detect hyporheic exchange was assessed using first-order uncertainty analysis that considered model parameter sensitivity. The stream tracer approach did not reliably characterize hyporheic exchange at high base flow: the model was apparently more sensitive to exchange with surface water storage zones than with the hyporheic zone. At low base flow the stream tracer approach reliably characterized exchange between the stream and gravel streambed (timescale of hours) but was relatively insensitive to slower exchange with deeper alluvium (timescale of tens of hours) that was detected by subsurface measurements. The stream tracer approach was therefore not equally sensitive to all timescales of hyporheic exchange. We conclude that while the stream tracer approach is an efficient means to characterize surface-subsurface exchange, future studies will need to more routinely consider decreasing sensitivities of tracer methods at higher base flow and a potential bias toward

  15. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    NASA Astrophysics Data System (ADS)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  16. Streaming potential in nature

    NASA Astrophysics Data System (ADS)

    Schuch, M.

    For the first time, QUINCKE found in 1859 the phenomenon of electric streaming potential. Twenty years later HELMHOLTZ published a mathematical expression for the streaming potential. In the following years a number of scientists studied the phenomenon. BIKERMAN (1932) showed that each electric streaming potential causes an electric current in the contrary direction. SWARTZENDRUBER postulated in 1967 that this electric field tries to stop the streaming potential as a result of the energy balance.

  17. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    PubMed

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

  18. InSTREAM: the individual-based stream trout research and environmental assessment model

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  19. CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR

    EPA Science Inventory

    Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...

  20. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    PubMed

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  1. Roads Near Streams

    EPA Pesticide Factsheets

    Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into the stream, harming both water and habitat quality. This metric measured the length of roads within 30 meters of a stream. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  2. ASSESSING STREAM BED STABILITY AND EXCESS SEDIMENTATION IN MOUNTAIN STREAMS

    EPA Science Inventory

    Land use and resource exploitation in headwaters catchments?such as logging, mining, and road building?often increase sediment supply to streams, potentially causing excess sedimentation. Decreases in mean substrate size and increases in fine stream bed sediments can lead to inc...

  3. Montana StreamStats

    USGS Publications Warehouse

    2016-04-05

    About this volumeMontana StreamStats is a Web-based geographic information system (http://water.usgs.gov/osw/streamstats/) application that provides users with access to basin and streamflow characteristics for gaged and ungaged streams in Montana. Montana StreamStats was developed by the U.S. Geological Survey (USGS) in cooperation with the Montana Departments of Transportation, Environmental Quality, and Natural Resources and Conservation. The USGS Scientific Investigations Report consists of seven independent but complementary chapters dealing with various aspects of this effort.Chapter A describes the Montana StreamStats application, the basin and streamflow datasets, and provides a brief overview of the streamflow characteristics and regression equations used in the study. Chapters B through E document the datasets, methods, and results of analyses to determine streamflow characteristics, such as peak-flow frequencies, low-flow frequencies, and monthly and annual characteristics, for USGS streamflow-gaging stations in and near Montana. The StreamStats analytical toolsets that allow users to delineate drainage basins and solve regression equations to estimate streamflow characteristics at ungaged sites in Montana are described in Chapters F and G.

  4. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    USGS Publications Warehouse

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  5. Where Did All the Streams Go? Effects of Urbanization on Hydrologic Permanence of Headwater Streams

    EPA Science Inventory

    Headwater streams represent a majority (up to 70%) of the stream length in the United States; however, these small streams are often piped or filled to accommodate residential, commercial, and industrial development. Legal protection of headwater streams under the Clean Water Ac...

  6. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data.

    PubMed

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev

    2017-06-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.

  7. Stream corridor management

    Treesearch

    Richard E. Wehnes

    1989-01-01

    The quality of streams and stream habitat for aquatic life and terrestrial animals in the central hardwood forest can be maintained or enhanced through careful protection, management, and re-establishment of streamside forests.

  8. Integrated assessment of sources, chemical stressors and stream quality along a groundwater fed stream system

    NASA Astrophysics Data System (ADS)

    Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.

    2016-04-01

    Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused

  9. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.

    PubMed

    Risse-Buhl, Ute; Anlanger, Christine; Kalla, Katalin; Neu, Thomas R; Noss, Christian; Lorke, Andreas; Weitere, Markus

    2017-12-15

    Previous laboratory and on-site experiments have highlighted the importance of hydrodynamics in shaping biofilm composition and architecture. In how far responses to hydrodynamics can be found in natural flows under the complex interplay of environmental factors is still unknown. In this study we investigated the effect of near streambed turbulence in terms of turbulent kinetic energy (TKE) on the composition and architecture of biofilms matured in two mountainous streams differing in dissolved nutrient concentrations. Over both streams, TKE significantly explained 7% and 8% of the variability in biofilm composition and architecture, respectively. However, effects were more pronounced in the nutrient richer stream, where TKE significantly explained 12% and 3% of the variability in biofilm composition and architecture, respectively. While at lower nutrient concentrations seasonally varying factors such as stoichiometry of dissolved nutrients (N/P ratio) and light were more important and explained 41% and 6% of the variability in biofilm composition and architecture, respectively. Specific biofilm features such as elongated ripples and streamers, which were observed in response to the uniform and unidirectional flow in experimental settings, were not observed. Microbial biovolume and surface area covered by the biofilm canopy increased with TKE, while biofilm thickness and porosity where not affected or decreased. These findings indicate that under natural flows where near bed flow velocities and turbulence intensities fluctuate with time and space, biofilms became more compact. They spread uniformly on the mineral surface as a film of densely packed coccoid cells appearing like cobblestone pavement. The compact growth of biofilms seemed to be advantageous for resisting hydrodynamic shear forces in order to avoid displacement. Thus, near streambed turbulence can be considered as important factor shaping the composition and architecture of biofilms grown under natural

  10. The California stream quality assessment

    USGS Publications Warehouse

    Van Metre, Peter C.; Egler, Amanda L.; May, Jason T.

    2017-03-06

    In 2017, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project is assessing stream quality in coastal California, United States. The USGS California Stream Quality Assessment (CSQA) will sample streams over most of the Central California Foothills and Coastal Mountains ecoregion (modified from Griffith and others, 2016), where rapid urban growth and intensive agriculture in the larger river valleys are raising concerns that stream health is being degraded. Findings will provide the public and policy-makers with information regarding which human and natural factors are the most critical in affecting stream quality and, thus, provide insights about possible approaches to protect the health of streams in the region.

  11. Salamander occupancy in headwater stream networks

    USGS Publications Warehouse

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  12. Stream structure at low flow: biogeochemical patterns in intermittent streams over space and time

    NASA Astrophysics Data System (ADS)

    MacNeille, R. B.; Lohse, K. A.; Godsey, S.; McCorkle, E. P.; Parsons, S.; Baxter, C.

    2017-12-01

    Climate change in the western United States is projected to lead to earlier snowmelt, increasing fire risk and potentially transitioning perennial streams to intermittent ones. Differences between perennial and intermittent streams, especially the temporal and spatial patterns of carbon and nutrient dynamics during periods of drying, are understudied. We examined spatial and temporal patterns in surface water biogeochemistry during a dry (2016) and a wet (2017) water year in southwest Idaho. We hypothesized that as streams dry, carbon concentrations would increase due to evapoconcentration and/or increased in-stream production, and that the heterogeneity of constituents within each stream would increase. We expected these patterns to differ in a high water year compared to a low water year due to algae scour. Finally, we expected that the spatial heterogeneity of biogeochemistry would decrease with time following fire. To test these hypotheses, in 2016 we collected surface water samples at 50 meter intervals from two intermittent headwater streams over 2,500 meter reaches in April, May, and June. One stream is burned and one remains unburned. In 2017, we collected surface water at the 50, 25 and 10 meter intervals from each stream once during low flow. 2016 results showed average concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) increased 3-fold from April to June in the burned site compared to the unburned site. Interestingly, average concentrations of total nitrogen (TN) dropped substantially for the burned site over these three months, but only decreased slightly for the unburned site over the same time period. Between wet and dry water years, we observed a decrease in the spatial heterogeneity as measured by the standard deviation (SD) in conductivity at 50 meter intervals; the burned stream had a SD of 23.08 in 2016 and 11.40 in 2017 whereas the unburned stream had similar SDs. We conclude that the burned stream experienced

  13. Earth-approaching asteroid streams

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.

    1991-01-01

    Three association patterns have been noted among 139 earth-approaching asteroids on the basis of current orbital similarity; these asteroid streams, consisting of two groups of five members and one of four, can be matched to three of the four meteorite-producing fireball streams determined by Halliday et al. (1990). If the asteroid streams are true nonrandom associations, the opportunity arises for studies of an 'exploded' asteroid in the near-earth environment. Near-earth asteroid-search projects are encouraged to search the mean orbit of the present streams in order to discover additional association members.

  14. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data*

    PubMed Central

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G.; Khanna, Sanjeev

    2017-01-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings. PMID:29151821

  15. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  16. Stream-temperature characteristics in Georgia

    USGS Publications Warehouse

    Dyar, T.R.; Alhadeff, S. Jack

    1997-01-01

    Stream-temperature measurements for 198 periodic and 22 daily record stations were analyzed using a harmonic curve-fitting procedure. Statistics of data from 78 selected stations were used to compute a statewide stream-temperature harmonic equation, derived using latitude, drainage area, and altitude for natural streams having drainage areas greater than about 40 square miles. Based on the 1955-84 reference period, the equation may be used to compute long-term natural harmonic stream-temperature coefficients to within an on average of about 0.4? C. Basin-by-basin summaries of observed long-term stream-temperature characteristics are included for selected stations and river reaches, particularly along Georgia's mainstem streams. Changes in the stream- temperature regimen caused by the effects of development, principally impoundments and thermal power plants, are shown by comparing harmonic curves and coefficients from the estimated natural values to the observed modified-condition values.

  17. Assessing Stream Restoration Potential of Recreational Enhancements on an Urban Stream, Springfield, OH

    NASA Astrophysics Data System (ADS)

    Ritter, J. B.; Evelsizor, A.; Minter, K.; Rigsby, C.; Shaw, K.; Shearer, K.

    2010-12-01

    Restoration potential of urban streams is inherently constrained by urban infrastructure. Roads and built structures may necessitate a static stream planform while water, sewage, and electrical utilities buried in the stream channel require a stable grade. A privately-led initiative to improve the recreational potential of a 9-km reach of Buck Creek and its tributary Beaver Creek in Springfield, Ohio, includes the modification of four lowhead dams with hydraulic heights up to 3 m. Modifications to the dams include replacing their hydraulic height with a series of drop structures engineered to create hydraulics conducive to kayak play. Two of the lowhead dams have been modified to date. The purpose of this study is to assess the potential benefits of modifications designed for their recreational value for stream restoration. The drop structure is a constructed channel constriction comprised of a hard step in the long stream profile immediately upstream of a scour pool, forming a morphologic sequence of constriction, step, and pool. Up to 4 drop structures are used along a given stream reach, constructed in the area of the former dam, its scour pool and a portion of the impounded area. Though not designed for stream restoration purposes, these structures potentially act as series a riffle-pool sequences. Changes in the stream habitat, water chemistry, and macroinvertebrates in response to dam modification highlight the potential for incorporating stream restoration into the engineering design. Following modification of two of the dams, the in-stream habitat quality, as measured by physical and biological indices, increased at one site and decreased at the other site, depending on whether the uppermost drop structure at the site reduced or expanded the impounded area. In the best case, channel sands and gravels, free of fine sand, silt, and organics, have deposited in a crescentic-shaped bar paralleling and grading to the constriction and step. Greater abundance and

  18. The role of observer variation in determining Rosgen stream types in northeastern Oregon mountain streams

    Treesearch

    Brett B. Roper; John M. Buffington; Eric Archer; Chris Moyer; Mike Ward

    2008-01-01

    Consistency in determining Rosgen stream types was evaluated in 12 streams within the John Day Basin, northeastern Oregon. The Rosgen classification system is commonly used in the western United States and is based on the measurement of five stream attributes: entrenchment ratio, width-to-depth ratio, sinuosity, slope, and substrate size. Streams were classified from...

  19. Experimental reductions in stream flow alter litter processing and consumer subsidies in headwater streams

    Treesearch

    Robert M. Northington; Jackson R. Webster

    2017-01-01

    SummaryForested headwater streams are connected to their surrounding catchments by a reliance on terrestrial subsidies. Changes in precipitation patterns and stream flow represent a potential disruption in stream ecosystem function, as the delivery of terrestrial detritus to aquatic consumers and...

  20. Satellite imagery of the onset of streaming flow of ice streams C and D, West Antarctica

    USGS Publications Warehouse

    Hodge, S.M.; Doppelhammer, S.K.

    1996-01-01

    Five overlapping Landsat multispectral scanner satellite images of the interior of the West Antarctic ice sheet were enhanced with principal component analysis, high-pass filtering, and linear contrast stretching and merged into a mosaic by aligning surface features in the overlap areas. The mosaic was registered to geodetic coordinates, to an accuracy of about 1 km, using the five scene centers as control points. The onset of streaming flow of two tributaries of ice stream C and one tributary of ice stream D is visible in the mosaic. The onset appears to occur within a relatively short distance, less than the width of the ice stream, typically at a subglacial topographic feature such as a step or ridge. The ice streams extend farther up into the interior than previously mapped. Ice stream D starts about 150 km from the ice divide, at an altitude of about 1500 m, approximately halfway up the convex-upward dome shape of the interior ice sheet. Ice stream D is relatively much longer than ice stream C, possibly because ice stream D is currently active whereas ice stream C is currently inactive. The grounded portion of the West Antarctic ice sheet is perhaps best conceptualized as an ice sheet in which ice streams are embedded over most of its area, with slow moving ice converging into fast moving ice streams in a widely distributed pattern, much like that of streams and rivers in a hydrologic basin. A relic margin appears to parallel most of the south margin of the tributary of ice stream D, separated from the active shear margin by about 10 km or less for a distance of over 200 km. This means there is now evidence for recent changes having occurred in three of the five major ice streams which drain most of West Antarctica (B, C, and D), two of which (B and D) are currently active.

  1. A River Runs Under It: Modeling the Distribution of Streams and Stream Burial in Large River Basins

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Julian, J.; Guinn, S.; Weitzell, R.; Fitzpatrick, M.

    2011-12-01

    Stream network density exerts a strong control on hydrologic processes in watersheds. Over land and through soil and bedrock substrate, water moves slowly and is subject to chemical transformations unique to conditions of continuous contact with geologic materials. In contrast, once water enters stream channels it is efficiently transported out of watersheds, reducing the amount of time for biological uptake and stream nutrient processing. Therefore, stream network density dictates both the relative importance of terrestrial and aquatic influences to stream chemistry and the residence time of water in watersheds, and is critical to modeling and empirical studies aimed at understanding the impact of land use on stream water quantity and quality. Stream network density is largely a function of the number and length of the smallest streams. Methods for mapping and measuring these headwater streams range from simple measurement of stream length from existing maps, to detailed field mapping efforts, which are difficult to implement over large areas. Confounding the simplest approaches, many headwater stream reaches are not included in hydrographical maps, such as the U.S. National Hydrography Dataset (NHD), either because they were buried during the course of urban development or because they were seen as smaller than the minimum mapping size at the time of map generation. These "missing streams" severely limit the effective analyses of stream network density based on the NHD, constituting a major problem for many efforts to understand land-use impacts on streams. Here we report on research that predicts stream presence and absence by coupling field observations of headwater stream channels with maximum entropy models (MaxEnt) commonly implemented in biogeographical studies to model species distributions. The model utilizes terrain variables that are continuously accumulated along hydrologic flowpaths derived from a 10-m digital elevation model. In validation, the model

  2. Influence of stream characteristics and grazing intensity on stream temperatures in eastern Oregon.

    Treesearch

    S.B. Maloney; A.R. Tiedemann; D.A. Higgins; T.M. Quigley; D.B. Marx

    1999-01-01

    Stream temperatures were measured during summer months, 1978 to 1984, at 12 forested watersheds near John Day, Oregon, to determine temperature characteristics and assess effects of three range management strategies of increasing intensity. Maximum temperatures in streams of the 12 watersheds ranged from 12.5 to 27.8 oC. Maximum stream temperatures on four watersheds...

  3. Geochemical results from stream-water and stream-sediment samples collected in Colorado and New Mexico

    USGS Publications Warehouse

    Hageman, Philip L.; Todd, Andrew S.; Smith, Kathleen S.; DeWitt, Ed; Zeigler, Mathew P.

    2013-01-01

    Scientists from the U.S. Geological Survey are studying the relationship between watershed lithology and stream-water chemistry. As part of this effort, 60 stream-water samples and 43 corresponding stream-sediment samples were collected in 2010 and 2011 from locations in Colorado and New Mexico. Sample sites were selected from small to midsize watersheds composed of a high percentage of one rock type or geologic unit. Stream-water and stream-sediment samples were collected, processed, preserved, and analyzed in a consistent manner. This report releases geochemical data for this phase of the study.

  4. Morphology of a Wetland Stream

    PubMed

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  5. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  6. Stream stability at highway structures.

    DOT National Transportation Integrated Search

    1995-11-01

    This document provides guidelines for identifying stream instability problems at highway stream crossings and for the selection and design of appropriate countermeasures to mitigate potential damages to bridges and other highway components at stream ...

  7. Perspectives on ecological research at the Outdoor StreamLab, a field-scale experimental stream

    NASA Astrophysics Data System (ADS)

    Merten, E. C.; Dieterman, D.; Kramarczuk, K.; Lightbody, A.; Orr, C. H.; Wellnitz, T.

    2009-12-01

    Artificial streams hold great promise for examining ecological processes. They lend themselves to manipulations of discharge, sediment load, water chemistry, and other parameters difficult or impossible to control in natural streams. However, artificial streams also have important limitations. In this presentation we describe insights gained from several ecological studies conducted at the St. Anthony Falls Laboratory’s Outdoor StreamLab, including, 1) short-term turbidity exposure effects on fish health, 2) macroinvertebrate grazing rates on periphyton as a function of velocity, 3) rates of macroinvertebrate colonization as related to velocity, and 4) fine-scale correlations of periphytic biomass with hydraulic conditions. Several lessons emerge from these initial attempts at ecological research in the Outdoor StreamLab. We have learned that the size, flow rate, substrate, water chemistry, and available colonization population of the artificial stream limit the kinds of organisms and types of ecological processes that can be examined and the types of experiments that can be run. We suggest that short-term biotic responses are best for study in a system of this type, and note that constant experiment maintenance is essential. Operating artificial streams to meet the needs of multiple researchers also presents challenges of scheduling, coordination, and conflict resolution. Although ecological research in artificial streams has considerable potential, the planning required is no less than that of traditional field studies.

  8. Tidal Streams Near and Far

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.

    2014-06-01

    The Pandas survey of stars in M31's disk and halo is crisscrossed by numerous tidal features from both M31 and the Milky Way. Here I focus on two narrow stellar streams visible in the survey. They have comparable angular extent in the survey (10-13 degrees long versus only 0.3 degree wide), but one is a local Milky Way stream at about 30 kpc and one is in M31, roughly 25 times more distant. I estimate the stellar mass and metallicity in the streams and the distance gradient along them. The kinematics of the M31 stream is sparsely sampled by red giant stars and globular clusters. Bayesian modeling of the stream data yields accurate constraints on the orbital parameters of the streams.

  9. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    NASA Astrophysics Data System (ADS)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  10. WADEABLE STREAMS ASSESSMENT

    EPA Science Inventory

    This Wadeable Streams Assessment (WSA) provides the first statistically defensible summary of the condition of the nation’s streams and small rivers, which are so integrally tied to our history. This report brings the results of this ground-breaking study to the American public....

  11. FireHose Streaming Benchmarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karl Anderson, Steve Plimpton

    2015-01-27

    The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the stream of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created inmore » the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.« less

  12. Discharge of New Subglacial Lake on Whillians Ice Stream: Implication for Ice Stream Flow Dynamics.

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.; Fricker, H. A.; Bindschadler, R. A.; Vornberger, P. L.; Macayeal, D. R.

    2006-12-01

    One of the surprise discoveries made possible by the ICESat laser altimeter mission of 2004-2006 is the presence of a large subglacial lake below the grounding zone of Whillians Ice Stream (dubbed here `Lake Helen' after the discoverer, Helen Fricker). What is even more surprising is the fact that this lake discharged a substantial portion of its volume during the ICESat mission, and changes in lake volume and surface elevation of the ice stream are documented in exquisite detail [Fricker et al., in press]. The presence and apparent dynamism of large subglacial lakes in the grounding zone of a major ice stream raises questions about their effects on ice-stream dynamics. Being liquid and movable, water modifies basal friction spatially and temporally. Melting due to shear heating and geothermal flux reduces basal traction, making the ice stream move fast. However, when water collects in a depression to form a lake, it potentially deprives the surrounding bed of lubricating water, and additionally makes the ice surface flat, thereby locally decreasing the ice stream driving stress. We study the effect of formation and discharge of a subglacial lake at the mouth of and ice stream using a two dimensional, vertically integrated, ice-stream model. The model is forced by the basal friction, ice thickness and surface elevation. The basal friction is obtained by inversion of the ice surface velocity, ice thickness and surface elevation come from observations. To simulate the lake formation we introduce zero basal friction and "inflate" the basal elevation of the ice stream at the site of the lake. Sensitivity studies of the response of the surrounding ice stream and ice shelf flow are performed to delineate the influence of near-grounding-line subglacial water storage for ice streams in general.

  13. 5S Ribosomal RNA Is an Essential Component of a Nascent Ribosomal Precursor Complex that Regulates the Hdm2-p53 Checkpoint

    PubMed Central

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A.; Thomas, George

    2013-01-01

    SUMMARY Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. PMID:23831031

  14. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.

    PubMed

    Donati, Giulio; Peddigari, Suresh; Mercer, Carol A; Thomas, George

    2013-07-11

    Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The Maybe Stream: A Possible Cold Stellar Stream in the Ultra-diffuse Galaxy NGC1052-DF2

    NASA Astrophysics Data System (ADS)

    Abraham, Roberto; Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie; Kruijssen, J. M. Diederik; Cohen, Yotam; Merritt, Allison; Zhang, Jielai; Lokhorst, Deborah; Mowla, Lamiya; Brodie, Jean; Romanowsky, Aaron J.; Janssens, Steven

    2018-05-01

    We report tentative evidence for a cold stellar stream in the ultra-diffuse galaxy NGC1052-DF2. If confirmed, this stream (which we refer to as "The Maybe Stream") would be the first cold stellar stream detected outside of the Local Group. The candidate stream is very narrow and has an unusual and highly curved shape.

  16. A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1979-01-01

    Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.

  17. StreamThermal: A software package for calculating thermal metrics from stream temperature data

    USGS Publications Warehouse

    Tsang, Yin-Phan; Infante, Dana M.; Stewart, Jana S.; Wang, Lizhu; Tingly, Ralph; Thornbrugh, Darren; Cooper, Arthur; Wesley, Daniel

    2016-01-01

    Improving quality and better availability of continuous stream temperature data allows natural resource managers, particularly in fisheries, to understand associations between different characteristics of stream thermal regimes and stream fishes. However, there is no convenient tool to efficiently characterize multiple metrics reflecting stream thermal regimes with the increasing amount of data. This article describes a software program packaged as a library in R to facilitate this process. With this freely-available package, users will be able to quickly summarize metrics that describe five categories of stream thermal regimes: magnitude, variability, frequency, timing, and rate of change. The installation and usage instruction of this package, the definition of calculated thermal metrics, as well as the output format from the package are described, along with an application showing the utility for multiple metrics. We believe this package can be widely utilized by interested stakeholders and greatly assist more studies in fisheries.

  18. LHCb trigger streams optimization

    NASA Astrophysics Data System (ADS)

    Derkach, D.; Kazeev, N.; Neychev, R.; Panin, A.; Trofimov, I.; Ustyuzhanin, A.; Vesterinen, M.

    2017-10-01

    The LHCb experiment stores around 1011 collision events per year. A typical physics analysis deals with a final sample of up to 107 events. Event preselection algorithms (lines) are used for data reduction. Since the data are stored in a format that requires sequential access, the lines are grouped into several output file streams, in order to increase the efficiency of user analysis jobs that read these data. The scheme efficiency heavily depends on the stream composition. By putting similar lines together and balancing the stream sizes it is possible to reduce the overhead. We present a method for finding an optimal stream composition. The method is applied to a part of the LHCb data (Turbo stream) on the stage where it is prepared for user physics analysis. This results in an expected improvement of 15% in the speed of user analysis jobs, and will be applied on data to be recorded in 2017.

  19. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.

    PubMed

    Kruse, Natalie A; DeRose, Lisa; Korenowsky, Rebekah; Bowman, Jennifer R; Lopez, Dina; Johnson, Kelly; Rankin, Edward

    2013-10-15

    Acid mine drainage (AMD) negatively impacts not only stream chemistry, but also aquatic biology. The ultimate goal of AMD treatment is restoration of the biological community, but that goal is rarely explicit in treatment system design. Hewett Fork in Raccoon Creek Watershed, Ohio, has been impacted by historic coal mining and has been treated with a calcium oxide doser in the headwaters of the watershed since 2004. All of the acidic inputs are isolated to a 1.5 km stretch of stream in the headwaters of the Hewett Fork watershed. The macroinvertebrate and fish communities have begun to recover and it is possible to distinguish three zones downstream of the doser: an impaired zone, a transition zone and a recovered zone. Alkalinity from both the doser and natural sources and physical stream parameters play a role in stream restoration. In Hewett Fork, natural alkaline additions downstream are higher than those from the doser. Both, alkaline additions and stream velocity drive sediment and metal deposition. Metal deposition occurs in several patterns; aluminum tends to deposit in regions of low stream velocity, while iron tends to deposit once sufficient alkalinity is added to the system downstream of mining inputs. The majority of metal deposition occurs upstream of the recovered zone. Both the physical stream parameters and natural alkalinity sources influence biological recovery in treated AMD streams and should be considered in remediation plans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Treesearch

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  1. CDK1 promotes nascent DNA synthesis and induces resistance of cancer cells to DNA-damaging therapeutic agents

    PubMed Central

    Liao, Hongwei; Ji, Fang; Geng, Xinwei; Xing, Meichun; Li, Wen; Chen, Zhihua; Shen, Huahao; Ying, Songmin

    2017-01-01

    Cyclin dependent kinase 1 (CDK1) is essential for cell viability and plays a vital role in many biological events including cell cycle control, DNA damage repair, and checkpoint activation. Here, we identify an unanticipated role for CDK1 in promoting nascent DNA synthesis during S-phase. We report that a short duration of CDK1 inhibition, which does not perturb cell cycle progression, triggers a replication-associated DNA damage response (DDR). This DDR is associated with a disruption of replication fork progression and leads to genome instability. Moreover, we show that compromised CDK1 activity dramatically increases the efficacy of chemotherapeutic agents that kill cancer cells through perturbing DNA replication, including Olaparib, an FDA approved PARP inhibitor. Our study has revealed an important role for CDK1 in the DNA replication program, and suggests that the therapeutic targeting CDK1 may be a novel approach for combination chemotherapy. PMID:29207595

  2. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    PubMed

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions.

  3. Stream Temperature Climate in a Set of Southern Appalachian Streams

    Treesearch

    Lloyd W. Swift; Patsy P. Clinton

    1997-01-01

    Water temperature patterns are described for five streams on forested watersheds in western North Carolina as part of stream monitoring in the Wine Spring Ecosystem Management Area. Elevation ranged from 918 m at Nantahaia Lake to 1660 m at Wine Spring Bald with, four temperature measurement sites Itied between 1145 m and 1200 m elevation, and one site at 925 m. Summer...

  4. New views of the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Todd, R. E.

    2016-02-01

    The Gulf Stream plays a major role in the climate system and is a significant forcing agent for the coastal circulation along the US East Coast, yet routine subsurface measurements of Gulf Stream structure are only collected in the Florida Straits and between New Jersey and Bermuda. A recent pilot program demonstrated the feasibility of using underwater gliders to repeatedly survey across the Gulf Stream and to provide subsurface Gulf Stream observations to the community in realtime. Spray gliders were deployed on three-month missions from Miami, Florida to the New England shelf south of Cape Cod, during which they zigzagged back and forth across the Gulf Stream. Three such deployments have been completed so far with a total of more than 20 cross-Gulf Stream transects occupied. These new observations detail the subsurface structure and variability of the Gulf Stream upstream and downstream of its separation from the continental margin, reveal large-amplitude internal waves within the boundary current, and capture numerous eddies along the flanks of the Gulf Stream. Future routine glider deployments in the Gulf Stream promise to provide critical observations for examining inherent Gulf Stream variability, investigating western boundary current influences on coastal circulation, and constraining numerical simulations.

  5. The Stream-Catchment (StreamCat) Dataset: A database of watershed metrics for the conterminous USA

    EPA Science Inventory

    We developed an extensive database of landscape metrics for ~2.65 million streams, and their associated catchments, within the conterminous USA: The Stream-Catchment (StreamCat) Dataset. These data are publically available and greatly reduce the specialized geospatial expertise n...

  6. Stream processing health card application.

    PubMed

    Polat, Seda; Gündem, Taflan Imre

    2012-10-01

    In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.

  7. Stream Clustering of Growing Objects

    NASA Astrophysics Data System (ADS)

    Siddiqui, Zaigham Faraz; Spiliopoulou, Myra

    We study incremental clustering of objects that grow and accumulate over time. The objects come from a multi-table stream e.g. streams of Customer and Transaction. As the Transactions stream accumulates, the Customers’ profiles grow. First, we use an incremental propositionalisation to convert the multi-table stream into a single-table stream upon which we apply clustering. For this purpose, we develop an online version of K-Means algorithm that can handle these swelling objects and any new objects that arrive. The algorithm also monitors the quality of the model and performs re-clustering when it deteriorates. We evaluate our method on the PKDD Challenge 1999 dataset.

  8. Leaf litter processing in West Virginia mountain streams: effects of temperature and stream chemistry

    Treesearch

    Jacquelyn M. Rowe; William B. Perry; Sue A. Perry

    1996-01-01

    Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...

  9. THERMAL HETEROGENEITY, STREAM CHANNEL MORPHOLOGY, AND SALMONID ABUNDANCE IN NORTHEASTERN OREGON STREAMS

    EPA Science Inventory

    Heterogeneity in stream water temperatures created by local influx of cooler subsurface waters into geomorphically complex stream channels was associated with increased abundance of rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha) in northeastern Oregon. Th...

  10. The Stream-Catchment (StreamCat) Dataset

    EPA Science Inventory

    Stream environments reflect, in part, the hydrologic integration of upstream landscapes. Characterizing upstream landscape features is critical for effectively understanding, managing, and conserving riverine ecosystems. However, watershed delineation is a major challenge if hund...

  11. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    PubMed

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  12. Stellar streams as gravitational experiments. II. Asymmetric tails of globular cluster streams

    NASA Astrophysics Data System (ADS)

    Thomas, G. F.; Famaey, B.; Ibata, R.; Renaud, F.; Martin, N. F.; Kroupa, P.

    2018-01-01

    Kinematically cold tidal streams of globular clusters (GC) are excellent tracers of the Galactic gravitational potential at moderate Galactocentric distances, and can also be used as probes of the law of gravity on Galactic scales. Here, we compare for the first time the generation of such streams in Newtonian and Milgromian gravity (MOND). We first computed analytical results to investigate the expected shape of the GC gravitational potential in both frameworks, and we then ran N-body simulations with the Phantom of Ramses code. We find that the GCs tend to become lopsided in MOND. This is a consequence of the external field effect which breaks the strong equivalence principle. When the GC is filling its tidal radius the lopsidedness generates a strongly asymmetric tidal stream. In Newtonian dynamics, such markedly asymmetric streams can in general only be the consequence of interactions with dark matter subhalos, giant molecular clouds, or interaction with the Galactic bar. In these Newtonian cases, the asymmetry is the consequence of a very large gap in the stream, whilst in MOND it is a true asymmetry. This should thus allow us in the future to distinguish these different scenarios by making deep observations of the environment of the asymmetric stellar stream of Palomar 5. Moreover, our simulations indicate that the high internal velocity dispersion of Palomar 5 for its small stellar mass would be natural in MOND. The movie is available in electronic form at http://www.aanda.org

  13. StreamStats: a U.S. geological survey web site for stream information

    USGS Publications Warehouse

    Kernell, G. Ries; Gray, John R.; Renard, Kenneth G.; McElroy, Stephen A.; Gburek, William J.; Canfield, H. Evan; Scott, Russell L.

