Sample records for natal developing cerebellum

  1. Cell-type-specific expression of NFIX in the developing and adult cerebellum.

    PubMed

    Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael

    2017-07-01

    Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

  2. The Cerebellum and Neurodevelopmental Disorders.

    PubMed

    Stoodley, Catherine J

    2016-02-01

    Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit-hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior.

  3. The cerebellum and neurodevelopmental disorders

    PubMed Central

    Stoodley, Catherine J.

    2015-01-01

    Cerebellar dysfunction is evident in several developmental disorders, including autism, attention deficit hyperactivity disorder (ADHD), and developmental dyslexia, and damage to the cerebellum early in development can have long-term effects on movement, cognition, and affective regulation. Early cerebellar damage is often associated with poorer outcomes than cerebellar damage in adulthood, suggesting that the cerebellum is particularly important during development. Differences in cerebellar development and/or early cerebellar damage could impact a wide range of behaviors via the closed-loop circuits connecting the cerebellum with multiple cerebral cortical regions. Based on these anatomical circuits, behavioral outcomes should depend on which cerebro-cerebellar circuits are affected. Here, we briefly review cerebellar structural and functional differences in autism, ADHD, and developmental dyslexia, and discuss clinical outcomes following pediatric cerebellar damage. These data confirm the prediction that abnormalities in different cerebellar subregions produce behavioral symptoms related to the functional disruption of specific cerebro-cerebellar circuits. These circuits might also be crucial to structural brain development, as peri-natal cerebellar lesions have been associated with impaired growth of the contralateral cerebral cortex. The specific contribution of the cerebellum to typical development may therefore involve the optimization of both the structure and function of cerebro-cerebellar circuits underlying skill acquisition in multiple domains; when this process is disrupted, particularly in early development, there could be long-term alterations of these neural circuits, with significant impacts on behavior. PMID:26298473

  4. Cellular commitment in the developing cerebellum

    PubMed Central

    Marzban, Hassan; Del Bigio, Marc R.; Alizadeh, Javad; Ghavami, Saeid; Zachariah, Robby M.; Rastegar, Mojgan

    2014-01-01

    The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum. PMID:25628535

  5. Functional imaging and the cerebellum: recent developments and challenges. Editorial.

    PubMed

    Habas, Christophe

    2012-06-01

    Recent neuroimaging developments allow a better in vivo characterization of the structural and functional connectivity of the human cerebellum. Ultrahigh fields, which considerably increase spatial resolution, enable to visualize deep cerebellar nuclei and cerebello-cortical sublayers. Tractography reconstructs afferent and efferent pathway of the cerebellum. Resting-state functional connectivity individualizes the prewired, parallel close-looped sensorimotor, cognitive, and affective networks passing through the cerebellum. These results are un agreement with activation maps obtained during stimulation functional neuroimaging or inferred from neurological deficits due to cerebellar lesions. Therefore, neuroimaging supports the hypothesis that cerebellum constitutes a general modulator involved in optimizing mental performance and computing internal models. However, the great challenges will remain to unravel: (1) the functional role of red and bulbar olivary nuclei, (2) the information processing in the cerebellar microcircuitry, and (3) the abstract computation performed by the cerebellum and shared by sensorimotor, cognitive, and affective domains.

  6. Current Perspectives on the Cerebellum and Reading Development.

    PubMed

    Alvarez, Travis A; Fiez, Julie A

    2018-05-03

    The dominant neural models of typical and atypical reading focus on the cerebral cortex. However, Nicolson et al. (2001) proposed a model, the cerebellar deficit hypothesis, in which the cerebellum plays an important role in reading. To evaluate the evidence in support of this model, we qualitatively review the current literature and employ meta-analytic tools examining patterns of functional connectivity between the cerebellum and the cerebral reading network. We find evidence for a phonological circuit with connectivity between the cerebellum and a dorsal fronto-parietal pathway, and a semantic circuit with cerebellar connectivity to a ventral fronto-temporal pathway. Furthermore, both cerebral pathways have functional connections with the mid-fusiform gyrus, a region implicated in orthographic processing. Consideration of these circuits within the context of the current literature suggests the cerebellum is positioned to influence both phonological and word-based decoding procedures for recognizing unfamiliar printed words. Overall, multiple lines of research provide support for the cerebellar deficit hypothesis, while also highlighting the need for further research to test mechanistic hypotheses. Copyright © 2018. Published by Elsevier Ltd.

  7. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    PubMed

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  8. Development of the Brainstem and Cerebellum in Autistic Patients.

    ERIC Educational Resources Information Center

    Hashimoto, Toshiaki; And Others

    1995-01-01

    This study of 102 individuals with autism found that the brainstem and cerebellum increased in size with age but were significantly smaller in autistic patients than in controls. Analysis of the speed of development suggests that brainstem and vermian abnormalities in autism were due to an early insult and hypoplasia rather than to progressive…

  9. Equity and Excellence: The Emergence, Consolidation and Internalization of Education Development at the University of Natal

    ERIC Educational Resources Information Center

    Odendaal, Marie; Deacon, Roger

    2009-01-01

    Education development in South Africa emerged during the transition from apartheid to democracy, in a context especially marked by political and financial pressures. This case study of the University of Natal (now the University of KwaZulu-Natal) demonstrates how a strategy combining equity with excellence aimed to facilitate increased access to…

  10. Deficient PKR in RAX/PKR Association Ameliorates Ethanol-Induced Neurotoxicity in the Developing Cerebellum.

    PubMed

    Li, Hui; Chen, Jian; Qi, Yuanlin; Dai, Lu; Zhang, Mingfang; Frank, Jacqueline A; Handshoe, Jonathan W; Cui, Jiajun; Xu, Wenhua; Chen, Gang

    2015-08-01

    Ethanol-induced neuronal loss is closely related to the pathogenesis of fetal alcohol spectrum disorders. The cerebellum is one of the brain areas that are most sensitive to ethanol. The mechanism underlying ethanol neurotoxicity remains unclear. Our previous in vitro studies have shown that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) regulates neuronal apoptosis upon ethanol exposure and ethanol activates PKR through association with its intracellular activator RAX. However, the role of PKR and its interaction with RAX in vivo have not been investigated. In the current study, by utilizing N-PKR-/- mice, C57BL/6J mice with a deficient RAX-binding domain in PKR, we determined the critical role of RAX/PKR association in PKR-regulated ethanol neurotoxicity in the developing cerebellum. Our data indicate that while N-PKR-/- mice have a similar BAC profile as wild-type mice, ethanol induces less brain/body mass reduction as well as cerebellar neuronal loss. In addition, ethanol promotes interleukin-1β (IL-1β) secretion, and IL-1β is a master cytokine regulating inflammatory response. Importantly, ethanol-promoted IL-1β secretion is inhibited in the developing cerebellum of N-PKR-/- mice. Thus, RAX/PKR interaction and PKR activation regulate ethanol neurotoxicity in the developing cerebellum, which may involve ethanol-induced neuroinflammation. Further, PKR could be a possible target for pharmacological intervention to prevent or treat fetal alcohol spectrum disorder (FASD).

  11. Deficient PKR in RAX/PKR Association Ameliorates Ethanol-Induced Neurotoxicity in the Developing Cerebellum

    PubMed Central

    Li, Hui; Chen, Jian; Qi, Yuanlin; Dai, Lu; Zhang, Mingfang; Frank, Jacqueline A.; Handshoe, Jonathan W.; Cui, Jiajun; Xu, Wenhua

    2015-01-01

    Ethanol-induced neuronal loss is closely related to the pathogenesis of fetal alcohol spectrum disorders. The cerebellum is one of the brain areas that are most sensitive to ethanol. The mechanism underlying ethanol neurotoxicity remains unclear. Our previous in vitro studies have shown that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) regulates neuronal apoptosis upon ethanol exposure and ethanol activates PKR through association with its intracellular activator RAX. However, the role of PKR and its interaction with RAX in vivo have not been investigated. In the current study, by utilizing N-PKR−/− mice, C57BL/6J mice with a deficient RAX-binding domain in PKR, we determined the critical role of RAX/PKR association in PKR-regulated ethanol neurotoxicity in the developing cerebellum. Our data indicate that while N-PKR−/− mice have a similar BAC profile as wild-type mice, ethanol induces less brain/body mass reduction as well as cerebellar neuronal loss. In addition, ethanol promotes interleukin-1β (IL-1β) secretion, and IL-1β is a master cytokine regulating inflammatory response. Importantly, ethanol-promoted IL-1β secretion is inhibited in the developing cerebellum of N-PKR−/− mice. Thus, RAX/PKR interaction and PKR activation regulate ethanol neurotoxicity in the developing cerebellum, which may involve ethanol-induced neuroinflammation. Further, PKR could be a possible target for pharmacological intervention to prevent or treat fetal alcohol spectrum disorder (FASD). PMID:25592072

  12. Consensus Paper: The Cerebellum's Role in Movement and Cognition

    PubMed Central

    Koziol, Leonard F.; Budding, Deborah; Andreasen, Nancy; D'Arrigo, Stefano; Bulgheroni, Sara; Imamizu, Hiroshi; Ito, Masao; Manto, Mario; Marvel, Cherie; Parker, Krystal; Pezzulo, Giovanni; Ramnani, Narender; Riva, Daria; Schmahmann, Jeremy; Vandervert, Larry; Yamazaki, Tadashi

    2014-01-01

    While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a “supervised learning machine” can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum. PMID:23996631

  13. Cerebellum: links between development, developmental disorders and motor learning

    PubMed Central

    Manto, Mario U.; Jissendi, Patrice

    2012-01-01

    The study of the links and interactions between development and motor learning has noticeable implications for the understanding and management of neurodevelopmental disorders. This is particularly relevant for the cerebellum which is critical for sensorimotor learning. The olivocerebellar pathway is a key pathway contributing to learning of motor skills. Its developmental maturation and remodeling are being unraveled. Advances in genetics have led to major improvements in our appraisal of the genes involved in cerebellar development, especially studies in mutant mice. Cerebellar neurogenesis is compartmentalized in relationship with neurotransmitter fate. The Engrailed-2 gene is a major actor of the specification of cerebellar cell types and late embryogenic morphogenesis. Math1, expressed by the rhombic lip, is required for the genesis of glutamatergic neurons. Mutants deficient for the transcription factor Ptf1a display a lack of Purkinje cells and gabaergic interneurons. Rora gene contributes to the developmental signaling between granule cells and Purkinje neurons. The expression profile of sonic hedgehog in postnatal stages determines the final size/shape of the cerebellum. Genes affecting the development impact upon the physiological properties of the cerebellar circuits. For instance, receptors are developmentally regulated and their action interferes directly with developmental processes. Another field of research which is expanding relates to very preterm neonates. They are at risk for cerebellar lesions, which may themselves impair the developmental events. Very preterm neonates often show sensori-motor deficits, highlighting another major link between impaired developments and learning deficiencies. Pathways playing a critical role in cerebellar development are likely to become therapeutical targets for several neurodevelopmental disorders. PMID:22291620

  14. Impacts on prenatal development of the human cerebellum: a systematic review.

    PubMed

    Koning, Irene V; Tielemans, Myrte J; Hoebeek, Freek E; Ecury-Goossen, Ginette M; Reiss, Irwin K M; Steegers-Theunissen, Regine P M; Dudink, Jeroen

    2017-10-01

    The cerebellum is essential for normal neurodevelopment and is particularly susceptible for intra-uterine disruptions. Although some causal prenatal exposures have been identified, the origin of neurodevelopmental disorders remains mostly unclear. Therefore, a systematic literature search was conducted to provide an overview of parental environmental exposures and intrinsic factors influencing prenatal cerebellar growth and development in humans. The literature search was limited to human studies in the English language and was conducted in Embase, Medline, Cochrane, Web of Science, Pubmed and GoogleScholar. Eligible studies were selected by three independent reviewers and study quality was scored by two independent reviewers. The search yielded 3872 articles. We found 15 eligible studies reporting associations between cerebellar development and maternal smoking (4), use of alcohol (3), in vitro fertilization mediums (1), mercury (1), mifepristone (2), aminopropionitriles (1), ethnicity (2) and cortisol levels (1). No studies reported on paternal factors. Current literature on associations between parental environmental exposures, intrinsic factors and human cerebellar development is scarce. Yet, this systematic review provided an essential overview of human studies demonstrating the vulnerability of the cerebellum to the intra-uterine environment.

  15. The effect of trichlorfon and methylazoxymethanol on the development of guinea pig cerebellum.

    PubMed

    Mehl, Anna; Schanke, Tore M; Torvik, Ansgar; Fonnum, Frode

    2007-03-01

    The pesticide trichlorfon (125 mg/kg on days 42-44 in gestation) gives hypoplasia of the brain of the offspring without any significant reduction in their body weights. The hypoplasia may be caused by trichlorfon itself or by its metabolite dichlorvos. This period of development coincides with the growth spurt period of guinea pig brain. The largest changes occurred in the cerebellum. Electron microscopic examination of the cerebellar cortex showed increased apoptotic death of cells in the granule cell layer after trichlorfon treatment. A reduction in thickness of the external germinal layer of the cerebellar cortex and an elevated amount of pyknotic and karyorrhexic cells in the granule cell layer was found. There was a significant reduction in choline esterase, choline acetyltransferase and glutamate decarboxylase activities in the cerebellum. Methylazoxymethanol (15 mg/kg body weight, day 43) was examined for comparison and caused similar hypoplasia of the guinea pig cerebellum, but did also induce a reduction in body weight. Trichloroethanol, the main metabolite of trichlorfon, did not give brain hypoplasia.

  16. Cerebellum - function (image)

    MedlinePlus

    The cerebellum processes input from other areas of the brain, spinal cord and sensory receptors to provide precise timing ... the skeletal muscular system. A stroke affecting the cerebellum may cause dizziness, nausea, balance and coordination problems.

  17. Nicotinamide Inhibits Ethanol-Induced Caspase-3 and PARP-1 Over-activation and Subsequent Neurodegeneration in the Developing Mouse Cerebellum.

    PubMed

    Ieraci, Alessandro; Herrera, Daniel G

    2018-06-01

    Fetal alcohol spectrum disorder (FASD) is the principal preventable cause of mental retardation in the western countries resulting from alcohol exposure during pregnancy. Ethanol-induced massive neuronal cell death occurs mainly in immature neurons during the brain growth spurt period. The cerebellum is one of the brain areas that are most sensitive to ethanol neurotoxicity. Currently, there is no effective treatment that targets the causes of these disorders and efficient treatments to counteract or reverse FASD are desirable. In this study, we investigated the effects of nicotinamide on ethanol-induced neuronal cell death in the developing cerebellum. Subcutaneous administration of ethanol in postnatal 4-day-old mice induced an over-activation of caspase-3 and PARP-1 followed by a massive neurodegeneration in the developing cerebellum. Interestingly, treatment with nicotinamide, immediately or 2 h after ethanol exposure, diminished caspase-3 and PARP-1 over-activation and reduced ethanol-induced neurodegeneration. Conversely, treatment with 3-aminobenzadine, a specific PARP-1 inhibitor, was able to completely block PARP-1 activation, but not caspase-3 activation or ethanol-induced neurodegeneration in the developing cerebellum. Our results showed that nicotinamide reduces ethanol-induced neuronal cell death and inhibits both caspase-3 and PARP-1 alcohol-induced activation in the developing cerebellum, suggesting that nicotinamide might be a promising and safe neuroprotective agent for treating FASD and other neurodegenerative disorders in the developing brain that shares similar cell death pathways.

  18. CERES: A new cerebellum lobule segmentation method.

    PubMed

    Romero, Jose E; Coupé, Pierrick; Giraud, Rémi; Ta, Vinh-Thong; Fonov, Vladimir; Park, Min Tae M; Chakravarty, M Mallar; Voineskos, Aristotle N; Manjón, Jose V

    2017-02-15

    The human cerebellum is involved in language, motor tasks and cognitive processes such as attention or emotional processing. Therefore, an automatic and accurate segmentation method is highly desirable to measure and understand the cerebellum role in normal and pathological brain development. In this work, we propose a patch-based multi-atlas segmentation tool called CERES (CEREbellum Segmentation) that is able to automatically parcellate the cerebellum lobules. The proposed method works with standard resolution magnetic resonance T1-weighted images and uses the Optimized PatchMatch algorithm to speed up the patch matching process. The proposed method was compared with related recent state-of-the-art methods showing competitive results in both accuracy (average DICE of 0.7729) and execution time (around 5 minutes). Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Shark attack in Natal.

    PubMed

    White, J A

    1975-02-01

    The injuries in 5 cases of shark attack in Natal during 1973-74 are reviewed. Experience in shark attacks in South Africa during this period is discussed (1965-73), and the value of protecting heavily utilized beaches in Natal with nets is assessed. The surgical applications of elasmobranch research at the Oceanographic Research Institute (Durban) and at the Headquarters of the Natal Anti-Shark Measures Board (Umhlanga Rocks) are described. Modern trends in the training of surf life-guards, the provision of basic equipment for primary resuscitation of casualties on the beaches, and the policy of general and local care of these patients in Natal are discussed.

  20. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  1. Developmental post-natal stress can alter the effects of pre-natal stress on the adult redox balance.

    PubMed

    Marasco, Valeria; Spencer, Karen A; Robinson, Jane; Herzyk, Pawel; Costantini, David

    2013-09-15

    Across diverse vertebrate taxa, stressful environmental conditions during development can shape phenotypic trajectories of developing individuals, which, while adaptive in the short-term, may impair health and survival in adulthood. Regardless, the long-lasting benefits or costs of early life stress are likely to depend on the conditions experienced across differing stages of development. Here, we used the Japanese quail (Coturnix coturnix japonica) to experimentally manipulate exposure to stress hormones in developing individuals. We tested the hypothesis that interactions occurring between pre- and post-natal developmental periods can induce long-term shifts on the adult oxidant phenotype in non-breeding sexually mature individuals. We showed that early life stress can induce long-term alterations in the basal antioxidant defences. The magnitude of these effects depended upon the timing of glucocorticoid exposure and upon interactions between the pre- and post-natal stressful stimuli. We also found differences among tissues with stronger effects in the erythrocytes than in the brain in which the long-term effects of glucocorticoids on antioxidant biomarkers appeared to be region-specific. Recent experimental work has demonstrated that early life exposure to stress hormones can markedly reduce adult survival (Monaghan et al., 2012). Our results suggest that long-term shifts in basal antioxidant defences might be one of the potential mechanisms driving such accelerated ageing processes and that post-natal interventions during development may be a potential tool to shape the effects induced by pre-natally glucococorticoid-exposed phenotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Identification of thyroid hormone receptor binding sites and target genes using ChIP-on-chip in developing mouse cerebellum.

    PubMed

    Dong, Hongyan; Yauk, Carole L; Rowan-Carroll, Andrea; You, Seo-Hee; Zoeller, R Thomas; Lambert, Iain; Wade, Michael G

    2009-01-01

    Thyroid hormone (TH) is critical to normal brain development, but the mechanisms operating in this process are poorly understood. We used chromatin immunoprecipitation to enrich regions of DNA bound to thyroid receptor beta (TRbeta) of mouse cerebellum sampled on post natal day 15. Enriched target was hybridized to promoter microarrays (ChIP-on-chip) spanning -8 kb to +2 kb of the transcription start site (TSS) of 5000 genes. We identified 91 genes with TR binding sites. Roughly half of the sites were located in introns, while 30% were located within 1 kb upstream (5') of the TSS. Of these genes, 83 with known function included genes involved in apoptosis, neurodevelopment, metabolism and signal transduction. Two genes, MBP and CD44, are known to contain TREs, providing validation of the system. This is the first report of TR binding for 81 of these genes. ChIP-on-chip results were confirmed for 10 of the 13 binding fragments using ChIP-PCR. The expression of 4 novel TH target genes was found to be correlated with TH levels in hyper/hypothyroid animals providing further support for TR binding. A TRbeta binding site upstream of the coding region of myelin associated glycoprotein was demonstrated to be TH-responsive using a luciferase expression system. Motif searches did not identify any classic binding elements, indicating that not all TR binding sites conform to variations of the classic form. These findings provide mechanistic insight into impaired neurodevelopment resulting from TH deficiency and a rich bioinformatics resource for developing a better understanding of TR binding.

  3. Can clues from evolution unlock the molecular development of the cerebellum?

    PubMed

    Butts, Thomas; Chaplin, Natalie; Wingate, Richard J T

    2011-02-01

    The cerebellum sits at the rostral end of the vertebrate hindbrain and is responsible for sensory and motor integration. Owing to its relatively simple architecture, it is one of the most powerful model systems for studying brain evolution and development. Over the last decade, the combination of molecular fate mapping techniques in the mouse and experimental studies, both in vitro and in vivo, in mouse and chick have significantly advanced our understanding of cerebellar neurogenesis in space and time. In amniotes, the most numerous cell type in the cerebellum, and indeed the brain, is the cerebellar granule neurons, and these are born from a transient secondary proliferative zone, the external granule layer (EGL), where proliferation is driven by sonic hedgehog signalling and causes cerebellar foliation. Recent studies in zebrafish and sharks have shown that while the molecular mechanisms of neurogenesis appear conserved across vertebrates, the EGL as a site of shh-driven transit amplification is not, and is therefore implicated as a key amniote innovation that facilitated the evolution of the elaborate foliated cerebella found in birds and mammals. Ellucidating the molecular mechanisms underlying the origin of the EGL in evolution could have significant impacts on our understanding of the molecular details of cerebellar development.

  4. The Cerebellum, Sensitive Periods, and Autism

    PubMed Central

    Wang, Samuel S.-H.; Kloth, Alexander D.; Badura, Aleksandra

    2014-01-01

    Cerebellar research has focused principally on adult motor function. However, the cerebellum also maintains abundant connections with nonmotor brain regions throughout postnatal life. Here we review evidence that the cerebellum may guide the maturation of remote nonmotor neural circuitry and influence cognitive development, with a focus on its relationship with autism. Specific cerebellar zones influence neocortical substrates for social interaction, and we propose that sensitive-period disruption of such internal brain communication can account for autism's key features. PMID:25102558

  5. Evaluation of the fetal cerebellum by magnetic resonance imaging.

    PubMed

    Llorens Salvador, R; Viegas Sainz, A; Montoya Filardi, A; Montoliu Fornas, G; Menor Serrano, F

    Obstetric protocols dictate that the fetal cerebellum should always be assessed during sonograms during pregnancy. For various reasons, including technical limitations or inconclusive sonographic findings, suspicion of cerebellar abnormalities is one of the most common indications for prenatal magnetic resonance imaging (MRI). Although sonography is the imaging technique of choice to assess the cerebellum, MRI shows the anatomy of the posterior fossa and abnormalities in the development of the fetal cerebellum in greater detail and thus enables a more accurate prenatal diagnosis. We describe and illustrate the normal anatomy of the fetal cerebellum on MRI as well as the different diseases that can affect its development. Moreover, we review the most appropriate terminology to define developmental abnormalities, their differential diagnoses, and the role of MRI in the prenatal evaluation of the posterior fossa. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. A robot conditioned reflex system modeled after the cerebellum.

    NASA Technical Reports Server (NTRS)

    Albus, J. S.

    1972-01-01

    Reduction of a theory of cerebellar function to computer software for the control of a mechanical manipulator. This reduction is achieved by considering the cerebellum, along with the higher-level brain centers which control it, as a type of finite-state machine with input entering the cerebellum via mossy fibers from the periphery and output from the cerebellum occurring via Purkinje cells. It is hypothesized that the cerebellum learns by an error-correction system similar to Perceptron training algorithms. An electromechanical model of the cerebellum is then developed for the control of a mechanical arm. The problem of modeling the granular layer which selects the set of parallel fibers which are active at any instant of time is considered, and a relevance matrix is constructed to model the relative degree of influence which mossy fibers from the various joints have on the sets of granule cells unique to each joint.

  7. Pre-natal and post-natal growth trajectories and childhood cognitive ability and mental health.

    PubMed

    Yang, Seungmi; Tilling, Kate; Martin, Richard; Davies, Neil; Ben-Shlomo, Yoav; Kramer, Michael S

    2011-10-01

    Most studies of the associations between pre-natal or post-natal growth and cognitive ability have been based on children with pathologically slow growth measured between two time points only, rather than children with normal growth trajectories estimated from multiple measures of growth. We investigated the associations of pre-natal and post-natal trajectories in both weight and length/height through the first 5 years of life with cognitive ability and mental health at 6.5 years of age among healthy children. Our study is based on 11 899 children who were born healthy at ≥37 completed weeks with birth weight ≥2500 g and had up to 13 measures of weight and length/height from birth to age 5 years and cognitive ability and behaviour measured at 6.5 years. Using a linear spline random-effects model with 2 knots at 3 and 12 months, we estimated growth trajectories for each child from birth to age 5 years in weight and length/height in four periods: gestational age-specific birth weight and length (pre-natal 'growth'), early infancy (0-3 months), late infancy (3-12 months) and early childhood (1-5 years). We used generalized estimating equations to estimate mean differences in IQ and mental health according to pre-natal and post-natal growth trajectory. IQ was measured using the Wechsler Abbreviated Scales of Intelligence, and mental health was assessed using the Strengths and Difficulties Questionnaire. A 1 standard deviation (SD) in birth weight was positively associated with cognitive ability (0.82 IQ points, 95% CI: 0.54-1.10) after adjusting for confounders. For post-natal weight gain trajectories, a 1 SD faster weight gain was associated with an increase of 0.77 (95% CI: 0.42-1.11) IQ points for early infancy, 0.30 (95% CI: 0.02-0.58) points for late infancy, and 0.40 (95% CI: 0.04-0.76) for early childhood after adjusting for confounders and for earlier growth. For length/height trajectories, the magnitudes of increase in cognitive ability were similar

  8. Genome-Wide Search Reveals the Existence of a Limited Number of Thyroid Hormone Receptor Alpha Target Genes in Cerebellar Neurons

    PubMed Central

    Chatonnet, Fabrice; Guyot, Romain; Picou, Frédéric; Bondesson, Maria; Flamant, Frederic

    2012-01-01

    Thyroid hormone (T3) has a major influence on cerebellum post-natal development. The major phenotypic landmark of exposure to low levels of T3 during development (hypothyroidism) in the cerebellum is the retarded inward migration of the most numerous cell type, granular neurons. In order to identify the direct genetic regulation exerted by T3 on cerebellar neurons and their precursors, we used microarray RNA hybridization to perform a time course analysis of T3 induced gene expression in primary cultures of cerebellar neuronal cell. These experiments suggest that we identified a small set of genes which are directly regulated, both in vivo and in vitro, during cerebellum post-natal development. These modest changes suggest that T3 does not acts directly on granular neurons and mainly indirectly influences the cellular interactions taking place during development. PMID:22586439

  9. Gene transfer to the cerebellum.

    PubMed

    Louboutin, Jean-Pierre; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S

    2010-12-01

    There are several diseases for which gene transfer therapy to the cerebellum might be practicable. In these studies, we used recombinant Tag-deleted SV40-derived vectors (rSV40s) to study gene delivery targeting the cerebellum. These vectors transduce neurons and microglia very effectively in vitro and in vivo, and so we tested them to evaluate gene transfer to the cerebellum in vivo. Using a rSV40 vector carrying human immunodeficiency virus (HIV)-Nef with a C-terminal FLAG epitope, we characterized the distribution, duration, and cell types transduced. Rats received test and control vectors by stereotaxic injection into the cerebellum. Transgene expression was assessed 1, 2, and 4 weeks later by immunostaining of serial brain sections. FLAG epitope-expressing cells were seen, at all times after vector administration, principally detected in the Purkinje cells of the cerebellum, identified as immunopositive for calbindin. Occasional microglial cells were tranduced; transgene expression was not detected in astrocytes or oligodendrocytes. No inflammatory or other reaction was detected at any time. Thus, SV40-derived vectors can deliver effective, safe, and durable transgene expression to the cerebellum.

  10. Linking Essential Tremor to the Cerebellum: Neurochemical Evidence.

    PubMed

    Marin-Lahoz, Juan; Gironell, Alexandre

    2016-06-01

    The pathophysiology and the exact anatomy of essential tremor (ET) is not well known. One of the pillars that support the cerebellum as the main anatomical locus in ET is neurochemistry. This review examines the link between neurochemical abnormalities found in ET and cerebellum. The review is based on published data about neurochemical abnormalities described in ET both in human and in animal studies. We try to link those findings with cerebellum. γ-aminobutyric acid (GABA) is the main neurotransmitter involved in the pathophysiology of ET. There are several studies about GABA that clearly points to a main role of the cerebellum. There are few data about other neurochemical abnormalities in ET. These include studies with noradrenaline, glutamate, adenosine, proteins, and T-type calcium channels. One single study reveals high levels of noradrenaline in the cerebellar cortex. Another study about serotonin neurotransmitter results negative for cerebellum involvement. Finally, studies on T-type calcium channels yield positive results linking the rhythmicity of ET and cerebellum. Neurochemistry supports the cerebellum as the main anatomical locus in ET. The main neurotransmitter involved is GABA, and the GABA hypothesis remains the most robust pathophysiological theory of ET to date. However, this hypothesis does not rule out other mechanisms and may be seen as the main scaffold to support findings in other systems. We clearly need to perform more studies about neurochemistry in ET to better understand the relations among the diverse systems implied in ET. This is mandatory to develop more effective pharmacological therapies.

  11. The volume of the cerebellum in the second semester of gestation.

    PubMed

    Vulturar, Damiana; Fărcăşanu, Alexandru; Turcu, Flaviu; Boitor, Dan; Crivii, Carmen

    2018-01-01

    The cerebellum ("little brain"), the largest part of hind brain, lies in the posterior cranial fossa, beneath the occipital lobe and dorsal to the brainstem. It develops over a long period: it is one of the first structures in the brain to begin to differentiate, but one of the last to mature. The use of ultrasonography has significantly improved the evaluation of fetal growth and development and has permitted prenatal diagnosis of a variety of congenital malformations.The aim of our study was to evaluate the cerebellar growth and development using 2 different measuring techniques: microMRI and ultrasound technique. The cerebellum measurements were related to gestational age. We used 14 human fetuses corresponding to 15-28 gestational weeks, immersed in a 9% formalin solution. Magnetic Resonance Imaging (MRI) was performed by employing a Bruker BioSpec 70/16USR scanner (Bruker BioSpin MRI GmbH, Ettlingen, Germany), operated at 7.04 Tesla for cerebellar volume measurement. Ultrasonographic measurements of the cerebellum diameter were performed on 14 pregnant women, 15 - 28 gestational weeks. Ultrasound scan used 5-10 MHZ for transvaginal approach. Taking into consideration the values of the cerebellum dimensions and considering the general shape of the cerebellum as a transverse ellipsoid, the volume of the cerebellum was calculated by a mathematical formula for ellipsoid volume. The study correlates the measurements from the microMRI study with the ultrasounds data and the results are superposable. Both established the exponential volume growth after the 22-23 GW. We used the ellipsoid volume formula for the cerebellar volume using the half of the three diameters of the cerebellum determined by ultrasound measurements:Cerebellar Volume = Ellipsoid volume = 3/4 π r1 r2 r3. There is a linear correlation between the microMRI measurements and ultrasound determinations. Based on all collected data we could apply an easy formula to calculate the volume of cerebellum, a

  12. Cerebellum and apraxia.

    PubMed

    Mariën, Peter; van Dun, Kim; Verhoeven, Jo

    2015-02-01

    As early as the beginning of the nineteenth century, a variety of nonmotor cognitive and affective impairments associated with cerebellar pathology were occasionally documented. A causal link between cerebellar disease and nonmotor cognitive and affective disorders has, however, been dismissed for almost two centuries. During the past decades, the prevailing view of the cerebellum as a mere coordinator of autonomic and somatic motor function has changed fundamentally. Substantial progress has been made in elucidating the neuroanatomical connections of the cerebellum with the supratentorial association cortices that subserve nonmotor cognition and affect. Furthermore, functional neuroimaging studies and neurophysiological and neuropsychological research have shown that the cerebellum is crucially involved in modulating cognitive and affective processes. This paper presents an overview of the clinical and neuroradiological evidence supporting the view that the cerebellum plays an intrinsic part in purposeful, skilled motor actions. Despite the increasing number of studies devoted to a further refinement of the typology and anatomoclinical configurations of apraxia related to cerebellar pathology, the exact underlying pathophysiological mechanisms of cerebellar involvement remain to be elucidated. As genuine planning, organization, and execution disorders of skilled motor actions not due to motor, sensory, or general intellectual failure, the apraxias following disruption of the cerebrocerebellar network may be hypothetically considered to form part of the executive cluster of the cerebellar cognitive affective syndrome (CCAS), a highly influential concept defined by Schmahmann and Sherman (Brain 121:561-579, 1998) on the basis of four symptom clusters grouping related neurocognitive and affective deficits (executive, visuospatial, affective, and linguistic impairments). However, since only a handful of studies have explored the possible role of the cerebellum in

  13. Consensus Paper: Cerebellum and Emotion.

    PubMed

    Adamaszek, M; D'Agata, F; Ferrucci, R; Habas, C; Keulen, S; Kirkby, K C; Leggio, M; Mariën, P; Molinari, M; Moulton, E; Orsi, L; Van Overwalle, F; Papadelis, C; Priori, A; Sacchetti, B; Schutter, D J; Styliadis, C; Verhoeven, J

    2017-04-01

    Over the past three decades, insights into the role of the cerebellum in emotional processing have substantially increased. Indeed, methodological refinements in cerebellar lesion studies and major technological advancements in the field of neuroscience are in particular responsible to an exponential growth of knowledge on the topic. It is timely to review the available data and to critically evaluate the current status of the role of the cerebellum in emotion and related domains. The main aim of this article is to present an overview of current facts and ongoing debates relating to clinical, neuroimaging, and neurophysiological findings on the role of the cerebellum in key aspects of emotion. Experts in the field of cerebellar research discuss the range of cerebellar contributions to emotion in nine topics. Topics include the role of the cerebellum in perception and recognition, forwarding and encoding of emotional information, and the experience and regulation of emotional states in relation to motor, cognitive, and social behaviors. In addition, perspectives including cerebellar involvement in emotional learning, pain, emotional aspects of speech, and neuropsychiatric aspects of the cerebellum in mood disorders are briefly discussed. Results of this consensus paper illustrate how theory and empirical research have converged to produce a composite picture of brain topography, physiology, and function that establishes the role of the cerebellum in many aspects of emotional processing.

  14. Hallermann-Streiff syndrome associated with small cerebellum, endocrinopathy and increased chromosomal breakage.

    PubMed

    Hou, J W

    2003-07-01

    Hallermann-Streiff syndrome (HSS) is a rare clinic entity of unknown aetiology. Further clinical and metabolic-genetic evaluations are indicated. A 2-mo-old female baby presented with ocular abnormalities and severe failure to thrive since birth. The clinical features were compatible with the diagnosis of HSS. Further imaging, metabolic and cytogenetic examinations were performed. Features characteristic of HSS were dyscephaly with mandibular and nasal cartilage hypoplasia, microphthalmia, bilateral cataracts with congenital glaucoma, natal teeth and proportionate dwarfism. Rare anomalies such as choanal atresia and small cerebellum, very low insulin-like growth factor I level, hypothyroidism, generalized organic aciduria were also noticed. An increased chromosomal breakage rate is suggestive of the existence of some DNA repair defects in HSS patients. The associated anomalies in this patient may broaden the clinical spectrum of HSS. Underlying conditions of organic aciduria, growth factor deficiency and impaired DNA repair are likely to contribute to the progeria-like facies, congenital cataracts and growth failure.

  15. Effect of hypo- and hyperthyroidism on hexokinase in the developing cerebellum of the rat.

    PubMed

    Gutekunst, D I; Wilson, J E

    1981-05-01

    Total hexokinase levels (units/g tissue) have been measured during postnatal development of the cerebellum in control, hypothyroid, and hyperthyroid rats. In addition. distribution of hexokinase in the developing cerebellum has been observed with an immunofluorescence method. Hypothyroidism delays the normally observed postnatal increase in total hexokinase activity, whereas hyperthyroidism accelerates the increase. In normal animals, hexokinase levels in maturing Purkinje cells pass through a transient increase, with maximal levels at approximately 8 days postnatally followed by rapid decline to relatively low levels by 12 days; hypothyroidism delays this transient increase and subsequent decline, but hyperthyroidism does not appear to affect markedly the timing of this phenomenon. Cerebellar glomeruli are relatively enriched in hexokinase content, as judged by their intense fluorescence. Hypothyroidism delays the development of intensely stained glomeruli. Hyperthyroidism did not appear to cause precocious increase in numbers of glomeruli but may have increased the rate at which the hexokinase was assimilated by newly formed glomeruli. The effects of hypo- and hyperthyroidism on total cerebellar hexokinase levels are interpreted in terms of the effect of thyroid hormone on the biochemical maturation of synaptic structures rich in hexokinase.

  16. Consensus paper: Language and the cerebellum: an ongoing enigma.

    PubMed

    Mariën, Peter; Ackermann, Herman; Adamaszek, Michael; Barwood, Caroline H S; Beaton, Alan; Desmond, John; De Witte, Elke; Fawcett, Angela J; Hertrich, Ingo; Küper, Michael; Leggio, Maria; Marvel, Cherie; Molinari, Marco; Murdoch, Bruce E; Nicolson, Roderick I; Schmahmann, Jeremy D; Stoodley, Catherine J; Thürling, Markus; Timmann, Dagmar; Wouters, Ellen; Ziegler, Wolfram

    2014-06-01

    In less than three decades, the concept "cerebellar neurocognition" has evolved from a mere afterthought to an entirely new and multifaceted area of neuroscientific research. A close interplay between three main strands of contemporary neuroscience induced a substantial modification of the traditional view of the cerebellum as a mere coordinator of autonomic and somatic motor functions. Indeed, the wealth of current evidence derived from detailed neuroanatomical investigations, functional neuroimaging studies with healthy subjects and patients and in-depth neuropsychological assessment of patients with cerebellar disorders shows that the cerebellum has a cardinal role to play in affective regulation, cognitive processing, and linguistic function. Although considerable progress has been made in models of cerebellar function, controversy remains regarding the exact role of the "linguistic cerebellum" in a broad variety of nonmotor language processes. This consensus paper brings together a range of different viewpoints and opinions regarding the contribution of the cerebellum to language function. Recent developments and insights in the nonmotor modulatory role of the cerebellum in language and some related disorders will be discussed. The role of the cerebellum in speech and language perception, in motor speech planning including apraxia of speech, in verbal working memory, in phonological and semantic verbal fluency, in syntax processing, in the dynamics of language production, in reading and in writing will be addressed. In addition, the functional topography of the linguistic cerebellum and the contribution of the deep nuclei to linguistic function will be briefly discussed. As such, a framework for debate and discussion will be offered in this consensus paper.

  17. Embodied cognitive evolution and the cerebellum.

    PubMed

    Barton, Robert A

    2012-08-05

    Much attention has focused on the dramatic expansion of the forebrain, particularly the neocortex, as the neural substrate of cognitive evolution. However, though relatively small, the cerebellum contains about four times more neurons than the neocortex. I show that commonly used comparative measures such as neocortex ratio underestimate the contribution of the cerebellum to brain evolution. Once differences in the scaling of connectivity in neocortex and cerebellum are accounted for, a marked and general pattern of correlated evolution of the two structures is apparent. One deviation from this general pattern is a relative expansion of the cerebellum in apes and other extractive foragers. The confluence of these comparative patterns, studies of ape foraging skills and social learning, and recent evidence on the cognitive neuroscience of the cerebellum, suggest an important role for the cerebellum in the evolution of the capacity for planning, execution and understanding of complex behavioural sequences--including tool use and language. There is no clear separation between sensory-motor and cognitive specializations underpinning such skills, undermining the notion of executive control as a distinct process. Instead, I argue that cognitive evolution is most effectively understood as the elaboration of specialized systems for embodied adaptive control.

  18. Computational Architecture of the Granular Layer of Cerebellum-Like Structures.

    PubMed

    Bratby, Peter; Sneyd, James; Montgomery, John

    2017-02-01

    In the adaptive filter model of the cerebellum, the granular layer performs a recoding which expands incoming mossy fibre signals into a temporally diverse set of basis signals. The underlying neural mechanism is not well understood, although various mechanisms have been proposed, including delay lines, spectral timing and echo state networks. Here, we develop a computational simulation based on a network of leaky integrator neurons, and an adaptive filter performance measure, which allows candidate mechanisms to be compared. We demonstrate that increasing the circuit complexity improves adaptive filter performance, and relate this to evolutionary innovations in the cerebellum and cerebellum-like structures in sharks and electric fish. We show how recurrence enables an increase in basis signal duration, which suggest a possible explanation for the explosion in granule cell numbers in the mammalian cerebellum.

  19. Indian hedgehog roles in post-natal TMJ development and organization.

    PubMed

    Ochiai, T; Shibukawa, Y; Nagayama, M; Mundy, C; Yasuda, T; Okabe, T; Shimono, K; Kanyama, M; Hasegawa, H; Maeda, Y; Lanske, B; Pacifici, M; Koyama, E

    2010-04-01

    Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function.

  20. Histological study on hippocampus, amygdala and cerebellum following low lead exposure during prenatal and postnatal brain development in rats.

    PubMed

    Barkur, Rajashekar Rao; Bairy, Laxminarayana K

    2016-06-01

    Neuropsychological studies in children who are exposed to lead during their early brain development have shown to develop behavioural and cognitive deficit. The aim of the present study was to assess the cellular damage in hippocampus, amygdala and cerebellum of rat pups exposed to lead during different periods of early brain development. Five groups of rat pups were investigated. (a) Control group (n = 8) (mothers of these rats were given normal drinking water throughout gestation and lactation), (b) pregestation lead-exposed group (n = 8) (mothers of these rats were exposed to 0.2% lead acetate in the drinking water for one month before conception), (c) gestation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout gestation [gestation day 01 to day 21]), (d) lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout lactation [postnatal day 01 to day 21]) and (e) gestation and lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate throughout gestation and lactation). On postnatal day 30, rat pups of all the groups were killed. Numbers of surviving neurons in the hippocampus, amygdala and cerebellum regions were counted using cresyl violet staining technique. Histological data indicate that lead exposure caused significant damage to neurons of hippocampus, amygdala and cerebellum regions in all lead-exposed groups except lactation lead-exposed group. The extent of damage to neurons of hippocampus, amygdala and cerebellum regions in lactation lead-exposed group was comparable to gestation and lactation groups even though the duration of lead exposure was much less in lactation lead-exposed group. To conclude, the postnatal period of brain development seems to be more vulnerable to lead neurotoxicity compared to prenatal period of brain development. © The Author(s) 2014.

  1. The cerebellum mediates conflict resolution.

    PubMed

    Schweizer, Tom A; Oriet, Chris; Meiran, Nachshon; Alexander, Michael P; Cusimano, Michael; Stuss, Donald T

    2007-12-01

    Regions within the frontal and parietal cortex have been implicated as important neural correlates for cognitive control during conflict resolution. Despite the extensive reciprocal connectivity between the cerebellum and these putatively critical cortical areas, a role for the cerebellum in conflict resolution has never been identified. We used a task-switching paradigm that separates processes related to task-set switching and the management of response conflict independent of motor processing. Eleven patients with chronic, focal lesions to the cerebellum and 11 healthy controls were compared. Patients were slower and less accurate in conditions involving conflict resolution. In the absence of response conflict, however, tasks-witching abilities were not impaired in our patients. The cerebellum may play an important role in coordinating with other areas of cortex to modulate active response states. These results are the first demonstration of impaired conflict resolution following cerebellar lesions in the presence of an intact prefrontal cortex.

  2. Natal foraging philopatry in eastern Pacific hawksbill turtles.

    PubMed

    Gaos, Alexander R; Lewison, Rebecca L; Jensen, Michael P; Liles, Michael J; Henriquez, Ana; Chavarria, Sofia; Pacheco, Carlos Mario; Valle, Melissa; Melero, David; Gadea, Velkiss; Altamirano, Eduardo; Torres, Perla; Vallejo, Felipe; Miranda, Cristina; LeMarie, Carolina; Lucero, Jesus; Oceguera, Karen; Chácon, Didiher; Fonseca, Luis; Abrego, Marino; Seminoff, Jeffrey A; Flores, Eric E; Llamas, Israel; Donadi, Rodrigo; Peña, Bernardo; Muñoz, Juan Pablo; Ruales, Daniela Alarcòn; Chaves, Jaime A; Otterstrom, Sarah; Zavala, Alan; Hart, Catherine E; Brittain, Rachel; Alfaro-Shigueto, Joanna; Mangel, Jeffrey; Yañez, Ingrid L; Dutton, Peter H

    2017-08-01

    The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles ( Eretmochelys imbricata ) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry.

  3. Natal foraging philopatry in eastern Pacific hawksbill turtles

    PubMed Central

    Lewison, Rebecca L.; Jensen, Michael P.; Liles, Michael J.; Henriquez, Ana; Chavarria, Sofia; Pacheco, Carlos Mario; Valle, Melissa; Melero, David; Gadea, Velkiss; Altamirano, Eduardo; Torres, Perla; Vallejo, Felipe; Miranda, Cristina; LeMarie, Carolina; Lucero, Jesus; Oceguera, Karen; Chácon, Didiher; Fonseca, Luis; Abrego, Marino; Seminoff, Jeffrey A.; Flores, Eric E.; Llamas, Israel; Donadi, Rodrigo; Peña, Bernardo; Muñoz, Juan Pablo; Ruales, Daniela Alarcòn; Chaves, Jaime A.; Otterstrom, Sarah; Zavala, Alan; Hart, Catherine E.; Brittain, Rachel; Alfaro-Shigueto, Joanna; Mangel, Jeffrey; Yañez, Ingrid L.; Dutton, Peter H.

    2017-01-01

    The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles (Eretmochelys imbricata) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry. PMID:28878969

  4. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum.

    PubMed

    Hibi, Masahiko; Matsuda, Koji; Takeuchi, Miki; Shimizu, Takashi; Murakami, Yasunori

    2017-05-01

    The cerebellum is derived from the dorsal part of the anterior-most hindbrain. The vertebrate cerebellum contains glutamatergic granule cells (GCs) and gamma-aminobutyric acid (GABA)ergic Purkinje cells (PCs). These cerebellar neurons are generated from neuronal progenitors or neural stem cells by mechanisms that are conserved among vertebrates. However, vertebrate cerebella are widely diverse with respect to their gross morphology and neural circuits. The cerebellum of cyclostomes, the basal vertebrates, has a negligible structure. Cartilaginous fishes have a cerebellum containing GCs, PCs, and deep cerebellar nuclei (DCNs), which include projection neurons. Ray-finned fish lack DCNs but have projection neurons termed eurydendroid cells (ECs) in the vicinity of the PCs. Among ray-finned fishes, the cerebellum of teleost zebrafish has a simple lobular structure, whereas that of weakly electric mormyrid fish is large and foliated. Amniotes, which include mammals, independently evolved a large, foliated cerebellum, which contains massive numbers of GCs and has functional connections with the dorsal telencephalon (neocortex). Recent studies of cyclostomes and cartilaginous fish suggest that the genetic program for cerebellum development was already encoded in the genome of ancestral vertebrates. In this review, we discuss how alterations of the genetic and cellular programs generated diversity of the cerebellum during evolution. © 2017 Japanese Society of Developmental Biologists.

  5. Hilton College Farm School, Natal, South Africa.

    ERIC Educational Resources Information Center

    Beveridge, Sue

    1989-01-01

    The Hilton College Farm School is a primary school providing for the educational needs of children in a rural area of Natal, South Africa. Described are the school's historical development, funding sources, staffing, and development of an affiliated pre-primary school. (JDD)

  6. Differential Regulation of the Ascorbic Acid Transporter SVCT2 during Development and in Response to Ascorbic Acid Depletion

    PubMed Central

    Meredith, M. Elizabeth; Harrison, Fiona E.; May, James M.

    2011-01-01

    The sodium-dependent vitamin C transporter-2 (SVCT2) is the only ascorbic acid (ASC) transporter significantly expressed in brain. It is required for life and critical during brain development to supply adequate levels of ASC. To assess SVCT2 function in the developing brain, we studied time-dependent SVCT2 mRNA and protein expression in mouse brain, using liver as a comparison tissue because it is the site of ASC synthesis. We found that SVCT2 expression followed an inverse relationship with ASC levels in the developing brain. In cortex and cerebellum, ASC levels were high throughout late embryonic stages and early post-natal stages and decreased with age, whereas SVCT2 mRNA and protein levels were low in embryos and increased with age. A different response was observed for liver, in which ASC levels and SVCT2 expression were both low throughout embryogenesis and increased post-natally. To determine whether low intracellular ASC might be capable of driving SVCT2 expression, we depleted ASC by diet in adult mice unable to synthesize ASC. We observed that SVCT2 mRNA and protein were not affected by ASC depletion in brain cortex, but SVCT2 protein expression was increased by ASC depletion in the cerebellum and liver. The results suggest that expression of the SVCT2 is differentially regulated during embryonic development and in adulthood. PMID:22001929

  7. Consensus Paper: Language and the Cerebellum: an Ongoing Enigma

    PubMed Central

    Mariën, Peter; Ackermann, Herman; Adamaszek, Michael; Barwood, Caroline H. S.; Beaton, Alan; Desmond, John; De Witte, Elke; Fawcett, Angela J.; Hertrich, Ingo; Küper, Michael; Leggio, Maria; Marvel, Cherie; Molinari, Marco; Murdoch, Bruce E.; Nicolson, Roderick I.; Schmahmann, Jeremy D.; Stoodley, Catherine J.; Thürling, Markus; Timmann, Dagmar; Wouters, Ellen; Ziegler, Wolfram

    2014-01-01

    In less than three decades, the concept “cerebellar neurocognition” has evolved from a mere afterthought to an entirely new and multifaceted area of neuroscientific research. A close interplay between three main strands of contemporary neuroscience induced a substantial modification of the traditional view of the cerebellum as a mere coordinator of autonomic and somatic motor functions. Indeed, the wealth of current evidence derived from detailed neuroanatomical investigations, functional neuroimaging studies with healthy subjects and patients and in-depth neuropsychological assessment of patients with cerebellar disorders shows that the cerebellum has a cardinal role to play in affective regulation, cognitive processing, and linguistic function. Although considerable progress has been made in models of cerebellar function, controversy remains regarding the exact role of the “linguistic cerebellum” in a broad variety of nonmotor language processes. This consensus paper brings together a range of different viewpoints and opinions regarding the contribution of the cerebellum to language function. Recent developments and insights in the nonmotor modulatory role of the cerebellum in language and some related disorders will be discussed. The role of the cerebellum in speech and language perception, in motor speech planning including apraxia of speech, in verbal working memory, in phonological and semantic verbal fluency, in syntax processing, in the dynamics of language production, in reading and in writing will be addressed. In addition, the functional topography of the linguistic cerebellum and the contribution of the deep nuclei to linguistic function will be briefly discussed. As such, a framework for debate and discussion will be offered in this consensus paper. PMID:24318484

  8. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences

    PubMed Central

    Basson, M. Albert; Wingate, Richard J.

    2013-01-01

    Over the last 60 years, the spotlight of research has periodically returned to the cerebellum as new techniques and insights have emerged. Because of its simple homogeneous structure, limited diversity of cell types and characteristic behavioral pathologies, the cerebellum is a natural home for studies of cell specification, patterning, and neuronal migration. However, recent evidence has extended the traditional range of perceived cerebellar function to include modulation of cognitive processes and implicated cerebellar hypoplasia and Purkinje neuron hypo-cellularity with autistic spectrum disorder. In the light of this emerging frontier, we review the key stages and genetic mechanisms behind cerebellum development. In particular, we discuss the role of the midbrain hindbrain isthmic organizer in the development of the cerebellar vermis and the specification and differentiation of Purkinje cells and granule neurons. These developmental processes are then considered in relation to recent insights into selected human developmental cerebellar defects: Joubert syndrome, Dandy–Walker malformation, and pontocerebellar hypoplasia. Finally, we review current research that opens up the possibility of using the mouse as a genetic model to study the role of the cerebellum in cognitive function. PMID:24027500

  9. The cerebellum and cognition: evidence from functional imaging studies.

    PubMed

    Stoodley, Catherine J

    2012-06-01

    Evidence for a role of the human cerebellum in cognitive functions comes from anatomical, clinical and neuroimaging data. Functional neuroimaging reveals cerebellar activation during a variety of cognitive tasks, including language, visual-spatial, executive, and working memory processes. It is important to note that overt movement is not a prerequisite for cerebellar activation: the cerebellum is engaged during conditions which either control for motor output or do not involve motor responses. Resting-state functional connectivity data reveal that, in addition to networks underlying motor control, the cerebellum is part of "cognitive" networks with prefrontal and parietal association cortices. Consistent with these findings, regional differences in activation patterns within the cerebellum are evident depending on the task demands, suggesting that the cerebellum can be broadly divided into functional regions based on the patterns of anatomical connectivity between different regions of the cerebellum and sensorimotor and association areas of the cerebral cortex. However, the distinct contribution of the cerebellum to cognitive tasks is not clear. Here, the functional neuroimaging evidence for cerebellar involvement in cognitive functions is reviewed and related to hypotheses as to why the cerebellum is active during such tasks. Identifying the precise role of the cerebellum in cognition-as well as the mechanism by which the cerebellum modulates performance during a wide range of tasks-remains a challenge for future investigations.

  10. Role of cerebellum in deglutition and deglutition disorders.

    PubMed

    Rangarathnam, Balaji; Kamarunas, Erin; McCullough, Gary H

    2014-12-01

    The objective of this review is to gather available evidence regarding the role of the cerebellum in swallowing-related functions. We reviewed literature on cerebellar functions related to healthy swallowing, patterns of dysphagia in individuals with cerebellar lesions, and the role of the cerebellum in therapeutic intervention of neurogenic dysphagia since 1980. A collective understanding of these studies suggests that both hemispheres of the cerebellum, predominantly the left, participate in healthy swallowing. Also, it appears that the cerebellum contributes to specific physiological functions within the entire act of swallowing, but this is not clearly understood. The understanding of patterns of dysphagia in cerebellar lesions remains ambiguous with equivocal results across a small number of studies. The cerebellum appears to be involved in oral exercises for dysphagia in the relationship between oral movements in such exercises, and deglutition remains uncertain. There is increasing evidence to suggest successful use of transcranial magnetic stimulation of the cerebellum to improve neuromotor control of swallowing. Future studies should address activation of the cerebellum with swallowing of different consistencies and tastes in healthy adults to gain better insights. Studies should also investigate dynamics of neural activation during different stages of recovery from dysphagia following strokes to cortical centers to determine if the cerebellum plays a compensatory role during instances of increased neural demands.

  11. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    PubMed

    Hoekzema, Elseline; Schagen, Sebastian E E; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-05-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was observed in the left superior medial frontal cortex, while boys had more volume in the bilateral superior posterior hemispheres of the cerebellum and the hypothalamus. Regarding the GD groups, at whole-brain level they differed only from individuals sharing their gender identity but not from their natal sex. Accordingly, using multivariate pattern recognition analyses, the GD groups could more accurately be automatically discriminated from individuals sharing their gender identity than those sharing their natal sex based on spatially distributed GM patterns. However, region of interest analyses indicated less GM volume in the right cerebellum and more volume in the medial frontal cortex in female-to-males in comparison to girls without GD, while male-to-females had less volume in the bilateral cerebellum and hypothalamus than natal boys. Deviations from the natal sex within sexually dimorphic structures were also observed in the untreated subsamples. Our findings thus indicate that GM distribution and regional volumes in GD adolescents are largely in accordance with their respective natal sex. However, there are subtle deviations from the natal sex in sexually dimorphic structures, which can represent signs of a partial sex-atypical differentiation of the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Role of cerebellum in learning postural tasks.

    PubMed

    Ioffe, M E; Chernikova, L A; Ustinova, K I

    2007-01-01

    For a long time, the cerebellum has been known to be a structure related to posture and equilibrium control. According to the anatomic structure of inputs and internal structure of the cerebellum, its role in learning was theoretically reasoned and experimentally proved. The hypothesis of an inverse internal model based on feedback-error learning mechanism combines feedforward control by the cerebellum and feedback control by the cerebral motor cortex. The cerebellar cortex is suggested to acquire internal models of the body and objects in the external world. During learning of a new tool the motor cortex receives feedback from the realized movement while the cerebellum produces only feedforward command. To realize a desired movement without feedback of the realized movement, the cerebellum needs to form an inverse model of the hand/arm system. This suggestion was supported by FMRi data. The role of cerebellum in learning new postural tasks mainly concerns reorganization of natural synergies. A learned postural pattern in dogs has been shown to be disturbed after lesions of the cerebral motor cortex or cerebellar nuclei. In humans, learning voluntary control of center of pressure position is greatly disturbed after cerebellar lesions. However, motor cortex and basal ganglia are also involved in the feedback learning postural tasks.

  13. Structure–function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders

    PubMed Central

    Stoodley, Catherine J.; Limperopoulos, Catherine

    2016-01-01

    SUMMARY The increasing appreciation of the role of the cerebellum in motor and non-motor functions is crucial to understanding the outcomes of acquired cerebellar injury and developmental lesions in high-risk fetal and neonatal populations, children with cerebellar damage (e.g. posterior fossa tumors), and neurodevelopmental disorders (e.g. autism). We review available data regarding the relationship between the topography of cerebellar injury or abnormality and functional outcomes. We report emerging structure–function relationships with specific symptoms: cerebellar regions that interconnect with sensorimotor cortices are associated with motor impairments when damaged; disruption to posterolateral cerebellar regions that form circuits with association cortices impact long-term cognitive outcomes; and midline posterior vermal damage is associated with behavioral dysregulation and an autism-like phenotype. We also explore the impact of age and the potential role for critical periods on cerebellar structure and child function. These findings suggest that the cerebellum plays a critical role in motor, cognitive, and social–behavioral development, possibly via modulatory effects on the developing cerebral cortex. PMID:27184461

  14. Injury of the developing cerebellum: a brief review of the effects of endotoxin and asphyxial challenges in the late gestation sheep fetus.

    PubMed

    Hutton, Lisa C; Yan, Edwin; Yawno, Tamara; Castillo-Melendez, Margie; Hirst, Jon J; Walker, David W

    2014-12-01

    The vulnerability of the fetal and newborn brain to events in utero or at birth that cause damage arising from perturbations of cerebral blood flow and metabolism, such as the accumulation of free radicals and excitatory transmitters to neurotoxic levels, has received considerable attention over the last few decades. Attention has usually been on the damage to cerebral structures, particularly, periventricular white matter. The rapid growth of the cerebellum in the latter half of fetal life in species with long gestations, such as the human and sheep, suggests that this may be a particularly important time for the development of cerebellar structure and function. In this short review, we summarize data from recent studies with fetal sheep showing that the developing cerebellum is particularly sensitive to infectious processes, chronic hypoxia and asphyxia. The data demonstrates that the cerebellum should be further studied in insults of this nature as it responds differently to the remainder of the brain. Damage to this region of the brain has implications not only for the development of motor control and posture, but also for higher cognitive processes and the subsequent development of complex behaviours, such as learning, memory and attention.

  15. Subcellular TSC22D4 localization in cerebellum granule neurons of the mouse depends on development and differentiation.

    PubMed

    Canterini, Sonia; Bosco, Adriana; Carletti, Valentina; Fuso, Andrea; Curci, Armando; Mangia, Franco; Fiorenza, Maria Teresa

    2012-03-01

    We previously demonstrated that TSC22D4, a protein encoded by the TGF-β1-activated gene Tsc22d4 (Thg-1pit) and highly expressed in postnatal and adult mouse cerebellum with multiple post-translationally modified protein forms, moves to nucleus when in vitro differentiated cerebellum granule neurons (CGNs) are committed to apoptosis by hyperpolarizing KCl concentrations in the culture medium. We have now studied TSC22D4 cytoplasmic/nuclear localization in CGNs and Purkinje cells: (1) during CGN differentiation/maturation in vivo, (2) during CGN differentiation in vitro, and (3) by in vitro culturing ex vivo cerebellum slices under conditions favoring/inhibiting CGN/Purkinje cell differentiation. We show that TSC22D4 displays both nuclear and cytoplasmic localizations in undifferentiated, early postnatal cerebellum CGNs, irrespectively of CGN proliferation/migration from external to internal granule cell layer, and that it specifically accumulates in the somatodendritic and synaptic compartments when CGNs mature, as indicated by TSC22D4 abundance at the level of adult cerebellum glomeruli and apparent lack in CGN nuclei. These features were also observed in cerebellum slices cultured in vitro under conditions favoring/inhibiting CGN/Purkinje cell differentiation. In vitro TSC22D4 silencing with siRNAs blocked CGN differentiation and inhibited neurite elongation in N1E-115 neuroblastoma cells, pinpointing the relevance of this protein to CGN differentiation.

  16. Cerebellum and Ocular Motor Control

    PubMed Central

    Kheradmand, Amir; Zee, David S.

    2011-01-01

    An intact cerebellum is a prerequisite for optimal ocular motor performance. The cerebellum fine-tunes each of the subtypes of eye movements so they work together to bring and maintain images of objects of interest on the fovea. Here we review the major aspects of the contribution of the cerebellum to ocular motor control. The approach will be based on structural–functional correlation, combining the effects of lesions and the results from physiologic studies, with the emphasis on the cerebellar regions known to be most closely related to ocular motor function: (1) the flocculus/paraflocculus for high-frequency (brief) vestibular responses, sustained pursuit eye movements, and gaze holding, (2) the nodulus/ventral uvula for low-frequency (sustained) vestibular responses, and (3) the dorsal oculomotor vermis and its target in the posterior portion of the fastigial nucleus (the fastigial oculomotor region) for saccades and pursuit initiation. PMID:21909334

  17. Effects of long-term pre- and post-natal exposure to 2.45 GHz wireless devices on developing male rat kidney.

    PubMed

    Kuybulu, Ayça Esra; Öktem, Faruk; Çiriş, İbrahim Metin; Sutcu, Recep; Örmeci, Ahmet Rıfat; Çömlekçi, Selçuk; Uz, Efkan

    2016-01-01

    The aim of the present study was to investigate oxidative stress and apoptosis in kidney tissues of male Wistar rats that pre- and postnatally exposed to wireless electromagnetic field (EMF) with an internet frequency of 2.45 GHz for a long time. The study was conducted in three groups of rats which were pre-natal, post-natal. and sham exposed groups. Oxidative stress markers and histological evaluation of kidney tissues were studied. Renal tissue malondialdehyde (MDA) and total oxidant (TOS) levels of pre-natal group were high and total antioxidant (TAS) and superoxide dismutase (SOD) levels were low. Spot urine NAG/creatinine ratio was significantly higher in pre- and post-natal groups (p < 0.001). Tubular injury was detected in most of the specimens in post-natal groups. Immunohistochemical analysis showed low-intensity staining with Bax in cortex, high-intensity staining with Bcl-2 in cortical and medullar areas of pre-natal group (p values, 0.000, 0.002, 0.000, respectively) when compared with sham group. Bcl2/Bax staining intensity ratios of medullar and cortical area was higher in pre-natal group than sham group (p = 0.018, p = 0.011). Based on this study, it is thought that chronic pre- and post-natal period exposure to wireless internet frequency of EMF may cause chronic kidney damages; staying away from EMF source in especially pregnancy and early childhood period may reduce negative effects of exposure on kidney.

  18. Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum.

    PubMed

    Schweighofer, N; Spoelstra, J; Arbib, M A; Kawato, M

    1998-01-01

    The cerebellum is essential for the control of multijoint movements; when the cerebellum is lesioned, the performance error is more than the summed errors produced by single joints. In the companion paper (Schweighofer et al., 1998), a functional anatomical model for visually guided arm movement was proposed. The model comprised a basic feedforward/feedback controller with realistic transmission delays and was connected to a two-link, six-muscle, planar arm. In the present study, we examined the role of the cerebellum in reaching movements by embedding a novel, detailed cerebellar neural network in this functional control model. We could derive realistic cerebellar inputs and the role of the cerebellum in learning to control the arm was assessed. This cerebellar network learned the part of the inverse dynamics of the arm not provided by the basic feedforward/feedback controller. Despite realistically low inferior olive firing rates and noisy mossy fibre inputs, the model could reduce the error between intended and planned movements. The responses of the different cell groups were comparable to those of biological cell groups. In particular, the modelled Purkinje cells exhibited directional tuning after learning and the parallel fibres, due to their length, provide Purkinje cells with the input required for this coordination task. The inferior olive responses contained two different components; the earlier response, locked to movement onset, was always present and the later response disappeared after learning. These results support the theory that the cerebellum is involved in motor learning.

  19. The Cerebellum and Its Wrapping Meninge: Developmental Interplay between Two Major Structures.

    PubMed

    Catala, Martin

    2017-10-01

    Meninges have long been considered as a protective and supportive tissue for the central nervous system. Nevertheless, new developmental roles are now attributed to them. The meninges that surround the cerebellum come from the cephalic mesoderm. They are essential for the cerebellum to develop normally. They induce and maintain the basal lamina and glia limitans. In the absence of these structures, the external granular cells of the cerebellum migrate aberrantly and penetrate the subarachnoid space. The molecules involved in the recognition between the cerebellar primordium and the basal lamina belong to two groups in humans: dystroglycan and laminin on the one hand, and GPR56 and collagen III on the other. Finally, molecules secreted by the meninges and acting on the cerebellum begin to be demonstrated; such is the case of SDF1 secreted under the action of FOXC1. Georg Thieme Verlag KG Stuttgart · New York.

  20. Gene expression in the developing cerebellum during perinatal hypo- and hyperthyroidism.

    PubMed

    Figueiredo, B C; Almazan, G; Ma, Y; Tetzlaff, W; Miller, F D; Cuello, A C

    1993-03-01

    The intensity of p75NGFR receptor-like immunoreactivity and the mRNAs encoding p75NGFR, T alpha 1 alpha-tubulin, GAP-43 and the myelin proteins MBP and PLP were measured in the developing cerebellum to study the effects of perinatal thyroid hormone imbalance in rats. Results compared to age-matched controls provide in vivo evidence for differential gene regulation by thyroid hormone in the developing cerebellum. We found that p75NGFR immunoreactivity was strikingly elevated in hypothyroid rats, whereas p75NGFR mRNA content remained only twice as high as that of control levels on postnatal day 15 (P15). When p75NGFR immunoreactivity was still elevated in hypothyroid rats, Purkinje cells exhibited proximal axonal varicosities, axonal twisting and differences in axonal caliber. The mRNAs encoding proteins involved with neurite growth-promoting elements, T alpha 1 alpha-tubulin and GAP-43, were also increased in hypothyroidism, possibly reflecting a neuronal response to a deficiency in, or damage to, cerebellar neurons, or a general delay in their down regulation. Similar increases were not observed for the myelin specific genes. MBP and PLP mRNAs were first detected on P2 of hyperthyroid rats, and they increased with age. Hypo- or hyperthyroidism did not affect the initial onset of MBP and PLP expression, however, hyperthyroidism increased levels of PLP and MBP mRNAs between P2 and P10. By contrast, the most consistent decrease in MBP and PLP mRNAs in rats with thyroid hormone deficiency was observed only on P10. At later times (P15 and P30), the two mRNA levels were similar to controls in all groups. These results are consistent with a role for thyroid hormone in the earlier stages of cerebellar myelination. Hypothryoidism led to specific increases in T alpha 1 alpha-tubulin and GAP-43 mRNAs, and in the immunoreactivity and mRNA levels of p75NGFR receptor--all changes that may play a role in the observed abnormal neuronal outgrowth.

  1. Explaining LIGO's observations via isolated binary evolution with natal kicks

    NASA Astrophysics Data System (ADS)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel E.

    2018-02-01

    We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ ≃200 (50 ) km /s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models' compatibility with LIGO's observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.

  2. Failure of pre-natal ultrasonography to prevent urinary infection associated with underlying urological abnormalities.

    PubMed

    Lakhoo, K; Thomas, D F; Fuenfer, M; D'Cruz, A J

    1996-06-01

    To analyse the reasons underlying the failure of routine pre-natal ultrasonography to prevent the subsequent development of urinary tract infection (UTI) in children with predisposing urological abnormalities. This retrospective study comprised 39 children (22 females and 17 males) who had at least one documented UTI, the presence of an anatomical anomaly of the urinary tract recognized as predisposing to UTI and had undergone ultrasonography of the urinary tract undertaken in fetal life as part of routine maternal ante-natal ultrasonography. Four categories of patients were defined: Group A, those with normal findings on pre-natal ultrasonography and no urological abnormality detected; Group B, those with a urological abnormality detected but where there was a subsequent failure of communication among clinicians; Group C, those with a urological abnormality but who received inappropriate or sub-optimal post-natal management and; Group D, those with a urological abnormality but who had a UTI despite appropriate post-natal management. In each case, the most severe documented episode of UTI was categorized as: Grade I, asymptomatic bacteriuria; Grade II, mild/moderate symptomatic UTI and; Grade III, severe symptomatic UTI necessitating hospital admission. Group A comprised 22 (56%), Group B three (9%), Group C two (5%) and Group D 12 children (31%). Of the 22 children in Group A, nine experienced a UTI of sufficient severity to necessitate hospital admission. Of the 12 children in Group D only one required hospital admission. The failure of pre-natal ultrasonography to identify the underlying predisposing urological abnormality was the most important factor contributing to subsequent UTI in post-natal life. Failure of communication and inappropriate post-natal management were numerically unimportant. In some children, UTI occurred despite pre-natal detection of their underlying anomaly and appropriate post-natal management. However, in this group the UTI was less

  3. The role of the cerebellum in the regulation of language functions.

    PubMed

    Starowicz-Filip, Anna; Chrobak, Adrian Andrzej; Moskała, Marek; Krzyżewski, Roger M; Kwinta, Borys; Kwiatkowski, Stanisław; Milczarek, Olga; Rajtar-Zembaty, Anna; Przewoźnik, Dorota

    2017-08-29

    The present paper is a review of studies on the role of the cerebellum in the regulation of language functions. This brain structure until recently associated chiefly with motor skills, visual-motor coordination and balance, proves to be significant also for cognitive functioning. With regard to language functions, studies show that the cerebellum determines verbal fluency (both semantic and formal) expressive and receptive grammar processing, the ability to identify and correct language mistakes, and writing skills. Cerebellar damage is a possible cause of aphasia or the cerebellar mutism syndrome (CMS). Decreased cerebellocortical connectivity as well as anomalies in the structure of the cerebellum are emphasized in numerous developmental dyslexia theories. The cerebellum is characterized by linguistic lateralization. From the neuroanatomical perspective, its right hemisphere and dentate nucleus, having multiple cerebellocortical connections with the cerebral cortical language areas, are particularly important for language functions. Usually, language deficits developed as a result of a cerebellar damage have subclinical intensity and require applying sensitive neuropsychological diagnostic tools designed to assess higher verbal functions.

  4. Dissecting the links between cerebellum and dystonia.

    PubMed

    Malone, Ailish; Manto, Mario; Hass, Chris

    2014-12-01

    Dystonia is a common movement disorder characterized by sustained muscle contractions. These contractions generate twisting and repetitive movements or typical abnormal postures, often exacerbated by voluntary movement. Dystonia can affect almost all the voluntary muscles. For several decades, the discussion on the pathogenesis has been focused on basal ganglia circuits, especially striatal networks. So far, although dystonia has been observed in some forms of ataxia such as dominant ataxias, the link between the cerebellum and dystonia has remained unclear. Recent human studies and experimental data mainly in rodents show that the cerebellum circuitry could also be a key player in the pathogenesis of some forms of dystonia. In particular, studies based on behavioral adaptation paradigm shed light on the links between dystonia and cerebellum. The spectrum of movement disorders in which the cerebellum is implicated is continuously expanding, and manipulation of cerebellar circuits might even emerge as a candidate therapy in the coming years.

  5. Birth-Weight, Pregnancy Term, Pre-Natal and Natal Complications Related to Child's Dental Anomalies.

    PubMed

    Prokocimer, T; Amir, E; Blumer, S; Peretz, B

    2015-01-01

    This cross-sectional study was aimed at determining whether certain pre-natal and natal conditions can predict specific dental anomalies. The conditions observed were: low birth-weight, preterm birth, pre-natal & natal complications. The dental anomalies observed were: enamel defects, total number of decayed, missing and filled teeth (total DMFT), disturbances in the tooth shape and disturbances in the number of teeth. Out of more than 2000 medical files of children aged 2-17 years old which were reviewed, 300 files met the selection criteria. Information recorded from the files included: age, gender, health status (the ASA physical status classification system by the American Society of Anesthesiologists), birth week, birth weight, total DMFT, hypomineralization, abnormal tooth shape, abnormal number of teeth and hypoplasia. Twenty one children out of 300 (7%) were born after a high-risk pregnancy, 25 children (8.3%) were born after high-risk birth, 20 children (6.7%) were born preterm - before week 37, and 29 children (9.7%) were born with a low birth weight (LBW) - 2500 grams or less. A relationship between a preterm birth and LBW to hypomineralization was found. And a relationship between a preterm birth and high-risk pregnancy to abnormal number of teeth was found. No relationship was found between birth (normal/high-risk) and the other parameters inspected. Preterm birth and LBW may predict hypomineralization in both primary and permanent dentitions. Furthermore, the study demonstrated that preterm birth and high-risk pregnancy may predict abnormal number of teeth in both dentitions.

  6. The missing link: evolution of the primate cerebellum.

    PubMed

    MacLeod, Carol

    2012-01-01

    The cerebellum has too often been seen as the "little brain," subservient to the "big brain," the cerebrum. That is changing, as neuroimaging uncovers the cerebellum as the "missing link" in the neurological underpinnings of many cognitive domains. Connections between the neocortex and the cerebellum are now more precisely defined, with functionally localized areas of cerebellar cortex understood for cognitive tasks in humans. Comparative volumetric studies of the primate cerebellum have isolated some elements of circuitry, and our field is moving toward a better integration with the neurosciences in a systematic comparative framework. The next decade may show great advances, as relatively noninvasive techniques of neuroimaging have the potential to build a comparative model of the evolution of primate neurocircuitry. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. [Thyroid hormones in the early postnatal development of the CNS: effect of hyperthyroidism on proliferative activity of white matter cells of rat cerebellum].

    PubMed

    Moskovkin, G N

    1976-01-01

    The effect of triiodothyronin on the proliferative activity of the white matter cells has been studied by means of radioautography in the cerebellum vermis and hemisphere of developing rats. The index of labelled nuclei and the mitotic index of the white matter glial elements in both the cerebellum regions of 7 and 10 days old hyperthyroid animals are markedly reduced. Besides, the general tendency was found towards the increase of the mitotic cycle duration in the white matter cells due to the lengthening of S and G2 + 1/2 M periods. The data obtained are discussed with respect to the importance of thyroid hormones for the CNS development.

  8. Functional Topography of the Cerebellum in Verbal Working Memory

    PubMed Central

    Desmond, John E.

    2010-01-01

    Speech—both overt and covert—facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms. PMID:20563894

  9. Functional topography of the cerebellum in verbal working memory.

    PubMed

    Marvel, Cherie L; Desmond, John E

    2010-09-01

    Speech-both overt and covert-facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms.

  10. How the cerebellum may monitor sensory information for spatial representation

    PubMed Central

    Rondi-Reig, Laure; Paradis, Anne-Lise; Lefort, Julie M.; Babayan, Benedicte M.; Tobin, Christine

    2014-01-01

    The cerebellum has already been shown to participate in the navigation function. We propose here that this structure is involved in maintaining a sense of direction and location during self-motion by monitoring sensory information and interacting with navigation circuits to update the mental representation of space. To better understand the processing performed by the cerebellum in the navigation function, we have reviewed: the anatomical pathways that convey self-motion information to the cerebellum; the computational algorithm(s) thought to be performed by the cerebellum from these multi-source inputs; the cerebellar outputs directed toward navigation circuits and the influence of self-motion information on space-modulated cells receiving cerebellar outputs. This review highlights that the cerebellum is adequately wired to combine the diversity of sensory signals to be monitored during self-motion and fuel the navigation circuits. The direct anatomical projections of the cerebellum toward the head-direction cell system and the parietal cortex make those structures possible relays of the cerebellum influence on the hippocampal spatial map. We describe computational models of the cerebellar function showing that the cerebellum can filter out the components of the sensory signals that are predictable, and provides a novelty output. We finally speculate that this novelty output is taken into account by the navigation structures, which implement an update over time of position and stabilize perception during navigation. PMID:25408638

  11. Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in the developing cerebellum.

    PubMed

    Singh, R; Upadhyay, G; Kumar, S; Kapoor, A; Kumar, A; Tiwari, M; Godbole, M M

    2003-01-01

    Thyroid hormone (TH) deficiency results in delayed proliferation and migration of cerebellar granule cells. Although extensive cell loss during the development of the cerebellum under hypothyroid conditions is known, its nature and its mechanism are poorly understood. Bcl-2 family gene expression is known to determine the fate of cells to undergo apoptosis. We evaluated the effect of hypothyroidism on Bcl-2 family gene expression in the developing rat cerebellum. Electrophoresis and Western blotting were used to analyze DNA fragmentation and expression of DNA fragmentation factor (DFF-45), Bcl-2, Bcl-xL and Bax genes respectively. In the hypothyroid condition, extensive DNA fragmentation and enhanced cleavage of DFF-45 were seen throughout development (postnatal day 0 to day 24) and adulthood whereas they were absent in the euthyroid state. The anti-apoptotic genes Bcl-2 and Bcl-xL were down-regulated and the pro-apoptotic gene Bax was expressed at higher levels compared with the euthyroid state. These results suggest that normal levels of TH prevent cerebellar apoptosis to a large extent, whereas hypothyroidism not only increases the extent but also the duration of apoptosis by down-regulating the anti-apoptotic genes and maintaining a high level of the pro-apoptotic gene Bax.

  12. Prefrontal control of cerebellum-dependent associative motor learning.

    PubMed

    Chen, Hao; Yang, Li; Xu, Yan; Wu, Guang-yan; Yao, Juan; Zhang, Jun; Zhu, Zhi-ru; Hu, Zhi-an; Sui, Jian-feng; Hu, Bo

    2014-02-01

    Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs from the mPFC to cerebellum are necessary and sufficient for the acquisition and expression of a trace conditioned response (CR)-like response. Specifically, the persistent outputs of caudal mPFC are relayed to the cerebellum via the rostral part of lateral pontine nuclei. Moreover, interfering with persistent activity by blockade of the muscarinic Ach receptor in the caudal mPFC impairs the expression of learned trace CRs. These results suggest an important way for the caudal mPFC to interact with the cerebellum during associative motor learning.

  13. Intelligent Network Management and Functional Cerebellum Synthesis

    NASA Technical Reports Server (NTRS)

    Loebner, Egon E.

    1989-01-01

    Transdisciplinary modeling of the cerebellum across histology, physiology, and network engineering provides preliminary results at three organization levels: input/output links to central nervous system networks; links between the six neuron populations in the cerebellum; and computation among the neurons of the populations. Older models probably underestimated the importance and role of climbing fiber input which seems to supply write as well as read signals, not just to Purkinje but also to basket and stellate neurons. The well-known mossy fiber-granule cell-Golgi cell system should also respond to inputs originating from climbing fibers. Corticonuclear microcomplexing might be aided by stellate and basket computation and associate processing. Technological and scientific implications of the proposed cerebellum model are discussed.

  14. Development of the cerebellum in the platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus).

    PubMed

    Ashwell, Ken W S

    2012-01-01

    The monotremes are a unique group of mammals whose young are incubated in a leathery-shelled egg and fed with milk from teatless areolae after hatching. As soon as they hatch, monotreme young must be able to maneuver around the nest or maternal pouch to locate the areolae and stimulate milk ejection. In the present study, the embryological collections at the Museum für Naturkunde, Berlin, have been used to follow the development of the monotreme cerebellum through incubation and lactational phases, to determine whether cerebellar circuitry is able to contribute to the coordination of locomotion in the monotreme hatchling, and to correlate cerebellar development with behavioral maturation. The structure of the developing monotreme cerebellum and the arrangement of transitory neuronal populations are similar to those reported for fetal and neonatal eutherians, but the time course of the key events of later cerebellar development is spread over a much longer period. Expansion of the rostral rhombic lip and formation of the nuclear and cortical transitory zones occurs by the time of hatching, but it is not until after the end of the first post-hatching week that deep cerebellar neurons begin to settle in their definitive positions and the Purkinje cell layer can be distinguished. Granule cell formation is also prolonged over many post-hatching months and the external granular layer persists for more than 20 weeks after hatching. The findings indicate that cerebellar circuitry is unlikely to contribute to the coordination of movements in the monotreme peri-hatching period. Those activities are most likely controlled by the spinal cord and medullary reticular formation circuitry. Copyright © 2012 S. Karger AG, Basel.

  15. Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype.

    PubMed

    Sexton, Timothy J; Bleckert, Adam; Turner, Maxwell H; Van Gelder, Russell N

    2015-06-21

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate circadian light entrainment and the pupillary light response in adult mice. In early development these cells mediate different processes, including negative phototaxis and the timing of retinal vascular development. To determine if ipRGC physiologic properties also change with development, we measured ipRGC cell density and light responses in wild-type mouse retinas at post-natal days 8, 15 and 30. Melanopsin-positive cell density decreases by 17% between post-natal days 8 and 15 and by 25% between days 8 and 30. This decrease is due specifically to a decrease in cells co-labeled with a SMI-32, a marker for alpha-on ganglion cells (corresponding to adult morphologic type M4 ipRGCs). On multi-electrode array recordings, post-natal day 8 (P8) ipRGC light responses show more robust firing, reduced adaptation and more rapid recovery from short and extended light pulses than do the light responses of P15 and P30 ipRGCs. Three ipRGC subtypes - Types I-III - have been defined in early development based on sensitivity and latency on multielectrode array recordings. We find that Type I cells largely account for the unique physiologic properties of P8 ipRGCs. Type I cells have previously been shown to have relatively short latencies and high sensitivity. We now show that Type I cells show have rapid and robust recovery from long and short bright light exposures compared with Type II and III cells, suggesting differential light adaptation mechanisms between cell types. By P15, Type I ipRGCs are no longer detectable. Loose patch recordings of P8 M4 ipRGCs demonstrate Type I physiology. Type I ipRGCs are found only in early development. In addition to their previously described high sensitivity and rapid kinetics, these cells are uniquely resistant to adaptation and recover quickly and fully to short and prolonged light exposure. Type I ipRGCs correspond to the SMI-32 positive, M4 subtype and largely lose

  16. Cerebellar nicotinic cholinergic receptors are intrinsic to the cerebellum: implications for diverse functional roles.

    PubMed

    Turner, Jill R; Ortinski, Pavel I; Sherrard, Rachel M; Kellar, Kenneth J

    2011-12-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum.

  17. Cerebellar Nicotinic Cholinergic Receptors are Intrinsic to the Cerebellum: Implications for Diverse Functional Roles

    PubMed Central

    Turner, Jill R.; Ortinski, Pavel I.; Sherrard, Rachel M.

    2016-01-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum. PMID:21562921

  18. The Contribution of the Cerebellum in the Hierarchial Development of the Self.

    PubMed

    Ceylan, Mehmet Emin; Dönmez, Aslıhan; Ülsalver, Barış Önen

    2015-12-01

    What distinguishes human beings from other living organisms is that a human perceives himself as a "self". The self is developed hierarchially in a multi-layered process, which is based on the evolutionary maturation of the nervous system and patterns according to the rules and demands of the external world. Many researchers have attempted to explain the different aspects of the self, as well as the related neural substrates. In this paper, we first review the previously proposed ideas regarding the neurobiology of the self. We then suggest a new hypothesis regarding the hierarchial self, which proposes that the self is developed at three stages: subjective, objective, and reflective selves. In the second part, we attempt to answer the question "Why do we need a self?" We therefore explain that different parts of the self developed in an effort to identify stability in space, stability against constantly changing objects, and stability against changing cognitions. Finally, we discuss the role of the cerebellum as the neural substrate for the self.

  19. The organization of the human cerebellum estimated by intrinsic functional connectivity

    PubMed Central

    Krienen, Fenna M.; Castellanos, Angela; Diaz, Julio C.; Yeo, B. T. Thomas

    2011-01-01

    The cerebral cortex communicates with the cerebellum via polysynaptic circuits. Separate regions of the cerebellum are connected to distinct cerebral areas, forming a complex topography. In this study we explored the organization of cerebrocerebellar circuits in the human using resting-state functional connectivity MRI (fcMRI). Data from 1,000 subjects were registered using nonlinear deformation of the cerebellum in combination with surface-based alignment of the cerebral cortex. The foot, hand, and tongue representations were localized in subjects performing movements. fcMRI maps derived from seed regions placed in different parts of the motor body representation yielded the expected inverted map of somatomotor topography in the anterior lobe and the upright map in the posterior lobe. Next, we mapped the complete topography of the cerebellum by estimating the principal cerebral target for each point in the cerebellum in a discovery sample of 500 subjects and replicated the topography in 500 independent subjects. The majority of the human cerebellum maps to association areas. Quantitative analysis of 17 distinct cerebral networks revealed that the extent of the cerebellum dedicated to each network is proportional to the network's extent in the cerebrum with a few exceptions, including primary visual cortex, which is not represented in the cerebellum. Like somatomotor representations, cerebellar regions linked to association cortex have separate anterior and posterior representations that are oriented as mirror images of one another. The orderly topography of the representations suggests that the cerebellum possesses at least two large, homotopic maps of the full cerebrum and possibly a smaller third map. PMID:21795627

  20. Linking Essential Tremor to the Cerebellum: Physiological Evidence.

    PubMed

    Filip, Pavel; Lungu, Ovidiu V; Manto, Mario-Ubaldo; Bareš, Martin

    2016-12-01

    Essential tremor (ET), clinically characterized by postural and kinetic tremors, predominantly in the upper extremities, originates from pathological activity in the dynamic oscillatory network comprising the majority of nodes in the central motor network. Evidence indicates dysfunction in the thalamus, the olivocerebellar loops, and intermittent cortical engagement. Pathology of the cerebellum, a structure with architecture intrinsically predisposed to oscillatory activity, has also been implicated in ET as shown by clinical, neuroimaging, and pathological studies. Despite electrophysiological studies assessing cerebellar impairment in ET being scarce, their impact is tangible, as summarized in this review. The electromyography-magnetoencephalography combination provided the first direct evidence of pathological alteration in cortico-subcortical communication, with a significant emphasis on the cerebellum. Furthermore, complex electromyography studies showed disruptions in the timing of agonist and antagonist muscle activation, a process generally attributed to the cerebellum. Evidence pointing to cerebellar engagement in ET has also been found in electrooculography measurements, cerebellar repetitive transcranial magnetic stimulation studies, and, indirectly, in complex analyses of the activity of the ventral intermediate thalamic nucleus (an area primarily receiving inputs from the cerebellum), which is also used in the advanced treatment of ET. In summary, further progress in therapy will require comprehensive electrophysiological and physiological analyses to elucidate the precise mechanisms leading to disease symptoms. The cerebellum, as a major node of this dynamic oscillatory network, requires further study to aid this endeavor.

  1. Natal Tooth Associated with Fibrous Hyperplasia – A Rare Case Report

    PubMed Central

    Munjal, Deepti; Dhingra, Renuka; Malik, Narender Singh; Sidhu, Gagandeep Kaur

    2015-01-01

    Eruption of tooth at about 6 months of age is a significant stage in child’s life and is an emotional event for parents. However, a tooth present in the oral cavity of newborn can lead to a lot of delusions. Natal and neonatal teeth are of utmost importance not only for a dentist but also for a paediatrician due to parent’s anxiety, folklore superstitions and numerous associated complications with it. This paper reports a rare case, wherein a natal tooth has led to the development of a reactive fibrous hyperplasia in an 8-week-old infant. PMID:26023656

  2. Implications of Lateral Cerebellum in Proactive Control of Saccades.

    PubMed

    Kunimatsu, Jun; Suzuki, Tomoki W; Tanaka, Masaki

    2016-06-29

    Although several lines of evidence establish the involvement of the medial and vestibular parts of the cerebellum in the adaptive control of eye movements, the role of the lateral hemisphere of the cerebellum in eye movements remains unclear. Ascending projections from the lateral cerebellum to the frontal and parietal association cortices via the thalamus are consistent with a role of these pathways in higher-order oculomotor control. In support of this, previous functional imaging studies and recent analyses in subjects with cerebellar lesions have indicated a role for the lateral cerebellum in volitional eye movements such as anti-saccades. To elucidate the underlying mechanisms, we recorded from single neurons in the dentate nucleus of the cerebellum in monkeys performing anti-saccade/pro-saccade tasks. We found that neurons in the posterior part of the dentate nucleus showed higher firing rates during the preparation of anti-saccades compared with pro-saccades. When the animals made erroneous saccades to the visual stimuli in the anti-saccade trials, the firing rate during the preparatory period decreased. Furthermore, local inactivation of the recording sites with muscimol moderately increased the proportion of error trials, while successful anti-saccades were more variable and often had shorter latency during inactivation. Thus, our results show that neuronal activity in the cerebellar dentate nucleus causally regulates anti-saccade performance. Neuronal signals from the lateral cerebellum to the frontal cortex might modulate the proactive control signals in the corticobasal ganglia circuitry that inhibit early reactive responses and possibly optimize the speed and accuracy of anti-saccades. Although the lateral cerebellum is interconnected with the cortical eye fields via the thalamus and the pons, its role in eye movements remains unclear. We found that neurons in the caudal part of the lateral (dentate) nucleus of the cerebellum showed the increased

  3. Does the cerebellum initiate movement?

    PubMed

    Thach, W T

    2014-02-01

    Opinion is divided on what the exact function of the cerebellum is. Experiments are summarized that support the following views: (1) the cerebellum is a combiner of multiple movement factors; (2) it contains anatomically fixed permanent focal representation of individual body parts (muscles and segments) and movement modes (e.g., vestibular driven vs. cognitive driven); (3) it contains flexible changing representations/memory of physical properties of the body parts including muscle strength, segment inertia, joint viscosity, and segmental interaction torques (dynamics); (4) it contains mechanisms for learning and storage of the properties in item no. 3 through trial-and-error practice; (5) it provides for linkage of body parts, motor modes, and motordynamics via the parallel fiber system; (6) it combines and integrates the many factors so as to initiate coordinated movements of the many body parts; (7) it is thus enabled to play the unique role of initiating coordinated movements; and (8) this unique causative role is evidenced by the fact that: (a) electrical stimulation of the cerebellum can initiate compound coordinated movements; (b) in naturally initiated compound movements, cerebellar discharge precedes that in downstream target structures such as motor cerebral cortex; and (c) cerebellar ablation abolishes the natural production of compound movements in the awake alert individuals.

  4. Natal Host Plants Can Alter Herbivore Competition.

    PubMed

    Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.

  5. Natal Host Plants Can Alter Herbivore Competition

    PubMed Central

    Pan, Huipeng; Preisser, Evan L.; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore’s natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems. PMID:28030636

  6. Natal and breeding philopatry in a black brant, Branta bernicla nigricans, metapopulation

    USGS Publications Warehouse

    Lindberg, Mark S.; Sedinger, James S.; Derksen, Dirk V.; Rockwell, Robert F.

    1998-01-01

    We estimated natal and breeding philopatry and dispersal probabilities for a metapopulation of Black Brant (Branta bernicla nigricans) based on observations of marked birds at six breeding colonies in Alaska, 1986–1994. Both adult females and males exhibited high (>0.90) probability of philopatry to breeding colonies. Probability of natal philopatry was significantly higher for females than males. Natal dispersal of males was recorded between every pair of colonies, whereas natal dispersal of females was observed between only half of the colony pairs. We suggest that female-biased philopatry was the result of timing of pair formation and characteristics of the mating system of brant, rather than factors related to inbreeding avoidance or optimal discrepancy. Probability of natal philopatry of females increased with age but declined with year of banding. Age-related increase in natal philopatry was positively related to higher breeding probability of older females. Declines in natal philopatry with year of banding corresponded negatively to a period of increasing population density; therefore, local population density may influence the probability of nonbreeding and gene flow among colonies.

  7. Mosaic Expression of Thyroid Hormone Regulatory Genes Defines Cell Type-Specific Dependency in the Developing Chicken Cerebellum.

    PubMed

    Delbaere, Joke; Van Herck, Stijn L J; Bourgeois, Nele M A; Vancamp, Pieter; Yang, Shuo; Wingate, Richard J T; Darras, Veerle M

    2016-12-01

    The cerebellum is a morphologically unique brain structure that requires thyroid hormones (THs) for the correct coordination of key cellular events driving its development. Unravelling the interplay between the multiple factors that can regulate intracellular TH levels is a key step to understanding their role in the regulation of these cellular processes. We therefore investigated the regional/cell-specific expression pattern of TH transporters and deiodinases in the cerebellum using the chicken embryo as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), L-type amino acid transporter 1 (LAT1) and organic anion transporting polypeptide 1C1 (OATP1C1) as well as the inactivating type 3 deiodinase (D3) in the fourth ventricle choroid plexus, suggesting a possible contribution of the resulting proteins to TH exchange and subsequent inactivation of excess hormone at the blood-cerebrospinal fluid barrier. Exclusive expression of LAT1 and the activating type 2 deiodinase (D2) mRNA was found at the level of the blood-brain barrier, suggesting a concerted function for LAT1 and D2 in the direct access of active T 3 to the developing cerebellum via the capillary endothelial cells. The presence of MCT8 mRNA in Purkinje cells and cerebellar nuclei during the first 2 weeks of embryonic development points to a potential role of this transporter in the uptake of T 3 in central neurons. At later stages, together with MCT10, detection of MCT8 signal in close association with the Purkinje cell dendritic tree suggests a role of both transporters in TH signalling during Purkinje cell synaptogenesis. MCT10 was also expressed in late-born cells in the rhombic lip lineage with a clear hybridisation signal in the outer external granular layer, indicating a potential role for MCT10 in the proliferation of granule cell precursors. By contrast, expression of D3 in the first-born rhombic lip-derived population may

  8. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, J.E.; Matthews, P.S.

    1984-09-01

    Local 5'-deiodination of serum thyroxine (T4) is the main source of triiodothyronine (T3) for the brain. Since we noted in previous studies that the cerebral cortex of neonatal rats tolerated marked reductions in serum T4 without biochemical hypothyroidism, we examined the in vivo T4 and T3 metabolism in that tissue and in the cerebellum of euthyroid and hypothyroid 2-wk-old rats. We also assessed the contribution of enhanced tissue T4 to T3 conversion and decreased T3 removal from the tissues to the T3 homeostasis in hypothyroid brain. Congenital and neonatal hypothyroidism was induced by adding methimazole to the drinking water. Serum,more » cerebral cortex (Cx), cerebellum (Cm), liver (L) and kidney (R) concentrations of 125I-T4, 125I-T3(T4), and 131I-T3 were measured at various times after injecting 125I-T4 and 131I-T3. The rate of T3 removal from the tissues was measured after injecting an excess of anti-T3-antibody to rats previously injected with tracer T3. In hypothyroidism, the fractional removal rates and clearances were reduced in all tissues, in cortex and cerebellum by 70%, and in liver and kidney ranging from 30 to 50%. While greater than 80% of the 125I-T3(T4) in the brain tissues of euthyroid rats was locally produced, in hypothyroid cerebral cortex and cerebellum the integrated concentrations of 125I-T3(T4) were 2.7- and 1.5-fold greater than in euthyroid rats.« less

  9. Retrograde Signaling from Progranulin to Sort1 Counteracts Synapse Elimination in the Developing Cerebellum.

    PubMed

    Uesaka, Naofumi; Abe, Manabu; Konno, Kohtarou; Yamazaki, Maya; Sakoori, Kazuto; Watanabe, Takaki; Kao, Tzu-Huei; Mikuni, Takayasu; Watanabe, Masahiko; Sakimura, Kenji; Kano, Masanobu

    2018-02-21

    Elimination of redundant synapses formed early in development and strengthening of necessary connections are crucial for shaping functional neural circuits. Purkinje cells (PCs) in the neonatal cerebellum are innervated by multiple climbing fibers (CFs) with similar strengths. A single CF is strengthened whereas the other CFs are eliminated in each PC during postnatal development. The underlying mechanisms, particularly for the strengthening of single CFs, are poorly understood. Here we report that progranulin, a multi-functional growth factor implicated in the pathogenesis of frontotemporal dementia, strengthens developing CF synaptic inputs and counteracts their elimination from postnatal day 11 to 16. Progranulin derived from PCs acts retrogradely onto its putative receptor Sort1 on CFs. This effect is independent of semaphorin 3A, another retrograde signaling molecule that counteracts CF synapse elimination. We propose that progranulin-Sort1 signaling strengthens and maintains developing CF inputs, and may contribute to selection of single "winner" CFs that survive synapse elimination. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Effects of Ethanol on the Cerebellum: Advances and Prospects.

    PubMed

    Luo, Jia

    2015-08-01

    Alcohol abuse causes cerebellar dysfunction and cerebellar ataxia is a common feature in alcoholics. Alcohol exposure during development also impacts the cerebellum. Children with fetal alcohol spectrum disorder (FASD) show many symptoms associated specifically with cerebellar deficits. However, the cellular and molecular mechanisms are unclear. This special issue discusses the most recent advances in the study of mechanisms underlying alcoholinduced cerebellar deficits. The alteration in GABAA receptor-dependent neurotransmission is a potential mechanism for ethanol-induced cerebellar dysfunction. Recent advances indicate ethanol-induced increases in GABA release are not only in Purkinje cells (PCs), but also in molecular layer interneurons and granule cells. Ethanol is shown to disrupt the molecular events at the mossy fiber - granule cell - Golgi cell (MGG) synaptic site and granule cell parallel fibers - PCs (GPP) synaptic site, which may be responsible for ethanol-induced cerebellar ataxia. Aging and ethanol may affect the smooth endoplasmic reticulum (SER) of PC dendrites and cause dendritic regression. Ethanol withdrawal causes mitochondrial damage and aberrant gene modifications in the cerebellum. The interaction between these events may result in neuronal degeneration, thereby contributing to motoric deficit. Ethanol activates doublestranded RNA (dsRNA)-activated protein kinase (PKR) and PKR activation is involved ethanolinduced neuroinflammation and neurotoxicity in the developing cerebellum. Ethanol alters the development of cerebellar circuitry following the loss of PCs, which could result in modifications of the structure and function of other brain regions that receive cerebellar inputs. Lastly, choline, an essential nutrient is evaluated for its potential protection against ethanol-induced cerebellar damages. Choline is shown to ameliorate ethanol-induced cerebellar dysfunction when given before ethanol exposure.

  11. Natal location influences movement and survival of a spatially structured population of snail kites

    USGS Publications Warehouse

    Martin, J.; Kitchens, W.M.; Hines, J.E.

    2007-01-01

    Despite the accepted importance of the need to better understand how natal location affects movement decisions and survival of animals, robust estimates of movement and survival in relation to the natal location are lacking. Our study focuses on movement and survival related to the natal location of snail kites in Florida and shows that kites, in addition to exhibiting a high level of site tenacity to breeding regions, also exhibit particular attraction to their natal region. More specifically, we found that estimates of movement from post-dispersal regions were greater toward natal regions than toward non-natal regions (differences were significant for three of four regions). We also found that estimates of natal philopatry were greater than estimates of philopatry to non-natal regions (differences were statistically significant for two of four regions). A previous study indicated an effect of natal region on juvenile survival; in this study, we show an effect of natal region on adult survival. Estimates of adult survival varied among kites that were hatched in different regions. Adults experienced mortality rates characteristic of the region occupied at the time when survival was measured, but because there is a greater probability that kites will return to their natal region than to any other regions, their survival was ultimately influenced by their natal region. In most years, kites hatched in southern regions had greater survival probabilities than did kites hatched in northern regions. However, during a multiregional drought, one of the northern regions served as a refuge from drought, and during this perturbation, survival was greater for birds hatched in the north. Our study shows that natal location may be important in influencing the ecological dynamics of kites but also highlights the importance of considering temporal variation in habitat conditions of spatially structured systems when attempting to evaluate the conservation value of habitats.

  12. The cerebro-cerebellum: Could it be loci of forward models?

    PubMed

    Ishikawa, Takahiro; Tomatsu, Saeka; Izawa, Jun; Kakei, Shinji

    2016-03-01

    It is widely accepted that the cerebellum acquires and maintain internal models for motor control. An internal model simulates mapping between a set of causes and effects. There are two candidates of cerebellar internal models, forward models and inverse models. A forward model transforms a motor command into a prediction of the sensory consequences of a movement. In contrast, an inverse model inverts the information flow of the forward model. Despite the clearly different formulations of the two internal models, it is still controversial whether the cerebro-cerebellum, the phylogenetically newer part of the cerebellum, provides inverse models or forward models for voluntary limb movements or other higher brain functions. In this article, we review physiological and morphological evidence that suggests the existence in the cerebro-cerebellum of a forward model for limb movement. We will also discuss how the characteristic input-output organization of the cerebro-cerebellum may contribute to forward models for non-motor higher brain functions. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Delayed neurochemical effects of prenatal exposure to MeHg in the cerebellum of developing rats.

    PubMed

    Heimfarth, Luana; Delgado, Jeferson; Mingori, Moara Rodrigues; Moresco, Karla Suzana; Pureur, Regina Pessoa; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2018-03-01

    Human fetuses and neonates are particularly vulnerable to methylmercury (MeHg)-induced brain damage and are sensitive even to low exposure levels. Previous work of our group evidence that prenatal exposure to MeHg causes cognitive and behavioral alterations and disrupt hippocampus signaling. The current study aimed to investigate the effect of gestational exposure of rats to MeHg at low doses (1 or 2 mg/kg) on parameters of redox imbalance and key signaling pathways in the cerebellum of their offspring. Pregnant females received MeHg (treated group) or 0.9% saline water (control group) by gavage in alternated days from gestational day 5 (GD5) until parturition and analyzes were proceed in the cerebellum of 30-day-old pups. We found increased lipid peroxidation and protein carbonylation levels as well as decreased SH content in pups prenatally exposed to 2 mg/kg MeHg. In addition, misregulated SOD/catalase activities supported imbalanced redox equilibrium. We found decreased GSK3β(Ser9) phosphorylation, suggesting activation of this enzyme and dephosphorylation/inhibition of ERK1/2 and JNK pathways. Increased PKAα catalytic subunit could be upstream of hyperphosphorylated c-Raf(Ser259) and downregulated MAPK pathway. In addition, we found raised levels of the Ca 2+ -dependent protein phosphatase 2 B (PP2B). We also found preserved immunohistochemical staining for both glial fibrillary acidic protein (GFAP) and NeuN in MeHg-exposed pups. Western blot analysis showed unaltered levels of BAX/BCL-XL, BAD/BCL-2 and active caspase 3. Together, these findings support absence of reactive astrocytes, neuronal damage and apoptotic cell death in the cerebellum of MeHg treated pups. The present study provides evidence that prenatal exposure to MeHg leads to later redox imbalance and disrupted signaling mechanisms in the cerebellum of 30-day-old pups potentially predisposing them to long-lasting neurological impairments in CNS. Copyright © 2017 Elsevier B.V. All rights

  14. Prenatal exposure to cigarette smoke or alcohol and cerebellum volume in attention-deficit/hyperactivity disorder and typical development

    PubMed Central

    de Zeeuw, P; Zwart, F; Schrama, R; van Engeland, H; Durston, S

    2012-01-01

    Prenatal exposure to teratogenic substances, such as nicotine or alcohol, increases the risk of developing attention-deficit/hyperactivity disorder (ADHD). To date, studies examining this relationship have used symptom scales as outcome measures to assess the effect of prenatal exposure, and have not investigated the neurobiological pathways involved. This study explores the effect of prenatal exposure to cigarettes or alcohol on brain volume in children with ADHD and typically developing controls. Children with ADHD who had been exposed prenatally to either substance were individually matched to children with and without ADHD who had not been. Controls who had been exposed prenatally were also individually matched to controls who had not been. For prenatal exposure to both smoking and alcohol, we found a pattern where subjects with ADHD who had been exposed had the smallest brain volumes and unexposed controls had the largest, with intermediate volumes for unexposed subjects with ADHD. This effect was most pronounced for cerebellum. A similar reduction fell short of significance for controls who had been exposed to cigarettes, but not alcohol. Our results are consistent with an additive effect of prenatal exposure and ADHD on brain volume, with the effects most pronounced for cerebellum. PMID:22832850

  15. Right Lateral Cerebellum Represents Linguistic Predictability.

    PubMed

    Lesage, Elise; Hansen, Peter C; Miall, R Chris

    2017-06-28

    Mounting evidence indicates that posterolateral portions of the cerebellum (right Crus I/II) contribute to language processing, but the nature of this role remains unclear. Based on a well-supported theory of cerebellar motor function, which ascribes to the cerebellum a role in short-term prediction through internal modeling, we hypothesize that right cerebellar Crus I/II supports prediction of upcoming sentence content. We tested this hypothesis using event-related fMRI in male and female human subjects by manipulating the predictability of written sentences. Our design controlled for motor planning and execution, as well as for linguistic features and working memory load; it also allowed separation of the prediction interval from the presentation of the final sentence item. In addition, three further fMRI tasks captured semantic, phonological, and orthographic processing to shed light on the nature of the information processed. As hypothesized, activity in right posterolateral cerebellum correlated with the predictability of the upcoming target word. This cerebellar region also responded to prediction error during the outcome of the trial. Further, this region was engaged in phonological, but not semantic or orthographic, processing. This is the first imaging study to demonstrate a right cerebellar contribution in language comprehension independently from motor, cognitive, and linguistic confounds. These results complement our work using other methodologies showing cerebellar engagement in linguistic prediction and suggest that internal modeling of phonological representations aids language production and comprehension. SIGNIFICANCE STATEMENT The cerebellum is traditionally seen as a motor structure that allows for smooth movement by predicting upcoming signals. However, the cerebellum is also consistently implicated in nonmotor functions such as language and working memory. Using fMRI, we identify a cerebellar area that is active when words are predicted and

  16. Computational modeling of diffusion in the cerebellum.

    PubMed

    Marinov, Toma M; Santamaria, Fidel

    2014-01-01

    Diffusion is a major transport mechanism in living organisms. In the cerebellum, diffusion is responsible for the propagation of molecular signaling involved in synaptic plasticity and metabolism, both intracellularly and extracellularly. In this chapter, we present an overview of the cerebellar structure and function. We then discuss the types of diffusion processes present in the cerebellum and their biological importance. We particularly emphasize the differences between extracellular and intracellular diffusion and the presence of tortuosity and anomalous diffusion in different parts of the cerebellar cortex. We provide a mathematical introduction to diffusion and a conceptual overview of various computational modeling techniques. We discuss their scope and their limit of application. Although our focus is the cerebellum, we have aimed at presenting the biological and mathematical foundations as general as possible to be applicable to any other area in biology in which diffusion is of importance. © 2014 Elsevier Inc. All rights reserved.