    2003-01-01

    The U.S. Geological Survey has developed a Web application, named StreamStats, for providing streamflow statistics, such as the 100-year flood and the 7-day, 10-year low flow, to the public. Statistics can be obtained for data-collection stations and for ungaged sites. Streamflow statistics are needed for water-resources planning and management; for design of bridges, culverts, and flood-control structures; and for many other purposes. StreamStats users can point and click on data-collection stations shown on a map in their Web browser window to obtain previously determined streamflow statistics and other information for the stations. Users also can point and click on any stream shown on the map to get estimates of streamflow statistics for ungaged sites. StreamStats determines the watershed boundaries and measures physical and climatic characteristics of the watersheds for the ungaged sites by use of a Geographic Information System (GIS), and then it inserts the characteristics into previously determined regression equations to estimate the streamflow statistics. Compared to manual methods, StreamStats reduces the average time needed to estimate streamflow statistics for ungaged sites from several hours to several minutes.

  14. Future Roads Near Streams

    EPA Pesticide Factsheets

    Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into the stream, harming both water and habitat quality. This metric measured the length of roads within 30 meters of a stream. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  15. An ecohydrological stream type classification of intermittent and ephemeral streams in the Southwestern United States

    USDA-ARS?s Scientific Manuscript database

    Ephemeral and intermittent streams are the predominant fluvial forms in arid and semi-arid environments. Various studies have shown biological and habitat diversity in these lands to be considerably higher along stream corridors in comparison to adjacent uplands, yet knowledge of how these streams f...

  16. Unique Challenges to (Federal) Enterprise Streaming

    NASA Technical Reports Server (NTRS)

    Walls, Bryan

    2006-01-01

    Enterprise streaming has different parameters than consumer Streaming. The government enterprise has some differences on top of that. I'd like to highlight some issues shared by the Federal government as a whole, with a closer look at streaming within NASA. Then we'll look at NASA's strategy for streaming.

  17. Coho salmon dependence on intermittent streams.

    Treesearch

    P.J. Wigington; J.L. Ebersole; M.E. Colvin; S.G. Leibowitz; B. Miller; B. Hansen; H. Lavigne; D. White; J.P. Baker; M.R. Church; J.R. Brooks; M.A. Cairns; J.E. Compton

    2006-01-01

    In this paper, we quantify the contributions of intermittent streams to coho salmon production in an Oregon coastal watershed. We provide estimates of (1) proportion of spawning that occurred in intermittent streams, (2) movement of juveniles into intermittent streams, (3) juvenile survival in intermittent and perennial streams during winter, and (4) relative size of...

  18. HUNTING THE PARENT OF THE ORPHAN STREAM: IDENTIFYING STREAM MEMBERS FROM LOW-RESOLUTION SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Andrew R.; Da Costa, Gary; Keller, Stefan C.

    2013-02-10

    We present candidate K-giant members in the Orphan Stream that have been identified from low-resolution data taken with the AAOmega spectrograph on the Anglo-Australian Telescope. From modest signal-to-noise spectra and independent cuts in photometry, kinematics, gravity, and metallicity we yield self-consistent, highly probable stream members. We find a revised stream distance of 22.5 {+-} 2.0 kpc near the celestial equator and our kinematic signature peaks at V {sub GSR} = 82.1 {+-} 1.4 km s{sup -1}. The observed velocity dispersion of our most probable members is consistent with arising from the velocity uncertainties alone. This indicates that at least alongmore » this line of sight, the Orphan Stream is kinematically cold. Our data indicate an overall stream metallicity of [Fe/H] = -1.63 {+-} 0.19 dex which is more metal-rich than previously found and unbiased by spectral type. Furthermore, the significant metallicity dispersion displayed by our most probable members, {sigma}([Fe/H]) = 0.56 dex, suggests that the unidentified Orphan Stream parent is a dSph satellite. We highlight likely members for high-resolution spectroscopic follow-up.« less

  19. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data

    Treesearch

    J. Bruce Wallace; Susan L Eggert; Judy L. Meyer; Jackson R. Webster

    2015-01-01

    Riparian habitats provide detrital subsidies of varying quantities and qualities to recipient ecosystems. We used long-term data from three reference streams (covering 24 stream-years) and 13-year whole-stream organic matter manipulations to investigate the influence of terrestrial detrital quantity and quality on benthic invertebrate community structure, abundance,...

  20. Variation of stream temperature among mesoscale habitats within stream reaches: southern Appalachians

    Treesearch

    S. Lynsey Long; C. Rhett. Jackson

    2014-01-01

    Stream mesoscale habitats have systematic topographic relationships to hyporheic flow patterns, which may create predictable temperature variation between mesoscale habitat types. We investigated whether systematic differences in temperature metrics occurred between mesoscale habitats within reaches of small streams tributary to the upper Little Tennessee River,...

  1. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.

    PubMed

    Kirby, C S; McInerney, B; Turner, M D

    2008-04-15

    Atmospheric acid deposition is of environmental concern worldwide, and the determination of impacts in remote areas can be problematic. Rainwater in central Pennsylvania, USA, has a mean pH of approximately 4.4. Bedrock varies dramatically in its ability to neutralize acidity. A GIS database simplified reconnaissance of non-carbonate bedrock streams in the Valley and Ridge Province and identified potentially chronically impacted headwater streams, which were sampled for chemistry and brook trout. Stream sites (n=26) that originate in and flow through the Tuscarora had a median pH of 5.0 that was significantly different from other formations. Shawangunk streams (n=6) and non-Tuscarora streams (n=20) had a median pH of 6.0 and 6.3, respectively. Mean alkalinity for non-Tuscarora streams (2.6 mg/L CaCO(3)) was higher than the mean for Tuscarora streams (0.5 mg/L). Lower pH and alkalinity suggest that the buffering capability of the Tuscarora is inferior to that of adjacent sandstones. Dissolved aluminum concentrations were much higher for Tuscarora streams (0.2 mg/L; approximately the lethal limit for brook trout) than for non-Tuscarora streams (0.03 mg/L) or Shawangunk streams (0.02 mg/L). Hook-and-line methods determined the presence/absence of brook trout in 47 stream reaches with suitable habitat. Brook trout were observed in 21 of 22 non-Tuscarora streams, all 6 Shawangunk streams, and only 9 of 28 Tuscarora stream sites. Carefully-designed hook-and-line sampling can determine the presence or absence of brook trout and help confirm biological impacts of acid deposition. 15% of 334 km of Tuscarora stream lengths are listed as "impaired" due to atmospheric deposition by the Pennsylvania Department of Environmental Protection. 65% of the 101 km of Tuscarora stream lengths examined in this study were impaired.

  2. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    PubMed Central

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions. PMID:23882282

  3. The Northeast Stream Quality Assessment

    USGS Publications Warehouse

    Van Metre, Peter C.; Riva-Murray, Karen; Coles, James F.

    2016-04-22

    In 2016, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) is assessing stream quality in the northeastern United States. The goal of the Northeast Stream Quality Assessment (NESQA) is to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and evaluating the relation between these stressors and biological communities. The focus of NESQA in 2016 will be on the effects of urbanization and agriculture on stream quality in all or parts of eight states: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.Findings will provide the public and policymakers with information about the most critical factors affecting stream quality, thus providing insights about possible approaches to protect the health of streams in the region. The NESQA study will be the fourth regional study conducted as part of NAWQA and will be of similar design and scope to the first three, in the Midwest in 2013, the Southeast in 2014, and the Pacific Northwest in 2015 (http://txpub.usgs.gov/RSQA/).

  4. Riparian influences on stream fish assemblage structure in urbanizing streams

    USGS Publications Warehouse

    Roy, A.H.; Freeman, B.J.; Freeman, Mary C.

    2007-01-01

    We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.

  5. Stream Channel Stability Assessment

    DOT National Transportation Integrated Search

    1982-01-01

    Channel instability is manifested as lateral bank erosion, progressive degradation of the streambed, or natural scour and fill of the streambed. Lateral stability is related to stream type, and four major stream types having different stability chara...

  6. Effect of climate on the trophic structure of temperate forested streams. a comparison of Mediterranean and Atlantic streams.

    PubMed

    Sabater, Sergi; Elosegi, Arturo; Acuña, Vicenç; Basaguren, Ana; Muñoz, Isabel; Pozo, Jesús

    2008-02-15

    Climate affects many aspects of stream ecosystems, although the presence of riparian forests can buffer differences between streams in different climatic settings. In an attempt to measure the importance of climate, we compared the seasonal patterns of hydrology, input and storage of allochthonous organic matter, and the trophic structure (abundance of algae and macroinvertebrates) in two temperate forested streams, one Mediterranean, the other Atlantic. Hydrology played a leading role in shaping the trophic structure of both streams. Frequency and timing of floods and droughts determined benthic detritus storage. Inputs and retention of allochthonous organic matter were higher in the Atlantic stream, whereas chlorophyll concentration was lower because of stronger light limitation. Instead, light availability and scour of particulate organic matter during late winter favoured higher chlorophyll concentration in the Mediterranean stream. As a result, in the Mediterranean stream grazers were more prevalent and consumers showed a higher dependence on autotrophic materials. On the other hand, the Atlantic stream depended on allochthonous materials throughout the whole study period. The overall trophic structure showed much stronger seasonality in the Mediterranean than in the Atlantic stream, this being the most distinctive difference between these two types of temperate streams. The different patterns observed in the two streams are an indication that climatic differences should be incorporated in proper measurements of ecosystem health.

  7. StreamSqueeze: a dynamic stream visualization for monitoring of event data

    NASA Astrophysics Data System (ADS)

    Mansmann, Florian; Krstajic, Milos; Fischer, Fabian; Bertini, Enrico

    2012-01-01

    While in clear-cut situations automated analytical solution for data streams are already in place, only few visual approaches have been proposed in the literature for exploratory analysis tasks on dynamic information. However, due to the competitive or security-related advantages that real-time information gives in domains such as finance, business or networking, we are convinced that there is a need for exploratory visualization tools for data streams. Under the conditions that new events have higher relevance and that smooth transitions enable traceability of items, we propose a novel dynamic stream visualization called StreamSqueeze. In this technique the degree of interest of recent items is expressed through an increase in size and thus recent events can be shown with more details. The technique has two main benefits: First, the layout algorithm arranges items in several lists of various sizes and optimizes the positions within each list so that the transition of an item from one list to the other triggers least visual changes. Second, the animation scheme ensures that for 50 percent of the time an item has a static screen position where reading is most effective and then continuously shrinks and moves to the its next static position in the subsequent list. To demonstrate the capability of our technique, we apply it to large and high-frequency news and syslog streams and show how it maintains optimal stability of the layout under the conditions given above.

  8. Stream temperature responses to timber harvest and best management practices—findings from the ODF RipStream project

    Treesearch

    Jeremy D. Groom

    2013-01-01

    Studies over the past 40 years have established that riparian buff er retention along streams protects against stream temperature increase. Th is protection is neither universal nor complete; some buff ered streams still warm, while other streams’ temperatures remain stable. Oregon Department of Forestry developed riparian rules in the Forest Practices Act (FPA) to...

  9. 40 CFR 63.2485 - What requirements must I meet for wastewater streams and liquid streams in open systems within an...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and liquid streams in... to your wastewater streams and liquid streams in open systems within an MCPU, except as specified in...

  10. Ecological health in the Nation's streams

    USGS Publications Warehouse

    Carlisle, Daren M.; Woodside, Michael D.

    2013-01-01

    Aquatic biological communities, which are collections of organisms, are a direct measure of stream health because they indicate the ability of a stream to support life. This fact sheet highlights selected findings of a national assessment of stream health by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The assessment was unique in that it integrated the condition of three biological communities—algae, macroinvertebrates, and fish—as well as measures of streamflow modification, pesticides, nutrients, and other factors. At least one biological community was altered at 83 percent of assessed streams, and the occurrence of altered communities was highest in urban streams. Streamflows were modified at 86 percent of assessed streams, and increasing severity of streamflow modification was associated with increased occurrence of altered biological communities. Agricultural and urban land use in watersheds may contribute pesticides and nutrients to stream waters, and increasing concentrations of these chemicals were associated with increased occurrence of altered biological communities.

  11. Trophic Interactions Between Insects and Stream-Associated Amphibians in Steep, Cobble-Bottom Streams of the Pacific Coast of North America

    PubMed Central

    Atwood, Trisha; Richardson, John S.

    2012-01-01

    Two native, stream-associated amphibians are found in coastal streams of the west coast of North America, the tailed frog and the coastal giant salamander, and each interacts with stream insects in contrasting ways. For tailed frogs, their tadpoles are the primary life stage found in steep streams and they consume biofilm from rock surfaces, which can have trophic and non-trophic effects on stream insects. By virtue of their size the tadpoles are relatively insensitive to stream insect larvae, and tadpoles are capable of depleting biofilm levels directly (exploitative competition), and may also “bulldoze” insect larvae from the surfaces of stones (interference competition). Coastal giant salamander larvae, and sometimes adults, are found in small streams where they prey primarily on stream insects, as well as other small prey. This predator-prey interaction with stream insects does not appear to result in differences in the stream invertebrate community between streams with and without salamander larvae. These two examples illustrate the potential for trophic and non-trophic interactions between stream-associated amphibians and stream insects, and also highlights the need for further research in these systems. PMID:26466536

  12. Stream primary producers relate positively to watershed natural gas measures in north-central Arkansas streams.

    PubMed

    Austin, Bradley J; Hardgrave, Natalia; Inlander, Ethan; Gallipeau, Cory; Entrekin, Sally; Evans-White, Michelle A

    2015-10-01

    Construction of unconventional natural gas (UNG) infrastructure (e.g., well pads, pipelines) is an increasingly common anthropogenic stressor that increases potential sediment erosion. Increased sediment inputs into nearby streams may decrease autotrophic processes through burial and scour, or sediment bound nutrients could have a positive effect through alleviating potential nutrient limitations. Ten streams with varying catchment UNG well densities (0-3.6 wells/km(2)) were sampled during winter and spring of 2010 and 2011 to examine relationships between landscape scale disturbances associated with UNG activity and stream periphyton [chlorophyll a (Chl a)] and gross primary production (GPP). Local scale variables including light availability and water column physicochemical variables were measured for each study site. Correlation analyses examined the relationships of autotrophic processes and local scale variables with the landscape scale variables percent pasture land use and UNG metrics (well density and well pad inverse flow path length). Both GPP and Chl a were primarily positively associated with the UNG activity metrics during most sample periods; however, neither landscape variables nor response variables correlated well with local scale factors. These positive correlations do not confirm causation, but they do suggest that it is possible that UNG development can alleviate one or more limiting factors on autotrophic production within these streams. A secondary manipulative study was used to examine the link between nutrient limitation and algal growth across a gradient of streams impacted by natural gas activity. Nitrogen limitation was common among minimally impacted stream reaches and was alleviated in streams with high UNG activity. These data provide evidence that UNG may stimulate the primary production of Fayetteville shale streams via alleviation of N-limitation. Restricting UNG activities from the riparian zone along with better enforcement of

  13. Whole-stream response to nitrate loading in three streams draining agricultural landscapes

    USGS Publications Warehouse

    Duff, J.H.; Tesoriero, A.J.; Richardson, W.B.; Strauss, E.A.; Munn, M.D.

    2008-01-01

    Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3 −) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d “snapshots” during biotically active periods, we estimated reach-level NO3 − sources, NO3 − mass balance, in-stream processing (nitrification, denitrification, and NO3 − uptake), and NO3 − retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3 − input. Streambed processes potentially reduced 45 to 75% of ground water NO3 − before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3 − retention. Estimated nitrification (1.6–4.4 mg N m−2 h−1) and unamended denitrification rates (2.0–16.3 mg N m−2 h−1) in sediment slurries were high relative to pristine streams. Denitrification of NO3 − was largely independent of nitrification because both stream and ground water were sources of NO3 − Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3 − exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3 − inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3 − variation. Biotic processing potentially removed 75% of ground water NO3 − at this site, suggesting an important role for photosynthetic assimilation of ground water NO3 − relative to subsurface denitrification as water passed directly through benthic diatom beds.

  14. How is a stream impacted by burial? Examining the spatial variation within urban buried streams in Cincinnati, OH

    EPA Science Inventory

    While the effects of urbanization on stream ecosystems have been well-documented, little is known regarding the impact of burying streams within culverts. Our project aims to explore the ecological impacts of stream burial at a fine spatial scale. Two culverted urban streams in C...

  15. Decay dynamics of nascent acetonitrile and nitromethane dipole-bound anions produced by intracluster charge-transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yandell, Margaret A.; King, Sarah B.; Neumark, Daniel M., E-mail: dneumark@berkeley.edu

    2014-05-14

    Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I{sup −}·CH{sub 3}CN) and iodide-nitromethane (I{sup −}·CH{sub 3}NO{sub 2}) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4–900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion speciesmore » then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.« less

  16. Decay dynamics of nascent acetonitrile and nitromethane dipole-bound anions produced by intracluster charge-transfer.

    PubMed

    Yandell, Margaret A; King, Sarah B; Neumark, Daniel M

    2014-05-14

    Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I(-)·CH3CN) and iodide-nitromethane (I(-)·CH3NO2) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4-900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.

  17. Streaming Media Seminar--Effective Development and Distribution of Streaming Multimedia in Education

    ERIC Educational Resources Information Center

    Mainhart, Robert; Gerraughty, James; Anderson, Kristine M.

    2004-01-01

    Concisely defined, "streaming media" is moving video and/or audio transmitted over the Internet for immediate viewing/listening by an end user. However, at Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA), streaming media is approached from a broader perspective. The working definition includes…

  18. Role of monitoring in stream restoration

    EPA Science Inventory

    Hydrology and dissolved organic carbon availability dictate nitrate dynamics in urban streams. So to improve N uptake, restore streams to: • Slow down stream flow • Add organic carbon • Reconnect floodplain hydrology and riparian zones

  19. How useful is the `mean stream' in discussing meteoroid stream evolution?

    NASA Astrophysics Data System (ADS)

    Williams, I. P.; Jones, D. C.

    2007-02-01

    The current model for meteoroid formation involves particles being ejected from parent objects, usually comets and sometimes asteroids. The orbital speed of any body in the Solar system is much larger than any potential ejection speed of small particles from the body, hence the initial orbit of any meteoroid is fairly similar to that of the parent. However, with the passage of time the effects of gravitational perturbations from the planets and solar radiation will cause the orbits of the meteoroids to evolve away from the parent's orbit. Initially this may cause a meteor shower to occur, but eventually will lead to the dissipation of the stream. When modelling meteoroid streams, it is usually more convenient to use the average orbital elements of all the meteoroids to study their evolution. In this paper, we consider the evolution of the orbits of several sets of meteoroids comparing the effectiveness of using the mean and median values for a stream when modelling the overall evolution. We conclude that although both mean and median provide a good match to the evolution of the real meteoroids for most of the time interval studied, the mean orbit remains more consistently close to the stream.

  20. Mechanical Modulation of Nascent Stem Cell Lineage Commitment in Tissue Engineering Scaffolds

    PubMed Central

    Song, Min Jae; Dean, David; Tate, Melissa L. Knothe

    2013-01-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to “map the mechanome”, defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. PMID:23660249

  1. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    PubMed

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Stochastic ice stream dynamics

    PubMed Central

    Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-01-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  3. Stream Tracker: Crowd sourcing and remote sensing to monitor stream flow intermittence

    NASA Astrophysics Data System (ADS)

    Puntenney, K.; Kampf, S. K.; Newman, G.; Lefsky, M. A.; Weber, R.; Gerlich, J.

    2017-12-01

    Streams that do not flow continuously in time and space support diverse aquatic life and can be critical contributors to downstream water supply. However, these intermittent streams are rarely monitored and poorly mapped. Stream Tracker is a community powered stream monitoring project that pairs citizen contributed observations of streamflow presence or absence with a network of streamflow sensors and remotely sensed data from satellites to track when and where water is flowing in intermittent stream channels. Citizens can visit sites on roads and trails to track flow and contribute their observations to the project site hosted by CitSci.org. Data can be entered using either a mobile application with offline capabilities or an online data entry portal. The sensor network provides a consistent record of streamflow and flow presence/absence across a range of elevations and drainage areas. Capacitance, resistance, and laser sensors have been deployed to determine the most reliable, low cost sensor that could be mass distributed to track streamflow intermittence over a larger number of sites. Streamflow presence or absence observations from the citizen and sensor networks are then compared to satellite imagery to improve flow detection algorithms using remotely sensed data from Landsat. In the first two months of this project, 1,287 observations have been made at 241 sites by 24 project members across northern and western Colorado.

  4. A Study on the Land Use Characteristics of Urban Medium and Small stream Depending on the Width of stream

    NASA Astrophysics Data System (ADS)

    Seok, Song Young; Ho, Song Yang; Ho, Lee Jung; Moo Jong, Park

    2015-04-01

    Due to the increase of impervious layers caused by increased rainfall and urbanization which were brought about by the climate change after the late 1990s, the flood damage in urban watersheds is rising. The recent flood damage is occurring in medium and small stream rather than in large stream. Particularly, in medium stream which pass the cities, sudden flood occurs due to the short concentration of rainfall and urban areas suffer large damage, even though the flood damage is small, since residential areas and social infrastructures are concentrated. In spite of the importance of medium and small stream to pass the cities, there is no certain standard for classification of natural or urban stream and existing studies are mostly focused on the impervious area among the land use characteristics of watersheds. Most of existing river studies are based on the watershed scale, but in most urban watersheds where stream pass, urban areas are concentrated in the confluence, so urban areas only occupy less than 10% of the whole watershed and there is a high uncertainty in the classification of urban areas, based the watershed of stream. This study aims to suggest a classification standard of medium and small stream between local stream and small stream where suffer flood damage. According to the classified medium and small stream, this study analyzed the stream area to the stream width and distance using Arcgis Buffer tool, based on the stream line, not the existing watershed scale. This study then chose urban watersheds by analyzing the river area at certain intervals from the center of the chosen medium and small stream, in different ways. Among the land use characteristics in urban areas, the impervious area was applied to the selection standard of urban watersheds and the characteristics of urban watersheds were presented by calculating the ratio of the stream area to the impervious area using the Buffer tool. Acknowledgement "This research was supported by a grant

  5. Stellar Streams in the Andromeda Halo

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.; PAndAS Collaboration

    2011-05-01

    The PAndAS survey detects RGB and AGB stars in our neighbor galaxy M31, out to 150 kpc from the galaxy center with an extension to M33. Maps of this survey display a spectacular collection of stellar streams extending tens to hundreds of kpc in length. Many of these streams overlap with each other or with M31's central regions, making it difficult to disentangle the different streams. I discuss what is currently known about the nature, origin, significance, and eventual fate of these stellar streams. Photometric observations from the PAndAS survey and follow-up work constrain the metallicity, age, luminosity, and stellar mass of the stellar population. I discuss scenarios for how some of these streams formed, while for others their origin remains a mystery. I present observationally constrained numerical simulations for the formation of some of the streams. The streams also are probes of the mass profile and lumpiness of M31's dark matter halo. Spectroscopic samples are used to constrain M31's halo mass at large radius.

  6. The Fornax-Leo-Sculptor stream revisited

    NASA Technical Reports Server (NTRS)

    Majewski, Steven R.

    1994-01-01

    Lynden-Bell first demonstrated that the satellites of the Milky Way appear situated along two great 'streams' in the sky: the 'Magellanic stream' and the 'Fornax-Leo-Sculptor (FLS) stream.' Further exploration of the three-dimensional distribution of Galactic satellites reveals that the recently discovered Sextans and Phoenix dwarf spheroidal galaxies also lie near the plane defined by the FLS galaxies, and therefore strengthens the evidence in favor of the FLS stream. Moreover, a specific group of globular clusters -- those exhibiting the reddest horizontal branches (HBs) among those identified as 'young halo' by Zinn -- appear to populate the FLS stream. As previously demonstrated by Zinn, the spatial distribution of old halo globulars appears to be flattened toward the Galactic plane, and therefore the old halo clusters are typically anti-correlated to the nearly orthogonal FLS stream. A scenario is postulated wherein the Galactic satellites of the FLS stream and the red HB, young halo globular clusters share a common origin in the accretion of a formerly larger, parent satellite galaxy or Searle & Zinn 'fragment.'

  7. Symmetric rearrangement of groundwater-fed streams.

    PubMed

    Yi, Robert; Cohen, Yossi; Devauchelle, Olivier; Gibbins, Goodwin; Seybold, Hansjörg; Rothman, Daniel H

    2017-11-01

    Streams shape landscapes through headward growth and lateral migration. When these streams are primarily fed by groundwater, recent work suggests that their tips advance to maximize the symmetry of the local Laplacian field associated with groundwater flow. We explore the extent to which such forcing is responsible for the lateral migration of streams by studying two features of groundwater-fed streams in Bristol, Florida: their confluence angle near junctions and their curvature. First, we find that, while streams asymptotically form a 72° angle near their tips, they simultaneously exhibit a wide 120° confluence angle within approximately 10 m of their junctions. We show that this wide angle maximizes the symmetry of the groundwater field near the junction. Second, we argue that streams migrate laterally within valleys and present a new spectral analysis method to relate planform curvature to the surrounding groundwater field. Our results suggest that streams migrate laterally in response to fluxes from the surrounding groundwater table, providing evidence of a new mechanism that complements Laplacian growth at their tips.

  8. Evidence of Fanning in the Ophiuchus Stream

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir; Price-Whelan, Adrian M.; Cohen, Judith G.; Rix, Hans-Walter; Pearson, Sarah; Johnston, Kathryn V.; Bernard, Edouard J.; Ferguson, Annette M. N.; Martin, Nicolas F.; Slater, Colin T.; Chambers, Kenneth C.; Flewelling, Heather; Wainscoat, Richard J.; Waters, Christopher

    2016-01-01

    The Ophiuchus stellar stream presents a dynamical puzzle: its old stellar populations (˜12 Gyr) cannot be reconciled with (1) its orbit in a simple model for the Milky Way potential and (2) its short angular extent, both of which imply that the observed stream formed within the last \\lt 1 {{Gyr}}. Recent theoretical work has shown that streams on chaotic orbits may abruptly fan out near their apparent ends; stars in these fans are dispersed in both position and velocity and may be difficult to associate with the stream. Here we present the first evidence of such stream-fanning in the Ophiuchus stream, traced by four blue horizontal branch stars beyond the apparent end of the stream. These stars stand out from the background by their high velocities ({v}{{los}}\\gt 230 km s-1) against ˜40 other stars: their velocities are comparable to those of the stream, but would be exceptional if they were unrelated halo stars. Their positions and velocities are, however, inconsistent with simple extrapolation of the observed cold, high-density portion of the stream. These observations suggest that stream-fanning may be a real, observable effect and, therefore, that Ophiuchus may be on a chaotic orbit. They also show that the Ophiuchus stream is more extended and hence dynamically older than previously thought, easing the stellar population versus dynamical age tension.

  9. Global perspectives on the urban stream syndrome

    USGS Publications Warehouse

    Roy, Allison; Booth, Derek B.; Capps, Krista A.; Smith, Benjamin

    2016-01-01

    Urban streams commonly express degraded physical, chemical, and biological conditions that have been collectively termed the “urban stream syndrome”. The description of the syndrome highlights the broad similarities among these streams relative to their less-impaired counterparts. Awareness of these commonalities has fostered rapid improvements in the management of urban stormwater for the protection of downstream watercourses, but the focus on the similarities among urban streams has obscured meaningful differences among them. Key drivers of stream responses to urbanization can vary greatly among climatological and physiographic regions of the globe, and the differences can be manifested in individual stream channels even through the homogenizing veneer of urban development. We provide examples of differences in natural hydrologic and geologic settings (within similar regions) that can result in different mechanisms of stream ecosystem response to urbanization and, as such, should lead to different management approaches. The idea that all urban streams can be cured using the same treatment is simplistic, but overemphasizing the tremendous differences among natural (or human-altered) systems also can paralyze management. Thoughtful integration of work that recognizes the commonalities of the urban stream syndrome across the globe has benefitted urban stream management. Now we call for a more nuanced understanding of the regional, subregional, and local attributes of any given urban stream and its watershed to advance the physical, chemical, and ecological recovery of these systems.

  10. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.

    PubMed

    Bauer, Christophe; Abid, Jean-Pierre; Fermin, David; Girault, Hubert H

    2004-05-15

    The use of 4.2 nm gold nanoparticles wrapped in an adsorbates shell and embedded in a TiO2 metal oxide matrix gives the opportunity to investigate ultrafast electron-electron scattering dynamics in combination with electronic surface phenomena via the surface plasmon lifetimes. These gold nanoparticles (NPs) exhibit a large nonclassical broadening of the surface plasmon band, which is attributed to a chemical interface damping. The acceleration of the loss of surface plasmon phase coherence indicates that the energy and the momentum of the collective electrons can be dissipated into electronic affinity levels of adsorbates. As a result of the preparation process, gold NPs are wrapped in a shell of sulfate compounds that gives rise to a large density of interfacial molecules confined between Au and TiO2, as revealed by Fourier-transform-infrared spectroscopy. A detailed analysis of the transient absorption spectra obtained by broadband femtosecond transient absorption spectroscopy allows separating electron-electron and electron-phonon interaction. Internal thermalization times (electron-electron scattering) are determined by probing the decay of nascent nonthermal electrons (NNEs) and the build-up of the Fermi-Dirac electron distribution, giving time constants of 540 to 760 fs at 0.42 and 0.34 eV from the Fermi level, respectively. Comparison with literature data reveals that lifetimes of NNEs measured for these small gold NPs are more than four times longer than for silver NPs with similar sizes. The surprisingly long internal thermalization time is attributed to an additional decay mechanism (besides the classical e-e scattering) for the energy loss of NNEs, identified as the ultrafast chemical interface scattering process. NNEs experience an inelastic resonant scattering process into unoccupied electronic states of adsorbates, that directly act as an efficient heat bath, via the excitation of molecular vibrational modes. The two-temperature model is no longer

  11. Dynamic behaviour of ice streams: the North East Greenland Ice Stream

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Jansen, Daniela; Schaufler, Svenja; de Riese, Tamara; Sachau, Till; Weikusat, Ilka

    2017-04-01

    The flow of ice towards the margins of ice sheets is far from homogeneous. Ice streams show much higher flow velocities than their surroundings and may extend, for example the North East Greenland Ice Stream (NEGIS), towards the centre of the sheet. The elevated flow velocity inside an ice stream causes marginal shearing and convergent flow, which in turn leads to folding of ice layers. Such folding was documented in the Petermann Glacier in northern Greenland (Bons et al., 2016). 3-dimensional structural modelling using radargrams shows that folding is more intense adjacent to NEGIS than inside it, despite the strong flow perturbation at NEGIS. Analysis of fold amplitude as a function of stratigraphic level indicates that folding adjacent to NEGIS ceased in the early Holocene, while it is currently active inside NEGIS. The presence of folds adjacent of NEGIS, but also at other sites far in the interior of the Greenland Ice Sheet with no direct connection to the present-day surface velocity field, indicates that ice flow is not only heterogeneous in space (as the present-day flow velocity field shows), but also in time. The observations suggest that ice streams are dynamic, ephemeral structures that emerge and die out, and may possibly shift during their existence, but leave traces within the stratigraphic layering of the ice. The dynamic nature of ice streams such as NEGIS speaks against deterministic models for their accelerated flow rates, such as bedrock topography or thermal perturbations at their base. Instead, we suggest that ice streams can also result from strain localisation induced inside the ice sheet by the complex coupling of rheology, anisotropy, grain-size changes and possibly shear heating. Bons, P.D., Jansen, D., Mundel, F., Bauer, C.C., Binder, T., Eisen, O., Jessell, M.W., Llorens, M.-G, Steinbach, F., Steinhage, D. & Weikusat, I. 2016. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet. Nature Communications 7

  12. Instream wood recruitment, channel complexity, and their relationship to stream ecology in forested headwater streams under alternative stable states

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2015-12-01

    Human alteration to forests has had lasting effects on stream channels worldwide. Such land use changes affect how wood enters and is stored in streams as individual pieces and as logjams. Changes in wood recruitment affect the complexity and benefits wood can provide to the stream environment, such as zones of flow separation that store fine sediment and organic matter, increased nutrient processing, and greater habitat potential, which can enhance biota and cascade through stream-riparian ecosystems. Previous research in our study area shows that modern headwater streams flowing through old-growth, unmanaged forests have more wood than streams in young, managed forests, but does not explicitly evaluate how wood affects channel complexity or local ecology. 'Managed' refers to forests previously or currently exposed to human alteration. Alteration has long since ceased in some areas, but reduced wood loads in managed streams persist. Our primary objective was to quantify stream complexity metrics, with instream wood as a mediator, on streams across a gradient of management and disturbance histories in order to examine legacy effects of human alteration to forests. Data collected in the Southern Rocky Mountains include 24 2nd to 3rd order subalpine streams categorized into: old-growth unmanaged; younger, naturally disturbed unmanaged; and younger managed. We assessed instream wood loads and logjams and evaluated how they relate to channel complexity using a number of metrics, such as standard deviation of bed and banks, volume of pools, ratios of stream to valley lengths and stream to valley area, and diversity of substrate, gradient, and morphology. Preliminary results show that channel complexity is directly related to instream wood loads and is greatest in streams in old-growth. Related research in the field area indicates that streams with greater wood loads also have increased nutrient processing and greater abundance and diversity of aquatic insect predators.