  17. Post-natal growth in the rat pineal gland: a stereological study.

    PubMed

    Erbagci, H; Kizilkan, N; Ozbag, D; Erkilic, S; Kervancioglu, P; Canan, S; Gumusburun, E

    2012-10-01

    The purpose was to observe the changes in a rat pineal gland using stereological techniques during lactation and post-weaning periods. Thirty Wistar albino rats were studied during different post-natal periods using light microscopy. Pineal gland volume was estimated using the Cavalieri Method. Additionally, the total number of pinealocytes was estimated using the optical fractionator technique. Pineal gland volume displayed statistically significant changes between lactation and after weaning periods. A significant increase in pineal gland volume was observed from post-natal day 10 to post-natal day 90. The numerical density of pinealocytes became stabilized during lactation and decreased rapidly after weaning. However, the total number of pinealocytes continuously increased during post-natal life of all rats in the study. However, this increment was not statistically significant when comparing the lactation and after weaning periods. The increase in post-natal pineal gland volume may depend on increment of immunoreactive fibres, capsule thickness or new synaptic bodies. © 2012 Blackwell Verlag GmbH.

  18. Cerebellum: from Fundamentals to Translational Approaches. The Seventh International Symposium of the Society for Research on the Cerebellum.

    PubMed

    Manto, Mario; Mariën, Peter

    2016-02-01

    In terms of cerebellar research and ataxiology, a most fascinating period is currently going on. Numerous academic groups are now focusing their innovative research on the so-called little brain, hidden at the bottom of our brain. Indeed, its unique anatomical features make the cerebellum a wonderful window to address major questions about the central nervous system. The seventh international symposium of the SRC was held in Brussels at the Palace of Academies from May 8 to 10, 2015. The main goal of this dense symposium was to gather in a 2-day meeting senior researchers of exceptional scientific quality and talented junior scientists from all over the world working in the multidisciplinary field of cerebellar research. Fundamental and clinical researchers shared the latest knowledge and developments in this rapidly growing field. New ideas, addressed in a variety of inspiring talks, provoked a vivid debate. Advances in genetics, development, electrophysiology, neuroimaging, neurocognition and affect, as well as in the cerebellar ataxias and the controversies on the roles and functions of the cerebellum were presented. The Ferdinando Rossi lecture and the key-note lecture were delivered by Jan Voogd and Chris De Zeeuw, respectively. Contacts between researchers of different neuroscientific disciplines established a robust basis for novel trends and promising new cooperations between researchers and their centers spread all over the world.

  19. Proton Magnetic Resonance Spectroscopy Study on the Metabolism Changes of Cerebellum in Patients with Post-Stroke Depression.

    PubMed

    Zhang, Lei; Sui, Ru-Bo

    2017-01-01

    To study the metabolic changes of cerebellum by proton magnetic resonance Spectroscopy (1H-MRS) and discuss the relationships between the cerebellar changes and depression severity in patients with post-stroke depression. Data of demographic characteristics, individual history and life style of all subjects were collected. 40 patients with stroke and 20 controls were enrolled. All groups received T1WI, T2WI, DWI and 1H-MRS examination. The cerebral infarction volume and the distribution and severity of leukoaraiosis were evaluated. The ratios of NAA/Cr, Cho/Cr and Cho/NAA in the cerebellum were calculated. There were no statistical significant difference in the NAA/Cr, Cho/Cr and Cho/NAA ratios in bilateral cerebellum between CONT group and NORM group. The Cho/Cr and Cho/NAA ratios in the cerebellum contralateral to the stroke region were higher in PSD group than those in NORM and CONT groups, and the Cho/Cr and Cho/NAA ratios in the cerebellum ipsilateral to the stroke region were similar with those in NORM and CONT groups. However, there were no statistical significant difference in the NAA/Cr ratios in bilateral cerebellum among three groups. The result shows preliminarily that the cerebellum involves in the development of post-stroke depression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  20. Volumetric Analysis of Regional Variability in the Cerebellum of Children with Dyslexia

    PubMed Central

    Stuebing, Karla; Juranek, Jenifer; Fletcher, Jack M.

    2013-01-01

    Cerebellar deficits and subsequent impairment in procedural learning may contribute to both motor difficulties and reading impairment in dyslexia. We used quantitative magnetic resonance imaging to investigate the role of regional variation in cerebellar anatomy in children with single-word decoding impairments (N=23), children with impairment in fluency alone (N=8), and typically developing children (N=16). Children with decoding impairments (dyslexia) demonstrated no statistically significant differences in overall grey and white matter volumes or cerebellar asymmetry; however, reduced volume in the anterior lobe of the cerebellum relative to typically developing children was observed. These results implicate cerebellar involvement in dyslexia and establish an important foundation for future research on the connectivity of the cerebellum and cortical regions typically associated with reading impairment. PMID:23828023

  1. Volumetric analysis of regional variability in the cerebellum of children with dyslexia.

    PubMed

    Fernandez, Vindia G; Stuebing, Karla; Juranek, Jenifer; Fletcher, Jack M

    2013-12-01

    Cerebellar deficits and subsequent impairment in procedural learning may contribute to both motor difficulties and reading impairment in dyslexia. We used quantitative magnetic resonance imaging to investigate the role of regional variation in cerebellar anatomy in children with single-word decoding impairments (N = 23), children with impairment in fluency alone (N = 8), and typically developing children (N = 16). Children with decoding impairments (dyslexia) demonstrated no statistically significant differences in overall grey and white matter volumes or cerebellar asymmetry; however, reduced volume in the anterior lobe of the cerebellum relative to typically developing children was observed. These results implicate cerebellar involvement in dyslexia and establish an important foundation for future research on the connectivity of the cerebellum and cortical regions typically associated with reading impairment.

  2. War rape, natality and genocide.

    PubMed

    Schott, Robin May

    2011-01-01

    Feminist philosophy can make an important contribution to the field of genocide studies, and issues relating to gender and war are gaining new attention. In this article I trace legal and philosophical analyses of sexual violence against women in war. I analyze the strengths and limitations of the concept of social death—introduced into this field by Claudia Card—for understanding the genocidal features of war rape, and draw on the work of Hannah Arendt to understand the central harm of genocide as an assault on natality. The threat to natality posed by the harms of rape, forced pregnancy and forced maternity lie in the potential expulsion from the public world of certain groups—including women who are victims, members of the 'enemy' group, and children born of forced birth.

  3. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia

    PubMed Central

    Batla, Amit; Bhatia, Kailash; Dauer, William T; Dresel, Christian; Niethammer, Martin; Eidelberg, David; Raike, Robert S.; Smith, Yoland; Jinnah, H. A.; Hess, Ellen J.; Meunier, Sabine; Hallett, Mark; Fremont, Rachel; Khodakhah, Kamran; LeDoux, Mark S.; Popa, Traian; Gallea, Cécile; Lehericy, Stéphane; Bostan, Andreea C.; Strick, Peter L.

    2016-01-01

    A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia.Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia.Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems.Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin. PMID:27734238

  4. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia.

    PubMed

    Shakkottai, Vikram G; Batla, Amit; Bhatia, Kailash; Dauer, William T; Dresel, Christian; Niethammer, Martin; Eidelberg, David; Raike, Robert S; Smith, Yoland; Jinnah, H A; Hess, Ellen J; Meunier, Sabine; Hallett, Mark; Fremont, Rachel; Khodakhah, Kamran; LeDoux, Mark S; Popa, Traian; Gallea, Cécile; Lehericy, Stéphane; Bostan, Andreea C; Strick, Peter L

    2017-04-01

    A role for the cerebellum in causing ataxia, a disorder characterized by uncoordinated movement, is widely accepted. Recent work has suggested that alterations in activity, connectivity, and structure of the cerebellum are also associated with dystonia, a neurological disorder characterized by abnormal and sustained muscle contractions often leading to abnormal maintained postures. In this manuscript, the authors discuss their views on how the cerebellum may play a role in dystonia. The following topics are discussed: The relationships between neuronal/network dysfunctions and motor abnormalities in rodent models of dystonia. Data about brain structure, cerebellar metabolism, cerebellar connections, and noninvasive cerebellar stimulation that support (or not) a role for the cerebellum in human dystonia. Connections between the cerebellum and motor cortical and sub-cortical structures that could support a role for the cerebellum in dystonia. Overall points of consensus include: Neuronal dysfunction originating in the cerebellum can drive dystonic movements in rodent model systems. Imaging and neurophysiological studies in humans suggest that the cerebellum plays a role in the pathophysiology of dystonia, but do not provide conclusive evidence that the cerebellum is the primary or sole neuroanatomical site of origin.

  5. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task.

    PubMed

    Deluca, Cristina; Golzar, Ashkan; Santandrea, Elisa; Lo Gerfo, Emanuele; Eštočinová, Jana; Moretto, Giuseppe; Fiaschi, Antonio; Panzeri, Marta; Mariotti, Caterina; Tinazzi, Michele; Chelazzi, Leonardo

    2014-09-01

    Visual perceptual learning is widely assumed to reflect plastic changes occurring along the cerebro-cortical visual pathways, including at the earliest stages of processing, though increasing evidence indicates that higher-level brain areas are also involved. Here we addressed the possibility that the cerebellum plays an important role in visual perceptual learning. Within the realm of motor control, the cerebellum supports learning of new skills and recalibration of motor commands when movement execution is consistently perturbed (adaptation). Growing evidence indicates that the cerebellum is also involved in cognition and mediates forms of cognitive learning. Therefore, the obvious question arises whether the cerebellum might play a similar role in learning and adaptation within the perceptual domain. We explored a possible deficit in visual perceptual learning (and adaptation) in patients with cerebellar damage using variants of a novel motion extrapolation, psychophysical paradigm. Compared to their age- and gender-matched controls, patients with focal damage to the posterior (but not the anterior) cerebellum showed strongly diminished learning, in terms of both rate and amount of improvement over time. Consistent with a double-dissociation pattern, patients with focal damage to the anterior cerebellum instead showed more severe clinical motor deficits, indicative of a distinct role of the anterior cerebellum in the motor domain. The collected evidence demonstrates that a pure form of slow-incremental visual perceptual learning is crucially dependent on the intact cerebellum, bearing the notion that the human cerebellum acts as a learning device for motor, cognitive and perceptual functions. We interpret the deficit in terms of an inability to fine-tune predictive models of the incoming flow of visual perceptual input over time. Moreover, our results suggest a strong dissociation between the role of different portions of the cerebellum in motor versus

  6. Moving Forward: Age Effects on the Cerebellum Underlie Cognitive and Motor Declines

    PubMed Central

    Bernard, Jessica A.; Seidler, Rachael D.

    2014-01-01

    Though the cortical contributions to age-related declines in motor and cognitive performance are well-known, the potential contributions of the cerebellum are less clear. The diverse functions of the cerebellum make it an important structure to investigate in aging. Here, we review the extant literature on this topic. To date, there is evidence to indicate that there are morphological age differences in the cerebellum that are linked to motor and cognitive behavior. Cerebellar morphology is often as good as -- or even better -- at predicting performance than the prefrontal cortex. We also touch on the few studies using functional neuroimaging and connectivity analyses that further implicate the cerebellum in age-related performance declines. Importantly, we provide a conceptual framework for the cerebellum influencing age differences in performance, centered on the notion of degraded internal models. The evidence indicating that cerebellar age differences associate with performance highlights the need for additional work in this domain to further elucidate the role of the cerebellum in age differences in movement control and cognitive function. PMID:24594194

  7. Temporal learning in the cerebellum: The microcircuit model

    NASA Technical Reports Server (NTRS)

    Miles, Coe F.; Rogers, David

    1990-01-01

    The cerebellum is that part of the brain which coordinates motor reflex behavior. To perform effectively, it must learn to generate specific motor commands at the proper times. We propose a fundamental circuit, called the MicroCircuit, which is the minimal ensemble of neurons both necessary and sufficient to learn timing. We describe how learning takes place in the MicroCircuit, which then explains the global behavior of the cerebellum as coordinated MicroCircuit behavior.

  8. Visuomotor cerebellum in human and nonhuman primates.

    PubMed

    Voogd, Jan; Schraa-Tam, Caroline K L; van der Geest, Jos N; De Zeeuw, Chris I

    2012-06-01

    In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.

  9. Where did the motor function of the cerebellum come from?

    PubMed

    Coco, Marinella; Perciavalle, Vincenzo

    2015-01-01

    Until the end of 18th century, the role of the cerebellum remained obscure. The turning point occurred when Luigi Galvani showed that muscle contraction is due to electricity and Alessandro Volta produced the battery, an apparatus based on the pairing of silver and zinc plates separated by brine soaked paper disks, capable to generate electricity. Luigi Rolando, at beginning of 19th century, was impressed by these two observations. He thought that, since the brain generates the movement, it must contain a device generating electricity. As a battery, it should be formed by overlapping disks and the cerebellum for Rolando seemed to be the right structure for such a characteristic laminar organization. He argued that, if the cerebellum is the battery that produces electricity for muscle activity, its removal would produce paralysis. Consequently, Rolando removed the cerebellum in a young goat and observed that the animal, before dying, could no longer stand up. He concluded that the cerebellum is a motor structure as it generates the electricity which produces the movement. The conclusions of Rolando were criticized by Marie-Jean-Pierre Flourens who observed that animals undergoing cerebellectomy were still able to move, even if with problems of balance. Flourens concluded that the role of the cerebellum "is to put in order or to coordinate movements wanted by certain parts of the nervous system, excited by others". It was necessary to wait up to 1891 when Luigi Luciani, observing a dog survived the cerebellectomy, described a triad of symptoms (asthenia, atony and astasis), unquestionably of cerebellar origin.

  10. Social factors influencing natal dispersal in male white-faced capuchins (Cebus capucinus).

    PubMed

    Jack, Katharine M; Sheller, Claire; Fedigan, Linda M

    2012-04-01

    White-faced capuchin males disperse from their natal group at around 4.5 years of age, but there is much variation in dispersal timing: our youngest confirmed disperser was 19 months and the oldest 11 years old. In this study, we investigate possible factors influencing dispersal decisions in this species. Between 1983 and 2010, 64 males were born into three study groups in Santa Rosa National Park, Area de Conservación Guanacaste, and Costa Rica. As of August 2010, 21 died or were presumed dead (<14 months), 13 remained natal residents, and 30 were presumed dispersers. We used backward logistic regression to identify proximate factors that predict the occurrence of male natal dispersal. The occurrence of a takeover (significant positive association) and group size (nonsignificant negative association) were included in the model. Male age, number of maternal brothers, and number of adult males were not significant predictors of natal dispersal. The resultant model correctly classified 97% of dispersed and 89% of resident natal males, for an overall success rate of 95%. The occurrence of a group takeover was the strongest predictor of male dispersal, with natal males being 18.7 times more likely to disperse in the context of a group takeover than during peaceful times. A linear regression model showed that the tenure length of a male's probable father influences the age of natal dispersal, explaining 15% of the observed variation in age. However, when our oldest disperser was removed (an outlier) this effect disappeared. Collectively, these results indicate that group instability, as evidenced by the occurrence of a takeover, shorter tenure length of a natal male's father, and smaller group size, triggers natal dispersal in this species while the converse leads to a delay. These data add to our growing evidence of the enormous impact that takeovers have on the behavioral ecology of this species. © 2011 Wiley Periodicals, Inc.

  11. Imaging gene and environmental effects on cerebellum in Attention-Deficit/Hyperactivity Disorder and typical development☆

    PubMed Central

    de Zeeuw, Patrick; van Belle, Janna; van Dijk, Sarai; Weusten, Juliette; Koeleman, Bobby; Janson, Esther; van Engeland, Herman; Durston, Sarah

    2012-01-01

    This study investigates the effects of XKR4, a recently identified candidate gene for Attention-Deficit/Hyperactivity Disorder (ADHD), birth weight, and their interaction on brain volume in ADHD. XKR4 is expressed in cerebellum and low birth weight has been associated both with changes in cerebellum and with ADHD, probably due to its relation with prenatal adversity. Anatomical MRI scans were acquired in 58 children with ADHD and 64 typically developing controls and processed to obtain volumes of cerebrum, cerebellum and gray and white matter in each structure. DNA was collected from saliva. Analyses including data on birth weight were conducted in a subset of 37 children with ADHD and 51 controls where these data were retrospectively collected using questionnaires. There was an interaction between genotype and birth weight for cerebellum gray matter volume (p = .020). The combination of homozygosity for the G-allele (the allele previously found to be overtransmitted in ADHD) and higher birth weight was associated with smaller volume. Furthermore, birth weight was positively associated with cerebellar white matter volume in controls, but not ADHD (interaction: p = .021). The interaction of genotype with birth weight affecting cerebellum gray matter is consistent with models that emphasize increased influence of genetic risk-factors in an otherwise favorable prenatal environment. The absence of an association between birth weight and cerebellum white matter volume in ADHD suggests that other genetic or environmental effects may be at play, unrelated to XKR4. These results underscore the importance of considering environmental effects in imaging genetics studies. PMID:24179763

  12. Oscillations, Timing, Plasticity, and Learning in the Cerebellum.

    PubMed

    Cheron, G; Márquez-Ruiz, J; Dan, B

    2016-04-01

    The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás's theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito-Marr-Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.

  13. [The organization of medical stomatological care of women in post-natal period].

    PubMed

    Kulikova, N G; Omeltchuk, N N; Zalenskiy, V A; Tkachenko, A S

    2014-01-01

    The article presents the following new data. The medical social aspects of women with stomatological pathology during post-natal period are characterized by age gender, professional, educational and organizational aspects. The issues of impact of characteristics of medical stomatological care of women in post-natal period are considered. The results of survey of women in post-natal period using questionnaire targeted to detection of stomatological diseases are presented.

  14. Differential timing of granule cell production during cerebellum development underlies generation of the foliation pattern.

    PubMed

    Legué, Emilie; Gottshall, Jackie L; Jaumouillé, Edouard; Roselló-Díez, Alberto; Shi, Wei; Barraza, Luis Humberto; Washington, Senna; Grant, Rachel L; Joyner, Alexandra L

    2016-09-08

    The mouse cerebellum (Cb) has a remarkably complex foliated three-dimensional (3D) structure, but a stereotypical cytoarchitecture and local circuitry. Little is known of the cellular behaviors and genes that function during development to determine the foliation pattern. In the anteroposterior axis the mammalian cerebellum is divided by lobules with distinct sizes, and the foliation pattern differs along the mediolateral axis defining a medial vermis and two lateral hemispheres. In the vermis, lobules are further grouped into four anteroposterior zones (anterior, central, posterior and nodular zones) based on genetic criteria, and each has distinct lobules. Since each cerebellar afferent group projects to particular lobules and zones, it is critical to understand how the 3D structure of the Cb is acquired. During cerebellar development, the production of granule cells (gcs), the most numerous cell type in the brain, is required for foliation. We hypothesized that the timing of gc accumulation is different in the four vermal zones during development and contributes to the distinct lobule morphologies. In order to test this idea, we used genetic inducible fate mapping to quantify accumulation of gcs in each lobule during the first two postnatal weeks in mice. The timing of gc production was found to be particular to each lobule, and delayed in the central zone lobules relative to the other zones. Quantification of gc proliferation and differentiation at three time-points in lobules representing different zones, revealed the delay involves a later onset of maximum differentiation and prolonged proliferation of gc progenitors in the central zone. Similar experiments in Engrailed mutants (En1 (-/+) ;En2 (-/-) ), which have a smaller Cb and altered foliation pattern preferentially outside the central zone, showed that gc production, proliferation and differentiation are altered such that the differences between zones are attenuated compared to wild-type mice. Our

  15. Locomotor activity modulates associative learning in mouse cerebellum.

    PubMed

    Albergaria, Catarina; Silva, N Tatiana; Pritchett, Dominique L; Carey, Megan R

    2018-05-01

    Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual's ability to learn.

  16. Natal and breeding philopatry of female Steller sea lions in southeastern Alaska.

    PubMed

    Hastings, Kelly K; Jemison, Lauri A; Pendleton, Grey W; Raum-Suryan, Kimberly L; Pitcher, Kenneth W

    2017-01-01

    Information on drivers of dispersal is critical for wildlife conservation but is rare for long-lived marine mammal species with large geographic ranges. We fit multi-state mark-recapture models to resighting data of 369 known-aged Steller sea lion (Eumetopias jubatus) females marked as pups on their natal rookeries in southeastern Alaska from 1994-2005 and monitored from 2001-15. We estimated probabilities of females being first observed parous at their natal site (natal philopatry), and of not moving breeding sites among years (breeding philopatry) at large (> 400 km, all five rookeries in southeastern Alaska) and small (< 4 km, all islands within the largest rookery, Forrester Island Complex, F) spatial scales. At the rookery scale, natal philopatry was moderately high (0.776-0.859) for most rookeries and breeding philopatry was nearly 1, with < 3% of females switching breeding rookeries between years. At more populous islands at F, natal philopatry was 0.500-0.684 versus 0.295-0.437 at less populous islands, and breeding philopatry was 0.919-0.926 versus 0.604-0.858. At both spatial scales, the probability of pupping at a non-natal site increased with population size of, and declined with distance from, the destination site. Natal philopatry of < 1 would increase gene flow, improve population resilience, and promote population recovery after decline in a heterogeneous environment. Very high breeding philopatry suggests that familiarity with neighboring females and knowledge of the breeding site (the topography of pupping sites and nearby foraging locations) may be a critical component to reproductive strategies of sea lions.

  17. Consensus paper: the role of the cerebellum in perceptual processes.

    PubMed

    Baumann, Oliver; Borra, Ronald J; Bower, James M; Cullen, Kathleen E; Habas, Christophe; Ivry, Richard B; Leggio, Maria; Mattingley, Jason B; Molinari, Marco; Moulton, Eric A; Paulin, Michael G; Pavlova, Marina A; Schmahmann, Jeremy D; Sokolov, Arseny A

    2015-04-01

    Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.

  18. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    PubMed Central

    Li, Xiufeng; Sarkar, Subhendra N.; Purdy, David E.; Briggs, Richard W.

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values. PMID:24949416

  19. Quantifying cerebellum grey matter and white matter perfusion using pulsed arterial spin labeling.

    PubMed

    Li, Xiufeng; Sarkar, Subhendra N; Purdy, David E; Briggs, Richard W

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.

  20. Association of marital status and years of schooling with perinatal outcome: the influence of pre-natal care as an intermediate variable.

    PubMed

    Faundes, A; Hardy, E; Diaz, J; Pinotti, J

    1982-01-01

    The association between mother's education and perinatal mortality, and between marital status and proportion of preterm deliveries was analyzed using data from 20,000 women and newborns delivered at the Hospital Barros Luco-Trudeau in Santiago, Chile. A highly significant correlation was found, but after being controlled by pre-natal care, that association disappeared for those mothers with good pre-natal care, remaining only as a part of the association for women who did not attend the pre-natal clinics or did not follow minimal standards of care. The definition used for "good pre-natal care" was much less demanding than WHO recommendation. We required a minimum of only 5 visits, starting before the 5th month of the pregnancy and with blood pressure and body weight registered at each visit. Pre-natal assistance was provided mostly by registered midwives, with occasional consultation by physicians. The efficiency of a low cost health activity, such as pre-natal care, in improving infant health is held in contrast with the inefficiency of high cost technology when applied to developing countries' health problems.

  1. Overexpression of mutant ataxin-3 in mouse cerebellum induces ataxia and cerebellar neuropathology.

    PubMed

    Nóbrega, Clévio; Nascimento-Ferreira, Isabel; Onofre, Isabel; Albuquerque, David; Conceição, Mariana; Déglon, Nicole; de Almeida, Luís Pereira

    2013-08-01

    Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder--the cerebellum--and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame--6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.

  2. Linking Essential Tremor to the Cerebellum: Clinical Evidence.

    PubMed

    Benito-León, Julián; Labiano-Fontcuberta, Andrés

    2016-06-01

    Essential tremor (ET) might be a family of diseases unified by the presence of kinetic tremor, but also showing etiological, pathological, and clinical heterogeneity. In this review, we will describe the most significant clinical evidence, which suggests that ET is linked to the cerebellum. Data for this review were identified by searching PUBMED (January 1966 to May 2015) crossing the terms "essential tremor" (ET) and "cerebellum," which yielded 201 entries, 11 of which included the term "cerebellum" in the article title. This was supplemented by articles in the author's files that pertained to this topic. The wide spectrum of clinical features of ET that suggest that it originates as a cerebellar or cerebellar outflow problem include the presence of intentional tremor, gait and balance abnormalities, subtle features of dysarthria, and oculomotor abnormalities, as well as deficits in eye-hand coordination, motor learning deficits, incoordination during spiral drawing task, abnormalities in motor timing and visual reaction time, impairment of social abilities, improvement in tremor after cerebellar stroke, efficacy of deep brain stimulation (which blocks cerebellar outflow), and cognitive dysfunction. It is unlikely, however, that cerebellar dysfunction, per se, fully explains ET-associated dementia, because the cognitive deficits that have been described in patients with cerebellar lesions are generally mild. Overall, a variety of clinical findings suggest that in at least a sizable proportion of patients with ET, there is an underlying abnormality of the cerebellum and/or its pathways.

  3. In vivo three-photon imaging of deep cerebellum

    NASA Astrophysics Data System (ADS)

    Wang, Mengran; Wang, Tianyu; Wu, Chunyan; Li, Bo; Ouzounov, Dimitre G.; Sinefeld, David; Guru, Akash; Nam, Hyung-Song; Capecchi, Mario R.; Warden, Melissa R.; Xu, Chris

    2018-02-01

    We demonstrate three-photon microscopy (3PM) of mouse cerebellum at 1 mm depth by imaging both blood vessels and neurons. We compared 3PM and 2PM in the mouse cerebellum for imaging green (using excitation sources at 1300 nm and 920 nm, respectively) and red fluorescence (using excitation sources at 1680 nm and 1064 nm, respectively). 3PM enabled deeper imaging than 2PM because the use of longer excitation wavelength reduces the scattering in biological tissue and the higher order nonlinear excitation provides better 3D localization. To illustrate these two advantages quantitatively, we measured the signal decay as well as the signal-to-background ratio (SBR) as a function of depth. We performed 2-photon imaging from the brain surface all the way down to the area where the SBR reaches 1, while at the same depth, 3PM still has SBR above 30. The segmented decay curve shows that the mouse cerebellum has different effective attenuation lengths at different depths, indicating heterogeneous tissue property for this brain region. We compared the third harmonic generation (THG) signal, which is used to visualize myelinated fibers, with the decay curve. We found that the regions with shorter effective attenuation lengths correspond to the regions with more fibers. Our results indicate that the widespread, non-uniformly distributed myelinated fibers adds heterogeneity to mouse cerebellum, which poses additional challenges in deep imaging of this brain region.

  4. The cerebellum ages slowly according to the epigenetic clock.

    PubMed

    Horvath, Steve; Mah, Vei; Lu, Ake T; Woo, Jennifer S; Choi, Oi-Wa; Jasinska, Anna J; Riancho, José A; Tung, Spencer; Coles, Natalie S; Braun, Jonathan; Vinters, Harry V; Coles, L Stephen

    2015-05-01

    Studies that elucidate why some human tissues age faster than others may shed light on how we age, and ultimately suggest what interventions may be possible. Here we utilize a recent biomarker of aging (referred to as epigenetic clock) to assess the epigenetic ages of up to 30 anatomic sites from supercentenarians (subjects who reached an age of 110 or older) and younger subjects. Using three novel and three published human DNA methylation data sets, we demonstrate that the cerebellum ages more slowly than other parts of the human body. We used both transcriptional data and genetic data to elucidate molecular mechanisms which may explain this finding. The two largest superfamilies of helicases (SF1 and SF2) are significantly over-represented (p=9.2x10-9) among gene transcripts that are over-expressed in the cerebellum compared to other brain regions from the same subject. Furthermore, SNPs that are associated with epigenetic age acceleration in the cerebellum tend to be located near genes from helicase superfamilies SF1 and SF2 (enrichment p=5.8x10-3). Our genetic and transcriptional studies of epigenetic age acceleration support the hypothesis that the slow aging rate of the cerebellum is due to processes that involve RNA helicases.

  5. The cerebellum ages slowly according to the epigenetic clock

    PubMed Central

    Horvath, Steve; Mah, Vei; Lu, Ake T.; Woo, Jennifer S.; Choi, Oi-Wa; Jasinska, Anna J.; Riancho, José A.; Tung, Spencer; Coles, Natalie S.; Braun, Jonathan; Vinters, Harry V.; Coles, L. Stephen

    2015-01-01

    Studies that elucidate why some human tissues age faster than others may shed light on how we age, and ultimately suggest what interventions may be possible. Here we utilize a recent biomarker of aging (referred to as epigenetic clock) to assess the epigenetic ages of up to 30 anatomic sites from supercentenarians (subjects who reached an age of 110 or older) and younger subjects. Using three novel and three published human DNA methylation data sets, we demonstrate that the cerebellum ages more slowly than other parts of the human body. We used both transcriptional data and genetic data to elucidate molecular mechanisms which may explain this finding. The two largest superfamilies of helicases (SF1 and SF2) are significantly over-represented (p=9.2×10−9) among gene transcripts that are over-expressed in the cerebellum compared to other brain regions from the same subject. Furthermore, SNPs that are associated with epigenetic age acceleration in the cerebellum tend to be located near genes from helicase superfamilies SF1 and SF2 (enrichment p=5.8×10−3). Our genetic and transcriptional studies of epigenetic age acceleration support the hypothesis that the slow aging rate of the cerebellum is due to processes that involve RNA helicases. PMID:26000617

  6. Natal and breeding philopatry of female Steller sea lions in southeastern Alaska

    PubMed Central

    2017-01-01

    Information on drivers of dispersal is critical for wildlife conservation but is rare for long-lived marine mammal species with large geographic ranges. We fit multi-state mark-recapture models to resighting data of 369 known-aged Steller sea lion (Eumetopias jubatus) females marked as pups on their natal rookeries in southeastern Alaska from 1994–2005 and monitored from 2001–15. We estimated probabilities of females being first observed parous at their natal site (natal philopatry), and of not moving breeding sites among years (breeding philopatry) at large (> 400 km, all five rookeries in southeastern Alaska) and small (< 4 km, all islands within the largest rookery, Forrester Island Complex, F) spatial scales. At the rookery scale, natal philopatry was moderately high (0.776–0.859) for most rookeries and breeding philopatry was nearly 1, with < 3% of females switching breeding rookeries between years. At more populous islands at F, natal philopatry was 0.500–0.684 versus 0.295–0.437 at less populous islands, and breeding philopatry was 0.919–0.926 versus 0.604–0.858. At both spatial scales, the probability of pupping at a non-natal site increased with population size of, and declined with distance from, the destination site. Natal philopatry of < 1 would increase gene flow, improve population resilience, and promote population recovery after decline in a heterogeneous environment. Very high breeding philopatry suggests that familiarity with neighboring females and knowledge of the breeding site (the topography of pupping sites and nearby foraging locations) may be a critical component to reproductive strategies of sea lions. PMID:28591130

  7. Emotion and Theory of Mind in Schizophrenia-Investigating the Role of the Cerebellum.

    PubMed

    Mothersill, Omar; Knee-Zaska, Charlotte; Donohoe, Gary

    2016-06-01

    Social cognitive dysfunction, including deficits in facial emotion recognition and theory of mind, is a core feature of schizophrenia and more strongly predicts functional outcome than neurocognition alone. Although traditionally considered to play an important role in motor coordination, the cerebellum has been suggested to play a role in emotion processing and theory of mind, and also shows structural and functional abnormalities in schizophrenia. The aim of this systematic review was to investigate the specific role of the cerebellum in emotion and theory of mind deficits in schizophrenia using previously published functional neuroimaging studies. PubMed and PsycINFO were used to search for all functional neuroimaging studies reporting altered cerebellum activity in schizophrenia patients during emotion processing or theory of mind tasks, published until December 2014. Overall, 14 functional neuroimaging studies were retrieved. Most emotion studies reported lower cerebellum activity in schizophrenia patients relative to healthy controls. In contrast, the theory of mind studies reported mixed findings. Altered activity was observed across several posterior cerebellar regions involved in emotion and cognition. Weaker cerebellum activity in schizophrenia patients relative to healthy controls during emotion processing may contribute to blunted affect and reduced ability to recognise emotion in others. This research could be expanded by examining the relationship between cerebellum function, symptomatology and behaviour, and examining cerebellum functional connectivity in patients during emotion and theory of mind tasks.

  8. Semiautomated volumetry of the cerebrum, cerebellum-brain stem, and temporal lobe on brain magnetic resonance images.

    PubMed

    Hayashi, Norio; Sanada, Shigeru; Suzuki, Masayuki; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Matsui, Osamu

    2008-02-01

    The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: (1) segmentation of the brain region; (2) separation between the cerebrum and the cerebellum-brain stem; and (3) segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain.

  9. Effects of mild hyperthyroidism on levels of amino acids in the developing Lurcher cerebellum.

    PubMed

    Messer, A; Eisenberg, B; Martin, D L

    1989-01-01

    This study examines the question of whether intrinsically defective mutant Lurcher Purkinje cells, which degenerate during postnatal weeks two to five, followed by later loss of granule cells are competent to respond to neonatal hyperthyroidism, which is known to cause premature differentiation of Purkinje cells and an acceleration of the peak of proliferation in granule cells in normal rodent cerebellum. Both total amounts and concentrations (per mg wet weight) of Tau, Glu, Asp and GABA were assayed as markers of cell function in Lurcher and wild-type mice made very mildly hyperthyroid by feeding nursing dams high-thyroxine food. Tau, which is present in relatively high concentrations in Purkinje cells, was affected by hyperthyroid treatment in the Lurcher in a manner that is most consistent with an acceleration of the degenerative process in Purkinje cells. The acidic amino acids Glu and Asp show later changes and response to hormone which seem to be a reaction to the Purkinje cell pattern, probably in the granule cells. We conclude that the Lurcher cerebellum is particularly sensitive to thyroid hormone, and that it responds to low levels of hyperthyroidism in a distinct way.

  10. Abnormal trajectories in cerebellum and brainstem volumes in carriers of the fragile X premutation.

    PubMed

    Wang, Jun Yi; Hessl, David; Hagerman, Randi J; Simon, Tony J; Tassone, Flora; Ferrer, Emilio; Rivera, Susan M

    2017-07-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder typically affecting male premutation carriers with 55-200 CGG trinucleotide repeat expansions in the FMR1 gene after age 50. The aim of this study was to examine whether cerebellar and brainstem changes emerge during development or aging in late life. We retrospectively analyzed magnetic resonance imaging scans from 322 males (age 8-81 years). Volume changes in the cerebellum and brainstem were contrasted with those in the ventricles and whole brain. Compared to the controls, premutation carriers without FXTAS showed significantly accelerated volume decrease in the cerebellum and whole brain, flatter inverted U-shaped trajectory of the brainstem, and larger ventricles. Compared to both older controls and premutation carriers without FXTAS, carriers with FXTAS exhibited significant volume decrease in the cerebellum and whole brain and accelerated volume decrease in the brainstem. We therefore conclude that cerebellar and brainstem volumes were likely affected during both development and progression of neurodegeneration in premutation carriers, suggesting that interventions may need to start early in adulthood to be most effective. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The emotional cerebellum.

    PubMed

    Strata, Piergiorgio

    2015-10-01

    Great attention has been given so far to cerebellar control of posture and of skilled movements despite the well-demonstrated interconnections between the cerebellum and the autonomic nervous system. Here is a review of the link between these two structures and a report on the recently acquired evidence for its involvement in the world of emotions. In rodents, the reversible inactivation of the vermis during the consolidation or the reconsolidation period hampers the retention of the fear memory trace. In this region, there is a long-term potentiation of both the excitatory synapses between the parallel fibres and the Purkinje cells and of the feed-forward inhibition mediated by molecular layer interneurons. This concomitant potentiation ensures the temporal fidelity of the system. Additional contacts between mossy fibre terminals and Golgi cells provide morphological evidence of the potentiation of another feed-forward inhibition in the granular layer. Imaging experiments show that also in humans the cerebellum is activated during mental recall of emotional personal episodes and during learning of a conditioned or unconditioned association involving emotions. The vermis participates in fear learning and memory mechanisms related to the expression of autonomic and motor responses of emotions. In humans, the cerebellar hemispheres are also involved at a higher emotional level. The importance of these findings is evident when considering the cerebellar malfunctioning in psychiatric diseases like autism and schizophrenia which are characterized behaviourally by emotion processing impairments.

  12. Neuroimmune regulation of neurophysiology in the cerebellum.

    PubMed

    Gruol, Donna L

    2013-06-01

    Recent studies have established the existence of an innate immune system in the central nervous system (CNS) and implicated a critical role for this system in both normal and pathological processes. Astrocytes and microglia, normal components of the CNS, are the primary cell types that comprise the innate immune system of the CNS. Basic to their role during normal and adverse conditions is the production of neuroimmune factors such as cytokines and chemokines, which are signaling molecules that initiate or coordinate downstream cellular actions. During adverse conditions, cytokines and chemokines function in defensive and repair. However, if expression of these factors becomes dysregulated, abnormal CNS function can result. Both neurons and glial cells of the CNS express receptors for cytokines and chemokines, but the biological consequence of receptor activation has yet to be fully resolved. Our studies show that neuroadaptive changes are produced in primary cultures of rat cerebellar cells chronically treated with the cytokine interleukin-6 (IL-6) and in the cerebellum of transgenic mice that chronically express elevated levels of IL-6 in the CNS. In the cerebellum in culture and in vivo, the neuroadaptive changes included alterations in the level of expression of proteins involved in gene expression, signal transduction, and synaptic transmission. Associated with these changes were alterations in neuronal function. A comparison of results from the cultured cerebellar cells and cerebellum of the transgenic mice indicated that the effects of IL-6 can vary across neuronal types. However, alterations in mechanisms involved in Ca(2+) homeostasis were observed in all cell types studied. These results indicate that modifications in cerebellar function are likely to occur in disorders associated with elevated levels of IL-6 in the cerebellum.

  13. Non-School Influences and Educational Disadvantage: Pre and Post-natal Nutritional Deprivation

    ERIC Educational Resources Information Center

    Doll, Russell C.

    1973-01-01

    Deals with pre and post-natal malnutrition and its possible influence on the child, focusing on these points: How wide-spread and severe is the malnutrition? What might be the effects of the malnutrition at certain critical points in development? (Author/JM)

  14. The Cerebellum as a Novel Tinnitus Generator

    PubMed Central

    Bauer, Carol A.; Wisner, Kurt; Sybert, Lauren T.; Brozoski, Thomas J.

    2012-01-01

    The role of the cerebellum in auditory processing is largely unknown. Recently it was shown that rats with psychophysical evidence of tinnitus had significantly elevated neural activity in the paraflocculus of the cerebellum (PFL), as indicated by functional imaging. It was further shown that PFL activity was not elevated in normal rats listening to a tinnitus-like sound. This suggests that plastic changes in the PFL may underpin chronic tinnitus, i.e., it may serve as a tinnitus generator. Using a rat model of acoustic-trauma-induced tinnitus, the role of the cerebellum was further examined in a series of experiments: The PFLwas surgically ablated in animals with established tinnitus; the PFL was surgically ablated in animals before induction of tinnitus; the PFL was reversibly inactivated by chronic lidocaine infusion into the subarcuate fossa of animals with established tinnitus. It was found that PFL ablation eliminated established tinnitus without altering auditory discrimination. Similar to the ablation results, PFL inactivation with lidocaine reversibly eliminated existing tinnitus. In contrast however, PFL ablation before tinnitus induction attenuated, but did not completely eliminate, tinnitus. In a rat model of noise-induced chronic tinnitus, the cerebellar PFL may serve as a sufficient but non-obligatory generator of tinnitus. PMID:23418634

  15. The cerebellum as a novel tinnitus generator.

    PubMed

    Bauer, Carol A; Kurt, Wisner; Sybert, Lauren T; Brozoski, Thomas J

    2013-01-01

    The role of the cerebellum in auditory processing is largely unknown. Recently it was shown that rats with psychophysical evidence of tinnitus had significantly elevated neural activity in the paraflocculus of the cerebellum (PFL), as indicated by functional imaging. It was further shown that PFL activity was not elevated in normal rats listening to a tinnitus-like sound. This suggests that plastic changes in the PFL may underpin chronic tinnitus, i.e., it may serve as a tinnitus generator. Using a rat model of acoustic trauma-induced tinnitus, the role of the cerebellum was further examined in a series of experiments:The PFL was surgically ablated in animals with established tinnitus; the PFL was surgically ablated in animals before induction of tinnitus; the PFL was reversibly inactivated by chronic lidocaine infusion into the subarcuate fossa of animals with established tinnitus. It was found that PFL ablation eliminated established tinnitus without altering auditory discrimination. Similar to the ablation results, PFL inactivation with lidocaine reversibly eliminated existing tinnitus. In contrast however, PFL ablation before tinnitus induction attenuated, but did not completely eliminate, tinnitus. In a rat model of noise-induced chronic tinnitus, the cerebellar PFL may serve as a sufficient but non-obligatory generator of tinnitus.

  16. Project Pró-natal: population-based study of perinatal and infant mortality in natal, Northeast Brazil.

    PubMed

    Ramos, A M; Maranhão, T D; Macedo, A S; Pollock, J I; Emond, A M

    2000-01-01

    The Pró-Natal project is a collaborative initiative that aims to improve maternal and infant health in a deprived community in Natal, Northeast Brazil. To assess the perinatal and infant mortality in this population of 40,000, we have collected over a 2-year period a consecutive series of 39 autopsy examinations on deaths under 1 year of age. During this period there were 2212 live births in the study population. The 14 perinatal deaths are described using the Wrigglesworth classification, and the 25 infant deaths, using a clinicopathological system. The contribution of normally formed stillbirths was small (14%), which probably reflects the underreporting of stillbirths in this community. The most common cause of death in the live births was complications of prematurity (43%). Specific causes (22%) of perinatal deaths were predominantly infections, including one case of congenital syphilis. Perinatal asphyxia was diagnosed in 14%, and there was one case (7%) of a chromosome abnormality. Infant deaths were predominantly due to respiratory (45%) and gastrointestinal infections (28%), with chronic malnutrition as an underlying cause in 80% of cases. Prenatal care could theoretically have prevented three of the perinatal deaths, and a further six deaths could have been avoided by improved management of labor and the immediate neonatal period. Prevention of malnutrition and improved treatment of acute infections would contribute to a reduction in infant mortality in this population. The Pró-Natal project will use these data to design preventative interventions to reduce perinatal and infant mortality in this community.

  17. The Cerebellum and Emotional Experience

    PubMed Central

    Turner, Beth M.; Paradiso, Sergio; Marvel, Cherie L.; Pierson, Ronald; Boles Ponto, Laura L.; Hichwa, Richard D.; Robinson, Robert G.

    2007-01-01

    Summary While the role of the cerebellum in motor coordination is widely accepted, the notion that it is involved in emotion has only recently gained popularity. To date, functional neuroimaging has not been used in combination with lesion studies to elucidate the role of the cerebellum in the processing of emotional material. We examined six participants with cerebellar stroke and nine age and education matched healthy volunteers. In addition to a complete neuropsychological, neurologic, and psychiatric examination, participants underwent [15O]water positron emission tomography (PET) while responding to emotion-evoking visual stimuli. Cerebellar lesions were associated with reduced pleasant experience in response to happiness-evoking stimuli. Stroke patients reported an unpleasant experience to frightening stimuli similar to healthy controls, yet showed significantly lower activity in the right ventral lateral and left dorsolateral prefrontal cortex, amygdala, thalamus, and retrosplenial cingulate gyrus. Frightening stimuli led to increased activity in the ventral medial prefrontal, anterior cingulate, pulvinar, and insular cortex. This suggests that alternate neural circuitry became responsible for maintaining the evolutionarily critical fear response after cerebellar damage. PMID:17123557

  18. Human embryonic growth and development of the cerebellum using 3-dimensional ultrasound and virtual reality.

    PubMed

    Rousian, M; Groenenberg, I A L; Hop, W C; Koning, A H J; van der Spek, P J; Exalto, N; Steegers, E A P

    2013-08-01

    The aim of our study was to evaluate the first trimester cerebellar growth and development using 2 different measuring techniques: 3-dimensional (3D) and virtual reality (VR) ultrasound visualization. The cerebellum measurements were related to gestational age (GA) and crown-rump length (CRL). Finally, the reproducibility of both the methods was tested. In a prospective cohort study, we collected 630 first trimester, serially obtained, 3D ultrasound scans of 112 uncomplicated pregnancies between 7 + 0 and 12 + 6 weeks of GA. Only scans with high-quality images of the fossa posterior were selected for the analysis. Measurements were performed offline in the coronal plane using 3D (4D view) and VR (V-Scope) software. The VR enables the observer to use all available dimensions in a data set by visualizing the volume as a "hologram." Total cerebellar diameter, left, and right hemispheric diameter, and thickness were measured using both the techniques. All measurements were performed 3 times and means were used in repeated measurements analysis. After exclusion criteria were applied 177 (28%) 3D data sets were available for further analysis. The median GA was 10 + 0 weeks and the median CRL was 31.4 mm (range: 5.2-79.0 mm). The cerebellar parameters could be measured from 7 gestational weeks onward. The total cerebellar diameter increased from 2.2 mm at 7 weeks of GA to 13.9 mm at 12 weeks of GA using VR and from 2.2 to 13.8 mm using 3D ultrasound. The reproducibility, established in a subset of 35 data sets, resulted in intraclass correlation coefficient values ≥0.98. It can be concluded that cerebellar measurements performed by the 2 methods proved to be reproducible and comparable with each other. However, VR-using all three dimensions-provides a superior method for the visualization of the cerebellum. The constructed reference values can be used to study normal and abnormal cerebellar growth and development.

  19. Interactions between Prefrontal Cortex and Cerebellum Revealed by Trace Eyelid Conditioning

    ERIC Educational Resources Information Center

    Kalmbach, Brian E.; Ohyama, Tatsuya; Kreider, Joy C.; Riusech, Frank; Mauk, Michael D.

    2009-01-01

    Eyelid conditioning has proven useful for analysis of learning and computation in the cerebellum. Two variants, delay and trace conditioning, differ only by the relative timing of the training stimuli. Despite the subtlety of this difference, trace eyelid conditioning is prevented by lesions of the cerebellum, hippocampus, or medial prefrontal…

  20. Natal movement in juvenile Atlantic salmon: a body size-dependent strategy?

    Treesearch

    Sigurd Einum; Anders G. Finstad; Grethe Robertsen; Keith H. Nislow; Simon McKelvey; John D. Armstrong

    2012-01-01

    If competitive ability depends on body size, then the optimal natal movement from areas of high local population density can also be predicted to be size-dependent. Specifically, small, competitively-inferior individuals would be expected to benefit most from moving to areas of lower local density. Here we evaluate whether individual variation in natal movement...

  1. Identification of genes mediating thyroid hormone action in the developing mouse cerebellum.

    PubMed

    Takahashi, Masaki; Negishi, Takayuki; Tashiro, Tomoko

    2008-02-01

    Despite the indispensable role thyroid hormone (TH) plays in brain development, only a small number of genes have been identified to be directly regulated by TH and its precise mechanism of action remains largely unknown, partly because most of the previous studies have been carried out at postnatal day 15 or later. In the present study, we screened for TH-responsive genes in the developing mouse cerebellum at postnatal day 4 when morphological alterations because of TH status are not apparent. Among the new candidate genes selected by comparing gene expression profiles of experimentally hypothyroid, hypothyroid with postnatal thyroxine replacement, and control animals using oligoDNA microarrays, six genes were confirmed by real-time PCR to be positively (orc1l, galr3, sort1, nlgn3, cdk5r2, and zfp367) regulated by TH. Among these, sort1, cdk5r2, and zfp367 were up-regulated already at 1 h after a single injection of thyroxine to the hypothyroid or control animal, suggesting them to be possible primary targets of the hormone. Cell proliferation and apoptosis examined by BrdU incorporation and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay revealed that hypothyroidism by itself did not enhance apoptosis at this stage, but rather increased cell survival, possibly through regulation of these newly identified genes.

  2. Induction of metallothionein in mouse cerebellum and cerebrum with low-dose thimerosal injection.

    PubMed

    Minami, Takeshi; Miyata, Eriko; Sakamoto, Yamato; Yamazaki, Hideo; Ichida, Seiji

    2010-04-01

    Thimerosal, an ethyl mercury compound, is used worldwide as a vaccine preservative. We previously observed that the mercury concentration in mouse brains did not increase with the clinical dose of thimerosal injection, but the concentration increased in the brain after the injection of thimerosal with lipopolysaccharide, even if a low dose of thimerosal was administered. Thimerosal may penetrate the brain, but is undetectable when a clinical dose of thimerosal is injected; therefore, the induction of metallothionein (MT) messenger RNA (mRNA) and protein was observed in the cerebellum and cerebrum of mice after thimerosal injection, as MT is an inducible protein. MT-1 mRNA was expressed at 6 and 9 h in both the cerebrum and cerebellum, but MT-1 mRNA expression in the cerebellum was three times higher than that in the cerebrum after the injection of 12 microg/kg thimerosal. MT-2 mRNA was not expressed until 24 h in both organs. MT-3 mRNA was expressed in the cerebellum from 6 to 15 h after the injection, but not in the cerebrum until 24 h. MT-1 and MT-3 mRNAs were expressed in the cerebellum in a dose-dependent manner. Furthermore, MT-1 protein was detected from 6 to 72 h in the cerebellum after 12 microg/kg of thimerosal was injected and peaked at 10 h. MT-2 was detected in the cerebellum only at 10 h. In the cerebrum, little MT-1 protein was detected at 10 and 24 h, and there were no peaks of MT-2 protein in the cerebrum. In conclusion, MT-1 and MT-3 mRNAs but not MT-2 mRNA are easily expressed in the cerebellum rather than in the cerebrum by the injection of low-dose thimerosal. It is thought that the cerebellum is a sensitive organ against thimerosal. As a result of the present findings, in combination with the brain pathology observed in patients diagnosed with autism, the present study helps to support the possible biological plausibility for how low-dose exposure to mercury from thimerosal-containing vaccines may be associated with autism.

  3. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum.

    PubMed

    Ishii, Maki; Maeda, Nobuaki

    2008-08-01

    Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.

  4. Synaptogenesis in the rat cerebellum: effects of early hypo- and hyperthyroidism.

    PubMed

    Nicholson, J L; Altman, J

    1972-05-05

    The number of synapses in the molecular layer of the rat cerebellum is reduced by early hypo-and hyperthyroidism within 30 days. Hypothyroidism retards synaptogenesis after 10 days, while hyperthyroidism accelerates synaptogenesis initially, but by 21 days the number of synapses is reduced. The sensitivity of developing synapses to thyroid hormone may permit analysis of the events triggering synaptogenesis.

  5. An intact action-perception coupling depends on the integrity of the cerebellum.

    PubMed

    Christensen, Andrea; Giese, Martin A; Sultan, Fahad; Mueller, Oliver M; Goericke, Sophia L; Ilg, Winfried; Timmann, Dagmar

    2014-05-07

    It is widely accepted that action and perception in humans functionally interact on multiple levels. Moreover, areas originally suggested to be predominantly motor-related, as the cerebellum, are also involved in action observation. However, as yet, few studies provided unequivocal evidence that the cerebellum is involved in the action perception coupling (APC), specifically in the integration of motor and multisensory information for perception. We addressed this question studying patients with focal cerebellar lesions in a virtual-reality paradigm measuring the effect of action execution on action perception presenting self-generated movements as point lights. We measured the visual sensitivity to the point light stimuli based on signal detection theory. Compared with healthy controls cerebellar patients showed no beneficial influence of action execution on perception indicating deficits in APC. Applying lesion symptom mapping, we identified distinct areas in the dentate nucleus and the lateral cerebellum of both hemispheres that are causally involved in APC. Lesions of the right ventral dentate, the ipsilateral motor representations (lobules V/VI), and most interestingly the contralateral posterior cerebellum (lobule VII) impede the benefits of motor execution on perception. We conclude that the cerebellum establishes time-dependent multisensory representations on different levels, relevant for motor control as well as supporting action perception. Ipsilateral cerebellar motor representations are thought to support the somatosensory state estimate of ongoing movements, whereas the ventral dentate and the contralateral posterior cerebellum likely support sensorimotor integration in the cerebellar-parietal loops. Both the correct somatosensory as well as the multisensory state representations are vital for an intact APC.

  6. Study of the nitric oxide system in the rat cerebellum during aging.

    PubMed

    Blanco, Santos; Molina, Francisco J; Castro, Lourdes; Del Moral, Maria L; Hernandez, Raquel; Jimenez, Ana; Rus, Alma; Martinez-Lara, Esther; Siles, Eva; Peinado, Maria A

    2010-06-24

    The cerebellum is the neural structure with the highest levels of nitric oxide, a neurotransmitter that has been proposed to play a key role in the brain aging, although knowledge concerning its contribution to cerebellar senescence is still unclear, due mainly to absence of integrative studies that jointly evaluate the main factors involved in its cell production and function. Consequently, in the present study, we investigate the expression, location, and activity of nitric oxide synthase isoenzymes; the protein nitration; and the production of nitric oxide in the cerebellum of adult and old rats. Our results show no variation in the expression of nitric oxide synthase isoforms with aging, although, we have detected some changes in the cellular distribution pattern of the inducible isoform particularly in the cerebellar nuclei. There is also an increase in nitric oxide synthase activity, as well as greater protein-nitration levels, and maintenance of nitrogen oxides (NOx) levels in the senescent cerebellum. The nitric oxide/nitric oxide synthases system suffers from a number of changes, mainly in the inducible nitric oxide synthase distribution and in overall nitric oxide synthases activity in the senescent cerebellum, which result in an increase of the protein nitration. These changes might be related to the oxidative damage detected with aging in the cerebellum.

  7. A genetic test of the natal homing versus social facilitation models for green turtle migration.

    PubMed

    Meylan, A B; Bowen, B W; Avise, J C

    1990-05-11

    Female green turtles exhibit strong nest-site fidelity as adults, but whether the nesting beach is the natal site is not known. Under the natal homing hypothesis, females return to their natal beach to nest, whereas under the social facilitation model, virgin females follow experienced breeders to nesting beaches and after a "favorable" nesting experience, fix on that site for future nestings. Differences shown in mitochondrial DNA genotype frequency among green turtle colonies in the Caribbean Sea and Atlantic Ocean are consistent with natal homing expectations and indicate that social facilitation to nonnatal sites is rare.