  13. EFFECTS OF STREAM RESTORATION ON IN-STREAM WATER QUALITY IN AN URBAN WATERSHED

    EPA Science Inventory

    The purpose of this on-going project is to provide information to Municipal Separate Storm Sewer System (MS4s) operators and states on the performance of selected best management practices (BMPs), specifically, stream restoration techniques, on improving biological and in-stream ...

  14. The Influence of Shredder Feeding on Fungal Activity in a Nutrient-Enriched Stream and an Unaltered Stream

    NASA Astrophysics Data System (ADS)

    Chung, N.; Suberkopp, K.

    2005-05-01

    The effect of shredder feeding on aquatic hyphomycete communities associated with submerged leaves was studied in two southern Appalachian headwater streams in North Carolina. Coarse and fine mesh litter bags containing red maple (Acer rubrum) leaves were placed in the nutrient-enriched stream and in the reference stream and were retrieved monthly. Both shredder feeding and nutrient enrichment enhanced breakdown rates. The breakdown rates of leaves in coarse mesh bags in the reference stream (k = 0.0275) and fine mesh bags in the nutrient enriched stream (k = 0.0272) were not significantly different, suggesting that the shredding effect on litter breakdown was offset by higher fungal activity as a result of nutrient enrichment. Fungal sporulation rates and biomass (based on ergosterol concentrations) were higher in the nutrient enriched than in the reference stream, but neither fungal biomass nor sporulation rate was affected by shredder feeding. Species richness was higher in the nutrient-enriched than in the reference stream. The enrichment with nutrients altered fungal community composition more than shredder feeding.

  15. Stream Discharge Measurements From Cableways

    USGS Publications Warehouse

    Nolan, K. Michael; Sultz, Lucky

    2000-01-01

    Cableways have been used for decades as a platform for making stream discharge measurements. Use of cableways eliminates the need to expose personnel to hazards associated with working from highway bridges. In addition, cableways allow sites to be selected that offer the best possible hydraulic characteristics for measuring stream discharge. This training presentation describes methods currently used by the U.S. Geological Survey to make stream discharge measurements from cableways.

  16. Landuse legacies and small streams: Identifying relationships between historical land use and contemporary stream conditions

    USGS Publications Warehouse

    Maloney, K.O.; Feminella, J.W.; Mitchell, R.M.; Miller, S.A.; Mulholland, P.J.; Houser, J.N.

    2008-01-01

    The concept of landscape legacies has been examined extensively in terrestrial ecosystems and has led to a greater understanding of contemporary ecosystem processes. However, although stream ecosystems are tightly coupled with their catchments and, thus, probably are affected strongly by historical catchment conditions, few studies have directly examined the importance of landuse legacies on streams. We examined relationships between historical land use (1944) and contemporary (2000-2003) stream physical, chemical, and biological conditions after accounting for the influences of contemporary land use (1999) and natural landscape (catchment size) variation in 12 small streams at Fort Benning, Georgia, USA. Most stream variables showed strong relationships with contemporary land use and catchment size; however, after accounting for these factors, residual variation in many variables remained significantly related to historical land use. Residual variation in benthic particulate organic matter, diatom density, % of diatoms in Eunotia spp., fish density in runs, and whole-stream gross primary productivity correlated negatively, whereas streamwater pH correlated positively, with residual variation in fraction of disturbed land in catchments in 1944 (i.e., bare ground and unpaved road cover). Residual variation in % recovering land (i.e., early successional vegetation) in 1944 was correlated positively with residual variation in streambed instability, a macroinvertebrate biotic index, and fish richness, but correlated negatively with residual variation in most benthic macroinvertebrate metrics examined (e.g., Chironomidae and total richness, Shannon diversity). In contrast, residual variation in whole-stream respiration rates was not explained by historical land use. Our results suggest that historical land use continues to influence important physical and chemical variables in these streams, and in turn, probably influences associated biota. Beyond providing insight

  17. 40 CFR 63.2485 - What requirements must I meet for wastewater streams and liquid streams in open systems within an...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Standards, and Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and... subpart that applies to your wastewater streams and liquid streams in open systems within an MCPU, except...

  18. 40 CFR 63.2485 - What requirements must I meet for wastewater streams and liquid streams in open systems within an...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Standards, and Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and... subpart that applies to your wastewater streams and liquid streams in open systems within an MCPU, except...

  19. 40 CFR 63.2485 - What requirements must I meet for wastewater streams and liquid streams in open systems within an...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastewater streams and liquid streams in open systems within an MCPU? 63.2485 Section 63.2485 Protection of... Standards, and Compliance Requirements § 63.2485 What requirements must I meet for wastewater streams and... subpart that applies to your wastewater streams and liquid streams in open systems within an MCPU, except...

  20. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams

    USGS Publications Warehouse

    Smith, S. Jerrod; Esralew, Rachel A.

    2010-01-01

    The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the

  1. Android Video Streaming

    DTIC Science & Technology

    2014-05-01

    natural choice. In this document, we describe several aspects of video streaming and the challenges of performing video streaming between Android-based...client application was needed. Typically something like VideoLAN Client ( VLC ) is used for this purpose in a desktop environment. However, while VLC is...a very mature application on Windows and Linux, VLC for Android is still in a beta testing phase, and versions have only been developed to work

  2. A meteor stream study of 1966

    NASA Astrophysics Data System (ADS)

    Terentjeva, Alexandra

    2017-03-01

    3600 individual photographic orbits of meteor bodies and about 2000 visual meteor radiants with corresponding velocities were compiled and carefully studied in detail. 154 minor meteor streams were detected in the Solar System, their basic orbital and other data are given. Firstly some remarkable shower and stream properties are established: examples of the large elliptic radiation areas with semi-major axes perpendicular to the Ecliptic; the existence of the Northern (N) , Southern (S) and Ecliptical (Q) branches of some streams; stream-antipodes and radiant-antipodes (symmetrically arranged relatively to the Ecliptic) with angular distances from the Ecliptic to 40-80°; a number of short-perihelion streams (q 0.05-0.07 A.U.); some meteor streams perpendicular to the Ecliptic's plane. There are also some unique meteor bodies with their orbits enclosed within the limits of the Earth's one, or having the clockwise and anticlockwise direction in two similar orbits. Hyperbolic photographic velocities vh = 57-88 km /sec are treated as real ones according to the best radar and visual observations. A "bunch" of ecliptical streams, discovered in the USSR in 1950, is a complex of orbits of the mostly massive meteor particles of the Zodiacal Cloud. The stream evolution rate is comparatively high. The total complex of sporadic meteor bodies is not totally chaotic and accidental.

  3. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more

  4. Wadeable Streams Assessment Data

    EPA Pesticide Factsheets

    The Wadeable Streams Assessment (WSA) is a first-ever statistically-valid survey of the biological condition of small streams throughout the U.S. The U.S. Environmental Protection Agency (EPA) worked with the states to conduct the assessment in 2004-2005. Data for each parameter sampled in the Wadeable Streams Assessment (WSA) are available for downloading in a series of files as comma separated values (*.csv). Each *.csv data file has a companion text file (*.txt) that lists a dataset label and individual descriptions for each variable. Users should view the *.txt files first to help guide their understanding and use of the data.

  5. Floods on small streams in Texas

    USGS Publications Warehouse

    Ruggles, Frederick H.

    1966-01-01

    The first streamflow station in Texas was established on the Rio Grande at El Paso on May 10, 1889. Sip,ce that time the systematic collection of streamflow data. has expanded. In 1915 the Texas Board of Water Engineers (now the Texas Water Development Board) entered into a cooperative agreement with the U. S. Geological Survey for the purpose of expanding the network of stream-gaging stations in Texas. Sites were selected for stream-gaging stations to obtain hydrologic data for water supply and flood control. Therefore, the stream-gaging stations were located principally on major streams. Today, after three-quarters of a century.of hydrologic data collection, peak discharge data on small streams are still deficient in Texas. The Geological Survey and the Texas Highway Department, therefore, have entered into a cooperative program to collect peak discharge data on small streams for the purpose of deriving flood-frequency data needed for the economical design of culverts and small bridges.

  6. Industrial-Strength Streaming Video.

    ERIC Educational Resources Information Center

    Avgerakis, George; Waring, Becky

    1997-01-01

    Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…

  7. Distribution and abundance of stream fishes in relation to barriers: implications for monitoring stream recovery after barrier removal

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Coghlan, Stephen M.; Gardner, C.; Saunders, R.

    2011-01-01

    Dams are ubiquitous in coastal regions and have altered stream habitats and the distribution and abundance of stream fishes in those habitats by disrupting hydrology, temperature regime and habitat connectivity. Dam removal is a common restoration tool, but often the response of the fish assemblage is not monitored rigorously. Sedgeunkedunk Stream, a small tributary to the Penobscot River (Maine, USA), has been the focus of a restoration effort that includes the removal of two low-head dams. In this study, we quantified fish assemblage metrics along a longitudinal gradient in Sedgeunkedunk Stream and also in a nearby reference stream. By establishing pre-removal baseline conditions and associated variability and the conditions and variability immediately following removal, we can characterize future changes in the system associated with dam removal. Over 2 years prior to dam removal, species richness and abundance in Sedgeunkedunk Stream were highest downstream of the lowest dam, lowest immediately upstream of that dam and intermediate farther upstream; patterns were similar in the reference stream. Although seasonal and annual variation in metrics within each site was substantial, the overall upstream-to-downstream pattern along the stream gradient was remarkably consistent prior to dam removal. Immediately after dam removal, we saw significant decreases in richness and abundance downstream of the former dam site and a corresponding increase in fish abundance upstream of the former dam site. No such changes occurred in reference sites. Our results show that by quantifying baseline conditions in a small stream before restoration, the effects of stream restoration efforts on fish assemblages can be monitored successfully. These data set the stage for the long-term assessment of Sedgeunkedunk Stream and provide a simple methodology for assessment in other restoration projects.

  8. Stream Lifetimes Against Planetary Encounters

    NASA Technical Reports Server (NTRS)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  9. Integration and segregation in auditory streaming

    NASA Astrophysics Data System (ADS)

    Almonte, Felix; Jirsa, Viktor K.; Large, Edward W.; Tuller, Betty

    2005-12-01

    We aim to capture the perceptual dynamics of auditory streaming using a neurally inspired model of auditory processing. Traditional approaches view streaming as a competition of streams, realized within a tonotopically organized neural network. In contrast, we view streaming to be a dynamic integration process which resides at locations other than the sensory specific neural subsystems. This process finds its realization in the synchronization of neural ensembles or in the existence of informational convergence zones. Our approach uses two interacting dynamical systems, in which the first system responds to incoming acoustic stimuli and transforms them into a spatiotemporal neural field dynamics. The second system is a classification system coupled to the neural field and evolves to a stationary state. These states are identified with a single perceptual stream or multiple streams. Several results in human perception are modelled including temporal coherence and fission boundaries [L.P.A.S. van Noorden, Temporal coherence in the perception of tone sequences, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1975], and crossing of motions [A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, MIT Press, 1990]. Our model predicts phenomena such as the existence of two streams with the same pitch, which cannot be explained by the traditional stream competition models. An experimental study is performed to provide proof of existence of this phenomenon. The model elucidates possible mechanisms that may underlie perceptual phenomena.

  10. Stream Response to an Extreme Defoliation Event

    NASA Astrophysics Data System (ADS)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.

    2017-12-01

    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net

  11. Limitations and implications of stream classification

    USGS Publications Warehouse

    Juracek, K.E.; Fitzpatrick, F.A.

    2003-01-01

    Stream classifications that are based on channel form, such as the Rosgen Level II classification, are useful tools for the physical description and grouping of streams and for providing a means of communication for stream studies involving scientists and (or) managers with different backgrounds. The Level II classification also is used as a tool to assess stream stability, infer geomorphic processes, predict future geomorphic response, and guide stream restoration or rehabilitation activities. The use of the Level II classification for these additional purposes is evaluated in this paper. Several examples are described to illustrate the limitations and management implications of the Level II classification. Limitations include: (1) time dependence, (2) uncertain applicability across physical environments, (3) difficulty in identification of a true equilibrium condition, (4) potential for incorrect determination of bankfull elevation, and (5) uncertain process significance of classification criteria. Implications of using stream classifications based on channel form, such as Rosgen's, include: (1) acceptance of the limitations, (2) acceptance of the risk of classifying streams incorrectly, and (3) classification results may be used inappropriately. It is concluded that use of the Level II classification for purposes beyond description and communication is not appropriate. Research needs are identified that, if addressed, may help improve the usefulness of the Level II classification.

  12. Unionville, Pennsylvania School's Stream Restoration Project

    NASA Astrophysics Data System (ADS)

    Madsen, S. M.

    2004-12-01

    For the past three years, students and Earth Club members of C.F. Patton Middle School and Unionville High School have been involved in a stream restoration and monitoring project along a tributary to the East Branch of the Red Clay Creek in Pennsylvania. The Red Clay is within the larger Christina River Basin watershed which drains to Delaware Bay. Total funding of \\$962.00 was awarded by the Unionville-Chadds Ford Education Foundation to purchase both stream monitoring equipment and native plant species for stream restoration. Nine science teachers in the school district received certification in stream monitoring by the Pennsylvania State Parks Division. Certification enables the science faculty and their students to enter monitoring data in a statewide stream database. The stream data includes: temperature, levels of dissolved oxygen and nutrients, pH, alkalinity, conductivity, and a complete biosurvey of invertebrates. In addition to ongoing monitoring, the Earth Club sponsored a name-the-stream contest. Quartz Creek was chosen for this previously unnamed tributary. Its' name was approved by the East Marlborough Township Supervisor in May, 2004 and was then submitted to the USGS' Board on Geographic Names. The Earth Club has also sponsored a stream restoration contest. Students in the middle school were encouraged to design a habitat along the stream banks that would keep sediment in-place, while encouraging wildlife. The stream was originally crowded with invasive multi-flora rose but this was removed with the help of parents and students over a two year period. The winning student poster was outstanding and native species were purchased and planted following the poster's design. The planting took place in May, 2004 with over 40 persons involved including 25 middle school and 8 high school students, teachers from the schools, administrators and employees of the Brandywine Conservancy, and Red Clay Valley and Brandywine Valley Associations, and graduate

  13. The Midwest Stream Quality Assessment

    USGS Publications Warehouse

    ,

    2012-01-01

    In 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) and USGS Columbia Environmental Research Center (CERC) will be collaborating with the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA) to assess stream quality across the Midwestern United States. The sites selected for this study are a subset of the larger NRSA, implemented by the EPA, States and Tribes to sample flowing waters across the United States (http://water.epa.gov/type/rsl/monitoring/riverssurvey/index.cfm). The goals are to characterize water-quality stressors—contaminants, nutrients, and sediment—and ecological conditions in streams throughout the Midwest and to determine the relative effects of these stressors on aquatic organisms in the streams. Findings will contribute useful information for communities and policymakers by identifying which human and environmental factors are the most critical in controlling stream quality. This collaborative study enhances information provided to the public and policymakers and minimizes costs by leveraging and sharing data gathered under existing programs. In the spring and early summer, NAWQA will sample streams weekly for contaminants, nutrients, and sediment. During the same time period, CERC will test sediment and water samples for toxicity, deploy time-integrating samplers, and measure reproductive effects and biomarkers of contaminant exposure in fish or amphibians. NRSA will sample sites once during the summer to assess ecological and habitat conditions in the streams by collecting data on algal, macroinvertebrate, and fish communities and collecting detailed physical-habitat measurements. Study-team members from all three programs will work in collaboration with USGS Water Science Centers and State agencies on study design, execution of sampling and analysis, and reporting.

  14. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore

  15. Fast algorithm for automatically computing Strahler stream order

    USGS Publications Warehouse

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  16. Similarity of Stream Width Distributions Across Headwater Systems

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.; Barefoot, E. A.; Tashie, A.; Butman, D. E.

    2016-12-01

    The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, studies have used remote sensing to quantify river morphology, and have found that the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wider rivers. However, in headwater systems (stream order 1-3), where many biogeochemical reactions are most rapid, the relationship between stream width and abundance is unknown, reducing the certainty of biogeochemical flux estimates. To constrain this uncertainty, we surveyed two components of stream morphology (wetted stream width and length) in seven physiographically contrasting stream networks in Kings Creek in Konza Prarie, KS; Sagehen Creek in the N. Sierra Nevada Mtns., CA; Elder Creek in Angelo Coast Range Preserve, CA; Caribou Creek in the Caribou Poker Creek Research Watershed, AK; V40 Stream, NZ; Blue Duck Creek, NZ; Stony Creek in Duke Forest, NC. To assess temporal variations, we also surveyed stream geometry in a subcatchment of Stony Creek six times over a range of moderate streamflow conditions (discharge less than 90 percentile of gauge record). Here we show a strikingly consistent gamma statistical distribution of stream width in all surveys and a characteristic most abundant stream width of 32±7 cm independent of flow conditions or basin size. This consistency is remarkable given the substantial physical diversity among the studied catchments. We propose a model that invokes network topology theory and downstream hydraulic geometry to show that, as active drainage networks expand and contract in response to changes in streamflow, the most abundant stream width remains approximately static. This framework can be used to better extrapolate stream size and abundance from large rivers to small headwater streams, with significant impact on understanding of the hydraulic

  17. 40 CFR Table 7 to Subpart Ffff of... - Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Requirements for Wastewater Streams... to Subpart FFFF of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems... applies to your wastewater streams and liquid streams in open systems within an MCPU: For each . . . You...

  18. 40 CFR Table 7 to Subpart Ffff of... - Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Requirements for Wastewater Streams and... of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU As... wastewater streams and liquid streams in open systems within an MCPU: For each . . . You must . . . 1...

  19. 40 CFR Table 7 to Subpart Ffff of... - Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Requirements for Wastewater Streams and... to Subpart FFFF of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems... applies to your wastewater streams and liquid streams in open systems within an MCPU: For each . . . You...

  20. 40 CFR Table 7 to Subpart Ffff of... - Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Requirements for Wastewater Streams... to Subpart FFFF of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems... applies to your wastewater streams and liquid streams in open systems within an MCPU: For each . . . You...

  1. Sharp Transition from Nonmetallic Au246 to Metallic Au279 with Nascent Surface Plasmon Resonance.

    PubMed

    Higaki, Tatsuya; Zhou, Meng; Lambright, Kelly J; Kirschbaum, Kristin; Sfeir, Matthew Y; Jin, Rongchao

    2018-05-02

    The optical properties of metal nanoparticles have attracted wide interest. Recent progress in controlling nanoparticles with atomic precision (often called nanoclusters) provide new opportunities for investigating many fundamental questions, such as the transition from excitonic to plasmonic state, which is a central question in metal nanoparticle research because it provides insights into the origin of surface plasmon resonance (SPR) as well as the formation of metallic bond. However, this question still remains elusive because of the extreme difficulty in preparing atomically precise nanoparticles larger than 2 nm. Here we report the synthesis and optical properties of an atomically precise Au 279 (SR) 84 nanocluster. Femtosecond transient absorption spectroscopic analysis reveals that the Au 279 nanocluster shows a laser power dependence in its excited state lifetime, indicating metallic state of the particle, in contrast with the nonmetallic electronic structure of the Au 246 (SR) 80 nanocluster. Steady-state absorption spectra reveal that the nascent plasmon band of Au 279 at 506 nm shows no peak shift even down to 60 K, consistent with plasmon behavior. The sharp transition from nonmetallic Au 246 to metallic Au 279 is surprising and will stimulate future theoretical work on the transition and many other relevant issues.

  2. Grazing management effects on stream bank erosion and phosphorus delivery to a pasture stream

    USDA-ARS?s Scientific Manuscript database

    Pasture lands may deliver significant sediment and phosphorus (P) to surface waters. To determine the effects of beef (Bos taurus) grazing practices on stream bank erosion and P losses, three treatments [rotational stocking (RS), continuous stocking with restricted stream access (CSR), and continuou...

  3. Monitoring wilderness stream ecosystems

    Treesearch

    Jeffrey C. Davis; G. Wayne Minshall; Christopher T. Robinson; Peter Landres

    2001-01-01

    A protocol and methods for monitoring the major physical, chemical, and biological components of stream ecosystems are presented. The monitoring protocol is organized into four stages. At stage 1 information is obtained on a basic set of parameters that describe stream ecosystems. Each following stage builds upon stage 1 by increasing the number of parameters and the...

  4. Jovian Jet Stream

    NASA Image and Video Library

    2018-05-31

    See a jet stream speeding through Jupiter's atmosphere in this new view taken by NASA's Juno spacecraft. The jet stream, called Jet N2, was captured along the dynamic northern temperate belts of the gas giant planet. It is the white stream visible from top left to bottom right in the image. The color-enhanced image was taken at 10:34 p.m. PST on May 23 (1:34 a.m. EST on May 24), as Juno performed its 13th close flyby of Jupiter. At the time the image was taken, the spacecraft was about 3,516 miles (5,659 kilometers) from the tops of the clouds of the planet at a northern latitude of 32.9 degrees. Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft's JunoCam imager. The view is a composite of several separate JunoCam images that were re-projected, blended, and healed. https://photojournal.jpl.nasa.gov/catalog/PIA22422

  5. A Simulated Stream Ecology Study.

    ERIC Educational Resources Information Center

    Zampella, Robert A.

    1979-01-01

    Describes a simulated field experience to study stream ecology in the classroom. Secondary students determine the composition of the stream community, describe the distribution of the benthic invertebrates, and design a food web. (Author/MA)

  6. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    NASA Astrophysics Data System (ADS)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  7. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    PubMed

    Beaulieu, Jake J; Golden, Heather E; Knightes, Christopher D; Mayer, Paul M; Kaushal, Sujay S; Pennino, Michael J; Arango, Clay P; Balz, David A; Elonen, Colleen M; Fritz, Ken M; Hill, Brian H

    2015-01-01

    Nitrogen (N) uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams) can increase watershed-scale N retention.

  8. Urban Stream Burial Increases Watershed-Scale Nitrate Export

    PubMed Central

    Beaulieu, Jake J.; Golden, Heather E.; Knightes, Christopher D.; Mayer, Paul M.; Kaushal, Sujay S.; Pennino, Michael J.; Arango, Clay P.; Balz, David A.; Elonen, Colleen M.; Fritz, Ken M.; Hill, Brian H.

    2015-01-01

    Nitrogen (N) uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams) can increase watershed-scale N retention. PMID:26186731

  9. The Stream Depletion Model Paradox and a First Solution

    NASA Astrophysics Data System (ADS)

    Malama, B.

    2017-12-01

    Hitherto, stream depletion models available in the hydrogeology literature use the xed head Dirichletboundary condition at the stream, and as such do not account for groundwater pumping induced streamdrawdown. They simply treat stream depletion as the decrease in stream discharge due capture by pumping,the groundwater that would discharge to the stream without pumping. We refer to this model predictedstream depletion without stream drawdown as the depletion paradox. It is intuitively clear, however, thatadverse impacts of long-term groundwater abstraction in the neighborhood of a stream include streamdrawdown, which has led to many a dry streambed in the American west and other arid regions. Streamdrawdown is especially acute for low stream ows. A mathematical model that allows for transient streamdrawdown is proposed by introducing the concept of stream storage. The model simply extends the constanthead model at the stream by including a mass-balance condition. The model is developed for a fullypenetrating stream and groundwater abstraction in a conned aquifer. The dependence of model predictedstream depletion and drawdown on stream storage, streambed conductance, aquifer anisotropy, and radialdistance to the pumping well is evaluated. The model is shown to reduce to that of Hantush in the limitas stream storage becomes innitely large, and to the Theis solution with a no- ow boundary at the streamlocation when stream storage gets vanishingly small. The results suggest that using xed stream stage modelsleads to an underestimation the late-time aquifer drawdwon response to pumping in the neighborhood of astream because it correspond to innite stream storage. This is especially critical for management of surfacewater and groundwater resources in systems subjected to prolonged groundwater abstraction and measurablestream drawdown. The model also shows a maximum stream depletion rate, beyond which stream ow to thewell diminishes and eventually vanishes. This suggests

  10. Effects of unsteady free stream velocity and free stream turbulence on stagnation point heat transfer

    NASA Technical Reports Server (NTRS)

    Gorla, R. S. R.

    1984-01-01

    The combined effects of transient free stream velocity and free stream turbulence on heat transfer at a stagnation point over a cylinder situated in a crossflow are studied. An eddy diffusivity model was formulated and the governing momentum and energy equations are integrated by means of the steepest descent method. The numerical results for the wall shear stress and heat transfer rate are correlated by a turbulence parameter. The wall friction and heat transfer rate increase with increasing free stream turbulence intensity.

  11. Movement patterns of stream fishes in a Ouachita Highlands stream: an examination of the restricted movement paradigm

    Treesearch

    Elizabeth B. Smithson; Carol E. Johnston

    1999-01-01

    The restricted movement paradigm (RMP), which states adult fish do not move out of a pool or restricted stream reach, does not fully define the movements of stream fishes. Although stream fishes may spend the majority of their time in a home pool, they also make regular exploratory trips away from the home pool....

  12. Stream Temperature Estimation From Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.

    2001-12-01

    Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the

  13. Multi-Scale, Direct and Indirect Effects of the Urban Stream Syndrome on Amphibian Communities in Streams

    PubMed Central

    Canessa, Stefano; Parris, Kirsten M.

    2013-01-01

    Urbanization affects streams by modifying hydrology, increasing pollution and disrupting in-stream and riparian conditions, leading to negative responses by biotic communities. Given the global trend of increasing urbanization, improved understanding of its direct and indirect effects at multiple scales is needed to assist management. The theory of stream ecology suggests that the riverscape and the surrounding landscape are inextricably linked, and watershed-scale processes will also affect in-stream conditions and communities. This is particularly true for species with semi-aquatic life cycles, such as amphibians, which transfer energy between streams and surrounding terrestrial areas. We related measures of urbanization at different scales to frog communities in streams along an urbanization gradient in Melbourne, Australia. We used boosted regression trees to determine the importance of predictors and the shape of species responses. We then used structural equation models to investigate possible indirect effects of watershed imperviousness on in-stream parameters. The proportion of riparian vegetation and road density surrounding the site at the reach scale (500-m radius) had positive and negative effects, respectively, on species richness and on the occurrence of the two most common species in the area ( Crinia signifera and Limnodynastesdumerilii ). Road density and local aquatic vegetation interacted in influencing species richness, suggesting that isolation of a site can prevent colonization, in spite of apparently good local habitat. Attenuated imperviousness at the catchment scale had a negative effect on local aquatic vegetation, indicating possible indirect effects on frog species not revealed by single-level models. Processes at the landscape scale, particularly related to individual ranging distances, can affect frog species directly and indirectly. Catchment imperviousness might not affect adult frogs directly, but by modifying hydrology it can

  14. Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.

    1997-01-01

    Statewide regression equations for Oklahoma were determined for estimating peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years for ungaged sites on natural unregulated streams. The most significant independent variables required to estimate peak-streamflow frequency for natural unregulated streams in Oklahoma are contributing drainage area, main-channel slope, and mean-annual precipitation. The regression equations are applicable for watersheds with drainage areas less than 2,510 square miles that are not affected by regulation from manmade works. Limitations on the use of the regression relations and the reliability of regression estimates for natural unregulated streams are discussed. Log-Pearson Type III analysis information, basin and climatic characteristics, and the peak-stream-flow frequency estimates for 251 gaging stations in Oklahoma and adjacent states are listed. Techniques are presented to make a peak-streamflow frequency estimate for gaged sites on natural unregulated streams and to use this result to estimate a nearby ungaged site on the same stream. For ungaged sites on urban streams, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. For ungaged sites on streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. The statewide regression equations are adjusted by substituting the drainage area below the floodwater retarding structures, or drainage area that represents the percentage of the unregulated basin, in the contributing drainage area parameter to obtain peak-streamflow frequency estimates.

  15. Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams

    USGS Publications Warehouse

    Kocovsky, P.M.; Carline, R.F.

    2005-01-01

    Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and

  16. Ebullitive methane emissions from oxygenated wetland streams

    USGS Publications Warehouse

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  17. Rotenone persistence model for montane streams

    USGS Publications Warehouse

    Brown, Peter J.; Zale, Alexander V.

    2012-01-01

    The efficient and effective use of rotenone is hindered by its unknown persistence in streams. Environmental conditions degrade rotenone, but current label instructions suggest fortifying the chemical along a stream based on linear distance or travel time rather than environmental conditions. Our objective was to develop models that use measurements of environmental conditions to predict rotenone persistence in streams. Detailed measurements of ultraviolet radiation, water temperature, dissolved oxygen, total dissolved solids (TDS), conductivity, pH, oxidation–reduction potential (ORP), substrate composition, amount of organic matter, channel slope, and travel time were made along stream segments located between rotenone treatment stations and cages containing bioassay fish in six streams. The amount of fine organic matter, biofilm, sand, gravel, cobble, rubble, small boulders, slope, pH, TDS, ORP, light reaching the stream, energy dissipated, discharge, and cumulative travel time were each significantly correlated with fish death. By using logistic regression, measurements of environmental conditions were paired with the responses of bioassay fish to develop a model that predicted the persistence of rotenone toxicity in streams. This model was validated with data from two additional stream treatment reaches. Rotenone persistence was predicted by a model that used travel time, rubble, and ORP. When this model predicts a probability of less than 0.95, those who apply rotenone can expect incomplete eradication and should plan on fortifying rotenone concentrations. The significance of travel time has been previously identified and is currently used to predict rotenone persistence. However, rubble substrate, which may be associated with the degradation of rotenone by adsorption and volatilization in turbulent environments, was not previously considered.

  18. Neotropical Amphibian Declines Affect Stream Ecosystem Properties

    NASA Astrophysics Data System (ADS)

    Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.

    2005-05-01

    Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.

  19. Online feature selection with streaming features.

    PubMed

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  20. Quantum-state resolved reactive scattering at the gas-liquid interface: F+squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J).

    PubMed

    Zolot, Alexander M; Dagdigian, Paul J; Nesbitt, David J

    2008-11-21

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [E(com)=0.7(3) kcalmol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(vNascent HF also recoils from the liquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F+hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.

  1. Quantum-state resolved reactive scattering at the gas-liquid interface: F +squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J)

    NASA Astrophysics Data System (ADS)

    Zolot, Alexander M.; Dagdigian, Paul J.; Nesbitt, David J.

    2008-11-01

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [Ecom=0.7(3)kcal/mol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(v ⩽3) products are formed in a highly nonequilibrium (inverted) vibrational distribution [⟨Evib⟩=13.2(2)kcal/mol], reflecting insufficient time for complete thermal accommodation with the surface prior to desorption. Colder, but still non-Boltzmann, rotational state populations [⟨Erot⟩=1.0(1)kcal/mol] indicate that some fraction of molecules directly scatter into the gas phase without rotationally equilibrating with the surface. Nascent HF also recoils from the liquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F +hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.

  2. RIPARIAN FOREST INDICATORS OF POTENTIAL FUTURE STREAM CONDITION

    EPA Science Inventory

    Large wood in streams can play an extraordinarily important role in influencing the physical structure of streams and in providing habitat for aquatic organisms. Since wood is continually lost from streams, predicting the future input of wood to streams from riparian forests is c...

  3. Geomorphic variation in riparian tree mortality and stream coarse woody debris recruitment from record flooding in a coastal plain stream

    Treesearch

    Brian J. Palik; Stephen W. Golladay; P. Charles Goebel; Brad W. Taylor

    1998-01-01

    Large floods are an important process controlling the structure and function of stream ecosystems. One of the ways floods affect streams is through the recruitment of coarse woody debris from stream-side forests. Stream valley geomorphology may mediate this interaction by altering flood velocity, depth, and duration. Little research has examined how floods and...

  4. Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Lautz, L. K.

    2013-12-01

    Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach

  5. Temperature of the Gulf Stream

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using

  6. Network Characteristics of Video Streaming Traffic

    DTIC Science & Technology

    2011-11-01

    Silverlight, Flash, or HTML5 ) used for video streaming. In particular, we identify three different streaming strategies that produce traffic... HTML5 , Flash. 1. INTRODUCTION The popularity of video streaming has considerably increased in the last decade. Indeed, recent studies have shown...applications for mobile devices), and the container (Flash [10], HTML5 [18], Silverlight [4]), on the charac- teristics of the traffic between the

  7. Video streaming into the mainstream.

    PubMed

    Garrison, W

    2001-12-01

    Changes in Internet technology are making possible the delivery of a richer mixture of media through data streaming. High-quality, dynamic content, such as video and audio, can be incorporated into Websites simply, flexibly and interactively. Technologies such as G3 mobile communication, ADSL, cable and satellites enable new ways of delivering medical services, information and learning. Systems such as Quicktime, Windows Media and Real Video provide reliable data streams as video-on-demand and users can tailor the experience to their own interests. The Learning Development Centre at the University of Portsmouth have used streaming technologies together with e-learning tools such as dynamic HTML, Flash, 3D objects and online assessment successfully to deliver on-line course content in economics and earth science. The Lifesign project--to develop, catalogue and stream health sciences media for teaching--is described and future medical applications are discussed.

  8. Web Audio/Video Streaming Tool

    NASA Technical Reports Server (NTRS)

    Guruvadoo, Eranna K.

    2003-01-01

    In order to promote NASA-wide educational outreach program to educate and inform the public of space exploration, NASA, at Kennedy Space Center, is seeking efficient ways to add more contents to the web by streaming audio/video files. This project proposes a high level overview of a framework for the creation, management, and scheduling of audio/video assets over the web. To support short-term goals, the prototype of a web-based tool is designed and demonstrated to automate the process of streaming audio/video files. The tool provides web-enabled users interfaces to manage video assets, create publishable schedules of video assets for streaming, and schedule the streaming events. These operations are performed on user-defined and system-derived metadata of audio/video assets stored in a relational database while the assets reside on separate repository. The prototype tool is designed using ColdFusion 5.0.

  9. Internet stream synchronization using Concord

    NASA Astrophysics Data System (ADS)

    Sreenan, Cormac J.; Narendran, B.; Agrawal, Prathima; Shivakumar, Narayanan

    1996-03-01

    Using packet networks to transport multimedia introduces delay variations within and across streams, necessitating synchronization at the receiver. This requires stream data to be buffered prior to presentation, which also increases its total end to end delay. Concord recognizes that applications may wish to influence the underlying synchronization policy in terms of its effect on quality of service. It provides a single framework for synchronization within and across streams and employs an application specific tradeoff between packet losses, delay and inter- stream skew. We present a new predictive approach for synchronization and a selection of results from an extensive evaluation of Concord for use in the Internet. A trace driven simulator is used, allowing a direct comparison with alternative approaches. We demonstrate that Concord can operate with lower maximum delay and less variation in total end to end delay, which in turn can allow receiver buffer requirements to be reduced.

  10. URBAN STREAM BURIAL INCREASES WATERSHED-SCALE NITRATE EXPORT

    EPA Science Inventory

    Nitrogen (N) uptake in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial reduces the capacity of streams to remove nitrate (NO3-) from the water column by in...

  11. Magnetic field advection in two interpenetrating plasma streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D. D.; Kugland, N. L.; Levy, M. C.

    2013-03-15

    Laser-generated colliding plasma streams can serve as a test-bed for the study of various astrophysical phenomena and the general physics of self-organization. For streams of a sufficiently high kinetic energy, collisions between the ions of one stream with the ions of the other stream are negligible, and the streams can penetrate through each other. On the other hand, the intra-stream collisions for high-Mach-number flows can still be very frequent, so that each stream can be described hydrodynamically. This paper presents an analytical study of the effects that these interpenetrating streams have on large-scale magnetic fields either introduced by external coilsmore » or generated in the plasma near the laser targets. Specifically, a problem of the frozen-in constraint is assessed and paradoxical features of the field advection in this system are revealed. A possibility of using this system for studies of magnetic reconnection is mentioned.« less

  12. Ecoregions and stream morphology in eastern Oklahoma

    USGS Publications Warehouse

    Splinter, D.K.; Dauwalter, D.C.; Marston, R.A.; Fisher, W.L.

    2010-01-01

    Broad-scale variables (i.e., geology, topography, climate, land use, vegetation, and soils) influence channel morphology. How and to what extent the longitudinal pattern of channel morphology is influenced by broad-scale variables is important to fluvial geomorphologists and stream ecologists. In the last couple of decades, there has been an increase in the amount of interdisciplinary research between fluvial geomorphologists and stream ecologists. In a historical context, fluvial geomorphologists are more apt to use physiographic regions to distinguish broad-scale variables, while stream ecologists are more apt to use the concept of an ecosystem to address the broad-scale variables that influence stream habitat. For this reason, we designed a study using ecoregions, which uses physical and biological variables to understand how landscapes influence channel processes. Ecoregions are delineated by similarities in geology, climate, soils, land use, and potential natural vegetation. In the fluvial system, stream form and function are dictated by processes observed throughout the fluvial hierarchy. Recognizing that stream form and function should differ by ecoregion, a study was designed to evaluate how the characteristics of stream channels differed longitudinally among three ecoregions in eastern Oklahoma, USA: Boston Mountains, Ozark Highlands, and Ouachita Mountains. Channel morphology of 149 stream reaches was surveyed in 1st- through 4th-order streams, and effects of drainage area and ecoregion on channel morphology was evaluated using multiple regressions. Differences existed (?????0.05) among ecoregions for particle size, bankfull width, and width/depth ratio. No differences existed among ecoregions for gradient or sinuosity. Particle size was smallest in the Ozark Highlands and largest in the Ouachita Mountains. Bankfull width was larger in the Ozark Highlands than in the Boston Mountains and Ouachita Mountains in larger streams. Width/depth ratios of the

  13. Invertebrate communities of small streams in northeastern Wyoming

    USGS Publications Warehouse

    Peterson, D.A.

    1990-01-01

    Invertebrate communities of small streams in an energy-mineral- development area in the Powder River structural basin of northeastern Wyoming were studied during 1980-81. The largest average density of benthic invertebrates among 11 sites was 983 invertebrates/sq ft at a site on a perennial stream, the Little Powder River at State Highway 59. The smallest average densities were 3.4 invertebrates/sq ft in Salt Creek and 16.6 invertebrates/sq ft in the Cheyenne River, two streams where the invertebrates were stressed by degraded water quality or inadequate substrate or both. The rates of invertebrate drift were fastest in three perennial streams, compared to the rates in intermittent and ephemeral streams. Analysis of the invertebrate communities using the Jaccard coefficient of community similarity and a cluster diagram showed communities inhabiting perennial streams were similar to each other, because of the taxa adapted to flowing water in riffles and runs. Communities from sites on ephemeral streams were similar to each other, because of the taxa adapted to standing water and vegetation in pools. Communities of intermittent streams did not form a group; either they were relatively similar to those of perennial or ephemeral streams or they were relatively dissimilar to other communities. The communities of the two streams stressed by degraded water quality or inadequate substrate or both, Salt Creek and the Cheyenne River, were relatively dissimilar to communities of the other streams in the study. (USGS)

  14. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    USGS Publications Warehouse

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  15. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex.

    PubMed

    Wang, Quanxin; Burkhalter, Andreas

    2013-01-23

    Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.

  16. Hydrology of Channelized and Natural Headwater Streams

    USDA-ARS?s Scientific Manuscript database

    Understanding hydrology is paramount for optimal ecologic function and management of headwater streams. The objective of this study was to characterize and compare headwater streams within the Upper Big Walnut Creek watershed in Ohio. Two channelized and two unchannelized streams were instrumented w...

  17. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    USGS Publications Warehouse

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  18. Yet Another Stream Search Among 2401 Photographic Meteors

    NASA Technical Reports Server (NTRS)

    Cook, A. F., II; Lindblad, B.; Marsden, B. G.; Mccrosky, R. E.; Posen, A.

    1973-01-01

    Two streams previously listed (one of them with a classification on Ceplecha's system in terms of beginning height) by Cook are shown probably not to exist, a possibility already pointed out by Cook. One stream that he questioned was revised as to membership and then classified. Four streams are added to the list and one of these is classified. Previous reports exist for three of these streams, while one is new. The two Piscid streams of Lindblad and his alpha Triangulid stream are regrouped into two streams, one already called the Andromedids by Cook and the other still called the Piscids; the alpha Triangulids are absorbed into the Andromedids. The Piscids are classified along with the iota Aquarids. The classifications of the Taurids and the Andromedids remain unchanged.

  19. Laurentide glacial landscapes: the role of ice streams

    USGS Publications Warehouse

    Patterson, C.J.

    1998-01-01

    Glacial landforms of the North American prairie can be divided into two suites that result from different styles of ice flow: 1) a lowland suite of level-to-streamlined till consistent with formation beneath ice streams, and 2) an upland and lobe-margin suite of thick, hummocky till and glacial thrust blocks consistent with formation at ice-stream and ice-lobe margins. Southern Laurentide ice lobes hypothetically functioned as outlets of ice streams. Broad branching lowlands bounded by escarpments mark the stable positions of the ice streams that fed the lobes. If the lobes and ice streams were similar to modern ice streams, their fast flow was facilitated by high subglacial water pressure. Favorable geology and topography in the midcontinent encouraged nonuniform ice flow and controlled the location of ice streams and outlet lobes.

  20. Toward a Neurophysiological Theory of Auditory Stream Segregation

    ERIC Educational Resources Information Center

    Snyder, Joel S.; Alain, Claude

    2007-01-01

    Auditory stream segregation (or streaming) is a phenomenon in which 2 or more repeating sounds differing in at least 1 acoustic attribute are perceived as 2 or more separate sound sources (i.e., streams). This article selectively reviews psychophysical and computational studies of streaming and comprehensively reviews more recent…

  1. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Commingling of waste streams. 434.61... STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams from another...

  2. Estimation of stream depletion using values of capacitance

    NASA Astrophysics Data System (ADS)

    Baldenkov, Mikhail; Filimonova, Elena

    2014-05-01

    Compensation pumping is used to alleviate deficiencies in streamflow discharge during dry seasons. Short-term groundwater pumping can use aquifer storage instead of catchment-zone water until the drawdown reaches the edge of the stream. Stream-aquifer interactions are the key component of the hydrologic budgets and estimation of stream depletion has top-priority when evaluating the effectiveness of application of seasonal compensation pumping. Numerous analytical equations have been developed to assess the influence of groundwater pumping on nearby streams (C.V. Theis, R.E. Glover, C.G. Balmer, M.S. Hantush, C.T. Jenkins, B. Hunt, J. Bredehoeft, V.A. Zlotnik, E.L. Minkin, N.N. Lapshin, F.M. Bochever and other researchers). R.B. Wallace and Y. Darama obtained solution for cyclic conditions groundwater pumping. Numerical model approaches used in difficult hydrogeological conditions. It is offered to estimate stream depletion by seasonal pumping using values of capacitance (complex, dimensionless parameter of an aquifer system that defines the delayed effect on steamflow when there is groundwater pumping). Capacitance (C) is determined by the following equation: ( ) L* C = f( °---) , TS-Δt where S and T are the aquifer specific yield (or storage coefficient for a confined aquifer) and transmissivity, respectively; Δt is the pumping time inside one cycle, L* is the summarizing distance between the compensation well and stream edge; in some cases it can involve a function of the stream leakance and vertical leakance of the impermeable layer. Three typical hydraulic cases of compensation pumping were classified depending on their capacitance structure (i.e. the relationship between surface water and groundwater): (a) perfect hydraulic connection between the stream and aquifer; (b) imperfect hydraulic connection between the stream and aquifer; and (c) essentially imperfect hydraulic connection between the stream and the underlying confined aquifer. The form of

  3. StreamVOC - A deterministic source-apportionment model to estimate volatile organic compound concentrations in rivers and streams

    USGS Publications Warehouse

    Asher, William E.; Bender, David A.; Zogorski, John S.; Bartholomay, Roy C.

    2006-01-01

    This report documents the construction and verification of the model, StreamVOC, that estimates (1) the time- and position-dependent concentrations of volatile organic compounds (VOCs) in rivers and streams as well as (2) the source apportionment (SA) of those concentrations. The model considers how different types of sources and loss processes can act together to yield a given observed VOC concentration. Reasons for interest in the relative and absolute contributions of different sources to contaminant concentrations include the need to apportion: (1) the origins for an observed contamination, and (2) the associated human and ecosystem risks. For VOCs, sources of interest include the atmosphere (by absorption), as well as point and nonpoint inflows of VOC-containing water. Loss processes of interest include volatilization to the atmosphere, degradation, and outflows of VOC-containing water from the stream to local ground water. This report presents the details of StreamVOC and compares model output with measured concentrations for eight VOCs found in the Aberjona River at Winchester, Massachusetts. Input data for the model were obtained during a synoptic study of the stream system conducted July 11-13, 2001, as part of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey. The input data included a variety of basic stream characteristics (for example, flows, temperature, and VOC concentrations). The StreamVOC concentration results agreed moderately well with the measured concentration data for several VOCs and provided compound-dependent SA estimates as a function of longitudinal distance down the river. For many VOCs, the quality of the agreement between the model-simulated and measured concentrations could be improved by simple adjustments of the model input parameters. In general, this study illustrated: (1) the considerable difficulty of quantifying correctly the locations and magnitudes of ground-water-related sources of

  4. Differentiated strategies for improving streaming service quality

    NASA Astrophysics Data System (ADS)

    An, Hui; Chen, Xin-Meng

    2005-02-01

    With the explosive growth of streaming services, users are becoming more and more sensitive to its quality of service. To handle these problems, the research community focuses of the application of caching and replication techniques. But most approaches try to find specific strategies of caching of replication that suit for streaming service characteristics and to design some kind of universal policy to deal with all streaming objects. This paper explores the combination of caching and replication for improving streaming service quality and demonstrates that it makes sense to incorporate two technologies. It provides a system model and discusses some related issues of how to determining a refreshable streaming object and which refreshment policies a refreshable object should use.

  5. Stream dynamics: An overview for land managers

    Treesearch

    Burchard H. Heede

    1980-01-01

    Concepts of stream dynamics are demonstrated through discussion of processes and process indicators; theory is included only where helpful to explain concepts. Present knowledge allows only qualitative prediction of stream behavior. However, such predictions show how management actions will affect the stream and its environment.

  6. A Comprehensive Model for the Monoceros Tidal Stream

    DTIC Science & Technology

    2005-06-10

    stream that can be found in the literature. 5.1. The Triangulus/ Andromeda Stream In Figure 8 we show the location of the recent detected Tri/And tidal...recently discovered stream in Triangulus/ Andromeda as natural part of theMonoceros stream, both fitting accurately to the modeled kinematics and spatial

  7. Reach-scale stream restoration in agricultural streams of southern Minnesota alters structural and functional responses of macroinvertebrates

    USGS Publications Warehouse

    Dolph, Christine L.; Eggert, Susan L.; Magner, Joe; Ferrington, Leonard C.; Vondracek, Bruce C.

    2015-01-01

    Recent studies suggest that stream restoration at the reach scale may not increase stream biodiversity, raising concerns about the utility of this conservation practice. We examined whether reach-scale restoration in disturbed agricultural streams was associated with changes in macroinvertebrate community structure (total macroinvertebrate taxon richness, total macroinvertebrate density, Ephemeroptera, Plecoptera, Trichoptera [EPT] taxon richness, % abundance of EPT taxa) or secondary production (macroinvertebrate biomass over time). We collected macroinvertebrate samples over the course of 1 y from restored and unrestored reaches of 3 streams in southern Minnesota and used generalized least-square (GLS) models to assess whether measures of community structure were related to reach type, stream site, or sampling month. After accounting for effects of stream site and time, we found no significant difference in total taxon richness or % abundance of EPT taxa between restored and unrestored reaches. However, the number of EPT taxa and macroinvertebrate density were significantly higher in restored than in unrestored reaches. We compared secondary production estimates among study reaches based on 95th-percentile confidence intervals generated via bootstrapping. In each study stream, secondary production was significantly (2–3×) higher in the restored than in the unrestored reach. Higher productivity in the restored reaches was largely a result of the disproportionate success of a few dominant, tolerant taxa. Our findings suggest that reach-scale restoration may have ecological effects that are not detected by measures of total taxon richness alone.

  8. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Urbanization causes stream degradation in various ways, but perhaps the most extreme example is the burial of streams in underground storm drains to facilitate above ground development or to promote the rapid conveyance of stormwater. Stream burial is extensive in urban basins (...

  9. Using StreamCat and the NHDPlus framework to model and map the biological condition of USA streams and rivers

    EPA Science Inventory

    The US EPA’s National River and Stream Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the conterminous US (CONUS) that deviate from least-disturbed biological condition (BC). These assessments do not infer BC at un-sampled streams,...

  10. Testing a community water supply well located near a stream for susceptibility to stream contamination and low-flows.

    NASA Astrophysics Data System (ADS)

    Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.

    2014-12-01

    A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.

  11. Stream shading, summer streamflow and maximum water temperature following intense wildfire in headwater streams

    Treesearch

    Michael Amaranthus; Howard Jubas; David Arthur

    1989-01-01

    Adjacent headwater streams were monitored for postfire shade, summer streamflow and maximum water temperature following the 40,000 ha Silver Complex fire in southern Oregon. Average postfire shade (30 percent) for the three streams was considerably less than prefire shade (est.>90 percent). Dramatic increases in direct solar radiation resulted in large but variable...

  12. Leaf breakdown in streams differing in catchment land use

    USGS Publications Warehouse

    Paul, M.J.; Meyer, J.L.; Couch, C.A.

    2006-01-01

    1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

  13. ATLAS Live: Collaborative Information Streams

    NASA Astrophysics Data System (ADS)

    Goldfarb, Steven; ATLAS Collaboration

    2011-12-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  14. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    EPA Science Inventory

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to...

  15. Urbanization and stream ecology: Diverse mechanisms of change

    USGS Publications Warehouse

    Roy, Allison; Capps, Krista A.; El-Sabaawi, Rana W.; Jones, Krista L.; Parr, Thomas B.; Ramirez, Alonso; Smith, Robert F.; Walsh, Christopher J.; Wenger, Seth J.

    2016-01-01

    The field of urban stream ecology has evolved rapidly in the last 3 decades, and it now includes natural scientists from numerous disciplines working with social scientists, landscape planners and designers, and land and water managers to address complex, socioecological problems that have manifested in urban landscapes. Over the last decade, stream ecologists have met 3 times at the Symposium on Urbanization and Stream Ecology (SUSE) to discuss current research, identify knowledge gaps, and promote future research collaborations. The papers in this special series on urbanization and stream ecology include both primary research studies and conceptual synthesis papers spurred from discussions at SUSE in May 2014. The themes of the meeting are reflected in the papers in this series emphasizing global differences in mechanisms and responses of stream ecosystems to urbanization and management solutions in diverse urban streams. Our hope is that this series will encourage continued interdisciplinary and collaborative research to increase the global understanding of urban stream ecology toward stream protection and restoration in urban landscapes.

  16. Ad Hoc Selection of Voice over Internet Streams

    NASA Technical Reports Server (NTRS)

    Macha, Mitchell G. (Inventor); Bullock, John T. (Inventor)

    2014-01-01

    A method and apparatus for a communication system technique involving ad hoc selection of at least two audio streams is provided. Each of the at least two audio streams is a packetized version of an audio source. A data connection exists between a server and a client where a transport protocol actively propagates the at least two audio streams from the server to the client. Furthermore, software instructions executable on the client indicate a presence of the at least two audio streams, allow selection of at least one of the at least two audio streams, and direct the selected at least one of the at least two audio streams for audio playback.

  17. Ad Hoc Selection of Voice over Internet Streams

    NASA Technical Reports Server (NTRS)

    Macha, Mitchell G. (Inventor); Bullock, John T. (Inventor)

    2008-01-01

    A method and apparatus for a communication system technique involving ad hoc selection of at least two audio streams is provided. Each of the at least two audio streams is a packetized version of an audio source. A data connection exists between a server and a client where a transport protocol actively propagates the at least two audio streams from the server to the client. Furthermore, software instructions executable on the client indicate a presence of the at least two audio streams, allow selection of at least one of the at least two audio streams, and direct the selected at least one of the at least two audio streams for audio playback.

  18. The Stream Table in Physical Geography Instruction.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.; Lightfoot, Dale R.

    1997-01-01

    Outlines a number of activities to be conducted with a stream table (large wooden box filled with sediment and designed for water to pass through) in class. Activities illustrate such fluvial processes as stream meandering, erosion, transportation, and deposition. Includes a diagram for constructing a stream table. (MJP)

  19. The ecology and biogeochemistry of stream biofilms.

    PubMed

    Battin, Tom J; Besemer, Katharina; Bengtsson, Mia M; Romani, Anna M; Packmann, Aaron I

    2016-04-01

    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.

  20. Acid Rain Effects on Adirondack Streams - Results from the 2003-05 Western Adirondack Stream Survey (the WASS Project)

    USGS Publications Warehouse

    Lawrence, Gregory B.; Roy, Karen M.; Baldigo, Barry P.; Simonin, Howard A.; Passy, Sophia I.; Bode, Robert W.; Capone, Susan B.

    2009-01-01

    Traditionally lakes have been the focus of acid rain assessments in the Adirondack region of New York. However, there is a growing recognition of the importance of streams as environmental indicators. Streams, like lakes, also provide important aquatic habitat, but streams more closely reflect acid rain effects on soils and forests and are more prone to acidification than lakes. Therefore, a large-scale assessment of streams was undertaken in the drainage basins of the Oswegatchie and Black Rivers; an area of 4,585 km2 in the western Adirondack region where acid rain levels tend to be highest in New York State.

  1. Predicting Stream Temperature After Riparian Vegetation Removal

    Treesearch

    Bruce J. McGurk

    1989-01-01

    Removal of stream channel shading during timber harvest operations may raise the stream temperature and adversely affect desirable aquatic populations. Field work in California at one clearcut and one mature fir site demonstrated diurnal water temperature cycles and provided data to evaluate two stream temperature prediction techniques. Larger diurnal temperature...

  2. Revealing the dual streams of speech processing.

    PubMed

    Fridriksson, Julius; Yourganov, Grigori; Bonilha, Leonardo; Basilakos, Alexandra; Den Ouden, Dirk-Bart; Rorden, Christopher

    2016-12-27

    Several dual route models of human speech processing have been proposed suggesting a large-scale anatomical division between cortical regions that support motor-phonological aspects vs. lexical-semantic aspects of speech processing. However, to date, there is no complete agreement on what areas subserve each route or the nature of interactions across these routes that enables human speech processing. Relying on an extensive behavioral and neuroimaging assessment of a large sample of stroke survivors, we used a data-driven approach using principal components analysis of lesion-symptom mapping to identify brain regions crucial for performance on clusters of behavioral tasks without a priori separation into task types. Distinct anatomical boundaries were revealed between a dorsal frontoparietal stream and a ventral temporal-frontal stream associated with separate components. Collapsing over the tasks primarily supported by these streams, we characterize the dorsal stream as a form-to-articulation pathway and the ventral stream as a form-to-meaning pathway. This characterization of the division in the data reflects both the overlap between tasks supported by the two streams as well as the observation that there is a bias for phonological production tasks supported by the dorsal stream and lexical-semantic comprehension tasks supported by the ventral stream. As such, our findings show a division between two processing routes that underlie human speech processing and provide an empirical foundation for studying potential computational differences that distinguish between the two routes.

  3. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10 percent) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50 percent of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65 percent of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  4. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10%) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50% of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65% of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  5. Effects of urban stream burial on nitrogen uptake and ...

    EPA Pesticide Factsheets

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p < 0.01) and decreased nitrate uptake velocity and areal nitrate uptake rate by factors of 8.2 (p = 0.01) and 9.6 (p < 0.001), respectively. Stream burial decreased gross primary productivity by a factor of 9.2 (p < 0.05) and decreased ecosystem respiration by a factor of 4.2 (p = 0.06). From statistical analysis of Excitation Emissions Matrices (EEMs), buried streams were also found to have significantly less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage and water temperatures. Overall, differences in NO3- uptake and metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  6. Stream Width Dynamics in a Small Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  7. Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs

    PubMed Central

    Rouvinski, Alexander; Karniely, Sharon; Kounin, Maria; Moussa, Sanaa; Goldberg, Miri D.; Warburg, Gabriela; Lyakhovetsky, Roman; Papy-Garcia, Dulce; Kutzsche, Janine; Korth, Carsten; Carlson, George A.; Godsave, Susan F.; Peters, Peter J.; Luhr, Katarina; Kristensson, Krister

    2014-01-01

    Mammalian prions refold host glycosylphosphatidylinositol-anchored PrPC into β-sheet–rich PrPSc. PrPSc is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrPSc rather than on its truncated PrP27-30 product. We show that N-terminal PrPSc epitopes are exposed in their physiological context and visualize, for the first time, PrPSc in living cells. PrPSc resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrPSc amyloids. PMID:24493590

  8. Stream Tables and Watershed Geomorphology Education.

    ERIC Educational Resources Information Center

    Lillquist, Karl D.; Kinner, Patricia W.

    2002-01-01

    Reviews copious stream tables and provides a watershed approach to stream table exercises. Results suggest that this approach to learning the concepts of fluvial geomorphology is effective. (Contains 39 references.) (DDR)

  9. Evidence for a Nascent Rift in South Sudan: Westward Extension of the East African Rift System?

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Van Wijk, J. W.; Coblentz, D. D.; Modrak, R. T.

    2013-12-01

    Joint inversion of seismic and gravity data of eastern Africa reveals a low seismic wave velocity arm stretching from the southern Main Ethiopian rift westward in an east-west direction that has not been noticed in earlier work. The zone of low velocities is located in the upper mantle and is not overlain by a known structural rift expression. We analyzed the local pattern of seismicity and the stresses in the African plate to interpret this low velocity arm. The zone of low velocities is located within the Central African Fold Belt, which dissects the northern and southern portions of the African continent. It is seismically active with small to intermediate sized earthquakes occurring in the crust. Seven earthquake solutions indicate (oblique) normal faulting and low-angle normal faulting with a NS to NNW-SSE opening direction, as well as strike-slip faulting. This pattern of deformation is typically associated with rifting. The present day stress field in northeastern Africa reveals a tensional state of stress at the location of the low velocity arm with an opening direction that corresponds to the earthquake data. We propose that the South Sudan low velocity zone and seismic center are part of an undeveloped, nascent rift arm. The arm stretches from the East African Rift system westward.

  10. Maximizing Resource Utilization in Video Streaming Systems

    ERIC Educational Resources Information Center

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  11. Comparison of pesticides in eight U.S. urban streams

    USGS Publications Warehouse

    Hoffman, R.S.; Capel, P.D.; Larson, S.J.

    2000-01-01

    Little is known of the occurrence of pesticides in urban streams compared to streams draining agricultural areas. Water samples from eight urban streams from across the United States were analyzed for 75 pesticides and seven transformation products. For six of the eight urban streams, paired agricultural streams were used for comparisons. The herbicides detected most frequently in the urban streams were prometon, simazine, atrazine, tebuthiuron, and metolachlor, and the insecticides detected most frequently were diazinon, carbaryl, chlorpyrifos, and malathion. In contrast to similar-sized agricultural streams, total insecticide concentrations commonly exceeded total herbicide concentrations in these urban streams. In general, the temporal concentration patterns in the urban streams were consistent with the characteristics of the local growing season. The insecticides carbaryl and diazinon exceeded criteria for the protection of aquatic life in many of the urban streams in the spring and summer. When the country as a whole is considered, the estimated mass of herbicides contributed by urban areas to streams is dwarfed by the estimated contribution from agricultural areas, but for insecticides, contributions from urban and agricultural areas may be similar. The results of this study suggest that urban areas should not be overlooked when assessing sources and monitoring the occurrence of pesticides in surface waters.

  12. The burial of headwater streams in drainage pipes reduces in-stream nitrate retention: results from two US metropolitan areas

    NASA Astrophysics Data System (ADS)

    Beaulieu, J. J.; Mayer, P. M.; Kaushal, S.; Pennino, M. J.; Arango, C. P.; Balz, D. A.; Fritz, K. M.; Golden, H. E.; Knightes, C. D.

    2012-12-01

    Nitrogen (N) retention in stream networks is an important ecosystem service that may be affected by the widespread burial of headwater streams in urban watersheds. Stream burial occurs when segments of a channel are encased in drainage pipe and buried beneath the land surface to facilitate above ground development or stormwater runoff. We predicted that burial suppresses the capacity of streams to retain and transform nitrate, the dominate form of bioavailable N in urban streams, by eliminating primary production, reducing respiration rates, and decreasing water residence time. We tested these predictions by measuring whole-stream nitrate (NO3-) removal rates using 15NO3- isotope tracer releases in reaches that were buried and open to the sunlight in three streams in Cincinnati, Ohio and three streams in Baltimore, Maryland during four seasons. Nitrate uptake lengths in buried reaches (range: 560 - 43,650 m) were 2-98 times greater than open reaches exposed to daylight (range: 85 - 7195 m), indicating that buried reaches were substantially less effective at retaining NO3- than open reaches. Nitrate retention in buried reaches was suppressed by a combination of hydrological and biological processes. High water velocities in buried reaches (buried= 5.8 m/s, open=1.48 m/s) rapidly exported NO3- from the channel, reducing the potential for in-stream NO3- retention. Uptake lengths in the buried reaches were lengthened further by low in-stream biological NO3- demand, as indicated by NO3- uptake velocities 16-fold lower than that of the open reaches. Similarly, buried reaches had lower ecosystem respiration rates than open reaches (buried=1.5g O2/m2/hr, open=4.5g O2/m2/hr), likely due to lower organic matter standing stocks (buried=12 gAFMD/m2, open=48 gAFDM/m2). Biological activity in the buried reaches was further suppressed by the absence of light which precluded photosynthetic activity and the associated assimilative N demand. Overall, our results demonstrate that the

  13. Quantifying stream thermal regimes at management-pertinent scales: combining thermal infrared and stationary stream temperature data in a novel modeling framework.

    USGS Publications Warehouse

    Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.

    2015-01-01

    Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.

  14. Global characteristics of stream flow seasonality and variability

    USGS Publications Warehouse

    Dettinger, M.D.; Diaz, Henry F.