  8. Psychophysiological interaction between superior temporal gyrus (STG) and cerebellum: An fMRI study

    NASA Astrophysics Data System (ADS)

    Yusoff, A. N.; Teng, X. L.; Ng, S. B.; Hamid, A. I. A.; Mukari, S. Z. M.

    2016-03-01

    This study aimed to model the psychophysiological interaction (PPI) between the bilateral STG and cerebellum (lobule VI and lobule VII) during an arithmetic addition task. Eighteen young adults participated in this study. They were instructed to solve single-digit addition tasks in quiet and noisy backgrounds during an fMRI scan. Results showed that in both hemispheres, the response in the cerebellum was found to be linearly influenced by the activity in STG (vice-versa) for both in-quiet and in-noise conditions. However, the influence of the cerebellum on STG seemed to be modulated by noise. A two-way PPI model between STG and cerebellum is suggested. The connectivity between the two regions during a simple addition task in a noisy condition is modulated by the participants’ higher attention to perceive.

  9. The cerebellum: its role in language and related cognitive and affective functions.

    PubMed

    De Smet, Hyo Jung; Paquier, Philippe; Verhoeven, Jo; Mariën, Peter

    2013-12-01

    The traditional view on the cerebellum as the sole coordinator of motor function has been substantially redefined during the past decades. Neuroanatomical, neuroimaging and clinical studies have extended the role of the cerebellum to the modulation of cognitive and affective processing. Neuroanatomical studies have demonstrated cerebellar connectivity with the supratentorial association areas involved in higher cognitive and affective functioning, while functional neuroimaging and clinical studies have provided evidence of cerebellar involvement in a variety of cognitive and affective tasks. This paper reviews the recently acknowledged role of the cerebellum in linguistic and related cognitive and behavioral-affective functions. In addition, typical cerebellar syndromes such as the cerebellar cognitive affective syndrome (CCAS) and the posterior fossa syndrome (PFS) will be briefly discussed and the current hypotheses dealing with the presumed neurobiological mechanisms underlying the linguistic, cognitive and affective modulatory role of the cerebellum will be reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development.

    PubMed

    Storer, Mekayla A; Gallagher, Denis; Fatt, Michael P; Simonetta, Jaclin V; Kaplan, David R; Miller, Freda D

    2018-05-08

    Circulating systemic factors can regulate adult neural stem cell (NSC) biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6), since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs. Moreover, a transient circulating surge of IL-6 in perinatal or adult mice causes an acute increase in neural precursor proliferation followed by long-term depletion of adult NSC pools. Thus, IL-6 signaling is both necessary and sufficient for adult NSC self-renewal, and acute perturbations in circulating IL-6, as observed in many pathological situations, have long-lasting effects on the size of adult NSC pools. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. The control of a manipulator by a computer model of the cerebellum.

    NASA Technical Reports Server (NTRS)

    Albus, J. S.

    1973-01-01

    Extension of previous work by Albus (1971, 1972) on the theory of cerebellar function to an application of a computer model of the cerebellum to manipulator control. Following a discussion of the cerebellar function and of a perceptron analogy of the cerebellum, particularly in regard to learning, an electromechanical model of the cerebellum is considered in the form of an IBM 1800 computer connected to a Rancho Los Amigos arm with seven degrees of freedom. It is shown that the computer memory makes it possible to train the arm on some representative sample of the universe of possible states and to achieve satisfactory performance.

  12. Hydroxyurea Treatment and Development of the Rat Cerebellum: Effects on the Neurogenetic Profiles and Settled Patterns of Purkinje Cells and Deep Cerebellar Nuclei Neurons.

    PubMed

    Martí, Joaquín; Santa-Cruz, M C; Serra, Roger; Hervás, José P

    2016-11-01

    The current paper analyzes the development of the male and female rat cerebellum exposed to hydroxyurea (HU) (300 or 600 mg/kg) as embryo and collected at postnatal day 90. Our study reveals that the administration of this drug compromises neither the cytoarchitecture of the cerebellar cortex nor deep nuclei (DCN). However, in comparison with the saline group, we observed that several cerebellar parameters were lower in the HU injected groups. These parameters included area of the cerebellum, cerebellar cortex length, molecular layer area, Purkinje cell number, granule cell counts, internal granular layer, white matter and cerebellar nuclei areas, and number of deep cerebellar nuclei neurons. These features were larger in the rats injected with saline, smaller in those exposed to 300 mg/kg of HU and smallest in the group receiving 600 mg/kg of this agent. No sex differences in the effect of the HU were observed. In addition, we infer the neurogenetic timetables and the neurogenetic gradients of PCs and DCN neurons in rats exposed to either saline or HU as embryos. For this purpose, 5-bromo-2'-deoxyuridine was injected into pregnant rats previously administered with saline or HU. This thymidine analog was administered following a progressively delayed cumulative labeling method. The data presented here show that systematic differences exist in the pattern of neurogenesis and in the spatial location of cerebellar neurons between rats injected with saline or HU. No sex differences in the effect of the HU were observed. These findings have implications for the administration of this compound to women in gestation as the effects of HU on the development of the cerebellum might persist throughout their offsprings' life.

  13. [The cerebellum as a major player in motor disturbances related to Autistic Syndrome Disorders].

    PubMed

    Jaber, M

    2017-04-01

    Autism spectrum disorders (ASD) are neurodevelopmental disorders associated with disturbances in communication, social interactions, cognition and affect. ASD are also accompanied by complex movement disorders, including ataxia. A special focus of recent research in this area is made on the striatum and the cerebellum, two structures known not only to control movement but also to be involved in cognitive functions such as memory and language. Dysfunction within the motor system may be associated with abnormal movements in ASD that are translated into ataxia, abnormal pattern of righting, gait sequencing, development of walking, and hand positioning. This line of study may generate new knowledge and understanding of motor symptoms associated with ASD and aims to deliver fresh perspectives for early diagnosis and therapeutic strategies against ASD. Despite the relative paucity of research in this area (compared to the social, linguistic, and behavioural disturbances in ASD), there is evidence that the frontostriatal motor system and/or the cerebellar motor systems may be the site of dysfunction in ASD. Indeed, the cerebellum seems to be essential in the development of basic social capabilities, communication, repetitive/restrictive behaviors, and motor and cognitive behaviors that are all impaired in ASD. Cerebellar neuropathology including cerebellar hypoplasia and reduced cerebellar Purkinje cell numbers are the most consistent neuropathologies linked to ASD. The functional state of the cerebellum and its impact on brain function in ASD is the focus of this review. This review starts by recapitulating historical findings pointing towards an implication of the cerebellum, and to a lesser extent the basal ganglia structures, in TSA. We then detail the structure/function of the cerebellum at the regional and cellular levels before describing human and animal findings indicating a role of the cerebellum and basal ganglia in ASD. Several studies have attempted to

  14. Conceptions of Contraceptive Use in Rural KwaZulu-Natal, South Africa: Lessons for Programming

    PubMed Central

    Ndinda, Catherine; Ndhlovu, Tidings; Khalema, Nene Ernest

    2017-01-01

    Community family planning programmes in South Africa arose from the controversial apartheid history of controlling the African population while encouraging the growth of European migrant population. Post-apartheid population policies shifted away from population control to aligning policies to the global agenda that placed emphasis on the link between population and development. The focus on population and development polices in post-apartheid South Africa is on social equality, justice and peace rather than controlling sections of the population. Given the shift, this paper interrogates the conceptions of contraceptive use among rural communities in KwaZulu-Natal. Our primary objective is to understand the dynamics surrounding access to and use of family planning services in peri-urban and rural areas of KwaZulu-Natal. Using focus group data, the findings of the study suggest that different social categories interact with the family planning programmes differently. How teenagers and married women perceive the value of family planning differs. Gender differences regarding the use of condoms are also evident. The paper attempts to grapple with the non-use of condoms despite the knowledge that these prevent pregnancy and provide protection from sexually-transmitted diseases. The contribution of this paper lies in its identification of socio-cultural factors and the political economy underlying the different attitudes towards contraceptive use in rural KwaZulu-Natal. PMID:28350334

  15. Conceptions of Contraceptive Use in Rural KwaZulu-Natal, South Africa: Lessons for Programming.

    PubMed

    Ndinda, Catherine; Ndhlovu, Tidings; Khalema, Nene Ernest

    2017-03-28

    Community family planning programmes in South Africa arose from the controversial apartheid history of controlling the African population while encouraging the growth of European migrant population. Post-apartheid population policies shifted away from population control to aligning policies to the global agenda that placed emphasis on the link between population and development. The focus on population and development polices in post-apartheid South Africa is on social equality, justice and peace rather than controlling sections of the population. Given the shift, this paper interrogates the conceptions of contraceptive use among rural communities in KwaZulu-Natal. Our primary objective is to understand the dynamics surrounding access to and use of family planning services in peri-urban and rural areas of KwaZulu-Natal. Using focus group data, the findings of the study suggest that different social categories interact with the family planning programmes differently. How teenagers and married women perceive the value of family planning differs. Gender differences regarding the use of condoms are also evident. The paper attempts to grapple with the non-use of condoms despite the knowledge that these prevent pregnancy and provide protection from sexually-transmitted diseases. The contribution of this paper lies in its identification of socio-cultural factors and the political economy underlying the different attitudes towards contraceptive use in rural KwaZulu-Natal.

  16. Trace element distribution in the rat cerebellum

    NASA Astrophysics Data System (ADS)

    Kwiatek, W. M.; Long, G. J.; Pounds, J. G.; Reuhl, K. R.; Hanson, A. L.; Jones, K. W.

    1990-04-01

    Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic and structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with X-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and nondestructive irradiation. Trace elements were measured in thin rat brain sections of 20 μm thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppm wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semiquantitative mapping of the TE distribution in a section were used. All analyzed elements were observed in each structure of the cerebellum except mercury which was not observed in granule cell layer or fiber tract. This approach permits an exacting correlation of the TE distribution in complex structure with the diet, toxic elements, and functional status of the animal.

  17. Vygotsky Meets Neuroscience: The Cerebellum and the Rise of Culture through Play

    ERIC Educational Resources Information Center

    Vandervert, Larry

    2017-01-01

    The author suggests the brain's cerebellum and cerebral cortex are the origin of culture and considers the cerebellar models that came to constitute culture to be derived specifically from play. He summarizes recent research on the behavioral, cognitive, and affective evolution of the cerebellum and the cerebral cortex that shows the development…

  18. Cerebellum and personality traits.

    PubMed

    Petrosini, Laura; Cutuli, Debora; Picerni, Eleonora; Laricchiuta, Daniela

    2015-02-01

    Personality traits are multidimensional traits comprising cognitive, emotional, and behavioral characteristics, and a wide array of cerebral structures mediate individual variability. Differences in personality traits covary with brain morphometry in specific brain regions. A cerebellar role in emotional and affective processing and on personality characteristics has been suggested. In a large sample of healthy subjects of both sexes and differently aged, the macro- and micro-structural variations of the cerebellum were correlated with the scores obtained in the Temperament and Character Inventory (TCI) by Cloninger. Cerebellar volumes were associated positively with Novelty Seeking scores and negatively with Harm Avoidance scores. Given the cerebellar contribution in personality traits and emotional processing, we investigated the cerebellar involvement even in alexithymia, construct of personality characterized by impairment in cognitive, emotional, and affective processing. Interestingly, the subjects with high alexithymic traits had larger volumes in the bilateral Crus 1. The cerebellar substrate for some personality dimensions extends the relationship between personality and brain areas to a structure up to now thought to be involved mainly in motor and cognitive functions, much less in emotional processes and even less in personality individual differences. The enlarged volumes of Crus 1 in novelty seekers and alexithymics support the tendency to action featuring both personality constructs. In fact, Novelty Seeking and alexithymia are rooted in behavior and inescapably have a strong action component, resulting in stronger responses in the structures more focused on action and embodiment, as the cerebellum is.

  19. Arrangement and Applying of Movement Patterns in the Cerebellum Based on Semi-supervised Learning.

    PubMed

    Solouki, Saeed; Pooyan, Mohammad

    2016-06-01

    Biological control systems have long been studied as a possible inspiration for the construction of robotic controllers. The cerebellum is known to be involved in the production and learning of smooth, coordinated movements. Therefore, highly regular structure of the cerebellum has been in the core of attention in theoretical and computational modeling. However, most of these models reflect some special features of the cerebellum without regarding the whole motor command computational process. In this paper, we try to make a logical relation between the most significant models of the cerebellum and introduce a new learning strategy to arrange the movement patterns: cerebellar modular arrangement and applying of movement patterns based on semi-supervised learning (CMAPS). We assume here the cerebellum like a big archive of patterns that has an efficient organization to classify and recall them. The main idea is to achieve an optimal use of memory locations by more than just a supervised learning and classification algorithm. Surely, more experimental and physiological researches are needed to confirm our hypothesis.

  20. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior

    PubMed Central

    Chen, Hao; Wang, Yi-jie; Yang, Li; Sui, Jian-feng; Hu, Zhi-an; Hu, Bo

    2016-01-01

    Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0–12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization. PMID:26879632

  1. Targeting the Cerebellum by Noninvasive Neurostimulation: a Review.

    PubMed

    van Dun, Kim; Bodranghien, Florian; Manto, Mario; Mariën, Peter

    2017-06-01

    Transcranial magnetic and electric stimulation of the brain are novel and highly promising techniques currently employed in both research and clinical practice. Improving or rehabilitating brain functions by modulating excitability with these noninvasive tools is an exciting new area in neuroscience. Since the cerebellum is closely connected with the cerebral regions subserving motor, associative, and affective functions, the cerebello-thalamo-cortical pathways are an interesting target for these new techniques. Targeting the cerebellum represents a novel way to modulate the excitability of remote cortical regions and their functions. This review brings together the studies that have applied cerebellar stimulation, magnetic and electric, and presents an overview of the current knowledge and unsolved issues. Some recommendations for future research are implemented as well.

  2. The Cerebellum: Adaptive Prediction for Movement and Cognition

    PubMed Central

    Sokolov, Arseny A.; Miall, R. Chris; Ivry, Richard B.

    2017-01-01

    Over the past 30 years, cumulative evidence has indicated that cerebellar function extends beyond sensorimotor control. This view has emerged from studies of neuroanatomy, neuroimaging, neuropsychology and brain stimulation, with the results implicating the cerebellum in domains as diverse as attention, language, executive function and social cognition. Although the literature provides sophisticated models of how the cerebellum helps refine movements, it remains unclear how the core mechanisms of these models can be applied when considering a broader conceptualization of cerebellar function. In light of recent multidisciplinary findings, we consider two key concepts that have been suggested as general computational principles of cerebellar function, prediction and error-based learning, examining how these might be relevant in the operation of cognitive cerebro-cerebellar loops. PMID:28385461

  3. Cyp1b1 deletion and retinol deficiency coordinately suppress mouse liver lipogenic genes and hepcidin expression during post-natal development

    PubMed Central

    Maguire, Meghan; Larsen, Michele Campaigne; Foong, Yee Hoon; Tanumihardjo, Sherry; Jefcoate, Colin R.

    2018-01-01

    Cyp1b1 deletion and gestational vitamin A deficiency (GVAD) redirect adult liver gene expression. A matched sufficient pre- and post-natal diet, which has high carbohydrate and normal iron content (LF12), increased inflammatory gene expression markers in adult livers that were suppressed by GVAD and Cyp1b1 deletion. At birth on the LF12 diet, Cyp1b1 deletion and GVAD each suppress liver expression of the iron suppressor, hepcidin (Hepc), while increasing stellate cell activation markers and suppressing post-natal increases in lipogenesis. Hepc was less suppressed in Cyp1b1−/− pups with a standard breeder diet, but was restored by iron supplementation of the LF12 diet. Conclusions The LF12 diet delivered low post-natal iron and attenuated Hepc. Hepc decreases in Cyp1b1−/− and GVAD mice resulted in stellate activation and lipogenesis suppression. Endothelial BMP6, a Hepc stimulant, is a potential coordinator and Cyp1b1 target. These neonatal changes in Cyp1b1−/− mice link to diminished adult obesity and liver inflammation. PMID:28583802

  4. Disruption of State Estimation in the Human Lateral Cerebellum

    PubMed Central

    Miall, R. Chris; Christensen, Lars O. D; Cain, Owen; Stanley, James

    2007-01-01

    The cerebellum has been proposed to be a crucial component in the state estimation process that combines information from motor efferent and sensory afferent signals to produce a representation of the current state of the motor system. Such a state estimate of the moving human arm would be expected to be used when the arm is rapidly and skillfully reaching to a target. We now report the effects of transcranial magnetic stimulation (TMS) over the ipsilateral cerebellum as healthy humans were made to interrupt a slow voluntary movement to rapidly reach towards a visually defined target. Errors in the initial direction and in the final finger position of this reach-to-target movement were significantly higher for cerebellar stimulation than they were in control conditions. The average directional errors in the cerebellar TMS condition were consistent with the reaching movements being planned and initiated from an estimated hand position that was 138 ms out of date. We suggest that these results demonstrate that the cerebellum is responsible for estimating the hand position over this time interval and that TMS disrupts this state estimate. PMID:18044990

  5. The evolution of cerebellum structure correlates with nest complexity.

    PubMed

    Hall, Zachary J; Street, Sally E; Healy, Susan D

    2013-01-01

    Across the brains of different bird species, the cerebellum varies greatly in the amount of surface folding (foliation). The degree of cerebellar foliation is thought to correlate positively with the processing capacity of the cerebellum, supporting complex motor abilities, particularly manipulative skills. Here, we tested this hypothesis by investigating the relationship between cerebellar foliation and species-typical nest structure in birds. Increasing complexity of nest structure is a measure of a bird's ability to manipulate nesting material into the required shape. Consistent with our hypothesis, avian cerebellar foliation increases as the complexity of the nest built increases, setting the scene for the exploration of nest building at the neural level.

  6. Neutrino trigger of the magnetorotational mechanism of a natal-pulsar kick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, A. V., E-mail: avkuzn@uniyar.ac.ru; Mikheev, N. V., E-mail: mikheev@uniyar.ac.ru

    2013-10-15

    A mechanism generating a natal-neutron-star kick and involving only standard neutrinos is discussed. In this mechanism, the neutrino effect on the plasma of the supernova-core envelope in a magnetorotational explosion accompanied by the generation of a strong toroidal magnetic field leads to a redistribution of the magnetic field B in the 'upper' and 'lower' hemispheres of the supernova-core envelope. The emerging asymmetry of the magnetic-field pressure may generate a natal-pulsar kick.

  7. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies.

    PubMed

    Van Overwalle, Frank; Baetens, Kris; Mariën, Peter; Vandekerckhove, Marie

    2014-02-01

    This meta-analysis explores the role of the cerebellum in social cognition. Recent meta-analyses of neuroimaging studies since 2008 demonstrate that the cerebellum is only marginally involved in social cognition and emotionality, with a few meta-analyses pointing to an involvement of at most 54% of the individual studies. In this study, novel meta-analyses of over 350 fMRI studies, dividing up the domain of social cognition in homogeneous subdomains, confirmed this low involvement of the cerebellum in conditions that trigger the mirror network (e.g., when familiar movements of body parts are observed) and the mentalizing network (when no moving body parts or unfamiliar movements are present). There is, however, one set of mentalizing conditions that strongly involve the cerebellum in 50-100% of the individual studies. In particular, when the level of abstraction is high, such as when behaviors are described in terms of traits or permanent characteristics, in terms of groups rather than individuals, in terms of the past (episodic autobiographic memory) or the future rather than the present, or in terms of hypothetical events that may happen. An activation likelihood estimation (ALE) meta-analysis conducted in this study reveals that the cerebellum is critically implicated in social cognition and that the areas of the cerebellum which are consistently involved in social cognitive processes show extensive overlap with the areas involved in sensorimotor (during mirror and self-judgments tasks) as well as in executive functioning (across all tasks). We discuss the role of the cerebellum in social cognition in general and in higher abstraction mentalizing in particular. We also point out a number of methodological limitations of some available studies on the social brain that hamper the detection of cerebellar activity. © 2013 Elsevier Inc. All rights reserved.

  8. Early post-natal neuroactive steroid manipulation modulates ondansetron effects on initial periods of alcohol consumption in rats.

    PubMed

    Bartolomé, Iris; Llidó, Anna; Darbra, Sònia; Pallarès, Marc

    2018-06-21

    Neuroactive steroids (NS) such as allopregnanolone are crucial for brain development and adult behaviour. Early post-natal alterations of NS by administering finasteride induce a decrease in the sensitivity to stimulant effects of low alcohol doses, an increase in alcohol consumption, and a decrease in ventrostriatal dopamine and serotonin levels. The aim of the present study is to observe if the effects of the 5HT3 receptor antagonist ondansetron on initial alcohol consumption are modulated by post-natal NS manipulation. For this purpose, allopregnanolone, finasteride, or vehicle was injected from day 5 to 9. In adulthood, a novel object preference test was carried out in order to detect a possible novelty-seeking pattern in our animals, which has been related to vulnerability to drug abuse. The subjects then had access to two bottles (alcohol or control solutions) one hour daily for two consecutive weeks. Ondansetron (0.01 mg/kg, 0.1 mg/kg or vehicle) was administered before the hour of consumption in the initial phase (days 1, 2, 3) of the procedure, and after prolonged alcohol intake (days 11, 12, 13). Results indicated that finasteride animals showed a higher preference to explore the new object, as well as a higher alcohol consumption than the rest of the groups. Moreover, 0.1 mg/kg of ondansetron decreased alcohol consumption, but only in the post-natal finasteride group, suggesting a possible increase in 5HT3 receptor sensitivity in these animals. In conclusion, NS manipulation in crucial stages of development, such as early post-natal periods, seems to play an important role on the effects of ondansetron on alcohol intake and in the vulnerability to develop drug use or abuse. Copyright © 2018. Published by Elsevier Inc.

  9. The Cerebellum: Adaptive Prediction for Movement and Cognition.

    PubMed

    Sokolov, Arseny A; Miall, R Chris; Ivry, Richard B

    2017-05-01

    Over the past 30 years, cumulative evidence has indicated that cerebellar function extends beyond sensorimotor control. This view has emerged from studies of neuroanatomy, neuroimaging, neuropsychology, and brain stimulation, with the results implicating the cerebellum in domains as diverse as attention, language, executive function, and social cognition. Although the literature provides sophisticated models of how the cerebellum helps refine movements, it remains unclear how the core mechanisms of these models can be applied when considering a broader conceptualization of cerebellar function. In light of recent multidisciplinary findings, we examine how two key concepts that have been suggested as general computational principles of cerebellar function- prediction and error-based learning- might be relevant in the operation of cognitive cerebro-cerebellar loops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The cerebellum and decision making under uncertainty.

    PubMed

    Blackwood, Nigel; Ffytche, Dominic; Simmons, Andrew; Bentall, Richard; Murray, Robin; Howard, Robert

    2004-06-01

    This study aimed to identify the neural basis of probabilistic reasoning, a type of inductive inference that aids decision making under conditions of uncertainty. Eight normal subjects performed two separate two-alternative-choice tasks (the balls in a bottle and personality survey tasks) while undergoing functional magnetic resonance imaging (fMRI). The experimental conditions within each task were chosen so that they differed only in their requirement to make a decision under conditions of uncertainty (probabilistic reasoning and frequency determination required) or under conditions of certainty (frequency determination required). The same visual stimuli and motor responses were used in the experimental conditions. We provide evidence that the neo-cerebellum, in conjunction with the premotor cortex, inferior parietal lobule and medial occipital cortex, mediates the probabilistic inferences that guide decision making under uncertainty. We hypothesise that the neo-cerebellum constructs internal working models of uncertain events in the external world, and that such probabilistic models subserve the predictive capacity central to induction. Copyright 2004 Elsevier B.V.

  11. A role for cerebellum in the hereditary dystonia DYT1

    PubMed Central

    Fremont, Rachel; Tewari, Ambika; Angueyra, Chantal; Khodakhah, Kamran

    2017-01-01

    DYT1 is a debilitating movement disorder caused by loss-of-function mutations in torsinA. How these mutations cause dystonia remains unknown. Mouse models which have embryonically targeted torsinA have failed to recapitulate the dystonia seen in patients, possibly due to differential developmental compensation between rodents and humans. To address this issue, torsinA was acutely knocked down in select brain regions of adult mice using shRNAs. TorsinA knockdown in the cerebellum, but not in the basal ganglia, was sufficient to induce dystonia. In agreement with a potential developmental compensation for loss of torsinA in rodents, torsinA knockdown in the immature cerebellum failed to produce dystonia. Abnormal motor symptoms in knockdown animals were associated with irregular cerebellar output caused by changes in the intrinsic activity of both Purkinje cells and neurons of the deep cerebellar nuclei. These data identify the cerebellum as the main site of dysfunction in DYT1, and offer new therapeutic targets. DOI: http://dx.doi.org/10.7554/eLife.22775.001 PMID:28198698

  12. Cerebellum-from J. E. Purkyně up to Contemporary Research.

    PubMed

    Vožeh, František

    2017-06-01

    Jan. Evangelista Purkyně, the most famous among Czech physiologists, was the first who identified and described the largest nerve cells in the cerebellum. The most distinguished researchers of the nervous system then recommended naming these neurons Purkinje cells in his honor. Through experiments by Purkinje and his followers, the function of the cerebellum was properly attributed to the precision of motor movements and skills. This traditional concept was valid until early 1990s, when it was readjusted and replenished with new and important findings. It was discovered that the cerebellar cortex contains more neurons than the cerebral cortex and shortly thereafter was gradually revealed that such enormous numbers of neural cells are not without impact on brain functions. It was shown that the cerebellum, in addition to its traditional role, also participates in higher nervous activity. These new findings were obtained thanks to the introduction of modern methods of examination into the clinical praxis, and experimental procedures using animal models of cerebellar disorders described in this work.

  13. Intrauterine Growth Restriction Alters the Postnatal Development of the Rat Cerebellum.

    PubMed

    McDougall, Annie R A; Wiradjaja, Vanny; Azhan, Aminath; Li, Anqi; Hale, Nadia; Wlodek, Mary E; Hooper, Stuart B; Wallace, Megan J; Tolcos, Mary

    2017-01-01

    Intrauterine growth restriction (IUGR) is a major cause of antenatal brain injury. We aimed to characterize cerebellar deficits following IUGR and to investigate the potential underlying cellular and molecular mechanisms. At embryonic day 18, pregnant rats underwent either sham surgery (controls; n = 23) or bilateral uterine vessel ligation to restrict blood flow to fetuses (IUGR; n = 20). Offspring were collected at postnatal day 2 (P2), P7, and P35. Body weights were reduced at P2, P7, and P35 in IUGR offspring (p < 0.05) compared with controls. At P7, the width of the external granule layer (EGL) was 30% greater in IUGR than control rats (p < 0.05); there was no difference in the width of the proliferative zone or in the density of Ki67-positive cells in the EGL. Bergmann glia were disorganized at P7 and P35 in IUGR pups, and by P35, there was a 10% decrease in Bergmann glial fiber density (p < 0.05) compared with controls. At P7, trophoblast antigen-2 (Trop2) mRNA and protein levels in the cerebellum were decreased by 88 and 40%, respectively, and astrotactin 1 mRNA levels were increased by 20% in the IUGR rats (p < 0.05) compared with controls; there was no difference in ASTN1 protein. The expressions of other factors known to regulate cerebellar development (astrotactin 2, brain-derived neurotrophic factor, erb-b2 receptor tyrosine kinase 4, neuregulin 1, sonic hedgehog and somatostatin) were not different between IUGR and control rats at P7 or P35. These data suggest that damage to the migratory scaffold (Bergmann glial fibers) and alterations in the genes that influence migration (Trop2 and Astn1) may underlie the deficits in postnatal cerebellar development following IUGR. © 2017 S. Karger AG, Basel.

  14. The Sleeping Cerebellum.

    PubMed

    Canto, Cathrin B; Onuki, Yoshiyuki; Bruinsma, Bastiaan; van der Werf, Ysbrand D; De Zeeuw, Chris I

    2017-05-01

    We sleep almost one-third of our lives and sleep plays an important role in critical brain functions like memory formation and consolidation. The role of sleep in cerebellar processing, however, constitutes an enigma in the field of neuroscience; we know little about cerebellar sleep-physiology, cerebro-cerebellar interactions during sleep, or the contributions of sleep to cerebellum-dependent memory consolidation. Likewise, we do not understand why cerebellar malfunction can lead to changes in the sleep-wake cycle and sleep disorders. In this review, we evaluate how sleep and cerebellar processing may influence one another and highlight which scientific routes and technical approaches could be taken to uncover the mechanisms underlying these interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Rapid evolution of the cerebellum in humans and other great apes.

    PubMed

    Barton, Robert A; Venditti, Chris

    2014-10-20

    Humans' unique cognitive abilities are usually attributed to a greatly expanded neocortex, which has been described as "the crowning achievement of evolution and the biological substrate of human mental prowess". The human cerebellum, however, contains four times more neurons than the neocortex and is attracting increasing attention for its wide range of cognitive functions. Using a method for detecting evolutionary rate changes along the branches of phylogenetic trees, we show that the cerebellum underwent rapid size increase throughout the evolution of apes, including humans, expanding significantly faster than predicted by the change in neocortex size. As a result, humans and other apes deviated significantly from the general evolutionary trend for neocortex and cerebellum to change in tandem, having significantly larger cerebella relative to neocortex size than other anthropoid primates. These results suggest that cerebellar specialization was a far more important component of human brain evolution than hitherto recognized and that technical intelligence was likely to have been at least as important as social intelligence in human cognitive evolution. Given the role of the cerebellum in sensory-motor control and in learning complex action sequences, cerebellar specialization is likely to have underpinned the evolution of humans' advanced technological capacities, which in turn may have been a preadaptation for language. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Africanising Scholarship: The Case of UDW, Natal and UKZN Postgraduate Educational Research (1995-2004)

    ERIC Educational Resources Information Center

    Karlsson, J.; Pillay, G.

    2011-01-01

    In 2004 the universities of Durban-Westville and Natal merged as part of the national restructuring of higher education in South Africa. These institutions' faculties and schools of education were, arguably, centres of excellence for research in adult education, teacher education and professional development, mathematics education and gender in…

  17. The cerebellum predicts the temporal consequences of observed motor acts.

    PubMed

    Avanzino, Laura; Bove, Marco; Pelosin, Elisa; Ogliastro, Carla; Lagravinese, Giovanna; Martino, Davide

    2015-01-01

    It is increasingly clear that we extract patterns of temporal regularity between events to optimize information processing. The ability to extract temporal patterns and regularity of events is referred as temporal expectation. Temporal expectation activates the same cerebral network usually engaged in action selection, comprising cerebellum. However, it is unclear whether the cerebellum is directly involved in temporal expectation, when timing information is processed to make predictions on the outcome of a motor act. Healthy volunteers received one session of either active (inhibitory, 1 Hz) or sham repetitive transcranial magnetic stimulation covering the right lateral cerebellum prior the execution of a temporal expectation task. Subjects were asked to predict the end of a visually perceived human body motion (right hand handwriting) and of an inanimate object motion (a moving circle reaching a target). Videos representing movements were shown in full; the actual tasks consisted of watching the same videos, but interrupted after a variable interval from its onset by a dark interval of variable duration. During the 'dark' interval, subjects were asked to indicate when the movement represented in the video reached its end by clicking on the spacebar of the keyboard. Performance on the timing task was analyzed measuring the absolute value of timing error, the coefficient of variability and the percentage of anticipation responses. The active group exhibited greater absolute timing error compared with the sham group only in the human body motion task. Our findings suggest that the cerebellum is engaged in cognitive and perceptual domains that are strictly connected to motor control.

  18. The Molecular Pathway Regulating Bergmann Glia and Folia Generation in the Cerebellum.

    PubMed

    Leung, Alan W; Li, James Y H

    2018-02-01

    Evolution of complex behaviors in higher vertebrates and primates require the development of sophisticated neuronal circuitry and the expansion of brain surface area to accommodate the vast number of neuronal and glial populations. To achieve these goals, the neocortex in primates and the cerebellum in amniotes have developed specialized types of basal progenitors to aid the folding of their cortices. In the cerebellum, Bergmann glia constitute such a basal progenitor population, having a distinctive morphology and playing a critical role in cerebellar corticogenesis. Here, we review recent studies on the induction of Bergmann glia and their crucial role in mediating folding of the cerebellar cortex. These studies uncover a key function of FGF-ERK-ETV signaling cascade in the transformation of Bergmann glia from radial glia in the ventricular zone. Remarkably, in the neocortex, the same signaling axis operates to facilitate the transformation of ventricular radial glia into basal radial glia, a Bergmann glia-like basal progenitor population, which have been implicated in the establishment of neocortical gyri. These new findings draw a striking similarity in the function and ontogeny of the two basal progenitor populations born in distinct brain compartments.

  19. Affinity for natal environments by dispersers impacts reproduction and explains geographical structure of a highly mobile bird.

    PubMed

    Fletcher, Robert J; Robertson, Ellen P; Wilcox, Rebecca C; Reichert, Brian E; Austin, James D; Kitchens, Wiley M

    2015-09-07

    Understanding dispersal and habitat selection behaviours is central to many problems in ecology, evolution and conservation. One factor often hypothesized to influence habitat selection by dispersers is the natal environment experienced by juveniles. Nonetheless, evidence for the effect of natal environment on dispersing, wild vertebrates remains limited. Using 18 years of nesting and mark-resight data across an entire North American geographical range of an endangered bird, the snail kite (Rostrhamus sociabilis), we tested for natal effects on breeding-site selection by dispersers and its consequences for reproductive success and population structure. Dispersing snail kites were more likely to nest in wetlands of the same habitat type (lacustrine or palustrine) as their natal wetland, independent of dispersal distance, but this preference declined with age and if individuals were born during droughts. Importantly, dispersing kites that bred in natal-like habitats had lower nest success and productivity than kites that did not. These behaviours help explain recently described population connectivity and spatial structure across their geographical range and reveal that assortative breeding is occurring, where birds are more likely to breed with individuals born in the same wetland type as their natal habitat. Natal environments can thus have long-term and large-scale effects on populations in nature, even in highly mobile animals. © 2015 The Author(s).

  20. Innovative look at dairy heifer rearing: Effect of prenatal and post-natal environment on later performance.

    PubMed

    Van Eetvelde, M; Opsomer, G

    2017-08-01

    As heifer rearing is a costly investment, dairy farmers have been stimulated to maximize early growth of their calves, mainly by enhanced liquid feeding. However, the long-term effects of this "accelerated growth" are largely unknown. Studies recently performed at Ghent University indicate that in dairy cattle, certain maternal factors (such as young age and high milk yield) and environmental factors (such as high ambient temperatures) create a suboptimal environment for the developing foetus, altering the phenotype of the newborn calf. According to the "thrifty phenotype hypothesis," these metabolic alterations prepare the newborn for similar ("matching") conditions after birth, enhancing its survival during periods of limited feeding. Yet, when an abundance of nutrients is available in post-natal life (e.g., during periods of enhanced feeding), the "mismatch" between pre- and post-natal environment results in an early catch-up growth, with potential negative consequences. The aim of the article was to discuss this mismatch between pre- and post-natal environment in dairy calves. Previous studies, especially in human medicine, have shown catch-up growth to be associated with obesity, fertility problems, metabolic diseases and a reduced lifespan. Hence, we hypothesize that, by applying programs of accelerated growth, our current management system accentuates the mismatch between the pre- and post-natal environment in dairy calves. We can conclude that, although more research is necessary, the current findings point towards a more individual approach when rearing dairy heifers. © 2017 Blackwell Verlag GmbH.

  1. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles.

    PubMed

    Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F

    2008-12-09

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure.

  2. Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles

    PubMed Central

    Lohmann, Kenneth J.; Putman, Nathan F.; Lohmann, Catherine M. F.

    2008-01-01

    Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure. PMID:19060188

  3. Generalized role for the cerebellum in encoding internal models: evidence from semantic processing.

    PubMed

    Moberget, Torgeir; Gullesen, Eva Hilland; Andersson, Stein; Ivry, Richard B; Endestad, Tor

    2014-02-19

    The striking homogeneity of cerebellar microanatomy is strongly suggestive of a corresponding uniformity of function. Consequently, theoretical models of the cerebellum's role in motor control should offer important clues regarding cerebellar contributions to cognition. One such influential theory holds that the cerebellum encodes internal models, neural representations of the context-specific dynamic properties of an object, to facilitate predictive control when manipulating the object. The present study examined whether this theoretical construct can shed light on the contribution of the cerebellum to language processing. We reasoned that the cerebellum might perform a similar coordinative function when the context provided by the initial part of a sentence can be highly predictive of the end of the sentence. Using functional MRI in humans we tested two predictions derived from this hypothesis, building on previous neuroimaging studies of internal models in motor control. First, focal cerebellar activation-reflecting the operation of acquired internal models-should be enhanced when the linguistic context leads terminal words to be predictable. Second, more widespread activation should be observed when such predictions are violated, reflecting the processing of error signals that can be used to update internal models. Both predictions were confirmed, with predictability and prediction violations associated with increased blood oxygenation level-dependent signal in the posterior cerebellum (Crus I/II). Our results provide further evidence for cerebellar involvement in predictive language processing and suggest that the notion of cerebellar internal models may be extended to the language domain.

  4. Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon

    USGS Publications Warehouse

    Brennan, Sean R.; Zimmerman, Christian E.; Fernandez, Diego P.; Cerling, Thure E.; McPhee, Megan V.; Wooller, Matthew J.

    2015-01-01

    Highly migratory organisms present major challenges to conservation efforts. This is especially true for exploited anadromous fish species, which exhibit long-range dispersals from natal sites, complex population structures, and extensive mixing of distinct populations during exploitation. By tracing the migratory histories of individual Chinook salmon caught in fisheries using strontium isotopes, we determined the relative production of natal habitats at fine spatial scales and different life histories. Although strontium isotopes have been widely used in provenance research, we present a new robust framework to simultaneously assess natal sources and migrations of individuals within fishery harvests through time. Our results pave the way for investigating how fine-scale habitat production and life histories of salmon respond to perturbations—providing crucial insights for conservation.

  5. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    PubMed Central

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  6. Hunger for Knowledge: Food Insecurity among Students at the University of KwaZulu-Natal

    ERIC Educational Resources Information Center

    Munro, Nicholas; Quayle, Michael; Simpson, Heather; Barnsley, Shelley

    2013-01-01

    The experience of food insecurity in the South African university student population is not well documented or researched. Data to assess vulnerability to food insecurity in a sample of 1.083 students from the University of KwaZulu-Natal (Pietermaritzburg Campus) was collected between 2007 and 2010 via a questionnaire developed specifically for…

  7. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning.

    PubMed

    Kalmbach, Brian E; Ohyama, Tatsuya; Kreider, Joy C; Riusech, Frank; Mauk, Michael D

    2009-01-01

    Eyelid conditioning has proven useful for analysis of learning and computation in the cerebellum. Two variants, delay and trace conditioning, differ only by the relative timing of the training stimuli. Despite the subtlety of this difference, trace eyelid conditioning is prevented by lesions of the cerebellum, hippocampus, or medial prefrontal cortex (mPFC), whereas delay eyelid conditioning is prevented by cerebellar lesions and is largely unaffected by forebrain lesions. Here we test whether these lesion results can be explained by two assertions: (1) Cerebellar learning requires temporal overlap between the mossy fiber inputs activated by the tone conditioned stimulus (CS) and the climbing fiber inputs activated by the reinforcing unconditioned stimulus (US), and therefore (2) trace conditioning requires activity that outlasts the presentation of the CS in a subset of mossy fibers separate from those activated directly by the CS. By use of electrical stimulation of mossy fibers as a CS, we show that cerebellar learning during trace eyelid conditioning requires an input that persists during the stimulus-free trace interval. By use of reversible inactivation experiments, we provide evidence that this input arises from the mPFC and arrives at the cerebellum via a previously unidentified site in the pontine nuclei. In light of previous PFC recordings in various species, we suggest that trace eyelid conditioning involves an interaction between the persistent activity of delay cells in mPFC-a putative mechanism of working memory-and motor learning in the cerebellum.

  8. Contributions of the cerebellum to disturbed central processing of visceral stimuli in irritable bowel syndrome.

    PubMed

    Rosenberger, Christina; Thürling, Markus; Forsting, Michael; Elsenbruch, Sigrid; Timmann, Dagmar; Gizewski, Elke R

    2013-04-01

    There is evidence to support that the cerebellum contributes to the neural processing of both emotions and painful stimuli. This could be particularly relevant in conditions associated with chronic abdominal pain, such as the irritable bowel syndrome (IBS), which are often also characterized by affective disturbances. We aimed to test the hypothesis that in IBS, symptoms of anxiety and depression modulate brain activation during visceral stimulation within the cerebellum. We reanalyzed a previous data set from N = 15 female IBS patients and N = 12 healthy women with a specific focus on the cerebellum using advanced normalization methods. Rectal distension-induced brain activation was measured with functional magnetic resonance imaging using non-painful and painful rectal distensions. Symptoms of anxiety and depression, assessed with the Hospital Anxiety and Depression scale, were correlated with cerebellar activation within IBS patients. Within IBS, depression scores were associated with non-painful distension-induced activation in the right cerebellum primarily in Crus II and lobule VIIIb, and additionally in Crus I. Depression scores were also associated with painful distension-induced activation predominantly in vermal lobule V with some extension to the intermediate cerebellum. Anxiety scores correlated significantly with non-painful induced activation in Crus II. Symptoms of anxiety and depression, which are frequently found in chronic pain conditions like IBS, modulate activation during visceral sensory signals not only in cortical and subcortical brain areas but also in the cerebellum.

  9. The cerebellum for jocks and nerds alike.

    PubMed

    Popa, Laurentiu S; Hewitt, Angela L; Ebner, Timothy J

    2014-01-01

    Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non

  10. The cerebellum for jocks and nerds alike

    PubMed Central

    Popa, Laurentiu S.; Hewitt, Angela L.; Ebner, Timothy J.

    2014-01-01

    Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non

  11. Nesting fidelity and molecular evidence for natal homing in the freshwater turtle, Graptemys kohnii

    PubMed Central

    Freedberg, Steven; Ewert, Michael A; Ridenhour, Benjamin J; Neiman, Maurine; Nelson, Craig E

    2005-01-01

    Numerous studies of sea turtle nesting ecology have revealed that females exhibit natal homing, whereby they imprint on the nesting area from which they hatch and subsequently return there to nest as adults. Because freshwater turtles comprise the majority of reptiles known to display environmental sex determination (ESD), the study of natal homing in this group may shed light on recent evolutionary models of sex allocation that are predicated on natal homing in reptiles with ESD. We examined natal homing in Graptemys kohnii, a freshwater turtle with ESD, using mitochondrial sequencing, microsatellite genotyping and mark and recapture of 290 nesting females. Females showed high fidelity to nesting areas, even after being transplanted several kilometres away. A Mantel test revealed significant genetic isolation by distance with respect to nesting locations (r=0.147; p<0.05), suggesting that related females nest in close proximity to one another. The patterns of fidelity and genotype distributions are consistent with homing at a scale that may affect population sex ratios. PMID:16006324

  12. Temporal patterns of inputs to cerebellum necessary and sufficient for trace eyelid conditioning.

    PubMed

    Kalmbach, Brian E; Ohyama, Tatsuya; Mauk, Michael D

    2010-08-01

    Trace eyelid conditioning is a form of associative learning that requires several forebrain structures and cerebellum. Previous work suggests that at least two conditioned stimulus (CS)-driven signals are available to the cerebellum via mossy fiber inputs during trace conditioning: one driven by and terminating with the tone and a second driven by medial prefrontal cortex (mPFC) that persists through the stimulus-free trace interval to overlap in time with the unconditioned stimulus (US). We used electric stimulation of mossy fibers to determine whether this pattern of dual inputs is necessary and sufficient for cerebellar learning to express normal trace eyelid responses. We find that presenting the cerebellum with one input that mimics persistent activity observed in mPFC and the lateral pontine nuclei during trace eyelid conditioning and another that mimics tone-elicited mossy fiber activity is sufficient to produce responses whose properties quantitatively match trace eyelid responses using a tone. Probe trials with each input delivered separately provide evidence that the cerebellum learns to respond to the mPFC-like input (that overlaps with the US) and learns to suppress responding to the tone-like input (that does not). This contributes to precisely timed responses and the well-documented influence of tone offset on the timing of trace responses. Computer simulations suggest that the underlying cerebellar mechanisms involve activation of different subsets of granule cells during the tone and during the stimulus-free trace interval. These results indicate that tone-driven and mPFC-like inputs are necessary and sufficient for the cerebellum to learn well-timed trace conditioned responses.

  13. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    PubMed Central

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  14. The pregnant smoker's experience of ante-natal care--results from a qualitative study.

    PubMed

    Haugland, S; Haug, K; Wold, B

    1996-12-01

    1) To obtain insight into pregnant smokers' experience of the information received from doctor and midwife at the ante-natal clinic. 2) To develop an understanding of pregnant women's own ideas of how health personnel can help them stop smoking. Qualitative study with strategic sampling. 33 pregnant smokers took part in an in-depth interview in the third trimester. Home of patients, or surgeries in Hordaland county, Norway. Daily smokers during the last three months before conception, and still smoking in the 16th-18th week of pregnancy. Pregnant women lacking motivation to stop smoking seemed to be most satisfied with ante-natal care. The women interviewed saw doctors and midwives as responsible for raising the subject of smoking, and blamed them for disinterest. The findings suggest that pregnant smokers may be classified into four categories ("it could have been worse", "self-delusion", "self-confident", and "rational"), and that intervention should be tailored to meet each woman's perception of control over smoking behaviour.

  15. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study

    PubMed Central

    Stoodley, Catherine J.; Valera, Eve M.; Schmahmann, Jeremy D.

    2011-01-01

    Anatomical, clinical and imaging findings suggest that the cerebellum is engaged in cognitive and affective functions as well as motor control. Evidence from converging modalities also indicates that there is a functional topography in the human cerebellum for overt control of movement vs. higher functions, such that the cerebellum can be divided into zones depending on connectivity with sensorimotor vs. multimodal association cortices. Using functional MRI, we show that regions active during overt movement differ from those involved in higher-level language, spatial processing and working memory tasks. Nine healthy participants each completed five tasks in order to determine the relative activation patterns for the different paradigms. Right-handed finger-tapping activated right cerebellar lobules IV-V and VIII, consistent with descriptions of the cerebellar homunculi. Verb generation engaged right cerebellar lobules VI-Crus I and a second cluster in lobules VIIB-VIIIA. Mental rotation activation peaks were localized to medial left cerebellar lobule VII (Crus II). A 2-back working memory task activated bilateral regions of lobules VI-VII. Viewing arousing vs. neutral images did not reliably activate the cerebellum or cerebral limbic areas in this study. The cerebellar functional topography identified in this study reflects the involvement of different cerebro-cerebellar circuits depending on the demands of the task being performed: overt movement activated sensorimotor cortices along with contralateral cerebellar lobules IV-VI and VIII, whereas more cognitively demanding tasks engaged prefrontal and parietal cortices along with cerebellar lobules VI and VII. These findings provide further support for a cerebellar role in both motor and cognitive tasks, and better establish the existence of functional subregions in the cerebellum. Future studies are needed to determine the exact contribution of the cerebellum – and different cerebro-cerebellar circuits – to

  16. Progress and Challenges for Language Policy Implementation at the University of KwaZulu-Natal

    ERIC Educational Resources Information Center

    Ndimande-Hlongwa, Nobuhle; Balfour, Robert J.; Mkhize, Nhlanhla; Engelbrecht, Charlotte

    2010-01-01

    The University of KwaZulu-Natal approved its bilingual language policy in 2006 based on the framework of the National Language Policy for Higher Education of 2002. The guiding principles of this policy suggest that the university develops the use of isiZulu as a language of instruction and communication, in line with recommendations of the…

  17. Relationship between pre-natal factors, the perinatal environment, motor development in the first year of life and the timing of first deciduous tooth emergence.

    PubMed

    Żądzińska, Elżbieta; Sitek, Aneta; Rosset, Iwona

    2016-01-01

    The emergence of deciduous teeth, despite being genetically determined, shows significant correlation with the pre-natal environment, maternal factors, method of infant feeding and also family socioeconomic status. However, reported results are often contradictory and rarely concern healthy, full-term children. The objective of this study was to evaluate the influence of pre-natal and maternal factors as well as the method of infant feeding on the timing of first deciduous tooth emergence in healthy, full-term infants and to examine the relationship between the psychomotor development rate and the age at first tooth. The database contained 480 records for healthy, term-born children (272 boys and 208 girls born at 37-42 weeks of gestation) aged 9-54 months. Multiple regression analysis and multi-factor analysis of variance were used to identify significant explanatory variables for the age at first tooth. The onset of deciduous tooth emergence is negatively correlated with birth weight and maternal smoking during pregnancy and positively correlated with breastfeeding and the age at which the child begins to sit up unaided. These factors have an additive effect on the age at first tooth. An earlier onset of tooth emergence in children exposed to maternal smoking during pregnancy seems to provide further evidence for disturbed foetal development in a smoke-induced hypoxic environment.

  18. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior.

    PubMed

    Schraa-Tam, Caroline K L; Rietdijk, Willem J R; Verbeke, Willem J M I; Dietvorst, Roeland C; van den Berg, Wouter E; Bagozzi, Richard P; De Zeeuw, Chris I

    2012-03-01

    Several studies indicate that the cerebellum might play a role in experiencing and/or controlling emphatic emotions, but it remains to be determined whether there is a distinction between positive and negative emotions, and, if so, which specific parts of the cerebellum are involved in these types of emotions. Here, we visualized activations of the cerebellum and extracerebellar regions using high-field fMRI, while we asked participants to observe and imitate images with pictures of human faces expressing different emotional states or with moving geometric shapes as control. The state of the emotions could be positive (happiness and surprise), negative (anger and disgust), or neutral. The positive emotional faces only evoked mild activations of crus 2 in the cerebellum, whereas the negative emotional faces evoked prominent activations in lobules VI and VIIa in its hemispheres and lobules VIII and IX in the vermis. The cerebellar activations associated with negative emotions occurred concomitantly with activations of mirror neuron domains such as the insula and amygdala. These data suggest that the potential role of the cerebellum in control of emotions may be particularly relevant for goal-directed behavior that is required for observing and reacting to another person's (negative) expressions.

  19. Riga-Fede Disease Associated with Natal Teeth: Two Different Approaches in the Same Case.

    PubMed

    Volpato, Luiz Evaristo Ricci; Simões, Cintia Aparecida Damo; Simões, Flávio; Nespolo, Priscila Alves; Borges, Álvaro Henrique

    2015-01-01

    Natal teeth are those present in the oral cavity at the child's birth. These teeth can cause ulcers on the ventral surface of the tongue, lip, and the mother's breast characterizing the Riga-Fede Disease. The treatment depends on the tooth's mobility and the risk of aspiration or swallowing; whether it is supernumerary or regular primary teeth; whether it is causing interference in breastfeeding; breast and oral soft tissue injuries; and the general state of child's health. A 1-month-old female infant was diagnosed with two natal teeth and an ulcerated lesion on the ventral surface of the tongue, leading to the clinical diagnosis of Riga-Fede Disease. The treatment performed consisted of the maintenance of the natal tooth that showed no increased mobility, adding a small increment of glass ionomer cement to its incisal edge, and orientation for hygiene with saline solution. Due to the increased mobility of the other natal tooth, surgical removal was performed. There was regular monitoring of the patient and complete wound healing was observed after 15 days. The proposed treatment was successful and the patient is still in follow-up without recurrence of the lesion after one year.

  20. Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats.

    PubMed

    Busanello, Estela Natacha Brandt; Lobato, Vannessa Gonçalves Araujo; Zanatta, Ângela; Borges, Clarissa Günther; Tonin, Anelise Miotti; Viegas, Carolina Maso; Manfredini, Vanusa; Ribeiro, César Augusto João; Vargas, Carmen Regla; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2014-12-01

    Zellweger syndrome (ZS) and some peroxisomal diseases are severe inherited disorders mainly characterized by neurological symptoms and cerebellum abnormalities, whose pathogenesis is poorly understood. Biochemically, these diseases are mainly characterized by accumulation of pristanic acid (Prist) and other fatty acids in the brain and other tissues. In this work, we evaluated the in vitro influence of Prist on redox homeostasis by measuring lipid, protein, and DNA damage, as well as the antioxidant defenses and the activities of aconitase and α-ketoglutarate dehydrogenase in cerebellum of 30-day-old rats. The effect of Prist on DNA damage was also evaluated in blood of these animals. Some parameters were also evaluated in cerebellum from neonatal rats and in cerebellum neuronal cultures. Prist significantly increased malondialdehyde (MDA) levels and carbonyl formation and reduced sulfhydryl content and glutathione (GSH) concentrations in cerebellum of young rats. It also caused DNA strand damage in cerebellum and induced a high micronuclei frequency in blood. On the other hand, this fatty acid significantly reduced α-ketoglutarate dehydrogenase and aconitase activities in rat cerebellum. We also verified that Prist-induced increase of MDA levels was totally prevented by melatonin and attenuated by α-tocopherol but not by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester, indicating the involvement of reactive oxygen species in this effect. Cerebellum from neonate rats also showed marked alterations of redox homeostasis, including an increase of MDA levels and a decrease of sulfhydryl content and GSH concentrations elicited by Prist. Finally, Prist provoked an increase of dichlorofluorescein (DCFH) oxidation in cerebellum-cultivated neurons. Our present data indicate that Prist compromises redox homeostasis in rat cerebellum and blood and inhibits critical enzymes of the citric acid cycle that are susceptible to free radical attack. The

  1. The Cerebellum and Premenstrual Dysphoric Disorder

    PubMed Central

    Rapkin, Andrea J.; Berman, Steven M.; London, Edythe D.

    2017-01-01

    The cerebellum constitutes ten percent of brain volume and contains the majority of brain neurons. Although it was historically viewed primarily as processing motoric computations, current evidence supports a more comprehensive role, where cerebro-cerebellar feedback loops also modulate various forms of cognitive and affective processing. Here we present evidence for a role of the cerebellum in premenstrual dysphoric disorder (PMDD), which is characterized by severe negative mood symptoms during the luteal phase of the menstrual cycle. Although a link between menstruation and cyclical dysphoria has long been recognized, neuroscientific investigations of this common disorder have only recently been explored. This article reviews functional and structural brain imaging studies of PMDD and the similar but less well defined condition of premenstrual syndrome (PMS). The most consistent findings are that women with premenstrual dysphoria exhibit greater relative activity than other women in the dorsolateral prefrontal cortex and posterior lobules VI and VII of the neocerebellum. Since both brain areas have been implicated in emotional processing and mood disorders, working memory and executive functions, this greater activity probably represents coactivation within a cerebro-cerebellar feedback loop regulating emotional and cognitive processing. Some of the evidence suggests that increased activity within this circuit may preserve cerebellar structure during aging, and possible mechanisms and implications of this finding are discussed. PMID:28275721

  2. The Cerebellum and Premenstrual Dysphoric Disorder.

    PubMed

    Rapkin, Andrea J; Berman, Steven M; London, Edythe D

    2014-01-01

    The cerebellum constitutes ten percent of brain volume and contains the majority of brain neurons. Although it was historically viewed primarily as processing motoric computations, current evidence supports a more comprehensive role, where cerebro-cerebellar feedback loops also modulate various forms of cognitive and affective processing. Here we present evidence for a role of the cerebellum in premenstrual dysphoric disorder (PMDD), which is characterized by severe negative mood symptoms during the luteal phase of the menstrual cycle. Although a link between menstruation and cyclical dysphoria has long been recognized, neuroscientific investigations of this common disorder have only recently been explored. This article reviews functional and structural brain imaging studies of PMDD and the similar but less well defined condition of premenstrual syndrome (PMS). The most consistent findings are that women with premenstrual dysphoria exhibit greater relative activity than other women in the dorsolateral prefrontal cortex and posterior lobules VI and VII of the neocerebellum. Since both brain areas have been implicated in emotional processing and mood disorders, working memory and executive functions, this greater activity probably represents coactivation within a cerebro-cerebellar feedback loop regulating emotional and cognitive processing. Some of the evidence suggests that increased activity within this circuit may preserve cerebellar structure during aging, and possible mechanisms and implications of this finding are discussed.

  3. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet.

    PubMed

    Augusto, Ricielle Lopes; Isaac, Alinny Rosendo; Silva-Júnior, Ivanildo Inácio da; Santana, David Filipe de; Ferreira, Diorginis José Soares; Lagranha, Claudia Jacques; Gonçalves-Pimentel, Catarina; Rodrigues, Marcelo Cairrão Araujo; Andrade-da-Costa, Belmira Lara da Silveira

    2017-02-01

    The cerebellum is vulnerable to malnutrition effects. Notwithstanding, it is able to incorporate higher amount of docosahexaenoic acid (DHA) than the cerebral cortex (Cx) when low n-6/n-3 fatty acid ratio is present in a multideficient diet. Considering importance of DHA for brain redox balance, we hypothesize that this cerebellum feature improves its antioxidant status compared to the Cx. A chronic malnutrition status was induced on dams before mating and kept until weaning or adulthood (offspring). A group nutritionally rehabilitated from weaning was also analyzed. Morphometric parameters, total-superoxide dismutase (t-SOD) and catalase activities, lipoperoxidation (LP), nitric oxide (NO), reduced (GSH) and oxidized (GSSG) glutathione, reactive oxygen species (ROS), and reduced nicotinamide adenine dinucleotide/phosphate levels were assessed. Both ROS and LP levels were increased (∼53 %) in the Cx of malnourished young animals while the opposite was seen in the cerebellum (72 and 20 % of the control, respectively). Consistently, lower (∼35 %) and higher t-SOD (∼153 %) and catalase (CAT) (∼38 %) activities were respectively detected in the Cx and cerebellum compared to the control. In malnourished adult animals, redox balance was maintained in the cerebellum and recovered in the Cx (lower ROS and LP levels and higher GSH/GSSG ratio). NO production was impaired by malnutrition at either age, mainly in the cerebellum. The findings suggest that despite a multinutrient deficiency and a modified structural development, a low dietary n-6/n-3 ratio favors early antioxidant resources in the male cerebellum and indicates an important role of astrocytes in the redox balance recovery of Cx in adulthood.

  4. Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex.

    PubMed

    Caligiore, Daniele; Pezzulo, Giovanni; Baldassarre, Gianluca; Bostan, Andreea C; Strick, Peter L; Doya, Kenji; Helmich, Rick C; Dirkx, Michiel; Houk, James; Jörntell, Henrik; Lago-Rodriguez, Angel; Galea, Joseph M; Miall, R Chris; Popa, Traian; Kishore, Asha; Verschure, Paul F M J; Zucca, Riccardo; Herreros, Ivan

    2017-02-01

    Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.

  5. Using a million cell simulation of the cerebellum: network scaling and task generality.

    PubMed

    Li, Wen-Ke; Hausknecht, Matthew J; Stone, Peter; Mauk, Michael D

    2013-11-01

    Several factors combine to make it feasible to build computer simulations of the cerebellum and to test them in biologically realistic ways. These simulations can be used to help understand the computational contributions of various cerebellar components, including the relevance of the enormous number of neurons in the granule cell layer. In previous work we have used a simulation containing 12000 granule cells to develop new predictions and to account for various aspects of eyelid conditioning, a form of motor learning mediated by the cerebellum. Here we demonstrate the feasibility of scaling up this simulation to over one million granule cells using parallel graphics processing unit (GPU) technology. We observe that this increase in number of granule cells requires only twice the execution time of the smaller simulation on the GPU. We demonstrate that this simulation, like its smaller predecessor, can emulate certain basic features of conditioned eyelid responses, with a slight improvement in performance in one measure. We also use this simulation to examine the generality of the computation properties that we have derived from studying eyelid conditioning. We demonstrate that this scaled up simulation can learn a high level of performance in a classic machine learning task, the cart-pole balancing task. These results suggest that this parallel GPU technology can be used to build very large-scale simulations whose connectivity ratios match those of the real cerebellum and that these simulations can be used guide future studies on cerebellar mediated tasks and on machine learning problems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effect of Cerebellum Radiation Dosimetry on Cognitive Outcomes in Children With Infratentorial Ependymoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org; Sharma, Shelly; Xiong, Xiaoping

    Purpose: Cognitive decline is a recognized effect of radiation therapy (RT) in children treated for brain tumors. The importance of the cerebellum and its contribution to cognition have been recognized; however, the effect of RT on cerebellum-linked neurocognitive deficits has yet to be explored. Methods and Materials: Seventy-six children (39 males) at a median 3.3 years of age (range, 1-17 years old) were irradiated for infratentorial ependymoma from 1997 to 2008. The total prescribed dose was 54 to 59.4 Gy administered to the postoperative tumor bed with 5- or 10-mm clinical target volume margin. Age-appropriate cognitive and academic testing was performed prior tomore » the start of RT and was then repeated at 6 months and annually throughout 5 years. The anterior and posterior cerebellum and other normal brain volumes were contoured on postcontrast, T1-weighted postoperative magnetic resonance images registered to treatment planning computed tomography images. Mean doses were calculated and used with time after RT and other clinical covariates to model their effect on neurocognitive test scores. Results: Considering only the statistically significant rates in longitudinal changes for test scores and models that included mean dose, there was a correlation between mean infratentorial dose and intelligence quotient (IQ; −0.190 patients/Gy/year; P=.001), math (−0.164 patients/Gy/year; P=.010), reading (−0.137 patients/Gy/year; P=.011), and spelling scores (−0.147 patients/Gy/year; P=.012), where Gy was measured as the difference between the mean dose received by an individual patient and the mean dose received by the patient group. There was a correlation between mean anterior cerebellum dose and IQ scores (−0.116 patients/Gy/year; P=.042) and mean posterior cerebellum dose and IQ (−0.150 patients/Gy/year; P=.002), math (−0.120 patients/Gy/year; P=.023), reading (−0.111 patients/Gy/year; P=.012), and spelling (−0.117 patients/Gy/year; P

  7. De Sedibus et Causis Morborum: is Essential Tremor a Primary Disease of the Cerebellum?

    PubMed

    Louis, Elan D

    2016-06-01

    Morgagni's 1761 publication of De sedibus et causis morborum (i.e., of the Seats and Causes of Diseases) represented a paradigmatic moment in the history of medicine. The book ushered in a new way of conceptualizing human disease, shattering old dogma, and linking constellations of symptoms and signs (i.e., clinical disease) with anatomic pathology in specific organs (i.e., organ disease). This was the anatomical-clinical method, and it attempted to unveil "the seat" of each disease in a specific organ. Essential tremor (ET) is among the most common neurological diseases. There is little debate that the origin of ET lies in the brain, but if one tries to delve more deeply than this, things become murky. The dogma for the past 40 years has been that the seat of ET is the inferior olivary nucleus. Closer scrutiny of this model, however, has revealed its many flaws, and the model, based on little if any empiric evidence, has increasingly lost favor. Arising from a wealth of research in recent years is a growing body of knowledge that links ET to a disarrangement of the cerebellum. Data from a variety of sources reviewed in this issue (clinical, neuroimaging, neurochemical, animal model, physiological, and pathological) link ET to the cerebellum. That the cerebellum is involved in an abnormal brain loop that is responsible for ET is not debated. The tantalizing question is whether an abnormality in the cerebellum is the prime mover, and whether the cerebellum is the seat of this particular disease.

  8. Functional categorization of gene expression changes in the cerebellum of a Cln3-knockout mouse model for Batten disease.

    PubMed

    Brooks, Andrew I; Chattopadhyay, Subrata; Mitchison, Hannah M; Nussbaum, Robert L; Pearce, David A

    2003-01-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL or Batten Disease) is the most common progressive neurodegenerative disorder of childhood. The disease is inherited in an autosomal recessive manner and is the result of mutations in the CLN3 gene. One brain region severely affected in Batten disease is the cerebellum. Using a mouse model for Batten disease which shares pathological similarities to the disease in humans we have used oligonucleotide arrays to profile approximately 19000 mRNAs in the cerebellum. We have identified reproducible changes of twofold or more in the expression of 756 gene products in the cerebellum of 10-week-old Cln3-knockout mice as compared to wild-type controls. We have subsequently divided these genes with altered expression into 14 functional categories. We report a significant alteration in expression of genes associated with neurotransmission, neuronal cell structure and development, immune response and inflammation, and lipid metabolism. An apparent shift in metabolism toward gluconeogenesis is also evident in Cln3-knockout mice. Further experimentation will be necessary to understand the contribution of these changes in expression to a disease state. Detailed analysis of the functional consequences of altered expression of genes in the cerebellum of the Cln3-knockout mice may provide valuable clues in understanding the molecular basis of the pathological mechanisms underlying Batten disease.

  9. Resveratrol Restores Nrf2 Level and Prevents Ethanol-Induced Toxic Effects in the Cerebellum of a Rodent Model of Fetal Alcohol Spectrum Disorders

    PubMed Central

    Kumar, Ambrish; Singh, Chandra K.; LaVoie, Holly A.; DiPette, Donald J.

    2011-01-01

    In humans, ethanol exposure during pregnancy produces a wide range of abnormalities in infants collectively known as fetal alcohol spectrum disorders (FASD). Neuronal malformations in FASD manifest as postnatal behavioral and functional disturbances. The cerebellum is particularly sensitive to ethanol during development. In a rodent model of FASD, high doses of ethanol (blood ethanol concentration 80 mM) induces neuronal cell death in the cerebellum. However, information on potential agent(s) that may protect the cerebellum against the toxic effects of ethanol is lacking. Growing evidence suggests that a polyphenolic compound, resveratrol, has antioxidant and neuroprotective properties. Here we studied whether resveratrol (3,5,4′-trihydroxy-trans-stilbene), a phytoalexin found in red grapes and blueberries, protects the cerebellar granule neurons against ethanol-induced cell death. In the present study, we showed that administration of resveratrol (100 mg/kg) to postnatal day 7 rat pups prevents ethanol-induced apoptosis by scavenging reactive oxygen species in the external granule layer of the cerebellum and increases the survival of cerebellar granule cells. It restores ethanol-induced changes in the level of transcription factor nuclear factor-erythroid derived 2-like 2 (nfe2l2, also known as Nrf2) in the nucleus. This in turn retains the expression and activity of its downstream gene targets such as NADPH quinine oxidoreductase 1 and superoxide dismutase in cerebellum of ethanol-exposed pups. These studies indicate that resveratrol exhibits neuroprotective effects in cerebellum by acting at redox regulating proteins in a rodent model of FASD. PMID:21697273

  10. Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.

    PubMed

    Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B

    2018-06-01

    A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Ozone density measurements in the troposphere and stratosphere of Natal

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Motta, A. G.

    1983-01-01

    Ozone densitities were measured in the troposphere and stratosphere of Natal using ECC sondes launches on balloons. The data analyzed so far show tropospheric densities and total ozone contents larger than expected.

  12. The Origin of Mathematics and Number Sense in the Cerebellum: with Implications for Finger Counting and Dyscalculia.

    PubMed

    Vandervert, Larry

    2017-01-01

    Mathematicians and scientists have struggled to adequately describe the ultimate foundations of mathematics. Nobel laureates Albert Einstein and Eugene Wigner were perplexed by this issue, with Wigner concluding that the workability of mathematics in the real world is a mystery we cannot explain. In response to this classic enigma, the major purpose of this article is to provide a theoretical model of the ultimate origin of mathematics and "number sense" (as defined by S. Dehaene) that is proposed to involve the learning of inverse dynamics models through the collaboration of the cerebellum and the cerebral cortex (but prominently cerebellum-driven). This model is based upon (1) the modern definition of mathematics as the "science of patterns," (2) cerebellar sequence (pattern) detection, and (3) findings that the manipulation of numbers is automated in the cerebellum. This cerebro-cerebellar approach does not necessarily conflict with mathematics or number sense models that focus on brain functions associated with especially the intraparietal sulcus region of the cerebral cortex. A direct corollary purpose of this article is to offer a cerebellar inner speech explanation for difficulty in developing "number sense" in developmental dyscalculia. It is argued that during infancy the cerebellum learns (1) a first tier of internal models for a primitive physics that constitutes the foundations of visual-spatial working memory, and (2) a second (and more abstract) tier of internal models based on (1) that learns "number" and relationships among dimensions across the primitive physics of the first tier. Within this context it is further argued that difficulty in the early development of the second tier of abstraction (and "number sense") is based on the more demanding attentional requirements imposed on cerebellar inner speech executive control during the learning of cerebellar inverse dynamics models. Finally, it is argued that finger counting improves (does not

  13. Linking Essential Tremor to the Cerebellum: Neuropathological Evidence.

    PubMed

    Louis, Elan D

    2016-06-01

    A fundamental question about essential tremor (ET) is whether its associated pathological changes and disease mechanisms are linkable to a specific brain region. To that end, recent tissue-based studies have made significant strides in elucidating changes in the ET brain. Emerging from these studies is increasing neuropathological evidence linking ET to the cerebellum. These studies have systematically identified a broad range of structural, degenerative changes in the ET cerebellum, spanning across all Purkinje cell compartments. These include the dendritic compartment (where there is an increase in number of Purkinje cell dendritic swellings, a pruning of the dendritic arbor, and a reduction in spine density), the cell body (where, aside from reductions in Purkinje cell linear density in some studies, there is an increase in the number of heterotopic Purkinje cell soma), and the axonal compartment (where a plethora of changes in axonal morphology have been observed, including an increase in the number of thickened axonal profiles, torpedoes, axonal recurrent collaterals, axonal branching, and terminal axonal sprouting). Additional changes, possibly due to secondary remodeling, have been observed in neighboring neuronal populations. These include a hypertrophy of basket cell axonal processes and changes in the distribution of climbing fiber-Purkinje cell synapses. These changes all distinguish ET from normal control brains. Initial studies further indicate that the profile (i.e., constellation) of these changes may separate ET from other diseases of the cerebellum, thereby serving as a disease signature. With the discovery of these changes, a new model of ET has arisen, which posits that it may be a neurodegenerative disorder centered in the cerebellar cortex. These newly emerging neuropathological studies pave the way for anatomically focused, hypothesis-driven, molecular mechanistic studies of disease pathogenesis.

  14. Natal dispersal patterns are not associated with inbreeding avoidance in the Seychelles warbler.

    PubMed

    Eikenaar, C; Komdeur, J; Richardson, D S

    2008-07-01

    In this study, we test whether patterns of territory inheritance, social mate choice and female-biased natal dispersal act as inbreeding avoidance mechanisms in the cooperatively breeding Seychelles warbler. Our results show that Seychelles warblers do not reduce the likelihood of inbreeding by avoiding related individuals as mates. The occurrence of natural and experimentally induced territory inheritance did not depend on whether the remaining breeder was a parent of the potential inheritor or an unrelated breeder. Furthermore, dispersing individuals were no less related to their eventual mates than expected given the pool of candidates they could mate with. The female bias in natal dispersal distance observed in the Seychelles warbler does not facilitate inbreeding avoidance because, contrary to our prediction, there was no sex difference in the clustering of related opposite sex breeders around the natal territories of dispersers. As a result, the chance of females mating with relatives was not reduced by their greater dispersal distance compared with that of males.

  15. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles.

    PubMed

    Brothers, J Roger; Lohmann, Kenneth J

    2015-02-02

    Natal homing is a pattern of behavior in which animals migrate away from their geographic area of origin and then return to reproduce in the same location where they began life [1-3]. Although diverse long-distance migrants accomplish natal homing [1-8], little is known about how they do so. The enigma is epitomized by loggerhead sea turtles (Caretta caretta), which leave their home beaches as hatchlings and migrate across entire ocean basins before returning to nest in the same coastal area where they originated [9, 10]. One hypothesis is that turtles imprint on the unique geomagnetic signature of their natal area and use this information to return [1]. Because Earth's field changes over time, geomagnetic imprinting should cause turtles to change their nesting locations as magnetic signatures drift slightly along coastlines. To investigate, we analyzed a 19-year database of loggerhead nesting sites in the largest sea turtle rookery in North America. Here we report a strong association between the spatial distribution of turtle nests and subtle changes in Earth's magnetic field. Nesting density increased significantly in coastal areas where magnetic signatures of adjacent beach locations converged over time, whereas nesting density decreased in places where magnetic signatures diverged. These findings confirm central predictions of the geomagnetic imprinting hypothesis and provide strong evidence that such imprinting plays an important role in natal homing in sea turtles. The results give credence to initial reports of geomagnetic imprinting in salmon [11, 12] and suggest that similar mechanisms might underlie long-distance natal homing in diverse animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Subchronic Exposure to Arsenic Represses the TH/TRβ1-CaMK IV Signaling Pathway in Mouse Cerebellum.

    PubMed

    Guan, Huai; Li, Shuangyue; Guo, Yanjie; Liu, Xiaofeng; Yang, Yi; Guo, Jinqiu; Li, Sheng; Zhang, Cong; Shang, Lixin; Piao, Fengyuan

    2016-01-26

    We previously reported that arsenic (As) impaired learning and memory by down-regulating calmodulin-dependent protein kinase IV (CaMK IV) in mouse cerebellum. It has been documented that the thyroid hormone receptor (TR)/retinoid X receptor (RXR) heterodimer and thyroid hormone (TH) may be involved in the regulation of CaMK IV. To investigate whether As affects the TR/RXR heterodimer and TH, we determined As concentration in serum and cerebellum, 3,5,3'-triiodothyronine (T3) and thyroxin (T4) levels in serum, and expression of CaMK IV, TR and RXR in cerebellum of mice exposed to As. Cognition function was examined by the step-down passive avoidance task and Morris water maze (MWM) tests. Morphology of the cerebellum was observed by Hematoxylin-Eosin staining under light microscope. Our results showed that the concentrations of As in the serum and cerebellum of mice both increased with increasing As-exposure level. A significant positive correlation was found between the two processes. Adeficit in learning and memory was found in the exposed mice. Abnormal morphologic changes of Purkinje cells were observed in cerebellum of the exposed mice. Moreover, the cerebellar expressions of CaMK IV protein and the TRβ gene, and TRβ1 protein were significantly lower in As-exposed mice than those in controls. Subchronic exposure to As appears to increase its level in serum and cerebella of mice, impairing learning and memory and down-regulating expression of TRβ1 as well as down-stream CaMK IV. It is also suggested that the increased As may be responsible for down-regulation of TRβ1 and CaMK IV in cerebellum and that the down-regulated TRβ1 may be involved in As-induced impairment of learning and memory via inhibiting CaMK IV and its down-stream pathway.

  17. Migraineurs without aura show microstructural abnormalities in the cerebellum and frontal lobe.

    PubMed

    Granziera, C; Romascano, D; Daducci, A; Roche, A; Vincent, M; Krueger, G; Hadjikhani, N

    2013-12-01

    The involvement of the cerebellum in migraine pathophysiology is not well understood. We used a biparametric approach at high-field MRI (3 T) to assess the structural integrity of the cerebellum in 15 migraineurs with aura (MWA), 23 migraineurs without aura (MWoA), and 20 healthy controls (HC). High-resolution T1 relaxation maps were acquired together with magnetization transfer images in order to probe microstructural and myelin integrity. Clusterwise analysis was performed on T1 and magnetization transfer ratio (MTR) maps of the cerebellum of MWA, MWoA, and HC using an ANOVA and a non-parametric clusterwise permutation F test, with age and gender as covariates and correction for familywise error rate. In addition, mean MTR and T1 in frontal regions known to be highly connected to the cerebellum were computed. Clusterwise comparison among groups showed a cluster of lower MTR in the right Crus I of MWoA patients vs. HC and MWA subjects (p = 0.04). Univariate and bivariate analysis on T1 and MTR contrasts showed that MWoA patients had longer T1 and lower MTR in the right and left pars orbitalis compared to MWA (p < 0.01 and 0.05, respectively), but no differences were found with HC. Lower MTR and longer T1 point at a loss of macromolecules and/or micro-edema in Crus I and pars orbitalis in MWoA patients vs. HC and vs. MWA. The pathophysiological implications of these findings are discussed in light of recent literature.

  18. Automated measurement of uptake in cerebellum, liver, and aortic arch in full-body FDG PET/CT scans.

    PubMed

    Bauer, Christian; Sun, Shanhui; Sun, Wenqing; Otis, Justin; Wallace, Audrey; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M; Beichel, Reinhard R

    2012-06-01

    The purpose of this work was to develop and validate fully automated methods for uptake measurement of cerebellum, liver, and aortic arch in full-body PET/CT scans. Such measurements are of interest in the context of uptake normalization for quantitative assessment of metabolic activity and/or automated image quality control. Cerebellum, liver, and aortic arch regions were segmented with different automated approaches. Cerebella were segmented in PET volumes by means of a robust active shape model (ASM) based method. For liver segmentation, a largest possible hyperellipsoid was fitted to the liver in PET scans. The aortic arch was first segmented in CT images of a PET/CT scan by a tubular structure analysis approach, and the segmented result was then mapped to the corresponding PET scan. For each of the segmented structures, the average standardized uptake value (SUV) was calculated. To generate an independent reference standard for method validation, expert image analysts were asked to segment several cross sections of each of the three structures in 134 F-18 fluorodeoxyglucose (FDG) PET/CT scans. For each case, the true average SUV was estimated by utilizing statistical models and served as the independent reference standard. For automated aorta and liver SUV measurements, no statistically significant scale or shift differences were observed between automated results and the independent standard. In the case of the cerebellum, the scale and shift were not significantly different, if measured in the same cross sections that were utilized for generating the reference. In contrast, automated results were scaled 5% lower on average although not shifted, if FDG uptake was calculated from the whole segmented cerebellum volume. The estimated reduction in total SUV measurement error ranged between 54.7% and 99.2%, and the reduction was found to be statistically significant for cerebellum and aortic arch. With the proposed methods, the authors have demonstrated that

  19. Machado de Assis's "Dom Casmurro" and "Soneto De Natal": The Calculated Mediocrity of a Mute Prophet

    ERIC Educational Resources Information Center

    Lewis, Christopher T.

    2016-01-01

    Joaquim Maria Machado de Assis's poem "Soneto de Natal" and the chapter "Um soneto" from his novel "Dom Casmurro" exhibit striking points of intersection that describe the same process: the creation of a sonnet. In the novel, Bentinho abandons his attempt with only a first and last line. "Soneto de Natal"…

  20. Educational Leadership with an Ethics of Plurality and Natality

    ERIC Educational Resources Information Center

    Berger, Iris

    2015-01-01

    This paper aims to impregnate the concept of educational leadership with new meanings and new possibilities. I draw on Hannah Arendt's ("The human condition." University of Chicago Press, Chicago, 1958/1998) political thought, particularly, her concepts of "plurality" and "natality" alongside the distinction she made…

  1. The development of upper limb movements: from fetal to post-natal life.

    PubMed

    Zoia, Stefania; Blason, Laura; D'Ottavio, Giuseppina; Biancotto, Marina; Bulgheroni, Maria; Castiello, Umberto

    2013-01-01

    The aim of this longitudinal study was to investigate how the kinematic organization of upper limb movements changes from fetal to post-natal life. By means of off-line kinematical techniques we compared the kinematics of hand-to-mouth and hand-to-eye movements, in the same individuals, during prenatal life and early postnatal life, as well as the kinematics of hand-to-mouth and reaching-toward-object movements in the later age periods. Movements recorded at the 14(th), 18(th) and 22(nd) week of gestation were compared with similar movements recorded in an ecological context at 1, 2, 3, 4, 8, and 12 months after birth. The results indicate a similar kinematic organization depending on movement type (i.e., eye, mouth) for the infants at one month and for the fetuses at 22 weeks of gestation. At two and three months such differential motor planning depending on target is lost and no statistical differences emerge. Hand to eye movements were no longer observed after the fourth month of life, therefore we compared kinematics for hand to mouth with hand to object movements. Results of these analyses revealed differences in the performance of hand to mouth and reaching to object movements in the length of the deceleration phase of the movement, depending on target. Data are discussed in terms of how the passage from intrauterine to extra-uterine environments modifies motor planning. These results provide novel evidence of how different types of upper extremity movements, those directed towards one's own face and those directed to external objects, develop.

  2. Exercise-induced expression of monocarboxylate transporter 2 in the cerebellum and its contribution to motor performance.

    PubMed

    Hoshino, Daisuke; Setogawa, Susumu; Kitaoka, Yu; Masuda, Hiroyuki; Tamura, Yuki; Hatta, Hideo; Yanagihara, Dai

    2016-10-28

    Monocarboxylate transporter 2 (MCT2) is an important component of the lactate transport system in neurons of the adult brain. Purkinje cells in the cerebellum have been shown to have high levels of MCT2, suggesting that this protein has a key function in energy metabolism and neuronal activities in these cells. However, it is not known whether inhibition of lactate transport via MCT2 in the cerebellum affects motor performance. To address this question, we examined motor performance in mice following the inhibition of lactate transport via MCT2 in the cerebellum using α-cyano-4-hydroxycinnamate (4-CIN). 4-CIN or saline was injected into the subarachnoidal space of the cerebellum of mice and motor performance was analyzed by a rotarod test both before and after injection. 4-CIN injection reduced retention time in the rotarod test by approximately 80% at 1h post-injection compared with pre-injection. No effect was observed at 2h post-injection or in mice treated with the vehicle control. Because we observed that MCT2 plays an important role in motor performance, we next investigated the effects of acute exercise on MCT2 transcription and protein levels in mice sampled pre-exercise and at 0 and 5h after 2h of treadmill running. We found a significant increase in MCT2 mRNA levels, but not of protein levels, in the cerebellum at 5h after exercise. Our results indicate that lactate transport via MCT2 in the cerebellum may play an important role in motor performance and that exercise can increase MCT2 expression at the transcriptional level. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Functionally heterogenous ryanodine receptors in avian cerebellum.

    PubMed

    Sierralta, J; Fill, M; Suárez-Isla, B A

    1996-07-19

    The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.

  4. Estimating natal dispersal movement rates of female European ducks with multistate modeling

    USGS Publications Warehouse

    Blums, P.; Nichols, J.D.; Hines, J.E.; Lindberg, M.S.; Mednis, A.

    2003-01-01

    1. We used up to 34 years of capture-recapture data from about 22,100 new releases of day-old female ducklings and multistate modelling to test predictions about the influence of environmental, habitat and management factors on natal dispersal probability of three species of ducks within the Engure Marsh, Latvia. 2. The mean natal dispersal distances were very similar (c . 0?6-0?7 km) for all three species and were on average 2?7 times greater than breeding dispersal distances recorded within the same study system. 3. We were unable to confirm the kinship hypothesis and found no evidence that young first-nesting females nested closer to their relatives (either mother or sister) than to the natal nest. 4. Young female northern shovelers, like adults, moved from small islands to the large island when water level was high and vice versa when water level was low before the construction of elevated small islands. Movement probabilities between the two strata were much higher for young shovelers than adults, suggesting that young birds had not yet developed strong fidelity to the natal site. Movements of young female tufted ducks, unlike those of shovelers, were not dependent on water level fluctuations and reflected substantial flexibility in choice of first nesting sites. 5. Data for young birds supported our earlier conclusion that common pochard nesting habitats in black-headed gull colonies were saturated during the entire study period. Young females, like the two adult age groups, moved into and out of colonies with similar probability. Fidelity probability of female pochards to each stratum increased with age, being the lowest (0?62) for young (DK) females, intermediate (0?78) for yearlings (SY) and the highest (0?84) for adult (ASY) females. 6. Young female tufted ducks, like adults, showed higher probabilities of moving from islands to emergent marshes when water levels were higher both before and after habitat management. The relationship between the spring

  5. Caspase-3/-8/-9, Bax and Bcl-2 expression in the cerebellum, lymph nodes and leukocytes of dogs naturally infected with canine distemper virus.

    PubMed

    Del Puerto, H L; Martins, A S; Moro, L; Milsted, A; Alves, F; Braz, G F; Vasconcelos, A C

    2010-01-26

    Canine distemper is an immunosuppressive disease caused by the canine distemper virus (CDV). Pathogenesis mainly involves the central nervous system and immunosuppression. Dogs naturally infected with CDV develop apoptotic cells in lymphoid tissues and the cerebellum, but this apoptotic mechanism is not well characterized. To better understand this process, we evaluated the expression of Bax, Bcl-2, and caspase-3, -8 and -9, by evaluating mRNA levels in the peripheral blood, lymph nodes and cerebellum of CDV-infected (CDV+) and uninfected (CDV-) dogs by real-time polymerase chain reaction (PCR). Blood samples from 12 CDV+ and 8 CDV- dogs, diagnosed by reverse transcription-PCR, were subjected to hematological analysis and apoptotic gene expression was evaluated using real-time-PCR. Tissues from the cerebellum and lymph nodes of four CDV+ and three CDV-dogs were also subjected to real time-PCR. No significant differences were found between CDV+ and CDV- dogs in the hemotological results or in the expression of caspase-3, -8, -9, Bax, and Bcl-2 in the peripheral blood. However, expression of Bax, caspase-3, -8 and -9 was significantly higher in the cerebellum of CDV+ compared to CDV- dogs. Expression of caspase-3 and -8 was significantly higher in the lymph nodes of CDV+ compared to CDV- dogs. We concluded that infection with CDV induces apoptosis in the cerebellum and lymph nodes in different ways. Lymph node apoptosis apparently occurs via caspase-3 activation, through the caspase-8 pathway, and cerebellum apoptosis apparently occurs via caspase-3 activation, through the caspase-8 and mitochondrial pathways.

  6. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia.

    PubMed

    Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi

    2016-01-01

    As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.

  7. Persistent lingual ulceration (Riga-Fede disease) in an infant with Down syndrome and natal teeth: a case report.

    PubMed

    Senanayake, Manouri P; Karunaratne, Irantha

    2014-08-22

    Riga-Fede disease is a rare pediatric condition in which chronic lingual ulceration results from repetitive trauma. Neonatal teeth or underlying neuro-developmental disorders which include Down syndrome are described as causative factors, but to the best of our knowledge, this is the first case report of both Down syndrome and natal teeth coexisting. The need for early extraction in the presence of two risk factors is highlighted in this case report. An 18-month-old Sinhalese male presented with an ulcerating lingual mass on the ventral surface of the tongue. The lesion had progressed over the past six months. He also had clinically diagnosed Down syndrome.The ulcer was non-tender, indurated, and had elevated margins. It was not bleeding and two natal teeth in lower central dentition were seen in apposition with the lesion. There was no regional lymphadenopathy but the ulcer was causing concerns as it mimicked a malignant lesion. A clinical diagnosis of Riga-Fede disease caused by raking movements of the tongue against anterior natal teeth by a child who was developmentally delayed and prone to suck on his tongue was made. The mother was reassured and the natal teeth were extracted. Early extraction of natal teeth is recommended only if there is a risk of aspiration or interference with breast feeding. Although Down syndrome is among the neuro-developmental conditions that lead to this lesion, its occurrence is usually at an older age. The presence of natal teeth together with Down syndrome caused the lesion to occur in infancy. Awareness of the benign nature of this rare condition by pediatricians and dental practitioners is important as it will allay anxiety and avoid unnecessary biopsy. This case also highlights the impact of two risk factors and needs consideration as an added indication for the early extraction of natal teeth.

  8. Two years of gender identity service for minors: overrepresentation of natal girls with severe problems in adolescent development.

    PubMed

    Kaltiala-Heino, Riittakerttu; Sumia, Maria; Työläjärvi, Marja; Lindberg, Nina

    2015-01-01

    Increasing numbers of adolescents present in adolescent gender identity services, desiring sex reassignment (SR). The aim of this study is to describe the adolescent applicants for legal and medical sex reassignment during the first two years of adolescent gender identity team in Finland, in terms of sociodemographic, psychiatric and gender identity related factors and adolescent development. Structured quantitative retrospective chart review and qualitative analysis of case files of all adolescent SR applicants who entered the assessment by the end of 2013. The number of referrals exceeded expectations in light of epidemiological knowledge. Natal girls were markedly overrepresented among applicants. Severe psychopathology preceding onset of gender dysphoria was common. Autism spectrum problems were very common. The findings do not fit the commonly accepted image of a gender dysphoric minor. Treatment guidelines need to consider gender dysphoria in minors in the context of severe psychopathology and developmental difficulties.

  9. A Case Report of Gender Dysphoria with Morbid Jealousy in a Natal Female

    PubMed Central

    Rao, G. Prasad; Aparna, B.

    2017-01-01

    Gender dysphoria is a new entity introduced in the Diagnostic and Statistical Manual of Mental Disorder V to address the distress of the previously labeled gender identity disorder patients. It is less commonly seen in natal females, often starting in their childhood. Adults and adolescent natal females with early-onset gender dysphoria are almost always gynephilic. This case report is presented to discuss the interesting evolution of the symptoms in gender dysphoria case with difficulties in adjusting to the assigned sexual role, relationship problems, morbid jealousy, and severe depressive features with suicidal ideations. PMID:29284816

  10. Cerebellum volume in high-risk offspring from multiplex alcohol dependence families: Association with allelic variation in GABRA2 and BDNF

    PubMed Central

    Hill, Shirley Y.; Wang, Shuhui; Carter, Howard; Tessner, Kevin; Holmes, Brian; McDermott, Michael; Zezza, Nicholas; Stiffler, Scott

    2012-01-01

    Offspring from families with multiple cases of alcohol dependence have a greater likelihood of developing alcohol dependence (AD) and related substance use disorders. Greater susceptibility for developing these disorders may be related to structural differences in brain circuits that influence the salience of rewards or modify the efficiency of information processing and AD susceptibility. We examined the cerebellum of 71 adolescent/young adult high-risk (HR) offspring from families with multiple cases of alcohol dependence (multiplex families), and 60 low-risk (LR) controls with no family history of alcohol or drug dependence who were matched for age, gender, socioeconomic status and IQ, with attention given to possible effects of personal use of substances and maternal use during pregnancy. Magnetic resonance images were acquired on a General Electric 1.5-Tesla scanner and manually traced (BRAINS2) blind to clinical information. GABRA2 and BDNF variation were tested for their association with cerebellar volumes. High-risk offspring from multiplex AD families showed greater total volume of the cerebellum and total gray matter (GM), in comparison with LR controls. An interaction between allelic variation in GABRA2 and BDNF genes was associated with GM volumes, suggesting that inherited variation in these genes may promote early developmental differences in neuronal proliferation of the cerebellum. PMID:22047728

  11. Trial-to-trial Adaptation: Parsing out the Roles of Cerebellum and BG in Predictive Motor Timing.

    PubMed

    Lungu, Ovidiu V; Bares, Martin; Liu, Tao; Gomez, Christopher M; Cechova, Ivica; Ashe, James

    2016-07-01

    We previously demonstrated that predictive motor timing (i.e., timing requiring visuomotor coordination in anticipation of a future event, such as catching or batting a ball) is impaired in patients with spinocerebellar ataxia (SCA) types 6 and 8 relative to healthy controls. Specifically, SCA patients had difficulties postponing their motor response while estimating the target kinematics. This behavioral difference relied on the activation of both cerebellum and striatum in healthy controls, but not in cerebellar patients, despite both groups activating certain parts of cerebellum during the task. However, the role of these two key structures in the dynamic adaptation of the motor timing to target kinematic properties remained unexplored. In the current paper, we analyzed these data with the aim of characterizing the trial-by-trial changes in brain activation. We found that in healthy controls alone, and in comparison with SCA patients, the activation in bilateral striatum was exclusively associated with past successes and that in the left putamen, with maintaining a successful performance across successive trials. In healthy controls, relative to SCA patients, a larger network was involved in maintaining a successful trial-by-trial strategy; this included cerebellum and fronto-parieto-temporo-occipital regions that are typically part of attentional network and action monitoring. Cerebellum was also part of a network of regions activated when healthy participants postponed their motor response from one trial to the next; SCA patients showed reduced activation relative to healthy controls in both cerebellum and striatum in the same contrast. These findings support the idea that cerebellum and striatum play complementary roles in the trial-by-trial adaptation in predictive motor timing. In addition to expanding our knowledge of brain structures involved in time processing, our results have implications for the understanding of BG disorders, such as Parkinson disease

  12. Neutron Star Natal Kick and Jets in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Bear, Ealeal; Soker, Noam

    2018-03-01

    We measure the angle between the neutron star (NS) natal kick direction and the inferred direction of jets according to the morphology of 12 core collapse supernova remnants (SNR), and find that the distribution is almost random, but missing small angles. The 12 SNRs are those for which we could both identify morphological features that we can attribute to jets and for which the direction of the NS natal kick is given in the literature. Unlike some claims for spin-kick alignment, here we rule out jet-kick alignment. We discuss the cumulative distribution function of the jet-kick angles under the assumption that dense clumps that are ejected by the explosion accelerate the NS by the gravitational attraction, and suggest that the jet feedback explosion mechanism might in principle account for the distribution of jet-kick angles.

  13. Lmx1b is essential for Fgf8 and Wnt1 expression in the isthmic organizer during tectum and cerebellum development in mice.

    PubMed

    Guo, Chao; Qiu, Hai-Yan; Huang, Ying; Chen, Haixu; Yang, Rong-Qiang; Chen, Sheng-Di; Johnson, Randy L; Chen, Zhou-Feng; Ding, Yu-Qiang

    2007-01-01

    Secreted factors FGF8 and WNT1 are essential either for the inductive activity of the isthmus organizer or for the regionalization of the midbrain-hindbrain boundary (MHB). However, transcriptional regulation of these secreted factors during development remains to be elucidated. Here we show that the LIM homeobox gene Lmx1b is expressed in the anterior embryo as early as E7.5 and its expression becomes progressively restricted to the isthmus at E9.0. Analysis of gene expression in the MHB of the mutant embryos showed that many genes were lost by E9.5. In the MHB of Lmx1b-/- embryos, the expression of Fgf8, which normally occurs at the 4-somite stage, was completely absent, whereas Wnt1 was downregulated before the 4-somite stage. Moreover, transcription factors En1 and Pax2 were also downregulated prior to the 4-somite stage, whereas Gbx2 downregulation occurred at the 4-somite stage. By contrast, Otx2 and Pax6 expression was not affected in Lmx1b-/- embryos. The requirement of specific Lmx1b expression in the MHB was further confirmed by Wnt1-Cre-mediated region-specific conditional knockout of Lmx1b. As a result of these molecular defects, the development of the tectum and cerebellum was severely impaired in Lmx1b-/- mice. Taken together, our results indicate that Lmx1b plays an essential role in the development of the tectum and cerebellum by regulating expression of Fgf8, Wnt1 and several isthmus-related transcription factors in the MHB, and is a crucial component of a cross-regulatory network required for the induction activity of the isthmic organizer in the MHB.

  14. Structural Changes in the Cerebrum, Cerebellum and Corpus Callosum in Migraine Patients.

    PubMed

    Demir, Berin T; Bayram, Nezihe A; Ayturk, Zübeyde; Erdamar, Hüsamettin; Seven, Pelin; Calp, Ayşegül; Sazak, Merve; Ceylan, Hatice G

    2016-12-01

    The purpose of this study was to demonstrate the relationship among the cerebrum, cerebellum and corpus callosum in migraine patients. This work was conducted with cooperation of the Turgut Özal Medical Faculty, Department of Anatomy and Neurology. Migraine patients were divided into four groups: new patients; 1-5 years; 5-10 years; and, more than 10 years. All patients (n=75) and control subjects (n=20) underwent Magnetic Resonance Imaging (MRI) and brain images were processed by ONIS and Image J. Data were analyzed using the planimetric method. Cerebrum, cerebellum and corpus callosum volume were calculated for all subjects. The footprints of the callosum were as follows: healthy control subjects, new patients and 1-year patients: 12.8%, 5 years: 11.7% and more than 10 years: 10.7%. The cerebrum volume was as follows: healthy control subjects: 1152 cm3, 5-10 years: 1102 cm3 and more than 10 years: 1002 cm3. The results of our study showed atrophy in the cerebrum, cerebellum and corpus callosum of chronic migraine patients. This atrophy was greater in the patients with aura migraines. Our study confirmed that a migraine is an episodic disease that seriously affects the CNS.

  15. Fructose metabolism in the cerebellum.

    PubMed

    Funari, Vincent A; Crandall, James E; Tolan, Dean R

    2007-01-01

    Under normal physiological conditions, the brain utilizes only a small number of carbon sources for energy. Recently, there is growing molecular and biochemical evidence that other carbon sources, including fructose, may play a role in neuro-energetics. Fructose is the number one commercial sweetener in Western civilization with large amounts of fructose being toxic, yet fructose metabolism remains relatively poorly characterized. Fructose is purportedly metabolized via either of two pathways, the fructose-1-phosphate pathway and/or the fructose-6-phosphate pathway. Many early metabolic studies could not clearly discriminate which of these two pathways predominates, nor could they distinguish which cell types in various tissues are capable of fructose metabolism. In addition, the lack of good physiological models, the diet-induced changes in gene expression in many tissues, the involvement of multiple genes in multiple pathways involved in fructose metabolism, and the lack of characterization of some genes involved in fructose metabolism have complicated our understanding of the physiological role of fructose in neuro-energetics. A recent neuro-metabolism study of the cerebellum demonstrated fructose metabolism and co-expression of the genes specific for the fructose 1-phosphate pathway, GLUT5 (glut5) and ketohexokinase (khk), in Purkinje cells suggesting this as an active pathway in specific neurons? Meanwhile, concern over the rapid increase in dietary fructose, particularly among children, has increased awareness about how fructose is metabolized in vivo and what effects a high fructose diet might have. In this regard, establishment of cellular and molecular studies and physiological characterization of the important and/or deleterious roles fructose plays in the brain is critical. This review will discuss the status of fructose metabolism in the brain with special reference to the cerebellum and the physiological roles of the different pathways.

  16. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    PubMed

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging

  17. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem

    PubMed Central

    Wang, Jun Yi; Ngo, Michael M.; Hessl, David; Hagerman, Randi J.; Rivera, Susan M.

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer’s segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging

  18. Spontaneous anaplasia in pilocytic astrocytoma of cerebellum.

    PubMed

    Lach, B; Al Shail, E; Patay, Z

    2003-06-01

    We report a cystic cerebellar astrocytoma with a mural nodule that contained an additional focus of astrocytoma with the histological features of anaplasia, and showed up to 48% of aneuploid and 3% S-phase cells on flow cytometry. This focus was detectable on the enhanced, as well as non-enhanced T1 and T2 images. This appears to be the first case of pilocytic astrocytoma of cerebellum with focal anaplasia detected on histological and radiological studies.

  19. Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to Crystallized IQ and Gender

    PubMed Central

    Pezoulas, Vasileios C.; Zervakis, Michalis; Michelogiannis, Sifis; Klados, Manousos A.

    2017-01-01

    During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that

  20. Resting-State Functional Connectivity and Network Analysis of Cerebellum with Respect to Crystallized IQ and Gender.

    PubMed

    Pezoulas, Vasileios C; Zervakis, Michalis; Michelogiannis, Sifis; Klados, Manousos A

    2017-01-01

    During the last years, it has been established that the prefrontal and posterior parietal brain lobes, which are mostly related to intelligence, have many connections to cerebellum. However, there is a limited research investigating cerebellum's relationship with cognitive processes. In this study, the network of cerebellum was analyzed in order to investigate its overall organization in individuals with low and high crystallized Intelligence Quotient (IQ). Functional magnetic resonance imaging (fMRI) data were selected from 136 subjects in resting-state from the Human Connectome Project (HCP) database and were further separated into two IQ groups composed of 69 low-IQ and 67 high-IQ subjects. Cerebellum was parcellated into 28 lobules/ROIs (per subject) using a standard cerebellum anatomical atlas. Thereafter, correlation matrices were constructed by computing Pearson's correlation coefficients between the average BOLD time-series for each pair of ROIs inside the cerebellum. By computing conventional graph metrics, small-world network properties were verified using the weighted clustering coefficient and the characteristic path length for estimating the trade-off between segregation and integration. In addition, a connectivity metric was computed for extracting the average cost per network. The concept of the Minimum Spanning Tree (MST) was adopted and implemented in order to avoid methodological biases in graph comparisons and retain only the strongest connections per network. Subsequently, six global and three local metrics were calculated in order to retrieve useful features concerning the characteristics of each MST. Moreover, the local metrics of degree and betweenness centrality were used to detect hubs, i.e., nodes with high importance. The computed set of metrics gave rise to extensive statistical analysis in order to examine differences between low and high-IQ groups, as well as between all possible gender-based group combinations. Our results reveal that

  1. Maternal stress in pregnancy affects myelination and neurosteroid regulatory pathways in the guinea pig cerebellum.

    PubMed

    Bennett, Greer A; Palliser, Hannah K; Shaw, Julia C; Palazzi, Kerrin L; Walker, David W; Hirst, Jonathan J

    2017-11-01

    Prenatal stress predisposes offspring to behavioral pathologies. These may be attributed to effects on cerebellar neurosteroids and GABAergic inhibitory signaling, which can be linked to hyperactivity disorders. The aims were to determine the effect of prenatal stress on markers of cerebellar development, a key enzyme in neurosteroid synthesis and the expression of GABA A receptor (GABA A R) subunits involved in neurosteroid signaling. We used a model of prenatal stress (strobe light exposure, 2 h on gestational day 50, 55, 60 and 65) in guinea pigs, in which we have characterized anxiety and neophobic behavioral outcomes. The cerebellum and plasma were collected from control and prenatally stressed offspring at term (control fetus: n = 9 male, n = 7 female; stressed fetus: n = 7 male, n = 8 female) and postnatal day (PND) 21 (control: n = 8 male, n = 8 female; stressed: n = 9 male, n = 6 female). We found that term female offspring exposed to prenatal stress showed decreased expression of mature oligodendrocytes (∼40% reduction) and these deficits improved to control levels by PND21. Reactive astrocyte expression was lower (∼40% reduction) following prenatal stress. GABA A R subunit (δ and α6) expression and circulating allopregnanolone concentrations were not affected by prenatal stress. Prenatal stress increased expression (∼150-250% increase) of 5α-reductase type-1 mRNA in the cerebellum, which may be a neuroprotective response to promote GABAergic inhibition and aid in repair. These observations indicate that prenatal stress exposure has marked effects on the development of the cerebellum. These findings suggest cerebellar changes after prenatal stress may contribute to adverse behavioral outcomes after exposure to these stresses.

  2. NATAL-74; Towards a Common Programming Language for CAL.

    ERIC Educational Resources Information Center

    Brahan, J. W.; Colpitts, B. A.

    NATAL-74 is a programing language designed for Canadian computer aided learning (CAL) programs. The language has two fundamental elements: the UNIT provides the interface between the student and the subject matter, and the PROCEDURE element embodies teaching strategy. Desirable features of several programing languages have been adapted to cope…

  3. Calculating summary statistics for population chemical biomonitoring in women of childbearing age with adjustment for age-specific natality.

    PubMed

    Axelrad, Daniel A; Cohen, Jonathan

    2011-01-01

    The effects of chemical exposures during pregnancy on children's health have been an increasing focus of environmental health research in recent years, leading to greater interest in biomonitoring of chemicals in women of childbearing age in the general population. Measurements of mercury in blood from the National Health and Nutrition Examination Survey are frequently reported for "women of childbearing age," defined to be of ages 16-49 years. The intent is to represent prenatal chemical exposure, but blood mercury levels increase with age. Furthermore, women of different ages have different probabilities of giving birth. We evaluated options to address potential bias in biomonitoring summary statistics for women of childbearing age by accounting for age-specific probabilities of giving birth. We calculated median and 95th percentile levels of mercury, PCBs, and cotinine using these approaches: option 1: women aged 16-49 years without natality adjustment; option 2: women aged 16-39 years without natality adjustment; option 3: women aged 16-49 years, adjusted for natality by age; option 4: women aged 16-49 years, adjusted for natality by age and race/ethnicity. Among the three chemicals examined, the choice of option has the greatest impact on estimated levels of serum PCBs, which are strongly associated with age. Serum cotinine levels among Black non-Hispanic women of childbearing age are understated when age-specific natality is not considered. For characterizing in utero exposures, adjustment using age-specific natality provides a substantial improvement in estimation of biomonitoring summary statistics. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. The Development of Upper Limb Movements: From Fetal to Post-Natal Life

    PubMed Central

    Zoia, Stefania; Blason, Laura; D’Ottavio, Giuseppina; Biancotto, Marina; Bulgheroni, Maria; Castiello, Umberto

    2013-01-01

    Background The aim of this longitudinal study was to investigate how the kinematic organization of upper limb movements changes from fetal to post-natal life. By means of off-line kinematical techniques we compared the kinematics of hand-to-mouth and hand-to-eye movements, in the same individuals, during prenatal life and early postnatal life, as well as the kinematics of hand-to-mouth and reaching-toward-object movements in the later age periods. Methodology/Principal Findings Movements recorded at the 14th, 18th and 22nd week of gestation were compared with similar movements recorded in an ecological context at 1, 2, 3, 4, 8, and 12 months after birth. The results indicate a similar kinematic organization depending on movement type (i.e., eye, mouth) for the infants at one month and for the fetuses at 22 weeks of gestation. At two and three months such differential motor planning depending on target is lost and no statistical differences emerge. Hand to eye movements were no longer observed after the fourth month of life, therefore we compared kinematics for hand to mouth with hand to object movements. Results of these analyses revealed differences in the performance of hand to mouth and reaching to object movements in the length of the deceleration phase of the movement, depending on target. Conclusion/Significance Data are discussed in terms of how the passage from intrauterine to extra-uterine environments modifies motor planning. These results provide novel evidence of how different types of upper extremity movements, those directed towards one’s own face and those directed to external objects, develop. PMID:24324642

  5. Observing the development of the temporomandibular joint in embryonic and post-natal mice using various staining methods

    PubMed Central

    LIANG, WENNA; LI, XIHAI; GAO, BIZHEN; GAN, HUIJUAN; LIN, XUEJUAN; LIAO, LINGHONG; LI, CANDONG

    2016-01-01

    The temporomandibular joint (TMJ) is a specialized synovial joint that is essential for the movement and function of the mammalian jaw. The TMJ develops from two mesenchymal condensations, and is composed of the glenoid fossa that originates from the otic capsule by intramembranous ossification, the mandibular condyle of the temporal bone and a fibrocartilagenous articular disc derived from a secondary cartilaginous joint by endochondral ossification. However, the development of the TMJ remains unclear. In the present study, the formation and development of the mouse TMJ was investigated between embryonic day 13.5 and post-natal day 180 in order to elucidate the morphological and molecular alterations that occur during this period. TMJ formation appeared to proceed in three stages: Initiation or blastema stage; growth and cavitation stage; and the maturation or completion stage. In order to investigate the activity of certain transcription factors on TMJ formation and development, the expression of extracellular matrix (ECM), sex determining region Y-box 9, runt-related transcription factor 2, Indian hedgehog homolog, Osterix, collagen I, collagen II, aggrecan, total matrix metalloproteinase (MMP), MMP-9 and MMP-13 were detected in the TMJ using in situ and/or immunohistochemistry. The results indicate that the transcription factors, ECM and MMP serve critical functions in the formation and development of the mouse TMJ. In summary, the development of the mouse TMJ was investigated, and the molecular regulation of mouse TMJ formation was partially characterized. The results of the present study may aid the systematic understanding of the physiological processes underlying TMJ formation and development in mice. PMID:26893634

  6. Overlapping neural circuits for visual attention and eye movements in the human cerebellum.

    PubMed

    Striemer, Christopher L; Chouinard, Philippe A; Goodale, Melvyn A; de Ribaupierre, Sandrine

    2015-03-01

    Previous research in patients with cerebellar damage suggests that the cerebellum plays a role in covert visual attention. One limitation of some of these studies is that they examined patients with heterogeneous cerebellar damage. As a result, the patterns of reported deficits have been inconsistent. In the current study, we used functional neuroimaging (fMRI) in healthy adults (N=14) to examine whether or not the cerebellum plays a role in covert visual attention. Participants performed two covert attention tasks in which they were cued exogenously (with peripheral flashes) or endogenously (using directional arrows) to attend to marked locations in the visual periphery without moving their eyes. We compared BOLD activation in these covert attention conditions to a number of control conditions including: the same attention tasks with eye movements, a target detection task with no cueing, and a self-paced button-press task. Subtracting these control conditions from the covert attention conditions allowed us to effectively remove the contribution of the cerebellum to motor output. In addition to the usual fronto-parietal networks commonly engaged by these attention tasks, lobule VI of the vermis in the cerebellum was also activated when participants performed the covert attention tasks with or without eye movements. Interestingly, this effect was larger for exogenous compared to endogenous cueing. These results, in concert with recent patient studies, provide independent yet converging evidence that the same cerebellar structures that are involved in eye movements are also involved in visuospatial attention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Differentiating Patients with Parkinson's Disease from Normal Controls Using Gray Matter in the Cerebellum.