    2000-01-01

    Monthly stream flow series from 1345 sites around the world are used to characterize geographic differences in the seasonality and year-to-year variability of stream flow. Stream flow seasonality varies regionally, depending on the timing of maximum precipitation, evapotranspiration, and contributions from snow and ice. Lags between peaks of precipitation and stream flow vary smoothly from long delays in high-latitude and mountainous regions to short delays in the warmest sectors. Stream flow is most variable from year to year in dry regions of the southwest United States and Mexico, the Sahel, and southern continents, and it varies more (relatively) than precipitation in the same regions. Tropical rivers have the steadiest flows. El Nin??o variations are correlated with stream flow in many parts of the Americas, Europe, and Australia. Many stream flow series from North America, Europe, and the Tropics reflect North Pacific climate, whereas series from the eastern United States, Europe, and tropical South America and Africa reflect North Atlantic climate variations.

  15. Traveltime and longitudinal dispersion in Illinois streams

    USGS Publications Warehouse

    Graf, Julia B.

    1986-01-01

    Twenty-seven measurements of traveltime and longitudinal dispersion in 10 Illinois streams made from 1975 to 1982 provide data needed for estimating traveltime of peak concentration of a conservative solute, traveltime of the leading edge of a solute cloud, peak concentration resulting from injection of a given quantity of solute, and passage time of solute past a given point on a stream. These four variables can be estimated graphically for each stream from distance of travel and either discharge at the downstream end of the reach or flow-duration frequency. From equations developed from field measurements, the traveltime and dispersion characteristics also can be estimated for other unregulated streams in Illinois that have drainage areas less than about 1,500 square miles. For unmeasured streams, traveltime of peak concentration and of the leading edge of the cloud are related to discharge at the downstream end of the reach and to distance of travel. For both measured and unmeasured streams, peak concentration and passage time are best estimated from the relation of each to traveltime. In measured streams, dispersion efficiency is greater than that predicted by Fickian diffusion theory. The rate of decrease in peak concentration with traveltime is about equal to the rate of increase in passage time. Average velocity in a stream reach, given by the velocity of the center of solute mass in that reach, can be estimated from an equation developed from measured values. The equation relates average reach velocity to discharge at the downstream end of the reach. Average reach velocities computed for 9 of the 10 streams from available equations that are based on hydraulic-geometry relations are high relative to measured values. The estimating equation developed from measured velocities provides estimates of average reach velocity that are closer to measured velocities than are those computed using equations developed from hydraulic-geometry relations.

  16. Implementation and Analysis of Real-Time Streaming Protocols.

    PubMed

    Santos-González, Iván; Rivero-García, Alexandra; Molina-Gil, Jezabel; Caballero-Gil, Pino

    2017-04-12

    Communication media have become the primary way of interaction thanks to the discovery and innovation of many new technologies. One of the most widely used communication systems today is video streaming, which is constantly evolving. Such communications are a good alternative to face-to-face meetings, and are therefore very useful for coping with many problems caused by distance. However, they suffer from different issues such as bandwidth limitation, network congestion, energy efficiency, cost, reliability and connectivity. Hence, the quality of service and the quality of experience are considered the two most important issues for this type of communication. This work presents a complete comparative study of two of the most used protocols of video streaming, Real Time Streaming Protocol (RTSP) and the Web Real-Time Communication (WebRTC). In addition, this paper proposes two new mobile applications that implement those protocols in Android whose objective is to know how they are influenced by the aspects that most affect the streaming quality of service, which are the connection establishment time and the stream reception time. The new video streaming applications are also compared with the most popular video streaming applications for Android, and the experimental results of the analysis show that the developed WebRTC implementation improves the performance of the most popular video streaming applications with respect to the stream packet delay.

  17. Implementation and Analysis of Real-Time Streaming Protocols

    PubMed Central

    Santos-González, Iván; Rivero-García, Alexandra; Molina-Gil, Jezabel; Caballero-Gil, Pino

    2017-01-01

    Communication media have become the primary way of interaction thanks to the discovery and innovation of many new technologies. One of the most widely used communication systems today is video streaming, which is constantly evolving. Such communications are a good alternative to face-to-face meetings, and are therefore very useful for coping with many problems caused by distance. However, they suffer from different issues such as bandwidth limitation, network congestion, energy efficiency, cost, reliability and connectivity. Hence, the quality of service and the quality of experience are considered the two most important issues for this type of communication. This work presents a complete comparative study of two of the most used protocols of video streaming, Real Time Streaming Protocol (RTSP) and the Web Real-Time Communication (WebRTC). In addition, this paper proposes two new mobile applications that implement those protocols in Android whose objective is to know how they are influenced by the aspects that most affect the streaming quality of service, which are the connection establishment time and the stream reception time. The new video streaming applications are also compared with the most popular video streaming applications for Android, and the experimental results of the analysis show that the developed WebRTC implementation improves the performance of the most popular video streaming applications with respect to the stream packet delay. PMID:28417949

  18. Potential Stream Density in Mid-Atlantic U.S. Watersheds

    PubMed Central

    Elmore, Andrew J.; Julian, Jason P.; Guinn, Steven M.; Fitzpatrick, Matthew C.

    2013-01-01

    Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (<1%) for catchments larger than 10 ha. We apply this model to the entire Potomac River watershed (37,800 km2) and several adjacent watersheds to map stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts. PMID:24023704

  19. Evaluation of an alternate method for sampling benthic macroinvertebrates in low-gradient streams sampled as part of the National Rivers and Streams Assessment.

    PubMed

    Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A

    2014-02-01

    Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.

  20. A Review on Data Stream Classification

    NASA Astrophysics Data System (ADS)

    Haneen, A. A.; Noraziah, A.; Wahab, Mohd Helmy Abd

    2018-05-01

    At this present time, the significance of data streams cannot be denied as many researchers have placed their focus on the research areas of databases, statistics, and computer science. In fact, data streams refer to some data points sequences that are found in order with the potential to be non-binding, which is generated from the process of generating information in a manner that is not stationary. As such the typical tasks of searching data have been linked to streams of data that are inclusive of clustering, classification, and repeated mining of pattern. This paper presents several data stream clustering approaches, which are based on density, besides attempting to comprehend the function of the related algorithms; both semi-supervised and active learning, along with reviews of a number of recent studies.

  1. Factors influencing wood mobilization in Minnesota streams

    USGS Publications Warehouse

    Merten, Eric; Finlay, Jacques; Johnson, Lucinda; Newman, Raymond; Stefan, Heinz; Vondracek, Bruce C.

    2010-01-01

    Natural pieces of wood provide a variety of ecosystem functions in streams including habitat, organic matter retention, increased hyporheic exchange and transient storage, and enhanced hydraulic and geomorphic heterogeneity. Wood mobilization is a critical process in determining the residence time of wood. We documented the characteristics and locations of 865 natural wood pieces (>0.05 m in diameter for a portion >1 m in length) in nine streams along the north shore of Lake Superior in Minnesota. We determined the locations of the pieces again after an overbank stormflow event to determine the factors that influenced mobilization of stationary wood pieces in natural streams. Seven of 11 potential predictor variables were identified with multiple logistic regression as significant to mobilization: burial, effective depth, ratio of piece length to effective stream width (length ratio), bracing, rootwad presence, downstream force ratio, and draft ratio. The final model (P< 0.001, r2 = 0.39) indicated that wood mobilization under natural conditions is a complex function of both mechanical factors (burial, length ratio, bracing, rootwad presence, draft ratio) and hydraulic factors (effective depth, downstream force ratio). If stable pieces are a goal for stream management then features such as partial burial, low effective depth, high length relative to channel width, bracing against other objects (e.g., stream banks, trees, rocks, or larger wood pieces), and rootwads are desirable. Using the model equation from this study, stewards of natural resources can better manage in-stream wood for the benefit of stream ecosystems.

  2. Digital Multicasting of Multiple Audio Streams

    NASA Technical Reports Server (NTRS)

    Macha, Mitchell; Bullock, John

    2007-01-01

    The Mission Control Center Voice Over Internet Protocol (MCC VOIP) system (see figure) comprises hardware and software that effect simultaneous, nearly real-time transmission of as many as 14 different audio streams to authorized listeners via the MCC intranet and/or the Internet. The original version of the MCC VOIP system was conceived to enable flight-support personnel located in offices outside a spacecraft mission control center to monitor audio loops within the mission control center. Different versions of the MCC VOIP system could be used for a variety of public and commercial purposes - for example, to enable members of the general public to monitor one or more NASA audio streams through their home computers, to enable air-traffic supervisors to monitor communication between airline pilots and air-traffic controllers in training, and to monitor conferences among brokers in a stock exchange. At the transmitting end, the audio-distribution process begins with feeding the audio signals to analog-to-digital converters. The resulting digital streams are sent through the MCC intranet, using a user datagram protocol (UDP), to a server that converts them to encrypted data packets. The encrypted data packets are then routed to the personal computers of authorized users by use of multicasting techniques. The total data-processing load on the portion of the system upstream of and including the encryption server is the total load imposed by all of the audio streams being encoded, regardless of the number of the listeners or the number of streams being monitored concurrently by the listeners. The personal computer of a user authorized to listen is equipped with special- purpose MCC audio-player software. When the user launches the program, the user is prompted to provide identification and a password. In one of two access- control provisions, the program is hard-coded to validate the user s identity and password against a list maintained on a domain-controller computer

  3. Dynamic visualization of data streams

    DOEpatents

    Wong, Pak Chung [Richalnd, WA; Foote, Harlan P [Richland, WA; Adams, Daniel R [Kennewick, WA; Cowley, Wendy E [Richland, WA; Thomas, James J [Richland, WA

    2009-07-07

    One embodiment of the present invention includes a data communication subsystem to receive a data stream, and a data processing subsystem responsive to the data communication subsystem to generate a visualization output based on a group of data vectors corresponding to a first portion of the data stream. The processing subsystem is further responsive to a change in rate of receipt of the data to modify the visualization output with one or more other data vectors corresponding to a second portion of the data stream as a function of eigenspace defined with the group of data vectors. The system further includes a display device responsive to the visualization output to provide a corresponding visualization.

  4. Nutrient processes at the stream-lake interface for a channelized versus unmodified stream mouth

    USGS Publications Warehouse

    Niswonger, Richard G.; Naranjo, Ramon C.; Smith, David; Constantz, James E.; Allander, Kip K.; Rosenberry, Donald O.; Neilson, Bethany; Rosen, Michael R.; Stonestrom, David A.

    2017-01-01

    Inorganic forms of nitrogen and phosphorous impact freshwater lakes by stimulating primary production and affecting water quality and ecosystem health. Communities around the world are motivated to sustain and restore freshwater resources and are interested in processes controlling nutrient inputs. We studied the environment where streams flow into lakes, referred to as the stream-lake interface (SLI), for a channelized and unmodified stream outlet. Channelization is done to protect infrastructure or recreational beach areas. We collected hydraulic and nutrient data for surface water and shallow groundwater in two SLIs to develop conceptual models that describe characteristics that are representative of these hydrologic features. Water, heat, and solute transport models were used to evaluate hydrologic conceptualizations and estimate mean residence times of water in the sediment. A nutrient mass balance model is developed to estimate net rates of adsorption and desorption, mineralization, and nitrification along subsurface flow paths. Results indicate that SLIs are dynamic sources of nutrients to lakes and that the common practice of channelizing the stream at the SLI decreases nutrient concentrations in pore water discharging along the lakeshore. This is in contrast to the unmodified SLI that forms a barrier beach that disconnects the stream from the lake and results in higher nutrient concentrations in pore water discharging to the lake. These results are significant because nutrient delivery through pore water seepage at the lakebed from the natural SLI contributes to nearshore algal communities and produces elevated concentrations of inorganic nutrients in the benthic zone where attached algae grow.

  5. A transverse separate-spin-evolution streaming instability

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Andreev, Pavel A.; Murtaza, G.

    2018-05-01

    By using the separate spin evolution quantum hydrodynamical model, the instability of transverse mode due to electron streaming in a partially spin polarized magnetized degenerate plasma is studied. The electron spin polarization gives birth to a new spin-dependent wave (i.e., separate spin evolution streaming driven ordinary wave) in the real wave spectrum. It is shown that the spin polarization and streaming speed significantly affect the frequency of this new mode. Analyzing growth rate, it is found that the electron spin effects reduce the growth rate and shift the threshold of instability as well as its termination point towards higher values. Additionally, how the other parameters like electron streaming and Fermi pressure influence the growth rate is also investigated. Current study can help towards better understanding of the existence of new waves and streaming instability in the astrophysical plasmas.

  6. A gas-tracer injection for evaluating the fate of methane in a coastal plain stream: Degassing versus in-stream oxidation

    USGS Publications Warehouse

    Heilweil, Victor M.; Solomon, D. Kip; Darrah, Thomas H.; Gilmore, Troy E.; Genereux, David P.

    2016-01-01

    Methane emissions from streams and rivers have recently been recognized as an important component of global greenhouse budgets. Stream methane is lost as evasion to the atmosphere or in-stream methane oxidation. Previous studies have quantified evasion and oxidation with point-scale measurements. In this study, dissolved gases (methane, krypton) were injected into a coastal plain stream in North Carolina to quantify stream CH4 losses at the watershed scale. Stream-reach modeling yielded gas transfer and oxidation rate constants of 3.2 ± 0.5 and 0.5 ± 1.5 d–1, respectively, indicating a ratio of about 6:1. The resulting evasion and oxidation rates of 2.9 mmol m–2 d–1 and 1,140 nmol L–1 d–1, respectively, lie within ranges of published values. Similarly, the gas transfer velocity (K600) of 2.1 m d–1 is consistent with other gas tracer studies. This study illustrates the utility of dissolved-gas tracers for evaluating stream methane fluxes. In contrast to point measurements, this approach provides a larger watershed-scale perspective. Further work is needed to quantify the magnitude of these fluxes under varying conditions (e.g., stream temperature, nutrient load, gradient, flow rate) at regional and global scales before reliable bottom-up estimates of methane evasion can be determined at global scales.

  7. Save Our Streams and Waterways.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    Protection of existing water supplies is critical to ensuring good health for people and animals alike. This program is aligned with the Izaak Walton League of American's Save Our Streams program which is based on the concept that students can greatly improve the quality of a nearby stream, pond, or river by regular visits and monitoring. The…

  8. We All Stream for Video

    ERIC Educational Resources Information Center

    Technology & Learning, 2008

    2008-01-01

    More than ever, teachers are using digital video to enhance their lessons. In fact, the number of schools using video streaming increased from 30 percent to 45 percent between 2004 and 2006, according to Market Data Retrieval. Why the popularity? For starters, video-streaming products are easy to use. They allow teachers to punctuate lessons with…

  9. Factoring stream turbulence into global assessments of nitrogen pollution.

    PubMed

    Grant, Stanley B; Azizian, Morvarid; Cook, Perran; Boano, Fulvio; Rippy, Megan A

    2018-03-16

    The discharge of excess nitrogen to streams and rivers poses an existential threat to both humans and ecosystems. A seminal study of headwater streams across the United States concluded that in-stream removal of nitrate is controlled primarily by stream chemistry and biology. Reanalysis of these data reveals that stream turbulence (in particular, turbulent mass transfer across the concentration boundary layer) imposes a previously unrecognized upper limit on the rate at which nitrate is removed from streams. The upper limit closely approximates measured nitrate removal rates in streams with low concentrations of this pollutant, a discovery that should inform stream restoration designs and efforts to assess the effects of nitrogen pollution on receiving water quality and the global nitrogen cycle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuckfield, C; J V Mcarthur

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10more » metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect

  11. Pasture size effects on the ability of off-stream water or restricted stream access to alter the spatial/temporal distribution of grazing beef cows.

    PubMed

    Bisinger, J J; Russell, J R; Morrical, D G; Isenhart, T M

    2014-08-01

    For 2 grazing seasons, effects of pasture size, stream access, and off-stream water on cow distribution relative to a stream were evaluated in six 12.1-ha cool-season grass pastures. Two pasture sizes (small [4.0 ha] and large [12.1 ha]) with 3 management treatments (unrestricted stream access without off-stream water [U], unrestricted stream access with off-stream water [UW], and stream access restricted to a stabilized stream crossing [R]) were alternated between pasture sizes every 2 wk for 5 consecutive 4-wk intervals in each grazing season. Small and large pastures were stocked with 5 and 15 August-calving cows from mid May through mid October. At 10-min intervals, cow location was determined with Global Positioning System collars fitted on 2 to 3 cows in each pasture and identified when observed in the stream (0-10 m from the stream) or riparian (0-33 m from the stream) zones and ambient temperature was recorded with on-site weather stations. Over all intervals, cows were observed more (P ≤ 0.01) frequently in the stream and riparian zones of small than large pastures regardless of management treatment. Cows in R pastures had 24 and 8% less (P < 0.01) observations in the stream and riparian zones than U or UW pastures regardless of pasture size. Off-stream water had little effect on the presence of cows in or near pasture streams regardless of pasture size. In 2011, the probability of cow presence in the stream and riparian zones increased at greater (P < 0.04) rates as ambient temperature increased in U and UW pastures than in 2010. As ambient temperature increased, the probability of cow presence in the stream and riparian zones increased at greater (P < 0.01) rates in small than large pastures. Across pasture sizes, the probability of cow presence in the stream and riparian zone increased less (P < 0.01) with increasing ambient temperatures in R than U and UW pastures. Rates of increase in the probability of cow presence in shade (within 10 m of tree

  12. ASSESSMENT OF NEAR-STREAM GROUND WATER-SURFACE WATER INTERACTION (GSI) OF A DEGRADED STREAM BEFORE RESTORATION

    EPA Science Inventory

    In Fall 2001, EPA undertook an intensive collaborative research effort with the USGS and the Institute of Ecosystem Studies (IES) to evaluate the impact of restoration on water quality at a degraded stream in an urban watershed using a before/after stream restoration study design...

  13. Data Streams: An Overview and Scientific Applications

    NASA Astrophysics Data System (ADS)

    Aggarwal, Charu C.

    In recent years, advances in hardware technology have facilitated the ability to collect data continuously. Simple transactions of everyday life such as using a credit card, a phone, or browsing the web lead to automated data storage. Similarly, advances in information technology have lead to large flows of data across IP networks. In many cases, these large volumes of data can be mined for interesting and relevant information in a wide variety of applications. When the volume of the underlying data is very large, it leads to a number of computational and mining challenges: With increasing volume of the data, it is no longer possible to process the data efficiently by using multiple passes. Rather, one can process a data item at most once. This leads to constraints on the implementation of the underlying algorithms. Therefore, stream mining algorithms typically need to be designed so that the algorithms work with one pass of the data. In most cases, there is an inherent temporal component to the stream mining process. This is because the data may evolve over time. This behavior of data streams is referred to as temporal locality. Therefore, a straightforward adaptation of one-pass mining algorithms may not be an effective solution to the task. Stream mining algorithms need to be carefully designed with a clear focus on the evolution of the underlying data. Another important characteristic of data streams is that they are often mined in a distributed fashion. Furthermore, the individual processors may have limited processing and memory. Examples of such cases include sensor networks, in which it may be desirable to perform in-network processing of data stream with limited processing and memory [1, 2]. This chapter will provide an overview of the key challenges in stream mining algorithms which arise from the unique setup in which these problems are encountered. This chapter is organized as follows. In the next section, we will discuss the generic challenges that

  14. Variations in Heavy Metals Across Urban Streams

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Belt, K. T.; Stack, W. P.; Pouyat, R. V.; Groffman, P. M.; F, S. E.

    2006-05-01

    Urbanization has led to increased concentrations of metals such as lead (Pb), zinc (Zn), and copper (Cu) in streams due to industrial sources, domestic activities, vehicle use, and runoff from roadways. These metals can be dangerous to aquatic organisms and humans at high concentrations. We investigated variations in concentrations of heavy metals in streams across Baltimore, Maryland and within the context of convergent increases in salinity and organic carbon (two important variables that are known to affect metal transport in surface waters) due to urbanization. Despite past reductions of lead in gasoline and paints, mean concentrations of lead in some Baltimore streams were still approximately 75 micrograms/L and exceeded the U.S. EPA recommended criteria by 50 times. Mean concentrations of zinc and copper across Baltimore streams were also elevated and ranged between 15 to 140 micrograms/L and 2 to 40 micrograms/L, and mean concentrations of these metals were considerably higher than national means reported by the National Storm Water Quality database (NSWQ), which spans 3,770 storm events across the U.S. There were substantial increases in concentrations of heavy metals in streams during storms with greater than 80 percent, 70 percent, and 20 percent of storm samples exceeding recommended U.S. EPA metals criteria for Cu, Pb, and Zn respectively. Relationships between metal concentrations and stream discharge followed different patterns than nitrate and total phosphorus, other regulated pollutants in the Chesapeake Bay watershed, suggesting differences in sources and transport mechanisms within watersheds. Environmental factors such as increasing salinity from deicer use (with chloride concentrations in streams now ranging up to 5 g/L) may contribute to elevated transport of metals through ion exchange and mobilization of metals in soils and sediments. Environmental factors such as increasing organic carbon in urban streams, with ranges of 2 - 16 times greater

  15. Dissolved Greenhouse Gas Concentration Patterns and Relationships with Stream Chemistry in Tropical Headwater Streams

    NASA Astrophysics Data System (ADS)

    López-Lloreda, C.; McDowell, W. H.; Potter, J.

    2017-12-01

    Recent studies have shown that freshwater ecosystems, mainly lakes and large rivers, can be an important source of greenhouse gas (GHG) emissions. Headwater streams have received less attention but have been identified as being a potentially important contributor to these emissions. The complex biogeochemical interactions between dissolved GHG, stream chemistry and other physicochemical parameters in streams are not well understood, particularly in small, tropical headwater streams. Surface water samples were taken at weekly intervals at 8 sites in the Luquillo Experimental Forest in Puerto Rico. Samples were analyzed for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as dissolved organic carbon (DOC), nitrate (NO3) and other major cations and anions. Additionally, physicochemical parameters and discharge (at a subset of sites) were recorded for each sample. Initial analyses of stream greenhouse gas concentrations showed very little seasonality across all sites as well as no change in concentrations during a drought in 2015. One of our hypothesized drivers, discharge, did not show any significant relationship with any of the greenhouse gases at our two gaged sites. Relationships between GHG and stream chemistry, mainly DOC and NO3, varied across sites. A significant negative relationship was found between NO3 and N2O when data were pooled across all sites, but no significant relationship was found at any individual site. CH4 was positively correlated with NO3, but only at one of our sites. N2O showed a significant positive relationship with DOC at two of our sites but interestingly, CO2 and CH4 did not show any significant relationship with DOC. Our initial results suggest that NO3 can be an important driver for N2O and CH4 concentrations, while DOC can be an important driver for N2O. Our results differ from those found in lowland tropical rivers, suggesting that river order and floodplain connections may be important drivers of GHG

  16. Stellar Streams Discovered in the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipp, N.; et al.

    We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data coveringmore » $$\\sim 5000$$ sq. deg. to a depth of $g > 23.5$ with a relative photometric calibration uncertainty of $$< 1 \\%$$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $$\\sim 50$$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.« less

  17. Using diatom assemblages to assess urban stream conditions

    USGS Publications Warehouse

    Walker, C.E.; Pan, Y.

    2006-01-01

    We characterized changes in diatom assemblages along an urban-to-rural gradient to assess impacts of urbanization on stream conditions. Diatoms, water chemistry, and physical variables of riffles at 19 urban and 28 rural stream sites were sampled and assessed during the summer base flow period. Near stream land use was characterized using GIS. In addition, one urban and one rural site were sampled monthly throughout a year to assess temporal variation of diatom assemblages between the urban and rural stream sites. Canonical correspondence analysis (CCA) showed that the 1st ordination axis distinctly separated rural and urban sites. This axis was correlated with conductivity (r = 0.75) and % near-stream commercial/industrial land use (r = 0.55). TWINSPAN classified all sites into four groups based on diatom assemblages. These diatom-based site groups were significantly different in water chemistry (e.g., conductivity, dissolved nutrients), physical habitat (e.g., % stream substrate as fines), and near-stream land use. CCA on the temporal diatom data set showed that diatom assemblages had high seasonal variation along the 2nd axis in both urban and rural sites, however, rural and urban sites were well separated along the 1st ordination axis. Our results suggest that changes in diatom assemblages respond to urban impacts on stream conditions. ?? Springer 2006.

  18. Nonlinear acoustic streaming in straight and tapered tubes

    NASA Astrophysics Data System (ADS)

    Tuttle, Brian C.

    In thermoacoustic and Stirling devices such as the pulse-tube refrigerator, efficiency is diminished by the formation of a second-order mean velocity known as Rayleigh streaming. This flow emerges from the interaction of the working gas with the wall of the tube in a thin boundary layer. Recent studies have suggested that streaming velocity can be decreased in a tube by tapering it slightly. This research investigates that claim through the development of a numerical model of Rayleigh streaming in variously tapered tubes. It is found that the numerical simulation of streaming in a straight tube compares well with theory, and the application of different thermal boundary conditions at the tube wall shows that for pressurized helium, inner streaming vortices which appear near an adiabatic tube wall do not develop near an isothermal wall. An order analysis indicates that the temperature dependence of viscosity and thermal conductivity contributes appreciably to an accurate numerical model of streaming. Comparison of Rayleigh streaming in tapered tubes shows the effects of taper angle on the circulation and velocity of the mean flow.

  19. Estimating cumulative effects of clearcutting on stream temperatures

    USGS Publications Warehouse

    Bartholow, J.M.

    2000-01-01

    The Stream Segment Temperature Model was used to estimate cumulative effects of large-scale timber harvest on stream temperature. Literature values were used to create parameters for the model for two hypothetical situations, one forested and the other extensively clearcut. Results compared favorably with field studies of extensive forest canopy removal. The model provided insight into the cumulative effects of clearcutting. Change in stream shading was, as expected, the most influential factor governing increases in maximum daily water temperature, accounting for 40% of the total increase. Altered stream width was found to be more influential than changes to air temperature. Although the net effect from clearcutting was a 4oC warming, increased wind and reduced humidity tended to cool the stream. Temperature increases due to clearcutting persisted 10 km downstream into an unimpacted forest segment of the hypothetical stream, but those increases were moderated by cooler equilibrium conditions downstream. The model revealed that it is a complex set of factors, not single factors such as shade or air temperature, that governs stream temperature dynamics.

  20. Groundwater Discharge along a Channelized Coastal Plain Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaSage, Danita M; Sexton, Joshua L; Mukherjee, Abhijit

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffusemore » discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.« less

  1. Process for recovering organic components from liquid streams

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1991-01-01

    A separation process for recovering organic components from liquid streams. The process is a combination of pervaporation and decantation. In cases where the liquid stream contains the organic to be separated in dissolved form, the pervaporation step is used to concentrate the organic to a point above the solubility limit, so that a two-phase permeate is formed and then decanted. In cases where the liquid stream is a two-phase mixture, the decantation step is performed first, to remove the organic product phase, and the residue from the decanter is then treated by pervaporation. The condensed permeate from the pervaporation unit is sufficiently concentrated in the organic component to be fed back to the decanter. The process can be tailored to produce only two streams: an essentially pure organic product stream suitable for reuse, and a residue stream for discharge or reuse.

  2. Relative performance of three stream bed stability indices as indicators of stream health.

    PubMed

    Kusnierz, Paul C; Holbrook, Christopher M

    2017-10-16

    Bed stability is an important stream habitat attribute because it affects geomorphology and biotic communities. Natural resource managers desire indices of bed stability that can be used under a wide range of geomorphic conditions, are biologically meaningful, and are easily incorporated into sampling protocols. To eliminate potential bias due to presence of instream wood and increase precision of stability values, we modified a stream bed instability index (ISI) to include measurements of bankfull depth (d bf ) and median particle diameter (D 50 ) only in riffles and increased the pebble count to decrease variability (i.e., increase precision) in D 50 . The new riffle-based instability index (RISI) was compared to two established indices: ISI and the riffle stability index (RSI). RISI and ISI were strongly associated with each other but neither was closely associated with RSI. RISI and ISI were closely associated with both a diatom- and two macrovertebrate-based stream health indices, but RSI was only weakly associated with the macroinvertebrate indices. Unexpectedly, precision of D 50 did not differ between RISI and ISI. Results suggest that RISI is a viable alternative to both ISI and RSI for evaluating bed stability in multiple stream types. With few data requirements and a simple protocol, RISI may also better conform to riffle-based sampling methods used by some water quality practitioners.

  3. Relative performance of three stream bed stability indices as indicators of stream health

    USGS Publications Warehouse

    Kusnierz, Paul C; Holbrook, Christopher

    2017-01-01

    Bed stability is an important stream habitat attribute because it affects geomorphology and biotic communities. Natural resource managers desire indices of bed stability that can be used under a wide range of geomorphic conditions, are biologically meaningful, and are easily incorporated into sampling protocols. To eliminate potential bias due to presence of instream wood and increase precision of stability values, we modified a stream bed instability index (ISI) to include measurements of bankfull depth (dbf) and median particle diameter (D50) only in riffles and increased the pebble count to decrease variability (i.e., increase precision) in D50.The new riffle-based instability index (RISI) was compared to two established indices: ISI and the riffle stability index (RSI). RISI and ISI were strongly associated with each other but neither was closely associated with RSI. RISI and ISI were closely associated with both a diatom- and two macrovertebrate-based stream health indices, but RSI was only weakly associated with the macroinvertebrate indices. Unexpectedly, precision of D50 did not differ between RISI and ISI. Results suggest that RISI is a viable alternative to both ISI and RSI for evaluating bed stability in multiple stream types. With few data requirements and a simple protocol, RISI may also better conform to riffle-based sampling methods used by some water quality practitioners.

  4. WHITE DWARFS IN LOCAL STAR STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Burkhard; Dettbarn, Christian

    2011-01-15

    We have studied the fine structure of the phase space distribution of white dwarfs in the solar neighborhood. White dwarfs have kinematics that are typical for the stellar population of the old thin disk of the Milky Way. Using a projection of the space velocities of stars onto vertical angular momentum components and eccentricities of the stellar orbits we demonstrate that stellar streams can be identified in the phase space distribution of the white dwarfs. These correspond to the well-known Sirius, Pleiades, and Hercules star streams. Membership of white dwarfs, which represent the oldest population in the Galaxy, in thesemore » streams lends support to the interpretation that the streams owe their existence to dynamical resonance effects of the stars with Galactic spiral arms or the Galactic bar, because these indiscriminately affect all stellar populations.« less

  5. Checking for Circular Dependencies in Distributed Stream Programs

    DTIC Science & Technology

    2011-08-29

    extensions to express new complexities more conve- nient. Teleport messaging ( TMG ) in the StreamIt language [30] is an example. 1.1 StreamIt Language...dynamicities to an FIR computation Thies et al. in [30] give a TMG model for distributed stream pro- grams. TMG is a mechanism that implements control...messages for stream graphs. The TMG mechanism is designed not to interfere with original dataflow graphs’ structures and scheduling, therefore a key

  6. Stream-groundwater exchange and hydrologic turnover at the network scale

    NASA Astrophysics Data System (ADS)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  7. Bioassessment in nonperennial streams: Hydrologic stability influences assessment validity

    NASA Astrophysics Data System (ADS)

    Mazor, R. D.; Stein, E. D.; Schiff, K.; Ode, P.; Rehn, A.

    2011-12-01

    Nonperennial streams pose a challenge for bioassessment, as assessment tools developed in perennial streams may not work in these systems. For example, indices of biotic integrity (IBIs) developed in perennial streams may give improper indications of impairment in nonperennial streams, or may be unstable. We sampled benthic macroinvertebrates from 12 nonperennial streams in southern California. In addition, we deployed loggers to obtain continuous measures of flow. 3 sites were revisited over 2 years. For each site, we calculated several metrics, IBIs, and O/E scores to determine if assessments were consistent and valid throughout the summer. Hydrology varied widely among the streams, with several streams drying between sampling events. IBIs suggested good ecological health at the beginning of the study, but declined sharply at some sites. Multivariate ordination suggested that, despite differences among sites, changes in community structure were similar, with shifts from Ephemeroptera, Plecoptera, and Trichoptera to Coleoptera and more tolerant organisms. Site revisits revealed a surprising level of variability, as 2 of the 3 revisited sites had perennial or near-perennial flow in the second year of sampling. IBI scores were more consistent in streams with stable hydrographs than in those with strongly intermittent hydrographs. These results suggest that nonperennial streams can be monitored successfully, but they may require short index periods and distinct metrics from those used in perennial streams. In addition, better approaches to mapping nonperennial streams are required.