    PubMed

    Zeng, Ling-Li; Xie, Liang; Shen, Hui; Luo, Zhiguo; Fang, Peng; Hou, Yanan; Tang, Beisha; Wu, Tao; Hu, Dewen

    2017-02-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders in the world. Previous studies have focused on the basal ganglia and cerebral cortices. To date, the cerebellum has not been systematically investigated in patients with PD. In the current study, 45 probable PD patients and 40 age- and gender-matched healthy controls underwent structural magnetic resonance imaging, and we used support vector machines combining with voxel-based morphometry to explore the cerebellar structural changes in the probable PD patients relative to healthy controls. The results revealed that the gray matter alterations were primarily located within the cerebellar Crus I, implying a possible important role of this region in PD. Furthermore, the gray matter alterations in the cerebellum could differentiate the probable PD patients from healthy controls with accuracies of more than 95 % (p < 0.001, permutation test) via cross-validation, suggesting the potential of analyzing the cerebellum in the clinical diagnosis of PD.

  8. The effect of phenotypic traits and external cues on natal dispersal movements.

    PubMed

    Delgado, María del Mar; Penteriani, Vincenzo; Revilla, Eloy; Nams, Vilis O

    2010-05-01

    1. Natal dispersal has the potential to affect most ecological and evolutionary processes. However, despite its importance, this complex ecological process still represents a significant gap in our understanding of animal ecology due to both the lack of empirical data and the intrinsic complexity of dispersal dynamics. 2. By studying natal dispersal of 74 radiotagged juvenile eagle owls Bubo bubo (Linnaeus), in both the wandering and the settlement phases, we empirically addressed the complex interactions by which individual phenotypic traits and external cues jointly shape individual heterogeneity through the different phases of dispersal, both at nightly and weekly temporal scales. 3. Owls in poorer physical conditions travelled shorter total distances during the wandering phase, describing straighter paths and moving slower, especially when crossing heterogeneous habitats. In general, the owls in worse condition started dispersal later and took longer times to find further settlement areas. Net distances were also sex biased, with females settling at further distances. Dispersing individuals did not seem to explore wandering and settlement areas by using a search image of their natal surroundings. Eagle owls showed a heterogeneous pattern of patch occupancy, where few patches were highly visited by different owls whereas the majority were visited by just one individual. During dispersal, the routes followed by owls were an intermediate solution between optimized and randomized ones. Finally, dispersal direction had a marked directionality, largely influenced by dominant winds. These results suggest an asymmetric and anisotropic dispersal pattern, where not only the number of patches but also their functions can affect population viability. 4. The combination of the information coming from the relationships among a large set of factors acting and integrating at different spatial and temporal scales, under the perspective of heterogeneous life histories, are a

  9. Coping with heat: function of the natal coat of cape fur seal (Arctocephalus Pusillus Pusillus) pups in maintaining core body temperature.

    PubMed

    Erdsack, Nicola; Dehnhardt, Guido; Hanke, Wolf

    2013-01-01

    Cape fur seal (Arctocephalus pusillus) pups spend the first weeks of life exclusively or mainly ashore. They are exposed to intense solar radiation and high temperatures for long time periods, which results in temperatures up to at least 80°C on their black natal coat. To test the hypothesis that the natal coat has a crucial function in coping with these extreme conditions, we investigated the insulating properties of the natal coat in six captive newborn Cape fur seals during the first 50 days after birth. The natal fur differs from the adult fur not only in colour, but also in density, structure, and water repellence. We measured temperature on the fur surface and within the fur, as well as skin and rectal temperature under varying environmental conditions, comparable to the species' habitat. Experiments were designed to not influence the spontaneous behaviour of the pups. Rectal temperature was constant as long as the pups stayed dry, even during long-lasting intense solar radiation for up to 3 h. Skin temperature remained close to rectal temperature as long as the fur was dry, while with wet fur, skin temperature was significantly reduced as well. Our results show that the natal coat provides an effective insulation against overheating. The severely reduced insulation of wet natal fur against cold supports the assumption that the natal fur is an adaptation to the pups' terrestrial phase of life.

  10. Coping with Heat: Function of The Natal Coat of Cape Fur Seal (Arctocephalus Pusillus Pusillus) Pups in Maintaining Core Body Temperature

    PubMed Central

    Erdsack, Nicola; Dehnhardt, Guido; Hanke, Wolf

    2013-01-01

    Cape fur seal (Arctocephalus pusillus) pups spend the first weeks of life exclusively or mainly ashore. They are exposed to intense solar radiation and high temperatures for long time periods, which results in temperatures up to at least 80°C on their black natal coat. To test the hypothesis that the natal coat has a crucial function in coping with these extreme conditions, we investigated the insulating properties of the natal coat in six captive newborn Cape fur seals during the first 50 days after birth. The natal fur differs from the adult fur not only in colour, but also in density, structure, and water repellence. We measured temperature on the fur surface and within the fur, as well as skin and rectal temperature under varying environmental conditions, comparable to the species' habitat. Experiments were designed to not influence the spontaneous behaviour of the pups. Rectal temperature was constant as long as the pups stayed dry, even during long-lasting intense solar radiation for up to 3 h. Skin temperature remained close to rectal temperature as long as the fur was dry, while with wet fur, skin temperature was significantly reduced as well. Our results show that the natal coat provides an effective insulation against overheating. The severely reduced insulation of wet natal fur against cold supports the assumption that the natal fur is an adaptation to the pups' terrestrial phase of life. PMID:23951287

  11. Safety and Security in Schools in KwaZulu-Natal

    ERIC Educational Resources Information Center

    White, C. J.; Gina, J. M.; Coetzee, I. E. M.

    2015-01-01

    This article is based on research conducted on the topic: "Safety and security in schools: The case of KwaZulu-Natal." For the research project a purposive sample consisting of secondary school learners, teachers, school governing body chairpersons and principals were selected from the rural and township schools used in this study to…

  12. Role of the cerebellum in high stages of motor planning hierarchy

    PubMed Central

    Federici, Alessandra; Cesareo, Ambra; Biffi, Emilia; Valtorta, Giulia; Molteni, Massimo; Ronconi, Luca; Borgatti, Renato

    2017-01-01

    Motor planning is not a monolithic process, and distinct stages of motor planning are responsible for encoding different levels of abstractness. However, how these distinct components are mapped into different neural substrates remains an open question. We studied one of these high-level motor planning components, defined as second-order motor planning, in a patient (R.G.) with an extremely rare case of cerebellar agenesis but without any other cortical malformations. Second-order motor planning dictates that when two acts must be performed sequentially, planning of the second act can influence execution of the first. We used an optoelectronic system for kinematic analysis to compare R.G.’s performance with age-matched controls in a second-order motor planning task. The first act was to reach for an object, and the second was to place it into a small or large container. Our results showed that despite the expected difficulties in fine-motor skills, second-order motor planning (i.e., the ability to modulate the first act as a function of the nature of the second act) was preserved even in the patient with congenital absence of the cerebellum. These results open new intriguing speculations about the role of the cerebellum in motor planning abilities. Although prudence is imperative when suggesting conclusions made on the basis of single-case findings, this evidence suggests fascinating hypotheses about the neural circuits that support distinct stages of the motor planning hierarchy, and regarding the functional role of second-order motor planning in motor cognition and its potential dysfunction in autism. NEW & NOTEWORTHY Traditionally, the cerebellum was considered essential for motor planning. By studying an extremely rare patient with cerebellar agenesis and a group of neurotypical controls, we found that high stages of the motor planning hierarchy can be preserved even in this patient with congenital absence of the cerebellum. Our results provide interesting

  13. The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: evidence from fMRI and TMS.

    PubMed

    Bijsterbosch, Janine D; Lee, Kwang-Hyuk; Hunter, Michael D; Tsoi, Daniel T; Lankappa, Sudheer; Wilkinson, Iain D; Barker, Anthony T; Woodruff, Peter W R

    2011-05-01

    Our ability to interact physically with objects in the external world critically depends on temporal coupling between perception and movement (sensorimotor timing) and swift behavioral adjustment to changes in the environment (error correction). In this study, we investigated the neural correlates of the correction of subliminal and supraliminal phase shifts during a sensorimotor synchronization task. In particular, we focused on the role of the cerebellum because this structure has been shown to play a role in both motor timing and error correction. Experiment 1 used fMRI to show that the right cerebellar dentate nucleus and primary motor and sensory cortices were activated during regular timing and during the correction of subliminal errors. The correction of supraliminal phase shifts led to additional activations in the left cerebellum and right inferior parietal and frontal areas. Furthermore, a psychophysiological interaction analysis revealed that supraliminal error correction was associated with enhanced connectivity of the left cerebellum with frontal, auditory, and sensory cortices and with the right cerebellum. Experiment 2 showed that suppression of the left but not the right cerebellum with theta burst TMS significantly affected supraliminal error correction. These findings provide evidence that the left lateral cerebellum is essential for supraliminal error correction during sensorimotor synchronization.

  14. Specific expression of FOXP2 in cerebellum improves ultrasonic vocalization in heterozygous but not in homozygous Foxp2 (R552H) knock-in pups.

    PubMed

    Fujita-Jimbo, Eriko; Momoi, Takashi

    2014-04-30

    The R553H mutation has been found in the FOXP2 gene of patients with speech-language disorder. Foxp2(R552H) knock-in (KI) mice exhibit poor dendritic development of Purkinje cells in the cerebellum and impaired ultrasonic vocalization (USV), which is related to human speech and language; compared with wild-type mice, heterozygous Foxp2(R552H)-KI pups exhibit the reduced number of whistle-type USVs and the increased short-type ones, while homozygous pups exhibit only click-type USVs but no whistle-type or short-type ones. To make clear the relationship between the role of Foxp2 in the cerebellum and whistle-type USVs activity, we prepared transgenic (Tg) mice specifically expressing human FOXP2-myc in cerebellum (Pcp2-FOXP2-myc-Tg mice) by using purkinje cell protein-2 (Pcp2) promoter. FOXP2-myc expression in the cerebellum increased the relative numbers of whistle-type USVs in the heterozygous Foxp2(R552H)-KI pups and recovered their USVs but did not in the homozygous ones. Foxp2 in the cerebellum may pertain to the brain network engaged in whistle-type USVs activities including modification, but not their production. There may be common molecular contribution of Purkinje cells to human FOXP2-mediated speech-language and mouse Foxp2-mediated USVs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum.

    PubMed

    Mizelle, J C; Oparah, Alexis; Wheaton, Lewis A

    2016-01-01

    The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.

  16. Sun Compass Orientation Helps Coral Reef Fish Larvae Return to Their Natal Reef

    PubMed Central

    Mouritsen, Henrik; Atema, Jelle; Kingsford, Michael J.; Gerlach, Gabriele

    2013-01-01

    Reef fish sustain populations on isolated reefs and show genetic diversity between nearby reefs even though larvae of many species are swept away from the natal site during pelagic dispersal. Retention or recruitment to natal reefs requires orientation capabilities that enable larvae to find their way. Although olfactory and acoustically based orientation has been implicated in homing when larvae are in the reef’s vicinity, it is still unclear how they cope with greater distances. Here we show evidence for a sun compass mechanism that can bring the larvae to the vicinity of their natal reef. In a circular arena, pre-settlement larvae and early settlers (<24 hours) of the cardinal fish, Ostorhinchus doederleini, showed a strong SSE directional swimming response, which most likely has evolved to compensate for the locally prevailing large scale NNW current drift. When fish were clock-shifted 6 hours, they changed their orientation by ca. 180° as predicted by the tropical sun curve at One Tree Island, i.e. they used a time-compensated sun compass. Furthermore, the fish oriented most consistently at times of the day when the sun azimuth is easy to determine. Microsatellite markers showed that the larvae that had just arrived at One Tree Island genetically belonged to either the local reef population or to Fitzroy Reef located 12 kilometers to the SSE. The use of a sun compass adds a missing long-distance link to the hierarchy of other sensory abilities that can direct larvae to the region of origin, including their natal reef. Predominant local recruitment, in turn, can contribute to genetic isolation and potential speciation. PMID:23840396

  17. Functional activity of the sensorimotor cortex and cerebellum relates to cervical dystonia symptoms.

    PubMed

    Burciu, Roxana G; Hess, Christopher W; Coombes, Stephen A; Ofori, Edward; Shukla, Priyank; Chung, Jae Woo; McFarland, Nikolaus R; Wagle Shukla, Aparna; Okun, Michael S; Vaillancourt, David E

    2017-09-01

    Cervical dystonia (CD) is the most common type of focal dystonia, causing abnormal movements of the neck and head. In this study, we used noninvasive imaging to investigate the motor system of patients with CD and uncover the neural correlates of dystonic symptoms. Furthermore, we examined whether a commonly prescribed anticholinergic medication in CD has an effect on the dystonia-related brain abnormalities. Participants included 16 patients with CD and 16 healthy age-matched controls. We collected functional MRI scans during a force task previously shown to extensively engage the motor system, and diffusion and T1-weighted MRI scans from which we calculated free-water and brain tissue densities. The dystonia group was also scanned ca. 2 h after a 2-mg dose of trihexyphenidyl. Severity of dystonia was assessed pre- and post-drug using the Burke-Fahn-Marsden Dystonia Rating Scale. Motor-related activity in CD was altered relative to controls in the primary somatosensory cortex, cerebellum, dorsal premotor and posterior parietal cortices, and occipital cortex. Most importantly, a regression model showed that increased severity of symptoms was associated with decreased functional activity of the somatosensory cortex and increased activity of the cerebellum. Structural imaging measures did not differ between CD and controls. The single dose of trihexyphenidyl altered the fMRI signal in the somatosensory cortex but not in the cerebellum. Symptom severity was not significantly reduced post-treatment. Findings show widespread changes in functional brain activity in CD and most importantly that dystonic symptoms relate to disrupted activity in the somatosensory cortex and cerebellum. Hum Brain Mapp 38:4563-4573, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Metabolic changes of cerebrum by repetitive transcranial magnetic stimulation over lateral cerebellum: a study with FDG PET.

    PubMed

    Cho, Sang Soo; Yoon, Eun Jin; Bang, Sung Ae; Park, Hyun Soo; Kim, Yu Kyeong; Strafella, Antonio P; Kim, Sang Eun

    2012-09-01

    To better understand the functional role of cerebellum within the large-scale cerebellocerebral neural network, we investigated the changes of neuronal activity elicited by cerebellar repetitive transcranial magnetic stimulation (rTMS) using (18)F-fluorodeoxyglucose (FDG) and positron emission tomography (PET). Twelve right-handed healthy volunteers were studied with brain FDG PET under two conditions: active rTMS of 1 Hz frequency over the left lateral cerebellum and sham stimulation. Compared to the sham condition, active rTMS induced decreased glucose metabolism in the stimulated left lateral cerebellum, the areas known to be involved in voluntary motor movement (supplementary motor area and posterior parietal cortex) in the right cerebral hemisphere, and the areas known to be involved in cognition and emotion (orbitofrontal, medial frontal, and anterior cingulate gyri) in the left cerebral hemisphere. Increased metabolism was found in cognition- and language-related brain regions such as the left inferior frontal gyrus including Broca's area, bilateral superior temporal gyri including Wernicke's area, and bilateral middle temporal gyri. Left cerebellar rTMS also led to increased metabolism in the left cerebellar dentate nucleus and pons. These results demonstrate that rTMS over the left lateral cerebellum modulates not only the target region excitability but also excitability of remote, but interconnected, motor-, language-, cognition-, and emotion-related cerebral regions. They provide further evidence that the cerebellum is involved not only in motor-related functions but also in higher cognitive abilities and emotion through the large-scale cerebellocereberal neural network.

  19. AβPP/PS1 Transgenic Mice Show Sex Differences in the Cerebellum Associated with Aging.

    PubMed

    Ordoñez-Gutierrez, Lara; Fernandez-Perez, Ivan; Herrera, Jose Luis; Anton, Marta; Benito-Cuesta, Irene; Wandosell, Francisco

    2016-09-06

    Cerebellar pathology has been related to presenilin 1 mutations in certain pedigrees of familial Alzheimer's disease. However, cerebellum tissue has not been intensively analyzed in transgenic models of mutant presenilins. Furthermore, the effect of the sex of the mice was not systematically analyzed, despite the fact that important gender differences in the evolution of the disease in the human population have been described. We analyzed whether the progression of amyloidosis in a double transgenic mouse, AβPP/PS1, is susceptible to aging and differentially affects males and females. The accumulation of amyloid in the cerebellum differentially affects males and females of the AβPP/PS1 transgenic line, which was found to be ten-fold higher in 15-month-old females. Amyloid-β accumulation was more evident in the molecular layer of the cerebellum, but glia reaction was only observed in the granular layer of the older mice. The sex divergence was also observed in other neuronal, survival, and autophagic markers. The cerebellum plays an important role in the evolution of the pathology in this transgenic mouse model. Sex differences could be crucial for a complete understanding of this disease. We propose that the human population could be studied in this way. Sex-specific treatment strategies in human populations could show a differential response to the therapeutic approach.

  20. Microbial aetiology and sensitivity of asymptomatic bacteriuria among ante-natal mothers in Mulago hospital, Uganda.

    PubMed

    Andabati, G; Byamugisha, J

    2010-12-01

    Asymptomatic bacteriuria in pregnancy is associated with potential urinary and obstetric complications. However the prevalence aetiology and antimicrobial sensitivity patterns of asymptomatic bacteriurea among women attending ante-natal care in our Hospital is not known. To determine the prevalence and identify the aetiological agents associated with asymptomatic bacteriurea in antenatal mothers in Mulago Hospital. We also intended to determine the anti-microbial sensitivity patterns of the common uropathogen in this population We performed culture and anti-microbial sensitivity tests on urine samples from 218 consecutive ante-natal mothers in Mulago Hospital. All participants did not have any clinical symptoms attributable to urinary tract infection. Twenty nine (13.3%) of the samples had significant bacterial growth and E.coli was the commonest isolate (51.2%). There was a high level (20-62%) of anti-bacterial resistance to the commonly used antibiotics. Asymptomatic bacteriuria is common among ante-natal mothers in Mulago. E. Coli that is resistant to the most commonly used antibiotics is the commonest isolate."

  1. Attitude and beliefs of some nurses in government hospitals in Ibadan, Nigeria to natal/neonatal teeth in infants.

    PubMed

    Bankole, O O; Oke, G A

    2013-09-01

    Eruption of the first deciduous teeth in children has shown much variation and occasionally may erupt prematurely at birth or within one month of life. Myths about natal/neonatal teeth abound in the Nigerian culture. Nurses are health care providers who are in constant close contact with patients and can be invaluable in helping to dispel these associated myths. However, to provide correct information they should be adequately equipped to do so. The aim of this study thus, was to assess the attitudes and beliefs of some nurses in Ibadan, Nigeria to natal/neonatal teeth in infants. A cross sectional survey was conducted among 380 nurses in the teaching, general and local government hospitals and clinics in Ibadan, Nigeria. Results revealed that 41.3% of the respondents would express shock and surprise if they assisted in delivering a baby with natal teeth. Half of the respondents (49.7%) felt that natal/neonatal teeth will be a great source of embarrassment to the family while a smaller proportion (11.8%), believed it was a curse (p = 0.01). On the advice the respondents would give to the mothers, more than a th (39.7%), would recommend immediate extraction of the teeth. A further 42 (11.1%) nurses were of the opinion that spiritual cleansing should be carried out prior to extraction. A greater proportion of the older nurses would advice immediate extraction of the teeth (p = 0.031). Regarding the perceived effect of natal/neonatal teeth on the children, (7.4%), (12.6%) and (29.2%) of the respondents believed that the children will behave strangely, will possess spiritual authority and be victims of stigmatization later in life respectively. This study has revealed that knowledge gaps about natal/neonatal teeth exist among the nurses in Ibadan, Nigeria. Health education programmes targeted at nurses are essential to correct these beliefs.

  2. From movement to thought: executive function, embodied cognition, and the cerebellum.

    PubMed

    Koziol, Leonard F; Budding, Deborah Ely; Chidekel, Dana

    2012-06-01

    This paper posits that the brain evolved for the control of action rather than for the development of cognition per se. We note that the terms commonly used to describe brain-behavior relationships define, and in many ways limit, how we conceptualize and investigate them and may therefore constrain the questions we ask and the utility of the "answers" we generate. Many constructs are so nonspecific and over-inclusive as to be scientifically meaningless. "Executive function" is one such term in common usage. As the construct is increasingly focal in neuroscience research, defining it clearly is critical. We propose a definition that places executive function within a model of continuous sensorimotor interaction with the environment. We posit that control of behavior is the essence of "executive function," and we explore the evolutionary advantage conferred by being able to anticipate and control behavior with both implicit and explicit mechanisms. We focus on the cerebellum's critical role in these control processes. We then hypothesize about the ways in which procedural (skill) learning contributes to the acquisition of declarative (semantic) knowledge. We hypothesize how these systems might interact in the process of grounding knowledge in sensorimotor anticipation, thereby directly linking movement to thought and "embodied cognition." We close with a discussion of ways in which the cerebellum instructs frontal systems how to think ahead by providing anticipatory control mechanisms, and we briefly review this model's potential applications.

  3. Geological hazards associated with intense rain and flooding in Natal

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; van Schalkwyk, A.

    1993-02-01

    The combination of rugged topography and climate predisposes the province of Natal to severe floods. Information available since 1856 shows that bridge and slope failures have been recorded in twenty out of twenty-five flood episodes. Bridge failures are caused mostly by geological factors. The mechanism of failure can be classified broadly into foundation failures and changes of river course. Scour and debris build-up have led to failures of foundations located in rock and alluvial sediments. In preparing and replacing bridges the aims have been to increase the area of waterway, increase foundation depths to reach more competent strata and lay protection along banks and abutments to counteract scour. Historically, slope failures have not been well documented but following the 1987/88 storms 223 slope failures were recorded. The classification of the failures allowed the mechanisms of failure to be ascertained, and general design considerations to be reviewed. In areas adjacent to the Drakensberg Mountains slope failures are part of a natural erosion cycle which may be accelerated in periods of heavy rain. Throughout Natal, hummocky ground adjacent to dolerite intrusions reveals the on-going history of failure caused by water ingress and the generation of high pore water pressures on the slip planes. Classic flows occurred throughout the Greater Durban area where residual sandy soils of the Natal Group sandstone became supersaturated. Slumping was common on steep terrain underlain by granite-gneiss in the Kwa-Zulu area. Shales of the Pietermaritzburg Formation are notoriously unstable, yet few failures occurred during the summer storms of 1987/88. Inadequate drainage was responsible for many failures, this was particularly so along the railways.

  4. Sperm whales and killer whales with the largest brains of all toothed whales show extreme differences in cerebellum.

    PubMed

    Ridgway, Sam H; Hanson, Alicia C

    2014-01-01

    Among cetaceans, killer whales and sperm whales have the widest distribution in the world's oceans. Both species use echolocation, are long-lived, and have the longest periods of gestation among whales. Sperm whales dive much deeper and much longer than killer whales. It has long been thought that sperm whales have the largest brains of all living things, but our brain mass evidence, from published sources and our own specimens, shows that big males of these two species share this distinction. Despite this, we also find that cerebellum size is very different between killer whales and sperm whales. The sperm whale cerebellum is only about 7% of the total brain mass, while the killer whale cerebellum is almost 14%. These results are significant because they contradict claims that the cerebellum scales proportionally with the rest of the brain in all mammals. They also correct the generalization that all cetaceans have enlarged cerebella. We suggest possible reasons for the existence of such a large cerebellar size difference between these two species. Cerebellar function is not fully understood, and comparing the abilities of animals with differently sized cerebella can help uncover functional roles of the cerebellum in humans and animals. Here we show that the large cerebellar difference likely relates to evolutionary history, diving, sensory capability, and ecology. © 2014 S. Karger AG, Basel.

  5. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    PubMed

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Cerebellum, Language, and Cognition in Autism and Specific Language Impairment

    ERIC Educational Resources Information Center

    Hodge, Steven M.; Makris, Nikos; Kennedy, David N.; Caviness, Verne S., Jr.; Howard, James; McGrath, Lauren; Steele, Shelly; Frazier, Jean A.; Tager-Flusberg, Helen; Harris, Gordon J.

    2010-01-01

    We performed cerebellum segmentation and parcellation on magnetic resonance images from right-handed boys, aged 6-13 years, including 22 boys with autism [16 with language impairment (ALI)], 9 boys with Specific Language Impairment (SLI), and 11 normal controls. Language-impaired groups had reversed asymmetry relative to unimpaired groups in…

  7. Statistical shape (ASM) and appearance (AAM) models for the segmentation of the cerebellum in fetal ultrasound

    NASA Astrophysics Data System (ADS)

    Reyes López, Misael; Arámbula Cosío, Fernando

    2017-11-01

    The cerebellum is an important structure to determine the gestational age of the fetus, moreover most of the abnormalities it presents are related to growth disorders. In this work, we present the results of the segmentation of the fetal cerebellum applying statistical shape and appearance models. Both models were tested on ultrasound images of the fetal brain taken from 23 pregnant women, between 18 and 24 gestational weeks. The accuracy results obtained on 11 ultrasound images show a mean Hausdorff distance of 6.08 mm between the manual segmentation and the segmentation using active shape model, and a mean Hausdorff distance of 7.54 mm between the manual segmentation and the segmentation using active appearance model. The reported results demonstrate that the active shape model is more robust in the segmentation of the fetal cerebellum in ultrasound images.

  8. BREEDING AND NATAL DISPERSAL IN THE PUERTO RICAN VIREO

    Treesearch

    BETHANY L. WOODWORTH; JOHN FAABORG; WAYNE J. ARENDT

    1998-01-01

    Information on dispersali s critical for understandingt he population dynamicso f birds. We estimated breeding and natal dispersal in two studies of a population of the Puerto Rican Vireo (Vireo latimeri) that is in danger of local extirpation due to low reproductive success from 7.1-29% of adult males and 12.5 - 25% of adult females changed territories between...

  9. Pain Experience is Somatotopically Organized and Overlaps with Pain Anticipation in the Human Cerebellum.

    PubMed

    Michelle Welman, F H S; Smit, Albertine E; Jongen, Joost L M; Tibboel, Dick; van der Geest, Jos N; Holstege, Jan C

    2018-02-26

    Many fMRI studies have shown activity in the cerebellum after peripheral nociceptive stimulation. We investigated whether the areas in the cerebellum that were activated after nociceptive thumb stimulation were separate from those after nociceptive toe stimulation. In an additional experiment, we investigated the same for the anticipation of a nociceptive stimulation on the thumb or toe. For his purpose, we used fMRI after an electrical stimulation of the thumb and toe in 19 adult healthy volunteers. Following nociceptive stimulation, different areas were activated by stimulation on the thumb (lobule VI ipsilaterally and Crus II mainly contralaterally) and toe (lobules VIII-IX and IV-V bilaterally and lobule VI contralaterally), i.e., were somatotopically organized. Cerebellar areas innervated non-somatotopically by both toe and thumb stimulation were the posterior vermis and Crus I, bilaterally. In the anticipation experiment, similar results were found. However, here, the somatotopically activated areas were relatively small for thumb and negligible for toe stimulation, while the largest area was innervated non-somatotopically and consisted mainly of Crus I and lobule VI bilaterally. These findings indicate that nociceptive stimulation and anticipation of nociceptive stimulation are at least partly processed by the same areas in the cerebellum. This was confirmed by an additional conjunction analysis. Based on our findings, we hypothesize that input that is organized in a somatotopical manner reflects direct input from the spinal cord, while non-somatotopically activated parts of the cerebellum receive their information indirectly through cortical and subcortical connections, possibly involved in processing contextual emotional states, like the expectation of pain.

  10. Islands in the sea: extreme female natal site fidelity in the Australian sea lion, Neophoca cinerea.

    PubMed

    Campbell, R A; Gales, N J; Lento, G M; Baker, C S

    2008-02-23

    Pinnipeds (seals, fur seals, sea lions and walrus) form large breeding aggregations with females often remaining faithful to a natal site or area. In these cases, females are philopatric to regional areas on broad geographical scales of hundreds to thousands of kilometers. An investigation of variation in a control region sequence of mtDNA in the Australian sea lion (Neophoca cinerea) has shown a case of extreme female natal site fidelity that has resulted in almost fixed population differentiation across its range (PhiST=0.93). This high level of population subdivision over short geographical distances (approx. 60 km) is unparalleled in any social marine mammal and reflects the unique life-history traits of this rare species. The high level of population subdivision and exclusive female natal site fidelity has important ramifications for conservation management, and poses many interesting questions of both academic and applied interest.

  11. Effects of cobalt on membrane ATPases, oxidant, and antioxidant values in the cerebrum and cerebellum of suckling rats.

    PubMed

    Garoui, Elmouldi; Ben Amara, Ibtissem; Driss, Dorra; Elwej, Awatef; Chaabouni, Semia Ellouze; Boudawara, Tahia; Zeghal, Najiba

    2013-09-01

    Chronic overexposure to cobalt (Co) may result in neurotoxic effects, but the mechanism of Co-induced neurotoxicity is not yet well established. Our study was conducted to determine whether Co is associated to the induction of central nervous system damage in pregnant rats and their progeny. Twelve pregnant female rats were randomly divided into 2 groups: group I served as controls and group II received Co (350 mg/L, orally). Treatments started from the 14th day of pregnancy until day 14 after delivery. Co concentration in plasma was higher in the treated groups than in the controls. Exposure to Co also increased the levels of MDA, PCO, H2O2, and AOPP, while Na(+)K(+)-ATPase and Mg(2+)-ATPase, AChE, and BuChE activities decreased in the cerebrum and cerebellum of suckling pups. A smear without ladder formation on agarose gel was also shown in the cerebrum and cerebellum, indicating random DNA degradation. A reduction in GPx, SOD, CAT, GSH, NPSH, and vitamin C values was observed. The changes were confirmed by histological results. In conclusion, these data showed that the exposure of pregnant and lactating rats to Co resulted in the development of oxidative stress and the impairment of defense systems in the cerebrum and cerebellum of their suckling pups.

  12. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu; Cooney, Craig A.; Melnyk, Stepan B.

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers ofmore » oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced

  13. The Cerebellum and Language: Evidence from Patients with Cerebellar Degeneration

    ERIC Educational Resources Information Center

    Stoodley, Catherine J.; Schmahmann, Jeremy D.

    2009-01-01

    Clinical and imaging studies suggest that the cerebellum is involved in language tasks, but the extent to which slowed language production in cerebellar patients contributes to their poor performance on these tasks is not clear. We explored this relationship in 18 patients with cerebellar degeneration and 16 healthy controls who completed measures…

  14. The Cerebellum Generates Motor-to-Auditory Predictions: ERP Lesion Evidence

    ERIC Educational Resources Information Center

    Knolle, Franziska; Schroger, Erich; Baess, Pamela; Kotz, Sonja A.

    2012-01-01

    Forward predictions are crucial in motor action (e.g., catching a ball, or being tickled) but may also apply to sensory or cognitive processes (e.g., listening to distorted speech or to a foreign accent). According to the "internal forward model," the cerebellum generates predictions about somatosensory consequences of movements. These predictions…

  15. Regional volumes in brain stem and cerebellum are associated with postural impairments in young brain-injured patients.

    PubMed

    Drijkoningen, David; Leunissen, Inge; Caeyenberghs, Karen; Hoogkamer, Wouter; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P

    2015-12-01

    Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI. © 2015 Wiley Periodicals, Inc.

  16. Juvenile movement and natal dispersal on northern goshawks in Arizona

    Treesearch

    J. David Wiens; Richard T. Reynolds; Barry R. Noon

    2006-01-01

    We investigated the departure, transient movement, and local settlement stages of natal dispersal in a population of Northern Goshawks (Accipiter gentilis) on the Kaibab Plateau of northern Arizona. The study included 614 color-banded juveniles produced at 555 nests during 1991-2003, 89 of which were radio-marked during 1998-2001. Radio-marked...

  17. Wherever I may roam: social viscosity and kin affiliation in a wild population despite natal dispersal

    PubMed Central

    Hinde, Camilla A.; Garroway, Colin J.; Sheldon, Ben C.

    2016-01-01

    Dispersal affects the social contexts individuals experience by redistributing individuals in space, and the nature of social interactions can have important fitness consequences. During the vagrancy stage of natal dispersal, after an individual has left its natal site and before it has settled to breed, social affiliations might be predicted by opportunities to associate (e.g., distance in space and time between natal points of origin) or kin preferences. We investigated the social structure of a population of juvenile great tits (Parus major) and asked whether social affiliations during vagrancy were predicted by 1) the distance between natal nest-boxes, 2) synchrony in fledge dates, and 3) accounting for spatial and temporal predictors, whether siblings tended to stay together. We show that association strength was affected predominantly by spatial proximity at fledging and, to a lesser extent, temporal proximity in birth dates. Independently of spatial and temporal effects, sibling pairs associated more often than expected by chance. Our results suggest that the structure of the winter population is shaped primarily by limits to dispersal through incomplete population mixing. In addition, our results reveal kin structure, and hence the scope for fitness-related interactions between particular classes of kin. Both spatial-mediated and socially mediated population structuring can have implications for our understanding of the evolution of sociality. PMID:27418755

  18. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    PubMed Central

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T.; Muriach, Borja; Sánchez-Villarejo, María V.; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J.; Barcia, Jorge M.; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction. PMID:26283916

  19. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum.

    PubMed

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T; Muriach, Borja; Sánchez-Villarejo, María V; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J; Barcia, Jorge M; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction.

  20. Injury to the Premature Cerebellum: Outcome is Related to Remote Cortical Development

    PubMed Central

    Limperopoulos, Catherine; Chilingaryan, Gevorg; Sullivan, Nancy; Guizard, Nicolas; Robertson, Richard L.; du Plessis, Adré J.

    2014-01-01

    Cerebellar injury is an important complication of preterm birth with far-reaching neuropsychiatric sequelae. We have previously shown a significant association between isolated injury to the premature cerebellum and subsequent impairment of regional volumetric growth in the contralateral cerebrum. In the current study, we examine the relationship between these remote regional impairments of cerebral volumetric growth and domain-specific functional deficits in these children. In 40 ex-preterm infants with isolated cerebellar injury, we performed neurodevelopmental evaluations and quantitative magnetic resonance imaging (MRI) studies at a mean age of 34 months. We measured cortical gray matter volumes in 8 parcellated regions of each cerebral hemisphere, as well as right and left cerebellar volumes. We show highly significant associations between early signs of autism and dorsolateral prefrontal cortex volume (P < 0.001); gross motor scores and sensorimotor cortical volumes (P < 0.001); and cognitive and expressive language scores and premotor and mid-temporal cortical volumes (P < 0.001). By multivariate analyses, each unit increase in the corresponding regional cerebral volume was associated with lower odds of abnormal outcome score, adjusted for age at MRI and contralateral cerebellar volume. This is the first report linking secondary impairment of remote cerebral cortical growth and functional disabilities in survivors of prematurity-related cerebellar brain injury. PMID:23146968

  1. Changes in the Chondrocyte and Extracellular Matrix Proteome during Post-natal Mouse Cartilage Development*

    PubMed Central

    Wilson, Richard; Norris, Emma L.; Brachvogel, Bent; Angelucci, Constanza; Zivkovic, Snezana; Gordon, Lavinia; Bernardo, Bianca C.; Stermann, Jacek; Sekiguchi, Kiyotoshi; Gorman, Jeffrey J.; Bateman, John F.

    2012-01-01

    Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296–1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during

  2. Volumetric analysis of cerebellum in short-track speed skating players.

    PubMed

    Park, In Sung; Lee, Nam Joon; Kim, Tae-Young; Park, Jin-Hoon; Won, Yu-Mi; Jung, Yong-Ju; Yoon, Jin-Hwan; Rhyu, Im Joo

    2012-12-01

    The cerebellum is associated with balance control and coordination, which might be important for gliding on smooth ice at high speeds. A number of case studies have shown that cerebellar damage induces impaired balance and coordination. As a positive model, therefore, we investigated whether plastic changes in the volumes of cerebellar subregions occur in short-track speed skating players who must have extraordinary abilities of balance and coordination, using three-dimensional magnetic resonance imaging volumetry. The manual tracing was performed and the volumes of cerebellar hemisphere and vermian lobules were compared between short-track speed skating players (n=16) and matched healthy controls (n=18). We found larger right cerebellar hemisphere volume and vermian lobules VI-VII (declive, folium, and tuber) in short-track speed skating players in comparison with the matched controls. The finding suggests that the specialized abilities of balance and coordination are associated with structural plasticity of the right hemisphere of cerebellum and vermian VI-VII and these regions play an essential role in balance and coordination.

  3. Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hongyan, E-mail: hongyan_dong@hc-sc.gc.ca; Yauk, Carole L.; Wade, Michael G.

    Highlights: Black-Right-Pointing-Pointer Thyroid hormone receptor binds to the promoter region of Barhl1. Black-Right-Pointing-Pointer Barhl1 expression in cerebellum is negatively regulated by thyroid hormone. Black-Right-Pointing-Pointer Negative regulation of Barhl1 by thyroid hormone was confirmed in vitro. Black-Right-Pointing-Pointer Thyroid hormone may play a role in normal brain development through transcriptional control of Barhl1. -- Abstract: Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined withmore » chromatin immunoprecipitation (ChIP-chip), we identified a TR{beta} binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA-protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TR{beta} revealed that one of these fragments bound TR{beta}. This complex was shifted with the addition of anti-TR{beta} antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1

  4. Activity rhythms and distribution of natal dens for red foxes

    USGS Publications Warehouse

    Wenyang, Zhou; Wanhong, Wei; Biggins, Dean E.

    1995-01-01

    The red fox, Vulpes vulpes, was investigated with snow tracking, radiotracking and directive observation at the Haibei Research Station of Alpine Meadow Ecosystem, Academia Sinica, from March to September 1994. The objectives of this study were to determine the distribution and use of natal dens, activity rhythms, and home range sizes for the foxes.

  5. Cannabinoid receptor expression and phosphorylation are differentially regulated between male and female cerebellum and brain stem after repeated stress: implication for PTSD and drug abuse.

    PubMed

    Xing, Guoqiang; Carlton, Janis; Zhang, Lei; Jiang, Xiaolong; Fullerton, Carol; Li, He; Ursano, Robert

    2011-09-08

    Recent study demonstrated a close relationship between cerebellum atrophy and symptom severity of pediatric maltreatment-related posttraumatic stress disorder (PTSD). It has also been known that females are more vulnerable than males in developing anxiety disorders after exposure to traumatic stress. The mechanisms are unknown. Because cannabinoid receptors (CB₁ and CB₂) are neuroprotective and highly expressed in the cerebellum, we investigated cerebellar CB expression in stressed rats. Young male and female Sprague-Dawley rats were given 40 unpredictable electric tail-shocks for 2h daily on 3 consecutive days. CB₁ and CB₂ mRNA and protein levels in rat cerebellum and brain stem were determined using quantitative real-time PCR and Western blot, respectively. Two-way ANOVA revealed significant gender and stress effects on cerebellar CB₁ mRNA expression, with females and non-stressed rats exhibiting higher CB₁ mRNA levels than the males (3 fold, p<0.01) and stressed rats (30%, p<0.01), respectively. CB₁ and CB₂ mRNA levels in brain stem were also greater in female rats than males (p<0.01, p<0.05, respectively). Repeated stress increased the level of phosphorylated CB₁ receptors, the inactivated CB₁, in rat cerebellum (p<0.01), particularly in female rats as revealed by the significant gender × stress interaction. Thus, repeated severe stress caused greater CB₁ mRNA suppression and CB₁ receptor phosphorylation in female cerebellum that could lead to increased susceptibility to stress-related anxiety disorders including PTSD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Fukuda, H.

    1985-07-22

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with /sup 3/H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum ormore » the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with /sup 3/H-muscimol and /sup 3/H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables.« less

  7. Activation of neuronal nitric oxide synthase in cerebellum of chronic hepatic encephalopathy rats is associated with up-regulation of NADPH-producing pathway.

    PubMed

    Singh, Santosh; Trigun, Surendra K

    2010-09-01

    Cerebellum-associated functions get affected during mild hepatic encephalopathy (MHE) in patients with chronic liver failure (CLF). Involvement of nitrosative and antioxidant factors in the pathogenesis of chronic hepatic encephalopathy is an evolving concept and needs to be defined in a true CLF animal model. This article describes profiles of NADPH-dependent neuronal nitric oxide synthase (nNOS) and those of glutathione peroxidase and glutathione reductase (GR) vis-a-vis regulation of NADPH-producing pathway in the cerebellum of CLF rats induced by administration of thioacetamide (100 mg kg⁻¹ b.w., i.p.) up to 10 days and confirming MHE on Morris water maze tests. Significant increases in the expression of nNOS protein and nitric oxide (NOx) level coincided with a similar increment in NADPH-diaphorase activity in the cerebellum of CLF rats. Glutathione peroxidase and GR utilize NADPH to regenerate reduced glutathione (GSH) in the cells. Both these enzymes and GSH level were found to be static and thus suggested efficient turnover of GSH in the cerebellum of MHE rats. Relative levels of glucose-6-phosphate dehydrogenase (G6PD) vs. phosphofructokinase 2 (PFK2) determine the rate of pentose phosphate pathway (PPP) responsible to synthesize NADPH. The cerebellum of CLF rats showed overactivation of G6PD with a significant decline in the expression of PFK2 and thus suggested activation of PPP in the cerebellum during MHE. It is concluded that concordant activations of PPP and nNOS in cerebellum of MHE rats could be associated with the implication of NOx in the pathogenesis of MHE.

  8. Perceptions of newly-qualified nurses performing compulsory community service in KwaZulu-Natal.

    PubMed

    Govender, Selverani; Brysiewicz, Petra; Bhengu, Busisiwe

    2015-07-08

    Compulsory community service (CCS) for nurses commenced in South African January 2008 after it was legislated in the new Nursing Act (Act No. 33 of 2005). Nurses completing their registered nurse programme are registered as community nurse practitioners (CNPs) during the CCS period and make up the largest number of health professionals serving CCS. Whilst health institutions have welcomed CNPs as additional resources for the shortage of nursing staff, no structured guidelines have been provided at a regional level as to how these nurses should be utilised or managed during the CCS year. To date, no large-scale study has been conducted on nurses carrying out CCS in order to generalise the findings. To establish the perceptions of newly-qualified nurses carrying out CCS in KwaZulu-Natal, South Africa. A quantitative survey design was used to obtain data from a randomly selected sample of the 2012 cohort of nurses carrying out CCS in KwaZulu-Natal. CNPs have a positive attitude toward CCS and perceive themselves as being well prepared for the year of community service in terms of knowledge, skills and ability to administer nursing care. They identified positive benefits of the year of community service.The concerns raised were limited orientation and support; and a few CNPs experienced problems of acceptance by the nurses with whom they work. It is recommended that all health institutions who receive CNPs develop structured orientation and support for these nurses in order to promote their development, thereby enhancing their benefit to the communities they serve.

  9. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy

    PubMed Central

    Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318

  10. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.

    PubMed

    Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy.

  11. Cerebellum Augmented Rover Development

    NASA Technical Reports Server (NTRS)

    King, Matthew

    2005-01-01

    Bio-Inspired Technologies and Systems (BITS) are a very natural result of thinking about Nature's way of solving problems. Knowledge of animal behaviors an be used in developing robotic behaviors intended for planetary exploration. This is the expertise of the JFL BITS Group and has served as a philosophical model for NMSU RioRobolab. Navigation is a vital function for any autonomous system. Systems must have the ability to determine a safe path between their current location and some target location. The MER mission, as well as other JPL rover missions, uses a method known as dead-reckoning to determine position information. Dead-reckoning uses wheel encoders to sense the wheel's rotation. In a sandy environment such as Mars, this method is highly inaccurate because the wheels will slip in the sand. Improving positioning error will allow the speed of an autonomous navigating rover to be greatly increased. Therefore, local navigation based upon landmark tracking is desirable in planetary exploration. The BITS Group is developing navigation technology based upon landmark tracking. Integration of the current rover architecture with a cerebellar neural network tracking algorithm will demonstrate that this approach to navigation is feasible and should be implemented in future rover and spacecraft missions.

  12. Pre-natal exposure to dichlorodiphenyldichloroethylene and infant lower respiratory tract infections and wheeze.

    PubMed

    Gascon, Mireia; Vrijheid, Martine; Martínez, David; Ballester, Ferran; Basterrechea, Mikel; Blarduni, Elizabeth; Esplugues, Ana; Vizcaino, Esther; Grimalt, Joan O; Morales, Eva; Sunyer, Jordi

    2012-05-01

    The aim of our study was to examine whether pre-natal exposure to dichlorodiphenyldichloroethylene (DDE) increases the risk of lower respiratory tract infections (LRTIs) and wheeze in infants. The study is based on a birth cohort of 1,455 mother-child pairs. Maternal serum concentrations of DDE, polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) were measured during pregnancy. Parental reports on LRTI and wheeze were obtained when children were 12-14 months old. 35.4% of children developed at least one LRTI episode and 33.6% at least one wheezing episode during their first 12-14 months of life. Median DDE, PCBs and HCB concentrations were 116.3, 113.7 and 46.4 ng · g(-1) lipid, respectively. DDE concentrations were associated with LRTI risk (relative risk (RR) per 10% increase 1.11, 95% CI 1.00-1.22), also after adjustment for PCBs and HCB. In all quartiles of DDE exposure, the risk of LRTI was increased compared with the lowest quartile, but the increase was statistically significant only in the third quartile (RR 1.33, 95% CI 1.08-1.62). No association was observed for PCBs and HCB. Results were similar for wheeze. This study suggests that pre-natal DDE exposure is associated with a higher risk of LRTI and wheeze in infants independently of exposure to other organochlorine compounds.

  13. The role of early development in mammalian limb diversification: a descriptive comparison of early limb development between the Natal long-fingered bat (Miniopterus natalensis) and the mouse (Mus musculus).

    PubMed

    Hockman, Dorit; Mason, Mandy K; Jacobs, David S; Illing, Nicola

    2009-04-01

    Comparative embryology expands our understanding of unique limb structures, such as that found in bats. Bat forelimb digits 2 to 5 are differentially elongated and joined by webbing, while the hindlimb digits are of similar length in many species. We compare limb development between the mouse and the Natal long-fingered bat, Miniopterus natalensis, to pinpoint the stage at which their limbs begin to differ. The bat forelimb differs from the mouse at Carollia stage (CS) 14 with the appearance of the wing membrane primordia. This difference is enhanced at CS 15 with the posterior expansion of the hand plate. The bat hindlimb begins to differ from the mouse between CS 15 and 16 when the foot plate undergoes a proximal expansion resulting in digit primordia of very similar length. Our findings support recent gene expression studies, which reveal a role for early patterning in the development of the bat limb. Copyright 2009 Wiley-Liss, Inc.

  14. The Case for Natality in Pastoral Care and Why It Matters

    ERIC Educational Resources Information Center

    Barrow, Giles

    2017-01-01

    The author presents the concept of natality for consideration in terms of pastoral care and educational purpose. The discussion identifies significant threats to the future for pastoral care in schools, including the Global Educational Reform Movement and the increasing emphasis on teachers taking charge of discipline in the classroom, at the…

  15. Linking Essential Tremor to the Cerebellum-Neuroimaging Evidence.

    PubMed

    Cerasa, Antonio; Quattrone, Aldo

    2016-06-01

    Essential tremor (ET) is the most common pathological tremor disorder in the world, and post-mortem evidence has shown that the cerebellum is the most consistent area of pathology in ET. In the last few years, advanced neuroimaging has tried to confirm this evidence. The aim of the present review is to discuss to what extent the evidence provided by this field of study may be generalised. We performed a systematic literature search combining the terms ET with the following keywords: MRI, VBM, MRS, DTI, fMRI, PET and SPECT. We summarised and discussed each study and placed the results in the context of existing knowledge regarding the cerebellar involvement in ET. A total of 51 neuroimaging studies met our search criteria, roughly divided into 19 structural and 32 functional studies. Despite clinical and methodological differences, both functional and structural imaging studies showed similar findings but without defining a clear topography of neurodegeneration. Indeed, the vast majority of studies found functional and structural abnormalities in several parts of the anterior and posterior cerebellar lobules, but it remains to be established to what degree these neural changes contribute to clinical symptoms of ET. Currently, advanced neuroimaging has confirmed the involvement of the cerebellum in pathophysiological processes of ET, although a high variability in results persists. For this reason, the translation of this knowledge into daily clinical practice is again partially limited, although new advanced multivariate neuroimaging approaches (machine-learning) are proving interesting changes of perspective.

  16. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness.

    PubMed

    Ferrucci, Roberta; Giannicola, Gaia; Rosa, Manuela; Fumagalli, Manuela; Boggio, Paulo Sergio; Hallett, Mark; Zago, Stefano; Priori, Alberto

    2012-01-01

    Some evidence suggests that the cerebellum participates in the complex network processing emotional facial expression. To evaluate the role of the cerebellum in recognising facial expressions we delivered transcranial direct current stimulation (tDCS) over the cerebellum and prefrontal cortex. A facial emotion recognition task was administered to 21 healthy subjects before and after cerebellar tDCS; we also tested subjects with a visual attention task and a visual analogue scale (VAS) for mood. Anodal and cathodal cerebellar tDCS both significantly enhanced sensory processing in response to negative facial expressions (anodal tDCS, p=.0021; cathodal tDCS, p=.018), but left positive emotion and neutral facial expressions unchanged (p>.05). tDCS over the right prefrontal cortex left facial expressions of both negative and positive emotion unchanged. These findings suggest that the cerebellum is specifically involved in processing facial expressions of negative emotion.

  17. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    PubMed

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  18. Functional connectivity between the cerebrum and cerebellum in social cognition: A multi-study analysis.

    PubMed

    Van Overwalle, Frank; Mariën, Peter

    2016-01-01

    This multi-study connectivity analysis explores the functional connectivity of the cerebellum with the cerebrum in social mentalizing, that is, understanding the mind of another person. The analysis covers 5 studies (n=92) involving abstract and complex forms of social mentalizing such as (a) person and group impression formation based on behavioral descriptions and (b) constructing personal counterfactual events (i.e., how the past could have turned out better). The results suggest that cerebellar activity during these social processes reflects a domain-specific mentalizing functionality that is strongly connected with a corresponding mentalizing network in the cerebrum. A significant pattern of connectivity was found linking the dorsal medial prefrontal cortex (mPFC) and the right temporo-parietal junction (TPJ) with the right posterior cerebellum, and linking the latter with the left TPJ. In addition, in the cerebrum, further connectivity was found through links of the bilateral TPJ with the dorsal mPFC, orbitofrontal cortex and between right and left TPJ. The discussion centers on the role of these cerebro-cerebellar connections in matching external information from the cerebrum with internal predictions generated by the cerebellum. These internal predictions might involve the sequencing of the person's behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A real-time spiking cerebellum model for learning robot control.

    PubMed

    Carrillo, Richard R; Ros, Eduardo; Boucheny, Christian; Coenen, Olivier J-M D

    2008-01-01

    We describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with conductance-based synapses. The neuron characteristics are derived from our earlier detailed models of the different cerebellar neurons. We tested the cerebellum model in a real-time control application with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP) at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (IO) activity, which encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar model in a robot control system using a target-reaching task. We test whether the system learns to reach different target positions in a non-destructive way, therefore abstracting a general dynamics model. To test the system's ability to self-adapt to different dynamical situations, we present results obtained after changing the dynamics of the robotic platform significantly (its friction and load). The experimental results show that the cerebellar-based system is able to adapt dynamically to different contexts.

  20. Natal and breeding dispersal of northern spotted owls

    USGS Publications Warehouse

    Forsman, E.D.; Anthony, R.G.; Reid, J.A.; Loschl, P.J.; Sovern, S.G.; Taylor, M.; Biswell, B.L.; Ellingson, A.; Meslow, E.C.; Miller, G.S.; Swindle, K.A.; Thrailkill, J.A.; Wagner, F.F.; Seaman, D.E.

    2002-01-01

    We studied the dispersal behavior of 1,475 northern spotted owls (Strix occidentalis caurina) during banding and radio-telemetry studies in Oregon and Washington in 1985-1996. The sample included 324 radio-marked juveniles and 1,151 banded individuals (711 juveniles, 440 non-juveniles) that were recaptured or resighted after dispersing from the initial banding location. Juveniles typically left the nest during the last week in May and the first two weeks in June (x?? ?? SE = 8 June ?? 0.53 days, n = 320, range = 15 May-1 July), and spent an average of 103.7 days in the natal territory after leaving the nest (SE = 0.986 days, n = 137, range = 76-147 days). The estimated mean date that juveniles began to disperse was 19 September in Oregon (95% CI = 17-21 September) and 30 September in Washington (95% CI = 25 September-4 October). Mean dispersal dates did not differ between males and females or among years. Siblings dispersed independently. Dispersal was typically initiated with a series of rapid movements away from the natal site during the first few days or weeks of dispersal. Thereafter, most juveniles settled into temporary home ranges in late October or November and remained there for several months. In February-April there was a second pulse of dispersal activity, with many owls moving considerable distances before settling again in their second summer. Subsequent dispersal patterns were highly variable, with some individuals settling permanently in their second summer and others occupying a series of temporary home ranges before eventually settling on territories when they were 2-5 years old. Final dispersal distances ranged from 0.6-111.2 km for banded juveniles and 1.8-103.5 km for radio-marked juveniles. The distribution of dispersal distances was strongly skewed towards shorter distances, with only 8.7% of individuals dispersing more than 50 km. Median natal dispersal distances were 14.6 km for banded males, 13.5 km for radio-marked males, 24.5 km for

  1. Study of the Role of CREB, BDNF, and VGF Neuropeptide in Long Term Antidepressant Activity of Crocin in the Rat Cerebellum

    PubMed Central

    Razavi, Bibi Marjan; Sadeghi, Mahdieh; Abnous, Khalil; Vahdati Hasani, Faezeh; Hosseinzadeh, Hossein

    2017-01-01

    Antidepressant activity of crocin, saffron main component, has been established before. Based on previous study, it is suggested that elevation in the levels of BDNF (brain-derived neurotrophic factor), CREB (cAMP response element binding) and VGF neuropeptide could be considered as one probable molecular mechanisms involved in antidepressant activity of long term crocin administration in the rat hippocampus. In this study we further investigated whether the antidepressant activity of crocin in long term administration was associated with alteration in these factors in the rat cerebellum. Crocin (12.5, 25 and 50 mg/kg/day) and imipramine (10 mg/kg/day) were administered interaperitoneally for 21 days to rats. At the end of experiment, animals were sacrificed and cerebellums were dissected. BDNF, VGF, CREB, and phospho-CREB (P-CREB) protein and mRNA levels in the rat cerebellum were evaluated using Western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In the current study significant increases in mRNA and protein levels of VGF, CREB and (BDNF) in long term crocin treatment were not observed in the rat cerebellum. Although a slight increase was observed in protein level of P-CREB compared to normal saline, but it was not significant. It is concluded that antidepressant activity of crocin might be partially mediated to CREB. Moreover, other factors rather than BDNF and VGF neuropeptides may alter following long term crocin treatment in the cerebellum. To understand the precise mechanism of crocin antidepressant effects in the cerebellum, longer duration of crocin treatment in further studies is recommended. PMID:29552054

  2. Failure of post-natal ductus arteriosus closure in prostaglandin transporter-deficient mice

    PubMed Central

    Chang, Hee-Yoon; Locker, Joseph; Lu, Run; Schuster, Victor L.

    2010-01-01

    Background Prostaglandin E2 (PGE2) plays a major role both in maintaining patency of the fetal ductus arteriosus (DA) and in closure of the DA after birth. The rate- limiting step in PGE2 signal termination is PGE2 uptake by the transporter PGT. Methods and results To determine the role of PGT in DA closure, we used a gene-targeting strategy to produce mice in which PGT exon 1 was flanked by loxP sites. Successful targeting was obtained since neither mice hypomorphic at the PGT allele (PGT Neo/Neo) nor global PGT knockout mice (PGT −/−) exhibited PGT protein expression; moreover, embryonic fibroblasts isolated from targeted mice failed to exhibit carrier-mediated PGE2 uptake. Although born in a normal Mendelian ratio, no PGT −/− mice survived past post-natal day 1, and no PGT Neo/Neo mice survived past post-natal day 2. Necropsy revealed patent DA with normal intimal thickening but with dilated cardiac chambers. Both PGT Neo/Neo and PGT −/− mice could be rescued through the post-natal period by giving the mother indomethacin before birth. Rescued mice grew normally and had no abnormalities by gross and microscopic post-mortem analysis. In accord with PGT’s known role in metabolizing PGE2, rescued adult PGT −/− mice had lower plasma PGE2 metabolite levels, and higher urinary PGE2 excretion rates, than wild type mice. Conclusions PGT plays a critical role in closure of the DA after birth by ensuring a reduction in local and/or circulating PGE2 concentrations. PMID:20083684

  3. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning.

    PubMed

    Block, Hannah; Celnik, Pablo

    2013-12-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation on the trained (experiment 1) or untrained (experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity and that the number of movements performed at plateau is an important predictor of transfer.

  4. Altered cerebro-cerebellum resting-state functional connectivity in HIV-infected male patients.

    PubMed

    Wang, Huijuan; Li, Ruili; Zhou, Yawen; Wang, Yanming; Cui, Jin; Nguchu, Benedictor Alexander; Qiu, Bensheng; Wang, Xiaoxiao; Li, Hongjun

    2018-05-21

    In addition to the role of planning and executing movement, the cerebellum greatly contributes to cognitive process. Numerous studies have reported structural and functional abnormalities in the cerebellum for HIV-infected patients, but little is known about the altered functional connectivity of particular cerebellar subregions and the cerebrum. Therefore, this study aimed to explore the resting-state functional connectivity (rsFC) changes of the cerebellum and further analyze the relationship between the rsFC changes and the neuropsychological evaluation. The experiment involved 26 HIV-infected men with asymptomatic neurocognitive impairment (ANI) and 28 healthy controls (HC). We selected bilateral hemispheric lobule VI and lobule IX as seed regions and mapped the whole-brain rsFC for each subregion. Results revealed that right lobule VI showed significant increased rsFC with the anterior cingulate cortex (ACC) in HIV-infected subjects. In addition, the correlation analysis on HIV-infected subjects illustrated the increased rsFC was negatively correlated with the attention/working memory score. Moreover, significantly increased cerebellar rsFCs were also observed in HIV-infected patients related to right inferior frontal gyrus (IFG) and right superior medial gyrus (SMG) while decreased rsFC was just found between right lobule VI and the left hippocampus (HIP). These findings suggested that, abnormalities of cerebro-cerebellar functional connectivity might be associated with cognitive dysfunction in HIV-infected men, particularly working memory impairment. It could also be the underlying mechanism of ANI, providing further evidence for early injury in the neural substrate of HIV-infected patients.

  5. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning

    PubMed Central

    Block, Hannah; Celnik, Pablo

    2013-01-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation (tDCS) on the trained (Experiment 1) or untrained (Experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in Experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in Experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity, and that the number of movements performed at plateau is an important predictor of transfer. PMID:23625383

  6. The prominent role of the cerebellum in the learning, origin and advancement of culture.

    PubMed

    Vandervert, Larry

    2016-01-01

    Vandervert described how, in collaboration with the cerebral cortex, unconscious learning of cerebellar internal models leads to enhanced executive control in working memory in expert music performance and in scientific discovery. Following Vandervert's arguments, it is proposed that since music performance and scientific discovery, two pillars of cultural learning and advancement, are learned through in cerebellar internal models, it is reasonable that additional if not all components of culture may be learned in the same way. Within this perspective strong evidence is presented that argues that the learning, maintenance, and advancement of culture are accomplished primarily by recently-evolved (the last million or so years) motor/cognitive functions of the cerebellum and not primarily by the cerebral cortex as previously assumed. It is suggested that the unconscious cerebellar mechanism behind the origin and learning of culture greatly expands Ito's conception of the cerebellum as "a brain for an implicit self." Through the mechanism of predictive sequence detection in cerebellar internal models related to the body, other persons, or the environment, it is shown how individuals can unconsciously learn the elements of culture and yet, at the same time, be in social sync with other members of culture. Further, this predictive, cerebellar mechanism of socialization toward the norms of culture is hypothesized to be diminished among children who experience excessive television viewing, which results in lower grades, poor socialization, and diminished executive control. It is concluded that the essential components of culture are learned and sustained not by the cerebral cortex alone as many traditionally believe, but are learned through repetitious improvements in prediction and control by internal models in the cerebellum. From this perspective, the following new explanations of culture are discussed: (1) how culture can be learned unconsciously but yet be socially

  7. The cerebellum does more than sensory prediction error-based learning in sensorimotor adaptation tasks.

    PubMed

    Butcher, Peter A; Ivry, Richard B; Kuo, Sheng-Han; Rydz, David; Krakauer, John W; Taylor, Jordan A

    2017-09-01

    Individuals with damage to the cerebellum perform poorly in sensorimotor adaptation paradigms. This deficit has been attributed to impairment in sensory prediction error-based updating of an internal forward model, a form of implicit learning. These individuals can, however, successfully counter a perturbation when instructed with an explicit aiming strategy. This successful use of an instructed aiming strategy presents a paradox: In adaptation tasks, why do individuals with cerebellar damage not come up with an aiming solution on their own to compensate for their implicit learning deficit? To explore this question, we employed a variant of a visuomotor rotation task in which, before executing a movement on each trial, the participants verbally reported their intended aiming location. Compared with healthy control participants, participants with spinocerebellar ataxia displayed impairments in both implicit learning and aiming. This was observed when the visuomotor rotation was introduced abruptly ( experiment 1 ) or gradually ( experiment 2 ). This dual deficit does not appear to be related to the increased movement variance associated with ataxia: Healthy undergraduates showed little change in implicit learning or aiming when their movement feedback was artificially manipulated to produce similar levels of variability ( experiment 3 ). Taken together the results indicate that a consequence of cerebellar dysfunction is not only impaired sensory prediction error-based learning but also a difficulty in developing and/or maintaining an aiming solution in response to a visuomotor perturbation. We suggest that this dual deficit can be explained by the cerebellum forming part of a network that learns and maintains action-outcome associations across trials. NEW & NOTEWORTHY Individuals with cerebellar pathology are impaired in sensorimotor adaptation. This deficit has been attributed to an impairment in error-based learning, specifically, from a deficit in using sensory

  8. The Cerebellum in Maintenance of a Motor Skill: A Hierarchy of Brain and Spinal Cord Plasticity Underlies H-Reflex Conditioning

    ERIC Educational Resources Information Center

    Wolpaw, Jonathan R.; Chen, Xiang Yang

    2006-01-01

    Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, is a simple model of skill acquisition and involves plasticity in the spinal cord. Previous work showed that the cerebellum is essential for down-conditioning the H-reflex. This study asks whether the cerebellum is also essential for maintaining…

  9. Zebrin II Is Expressed in Sagittal Stripes in the Cerebellum of Dragon Lizards (Ctenophorus sp.).

    PubMed

    Wylie, Douglas R; Hoops, Daniel; Aspden, Joel W; Iwaniuk, Andrew N

    2016-01-01

    Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+) alternating with stripes of Purkinje cells with little or no expression (ZII-). In contrast, in snakes and turtles, ZII is not expressed heterogeneously; rather all Purkinje cells are ZII+. Here, we examined the expression of ZII in the cerebellum of lizards to elucidate the evolutionary origins of ZII stripes in Sauropsida. We focused on the central netted dragon (Ctenophorus nuchalis) but also examined cerebellar ZII expression in 5 other dragon species (Ctenophorus spp.). In contrast to what has been observed in snakes and turtles, we found that in these lizards, ZII is heterogeneously expressed. In the posterior part of the cerebellum, on each side of the midline, there were 3 sagittal stripes consisting of Purkinje cells with high ZII expression (ZII+) alternating with 2 sagittal stripes with weaker ZII expression (ZIIw). More anteriorly, most of the Purkinje cells were ZII+, except laterally, where the Purkinje cells did not express ZII (ZII-). Finally, all Purkinje cells in the auricle (flocculus) were ZII-. Overall, the parasagittal heterogeneous expression of ZII in the cerebellum of lizards is similar to that in mammals and birds, and contrasts with the homogenous ZII+ expression seen in snakes and turtles. We suggest that a sagittal heterogeneous expression of ZII represents the ancestral condition in stem reptiles which was lost in snakes and turtles. © 2017 S. Karger AG, Basel.

  10. Interaction Between Hippocampus and Cerebellum Crus I in Sequence-Based but not Place-Based Navigation

    PubMed Central

    Iglói, Kinga; Doeller, Christian F.; Paradis, Anne-Lise; Benchenane, Karim; Berthoz, Alain; Burgess, Neil; Rondi-Reig, Laure

    2015-01-01

    To examine the cerebellar contribution to human spatial navigation we used functional magnetic resonance imaging and virtual reality. Our findings show that the sensory-motor requirements of navigation induce activity in cerebellar lobules and cortical areas known to be involved in the motor loop and vestibular processing. By contrast, cognitive aspects of navigation mainly induce activity in a different cerebellar lobule (VIIA Crus I). Our results demonstrate a functional link between cerebellum and hippocampus in humans and identify specific functional circuits linking lobule VIIA Crus I of the cerebellum to medial parietal, medial prefrontal, and hippocampal cortices in nonmotor aspects of navigation. They further suggest that Crus I belongs to 2 nonmotor loops, involved in different strategies: place-based navigation is supported by coherent activity between left cerebellar lobule VIIA Crus I and medial parietal cortex along with right hippocampus activity, while sequence-based navigation is supported by coherent activity between right lobule VIIA Crus I, medial prefrontal cortex, and left hippocampus. These results highlight the prominent role of the human cerebellum in both motor and cognitive aspects of navigation, and specify the cortico-cerebellar circuits by which it acts depending on the requirements of the task. PMID:24947462

  11. Effect of Early Neonatal Exposure to Deltamethrin on the Purkinje Cell Number in Rat Cerebellum

    PubMed Central

    Asari, Mohd Asnizam; Abdullah, Mohammad Shukri; Abdullah, Suryati

    2008-01-01

    Deltamethrin is a widely used insecticide belonging to the class of pyrethroid. Although the neurotoxicity of pyrethroids including deltamethrin is well established, it is still unclear whether exposure to deltamethrin during neonatal period has any deleterious effect on the survival of the Purkinje cells in the cerebellum. In the study, we investigated the total number of Purkinje cells in experimental rats exposed to deltamethrin using a stereological method, the fractionator. Deltamethrin in a dose of 1 mg/kg/day (corresponds to 20% of LD50 ) was administered through oral gavage to male pups from 2nd to 5th postnatal day (PND). At PND 21 the animals were sacrificed and their cerebelli were removed. The cerebelli were systematically sampled using the fractionator method and stained with cresyl fast violet. The number of the Purkinje cells was counted for each cerebellum. The results showed that there was no significant difference in the total number of Purkinje cells in the deltamethrin-treated group as compared to the control animals. This suggests that deltamethrin exposure at the current dosage during the neonatal period do not have any significant effect on the survival of the Purkinje cells in the cerebellum. PMID:22570585

  12. Recovery distances of nestling Bald Eagles banded in Florida and implications for natal dispersal and philopatry

    USGS Publications Warehouse

    Wood, Petra Bohall

    2009-01-01

    I used band recovery data to examine distances between banding and recovery locations for 154 nestling Florida Bald Eagles and discuss the implications for understanding natal dispersal and philopatry in this species. Band recoveries occurred in 23 U.S. states and five Canadian provinces between 1931–2005. Recovery distance from the natal nest averaged longer for the youngest age classes (ANOVA: F  =  3.59; df  =  5, 153; P  =  0.005), for individuals banded in earlier decades (F  =  1.94; df  =  5, 153; P  =  0.093), and for the months of May through October (F  =  3.10; df  =  12, 153;P < 0.001). Of 35 individuals classed as mature (≥3.9 yr old when recovered; range 3.9–36.5 yr), 31 were located within Florida, which suggested a strong degree of philopatry to the natal state. Among 21 mature eagles of known sex with known banding and recovery locations in Florida, females, particularly younger birds, had longer recovery distances (N  =  9, mean  =  93 km, SE  =  22.4) than did males (N  =  12, mean  =  31 km, SE  =  5.3; t  =  2.67, df  =  19, P  =  0.026). The records examined here suggest a high degree of philopatry and relatively short natal dispersal distances, particularly in male Bald Eagles.

  13. On the impact of neutron star binaries' natal-kick distribution on the Galactic r-process enrichment

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Côté, Benoit

    2017-11-01

    We study the impact of the neutron star binaries' (NSBs) natal-kick distribution on the galactic r-process enrichment. We model the growth of a Milky Way type halo based on N-body simulation results and its star formation history based on multi-epoch abundance matching techniques. We consider that the NSBs that merge well beyond the galaxy's effective radius (>2 × Reff) do not contribute to the galactic r-process enrichment. Assuming a power-law delay-time distribution (DTD) function (∝t-1) with tmin = 30 Myr for binaries' coalescence time-scales and an exponential profile for their natal-kick distribution with an average value of 180 km s-1, we show that up to ˜ 40 per cent of all formed NSBs do not contribute to the r-process enrichment by z = 0, either because they merge far from the galaxy at a given redshift (up to ˜ 25 per cent) or have not yet merged by today (˜ 15 per cent). Our result is largely insensitive to the details of the DTD function. Assuming a constant coalescence time-scale of 100 Myr well approximates the adopted DTD although with 30 per cent of the NSBs ending up not contributing to the r-process enrichment. Our results, although rather dependent on the adopted natal-kick distribution, represent the first step towards estimating the impact of natal kicks and DTD functions on the r-process enrichment of galaxies that would need to be incorporated in the hydrodynamical simulations.

  14. Germline deletion of FAK-related non-kinase delays post-natal cardiomyocyte mitotic arrest

    PubMed Central

    O’Neill, Thomas J.; Mack, Christopher P.; Taylor, Joan M.

    2012-01-01

    The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state impacts normal heart development and pathologic myocardial remodeling, yet the signaling mechanisms that regulate this vital process are incompletely understood. Studies from our lab and others indicate that focal adhesion kinase (FAK) is a critical regulator of cardiac growth and remodeling and we found that expression of the endogenous FAK inhibitor, FAK-related non kinase (FRNK) coincided with postnatal cardiomyocyte arrest. Mis-expression of FRNK in the embryonic heart led to pre-term lethality associated with reduced cardiomyocyte proliferation and led us to speculate that the postnatal FRNK surge might be required to promote quiescence in this growth promoting environment. Herein, we provide strong evidence that endogenous FRNK contributes to post-mitotic arrest. Depletion of FRNK promoted DNA synthesis in post-natal day (P) 10 hearts accompanied by a transient increase in DNA content and multi-nucleation by P14, indicative of DNA replication without cell division. Interestingly, a reduction in tri- and tetra-nucleated cardiomyocytes, concomitant with an increase in bi-nucleated cells by P21, indicated the possibility that FRNK-depleted cardiomyocytes underwent eventual cytokinesis. In support of this conclusion, Aurora B-labeled central spindles (a hallmark of cytokinesis) were observed in tetra-nucleated P20 FRNK−/− but not wt cardiomyocytes, while no evidence of apoptosis was observed. Moreover, hearts from FRNK null mice developed ventricular enlargement that persisted until young adulthood which resulted from myocyte expansion rather than myocyte hypertrophy or interstitial growth. These data indicate that endogenous FRNK serves an important role in limiting DNA synthesis and regulating the un-coupling between DNA synthesis and cytokinesis in the post-natal myocardium. PMID:22555221

  15. The cerebellum: a neuronal learning machine?

    NASA Technical Reports Server (NTRS)

    Raymond, J. L.; Lisberger, S. G.; Mauk, M. D.

    1996-01-01

    Comparison of two seemingly quite different behaviors yields a surprisingly consistent picture of the role of the cerebellum in motor learning. Behavioral and physiological data about classical conditioning of the eyelid response and motor learning in the vestibulo-ocular reflex suggests that (i) plasticity is distributed between the cerebellar cortex and the deep cerebellar nuclei; (ii) the cerebellar cortex plays a special role in learning the timing of movement; and (iii) the cerebellar cortex guides learning in the deep nuclei, which may allow learning to be transferred from the cortex to the deep nuclei. Because many of the similarities in the data from the two systems typify general features of cerebellar organization, the cerebellar mechanisms of learning in these two systems may represent principles that apply to many motor systems.

  16. Knowledge, attitudes and practices on malaria transmission in Mamfene, KwaZulu-Natal Province, South Africa 2015.

    PubMed

    Manana, Pinky N; Kuonza, Lazarus; Musekiwa, Alfred; Mpangane, Hluphi D; Koekemoer, Lizette L

    2017-07-20

    In South Africa malaria is endemic in Mpumalanga, Limpopo and the north-eastern areas of KwaZulu-Natal provinces. South Africa has set targets to eliminate malaria by 2018 and research into complementary vector control tools such as the Sterile Insect Technique (SIT) is ongoing. It is important to understand community perceptions regarding malaria transmission and control interventions to enable development of community awareness campaign messages appropriate to the needs of the community. We aimed to assess knowledge, attitudes, and practices regarding malaria transmission to inform a public awareness campaign for SIT in Jozini Local Municipality, Mamfene in KwaZulu-Natal province. We conducted a cross-sectional survey in three communities in Mamfene, KwaZulu-Natal during 2015. A structured field piloted questionnaire was administered to 400 randomly selected heads of households. Descriptive statistics were used to summarize data. Of the 400 participants interviewed, 99% had heard about malaria and correctly associated it with mosquito bites. The sources of malaria information were the local health facility (53%), radio (16%) and community meetings (7%). Approximately 63% of the participants were able to identify three or four symptoms of malaria. The majority (76%) were confident that indoor residual spraying (IRS) kills mosquitoes and prevents infection. Bed nets were used by 2% of the participants. SIT knowledge was poor (9%), however 63% of the participants were supportive of mosquito releases for research purposes. The remaining 37% raised concerns and fears, including fear of the unknown and lack of information on the SIT. Appropriate knowledge, positive attitude and acceptable treatment-seeking behaviour for malaria were demonstrated by members of the community. Community involvement will be crucial in achieving success of the SIT and future studies should further investigate concerns raised by the community. The existing communication channels used by the

  17. HIV/AIDS Stigma Attitudes among Educators in KwaZulu-Natal, South Africa

    ERIC Educational Resources Information Center

    Chao, Li-Wei; Gow, Jeff; Akintola, Goke; Pauly, Mark

    2010-01-01

    Background: One hundred and twenty educators from KwaZulu-Natal, South Africa, underwent HIV/AIDS training. The educators were surveyed about their attitudes toward people with HIV. Methods: The educators completed self-administered survey questionnaires both before and after 2 interventions. Measures included demographic characteristics,…

  18. [Calcifications of basal ganglia and cerebellum in patient with pseudohypoparathyroidism--case report].

    PubMed

    Kalinowska-Nowak, Anna; Garlicki, Aleksander; Bociaga-Jasik, Monika; Sobczyk-Krupiarz, Iwona; Mach, Tomasz

    2002-01-01

    Presented is the case report of symmetrical calcifications of basal ganglia, cerebellum and subcortical white matter of cerebral hemispheres (Fahr's syndrome) in a 34 year old man with pseudohypoparathyroidism. Attention has been put on characteristic features of Fahr's syndrome and differential diagnosis of this rare disease.

  19. Apoptosis of Purkinje and granular cells of the cerebellum following chronic ethanol intake.

    PubMed

    Oliveira, Suelen A; Chuffa, Luiz Gustavo A; Fioruci-Fontanelli, Beatriz Aparecida; Lizarte Neto, Fermino Sanches; Novais, Paulo Cezar; Tirapelli, Luiz Fernando; Oishi, Jorge Camargo; Takase, Luiz Fernando; Stefanini, Maira Aparecida; Martinez, Marcelo; Martinez, Francisco Eduardo

    2014-12-01

    Ethanol alters motricity, learning, cognition, and cellular metabolism in the cerebellum. We evaluated the effect of ethanol on apoptosis in Golgi, Purkinje, and granule cells of the cerebellum in adult rats. There were two groups of 20 rats: a control group that did not consume ethanol and an experimental group of UChA rats that consumed ethanol at 10% (<2 g ethanol/kg body weight/day). At 120 days old, rats were anesthetized and decapitated, and their cerebella were collected and fixed. Cerebellar sections were subjected to immunohistochemistry for terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL), caspase-3, X-linked inhibitor of apoptosis protein (XIAP), and insulin-like growth factor 1-receptor (IGF-1R); real-time PCR (RT-PCR) to determine caspase-3, XIAP, and IGF-1R gene expression; and transmission electron microscopy (TEM). We identified fragmentation of DNA and an increase in caspase-3 protein and XIAP in Purkinje cells, whereas granule cells exhibited increased caspase-3 and XIAP. IGF-1R expression was unchanged. There was no significant difference in gene expression of caspase-3, XIAP, and IGF-1R. There were an increase in lipid droplets, a reduction in the cellular cytoplasm in electron-dense nuclei, and changes in the myelin sheath in the cerebellar cortex. In conclusion, our data demonstrated that ethanol induced apoptosis in the Purkinje and granule cells of the cerebellum of adult UChA rats.

  20. Computation of linear acceleration through an internal model in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists. PMID:24077562

  1. Genome-wide analysis of alternative splicing in medulloblastoma identifies splicing patterns characteristic of normal cerebellar development

    PubMed Central

    Menghi, Francesca; Jacques, Thomas S.; Barenco, Martino; Schwalbe, Ed C.; Clifford, Steven C.; Hubank, Mike; Ham, Jonathan

    2011-01-01

    Alternative splicing is an important mechanism for the generation of protein diversity at a post-transcriptional level. Modifications in the splicing patterns of several genes have been shown to contribute to the malignant transformation of different tissue types. In this study, we used the Affymetrix Exon arrays to investigate patterns of differential splicing between paediatric medulloblastomas and normal cerebellum on a genome-wide scale. Of the 1262 genes identified as potentially generating tumour-associated splice forms, we selected 14 examples of differential splicing of known cassette exons and successfully validated 11 of them by RT-PCR. The pattern of differential splicing of three validated events was characteristic for the molecular subset of Sonic Hedgehog (Shh)-driven medulloblastomas, suggesting that their unique gene signature includes the expression of distinctive transcript variants. Generally, we observed that tumour and normal fetal cerebellar samples shared significantly lower exon inclusion rates compared to normal adult cerebellum. We investigated whether tumour-associated splice forms were expressed in primary cultures of Shh-dependent mouse cerebellar granule cell precursors (GCPs) and found that Shh caused a decrease in the cassette exon inclusion rate of five out of the seven tested genes. Furthermore, we observed a significant increase in exon inclusion between post-natal days 7 and 14 of mouse cerebellar development, at the time when GCPs mature into post-mitotic neurons. We conclude that inappropriate splicing frequently occurs in human medulloblastomas and may be linked to the activation of developmental signalling pathways and a failure of cerebellar precursor cells to differentiate. PMID:21248070

  2. Shp2-Dependent ERK Signaling Is Essential for Induction of Bergmann Glia and Foliation of the Cerebellum

    PubMed Central

    Li, Kairong; Leung, Alan W.; Guo, Qiuxia; Yang, Wentian

    2014-01-01

    Folding of the cortex and the persistence of radial glia (RG)-like cells called Bergmann glia (BG) are hallmarks of the mammalian cerebellum. Similar to basal RG in the embryonic neocortex, BG maintain only basal processes and continuously express neural stem cell markers. Past studies had focused on the function of BG in granule cell migration and how granule cell progenitors (GCP) regulate cerebellar foliation. The molecular control of BG generation and its role in cerebellar foliation are less understood. Here, we have analyzed the function of the protein tyrosine phosphatase Shp2 in mice by deleting its gene Ptpn11 in the entire cerebellum or selectively in the GCP lineage. Deleting Ptpn11 in the entire cerebellum by En1-cre blocks transformation of RG into BG but preserves other major cerebellar cell types. In the absence of BG, inward invagination of GCP persists but is uncoupled from the folding of the Purkinje cell layer and the basement membrane, leading to disorganized lamination and an absence of cerebellar folia. In contrast, removing Ptpn11 in the GCP lineage by Atoh1-cre has no effect on cerebellar development, indicating that Shp2 is not cell autonomously required in GCP. Furthermore, we demonstrate that Ptpn11 interacts with Fgf8 and is essential for ERK activation in RG and nascent BG. Finally, expressing constitutively active MEK1 rescues BG formation and cerebellar foliation in Shp2-deficient cerebella. Our results demonstrate an essential role of Shp2 in BG specification via fibroblast growth factor/extracellular signal-regulated protein kinase signaling, and reveal a crucial function of BG in organizing cerebellar foliation. PMID:24431450

  3. Thiamine Deficiency Increases Ca2+ Current and CaV1.2 L-type Ca2+ Channel Levels in Cerebellum Granular Neurons.

    PubMed

    Moreira-Lobo, Daniel C; Cruz, Jader S; Silva, Flavia R; Ribeiro, Fabíola M; Kushmerick, Christopher; Oliveira, Fernando A

    2017-04-01

    Thiamine (vitamin B1) is co-factor for three pivotal enzymes for glycolytic metabolism: pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and transketolase. Thiamine deficiency leads to neurodegeneration of several brain regions, especially the cerebellum. In addition, several neurodegenerative diseases are associated with impairments of glycolytic metabolism, including Alzheimer's disease. Therefore, understanding the link between dysfunction of the glycolytic pathway and neuronal death will be an important step to comprehend the mechanism and progression of neuronal degeneration as well as the development of new treatment for neurodegenerative states. Here, using an in vitro model to study the effects of thiamine deficiency on cerebellum granule neurons, we show an increase in Ca 2+ current density and Ca V 1.2 expression. These results indicate a link between alterations in glycolytic metabolism and changes to Ca 2+ dynamics, two factors that have been implicated in neurodegeneration.

  4. Maturation of the growth axis in marsupials occurs gradually during post-natal life and over an equivalent developmental stage relative to eutherian species.

    PubMed

    Menzies, Brandon R; Shaw, Geoffrey; Fletcher, Terry P; Pask, Andrew J; Renfree, Marilyn B

    2012-02-26

    The separation of a nutrition-responsive insulin-like growth factor (IGF) system and a growth hormone (GH) responsive IGF system to control pre- and post-natal growth of developing mammals may originate from the constraints imposed by intra-uterine development. In eutherian species that deliver relatively precocial young, maturation of the GH regulatory system is coincident with the time of birth. We measured the hepatic expression of the four key growth axis genes GH-receptor, IGF-1 and -2, and IGFBBP-3, and plasma protein concentrations of IGF-1 from late fetal life through to adult stages of a marsupial, the tammar wallaby. The data clearly show that maturation of GH-regulated growth in marsupials occurs gradually over the course of post-natal life at an equivalent developmental stage to that of precocial eutherian mammals. This suggests that the timing of GH-regulated growth in marsupials is not related to parturition but instead to the relative developmental stage. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. [Teratoma and medulloblastoma of the cerebellum: a case].

    PubMed

    Boudawara, T; Boudawara, M Z; Sellami, M H; Ben Mansour, H; Jlidi, R

    1999-01-01

    The majority of intracranial teratoma are localized in pineal and sellar regions. In cerebellum, the teratoma is quite rare, the association with medulloblastoma is exceptional and was differentiated from medullomyoblastoma. We report one case of 5 years old boy with intracranial hypertension for 3 months. The cerebral computed tomography showed a tumor in the fourth ventricle. The histologic study of surgical specimens found a proliferation of component of medulloblastoma adjacent to mature teratoma with smooth and striated muscles, chondroid component, adipose tissue and epithelial elements. Our objective is to discuss the diagnosis, the hitogenesis and the prognosis of this tumor.

  6. Breastfeeding and long-chain polyunsaturated fatty acid intake in the first 4 post-natal months and infant cognitive development: an observational study.

    PubMed

    Keim, Sarah A; Daniels, Julie L; Siega-Riz, Anna Maria; Herring, Amy H; Dole, Nancy; Scheidt, Peter C

    2012-10-01

    The aim of this study was to examine infant feeding and the long-chain polyunsaturated fatty acid (LCPUFA) concentration of breast milk and formulas in relation to infant development. The prospective Pregnancy, Infection and Nutrition Study (n=358) collected data on breastfeeding, breast milk samples and the formulas fed through 4months post-partum. At 12months of age, infants' development was assessed (Mullen Scales of Early Learning). Linear regression was used to examine development in relation to breastfeeding, breast milk docosahexaenoic acid (DHA) and arachidonic acid (AA) concentration, and DHA and AA concentration from the combination of breast milk and formula. The median breast milk DHA concentration was 0.20% of total fatty acids [interquartile range (IQR)=0.14, 0.34]; median AA concentration was 0.52% (IQR=0.44, 0.63). Upon adjustment for preterm birth, sex, smoking, race and ethnicity and education, breastfeeding exclusivity was unrelated to development. Among infants exclusively breastfed, breast milk LCPUFA concentration was not associated with development (Mullen composite, DHA: adjusted β=-1.3, 95% confidence interval: -10.3, 7.7). Variables combining DHA and AA concentrations from breast milk and formula, weighted by their contribution to diet, were unassociated with development. We found no evidence of enhanced infant development related to the LCPUFA content of breast milk or formula consumed during the first four post-natal months. © 2011 Blackwell Publishing Ltd.

  7. Analysis of forecasting malaria case with climatic factors as predictor in Mandailing Natal Regency: a time series study

    NASA Astrophysics Data System (ADS)

    Aulia, D.; Ayu, S. F.; Matondang, A.

    2018-01-01

    Malaria is the most contagious global concern. As a public health problem with outbreaks, affect the quality of life and economy, also could lead to death. Therefore, this research is to forecast malaria cases with climatic factors as predictors in Mandailing Natal Regency. The total number of positive malaria cases on January 2008 to December 2016 were taken from health department of Mandailing Natal Regency. Climates data such as rainfall, humidity, and temperature were taken from Center of Statistic Department of Mandailing Natal Regency. E-views ver. 9 is used to analyze this study. Autoregressive integrated average, ARIMA (0,1,1) (1,0,0)12 is the best model to explain the 67,2% variability data in time series study. Rainfall (P value = 0.0005), temperature (P value = 0,0029) and humidity (P value = 0.0001) are significant predictors for malaria transmission. Seasonal adjusted factor (SAF) in November and March shows peak for malaria cases.

  8. Spatial distribution of extensively drug-resistant tuberculosis (XDR TB) patients in KwaZulu-Natal, South Africa

    PubMed Central

    Kapwata, Thandi; Morris, Natashia; Campbell, Angela; Mthiyane, Thuli; Mpangase, Primrose; Nelson, Kristin N.; Allana, Salim; Brust, James C. M.; Moodley, Pravi; Mlisana, Koleka

    2017-01-01

    Background KwaZulu-Natal province, South Africa, has among the highest burden of XDR TB worldwide with the majority of cases occurring due to transmission. Poor access to health facilities can be a barrier to timely diagnosis and treatment of TB, which can contribute to ongoing transmission. We sought to determine the geographic distribution of XDR TB patients and proximity to health facilities in KwaZulu-Natal. Methods We recruited adults and children with XDR TB diagnosed in KwaZulu-Natal. We calculated distance and time from participants’ home to the closest hospital or clinic, as well as to the actual facility that diagnosed XDR TB, using tools within ArcGIS Network analyst. Speed of travel was assigned to road classes based on Department of Transport regulations. Results were compared to guidelines for the provision of social facilities in South Africa: 5km to a clinic and 30km to a hospital. Results During 2011–2014, 1027 new XDR TB cases were diagnosed throughout all 11 districts of KwaZulu-Natal, of whom 404 (39%) were enrolled and had geospatial data collected. Participants would have had to travel a mean distance of 2.9 km (CI 95%: 1.8–4.1) to the nearest clinic and 17.6 km (CI 95%: 11.4–23.8) to the nearest hospital. Actual distances that participants travelled to the health facility that diagnosed XDR TB ranged from <10 km (n = 143, 36%) to >50 km (n = 109, 27%), with a mean of 69 km. The majority (77%) of participants travelled farther than the recommended distance to a clinic (5 km) and 39% travelled farther than the recommended distance to a hospital (30 km). Nearly half (46%) of participants were diagnosed at a health facility in eThekwini district, of whom, 36% resided outside the Durban metropolitan area. Conclusions XDR TB cases are widely distributed throughout KwaZulu-Natal province with a denser focus in eThekwini district. Patients travelled long distances to the health facility where they were diagnosed with XDR TB, suggesting a

  9. Intrinsic connectivity networks within cerebellum and beyond in eating disorders.

    PubMed

    Amianto, F; D'Agata, F; Lavagnino, L; Caroppo, P; Abbate-Daga, G; Righi, D; Scarone, S; Bergui, M; Mortara, P; Fassino, S

    2013-10-01

    Cerebellum seems to have a role both in feeding behavior and emotion regulation; therefore, it is a region that warrants further neuroimaging studies in eating disorders, severe conditions that determine a significant impairment in the physical and psychological domain. The aim of this study was to examine the cerebellum intrinsic connectivity during functional magnetic resonance imaging resting state in anorexia nervosa (AN), bulimia nervosa (BN), and healthy controls (CN). Resting state brain activity was decomposed into intrinsic connectivity networks (ICNs) using group spatial independent component analysis on the resting blood oxygenation level dependent time courses of 12 AN, 12 BN, and 10 CN. We extracted the cerebellar ICN and compared it between groups. Intrinsic connectivity within the cerebellar network showed some common alterations in eating disordered compared to healthy subjects (e.g., a greater connectivity with insulae, vermis, and paravermis and a lesser connectivity with parietal lobe); AN and BN patients were characterized by some peculiar alterations in connectivity patterns (e.g., greater connectivity with the insulae in AN compared to BN, greater connectivity with anterior cingulate cortex in BN compared to AN). Our data are consistent with the presence of different alterations in the cerebellar network in AN and BN patients that could be related to psychopathologic dimensions of eating disorders.

  10. A Proton Magnetic Resonance Spectroscopic Study in Autism Spectrum Disorder Using a 3-Tesla Clinical Magnetic Resonance Imaging (MRI) System: The Anterior Cingulate Cortex and the Left Cerebellum.

    PubMed

    Ito, Hiromichi; Mori, Kenji; Harada, Masafumi; Hisaoka, Sonoka; Toda, Yoshihiro; Mori, Tatsuo; Goji, Aya; Abe, Yoko; Miyazaki, Masahito; Kagami, Shoji

    2017-07-01

    The pathophysiology of autism spectrum disorder (ASD) is not fully understood. We used proton magnetic resonance spectroscopy to investigate metabolite concentration ratios in the anterior cingulate cortex and left cerebellum in ASD. In the ACC and left cerebellum studies, the ASD group and intelligence quotient- and age-matched control group consisted of 112 and 114 subjects and 65 and 45 subjects, respectively. In the ASD group, γ-aminobutyric acid (GABA)+/ creatine/phosphocreatine (Cr) was significantly decreased in the anterior cingulate cortex, and glutamate (Glu)/Cr was significantly increased and GABA+/Cr was significantly decreased in the left cerebellum compared to those in the control group. In addition, both groups showed negative correlations between Glu/Cr and GABA+/Cr in the left cerebellum, and positive correlations between GABA+/Cr in the anterior cingulate cortex and left cerebellum. ASD subjects have hypoGABAergic alterations in the anterior cingulate cortex and hyperglutamatergic/hypoGABAergic alterations in the left cerebellum.

  11. Glycosaminoglycan in cerebrum, cerebellum and brainstem of young sheep brain with particular reference to compositional and structural variations of chondroitin-dermatan sulfate and hyaluronan.

    PubMed

    Kilia, Virginia; Skandalis, Spyros S; Theocharis, Achilleas D; Theocharis, Dimitrios A; Karamanos, Nikos K; Papageorgakopoulou, Nickoletta

    2008-09-01

    Recent advances in the structural biology of chondroitin sulfate chains have suggested important biological functions in the development of the brain. Several studies have demonstrated that the composition of chondroitin sulfate chains changes with aging and normal brain maturation. In this study, we determined the concentration of all glycosaminoglycan types, i.e. chondroitin sulfate, dermatan sulfate, keratan sulfate, heparan sulfate, hyaluronan and chondroitin in cerebrum, cerebellum and brainstem of young sheep brain. In all cases, chondroitin sulfate was the predominant glycosaminoglycan type, comprising about 54-58% of total glycosaminoglycans, with hyaluronan being present also in significant amounts of about 19-28%. Of particular interest was the increased presence of the disulfated disaccharides and dermatan sulfate in cerebellum and brainstem, respectively, as well as the detectable and measurable occurrence of chondroitin in young sheep brain. Among the three brain areas, cerebrum was found to be significantly richer in chondroitin sulfate and hyaluronan, two major extracellular matrix components. These findings imply that the extracellular matrix of the cerebrum is different from those of cerebellum and brainstem, and probably this fact is related to the particular histological and functional characteristics of each anatomic area of the brain.

  12. Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years.

    PubMed

    Flockhart, D T Tyler; Brower, Lincoln P; Ramirez, M Isabel; Hobson, Keith A; Wassenaar, Leonard I; Altizer, Sonia; Norris, D Ryan

    2017-07-01

    Addressing population declines of migratory insects requires linking populations across different portions of the annual cycle and understanding the effects of variation in weather and climate on productivity, recruitment, and patterns of long-distance movement. We used stable H and C isotopes and geospatial modeling to estimate the natal origin of monarch butterflies (Danaus plexippus) in eastern North America using over 1000 monarchs collected over almost four decades at Mexican overwintering colonies. Multinomial regression was used to ascertain which climate-related factors best-predicted temporal variation in natal origin across six breeding regions. The region producing the largest proportion of overwintering monarchs was the US Midwest (mean annual proportion = 0.38; 95% CI: 0.36-0.41) followed by the north-central (0.17; 0.14-0.18), northeast (0.15; 0.11-0.16), northwest (0.12; 0.12-0.16), southwest (0.11; 0.08-0.12), and southeast (0.08; 0.07-0.11) regions. There was no evidence of directional shifts in the relative contributions of different natal regions over time, which suggests these regions are comprising the same relative proportion of the overwintering population in recent years as in the mid-1970s. Instead, interannual variation in the proportion of monarchs from each region covaried with climate, as measured by the Southern Oscillation Index and regional-specific daily maximum temperature and precipitation, which together likely dictate larval development rates and food plant condition. Our results provide the first robust long-term analysis of predictors of the natal origins of monarchs overwintering in Mexico. Conservation efforts on the breeding grounds focused on the Midwest region will likely have the greatest benefit to eastern North American migratory monarchs, but the population will likely remain sensitive to regional and stochastic weather patterns. © 2017 John Wiley & Sons Ltd.

  13. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice.

    PubMed

    Stroh, Matthew A; Winter, Michelle K; Swerdlow, Russell H; McCarson, Kenneth E; Zhu, Hao

    2016-08-01

    Iron dyshomeostasis has been implicated in many diseases, including a number of neurological conditions. Cytosolic NADH cytochrome b5 oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues and is capable of reducing ferric iron in vitro. We previously reported that global gene ablation of NCB5OR resulted in early-onset diabetes and altered iron homeostasis in mice. To further investigate the specific effects of NCB5OR deficiency on neural tissue without contributions from known phenotypes, we generated a conditional knockout (CKO) mouse that lacks NCB5OR only in the cerebellum and midbrain. Assessment of molecular markers in the cerebellum of CKO mice revealed changes in pathways associated with cellular and mitochondrial iron homeostasis. (59)Fe pulse-feeding experiments revealed cerebellum-specific increased or decreased uptake of iron by 7 and 16 weeks of age, respectively. Additionally, we characterized behavioral changes associated with loss of NCB5OR in the cerebellum and midbrain in the context of dietary iron deprivation-evoked generalized iron deficiency. Locomotor activity was reduced and complex motor task execution was altered in CKO mice treated with an iron deficient diet. A sucrose preference test revealed that the reward response was intact in CKO mice, but that iron deficient diet consumption altered sucrose preference in all mice. Detailed gait analysis revealed locomotor changes in CKO mice associated with dysfunctional proprioception and locomotor activation independent of dietary iron deficiency. Finally, we demonstrate that loss of NCB5OR in the cerebellum and midbrain exacerbated harmaline-induced tremor activity. Our findings suggest an essential role for NCB5OR in maintaining both iron homeostasis and the proper functioning of various locomotor pathways in the mouse cerebellum and midbrain.

  14. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice

    PubMed Central

    Stroh, Matthew A.; Winter, Michelle K.; Swerdlow, Russell H.; McCarson, Kenneth E.; Zhu, Hao

    2018-01-01

    Iron dyshomeostasis has been implicated in many diseases, including a number of neurological conditions. Cytosolic NADH cytochrome b5 oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues and is capable of reducing ferric iron in vitro. We previously reported that global gene ablation of NCB5OR resulted in early-onset diabetes and altered iron homeostasis in mice. To further investigate the specific effects of NCB5OR deficiency on neural tissue without contributions from known phenotypes, we generated a conditional knockout (CKO) mouse that lacks NCB5OR only in the cerebellum and midbrain. Assessment of molecular markers in the cerebellum of CKO mice revealed changes in pathways associated with cellular and mitochondrial iron homeostasis. 59Fe pulse-feeding experiments revealed cerebellum-specific increased or decreased uptake of iron by 7 weeks and 16 weeks of age, respectively. Additionally, we characterized behavioral changes associated with loss of NCB5OR in the cerebellum and midbrain in the context of dietary iron deprivation-evoked generalized iron deficiency. Locomotor activity was reduced and complex motor task execution was altered in CKO mice treated with an iron deficient diet. A sucrose preference test revealed that the reward response was intact in CKO mice, but that iron deficient diet consumption altered sucrose preference in all mice. Detailed gait analysis revealed locomotor changes in CKO mice associated with dysfunctional proprioception and locomotor activation independent of dietary iron deficiency. Finally, we demonstrate that loss of NCB5OR in the cerebellum and midbrain exacerbated harmaline-induced tremor activity. Our findings suggest an essential role for NCB5OR in maintaining both iron homeostasis and the proper functioning of various locomotor pathways in the mouse cerebellum and midbrain. PMID:27188291

  15. A Structural Magnetic Resonance Imaging Study in Transgender Persons on Cross-Sex Hormone Therapy.

    PubMed

    Mueller, Sven C; Landré, Lionel; Wierckx, Katrien; T'Sjoen, Guy

    2017-01-01

    To date, research findings are inconsistent about whether the neuroanatomy in transgender persons resembles that of their natal sex or their gender identity. Moreover, few studies have examined the effects of long-term cross-sex hormonal treatment on neuroanatomy in this cohort. The purpose of the present study was to examine neuroanatomical differences in transgender persons after prolonged cross-sex hormone therapy. Eighteen transgender men (female-to-male), 17 transgender women (male-to-female), 30 nontransgender men (natal men), and 27 nontransgender women (natal women) completed a high-resolution structural magnetic resonance imaging scan at 3 T. Eligibility criteria for transgender persons were gender-affirming surgery and at least 2 years of cross-sex hormone therapy. Exclusion criteria for nontransgender persons were presence of psychiatric or neurological disorders. The mean neuroanatomical volume for the amygdala, putamen, and corpus callosum differed between transgender women and natal women but not between transgender women and natal men. Differences between transgender men and natal men were found in several brain structures, including the medial temporal lobe structures and cerebellum. Differences between transgender men and natal women were found in the medial temporal lobe, nucleus accumbens, and 3rd ventricle. Sexual dimorphism between nontransgender men and women included larger cerebellar volumes and a smaller anterior corpus callosum in natal men than in natal women. The results remained stable after correcting for additional factors including age, total intracranial volume, anxiety, and depressive symptoms. Neuroanatomical differences were region specific between transgender persons and their natal sex as well as their gender identity, raising the possibility of a localized influence of sex hormones on neuroanatomy. © 2016 S. Karger AG, Basel.

  16. Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in chinook salmon

    USGS Publications Warehouse

    Neville, Helen; Isaak, Daniel; Dunham, J.B.; Thurow, Russel; Rieman, B.

    2006-01-01

    Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.

  17. Extensively Drug-Resistant Tuberculosis in Women, KwaZulu-Natal, South Africa

    PubMed Central

    Zelnick, Jennifer; Werner, Lise; Master, Iqbal; Loveday, Marian; Horsburgh, C. Robert; Padayatchi, Nesri

    2011-01-01

    To determine whether women in KwaZulu-Natal, South Africa, with drug-resistant tuberculosis (TB) were more likely than men to have extensively drug-resistant TB, we reviewed 4,514 adults admitted during 2003–2008 for drug-resistant TB. Female sex independently predicted extensively drug-resistant TB, even after we controlled for HIV infection. This association needs further study. PMID:22000378

  18. Inferences about Supernova Physics from Gravitational-Wave Measurements: GW151226 Spin Misalignment as an Indicator of Strong Black-Hole Natal Kicks

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Richard; Gerosa, Davide; Wysocki, Daniel

    2017-07-01

    The inferred parameters of the binary black hole GW151226 are consistent with nonzero spin for the most massive black hole, misaligned from the binary's orbital angular momentum. If the black holes formed through isolated binary evolution from an initially aligned binary star, this misalignment would then arise from a natal kick imparted to the first-born black hole at its birth during stellar collapse. We use simple kinematic arguments to constrain the characteristic magnitude of this kick, and find that a natal kick vk≳50 km /s must be imparted to the black hole at birth to produce misalignments consistent with GW151226. Such large natal kicks exceed those adopted by default in most of the current supernova and binary evolution models.

  19. Inferences about Supernova Physics from Gravitational-Wave Measurements: GW151226 Spin Misalignment as an Indicator of Strong Black-Hole Natal Kicks.

    PubMed

    O'Shaughnessy, Richard; Gerosa, Davide; Wysocki, Daniel

    2017-07-07

    The inferred parameters of the binary black hole GW151226 are consistent with nonzero spin for the most massive black hole, misaligned from the binary's orbital angular momentum. If the black holes formed through isolated binary evolution from an initially aligned binary star, this misalignment would then arise from a natal kick imparted to the first-born black hole at its birth during stellar collapse. We use simple kinematic arguments to constrain the characteristic magnitude of this kick, and find that a natal kick v_{k}≳50  km/s must be imparted to the black hole at birth to produce misalignments consistent with GW151226. Such large natal kicks exceed those adopted by default in most of the current supernova and binary evolution models.

  20. Zebrin II compartmentation of the cerebellum in a basal insectivore, the Madagascan hedgehog tenrec Echinops telfairi

    PubMed Central

    Sillitoe, Roy V; Künzle, Heinz; Hawkes, Richard

    2003-01-01

    The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of zebrin II/aldolase C. The cerebellar cortex of rodents, for example, is organized into four transverse zones: anterior, central, posterior and nodular. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. Zonal boundaries appear to be independent of cerebellar lobulation. To explore this model further, and to broaden our understanding of the evolution of cerebellar patterning, zebrin II expression has been studied in the cerebellum of the Madagascan hedgehog tenrec (Echinops telfairi), a basal insectivore with a lissiform cerebellum with only five lobules. Zebrin II expression in the tenrec reveals an array of four transverse zones as in rodents, two with homogeneous zebrin II expression, two further subdivided into stripes, that closely resembles the expression pattern described in other mammals. We conclude that a zone-and-stripe organization may be a common feature of the mammalian cerebellar vermis and hemispheres, and that zonal boundaries and cerebellar lobules and fissures form independently. PMID:14529046

  1. Penconazole alters redox status, cholinergic function, and membrane-bound ATPases in the cerebrum and cerebellum of adult rats.

    PubMed

    Chaâbane, M; Ghorbel, I; Elwej, A; Mnif, H; Boudawara, T; Chaâbouni, S Ellouze; Zeghal, N; Soudani, N

    2017-08-01

    Pesticides exposure causes usually harmful effects to the environment and human health. The present study aimed to investigate the potential toxic effects of penconazole, a triazole fungicide, on the cerebrum and cerebellum of adult rats. Penconazole was administered intraperitoneally to male Wistar rats at a dose of 67 mg kg -1 body weight every 2 days during 9 days. Results showed that penconazole induced oxidative stress in rat cerebrum and cerebellum tissues. In fact, we have found a significant increase in malondialdehyde, hydrogen peroxide, and advanced oxidation protein product levels, as well as an alteration of the antioxidant status, enzymatic (superoxide dismutase and catalase) and nonenzymatic (glutathione), the cholinergic function, and membrane-bound ATPases (Na + /K + -ATPase and Mg 2+ -ATPase). Penconazole also provoked histological alterations marked by pyknotic and vacuolated neurons in the cerebrum and apoptosis and edema in the cerebellum Purkinje cells' layer. Therefore, the use of this neurotoxicant fungicide must be regularly monitored in the environment.

  2. Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion

    PubMed Central

    Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying

    2013-01-01

    Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3–24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615

  3. Volumetric evaluation of the relations among the cerebrum, cerebellum and brain stem in young subjects: a combination of stereology and magnetic resonance imaging.