  8. Hierarchical spatial structure of stream fish colonization and extinction

    USGS Publications Warehouse

    Hitt, N.P.; Roberts, J.H.

    2012-01-01

    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  9. Local sensitivities of the gulf stream separation

    DOE PAGES

    Schoonover, Joseph; Dewar, William K.; Wienders, Nicolas; ...

    2016-12-05

    Robust and accurate Gulf Stream separation remains an unsolved problem in general circulation modeling whose resolution will positively impact the ocean and climate modeling communities. Oceanographic literature does not face a shortage of plausible hypotheses that attempt to explain the dynamics of the Gulf Stream separation, yet a single theory that the community agrees on is missing. We investigate the impact of the Deep Western Boundary Current, coastline curvature, and continental shelf steepening on the Gulf Stream separation within regional configurations of the MIT General Circulation Model. Artificial modifications to the regional bathymetry are introduced to investigate the sensitivity ofmore » the separation to each of these factors. Metrics for subsurface separation detection confirm the direct link between flow separation and the surface expression of the Gulf Stream in the Mid-Atlantic Bight. Conversely, the Gulf Stream separation exhibits minimal sensitivity to the presence of the DWBC and coastline curvature. The implications of these results to the development of a “separation recipe” for ocean modeling are discussed. Furthermore, we conclude adequate topographic resolution is a necessary, but not sufficient, condition for proper Gulf Stream separation.« less

  10. Traveltime and longitudinal dispersion in Illinois streams

    USGS Publications Warehouse

    Graf, J.B.

    1984-01-01

    Twenty-seven measurements of traveltime and longitudinal dispersion in 10 Illinois streams provide data needed for estimating traveltime of peak concentration of a conservative solute, traveltime of the leading edge of a solute cloud, peak concentration resulting from a given quantity of solute, and passage time of solute past a given point on a stream for both measured and unmeasured streams. Traveltime of peak concentration and of the leading edge of the cloud are related to discharge at the downstream end of the reach, distance of travel, and the fraction of the time that discharge at a given location on the stream is equaled or exceeded. Peak concentration and passage time are best estimated from the relation of each to traveltime. In measured streams, dispersion efficiency is greater than that predicted by Fickian diffusion theory. The rate of decrease in peak concentration with traveltime is about equal to the rate of increase in passage time. Average velocity in a stream reach, given by the velocity of the center of solute mass in that reach, also can be estimated from an equation developed from measured values. (USGS)

  11. Arsenic in stream sediments of northern Alabama

    USGS Publications Warehouse

    Goldhaber, M.B.; Irwin, Elise; Atkins, Brian; Lee, Lopaka; Black, D.D.; Zappia, Humbert; Hatch, Joe; Pashin, Jack; Barwick, L.H.; Cartwright, W.E.; Sanzolone, Rick; Rupert, Leslie; Kolker, Allan; Finkelman, Robert

    2001-01-01

    OVERVIEW OF ARSENIC IN STREAM SEDIMENTS The overall range of arsenic in the NURE stream sediments was from 0.3 to 44 mg/kg sediment (ppm) As in the sample data set. The mean value was 4.3 ppm with a standard deviation of 4.1 ppm. For comparison, the crustal abundance of arsenic is 1.8 ppm (Taylor, 1964). Shale is higher, with average values of 15 ppm. Coal samples from the entire USGS National Coal Resource Data System coal database (Finkelman, 1994) average 24 ppm arsenic. A study of stream sediments from throughout the U.S. by the USGS NAWQA program reported that the 75th percentile for arsenic in 541 stream sediments was 9.5 ppm (Rice, 1999). Given the relatively low crustal abundance of arsenic, a number of stream-sediment samples in this study may be considered geochemically anomalous in this element.

  12. Ecosystem Services Provided by Stream Fishes

    EPA Science Inventory

    Stream fish provide important services to people, including recreation and food, regulation of ecosystem processes, and aesthetic benefits. If the services provided by fish in different streams can be measured, then they can be valued and considered in restoration decisions. We...

  13. Validation of a stream and riparian habitat assessment protocol using stream salamanders in the southwest Virginia coalfields

    USGS Publications Warehouse

    Sweeten, Sara E.; Ford, W. Mark

    2016-01-01

    Within the central Appalachia Coalfields, the aquatic impacts of large-scale land uses, such as surface mining, are of particular ecological concern. Identification and quantification of land use impacts to aquatic ecosystems are a necessary first step to aid in mitigation of negative consequences to biota. However, quantifying physical environmental quality such as stream and riparian habitat often can be quite difficult, particularly when there is time or fiscal limitations. As such, standard protocols such as the U.S. EPA’s Stream Habitat Rapid Bioassessment Protocol have been established to be cost- and time-effective. This protocol estimates ten different stream and riparian conditions on a scale of 0 to 20. Unfortunately, using estimations can be problematic because of large potential variation in the scoring depending on differences in training, experience, and opinion of the personnel doing the estimations. In order to help negate these biases and provide a simplified process, the U.S. Army Corps of Engineers (USACE) developed a functional assessment for streams that measures 11 stream and riparian variables along with watershed land use to calculate three different scores, a hydrology score, biogeochemical score, and habitat score. In our study, we examined the correlation of stream salamander presence and abundance to the three USACE scores. In the summer of 2013, we visited 70 sites in the southwest Virginia Coalfields multiple times to collect salamanders and quantify stream and riparian microhabitat parameters. Using occupancy and abundance analyses, we found strong relationships among three Desmognathus spp. and the USACE Habitat FCI score. Accordingly, the Habitat FCI score provides a reasonable assessment of physical instream and riparian conditions that may serve as a surrogate for understanding the community composition and integrity of aquatic salamander in the region.

  14. The Orbit of the Orphan Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newberg, Heidi Jo; Willett, Benjamin A.; Yanny, Brian

    2010-01-01

    We use recent SEGUE spectroscopy and SDSS and SEGUE imaging data to measure the sky position, distance, and radial velocities of stars in the tidal debris stream that is commonly referred to as the 'Orphan Stream.' We fit orbital parameters to the data, and find a prograde orbit with an apogalacticon, perigalacticon, and eccentricity of 90 kpc, 16.4 kpc and e = 0.7, respectively. Neither the dwarf galaxy UMa II nor the Complex A gas cloud have velocities consistent with a kinematic association with the Orphan Stream. It is possible that Segue-1 is associated with the Orphan Stream, but nomore » other known Galactic clusters or dwarf galaxies in the Milky Way lie along its orbit. The detected portion of the stream ranges from 19 to 47 kpc from the Sun and is an indicator of the mass interior to these distances. There is a marked increase in the density of Orphan Stream stars near (l, b) = (253{sup o}; 49{sup o}), which could indicate the presence of the progenitor at the edge of the SDSS data. If this is the progenitor, then the detected portion of the Orphan Stream is a leading tidal tail. We find blue horizontal branch (BHB) stars and F turnoff stars associated with the Orphan Stream. The turnoff color is (g-r){sub 0} = 0.22. The BHB stars have a low metallicity of [Fe/H]{sub WBG} = -2.1. The orbit is best fit to a halo potential with a halo plus disk mass of about 2.6 x 10{sup 11} M{sub {circle_dot}}, integrated to 60 kpc from the Galactic center. Our fits are done to orbits rather than full N-body simulations; we show that if N-body simulations are used, the inferred mass of the galaxy would be slightly smaller. Our best fit is found with a logarithmic halo speed of v{sub halo} = 73 {+-} 24 km s{sup -1}, a disk+bulge mass of M(R < 60 kpc) = 1.3 x 10{sup 11} M{sub {circle_dot}}, and a halo mass of M(R < 60 kpc) = 1.4 x 10{sup 11} M{sub {circle_dot}}. However, we can find similar fits to the data that use an NFW halo profile, or that have smaller disk masses and

  15. COMPARISON OF MACROINVERTEBRATE SAMPLING METHODS FOR NONWADEABLE STREAMS

    EPA Science Inventory

    The bioassessment of nonwadeable streams in the United States is increasing, but methods for these systems are not as well developed as for wadeable streams. In this study, we compared six benthic macroinvertebrate field sampling methods for nonwadeable streams based on those us...

  16. INTERREGIONAL COMPARISONS OF SEDIMENT MICROBIAL RESPIRATION IN STREAMS

    EPA Science Inventory

    The rate of microbial respiration on fine-grained stream sediments was measured at 369 first to fourth-order streams in the Central Appalachians, Colorado's Southern Rockies, and California's Central Valley in 1994 and 1995. Study streams were randomly selected from the USEPA's ...

  17. Spatial heterogeneity of within-stream methane concentrations

    NASA Astrophysics Data System (ADS)

    Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.

    2017-05-01

    Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4 and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.

  18. Beaded streams of Arctic permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Arp, C. D.; Whitman, M. S.; Jones, B. M.; Grosse, G.; Gaglioti, B. V.; Heim, K. C.

    2014-07-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic inventory of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high-ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate relatively stable form and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in stream gulches effectively insulates river ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools stratify thermally, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m s-1, yet channel runs still move water rapidly between pools

  19. Applications of spatial statistical network models to stream data

    USGS Publications Warehouse

    Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.

  20. Optimal placement of off-stream water sources for ephemeral stream recovery

    USGS Publications Warehouse

    Rigge, Matthew B.; Smart, Alexander; Wylie, Bruce

    2013-01-01

    Uneven and/or inefficient livestock distribution is often a product of an inadequate number and distribution of watering points. Placement of off-stream water practices (OSWP) in pastures is a key consideration in rangeland management plans and is critical to achieving riparian recovery by improving grazing evenness, while improving livestock performance. Effective OSWP placement also minimizes the impacts of livestock use radiating from OSWP, known as the “piosphere.” The objective of this study was to provide land managers with recommendations for the optimum placement of OSWP. Specifically, we aimed to provide minimum offset distances of OSWP to streams and assess the effective range of OSWP using Normalized Difference Vegetation Index (NDVI) values, an indicator of live standing crop. NDVI values were determined from a time-series of Satellite Pour l'Observation de la Terre (SPOT) 20-m images of western South Dakota mixed-grass prairie. The NDVI values in ephemeral stream channels (in-channel) and uplands were extracted from pre- and post-OSWP images taken in 1989 and 2010, respectively. NDVI values were normalized to a reference imagine and subsequently by ecological site to produce nNDVI. Our results demonstrate a significant (P 2 = 0.49, P = 0.05) and increased with average distance to OSWP in a pasture (R2 = 0.43, P = 0.07). Piospheric reduction in nNDVI was observed within 200 m of OSWP, occasionally overlapping in-channel areas. The findings of this study suggest placement of OSWP 200 to 1 250 m from streams to achieve optimal results. These results can be used to increase grazing efficiency by effectively placing OSWP and insure that piospheres do not overlap ecologically important in-channel areas.

  1. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1998-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  2. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  3. Southwestern Intermittent and Ephemeral Stream Connectivity

    EPA Science Inventory

    Ephemeral and intermittent streams are abundant in the arid and semiarid landscapes of the Western and Southwestern United States (U.S.). Connectivity of ephemeral and intermittent streams to the relatively few perennial reaches through runoff is a major driver of the ecohydrolog...

  4. Classical non-homologous end-joining pathway utilizes nascent RNA for error-free double-strand break repair of transcribed genes

    PubMed Central

    Chakraborty, Anirban; Tapryal, Nisha; Venkova, Tatiana; Horikoshi, Nobuo; Pandita, Raj K.; Sarker, Altaf H.; Sarkar, Partha S.; Pandita, Tej K.; Hazra, Tapas K.

    2016-01-01

    DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome. PMID:27703167

  5. Roughness, resistance, and dispersion: Relationships in small streams

    NASA Astrophysics Data System (ADS)

    Noss, Christian; Lorke, Andreas

    2016-04-01

    Although relationships between roughness, flow, and transport processes in rivers and streams have been investigated for several decades, the prediction of flow resistance and longitudinal dispersion in small streams is still challenging. Major uncertainties in existing approaches for quantifying flow resistance and longitudinal dispersion at the reach scale arise from limitations in the characterization of riverbed roughness. In this study, we characterized the riverbed roughness in small moderate-gradient streams (0.1-0.5% bed slope) and investigated its effects on flow resistance and dispersion. We analyzed high-resolution transect-based measurements of stream depth and width, which resolved the complete roughness spectrum with scales ranging from the micro to the reach scale. Independently measured flow resistance and dispersion coefficients were mainly affected by roughness at spatial scales between the median grain size and the stream width, i.e., by roughness between the micro- and the mesoscale. We also compared our flow resistance measurements with calculations using various flow resistance equations. Flow resistance in our study streams was well approximated by the equations that were developed for high gradient streams (>1%) and it was overestimated by approaches developed for sand-bed streams with a smooth riverbed or ripple bed. This article was corrected on 10 MAY 2016. See the end of the full text for details.

  6. Practical Meteor Stream Forecasting

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert M.

    2003-01-01

    Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.

  7. Reactive solute transport in acidic streams

    USGS Publications Warehouse

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  8. Research Progresses of Halo Streams in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Xi-long, Liang; Jing-kun, Zhao; Yu-qin, Chen; Gang, Zhao

    2018-01-01

    The stellar streams originated from the Galactic halo may be detected when they pass by the solar neighborhood, and they still keep some information at their birth times. Thus, the investigation of halo streams in the solar neighborhood is very important for understanding the formation and evolution of our Galaxy. In this paper, the researches of halo streams in the solar neighborhood are briefly reviewed. We have introduced the methods how to detect the halo streams and identify their member stars, summarized the progresses in the observation of member stars of halo streams and in the study of their origins, introduced in detail how to analyze the origins of halo streams in the solar neighborhood by means of numerical simulation and chemical abundance, and finally discussed the prospects of the LAMOST and GAIA in the research of halo streams in the solar neighborhood.

  9. Quantifying tidal stream disruption in a simulated Milky Way

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Küpper, Andreas H. W.; Johnston, Kathryn V.; Diemand, Jürg

    2017-09-01

    Simulations of tidal streams show that close encounters with dark matter subhaloes induce density gaps and distortions in on-sky path along the streams. Accordingly, observing disrupted streams in the Galactic halo would substantiate the hypothesis that dark matter substructure exists there, while in contrast, observing collimated streams with smoothly varying density profiles would place strong upper limits on the number density and mass spectrum of subhaloes. Here, we examine several measures of stellar stream 'disruption' and their power to distinguish between halo potentials with and without substructure and with different global shapes. We create and evolve a population of 1280 streams on a range of orbits in the Via Lactea II simulation of a Milky Way-like halo, replete with a full mass range of Λcold dark matter subhaloes, and compare it to two control stream populations evolved in smooth spherical and smooth triaxial potentials, respectively. We find that the number of gaps observed in a stellar stream is a poor indicator of the halo potential, but that (I) the thinness of the stream on-sky, (II) the symmetry of the leading and trailing tails and (III) the deviation of the tails from a low-order polynomial path on-sky ('path regularity') distinguish between the three potentials more effectively. We furthermore find that globular cluster streams on low-eccentricity orbits far from the galactic centre (apocentric radius ˜30-80 kpc) are most powerful in distinguishing between the three potentials. If they exist, such streams will shortly be discoverable and mapped in high dimensions with near-future photometric and spectroscopic surveys.

  10. Comet Machholz and the Quadrantid meteor stream

    NASA Astrophysics Data System (ADS)

    Jones, J.; Jones, W.

    1993-04-01

    Until quite recently, the Quadrantid meteor stream was considered to be an 'orphan'. Because of the difficulty in accounting for the large difference in the longitudes of the ascending nodes, McIntosh (1990) suggested that Comet Machholz and the stream have a sibling rather than a parent-child relationship. Gonczi et al. (1992) proposed that gravitational perturbations by Jupiter may be amplified sufficiently by the 2:1 resonance of the stream with Jupiter to explain the difference in the longitudes of ascending nodes if the stream was born when the comet's perihelion distance was last at its minimum about 4000 yr ago. In this paper, we show by computer simulations that, if the comet was captured at its last close approach with Jupiter about 2200 yr ago, there has been sufficient time for the resulting stream to produce most of the features of the presently observed Quadrantid/Arietid/Southern Delta-Aquarid complex.

  11. Carbon pools in stream-riparian corridors: legacy of disturbance along mountain streams of south-eastern Wyoming

    Treesearch

    Claire M. Ruffing; Kathleen A. Dwire; Melinda D. Daniels

    2016-01-01

    Streams and their accompanying riparian environments are intrinsic components of terrestrial carbon cycling. However, they have been understudied in terms of the magnitude of their storage components and the role of disturbance in determining carbon storage capacity. This study presents partial carbon budgets for stream-riparian corridors along six study...

  12. A NEW CLASS OF NASCENT ECLIPSING BINARIES WITH EXTREME MASS RATIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Maxwell; Stefano, Rosanne Di, E-mail: mmoe@cfa.harvard.edu

    2015-03-10

    Early B-type main-sequence (MS) stars (M {sub 1} ≈ 5-16 M {sub ☉}) with closely orbiting low-mass stellar companions (q = M {sub 2}/M {sub 1} < 0.25) can evolve to produce Type Ia supernovae, low-mass X-ray binaries, and millisecond pulsars. However, the formation mechanism and intrinsic frequency of such close extreme mass-ratio binaries have been debated, especially considering none have hitherto been detected. Utilizing observations of the Large Magellanic Cloud galaxy conducted by the Optical Gravitational Lensing Experiment, we have discovered a new class of eclipsing binaries in which a luminous B-type MS star irradiates a closely orbiting low-massmore » pre-MS companion that has not yet fully formed. The primordial pre-MS companions have large radii and discernibly reflect much of the light they intercept from the B-type MS primaries (ΔI {sub refl} ≈ 0.02-0.14 mag). For the 18 definitive MS + pre-MS eclipsing binaries in our sample with good model fits to the observed light-curves, we measure short orbital periods P = 3.0-8.5 days, young ages τ ≈ 0.6-8 Myr, and small secondary masses M {sub 2} ≈ 0.8-2.4 M {sub ☉} (q ≈ 0.07-0.36). The majority of these nascent eclipsing binaries are still associated with stellar nurseries, e.g., the system with the deepest eclipse ΔI {sub 1} = 2.8 mag and youngest age τ = 0.6 ± 0.4 Myr is embedded in the bright H II region 30 Doradus. After correcting for selection effects, we find that (2.0 ± 0.6)% of B-type MS stars have companions with short orbital periods P = 3.0-8.5 days and extreme mass ratios q ≈ 0.06-0.25. This is ≈10 times greater than that observed for solar-type MS primaries. We discuss how these new eclipsing binaries provide invaluable insights, diagnostics, and challenges for the formation and evolution of stars, binaries, and H II regions.« less

  13. DEVELOPMENT OF A STREAM BENTHIC MACROINVERTEBRATE INTEGRITY INDEX (SBMII) FOR WADEABLE STREAMS IN THE MID-ATLANTIC HIGHLANDS REGION

    EPA Science Inventory

    The Stream Benthic Macroinvertebrate Integrity Index (SBMII), a multimetric biotic index for assessing biological conditions of wadeable streams, was developed using seven macroinvertebrate metrics (Ephemeroptera richness, Plecoptera richness, Trichoptera richness, Collector-Filt...

  14. Spatial and temporal patterns of stream burial and its effect on habitat connectivity across headwater stream communities of the Potomac River Basin, USA

    NASA Astrophysics Data System (ADS)

    Weitzell, R.; Guinn, S. M.; Elmore, A. J.

    2012-12-01

    The process of directing streams into culverts, pipes, or concrete-lined ditches during urbanization, known as stream burial, alters the primary physical, chemical, and biological processes of streams. Knowledge of the cumulative impacts of reduced structure and ecological function within buried stream networks is crucial for informing management of stream ecosystems, in light of continued growth in urban areas, and the uncertain response of freshwater ecosystems to the stresses of global climate change. To address this need, we utilized recently improved stream maps for the Potomac River Basin (PRB) to describe the extent and severity of stream burial across the basin. Observations of stream burial made from high resolution aerial photographs (>1% of total basin area) and a decision tree using spatial statistics from impervious cover data were used to predict stream burial at 4 time-steps (1975, 1990, 2001, 2006). Of the roughly 95,500 kilometers (km) of stream in the PRB, approximately 4551 km (4.76%) were buried by urban development as of 2001. Analysis of county-level burial trends shows differential patterns in the timing and rates of headwater stream burial, which may be due to local development policies, topographical constraints, and/or time since development. Consistently higher rates of stream burial were observed for small streams, decreasing with stream order. Headwater streams (1st-2nd order) are disproportionately affected, with burial rates continuing to increase over time in relation to larger stream orders. Beyond simple habitat loss, headwater burial decreases connectivity among headwater populations and habitats, with potential to affect a wide range of important ecological processes. To quantify changes to regional headwater connectivity we applied a connectivity model based on electrical circuit theory. Circuit-theoretical models function by treating the landscape as a resistance surface, representing hypothesized relationships between

  15. Slope failure as an upslope source of stream wood

    Treesearch

    Daniel Miller

    2013-01-01

    Large woody debris is recognized as an important component of stream geomorphology and stream ecosystem function, and forest-land management is recognized as an important control on the quantity (and size and species distributions) of wood available for recruitment to streams. Much of the wood present in streams comes from adjacent forests, and riparian management...

  16. COHO SALMON DEPENDENCE ON INTERMITTENT STREAMS

    EPA Science Inventory

    In February 2006, the US Supreme Court heard cases that may affect whether intermittent streams are jurisdictional waters under the Clean Water Act. In June 2006, however, the cases were remanded to the circuit court, leaving the status of intermittent streams uncertain once agai...

  17. Distribution of model uncertainty across multiple data streams

    NASA Astrophysics Data System (ADS)

    Wutzler, Thomas

    2014-05-01

    When confronting biogeochemical models with a diversity of observational data streams, we are faced with the problem of weighing the data streams. Without weighing or multiple blocked cost functions, model uncertainty is allocated to the sparse data streams and possible bias in processes that are strongly constraint is exported to processes that are constrained by sparse data streams only. In this study we propose an approach that aims at making model uncertainty a factor of observations uncertainty, that is constant over all data streams. Further we propose an implementation based on Monte-Carlo Markov chain sampling combined with simulated annealing that is able to determine this variance factor. The method is exemplified both with very simple models, artificial data and with an inversion of the DALEC ecosystem carbon model against multiple observations of Howland forest. We argue that the presented approach is able to help and maybe resolve the problem of bias export to sparse data streams.

  18. Cavitation Bubble Streaming in Ultrasonic-Standing-Wave Field

    NASA Astrophysics Data System (ADS)

    Nomura, Shinfuku; Mukasa, Shinobu; Kuroiwa, Masaya; Okada, Yasuyuki; Murakami, Koichi

    2005-05-01

    The mechanism of cavitation bubble streaming by ultrasonic vibration in a water tank was experimentally investigated. A standard ultrasonic cleaner unit with a resonant frequency of 40 kHz was used as an ultrasonic generator. The behavior of the streaming was visualized by the schlieren method and sonochemical luminescence, and the velocity of the streaming was measured by laser Doppler velocity measurement equipment (LDV). The cavitation bubble streaming has two structures. A cavitation cloud, which consists of many cavitation bubbles, is shaped like a facing pair of bowls with a diameter of approximately 1/3 the wavelength of the standing wave, and moves inside the standing-wave field with a velocity of 30 to 60 mm/s. The cavitation bubbles move intensely in the cloud with a velocity of 5 m/s at an ultrasonic output power of 75 W. The streaming is completely different from conventional acoustic streaming. Also the cavitation bubble is generated neither at the pressure node nor at the antinode.

  19. Application of the Hydroecological Integrity Assessment Process for Missouri Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.

    2009-01-01

    Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and

  20. Climate and land cover effects on the temperature of Puget Sound streams: Assessment of Climate and Land Use Impacts on Stream Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Qian; Sun, Ning; Yearsley, John

    We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lowermore » reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both

  1. Tropical small streams are a consistent source of methane

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Waldron, Susan

    2013-04-01

    To date only a few studies have quantified diffusive methane emissions from headwater streams therefore the magnitude and seasonal variation of these emissions remain poorly understood. Here we present results from two Western Amazonian small streams (first and second order) in Tambopata National Reserve, Peru. Towards the end of wet season, April-May 2012, the streams were sampled using a static floating chamber to accumulate methane. Samples were drawn from the headspace twice daily over period of four days on three separate occasions. The methane concentrations were analysed using a gas chromatograph and the linear part of concentration increase used to calculate the flux rates. The streams were consistently outgassing methane. The seasonally active first order stream outgassed 6 ±2.4 nmol CH4-C m-2 s-1 and the second order stream 20 ±4.0 nmol CH4-C m-2 s-1. The latter flux rate is comparable to fluxes measured from seasonally flooded Amazonian forest in previous studies. The range measured in our streams is comparable to previous results in temperate streams and the lower end of fluxes observed in some peatland streams. The only other study on Amazonian small streams detected methane fluxes that were 100 times greater than those measured here. Depending on the density of small streams in Amazonian basin and the prevalent flux rate, the fluvial methane fluxes may constitute a significant global warming potential. Upscaling to the Amazon basin, assuming small stream density of 0.2 %, as was found at our field site, and the flux rates detected, yields an annual global warming potential equal to approximately 1.5 Mt of CO2 which is of minor importance compared to aquatic CO2-C flux of 500 Mt yr-1 from the basin. However, if the higher fluxes detected in the previous study were prevalent, the basin wide methane flux could become significant. Further studies are needed to establish the stream density in the Amazon basin and typical methane flux rates.

  2. Methods of separating particulate residue streams

    DOEpatents

    Hoskinson, Reed L [Rigby, ID; Kenney, Kevin L [Idaho Falls, ID; Wright, Christopher T [Idaho Falls, ID; Hess, J Richard [Idaho Falls, ID

    2011-04-05

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  3. Electrohydrodynamic and flow induced tip-streaming

    NASA Astrophysics Data System (ADS)

    Collins, Robert

    2008-11-01

    A liquid subjected to a strong electric field emits thin fluid jets from conical structures (Taylor cones) that form at its surface. Such behavior has both practical and fundamental implications, e.g. for raindrops in thunderclouds and in electrospray mass spectrometry. Theoretical analysis of the temporal development of such electrohydrodynamic (EHD) tip- streaming phenomena has been elusive given the large disparity in length scales between the macroscopic drops/films and the microscopic (nanoscopic) jets. Here, simulation and experiment are used to investigate the mechanisms of EHD tip-streaming from a film of finite conductivity. In the simulations, the full Taylor-Melcher leaky-dielectric model, which accounts for charge relaxation, is solved. Simulations show that tip- streaming does not occur for perfectly conducting or perfectly insulating liquids. Scaling laws for sizes of drops produced from the breakup of the thin jets is developed. Further, simulations demonstrate the critical role played by electrically induced surface shear stresses in the inception of tip-streaming. This invites a comparison to flow focusing, i.e. tip-streaming induced by co-flowing two fluids. The latter phenomenon is also investigated by simulation. In collaboration with Ronald Suryo, Exxon-Mobil; and Jeremy Jones, Michael Harris, and Osman Basaran, Purdue University.

  4. Evolution of the Quadrantid meteor stream

    NASA Technical Reports Server (NTRS)

    Jones, James; Jones, William

    1992-01-01

    According to previous orbital calculations, the last close approach of the Quadrantid stream with Jupiter occurred 3200 years ago at which time the parent comet of the stream may have been captured into its present short-period orbit. If this is the case the stream may only be a few thousand years old. We have modeled the evolution of the stream to determine if such a short time scale is consistent with the observed features of the Quadrantid/ delta- Aquarid/Arietid/Ursid complex. A detailed modeling of a stream consisting of 500 test particles released 4000 yr ago and which included the effects of the gravitational perturbations of 6 planets as well as the likely spread in the initial orbital elements resulting from the ejection of the grains from the comet was carried out. Our calculations indicate that an intense shower should be seen a few days before the Quadrantid shower, and that, 4000 yr is too short a period for the branch corresponding to the D-Arietid branch to appear. We have considered the quasi-constants of motion 1/a and J, the Tisserand quantity, and find that the Ursids and the D-Arietids are unlikely to be members of the complex, and that, the complex is probably be less than 4000 yr old.

  5. Interactive real-time media streaming with reliable communication

    NASA Astrophysics Data System (ADS)

    Pan, Xunyu; Free, Kevin M.

    2014-02-01

    Streaming media is a recent technique for delivering multimedia information from a source provider to an end- user over the Internet. The major advantage of this technique is that the media player can start playing a multimedia file even before the entire file is transmitted. Most streaming media applications are currently implemented based on the client-server architecture, where a server system hosts the media file and a client system connects to this server system to download the file. Although the client-server architecture is successful in many situations, it may not be ideal to rely on such a system to provide the streaming service as users may be required to register an account using personal information in order to use the service. This is troublesome if a user wishes to watch a movie simultaneously while interacting with a friend in another part of the world over the Internet. In this paper, we describe a new real-time media streaming application implemented on a peer-to-peer (P2P) architecture in order to overcome these challenges within a mobile environment. When using the peer-to-peer architecture, streaming media is shared directly between end-users, called peers, with minimal or no reliance on a dedicated server. Based on the proposed software pɛvμa (pronounced [revma]), named for the Greek word meaning stream, we can host a media file on any computer and directly stream it to a connected partner. To accomplish this, pɛvμa utilizes the Microsoft .NET Framework and Windows Presentation Framework, which are widely available on various types of windows-compatible personal computers and mobile devices. With specially designed multi-threaded algorithms, the application can stream HD video at speeds upwards of 20 Mbps using the User Datagram Protocol (UDP). Streaming and playback are handled using synchronized threads that communicate with one another once a connection is established. Alteration of playback, such as pausing playback or tracking to a

  6. Switch of flow direction in an Antarctic ice stream.

    PubMed

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  7. Role of streams in myxobacteria aggregate formation

    NASA Astrophysics Data System (ADS)

    Kiskowski, Maria A.; Jiang, Yi; Alber, Mark S.

    2004-10-01

    Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been attributed to attractive chemotaxis, a long range interaction, but there is growing evidence that myxobacteria organization depends on contact-mediated cell-cell communication. We present a discrete stochastic model based on contact-mediated signaling that suggests an explanation for the initialization of early aggregates, aggregation dynamics and final aggregate distribution. Our model qualitatively reproduces the unique structures of myxobacteria aggregates and detailed stages which occur during myxobacteria aggregation: first, aggregates initialize in random positions and cells join aggregates by random walk; second, cells redistribute by moving within transient streams connecting aggregates. Streams play a critical role in final aggregate size distribution by redistributing cells among fewer, larger aggregates. The mechanism by which streams redistribute cells depends on aggregate sizes and is enhanced by noise. Our model predicts that with increased internal noise, more streams would form and streams would last longer. Simulation results suggest a series of new experiments.

  8. Prediction of pesticide toxicity in Midwest streams

    USGS Publications Warehouse

    Shoda, Megan E.; Stone, Wesley W.; Nowell, Lisa H.

    2016-01-01

    The occurrence of pesticide mixtures is common in stream waters of the United States, and the impact of multiple compounds on aquatic organisms is not well understood. Watershed Regressions for Pesticides (WARP) models were developed to predict Pesticide Toxicity Index (PTI) values in unmonitored streams in the Midwest and are referred to as WARP-PTI models. The PTI is a tool for assessing the relative toxicity of pesticide mixtures to fish, benthic invertebrates, and cladocera in stream water. One hundred stream sites in the Midwest were sampled weekly in May through August 2013, and the highest calculated PTI for each site was used as the WARP-PTI model response variable. Watershed characteristics that represent pesticide sources and transport were used as the WARP-PTI model explanatory variables. Three WARP-PTI models—fish, benthic invertebrates, and cladocera—were developed that include watershed characteristics describing toxicity-weighted agricultural use intensity, land use, agricultural management practices, soil properties, precipitation, and hydrologic properties. The models explained between 41 and 48% of the variability in the measured PTI values. WARP-PTI model evaluation with independent data showed reasonable performance with no clear bias. The models were applied to streams in the Midwest to demonstrate extrapolation for a regional assessment to indicate vulnerable streams and to guide more intensive monitoring.

  9. Characterization of Acoustic Streaming Beyond 100 MHz

    NASA Astrophysics Data System (ADS)

    Eisener, J.; Lippert, A.; Nowak, T.; Cairós, C.; Reuter, F.; Mettin, R.

    The aim of this study is to investigate acoustic streaming in water at very high ultrasonic frequencies, namely beyond 100 MHz. At such high frequencies, the dissipation length of acoustic waves shrinks considerably, and the acoustic streaming transforms from the well-known Eckart type into a Stuart-Lighthill type: While Eckart streaming is driven by a small momentum transfer along the path of a weakly damped travelling sound wave, Stuart-Lighthill streaming is generated by rather local and strong momentum transfer of a highly damped and therefore rapidly decaying wave. Then the inertia of the induced flow cannot be neglected anymore, and a potentially turbulent jet flow emerges. Here we report on streaming velocity measurements for the case where the sound is completely absorbed within a region much smaller than the generated jet. In contrast to previous work in this frequency range, where mainly surface acoustic wave transducers have been employed, we use piston-type transducers that emit vertically to the transducer surface. The acoustic streaming effects are characterized by ink front tracking and particle tracking velocimetry, and by numerical studies. The results show narrow high-speed jet flows that extend much farther into the liquid than the acoustic field. Velocities of several m/s are observed.

  10. Stream and riparian management for freshwater turtles.

    PubMed

    Bodie, J R

    2001-08-01

    The regulation and management of stream ecosystems worldwide have led to irreversible loss of wildlife species. Due to recent scrutiny of water policy and dam feasibility, there is an urgent need for fundamental research on the biotic integrity of streams and riparian zones. Although riverine turtles rely on stream and riparian zones to complete their life cycle, are vital producers and consumers, and are declining worldwide, they have received relatively little attention. I review the literature on the impacts of contemporary stream management on freshwater turtles. Specifically, I summarize and discuss 10 distinct practices that produce five potential biological repercussions. I then focus on the often-overlooked use of riparian zones by freshwater turtles, calculate a biologically determined riparian width, and offer recommendations for ecosystem management. Migration data were summarized on 10 species from eight US states and four countries. A riparian zone encompassing the majority of freshwater turtle migrations would need to span 150 m from the stream edge. Freshwater turtles primarily chose high, open sandy habitats to nest. Nests in North America contained eggs and hatchlings during April through September and often through the winter. In addition, freshwater turtles utilized diverse riparian habitats for feeding, nesting, and overwintering. Additional documentation of stream and riparian habitat use by turtles is needed.

  11. Streaming simplification of tetrahedral meshes.

    PubMed

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  12. Valve For Extracting Samples From A Process Stream

    NASA Technical Reports Server (NTRS)

    Callahan, Dave

    1995-01-01

    Valve for extracting samples from process stream includes cylindrical body bolted to pipe that contains stream. Opening in valve body matched and sealed against opening in pipe. Used to sample process streams in variety of facilities, including cement plants, plants that manufacture and reprocess plastics, oil refineries, and pipelines.

  13. Montana StreamStats—A method for retrieving basin and streamflow characteristics in Montana: Chapter A in Montana StreamStats

    USGS Publications Warehouse

    McCarthy, Peter M.; Dutton, DeAnn M.; Sando, Steven K.; Sando, Roy

    2016-04-05

    The U.S. Geological Survey (USGS) provides streamflow characteristics and other related information needed by water-resource managers to protect people and property from floods, plan and manage water-resource activities, and protect water quality. Streamflow characteristics provided by the USGS, such as peak-flow and low-flow frequencies for streamflow-gaging stations, are frequently used by engineers, flood forecasters, land managers, biologists, and others to guide their everyday decisions. In addition to providing streamflow characteristics at streamflow-gaging stations, the USGS also develops regional regression equations and drainage area-adjustment methods for estimating streamflow characteristics at locations on ungaged streams. Regional regression equations can be complex and often require users to determine several basin characteristics, which are physical and climatic characteristics of the stream and its drainage basin. Obtaining these basin characteristics for streamflow-gaging stations and ungaged sites traditionally has been time consuming and subjective, and led to inconsistent results.StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. StreamStats allows users to easily obtain streamflow and basin characteristics for USGS streamflow-gaging stations and user-selected locations on ungaged streams. The USGS, in cooperation with Montana Department of Transportation, Montana Department of Environmental Quality, and Montana Department of Natural Resources and Conservation, completed a study to develop a StreamStats application for Montana, compute streamflow characteristics at streamflow-gaging stations, and develop regional regression equations to estimate streamflow characteristics at ungaged sites. Chapter A of this Scientific Investigations Report describes the Montana Stream

  14. Spatial heterogeneity of within-stream methane concentrations

    USGS Publications Warehouse

    Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.

    2017-01-01

    Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.

  15. Ambient groundwater flow diminishes nitrogen cycling in streams

    NASA Astrophysics Data System (ADS)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.

    2017-12-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  16. Giant Intergalactic Gas Stream Longer Than Thought

    NASA Astrophysics Data System (ADS)

    2010-01-01

    A giant stream of gas flowing from neighbor galaxies around our own Milky Way is much longer and older than previously thought, astronomers have discovered. The new revelations provide a fresh insight on what started the gaseous intergalactic streamer. The astronomers used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to fill important gaps in the picture of gas streaming outward from the Magellanic Clouds. The first evidence of such a flow, named the Magellanic Stream, was discovered more than 30 years ago, and subsequent observations added tantalizing suggestions that there was more. However, the earlier picture showed gaps that left unanswered whether this other gas was part of the same system. "We now have answered that question. The stream is continuous," said David Nidever, of the University of Virginia. "We now have a much more complete map of the Magellanic Stream," he added. The astronomers presented their findings to the American Astronomical Society's meeting in Washington, DC. The Magellanic Clouds are the Milky Way's two nearest neighbor galaxies, about 150,000 to 200,000 light-years distant from the Milky Way. Visible in the Southern Hemisphere, they are much smaller than our Galaxy and may have been distorted by its gravity. Nidever and his colleagues observed the Magellanic Stream for more than 100 hours with the GBT. They then combined their GBT data with that from earlier studies with other radio telescopes, including the Arecibo telescope in Puerto Rico, the Parkes telescope in Australia, and the Westerbork telescope in the Netherlands. The result shows that the stream is more than 40 percent longer than previously known with certainty. One consequence of the added length of the gas stream is that it must be older, the astronomers say. They now estimate the age of the stream at 2.5 billion years. The revised size and age of the Magellanic Stream also provides a new potential explanation for how the flow got started

  17. Modeling the Gulf Stream System: How Far from Reality?

    NASA Technical Reports Server (NTRS)

    Choa, Yi; Gangopadhyay, Avijit; Bryan, Frank O.; Holland, William R.

    1996-01-01

    Analyses of a primitive equation ocean model simulation of the Atlantic Ocean circulation at 1/6 deg horizontal resolution are presented with a focus on the Gulf Stream region. Among many successful features of this simulation, this letter describes the Gulf Stream separation from the coast of North America near Cape Hatteras, meandering of the Gulf Stream between Cape Hatteras and the Grand Banks, and the vertical structure of temperature and velocity associated with the Gulf Stream. These results demonstrate significant improvement in modeling the Gulf Stream system using basin- to global scale ocean general circulation models. Possible reasons responsible for the realistic Gulf Stream simulation are discussed, contrasting the major differences between the present model configuration and those of previous eddy resolving studies.

  18. Rivers and streams: Physical setting and adapted biota

    USGS Publications Warehouse

    Wilzbach, Margaret A.; Cummins, K.W.

    2008-01-01

    Streams and rivers are enormously important, with their ecological, and economic value, greatly outweighing their significance on the landscape. Lotic ecology began in Europe with a focus on the distribution, abundance, and taxonomic composition of aquatic organisms and in North American with a focus on fishery biology. Since 1980, stream/river research has been highly interdisciplinary, involving fishery biologists, aquatic entomologists, algologists, hydrologists, geomorphologists, microbiologists, and terrestrial plant ecologists. Stream and river biota evolved in response to, and in concert with, the physical and chemical setting. Streams/rivers transport water and move sediments to the sea as part of the hydrologic cycle that involves evaporation, plant evapotranspiration, and precipitation. Ephemeral streams flow only in the wettest year, intermittent streams flow predictably every year during capture of surface runoff, and perennial streams flow continuously during wet and dry periods, receiving both stormflow and groundwater baseflow. The lotic biota, for example, algae, macrophytes, benthic invertebrates, and fishes, have evolved adaptations to their running-water setting. Dominant physical features of this setting are current, substrate, and temperature. Key chemical constituents are dissolved gases, dissolved inorganic ions and compounds, particulate inorganic material, particulate organic material, and dissolved organic ions (nitrogen and phosphorus) and compounds.

  19. Regionalization of low-flow characteristics of Tennessee streams

    USGS Publications Warehouse

    Bingham, R.H.

    1986-01-01

    Procedures for estimating 3-day 2-year, 3-day 10-year, 3-day 20-year, and 7-day 10-year low flows at ungaged stream sites in Tennessee are based on surface geology and drainage area size. One set of equations applies to west Tennessee streams, and another set applies to central and east Tennessee streams. The equations do not apply to streams where flow is significantly altered by activities of man. Standard errors of estimate of equations for west Tennessee are 24 to 32% and for central and east Tennessee 31 to 35%. Streamflow recession indexes, in days/log cycle, are used to account for effects of geology of the drainage basin on low flow of streams. The indexes in Tennessee range from 32 days/log cycle for clay and shale to 350 days/log cycle for gravel and sand, indicating different aquifer characteristics of the geologic units that sustain streamflows during periods of no surface runoff. Streamflow recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and the average distance from stream channels to basin divides. Geology and drainage basin size are the most significant variables affecting low flow in Tennessee streams according to regression analyses. (Author 's abstract)

  20. Noise Prediction Module for Offset Stream Nozzles

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.

    2011-01-01

    A Modern Design of Experiments (MDOE) analysis of data acquired for an offset stream technology was presented. The data acquisition and concept development were funded under a Supersonics NRA NNX07AC62A awarded to Dimitri Papamoschou at University of California, Irvine. The technology involved the introduction of airfoils in the fan stream of a bypass ratio (BPR) two nozzle system operated at transonic exhaust speeds. The vanes deflected the fan stream relative to the core stream and resulted in reduced sideline noise for polar angles in the peak jet noise direction. Noise prediction models were developed for a range of vane configurations. The models interface with an existing ANOPP module and can be used or future system level studies.

  1. Privacy Preserving Sequential Pattern Mining in Data Stream

    NASA Astrophysics Data System (ADS)

    Huang, Qin-Hua

    The privacy preserving data mining technique researches have gained much attention in recent years. For data stream systems, wireless networks and mobile devices, the related stream data mining techniques research is still in its' early stage. In this paper, an data mining algorithm dealing with privacy preserving problem in data stream is presented.

  2. Interactions between dorsal and ventral streams for controlling skilled grasp

    PubMed Central

    van Polanen, Vonne; Davare, Marco

    2015-01-01

    The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur. PMID:26169317

  3. Changing numbers of spawning cutthroat trout in tributary streams of Yellowstone Lake and estimates of grizzly bears visiting streams from DNA

    USGS Publications Warehouse

    Haroldson, M.A.; Gunther, K.A.; Reinhart, Daniel P.; Podruzny, S.R.; Cegelski, C.; Waits, L.; Wyman, T.C.; Smith, J.

    2005-01-01

    Spawning Yellowstone cutthroat trout (Oncorhynchus clarki) provide a source of highly digestible energy for grizzly bears (Ursus arctos) that visit tributary streams to Yellowstone Lake during the spring and early summer. During 1985–87, research documented grizzly bears fishing on 61% of the 124 tributary streams to the lake. Using track measurements, it was estimated that a minimum of 44 grizzly bears fished those streams annually. During 1994, non-native lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake. Lake trout are efficient predators and have the potential to reduce the native cutthroat population and negatively impact terrestrial predators that use cutthroat trout as a food resource. In 1997, we began sampling a subset of streams (n = 25) from areas of Yellowstone Lake surveyed during the previous study to determine if changes in spawner numbers or bear use had occurred. Comparisons of peak numbers and duration suggested a considerable decline between study periods in streams in the West Thumb area of the lake. The apparent decline may be due to predation by lake trout. Indices of bear use also declined on West Thumb area streams. We used DNA from hair collected near spawning streams to estimate the minimum number of bears visiting the vicinity of spawning streams. Seventy-four individual bears were identified from 429 hair samples. The annual number of individuals detected ranged from 15 in 1997 to 33 in 2000. Seventy percent of genotypes identified were represented by more than 1 sample, but only 31% of bears were documented more than 1 year of the study. Sixty-two (84%) bears were only documented in 1 segment of the lake, whereas 12 (16%) were found in 2–3 lake segments. Twenty-seven bears were identified from hair collected at multiple streams. One bear was identified on 6 streams in 2 segments of the lake and during 3 years of the study. We used encounter histories derived from DNA and the Jolly-Seber procedure in Program MARK

  4. Corotating pressure waves without streams in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1983-01-01

    Voyager 1 and 2 magnetic field and plasma data are presented which demonstrate the existence of large scale, corotating, non-linear pressure waves between 2 AU and 4 AU that are not accompanied by fast streams. The pressure waves are presumed to be generated by corotating streams near the Sun. For two of the three pressure waves that are discussed, the absence of a stream is probably a real, physical effect, viz., a consequence of deceleration of the stream by the associated compression wave. For the third pressure wave, the apparent absence of a stream may be a geometrical effect; it is likely that the stream was at latitudes just above those of the spacecraft, while the associated shocks and compression wave extended over a broader range of latitudes so that they could be observed by the spacecraft. It is suggested that the development of large-scale non-linear pressure waves at the expense of the kinetic energy of streams produces a qualitative change in the solar wind in the outer heliosphere. Within a few AU the quasi-stationary solar wind structure is determined by corotating streams whose structure is determined by the boundary conditions near the Sun.

  5. The dynamics of climate-induced deglacial ice stream acceleration

    NASA Astrophysics Data System (ADS)

    Robel, A.; Tziperman, E.

    2015-12-01

    Geological observations indicate that ice streams were a significant contributor to ice flow in the Laurentide Ice Sheet during the Last Glacial Maximum. Conceptual and simple model studies have also argued that the gradual development of ice streams increases the sensitivity of large ice sheets to weak climate forcing. In this study, we use an idealized configuration of the Parallel Ice Sheet Model to explore the role of ice streams in rapid deglaciation. In a growing ice sheet, ice streams develop gradually as the bed warms and the margin expands outward onto the continental shelf. Then, a weak change in equilibrium line altitude commensurate with Milankovitch forcing results in a rapid deglacial response, as ice stream acceleration leads to enhanced calving and surface melting at low elevations. We explain the dynamical mechanism that drives this ice stream acceleration and its broader applicability as a feedback for enhancing ice sheet decay in response to climate forcing. We show how our idealized ice sheet simulations match geomorphological observations of deglacial ice stream variability and previous model-data analyses. We conclude with observations on the potential for interaction between ice streams and other feedback mechanisms within the earth system.

  6. Pattern Discovery and Change Detection of Online Music Query Streams

    NASA Astrophysics Data System (ADS)

    Li, Hua-Fu

    In this paper, an efficient stream mining algorithm, called FTP-stream (Frequent Temporal Pattern mining of streams), is proposed to find the frequent temporal patterns over melody sequence streams. In the framework of our proposed algorithm, an effective bit-sequence representation is used to reduce the time and memory needed to slide the windows. The FTP-stream algorithm can calculate the support threshold in only a single pass based on the concept of bit-sequence representation. It takes the advantage of "left" and "and" operations of the representation. Experiments show that the proposed algorithm only scans the music query stream once, and runs significant faster and consumes less memory than existing algorithms, such as SWFI-stream and Moment.

  7. 40 CFR Table 7 to Subpart Ffff of... - Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Liquid Streams in Open Systems Within an MCPU 7 Table 7 to Subpart FFFF of Part 63 Protection of... FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air... of Part 63—Requirements for Wastewater Streams and Liquid Streams in Open Systems Within an MCPU As...

  8. Methods of hydrotreating a liquid stream to remove clogging compounds

    DOEpatents

    Minderhoud, Johannes Kornelis [Amsterdam, NL; Nelson, Richard Gene [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-22

    A method includes producing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a gas stream. At least a portion of the liquid stream is provided to a hydrotreating unit. At least a portion of selected in situ heat treatment clogging compositions in the liquid stream are removed to produce a hydrotreated liquid stream by hydrotreating at least a portion of the liquid stream at conditions sufficient to remove the selected in situ heat treatment clogging compositions.

  9. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  10. Nitrification in four acidic streams in southern New Jersey

    USGS Publications Warehouse

    Schornick, James C.; Ram, Neil M.

    1978-01-01

    Four characteristically acidic streams in southern New Jersey were investigated to determine the effect of secondary effluent on nitrification in the receiving waters. Chemical and microbiological data were obtained at four sites on each stream. From these data seven factors were evaluated to determine the proclivity of each stream to nitrify. pH, water temperature, and dissolved oxygen were used to describe the general condition of the streams, while neutralization of alkalinity, nitrogen species concentration trends, biological and nitrogenous oxygen demand incubations, and nitrifying bacteria densities were used to determine the actual presence of nitrification in each stream. Each stream had a unique distribution of conditions, making it possible to qualitatively rank the streams according to their proclivity to nitrify. Hay StackBrook showes strong evidence for nitrification on the basis of all four nitrification indicators, whereas Landing Creek showed little, if any, evidence of nitrification. Hammonton Creek is apparently nitrifying, but because of the uncertainty in the downstream trends of the nitrogen species and a lower level of alkalinity neutralization, it is nitrifying less than Hay Stack Brook. Squankum Branch also showed some evidence for nitrification, mostly on the basis of the biological and nitrogenous oxygen demand incubations. Although these streams are acidic in character, acidity does not appear to be an exclusive factor in determining whether a stream will undergo nitrification. (Woodard-USGS)

  11. Stream chemistry and groundwater-surface water interactions in Piedmont headwater streams (Charlotte, NC) prior to whole-watershed restoration

    NASA Astrophysics Data System (ADS)

    Vinson, D. S.; Allison, N.; Haydin, D.; Kiker, T.; Starnes, C.; Wickliff, E.; McMillan, S.; Clinton, S. M.

    2017-12-01

    While restoration is an established practice in urban streams, pre/post restoration hyporheic function and its potential role in nutrient processing is less well studied and understood. Here we report results from a pre-restoration sampling period in the 6.5 km2 headwaters of the Reedy Creek (RC) watershed, an urban forest stream in Charlotte, NC at the divide between the Catawba and Pee Dee river systems. Whole-watershed restoration of this deeply incised stream is scheduled to begin in fall 2017. To characterize the pre-restoration baseline condition, nutrients, DOC, temperature, and other biogeochemical parameters were analyzed quarterly from RC and 11 tributaries since 2014 and weekly since mid-2016. Riparian groundwater from 10 shallow wells has been analyzed quarterly since 2014. Nutrient concentrations vary among land uses. For example, median stream nitrate concentrations range from <0.1 mg/L as N in the undeveloped tributary to 2.5 mg/L as N in an agriculture-influenced tributary, and 0.2 mg/L as N at the RC outlet. As with nutrients, major ions, specific UV absorbance, and alkalinity vary among tributary watershed land uses. Riparian well and stream levels collected every 15 min since 2013 at 5 cross-sections indicate prevailing hydraulic gradients from the wells to the channel. At all 5 cross-sections, high stream flow events coincide with high groundwater levels, possibly indicating direct recharge to the aquifer by rain events, rather than large-scale recharge by the stream itself. Vertical hydraulic gradient measurements, slug tests, and radon-222 measurements were made at 25-75 cm deep sub-streambed piezometers. Radon-222 activities of piezometers (29-707 pCi/L; median=120 pCi/L, n=7) cover a larger range than either well water (170-647 pCi/L; median 268 pCi/L; n=7) or stream water (12-37 pCi/L, median 25 pCi/L; n=5), consistent with limited hyporheic mixing. Streambed hydraulic conductivity is requisite for significant exchange (e.g. low-K clay

  12. The kinematic footprints of five stellar streams in Andromeda's halo

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Ibata, R.; Irwin, M.; Koch, A.; Letarte, B.; Martin, N.; Collins, M.; Lewis, G. F.; McConnachie, A.; Peñarrubia, J.; Rich, R. M.; Trethewey, D.; Ferguson, A.; Huxor, A.; Tanvir, N.

    2008-11-01

    We present a spectroscopic analysis of five stellar streams (`A', `B', `Cr', `Cp' and `D') as well as the extended star cluster, EC4, which lies within Stream`C', all discovered in the halo of M31 from our Canada-France-Hawaii Telescope/MegaCam survey. These spectroscopic results were initially serendipitous, making use of our existing observations from the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, and thereby emphasizing the ubiquity of tidal streams that account for ~70 per cent of the M31 halo stars in the targeted fields. Subsequent spectroscopy was then procured in Stream`C' and Stream`D' to trace the velocity gradient along the streams. Nine metal-rich ([Fe/H] ~ -0.7) stars at vhel = -349.5kms-1,σv,corr ~ 5.1 +/- 2.5km s-1 are proposed as a serendipitous detection of Stream`Cr', with follow-up kinematic identification at a further point along the stream. Seven metal-poor ([Fe/H] ~-1.3) stars confined to a narrow, 15 km s-1 velocity bin centred at vhel = -285.6, σv,corr = 4.3+1.7-1.4 km s-1 represent a kinematic detection of Stream`Cp', again with follow-up kinematic identification further along the stream. For the cluster EC4, candidate member stars with average [Fe/H] ~-1.4, are found at vhel = -282 suggesting it could be related to Stream`Cp'. No similarly obvious cold kinematic candidate is found for Stream`D', although candidates are proposed in both of two spectroscopic pointings along the stream (both at ~ -400km s-1). Spectroscopy near the edge of Stream`B' suggests a likely kinematic detection at vhel ~ -330, σv,corr ~ 6.9km s-1, while a candidate kinematic detection of Stream`A' is found (plausibly associated to M33 rather than M31) with vhel ~ -170, σv,corr = 12.5km s-1. The low dispersion of the streams in kinematics, physical thickness and metallicity makes it hard to reconcile with a scenario whereby these stream structures as an ensemble are related to the giant southern stream. We conclude that the M31 stellar

  13. Streaming Visual Analytics Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kristin A.; Burtner, Edwin R.; Kritzstein, Brian P.

    How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis andmore » understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.« less

  14. Environmental controls of wood entrapment in upper Midwestern streams

    USGS Publications Warehouse

    Merten, Eric C.; Finlay, Jacques; Johnson, Lucinda; Newman, Raymond; Stefan, Heinz; Vondracek, Bruce C.

    2011-01-01

    Wood deposited in streams provides a wide variety of ecosystem functions, including enhancing habitat for key species in stream food webs, increasing geomorphic and hydraulic heterogeneity and retaining organic matter. Given the strong role that wood plays in streams, factors that influence wood inputs, retention and transport are critical to stream ecology. Wood entrapment, the process of wood coming to rest after being swept downstream at least 10 m, is poorly understood, yet important for predicting stream function and success of restoration efforts. Data on entrapment were collected for a wide range of natural wood pieces (n = 344), stream geomorphology and hydraulic conditions in nine streams along the north shore of Lake Superior in Minnesota. Locations of pieces were determined in summer 2007 and again following an overbank stormflow event in fall 2007. The ratio of piece length to effective stream width (length ratio) and the weight of the piece were important in a multiple logistic regression model that explained 25% of the variance in wood entrapment. Entrapment remains difficult to predict in natural streams, and often may simply occur wherever wood pieces are located when high water recedes. However, this study can inform stream modifications to discourage entrapment at road crossings or other infrastructure by applying the model formula to estimate the effective width required to pass particular wood pieces. Conversely, these results could also be used to determine conditions (e.g. pre-existing large, stable pieces) that encourage entrapment where wood is valued for ecological functions.

  15. Estimating extreme stream temperatures by the standard deviate method

    NASA Astrophysics Data System (ADS)

    Bogan, Travis; Othmer, Jonathan; Mohseni, Omid; Stefan, Heinz

    2006-02-01

    It is now widely accepted that global climate warming is taking place on the earth. Among many other effects, a rise in air temperatures is expected to increase stream temperatures indefinitely. However, due to evaporative cooling, stream temperatures do not increase linearly with increasing air temperatures indefinitely. Within the anticipated bounds of climate warming, extreme stream temperatures may therefore not rise substantially. With this concept in mind, past extreme temperatures measured at 720 USGS stream gauging stations were analyzed by the standard deviate method. In this method the highest stream temperatures are expressed as the mean temperature of a measured partial maximum stream temperature series plus its standard deviation multiplied by a factor KE (standard deviate). Various KE-values were explored; values of KE larger than 8 were found physically unreasonable. It is concluded that the value of KE should be in the range from 7 to 8. A unit error in estimating KE translates into a typical stream temperature error of about 0.5 °C. Using a logistic model for the stream temperature/air temperature relationship, a one degree error in air temperature gives a typical error of 0.16 °C in stream temperature. With a projected error in the enveloping standard deviate dKE=1.0 (range 0.5-1.5) and an error in projected high air temperature d Ta=2 °C (range 0-4 °C), the total projected stream temperature error is estimated as d Ts=0.8 °C.

  16. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin

  17. Double streams of protons in the distant geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Villante, U.; Lazarus, A. J.

    1975-01-01

    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region.

  18. Resonance and streaming of armored microbubbles

    NASA Astrophysics Data System (ADS)

    Spelman, Tamsin; Bertin, Nicolas; Stephen, Olivier; Marmottant, Philippe; Lauga, Eric

    2015-11-01

    A new experimental technique involves building a hollow capsule which partially encompasses a microbubble, creating an ``armored microbubble'' with long lifespan. Under acoustic actuation, such bubble produces net streaming flows. In order to theoretically model the induced flow, we first extend classical models of free bubbles to describe the streaming flow around a spherical body for any known axisymmetric shape oscillation. A potential flow model is then employed to determine the resonance modes of the armored microbubble. We finally use a more detailed viscous model to calculate the surface shape oscillations at the experimental driving frequency, and from this we predict the generated streaming flows.

  19. Feature integration and object representations along the dorsal stream visual hierarchy

    PubMed Central

    Perry, Carolyn Jeane; Fallah, Mazyar

    2014-01-01

    The visual system is split into two processing streams: a ventral stream that receives color and form information and a dorsal stream that receives motion information. Each stream processes that information hierarchically, with each stage building upon the previous. In the ventral stream this leads to the formation of object representations that ultimately allow for object recognition regardless of changes in the surrounding environment. In the dorsal stream, this hierarchical processing has classically been thought to lead to the computation of complex motion in three dimensions. However, there is evidence to suggest that there is integration of both dorsal and ventral stream information into motion computation processes, giving rise to intermediate object representations, which facilitate object selection and decision making mechanisms in the dorsal stream. First we review the hierarchical processing of motion along the dorsal stream and the building up of object representations along the ventral stream. Then we discuss recent work on the integration of ventral and dorsal stream features that lead to intermediate object representations in the dorsal stream. Finally we propose a framework describing how and at what stage different features are integrated into dorsal visual stream object representations. Determining the integration of features along the dorsal stream is necessary to understand not only how the dorsal stream builds up an object representation but also which computations are performed on object representations instead of local features. PMID:25140147

  20. Impact of transient stream flow on water exchange and reactions in the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2015-04-01

    Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.

  1. Vulnerability of streams to legacy nitrate sources

    USGS Publications Warehouse

    Tesoriero, Anthony J.; Duff, John H.; Saad, David A.; Spahr, Norman E.; Wolock, David M.

    2013-01-01

    The influence of hydrogeologic setting on the susceptibility of streams to legacy nitrate was examined at seven study sites having a wide range of base flow index (BFI) values. BFI is the ratio of base flow to total streamflow volume. The portion of annual stream nitrate loads from base flow was strongly correlated with BFI. Furthermore, dissolved oxygen concentrations in streambed pore water were significantly higher in high BFI watersheds than in low BFI watersheds suggesting that geochemical conditions favor nitrate transport through the bed when BFI is high. Results from a groundwater-surface water interaction study at a high BFI watershed indicate that decades old nitrate-laden water is discharging to this stream. These findings indicate that high nitrate levels in this stream may be sustained for decades to come regardless of current practices. It is hypothesized that a first approximation of stream vulnerability to legacy nutrients may be made by geospatial analysis of watersheds with high nitrogen inputs and a strong connection to groundwater (e.g., high BFI).

  2. Multiscale Models for the Two-Stream Instability

    NASA Astrophysics Data System (ADS)

    Joseph, Ilon; Dimits, Andris; Banks, Jeffrey; Berger, Richard; Brunner, Stephan; Chapman, Thomas

    2017-10-01

    Interpenetrating streams of plasma found in many important scenarios in nature and in the laboratory can develop kinetic two-stream instabilities that exchange momentum and energy between the streams. A quasilinear model for the electrostatic two-stream instability is under development as a component of a multiscale model that couples fluid simulations to kinetic theory. Parameters of the model will be validated with comparison to full kinetic simulations using LOKI and efficient strategies for numerical solution of the quasilinear model and for coupling to the fluid model will be discussed. Extending the kinetic models into the collisional regime requires an efficient treatment of the collision operator. Useful reductions of the collision operator relative to the full multi-species Landau-Fokker-Plank operator are being explored. These are further motivated both by careful consideration of the parameter orderings relevant to two-stream scenarios and by the particular 2D+2V phase space used in the LOKI code. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 17- ERD-081.

  3. An initial SPARROW model of land use and in-stream controls on total organic carbon in streams of the conterminous United States

    USGS Publications Warehouse

    Shih, Jhih-Shyang; Alexander, Richard B.; Smith, Richard A.; Boyer, Elizabeth W.; Shwarz, Grogory E.; Chung, Susie

    2010-01-01

    Watersheds play many important roles in the carbon cycle: (1) they are a site for both terrestrial and aquatic carbon dioxide (CO2) removal through photosynthesis; (2) they transport living and decomposing organic carbon in streams and groundwater; and (3) they store organic carbon for widely varying lengths of time as a function of many biogeochemical factors. Using the U.S. Geological Survey (USGS) Spatially Referenced Regression on Watershed Attributes (SPARROW) model, along with long-term monitoring data on total organic carbon (TOC), this research quantitatively estimates the sources, transport, and fate of the long-term mean annual load of TOC in streams of the conterminous United States. The model simulations use surrogate measures of the major terrestrial and aquatic sources of organic carbon to estimate the long-term mean annual load of TOC in streams. The estimated carbon sources in the model are associated with four land uses (urban, cultivated, forest, and wetlands) and autochthonous fixation of carbon (stream photosynthesis). Stream photosynthesis is determined by reach-level application of an empirical model of stream chlorophyll based on total phosphorus concentration, and a mechanistic model of photosynthetic rate based on chlorophyll, average daily solar irradiance, water column light attenuation, and reach dimensions. It was found that the estimate of in-stream photosynthesis is a major contributor to the mean annual TOC load per unit of drainage area (that is, yield) in large streams, with a median share of about 60 percent of the total mean annual carbon load in streams with mean flows above 500 cubic feet per second. The interquartile range of the model predictions of TOC from in-stream photosynthesis is from 0.1 to 0.4 grams (g) carbon (C) per square meter (m-2) per day (day-1) for the approximately 62,000 stream reaches in the continental United States, which compares favorably with the reported literature range for net carbon fixation by

  4. Stellar streams and the galaxies they reside in

    NASA Astrophysics Data System (ADS)

    Pearson, Sarah

    2018-01-01

    As galaxies collide, as smaller galaxies are disrupted by larger galaxies, or as clusters of stars orbit a galaxy, a gravitational tidal interaction unfolds and the systems tear apart into distinct morphological and kinematic structures. In my thesis, I have exploited these structures to understand various components of galaxies, such as the baryon cycle in dwarf galaxy interactions (Pearson et al. 2016, Pearson et al. 2017b). In this talk, I will focus on my thesis work related to the stellar stream emerging from the old, globular cluster, Palomar 5 (Pal 5), orbiting our own Milky Way. As the stellar stream members were once closely tied together in energy and angular momentum space, we can use their distribution in phase space to trace back where they were once located and what affected them along their paths. In particular, I will show that the mere existence of Pal 5’s thin stream can rule out a moderately triaxial potential model of our Galaxy (Pearson et al. 2015) and that the debris of Pal 5-like streams will spread much further in space in a triaxial potential (a mechanism which I dubbed “stream fanning”) . Additionally, I will show that the Milky Way's Galactic bar, can punch holes in stellar streams and explain the recently discovered length asymmetry between Pal 5’s leading and trailing arm (Pearson et al. 2017a). These holes grow and have locations along stellar streams dependent on the Galactic bar orientation, mass and rotational speed, which provides an intriguing methodology for studying our own Milky Way’s Galactic bar in more detail. The fact that the bar can create under densities in stellar streams, further demonstrates that we should be careful when interpreting gaps in stellar streams as indirect evidence of the existence of dark matter subhalos in our Galaxy.

  5. Deforestation and stream warming affect body size of Amazonian fishes.

    PubMed

    Ilha, Paulo; Schiesari, Luis; Yanagawa, Fernando I; Jankowski, KathiJo; Navas, Carlos A

    2018-01-01

    Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43-55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin.

  6. Deforestation and stream warming affect body size of Amazonian fishes

    PubMed Central

    Yanagawa, Fernando I.; Jankowski, KathiJo; Navas, Carlos A.

    2018-01-01

    Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43–55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin. PMID:29718960

  7. Consequences of Pool Habitat Isolation on Stream Fishes

    Treesearch

    David G. Lonzarich; Melvin L. Warren; Mary E. Lonzarich

    2004-01-01

    Abstract - For fishes, stream habitat units (i.e., pools and riffles) often exist as relatively discrete patches of varying quality that are distributed in a mosaic along the stream continuum. Under these conditions, the possibility exists that the spacing of suitable patches within a stream reach may affect interhabitat movements of fishes and their...

  8. The chemistry of iron, aluminum, and dissolved organic material in three acidic, metal-enriched, mountain streams, as controlled by watershed and in-stream processes

    USGS Publications Warehouse

    McKnight, Diane M.; Bencala, Kenneth E.

    1990-01-01

    Several studies were conducted in three acidic, metal-enriched, mountain streams, and the results are discussed together in this paper to provide a synthesis of watershed and in-stream processes controlling Fe, Al, and DOC (dissolved organic carbon) concentrations. One of the streams, the Snake River, is naturally acidic; the other two, Peru Creek and St. Kevin Gulch, receive acid mine drainage. Analysis of stream water chemistry data for the acidic headwaters of the Snake River shows that some trace metal solutes (Al, Mn, Zn) are correlated with major ions, indicating that watershed processes control their concentrations. Once in the stream, biogeochemical processes can control transport if they occur over time scales comparable to those for hydrologic transport. Examples of the following in-stream reactions are presented: (1) photoreduction and dissolution of hydrous iron oxides in response to an experimental decrease in stream pH, (2) precipitation of Al at three stream confluences, and (3) sorption of dissolved organic material by hydrous iron and aluminum oxides in a stream confluence. The extent of these reactions is evaluated using conservative tracers and a transport model that includes storage in the substream zone.

  9. StreamStats in Georgia: a water-resources web application

    USGS Publications Warehouse

    Gotvald, Anthony J.; Musser, Jonathan W.

    2015-07-31

    StreamStats is being implemented on a State-by-State basis to allow for customization of the data development and underlying datasets to address their specific needs, issues, and objectives. The USGS, in cooperation with the Georgia Environmental Protection Division and Georgia Department of Transportation, has implemented StreamStats for Georgia. The Georgia StreamStats Web site is available through the national StreamStats Web-page portal at http://streamstats.usgs.gov. Links are provided on this Web page for individual State applications, instructions for using StreamStats, definitions of basin characteristics and streamflow statistics, and other supporting information.

  10. Amino acid levels in nascent metabolic syndrome: A contributor to the pro-inflammatory burden.

    PubMed

    Reddy, Priya; Leong, Joseph; Jialal, Ishwarlal

    2018-05-01

    Metabolic Syndrome (MetS) is a cluster of cardio-metabolic risk factors characterized by low-grade inflammation which confers an increased risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Prior studies have linked elevated branched chain amino acids (BCAA) and aromatic amino acids (AAA) with T2DM and CVD. Due to the paucity of data in MetS, the aim of this study was to investigate the status of amino acids as early biomarkers of nascent MetS patients without T2DM and CVD or smoking. Healthy controls (n = 20) and MetS (n = 29) patients were recruited for the study. MetS was defined by criteria of National Cholesterol Education Program Adult Treatment Panel III of having at least 3 risk factors. Urinary amino acids were quantified by gas chromatography time-of-flight mass spectrometry at the Western NIH Metabolomics Center as expressed to urinary creatinine. Tyrosine and Isoleucine levels were significantly elevated in MetS patients. Isoleucine positively correlated with salient cardio-metabolic features and inflammatory biomarkers. Lysine and Methionine levels were decreased in MetS patients. Lysine correlated negatively with cardio-metabolic features and inflammatory bimarkers. Methionine also correlated negatively with blood pressure and certain inflammatory biomarkers. Our novel results suggest that with regards to the cardio-metabolic risk factors and pro-inflammatory features of MetS, isoleucine (BCAA) demonstrated a positive correlation while lysine demonstrated a negative correlation. Thus, increased levels of isoleucine and decreased levels of lysine could be potential early biomarkers of MetS. Copyright © 2018. Published by Elsevier Inc.

  11. Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria

    PubMed Central

    Ishii, Eiji; Chiba, Shinobu; Hashimoto, Narimasa; Kojima, Seiji; Homma, Michio; Ito, Koreaki; Akiyama, Yoshinori; Mori, Hiroyuki

    2015-01-01

    SecDF interacts with the SecYEG translocon in bacteria and enhances protein export in a proton-motive-force-dependent manner. Vibrio alginolyticus, a marine-estuarine bacterium, contains two SecDF paralogs, V.SecDF1 and V.SecDF2. Here, we show that the export-enhancing function of V.SecDF1 requires Na+ instead of H+, whereas V.SecDF2 is Na+-independent, presumably requiring H+. In accord with the cation-preference difference, V.SecDF2 was only expressed under limited Na+ concentrations whereas V.SecDF1 was constitutive. However, it is not the decreased concentration of Na+ per se that the bacterium senses to up-regulate the V.SecDF2 expression, because marked up-regulation of the V.SecDF2 synthesis was observed irrespective of Na+ concentrations under certain genetic/physiological conditions: (i) when the secDF1VA gene was deleted and (ii) whenever the Sec export machinery was inhibited. VemP (Vibrio export monitoring polypeptide), a secretory polypeptide encoded by the upstream ORF of secDF2VA, plays the primary role in this regulation by undergoing regulated translational elongation arrest, which leads to unfolding of the Shine–Dalgarno sequence for translation of secDF2VA. Genetic analysis of V. alginolyticus established that the VemP-mediated regulation of SecDF2 is essential for the survival of this marine bacterium in low-salinity environments. These results reveal that a class of marine bacteria exploits nascent-chain ribosome interactions to optimize their protein export pathways to propagate efficiently under different ionic environments that they face in their life cycles. PMID:26392525

  12. Two-stream modeling of plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Guiter, S. M.; Gombosi, T. I.; Rasmussen, C. E.

    1995-01-01

    Plasmaspheric refilling on an L = 4 flux tube was studied by using a time-dependent, hydrodynamic plasmaspheric flow model in which the ion streams from the two hemispheres are treated as distinct fluids. In the model the continuity, momentum, and energy equations of a two-ion (O(+) and H(+)), quasi-neutral, currentless plasma are solved along a closed geomagnetic field line; diffusive equilibrium is not assumed. collisions between all stream pairs and with neutral species are included. The model includes a corotating, tilted dipole magnetic field and neutral winds. Ionospheric sources and sinks are accounted for in a self-consistent manner. Electrons are assumed to be heated by photoelectrons. The model flux tube extends from a 200-km altitude in one hemisphere to a 200-km altitude in the other hemisphere. Initially, the upwelling streams pass through each other practically unimpeded. When the streams approach the boundary in the conjugate ionosphere, a shock develops there, which moves upward and dissipates slowly; at about the same time a reverse shock develops in the hemisphere of origin, which moves upward. After about 1 hour, large shocks develop in each stream near the equator; these shocks move toward the equator and downward after crossing the equator. However, these shocks are probably artificial, because counterstreaming flows occur in each H(+) fluid, which the model can only handle by creating shocks.

  13. PREDICTION OF FUNDAMENTAL ASSEMBLAGES OF MID-ATLANTIC HIGHLAND STREAM FISHES

    EPA Science Inventory

    A statistical software tool, the Stream Fish Assemblage Predictor (SFAP), based on stream sampling data collected by the EPA in the mid-Atlantic Highlands, was developed to predict potential stream fish communities using characteristics of the stream and its watershed.
    Step o...

  14. Functional Objectives for Stream Restoration

    DTIC Science & Technology

    2006-09-01

    Gorman, O. T ., and Karr, J. R . (1978) “Habitat structure and stream fish communities,” Ecology, 59-3, 507-515. Increasing community and habitat...frequency and density. Comparison of above- and below- ground biomass R /S ratio. Biomass production of stream- dependant species. Biomass profile...M., Hauer, F. R ., Lee, L. C., Nutter, W. L., Rheinhardt, R . D., Smith, R . D., and Whigham, D. (1995) “A guidebook for application of

  15. Apparatus for mixing char-ash into coal stream

    DOEpatents

    Blaskowski, Henry J.

    1982-03-16

    Apparatus for obtaining complete mixing of char with coal prior to the introduction of the mixture into the combustor (30) of a coal gasifier (10). The coal is carried in one air stream (22), and the char in another air stream (54), to a riffle plate arrangement (26), where the streams of solid are intimately mixed or blended.

  16. Spawning bed sedimentation studies in northern California streams

    Treesearch

    James W. Burns

    1970-01-01

    Changes in the size composition of spawning bed materials in six coastal streams were monitored for 3 years to determine the effects of logging on the habitat of silver salmon (Oncorhynchus kisutch) and trout (Salmo gairdnerii gairdnerii and S. clarkii clarkii). Four test streams were sampled before, during and after logging. Two streams in unlogged watersheds and...

  17. Fish relationships with large wood in small streams

    Treesearch

    C. Andrew Dolloff; Melvin L. Warren

    2003-01-01

    Many ecological processes are associated with large wood in streams, such as forming habitat critical for fish and a host of other organisms. Wood loading in streams varies with age and species of riparian vegetation, stream size, time since last disturbance, and history of land use. Changes in the landscape resulting from homesteading, agriculture, and logging have...

  18. Characterizing Hysteretic Water Quality in Southern Appalachian Streams

    Treesearch

    Mark S. Riedel; James M. Vose; Paul V. Bolstad

    2004-01-01

    Water quality in mountain streams of the southern Appalachians varies seasonally and with storms. In an effort to validate Total Maximum Daily Loads (TMDLs) for sediment in the Chattooga River Watershed (NE Georgia, NW South Carolina, and SW North Carolina), we studied four tributary streams over an eighteen-month period. Two of the streams had completely forested...

  19. Comparison of Hydrologic and Water-Quality Characteristics of Two Native Tallgrass Prairie Streams with Agricultural Streams in Missouri and Kansas

    USGS Publications Warehouse

    Heimann, David C.

    2009-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, to analyze and compare hydrologic and water-quality characteristics of tallgrass prairie and agricultural basins located within the historical distribution of tallgrass prairie in Missouri and Kansas. Streamflow and water-quality data from two remnant, tallgrass prairie basins (East Drywood Creek at Prairie State Park, Missouri, and Kings Creek near Manhattan, Kansas) were compared to similar data from agricultural basins in Missouri and Kansas. Prairie streams, especially Kings Creek in eastern Kansas, received a higher percentage of base flow and a lower percentage of direct runoff than similar-sized agricultural streams in the region. A larger contribution of direct runoff from the agricultural streams made them much flashier than prairie streams. During 22 years of record, the Kings Creek base-flow component averaged 66 percent of total flow, but base flow was only 16 to 26 percent of flows at agricultural sites of various record periods. The large base-flow component likely is the result of greater infiltration of precipitation in prairie soils and the resulting greater contribution of groundwater to streamflow. The 1- and 3-day annual maximum flows were significantly greater at three agricultural sites than at Kings Creek. The effects of flashier agricultural streams on native aquatic biota are unknown, but may be an important factor in the sustainability of some native aquatic species. There were no significant differences in the distribution of dissolved-oxygen concentrations at prairie and agricultural sites, and some samples from most sites fell below the 5 milligrams per liter Missouri and Kansas standard for the protection of aquatic life. More than 10 percent of samples from the East Drywood Creek prairie stream were less than this standard. These data indicate low dissolved-oxygen concentrations during summer low

  20. Runoff characteristics of California streams

    USGS Publications Warehouse

    Rantz, S.E.

    1972-01-01

    California streams exhibit a wide range of runoff characteristics that are related to the climatologic, topographic, and geologic characteristics of the basins they drain. The annual volume of runoff of a stream, expressed in inches, may be large or small, and daily discharge rates may be highly variable or relatively steady. The bulk of the annual runoff may be storm runoff, or snowmelt runoff, or a combination of both. The streamflow may be ephemeral, intermittent, or perennial; if perennial, base flow may be well sustained or poorly sustained. In this report the various runoff characteristics are identified by numerical index values. They are shown to be related generally to mean annual precipitation, altitude, latitude, and location with respect to the 11 geomorphic provinces in the California Region. With respect to mean annual precipitation on the watershed, streamflow is generally (1) ephemeral if the mean annual precipitation is less than 10 inches, (2) intermittent if the mean annual precipitation is between 10 and 40 inches, and (3) perennial if the mean annual precipitation is more than 40 inches. Departures from those generalizations are associated with (a) the areal variation of such geologic factors as the infiltration and storage capacities of the rocks underlying the watersheds, and (b) the areal variation of evapotranspiration loss as influenced by varying conditions of climate, soil, vegetal cover, and geologic structure. Latitude and altitude determine the proportion of the winter precipitation that will be stored for subsequent runoff in the late spring and summer. In general, if a watershed has at least 30 percent of its area above the normal altitude of the snowline on April 1, it will have significant snowmelt runoff. Snowmelt runoff in California is said to be significant if at least 30 percent of the annual runoff occurs during the 4 months, April through July. Storm runoff is said to be predominant if at least 65 percent of the annual

  1. Legacy Nitrate Impacts on Groundwater and Streams

    NASA Astrophysics Data System (ADS)

    Tesoriero, A. J.; Juckem, P. F.; Miller, M. P.

    2017-12-01

    Decades of recharge of high-nitrate groundwater have created a legacy—a mass of high-nitrate groundwater—that has implications for future nitrate concentrations in groundwater and in streams. In the United States, inorganic nitrogen fertilizer applications to the land surface have increased ten-fold since 1950, resulting in sharp increases in nitrate concentrations in recharging groundwater, which pose a risk to deeper groundwater and streams. This study assesses the factors that control time lags and eventual concentrations of legacy nitrate in groundwater and streams. Results from the USGS National Water-Quality Assessment Project are presented which elucidate nitrate trends in recharging groundwater, delineate redox zones and assess groundwater and stream vulnerability to legacy nitrate sources on a regional scale. This study evaluated trends and transformations of agricultural chemicals based on groundwater age and water chemistry data along flow paths from recharge areas to streams at 20 study sites across the United States. Median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years, from 4 to 7.5 mg N/L. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the redox zones encountered along flow paths and on the age distribution of nitrate discharging to supply wells and streams. Delineating redox zones on a regional scale is complicated by the spatial variability of reaction rates. To overcome this limitation, we applied logistic regression and machine learning techniques to predict the probability of a specific redox condition in groundwater in the Chesapeake Bay watershed and the Fox-Wolf-Peshtigo study area in Wisconsin. By relating redox-active constituent concentrations in groundwater samples to indicators of residence time and/or electron donor availability, we were able to delineate redox zones on a regional scale

  2. Analytic Strategies of Streaming Data for eHealth.

    PubMed

    Yoon, Sunmoo

    2016-01-01

    New analytic strategies for streaming big data from wearable devices and social media are emerging in ehealth. We face challenges to find meaningful patterns from big data because researchers face difficulties to process big volume of streaming data using traditional processing applications.1 This introductory 180 minutes tutorial offers hand-on instruction on analytics2 (e.g., topic modeling, social network analysis) of streaming data. This tutorial aims to provide practical strategies of information on reducing dimensionality using examples of big data. This tutorial will highlight strategies of incorporating domain experts and a comprehensive approach to streaming social media data.

  3. Two-stream instability with time-dependent drift velocity

    DOE PAGES

    Qin, Hong; Davidson, Ronald C.

    2014-06-26

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  4. Effects of pasture management and off-stream water on temporal/spatial distribution of cattle and stream bank characteristics in cool-season grass pastures.

    PubMed

    Schwarte, K A; Russell, J R; Morrical, D G

    2011-10-01

    A 2-yr grazing experiment was conducted to assess the effects of grazing management on cattle distribution and pasture and stream bank characteristics. Six 12.1-ha cool-season grass pastures in central Iowa were allotted to 1 of 3 treatments: continuous stocking with unrestricted stream access (CSU), continuous stocking with stream access restricted to 4.9-m-wide stabilized crossings (CSR), or rotational stocking with stream access restricted to a riparian paddock (RP). Pastures were stocked with 15 fall-calving Angus cows (Bos taurus L.) from mid-May to mid-October for 153 d in 2008 and 2009. A global positioning system (GPS) collar recording cow position every 10 min was placed on at least 1 cow per pasture for 2 wk of each month from May through September. Off-stream water was provided to cattle in CSU and CSR treatments during the second of the 2 wk when GPS collars were on the cattle. A black globe temperature relative humidity index (BGTHI) was measured at 10-min intervals to match the time of the GPS measurements. Each month of the grazing season, forage characteristics (sward height, forage mass, and CP, IVDMD, and P concentrations) and bare and fecal-covered ground were measured. Stream bank erosion susceptibility was visually scored in May, August, and October (pre-, mid-, and post-stocking). Cattle in RP and CSR treatments spent less time (P < 0.10) within the stream zone (0 to 3 m from stream center) in June and August and in the streamside zone (0 to 33 m from stream zone) in May through August and May through September, respectively, than cattle in CSU pastures. However, off-stream water had no effect on cattle distribution. Compared with the CSU treatment, the CSR treatment reduced the probability (P < 0.10) that cattle were within the riparian zone (0 to 36 m from stream center) at BGTHI of 50 to 100. Bare ground was greater (P < 0.10) in pastures with the CSU than CSR and RP treatments in the stream and streamside zones in September and October and

  5. Modeling the Impact of Stream Discharge Events on Riparian Solute Dynamics.

    PubMed

    Mahmood, Muhammad Nasir; Schmidt, Christian; Fleckenstein, Jan H; Trauth, Nico

    2018-03-22

    The biogeochemical composition of stream water and the surrounding riparian water is mainly defined by the exchange of water and solutes between the stream and the riparian zone. Short-term fluctuations in near stream hydraulic head gradients (e.g., during stream flow events) can significantly influence the extent and rate of exchange processes. In this study, we simulate exchanges between streams and their riparian zone driven by stream stage fluctuations during single stream discharge events of varying peak height and duration. Simulated results show that strong stream flow events can trigger solute mobilization in riparian soils and subsequent export to the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased durations significantly enhance solute export, however, peak height is found to be the dominant control for overall mass export. Mobilized solutes are transported to the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in long tailing of bank outflows and solute mass outfluxes. We conclude that strong stream discharge events can mobilize and transport solutes from near stream riparian soils into the stream. The impact of short-term stream discharge variations on solute exchange may last for long times after the flow event. © 2018, National Ground Water Association.

  6. Terrestrial–aquatic linkages in spring-fed and snowmelt-dominated streams

    USGS Publications Warehouse

    Sepulveda, Adam

    2017-01-01

    The importance of trophic linkages between aquatic and terrestrial ecosystems is predicted to vary as a function of subsidy quantity and quality relative to in situ resources. To test this prediction, I used multi-year diet data from Bonneville cutthroat trout Oncorhynchus clarki Utah in spring-fed and snowmelt-driven streams in the high desert of western North America. I documented that trout in spring-fed streams consumed more (number and weight) aquatic than terrestrial invertebrates, while trout in snowmelt-driven streams consumed a similar number of both prey types but consumed more terrestrial than aquatic invertebrates by weight. Trout in spring-fed streams consumed more aquatic invertebrates than trout in snowmelt streams and trout consumed more terrestrial invertebrates in snowmelt than in spring-fed streams. Up to 93% of trout production in spring-fed streams and 60% in snowmelt streams was fueled by aquatic invertebrates, while the remainder of trout production in each stream type was from terrestrial production. I found that the biomass and occurrence of consumed terrestrial invertebrates were not related to our measures of in situ resource quality or quantity in either stream type. These empirical data highlight the importance of autotrophic-derived production to trout in xeric regions.

  7. Urban Stream Ecology

    EPA Science Inventory

    Urban watersheds characteristically have high impervious surface cover, resulting in high surface runoff and low infiltration following storms. In response, urban streams experience “flashy” stormflows, reduced baseflows, bank erosion, channel widening, and sedimentation. Urban ...

  8. Curriculum evaluation and revision in a nascent field: the utility of the retrospective pretest--posttest model in a homeland security program of study.

    PubMed

    Pelfrey, William V; Pelfrey, William V

    2009-02-01

    Although most academic disciplines evolve at a measured pace, the emerging field of homeland security must, for reasons of safety and security, evolve rapidly. The Department of Homeland Security sponsored the establishment of a graduate educational program for key officials holding homeland security roles. Because homeland security is a nascent field, the establishment of a program curriculum was forced to draw from a variety of disciplines. Curriculum evaluation was complicated by the rapid changes occurring in the emerging discipline, producing response shift bias, and interfering with the pre-post assessments. To compensate for the validity threat associated with response shift bias, a retrospective pretest-posttest evaluative methodology was used. Data indicate the program has evolved in a significant and orderly fashion and these data support the use of this innovative evaluation approach in the development of any discipline.

  9. Stream biological surveys - self-defense for coal mine operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, E.L.; Pennington, W.L.; Lackey, J.L.

    1979-12-01

    According to Section 779.20 of the Permanent Regulatory Program Regulations, Surface Coal Mining and Reclamation Operations, Department of the Interior, office of Surface Mining Reclamation and Enforcement, coal mine operators must provide information on fish and wildlife resources in order to obtain mining permits. Although considered to be a liability by many mine operators, stream biological surveys can, in reality, become a significant asset. When combined with appropriate water quality measurements, stream biological surveys can adequately assess a stream's health. Although initially adding cost, stream biological surveys can actually save money and potential litigation during the mining period. However, streammore » biological surveys must be conducted before any mining activity is initiated and should continue on a periodic basis thereafter. Only in this manner can mine operators be assured that biological measurements made on streams affected by their operation are accurate reflections of pre- and post-mining conditions. Armed with this vital information, mine operators have a basis to defend against any unjustified claims that their operations are having deleterious effects on the stream in question. This paper addresses the purpose, scope, methodology, and interpretation of results of stream biological surveys. Additionally, methods for utilizing information from stream biological surveys will be stressed.« less

  10. Seasonal movement of Dolly Varden and cutthroat trout with respect to stream discharge in a second–order stream in South Alaska

    Treesearch

    M.D. Bryant; M.D. Lukey; J.P. McDonell; R.A. Gubernick; R.S. Aho

    2009-01-01

    The relationship between the movement of small (,150-mm) Dolly Varden Salvelinus malma and cutthroat trout Oncorhynchus clarkii and stream discharge is not well known in streams of southeast Alaska. We measured movement in a small headwater stream using passive integrated transponder (PIT) tags and stationary antennas to record time and date of movement. Fish with PIT...

  11. Strong wave/mean-flow coupling in baroclinic acoustic streaming

    NASA Astrophysics Data System (ADS)

    Chini, Greg; Michel, Guillaume

    2017-11-01

    Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.

  12. Identifying hidden voice and video streams

    NASA Astrophysics Data System (ADS)

    Fan, Jieyan; Wu, Dapeng; Nucci, Antonio; Keralapura, Ram; Gao, Lixin

    2009-04-01

    Given the rising popularity of voice and video services over the Internet, accurately identifying voice and video traffic that traverse their networks has become a critical task for Internet service providers (ISPs). As the number of proprietary applications that deliver voice and video services to end users increases over time, the search for the one methodology that can accurately detect such services while being application independent still remains open. This problem becomes even more complicated when voice and video service providers like Skype, Microsoft, and Google bundle their voice and video services with other services like file transfer and chat. For example, a bundled Skype session can contain both voice stream and file transfer stream in the same layer-3/layer-4 flow. In this context, traditional techniques to identify voice and video streams do not work. In this paper, we propose a novel self-learning classifier, called VVS-I , that detects the presence of voice and video streams in flows with minimum manual intervention. Our classifier works in two phases: training phase and detection phase. In the training phase, VVS-I first extracts the relevant features, and subsequently constructs a fingerprint of a flow using the power spectral density (PSD) analysis. In the detection phase, it compares the fingerprint of a flow to the existing fingerprints learned during the training phase, and subsequently classifies the flow. Our classifier is not only capable of detecting voice and video streams that are hidden in different flows, but is also capable of detecting different applications (like Skype, MSN, etc.) that generate these voice/video streams. We show that our classifier can achieve close to 100% detection rate while keeping the false positive rate to less that 1%.

  13. Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization: Human Factors in Streaming Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Arendt, Dustin L.; Franklin, Lyndsey R.

    Real-world systems change continuously and across domains like traffic monitoring, cyber security, etc., such changes occur within short time scales. This leads to a streaming data problem and produces unique challenges for the human in the loop, as analysts have to ingest and make sense of dynamic patterns in real time. In this paper, our goal is to study how the state-of-the-art in streaming data visualization handles these challenges and reflect on the gaps and opportunities. To this end, we have three contributions: i) problem characterization for identifying domain-specific goals and challenges for handling streaming data, ii) a survey andmore » analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space, and iii) reflections on the perceptually motivated design challenges and potential research directions for addressing them.« less

  14. RELATING WEIGHT AND COUNT DISTRIBUTIONS OF STREAM BED GRAVEL

    EPA Science Inventory

    The size distribution of particles in a stream bed reflects the stream hydrology as well as its physical and chemical water quality characteristics. In environmental assessments, gravel distribution determines habitat quality for aquatic insects and stream suitability for spawnin...

  15. Episodic acidification and changes in fish diversity in Pennsylvania headwater streams

    USGS Publications Warehouse

    Heard, R.M.; Sharpe, W.E.; Carline, R.F.; Kimmel, William G.

    1997-01-01

    Current water chemistry and fish communities in 70 Pennsylvania streams were compared with historical records to determine whether fish species richness had declined and, if so, the possible role of acidification. First-, second-, and third-order streams were selected, and stream sites sampled during the 1961-1971 survey were resampled during May and June 1994 in the Appalachian Plateaus province and during June 1995 in the Valley and Ridge province. Stream-flow was measured and a habitat assessment was completed at each site. Dominant bedrock types influencing the stream sampling site were determined for the Appalachian Plateaus streams. Episodic water chemistry was collected for 39 of the 50 Appalachian Plateaus streams and 14 of the 20 Valley and Ridge streams during the winter and spring of 1996. Thirty-eight (76%) streams of the Appalachian Plateaus province and 13 (65%) streams in the Valley and Ridge province had a loss of fish species since the 1961-1971 sampling period. Habitat scores were not related to losses of fish species. Of the 53 streams sampled during runoff episodes 22 (42%) increased in total dissolved aluminum by more than 50 ??g/L, and 31 (58%) streams decreased in pH by 0.5 units or more. Minnows (Cyprinidae) and darters (Percidae) are sensitive to acidity and were the species most often lost. Streams draining watersheds of the Appalachian Plateaus province dominated by Pottsville bedrock had more acidic water quality during base flow and storm flow sampling periods than streams dominated by Pocono bedrock. The results of this study indicate that many Pennsylvania streams have undergone an alarming reduction in fish diversity during the past 25-34 years. In many of these streams the loss in fish diversity may be attributed to episodic acidification.

  16. The influence of stream thermal regimes and preferential flow paths on hyporheic exchange in a glacial meltwater stream

    USGS Publications Warehouse

    Cozzetto, Karen D.; Bencala, Kenneth E.; Gooseff, Michael N.; McKnight, Diane M.

    2013-01-01

    Given projected increases in stream temperatures attributable to global change, improved understanding of relationships between stream temperatures and hyporheic exchange would be useful. We conducted two conservative tracer injection experiments in a glacial meltwater stream, to evaluate the effects of hyporheic thermal gradients on exchange processes, including preferential flow paths (PFPs). The experiments were conducted on the same day, the first (a stream injection) during a cool, morning period and the second (dual stream and hyporheic injections) during a warm, afternoon period. In the morning, the hyporheic zone was thermally uniform at 4°C, whereas by the afternoon the upper 10 cm had warmed to 6–12°C and exhibited greater temperature heterogeneity. Solute transport modeling showed that hyporheic cross-sectional areas (As) at two downstream sites were two and seven times lower during the warm experiment. Exchange metrics indicated that the hyporheic zone had less influence on downstream solute transport during the warm, afternoon experiment. Calculated hyporheic depths were less than 5 cm, contrasting with tracer detection at 10 and 25 cm depths. The hyporheic tracer arrival at one downstream site was rapid, comparable to the in-stream tracer arrival, providing evidence for PFPs. We thus propose a conceptual view of the hyporheic zone in this reach as being dominated by discrete PFPs weaving through hydraulically isolated areas. One explanation for the simultaneous increase in temperature heterogeneity and As decrease in a warmer hyporheic zone may be a flow path preferentiality feedback mechanism resulting from a combination of temperature-related viscosity decreases and streambed heterogeneity.

  17. Cyclin Kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells

    PubMed Central

    Mansilla, Sabrina F; Bertolin, Agustina P; Bergoglio, Valérie; Pillaire, Marie-Jeanne; González Besteiro, Marina A; Luzzani, Carlos; Miriuka, Santiago G; Hoffmann, Jean-Sébastien; Gottifredi, Vanesa

    2016-01-01

    The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21’s PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis. DOI: http://dx.doi.org/10.7554/eLife.18020.001 PMID:27740454

  18. streamgap-pepper: Effects of peppering streams with many small impacts

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Erkal, Denis; Sanders, Jason

    2017-02-01

    streamgap-pepper computes the effect of subhalo fly-bys on cold tidal streams based on the action-angle representation of streams. A line-of-parallel-angle approach is used to calculate the perturbed distribution function of a given stream segment by undoing the effect of all impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 10^5 Msun, accounting for the stream's internal dispersion and overlapping impacts. This code uses galpy (ascl:1411.008) and the streampepperdf.py galpy extension, which implements the fast calculation of the perturbed stream structure.

  19. Stream macroinvertebrate response to clearcut logging

    Treesearch

    J. Bruce Wallace; Damon Ely

    2014-01-01

    Why study response of stream invertebrates to watershed disturbances such as clearcut logging? Stream invertebrates can be excellent integrators of changes in such ecosystem phenomena as changes in the food base of ecosystems. For example, a number of invertebrate taxa appear to track changes in food resources. Many taxa also exhibit substrate-specific as well as taxon...

  20. Salmon carcass movements in forest streams

    Treesearch

    Burke Strobel; Daniel R. Shivley; Brett B. Roper

    2009-01-01

    The movements of salmon carcasses over time were studied in two forest streams in the context of a large-scale salmon carcass supplementation program. The objectives were to assess both the level of treatment after stream flows had displaced carcasses and to evaluate whether the magnitude of carcass movements outside of a given reach could be predicted. The movements...