    PubMed

    Ekinci, Nihat; Acer, Niyazi; Akkaya, Akcan; Sankur, Seref; Kabadayi, Taner; Sahin, Bünyamin

    2008-08-01

    The Cavalieri estimator using a point grid is used to estimate the volume of three-dimensional structures based on two-dimensional slices of the object. The size of the components of intracranial neural structures should have proportional relations among them. The volume fraction approach of stereological methods provides information about volumetric relations of the components of structures. The purpose of our study is to estimate the volume and volume fraction data related to the cerebrum, cerebellum and brain stem. In this study, volume of the total brain, cerebrum, cerebellum and brain stem were estimated in 24 young Turkish volunteers (12 males and 12 females) who are free of any neurological symptoms and signs. The volume and volume fraction of the total brain, cerebrum, cerebellum and brain stem were determined on magnetic resonance (MR) images using the point-counting approach of stereological methods. The mean (+/-SD) total brain, cerebrum and cerebellum volumes were 1,202.05 +/- 103.51, 1,143.65 +/- 106.25 cm3 in males and females, 1,060.0 +/- 94.6, 1,008.9 +/- 104.3 cm3 in males and females, 117.75 +/- 10.7, 111.83 +/- 8.0 cm3 in males and females, respectively. The mean brain stem volumes were 24.3 +/- 2.89, 22.9 +/- 4.49 cm3 in males and females, respectively. Our results revealed that female subjects have less cerebral, cerebellar and brain stem volumes compared to males, although there was no statistically significant difference between genders (P > 0.05). The volume ratio of the cerebrum to total brain volume (TBV), cerebellum to TBV and brain stem to TBV were 88.16 and 88.13% in males and females, 9.8 and 9.8% in males and females, 2.03 and 2.03% in males and females, respectively. The volume ratio of the cerebellum to cerebrum, brain stem to cerebrum and brain stem to cerebellum were 11.12 and 11.16% in males and females, 2.30 and 2.31% in males and females, 20.7 and 20.6% in males and females, respectively. The difference between the genders was

  4. Exploring Teachers' Practices in Teaching Mathematics and Statistics in Kwazulu-Natal Schools

    ERIC Educational Resources Information Center

    Umugiraneza, Odette; Bansilal, Sarah; North, Delia

    2017-01-01

    Teaching approaches and assessment practices are key factors that contribute to the improvement of learner outcomes. The study on which this article is based, explored the methods used by KwaZulu-Natal (KZN) teachers in teaching and assessing mathematics and statistics. An instrument containing closed and open-ended questions was distributed to…

  5. Efficacy of physical activity interventions in post-natal populations: systematic review, meta-analysis and content coding of behaviour change techniques.

    PubMed

    Gilinsky, Alyssa Sara; Dale, Hannah; Robinson, Clare; Hughes, Adrienne R; McInnes, Rhona; Lavallee, David

    2015-01-01

    This systematic review and meta-analysis reports the efficacy of post-natal physical activity change interventions with content coding of behaviour change techniques (BCTs). Electronic databases (MEDLINE, CINAHL and PsychINFO) were searched for interventions published from January 1980 to July 2013. Inclusion criteria were: (i) interventions including ≥1 BCT designed to change physical activity behaviour, (ii) studies reporting ≥1 physical activity outcome, (iii) interventions commencing later than four weeks after childbirth and (iv) studies including participants who had given birth within the last year. Controlled trials were included in the meta-analysis. Interventions were coded using the 40-item Coventry, Aberdeen & London - Refined (CALO-RE) taxonomy of BCTs and study quality assessment was conducted using Cochrane criteria. Twenty studies were included in the review (meta-analysis: n = 14). Seven were interventions conducted with healthy inactive post-natal women. Nine were post-natal weight management studies. Two studies included women with post-natal depression. Two studies focused on improving general well-being. Studies in healthy populations but not for weight management successfully changed physical activity. Interventions increased frequency but not volume of physical activity or walking behaviour. Efficacious interventions always included the BCTs 'goal setting (behaviour)' and 'prompt self-monitoring of behaviour'.

  6. The human cerebellum: a review of physiologic neuroanatomy.

    PubMed

    Roostaei, Tina; Nazeri, Arash; Sahraian, Mohammad Ali; Minagar, Alireza

    2014-11-01

    The cerebellum resides in the posterior cranial fossa dorsal to the brainstem and has diverse connections to the cerebrum, brain stem, and spinal cord. It is anatomically and physiologically divided into distinct functional compartments and is composed of highly regular arrays of neuronal units, each sharing the same basic cerebellar microcircuitry. Its circuitry is critically involved in motor control and motor learning, and its role in nonmotor cognitive and affective functions is becoming increasingly recognized. This article describes the cerebellar gross and histologic neuroanatomy in relation to its function, and the relevance of cerebellar circuitry and firing patterns to motor learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Cutaneous and periodontal inputs to the cerebellum of the naked mole-rat (Heterocephalus glaber)

    PubMed Central

    Sarko, Diana K.; Leitch, Duncan B.; Catania, Kenneth C.

    2013-01-01

    The naked mole-rat (Heterocephalus glaber) is a small fossorial rodent with specialized dentition that is reflected by the large cortical area dedicated to representation of the prominent incisors. Due to naked mole-rats’ behavioral reliance on the incisors for digging and for manipulating objects, as well as their ability to move the lower incisors independently, we hypothesized that expanded somatosensory representations of the incisors would be present within the cerebellum in order to accommodate a greater degree of proprioceptive, cutaneous, and periodontal input. Multiunit electrophysiological recordings targeting the ansiform lobule were used to investigate tactile inputs from receptive fields on the entire body with a focus on the incisors. Similar to other rodents, a fractured somatotopy appeared to be present with discrete representations of the same receptive fields repeated within each folium of the cerebellum. These findings confirm the presence of somatosensory inputs to a large area of the naked mole-rat cerebellum with particularly extensive representations of the lower incisors and mystacial vibrissae. We speculate that these extensive inputs facilitate processing of tactile cues as part of a sensorimotor integration network that optimizes how sensory stimuli are acquired through active exploration and in turn adjusts motor outputs (such as independent movement of the lower incisors). These results highlight the diverse sensory specializations and corresponding brain organizational schemes that have evolved in different mammals to facilitate exploration of and interaction with their environment. PMID:24302898

  8. Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades.

    PubMed

    Alahyane, N; Fonteille, V; Urquizar, C; Salemme, R; Nighoghossian, N; Pelisson, D; Tilikete, C

    2008-01-01

    Sensory-motor adaptation processes are critically involved in maintaining accurate motor behavior throughout life. Yet their underlying neural substrates and task-dependency bases are still poorly understood. We address these issues here by studying adaptation of saccadic eye movements, a well-established model of sensory-motor plasticity. The cerebellum plays a major role in saccadic adaptation but it has not yet been investigated whether this role can account for the known specificity of adaptation to the saccade type (e.g., reactive versus voluntary). Two patients with focal lesions in different parts of the cerebellum were tested using the double-step target paradigm. Each patient was submitted to two separate sessions: one for reactive saccades (RS) triggered by the sudden appearance of a visual target and the second for scanning voluntary saccades (SVS) performed when exploring a more complex scene. We found that a medial cerebellar lesion impaired adaptation of reactive-but not of voluntary-saccades, whereas a lateral lesion affected adaptation of scanning voluntary saccades, but not of reactive saccades. These findings provide the first evidence of an involvement of the lateral cerebellum in saccadic adaptation, and extend the demonstrated role of the cerebellum in RS adaptation to adaptation of SVS. The double dissociation of adaptive abilities is also consistent with our previous hypothesis of the involvement in saccadic adaptation of partially separated cerebellar areas specific to the reactive or voluntary task (Alahyane et al. Brain Res 1135:107-121 (2007)).

  9. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes.

    PubMed

    Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin

    2013-08-01

    We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.

  10. Student Success in Entry Level Modules at the University of Kwazulu-Natal

    ERIC Educational Resources Information Center

    Zewotir, T.; North, D.; Murray, M.

    2011-01-01

    The University of KwaZulu-Natal is now six years post merger--time to reflect as the institution is now well settled. Modules are offered on multiple campuses, at various levels, ranging from entry level modules through to Ph.D. studies. This article attempts to identify the factors that lead to the successful progression of students to higher…

  11. Sector switching among histopathologists in KwaZulu-Natal, South Africa: a qualitative study.

    PubMed

    Ruggunan, Shaun D; Singh, Suveera

    2013-05-30

    The mobility of health care professionals from the public to private sector is prevalent in South Africa. However, literature on sector switching of clinical doctors remains limited. It is against this background that this study aims to make the labour market visible for histopathologists and identify the reasons for sector switching. This study is exploratory and descriptive. It uses qualitative methods, such as in-depth interviews, with 70% (n = 16/23) of the population of histopathologists in KwaZulu-Natal, South Africa. Lee's (1966) push-pull theory is adapted to explain the pull sector switching behaviours of histopathologists. Interviews were recorded and independently transcribed. The narratives of the participants were coded to reflect the main themes that contributed to their sector switching behaviours. Five key themes emerged as reasons for the mobility of histopathologists from the public to private sector in KwaZulu-Natal. The findings indicate that remuneration, working conditions, work flexibility, career pathing and autonomy of labour processes are the key drivers of this mobility. Histopathologists provide a core function in the health care chain. However, their invisibility in academic discourse in both public health and human resources for health indicates the paucity of research undertaken on the importance of these specialists in the health care chain. This is especially significant in developing countries like South Africa, where there is a dearth of these specialists. This study, while exploratory, aims to open a dialogue to better understand their reasons for sector switching and, hopefully, inform policies on training, recruitment and retention of these specialists.

  12. Sector switching among histopathologists in KwaZulu-Natal, South Africa: a qualitative study

    PubMed Central

    2013-01-01

    Background The mobility of health care professionals from the public to private sector is prevalent in South Africa. However, literature on sector switching of clinical doctors remains limited. It is against this background that this study aims to make the labour market visible for histopathologists and identify the reasons for sector switching. Methods This study is exploratory and descriptive. It uses qualitative methods, such as in-depth interviews, with 70% (n = 16/23) of the population of histopathologists in KwaZulu-Natal, South Africa. Lee’s (1966) push-pull theory is adapted to explain the pull sector switching behaviours of histopathologists. Interviews were recorded and independently transcribed. The narratives of the participants were coded to reflect the main themes that contributed to their sector switching behaviours. Results Five key themes emerged as reasons for the mobility of histopathologists from the public to private sector in KwaZulu-Natal. The findings indicate that remuneration, working conditions, work flexibility, career pathing and autonomy of labour processes are the key drivers of this mobility. Conclusions Histopathologists provide a core function in the health care chain. However, their invisibility in academic discourse in both public health and human resources for health indicates the paucity of research undertaken on the importance of these specialists in the health care chain. This is especially significant in developing countries like South Africa, where there is a dearth of these specialists. This study, while exploratory, aims to open a dialogue to better understand their reasons for sector switching and, hopefully, inform policies on training, recruitment and retention of these specialists. PMID:23721129

  13. Negative phenotypic and genetic correlation between natal dispersal propensity and nest-defence behaviour in a wild bird.

    PubMed

    Bize, Pierre; Daniel, Grégory; Viblanc, Vincent A; Martin, Julien G A; Doligez, Blandine

    2017-07-01

    Natural selection is expected to favour the integration of dispersal and phenotypic traits allowing individuals to reduce dispersal costs. Accordingly, associations have been found between dispersal and personality traits such as aggressiveness and exploration, which may facilitate settlement in a novel environment. However, the determinism of these associations has only rarely been explored. Here, we highlight the functional integration of individual personality in nest-defence behaviour and natal dispersal propensity in a long-lived colonial bird, the Alpine swift ( Apus melba ), providing insights into genetic constraints shaping the coevolution of these two traits. We report a negative association between natal dispersal and nest-defence (i.e. risk taking) behaviour at both the phenotypic and genetic level. This negative association may result from direct selection if risk-averseness benefits natal dispersers by reducing the costs of settlement in an unfamiliar environment, or from indirect selection if individuals with lower levels of nest defence also show lower levels of aggressiveness, reducing costs of settlement among unfamiliar neighbours in a colony. In both cases, these results highlight that risk taking is an important behavioural trait to consider in the study of dispersal evolution. © 2017 The Author(s).

  14. [Review and guidelines on the prevention, diagnosis and treatment of post-natal cytomegalovirus infection].

    PubMed

    Alarcón Allen, A; Baquero-Artigao, F

    2011-01-01

    Postnatal cytomegalovirus (CMV) infection in the newborn can occur from exposure to maternal cervical secretions during birth, ingestion of breast milk, transfusion of blood products or transmission by body fluids of infected people. Breast milk is the main source of infection, given the high rate of CMV-positive mothers excreting CMV in milk. Freezing reduces the risk of CMV transmission by breastfeeding, although it does not eliminate it completely. Pasteurisation prevents such transmission, but it can alter the immunological properties of breast milk. Postnatal CMV infection is usually asymptomatic, as it normally results from viral reactivation in the mother, and the neonate is born with protective antibodies. However, in the very low birth weight premature infant the amount of transferred antibodies is smaller and a symptomatic infection can occur. Symptomatic post-natal CMV infection in the newborn typically causes hepatitis, neutropenia, thrombocytopenia or sepsis-like syndrome. Pneumonitis and enteritis are less common, but very characteristic. Diagnosis is based on urine virus detection at the time of onset of symptoms. Postnatal CMV infection in the newborn generally resolves spontaneously without antiviral treatment. Ganciclovir should be reserved for severe cases. Unlike congenital CMV disease, post-natal CMV infection in the preterm infant does not seem to be associated with hearing loss or abnormal neuro-development in long term follow-up. Copyright © 2010 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  15. Movements of juvenile Gyrfalcons from western and interior Alaska following departure from their natal areas

    USGS Publications Warehouse

    McIntyre, Carol L.; Douglas, David C.; Adams, Layne G.

    2009-01-01

    Juvenile raptors often travel thousands of kilometers from the time they leave their natal areas to the time they enter a breeding population. Documenting movements and identifying areas used by raptors before they enter a breeding population is important for understanding the factors that influence their survival. In North America, juvenile Gyrfalcons (Falco rusticolus) are routinely observed outside the species' breeding range during the nonbreeding season, but the natal origins of these birds are rarely known. We used satellite telemetry to track the movements of juvenile Gyrfalcons during their first months of independence. We instrumented nestlings with lightweight satellite transmitters within 10 d of estimated fledging dates on the Seward Peninsula in western Alaska and in Denali National Park (Denali) in interior Alaska. Gyrfalcons spent an average of 41.4 ± 6.1 d (range  =  30–50 d) in their natal areas after fledging. The mean departure date from natal areas was 27 August ± 6.4 d. We tracked 15 individuals for an average of 70.5 ± 28.1 d post-departure; Gyrfalcons moved from 105 to 4299 km during this period and tended to move greater distances earlier in the tracking period than later in the tracking period. Gyrfalcons did not establish temporary winter ranges within the tracking period. We identified several movement patterns among Gyrfalcons, including unidirectional long-distance movements, multidirectional long- and short-distance movements, and shorter movements within a local region. Gyrfalcons from the Seward Peninsula remained in western Alaska or flew to eastern Russia with no movements into interior Alaska. In contrast, Gyrfalcons from Denali remained in interior Alaska, flew to northern and western Alaska, or flew to northern Alberta. Gyrfalcons from both study areas tended to move to coastal, riparian, and wetland areas during autumn and early winter. Because juvenile Gyrfalcons dispersed over a large geographic area and across three

  16. Red sorrel (Hibiscus Sabdariffa) prevents the ethanol-induced deficits of Purkinje cells in the cerebellum.

    PubMed

    Suryanti, S; Partadiredja, G; Atthobari, J

    2015-01-01

    The present study is aimed at investigating the possible protective effects of H. sabdariffa on ethanol-elicited deficits of motor coordination and estimated total number of the Purkinje cells of the cerebellums of adolescent male Wistar rats. Forty male Wistar rats aged 21 days were divided into five groups. Na/wtr group was given water orally and injected with normal saline intra peritoneally (ip). Eth/wtr group was given water orally and ethanol (ip). Another three experimental groups (Eth/Hsab) were given different dosages of H. sabdariffa and ethanol (ip). All groups were treated intermittently for the total period of treatment of two weeks. The motor coordination of rats was tested prior and subsequent to the treatments. The rats were euthanized, and their cerebellums were examined. The total number of Purkinje cells was estimated using physical fractionator method. Upon revolving drum test, the number of falls of rats increased following ethanol treatment. There was no significant difference between the total number of falls prior and subsequent to treatment in all Eth/Hsab groups. The estimated total number of Purkinje cells in Eth/Hsab groups was higher than in Eth/wtr group. H. sabdariffa may prevent the ethanol-induced deficits of motor coordination and estimated total number of Purkinje cells of the cerebellums in adolescent rats (Tab. 3, Fig. 1, Ref. 42).

  17. Imaging mouse cerebellum with serial optical coherence scanner (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Chao J.; Williams, Kristen; Orr, Harry; Taner, Akkin

    2017-02-01

    We present the serial optical coherence scanner (SOCS), which consists of a polarization sensitive optical coherence tomography and a vibratome with associated controls for serial imaging, to visualize the cerebellum and adjacent brainstem of mouse. The cerebellar cortical layers and white matter are distinguished by using intrinsic optical contrasts. Images from serial scans reveal the large-scale anatomy in detail and map the nerve fiber pathways in the cerebellum and adjacent brainstem. The optical system, which has 5.5 μm axial resolution, utilizes a scan lens or a water-immersion microscope objective resulting in 10 μm or 4 μm lateral resolution, respectively. The large-scale brain imaging at high resolution requires an efficient way to collect large datasets. It is important to improve the SOCS system to deal with large-scale and large number of samples in a reasonable time. The imaging and slicing procedure for a section took about 4 minutes due to a low speed of the vibratome blade to maintain slicing quality. SOCS has potential to investigate pathological changes and monitor the effects of therapeutic drugs in cerebellar diseases such as spinocerebellar ataxia 1 (SCA1). The SCA1 is a neurodegenerative disease characterized by atrophy and eventual loss of Purkinje cells from the cerebellar cortex, and the optical contrasts provided by SOCS is being evaluated for biomarkers of the disease.

  18. The Effect of Spaceflight on the Ultrastructure of the Cerebellum

    NASA Technical Reports Server (NTRS)

    Holstein, Gay R.; Martinelli, Giorgio P.

    2003-01-01

    In weightlessness, astronauts and cosmonauts may experience postural illusions as well as motion sickness symptoms known as the space adaptation syndrome. Upon return to Earth, they have irregularities in posture and balance. The adaptation to microgravity and subsequent re-adaptation to Earth occurs over several days. At the cellular level, a process called neuronal plasticity may mediate this adaptation. The term plasticity refers to the flexibility and modifiability in the architecture and functions of the nervous system. In fact, plastic changes are thought to underlie not just behavioral adaptation, but also the more generalized phenomena of learning and memory. The goal of this experiment was to identify some of the structural alterations that occur in the rat brain during the sensory and motor adaptation to microgravity. One brain region where plasticity has been studied extensively is the cerebellar cortex-a structure thought to be critical for motor control, coordination, the timing of movements, and, most relevant to the present experiment, motor learning. Also, there are direct as well as indirect connections between projections from the gravity-sensing otolith organs and several subregions of the cerebellum. We tested the hypothesis that alterations in the ultrastructural (the structure within the cell) architecture of rat cerebellar cortex occur during the early period of adaptation to microgravity, as the cerebellum adapts to the absence of the usual gravitational inputs. The results show ultrastructural evidence for neuronal plasticity in the central nervous system of adult rats after 24 hours of spaceflight. Qualitative studies conducted on tissue from the cerebellar cortex (specifically, the nodulus of the cerebellum) indicate that ultrastructural signs of plasticity are present in the cerebellar zones that receive input from the gravity-sensing organs in the inner ear (the otoliths). These changes are not observed in this region in cagematched

  19. Trace Eyeblink Conditioning in Mice Is Dependent upon the Dorsal Medial Prefrontal Cortex, Cerebellum, and Amygdala: Behavioral Characterization and Functional Circuitry1,2,3

    PubMed Central

    Taylor, William; Kalmbach, Brian; Desai, Niraj S.

    2015-01-01

    Abstract Trace eyeblink conditioning is useful for studying the interaction of multiple brain areas in learning and memory. The goal of the current work was to determine whether trace eyeblink conditioning could be established in a mouse model in the absence of elicited startle responses and the brain circuitry that supports this learning. We show here that mice can acquire trace conditioned responses (tCRs) devoid of startle while head-restrained and permitted to freely run on a wheel. Most mice (75%) could learn with a trace interval of 250 ms. Because tCRs were not contaminated with startle-associated components, we were able to document the development and timing of tCRs in mice, as well as their long-term retention (at 7 and 14 d) and flexible expression (extinction and reacquisition). To identify the circuitry involved, we made restricted lesions of the medial prefrontal cortex (mPFC) and found that learning was prevented. Furthermore, inactivation of the cerebellum with muscimol completely abolished tCRs, demonstrating that learned responses were driven by the cerebellum. Finally, inactivation of the mPFC and amygdala in trained animals nearly abolished tCRs. Anatomical data from these critical regions showed that mPFC and amygdala both project to the rostral basilar pons and overlap with eyelid-associated pontocerebellar neurons. The data provide the first report of trace eyeblink conditioning in mice in which tCRs were driven by the cerebellum and required a localized region of mPFC for acquisition. The data further reveal a specific role for the amygdala as providing a conditioned stimulus-associated input to the cerebellum. PMID:26464998

  20. Female parity, maternal kinship, infant age and sex influence natal attraction and infant handling in a wild colobine (Colobus vellerosus).

    PubMed

    Bădescu, Iulia; Sicotte, Pascale; Ting, Nelson; Wikberg, Eva C

    2015-04-01

    Primate females often inspect, touch and groom others' infants (natal attraction) and they may hold and carry these infants in a manner resembling maternal care (infant handling). While natal attraction and infant handling occur in most wild colobines, little is known about the factors influencing the expression of these behaviors. We examined the effects of female parity, kinship, and dominance rank, as well as infant age and sex in wild Colobus vellerosus at Boabeng-Fiema Monkey Sanctuary, Ghana. We collected data via focal sampling of females in 2008 and 2009 (N = 61) and of infants in 2010 (N = 12). Accounting for the individuals who interacted with our focal subjects, this study includes 74 females and 66 infants in 8 groups. We recorded female agonistic interactions ad libitum to determine dominance ranks. We used partial pedigree information and genotypes at 17 short tandem repeat loci to determine kinship. We knew female parity, infant age and sex from demographic records. Nulliparous females showed more natal attraction and infant handling than parous females, which may suggest that interactions with infants are more adaptive for nulliparous females because they learn mothering skills through these behaviors. Compared to non-kin, maternal kin were more likely to handle infants. Maternal kin may be permitted greater access to infants because mothers are most familiar with them. Handlers may incur inclusive fitness benefits from infant handling. Dominance rank did not affect female interactions with infants. The youngest infants received the most natal attraction and infant handling, and male infants were handled more than female infants. The potential benefits of learning to mother and inclusive fitness, in combination with the relatively low costs of natal attraction and infant handling, may explain the high rates of these behaviors in many colobines. © 2014 Wiley Periodicals, Inc.

  1. Cerebellum in Levodopa-Induced Dyskinesias: The Unusual Suspect in the Motor Network

    PubMed Central

    Kishore, Asha; Popa, Traian

    2014-01-01

    The exact mechanisms that generate levodopa-induced dyskinesias (LID) during chronic levodopa therapy for Parkinson’s disease (PD) are not yet fully established. The most widely accepted theories incriminate the non-physiological synthesis, release and reuptake of dopamine generated by exogenously administered levodopa in the striatum, and the aberrant plasticity in the cortico-striatal loops. However, normal motor performance requires the correct recruitment of motor maps. This depends on a high level of synergy within the primary motor cortex (M1) as well as between M1 and other cortical and subcortical areas, for which dopamine is necessary. The plastic mechanisms within M1, which are crucial for the maintenance of this synergy, are disrupted both during “OFF” and dyskinetic states in PD. When tested without levodopa, dyskinetic patients show loss of treatment benefits on long-term potentiation and long-term depression-like plasticity of the intracortical circuits. When tested with the regular pulsatile levodopa doses, they show further impairment of the M1 plasticity, such as inability to depotentiate an already facilitated synapse and paradoxical facilitation in response to afferent input aimed at synaptic inhibition. Dyskinetic patients have also severe impairment of the associative, sensorimotor plasticity of M1 attributed to deficient cerebellar modulation of sensory afferents to M1. Here, we review the anatomical and functional studies, including the recently described bidirectional connections between the cerebellum and the basal ganglia that support a key role of the cerebellum in the generation of LID. This model stipulates that aberrant neuronal synchrony in PD with LID may propagate from the subthalamic nucleus to the cerebellum and “lock” the cerebellar cortex in a hyperactive state. This could affect critical cerebellar functions such as the dynamic and discrete modulation of M1 plasticity and the matching of motor commands with sensory

  2. Therapeutic effects of an anti-gravity locomotor training (AlterG) on postural balance and cerebellum structure in children with Cerebral Palsy.

    PubMed

    Rasooli, A H; Birgani, P M; Azizi, Sh; Shahrokhi, A; Mirbagheri, M M

    2017-07-01

    We evaluated the therapeutic effects of anti-gravity locomotor treadmill (AlterG) training on postural stability in children with Cerebral Palsy (CP) and spasticity, particularly in the lower extremity. AlterG can facilitate walking by reducing the weight of CP children by up to 80%; it can also help subjects maintain an appropriate posture during the locomotor AlterG training. Thus, we hypothesized that AlterG training, for a sufficient period of time, has a potential to produce cerebellum neuroplasticity, and consequently result in an effective permanent postural stability. AlterG training was given for 45 minutes, three times a week for two months. Postural balance was evaluated using posturography. The parameters of the Romberg based posturography were extracted to quantify the Center of Balance (CoP). The neuroplasticity of Cerebellum was evaluated using a Diffusion Tensor Imaging (DTI). The evaluations were done pre- and post-training. The Fractional Anisotropy (FA) feature was used for quantifying structural changes in the cerebellum. The results showed that AlterG training resulted in an increase in average FA value of the cerebellum white matter following the training. The results of the posturography evaluations showed a consistent improvement in postural stability. These results were consistent in all subjects. Our findings indicated that the improvement in the posture was accompanied with the enhancement of the cerebellum white matter structure. The clinical implication is that AlterG training can be considered a therapeutic tool for an effective and permanent improvement of postural stability in CP children.

  3. Gray-matter structural variability in the human cerebellum: Lobule-specific differences across sex and hemisphere.

    PubMed

    Steele, Christopher J; Chakravarty, M Mallar

    2018-04-15

    Though commonly thought of as a "motor structure", we now know that the cerebellum's reciprocal connections to the cerebral cortex underlie contributions to both motor and non-motor behavior. Further, recent research has shown that cerebellar dysfunction may contribute to a wide range of neuropsychiatric disorders. However, there has been little characterization of normative variability at the level of cerebellar structure that can facilitate and further our understanding of disease biomarkers. In this manuscript we examine normative variation of the cerebellum using data from the Human Connectome Project (HCP). The Multiple Automatically Generated Templates (MAGeT) segmentation tool was used to identify the cerebella and 33 anatomically-defined lobules from 327 individuals from the HCP. To characterize normative variation, we estimated population mean volume and variability, assessed differences in hemisphere and sex, and related lobular volume to motor and non-motor behavior. We found that the effects of hemisphere and sex were not homogeneous across all lobules of the cerebellum. Greater volume in the right hemisphere was primarily driven by lobules Crus I, II, and H VIIB, with H VIIIA exhibiting the greatest left>right asymmetry. Relative to total cerebellar gray-matter volume, females had larger Crus II (known to be connected with non-motor regions of the cerebral cortex) while males had larger motor-connected lobules including H V, and VIIIA/B. When relating lobular volume to memory, motor performance, and emotional behavior, we found some evidence for relationships that have previously been identified in the literature. Our observations of normative cerebellar structure and variability in young adults provide evidence for lobule-specific differences in volume and the relationship with sex and behavior - indicating that the cerebellum cannot be considered a single structure with uniform function, but as a set of regions with functions that are likely as

  4. Precerebellin is a cerebellum-specific protein with similarity to the globular domain of complement C1q B chain.

    PubMed Central

    Urade, Y; Oberdick, J; Molinar-Rode, R; Morgan, J I

    1991-01-01

    The cerebellum contains a hexadecapeptide, termed cerebellin, that is conserved in sequence from human to chicken. Three independent, overlapping cDNA clones have been isolated from a human cerebellum cDNA library that encode the cerebellin sequence. The longest clone codes for a protein of 193 amino acids that we term precerebellin. This protein has a significant similarity (31.3% identity, 52.2% similarity) to the globular (non-collagen-like) region of the B chain of human complement component C1q. The region of relatedness extends over approximately 145 amino acids located in the carboxyl terminus of both proteins. Unlike C1q B chain, no collagen-like motifs are present in the amino-terminal regions of precerebellin. The amino terminus of precerebellin contains three possible N-linked glycosylation sites. Although hydrophobic amino acids are clustered at the amino terminus, they do not conform to the classical signal-peptide motif, and no other obvious membrane-spanning domains are predicted from the cDNA sequence. The cDNA predicts that the cerebellin peptide is flanked by Val-Arg and Glu-Pro residues. Therefore, cerebellin is not liberated from precerebellin by the classical dibasic amino acid proteolytic-cleavage mechanism seen in many neuropeptide precursors. In Northern (RNA) blots, precerebellin transcripts, with four distinct sizes (1.8, 2.3, 2.7, and 3.0 kilobases), are abundant in cerebellum. These transcripts are present at either very low or undetectable levels in other brain areas and extraneural structures. A similar pattern of cerebellin precursor transcripts are seen in rat, mouse, and human cerebellum. Furthermore, a partial genomic fragment from mouse shows the same bands in Northern blots as the human cDNA clone. During rat development, precerebellin transcripts mirror the level of cerebellin peptide. Low levels of precerebellin mRNA are seen at birth. Levels increase modestly from postpartum day 1 to 8, then increase more dramatically between

  5. Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway.

    PubMed

    Halbach, Melanie Vanessa; Gispert, Suzana; Stehning, Tanja; Damrath, Ewa; Walter, Michael; Auburger, Georg

    2017-02-01

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disorder with preferential affection of Purkinje neurons, which are known as integrators of calcium currents. The expansion of a polyglutamine (polyQ) domain in the RNA-binding protein ataxin-2 (ATXN2) is responsible for this disease, but the causal roles of deficient ATXN2 functions versus aggregation toxicity are still under debate. Here, we studied mouse mutants with Atxn2 knockout (KO) regarding their cerebellar global transcriptome by microarray and RT-qPCR, in comparison with data from Atxn2-CAG42-knock-in (KIN) mouse cerebellum. Global expression downregulations involved lipid and growth signaling pathways in good agreement with previous data. As a novel effect, downregulations of key factors in calcium homeostasis pathways (the transcription factor Rora, transporters Itpr1 and Atp2a2, as well as regulator Inpp5a) were observed in the KO cerebellum, and some of them also occurred subtly early in KIN cerebellum. The ITPR1 protein levels were depleted from soluble fractions of cerebellum in both mutants, but accumulated in its membrane-associated form only in the SCA2 model. Coimmunoprecipitation demonstrated no association of ITPR1 with Q42-expanded or with wild-type ATXN2. These findings provide evidence that the physiological functions and protein interactions of ATXN2 are relevant for calcium-mediated excitation of Purkinje cells as well as for ATXN2-triggered neurotoxicity. These insights may help to understand pathogenesis and tissue specificity in SCA2 and other polyQ ataxias like SCA1, where inositol regulation of calcium flux and RORalpha play a role.

  6. Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat.

    PubMed

    Amegandjin, Clara A; Jammow, Wafaa; Laforest, Sylvie; Riad, Mustapha; Baharnoori, Moogeh; Badeaux, Frédérique; DesGroseillers, Luc; Murai, Keith K; Pasquale, Elena B; Drolet, Guy; Doucet, Guy

    2016-08-15

    EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Autonomy, natality and freedom: a liberal re-examination of Habermas in the enhancement debate.

    PubMed

    Pugh, Jonathan

    2015-03-01

    Jurgen Habermas has argued that carrying out pre-natal germline enhancements would be inimical to the future child's autonomy. In this article, I suggest that many of the objections that have been made against Habermas' arguments by liberals in the enhancement debate misconstrue his claims. To explain why, I begin by explaining how Habermas' view of personal autonomy confers particular importance to the agent's embodiment and social environment. In view of this, I explain that it is possible to draw two arguments against germline enhancements from Habermas' thought. I call these arguments 'the argument from negative freedom' and 'the argument from natality'. Although I argue that many of the common liberal objections to Habermas are not applicable when his arguments are properly understood, I go on to suggest ways in which supporters of enhancement might appropriately respond to Habermas' arguments. © 2014 The Author. Bioethics published by John Wiley & Sons Ltd.

  8. Familial Vulnerability to ADHD Affects Activity in the Cerebellum in Addition to the Prefrontal Systems

    ERIC Educational Resources Information Center

    Mulder, Martijn J.; Baeyens, Dieter; Davidson, Matthew C.; Casey, B. J.; Van Den Ban, Els; Van Engeland, Herman; Durston, Sarah

    2008-01-01

    The study examines whether cerebellar systems are sensitive to familial risk for ADHD in addition to frontostriatal circuitry. The results conclude that familial vulnerability to ADHD affects activity in both the prefrontal cortex and cerebellum.

  9. Natal plumage characters in rails

    USGS Publications Warehouse

    Wetherbee, D.K.; Meanley, B.

    1965-01-01

    The downy young of the Clapper Rail (Rallus longirostris), King Rail (Rallus elegans), and Virginia Rail (Rallus limicola) are described as totally black in all literature examined by us. Wetherbee (Bird-Banding, 32: 141-159, 1961) noted that some neonates of Virginia Rail from Storrs, Connecticut, had patches of white down below the wings. "Neonatal" pertains to the developmental condition or characters at hatching distinct from the much abused term "natal" which in ornithology pertains to the condition or characters from hatching to acquisition of teleoptile plumage. The presence of similar patches of white down was observed by us in the Clapper Rails at Chincoteague, Virginia (Figure 1). An examination of many hundreds of specimens from the ranges of most of the subspecies of Clapper Rails, including the strongly contrasting R. longirostris saturatus from Louisiana, revealed the almost invariable presence of at least 1 and sometimes as many as 30 white neossoptiles in the anterior abdominal regions of the ventral pterylae. Conversely, no King Rail neonate examined by us has shown a white neossoptile.

  10. Gross morphometric reduction of rats' cerebellum by gamma irradiation was mitigated by pretreatment with Vernonia amygdalina leaf extract.

    PubMed

    Owoeye, O; Farombi, E O; Onwuka, S K

    2011-01-01

    The methanolic extract of Vernonia amygdalina (M) or "bitter leaf" is known for its antioxidant activity, and antioxidants are noted to mitigate radiation damage in tissues. The aim of the present study was to observe the radioprotective effect of M on the cerebellum of gamma irradiated rats using alpha-tocopherol (TOCO) as a reference antioxidant. Forty-two male Wistar rats (n=42) weighing 200-240 g were taken for the study. The study comprised of seven groups, with each group comprising of six (n=6) rats i.e. control, M at 250, and 500 mg/kg/day, radiation only, radiation plus M at 250, and 500 mg/kg/day, and TOCO. After 14 days of treatment administered via oral gavage, rats were irradiated with a single dose of 2.0 Gy of gamma rays on the 15-th day and euthanized the next day. Rats cerebella were removed, fixed in 10% formalin saline, weighed and vernier caliper used to obtain cerebellar dimensions as follows: (i) maximum width, (ii) rostrocaudal dimension, and (iii) dorsoventral extent. Data were analyzed using ANOVA with post-test. Gamma radiation caused a statistically significant reduction of the relative weight of the rats' whole brain, relative weight of the cerebellum, the maximum width, rostrocaudal dimension, and dorsoventral extent of the cerebellum. However, pretreatment with M and TOCO significantly mitigated these effects. This study demonstrated that administration of M and TOCO before 2.0 Gy gamma irradiation reduced significantly the radiation induced gross morphometry changes in rats' cerebellum, suggesting that M may qualify for consideration as a medicinal radioprotector.

  11. Educational Gaps in Medical Care and Health Behavior: Evidence from US Natality Data

    ERIC Educational Resources Information Center

    Price, Joseph; Price, Joshua; Simon, Kosali

    2011-01-01

    The US Natality files provide information on medical procedures and health related behavior during pregnancy and childbirth. The data set represents nearly the universe of mothers who give birth in the US, providing the most complete coverage possible of medical care and health behavior among a specific patient population. We document gaps in…

  12. Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry.

    PubMed

    Miquel, Marta; Vazquez-Sanroman, Dolores; Carbo-Gas, María; Gil-Miravet, Isis; Sanchis-Segura, Carla; Carulli, Daniela; Manzo, Jorge; Coria-Avila, Genaro A

    2016-01-01

    Addiction involves alterations in multiple brain regions that are associated with functions such as memory, motivation and executive control. Indeed, it is now well accepted that addictive drugs produce long-lasting molecular and structural plasticity changes in corticostriatal-limbic loops. However, there are brain regions that might be relevant to addiction other than the prefrontal cortex, amygdala, hippocampus and basal ganglia. In addition to these circuits, a growing amount of data suggests the involvement of the cerebellum in many of the brain functions affected in addicts, though this region has been overlooked, traditionally, in the addiction field. Therefore, in the present review we provide seven arguments as to why we should consider the cerebellum in drug addiction. We present and discuss compelling evidence about the effects of drugs of abuse on cerebellar plasticity, the involvement of the cerebellum in drug-induced cue-related memories, and several findings showing that the instrumental memory and executive functions also recruit the cerebellar circuitry. In addition, a hypothetical model of the cerebellum's role relative to other areas within corticostriatal-limbic networks is also provided. Our goal is not to review animal and human studies exhaustively but to support the inclusion of cerebellar alterations as a part of the physiopathology of addiction disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Contribution of the Cerebellum in Cue-Dependent Force Changes During an Isometric Precision Grip Task.

    PubMed

    Kutz, Dieter F; Schmid, Barbara C; Meindl, Tobias; Timmann, Dagmar; Kolb, Florian P

    2016-08-01

    The "raspberry task" represents a precision grip task that requires continuous adjustment of grip forces and pull forces. During this task, subjects use a specialised grip rod and have to increase the pull force linearly while the rod is locked. The positions of the fingers are unrestrained and freely selectable. From the finger positions and the geometry of the grip rod, a physical lever was derived which is a comprehensive measurement of the subject's grip behaviour. In this study, the involvement of the cerebellum in establishing cued force changes (CFC) was examined. The auditory stimulus was associated with a motor behaviour that has to be readjusted during an ongoing movement that already started. Moreover, cerebellar involvement on grip behaviour was examined. The results show that patients presenting with degenerating cerebellar disease (CBL) were able to elicit CFC and were additionally able to optimise grip behaviour by minimising the lever. Comparison of the results of CBL with a control group of healthy subjects showed, however, that the CFC incidence was significantly lower and the reduction of the lever was less in CBL. Hence, the cerebellum is involved not only in the classical conditioning of reflexes but also in the association of sensory stimuli with complex changes in motor behaviour. Furthermore, the cerebellum is involved in the optimisation of grip behaviour during ongoing movements. Recent studies lead to the assumption that the cerebello-reticulo-spinal pathway might be important for the reduced optimisation of grip behaviour in CBL.

  14. Relationship between structural abnormalities in the cerebellum and dementia, posttraumatic stress disorder and bipolar disorder.

    PubMed

    Baldaçara, Leonardo; Borgio, João Guilherme Fiorani; Araújo, Célia; Nery-Fernandes, Fabiana; Lacerda, Acioly Luiz Taveres; Moraes, Walter André Dos Santos; Montaño, Maria Beatriz Marcondes Macedo; Rocha, Marlos; Quarantini, Lucas C; Schoedl, Aline; Pupo, Mariana; Mello, Marcelo F; Andreoli, Sergio B; Miranda-Scippa, Angela; Ramos, Luiz Roberto; Mari, Jair J; Bressan, Rodrigo Affonseca; Jackowski, Andrea Parolin

    2012-01-01

    New evidence suggests that the cerebellum has structural and functional abnormalities in psychiatric disorders. In this research, the goal was to measure the volume of the cerebellum and its subregions in individuals with psychiatric disorders and to relate these findings to their symptoms. Patients with different degrees of cognitive impairment (Epidemiology of the Elderly - UNIFESP) and patients with post-traumatic stress disorder (PTSD) from population studies were analyzed. Also, patients with bipolar disorder from an outpatient clinic (Center for the Study of Mood and Anxiety Disorders, Universidade Federal da Bahia) were recruited for this study. All subjects underwent a 1.5T structural magnetic resonance scan. Volumetric measures and symptom measurements, by psychometric scales, were performed and compared between patients and controls. The cerebellum volume was reduced in patients with cognitive impairment without dementia and with dementia, in patients with PTSD, and in patients with bipolar disorder compared to controls. In dementia and PTSD, the left cerebellar hemisphere and vermis volume were reduced. In bipolar disorder, volumes of both hemispheres and the vermis were reduced. In the first two studies, these cerebellar volumetric reductions correlated with symptoms of the disease. The exact nature of cerebellar involvement in mental processes is still not fully understood. However, abnormalities in cerebellar structure and its functions have been reported in some of these diseases. Future studies with larger samples are needed to clarify these findings and investigate whether they are important for treatment and prognosis.

  15. Cerebellum and cognition in multiple sclerosis: the fall status matters.

    PubMed

    Kalron, Alon; Allali, Gilles; Achiron, Anat

    2018-04-01

    Cerebellar volume has been linked with cognitive performances in MS; however, the association in terms of fall status has never been compared. Therefore, the objective of the current study was to compare cognitive performance with cerebellar volume between MS fallers and non-fallers. The cross-sectional study included 140 PwMS (96 women). MRI volumetric analysis was based on the FreeSurfer image analysis suite. Volumes of the cerebellar gray and white matter were identified as the region of interest. Cognitive function included scores obtained from a computerized cognitive battery of tests. The sample was divided into fallers and non-fallers. MS fallers demonstrated a lower global cognitive performance and reduced gray and white matter cerebellar volumes compared to non-fallers. A significant association was found between total gray and white matter cerebellar volume and visual spatial subdomain (P value = 0.044 and 0.032, respectively) in the non-fallers group. The association remained significant after controlling for the total cranial volume and neurological disability (P value = 0.026 and 0.047, respectively). A relationship was found between the visual spatial score and the left gray matter cerebellum volume; R 2  = 0.44, P value = 0.021. We believe that a unique relationship exists between the cerebellum structure and cognitive processing according to fall history in PwMS and should be considered when investigating the association between brain functioning and cognitive performances in MS.

  16. The cerebellum: a new key structure in the navigation system

    PubMed Central

    Rochefort, Christelle; Lefort, Julie M.; Rondi-Reig, Laure

    2013-01-01

    Early investigations of cerebellar function focused on motor learning, in particular on eyeblink conditioning and adaptation of the vestibulo-ocular reflex, and led to the general view that cerebellar long-term depression (LTD) at parallel fiber (PF)–Purkinje cell (PC) synapses is the neural correlate of cerebellar motor learning. Thereafter, while the full complexity of cerebellar plasticities was being unraveled, cerebellar involvement in more cognitive tasks—including spatial navigation—was further investigated. However, cerebellar implication in spatial navigation remains a matter of debate because motor deficits frequently associated with cerebellar damage often prevent the dissociation between its role in spatial cognition from its implication in motor function. Here, we review recent findings from behavioral and electrophysiological analyses of cerebellar mutant mouse models, which show that the cerebellum might participate in the construction of hippocampal spatial representation map (i.e., place cells) and thereby in goal-directed navigation. These recent advances in cerebellar research point toward a model in which computation from the cerebellum could be required for spatial representation and would involve the integration of multi-source self-motion information to: (1) transform the reference frame of vestibular signals and (2) distinguish between self- and externally-generated vestibular signals. We eventually present herein anatomical and functional connectivity data supporting a cerebello-hippocampal interaction. Whilst a direct cerebello-hippocampal projection has been suggested, recent investigations rather favor a multi-synaptic pathway involving posterior parietal and retrosplenial cortices, two regions critically involved in spatial navigation. PMID:23493515

  17. Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum.

    PubMed

    Riecker, A; Ackermann, H; Wildgruber, D; Dogil, G; Grodd, W

    2000-06-26

    Aside from spoken language, singing represents a second mode of acoustic (auditory-vocal) communication in humans. As a new aspect of brain lateralization, functional magnetic resonance imaging (fMRI) revealed two complementary cerebral networks subserving singing and speaking. Reproduction of a non-lyrical tune elicited activation predominantly in the right motor cortex, the right anterior insula, and the left cerebellum whereas the opposite response pattern emerged during a speech task. In contrast to the hemodynamic responses within motor cortex and cerebellum, activation of the intrasylvian cortex turned out to be bound to overt task performance. These findings corroborate the assumption that the left insula supports the coordination of speech articulation. Similarly, the right insula might mediate temporo-spatial control of vocal tract musculature during overt singing. Both speech and melody production require the integration of sound structure or tonal patterns, respectively, with a speaker's emotions and attitudes. Considering the widespread interconnections with premotor cortex and limbic structures, the insula is especially suited for this task.

  18. Proceedings of the workshop on Cerebellum, Basal Ganglia and Cortical Connections Unmasked in Health and Disorder held in Brno, Czech Republic, October 17th, 2013.

    PubMed

    Bareš, Martin; Apps, Richard; Kikinis, Zora; Timmann, Dagmar; Oz, Gulin; Ashe, James J; Loft, Michaela; Koutsikou, Stella; Cerminara, Nadia; Bushara, Khalaf O; Kašpárek, Tomáš

    2015-04-01

    The proceedings of the workshop synthesize the experimental, preclinical, and clinical data suggesting that the cerebellum, basal ganglia (BG), and their connections play an important role in pathophysiology of various movement disorders (like Parkinson's disease and atypical parkinsonian syndromes) or neurodevelopmental disorders (like autism). The contributions from individual distinguished speakers cover the neuroanatomical research of complex networks, neuroimaging data showing that the cerebellum and BG are connected to a wide range of other central nervous system structures involved in movement control. Especially, the cerebellum plays a more complex role in how the brain functions than previously thought.

  19. Abnormal functional activation and maturation of ventromedial prefrontal cortex and cerebellum during temporal discounting in autism spectrum disorder.

    PubMed

    Murphy, Clodagh M; Christakou, Anastasia; Giampietro, Vincent; Brammer, Michael; Daly, Eileen M; Ecker, Christine; Johnston, Patrick; Spain, Debbie; Robertson, Dene M; Murphy, Declan G; Rubia, Katya

    2017-11-01

    People with autism spectrum disorder (ASD) have poor decision-making and temporal foresight. This may adversely impact on their everyday life, mental health, and productivity. However, the neural substrates underlying poor choice behavior in people with ASD, or its' neurofunctional development from childhood to adulthood, are unknown. Despite evidence of atypical structural brain development in ASD, investigation of functional brain maturation in people with ASD is lacking. This cross-sectional developmental fMRI study investigated the neural substrates underlying performance on a temporal discounting (TD) task in 38 healthy (11-35 years old) male adolescents and adults with ASD and 40 age, sex, and IQ-matched typically developing healthy controls. Most importantly, we assessed group differences in the neurofunctional maturation of TD across childhood and adulthood. Males with ASD had significantly poorer task performance and significantly lower brain activation in typical regions that mediate TD for delayed choices, in predominantly right hemispheric regions of ventrolateral/dorsolateral prefrontal cortices, ventromedial prefrontal cortex, striatolimbic regions, and cerebellum. Importantly, differential activation in ventromedial frontal cortex and cerebellum was associated with abnormal functional brain maturation; controls, in contrast to people with ASD, showed progressively increasing activation with increasing age in these regions; which furthermore was associated with performance measures and clinical ASD measures (stereotyped/restricted interests). Findings provide first cross-sectional evidence that reduced activation of TD mediating brain regions in people with ASD during TD is associated with abnormal functional brain development in these regions between childhood and adulthood, and this is related to poor task performance and clinical measures of ASD. Hum Brain Mapp 38:5343-5355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Structural evolution and tectonic context of the Mfongosi Group, Natal thrust front, Tugela terrane, South Africa

    NASA Astrophysics Data System (ADS)

    Basson, I. J.; Watkeys, M. K.; Phillips, D.

    2005-11-01

    The Mesoproterozoic Natal Metamorphic Province of Kwazulu-Natal in South Africa is an assemblage of several tectonic units, including accreted oceanic island arcs, obducted oceanic crust and deformed basin material. The highly deformed Mfongosi Group occurs at the leading edge of collision (the Natal thrust front), against and directly overlying the southern margin of the Kaapvaal Craton. Structures within the Mfongosi Group record "local" D1 and D2 events, the first of which was "oblique obduction", with predominantly N- to NNE-verging thrusting ( D1). This was followed by sinistral transpression combined with vertical constriction, forming SW-plunging kink folds and SW-plunging prolate pillow basalts ( D2). The third and final event ( D3) was E-W to ESE-WNW extension in a post-thrusting phase, defined by fibrous antitaxial quartz-calcite veining. The westernmost portion of the Mfongosi Group, the Ngubevu area, shows significantly higher finite strains (up to Rf = 12) compared to central Mfongosi and eastern Nkandlha areas ( Rf = 1.5 and less), suggesting highly oblique, largely NE-directed initial collision. Deformation of the NTF in the context of nappe emplacement is constrained by 40Ar/ 39Ar dating of post-cataclastic nematoblastic/porphyroblastic hornblende of the Manyane amphibolite close to the thrust between the Tugela nappe and the Mfongosi Group in the Mfongosi area. Hornblende overgrew the products of low-temperature deformation during the "local" D1 and D2. A minimum age of 1171 ± 16 Ma (95% conf., including J-error; weighted by √MSWD; MSWD = 4.3) is obtained for the tectonic juxtaposition of the Tugela nappe against the southern portions of the "Mfongosi Basin". This "local" D1 and D2 of the Mfongosi Group pre-dates the regional "oblique D1" and "left-lateral D2" previously determined for the central and southern terranes of the Natal Metamorphic Province by other researchers. Comparison of the 1171 ± 16 Ma age, with ages for shearing and

  1. An investigation into the level of empowerment of rural women in the Zululand district of KwaZulu-Natal province of South Africa.

    PubMed

    Bhengu, B R

    2010-06-01

    The aim of the study was to evaluate the outcome of the empowerment of rural women in relation to gender issues, power, and communication within the Zululand District of KwaZulu-Natal in SouthAfrica after implementation of a four-year Primary Health Care project in partnership with the Provincial Department of Health, and two Schools of Nursing at the University of KwaZulu-Natal and McMaster University in Canada. This project is based on substantial evidence which reveals that rural women are being neglected to the extent that these women have missed out on opportunities for development. The reasons for this disempowerment of women, particularly rural women, are thought to be due to the feminisation of poverty, as well as female submission, educational deprivation, privacy of domestic violence, exploitation, domination by men and cultural oppression (patriarchy). A qualitative research approach was used. Focus group discussion was utilised as the data collection technique, and this was also applied during the collection of baseline data. An interview guide covered issues of concern in the communities and households, including what the women would, or had done about these, how they engaged in decision-making in their families, how they handled situations when there was a difference of opinion, and their awareness of, and ability to claim their rights, including control of their lives. The data was collected from six clinics, from groups of six to ten women in the predominantly rural Zululand District of KwaZulu-Natal. The project has revealed improvement in the women's realisation of their rights, albeit limited, in communication, self-confidence, and reliance, including partnerships between Primary Health Care Nurses and women's groups. The formation of women's groups facilitated community development and participation in their own health, socio-economic and emotional development. The project suggests that such groups be encouraged and allowed to network for

  2. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P

    2015-05-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Chronic exposure to hypergravity affects thyrotropin-releasing hormone levels in rat brainstem and cerebellum

    NASA Technical Reports Server (NTRS)

    Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.

    1998-01-01

    In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.

  4. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Holschneider, Daniel P.

    2015-01-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson’s disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4 weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [14C]-iodoantipyrine 1 week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. PMID:25747184

  5. Vascular changes in the cerebellum of Norrin /Ndph knockout mice correlate with high expression of Norrin and Frizzled-4.

    PubMed

    Luhmann, Ulrich F O; Neidhardt, John; Kloeckener-Gruissem, Barbara; Schäfer, Nikolaus F; Glaus, Esther; Feil, Silke; Berger, Wolfgang

    2008-05-01

    X-linked Norrie disease, familial exudative vitreoretinopathy (FEVR), Coat's disease and retinopathy of prematurity are severe human eye diseases and can all be caused by mutations in the Norrie disease pseudoglioma gene. They all show vascular defects and characteristic features of retinal hypoxia. Only Norrie disease displays additional neurological symptoms, which are sensorineural hearing loss and mental retardation. In the present study, we analysed transcript levels of the ligand Norrin (Ndph) and its two receptors Frizzled-4 (Fzd4) and LDL-related protein receptor 5 (Lrp5) in six different brain regions (cerebellum, cortex, hippocampus, olfactory bulb, pituitary and brain stem) of 6- to 8-month-old wild-type and Ndph knockout mice by quantitative real-time PCR. No effect of the Ndph knockout allele on Fzd4 or Lrp5 receptor expression was found. Furthermore, no alterations of the transcript levels of three hypoxia-regulated angiogenic factors (Vegfa, Itgrb3 and Tie1) were observed in the absence of Norrin. Interestingly, we identified significant differences in Ndph, Fzd4 and Lrp5 transcript levels in brain regions of wild-type mice and observed highest expression of Norrin and frizzled-4 in cerebellum. Transcript analyses were correlated with morphological data obtained from cerebellum and immunohistochemical studies of blood vessels in different brain regions. Vessel density was reduced in the cerebellum of Ndph knockout mice but the number of Purkinje and granular cells was not altered. This provides the first description of a brain phenotype in Ndph knockout mice, which will help to elucidate the role of Norrin in the brain.

  6. Morphological and immunohistochemical analysis of apoptosis in the cerebellum of rats subjected to focal cerebral ischemia with or without alcoholism model.

    PubMed

    Carvalho, Camila Albuquerque Melo de; Tirapelli, Daniela Pretti da Cunha; Rodrigues, Andressa Romualdo; Lizarte, Fermino Sanches; Novais, Paulo Cézar; Silva, Jairo Pinheiro; Carlotti, Carlos Gilberto; Colli, Benedicto Oscar; Tirapelli, Luís Fernando

    2016-09-01

    To evaluated histopathological changes, morphometric and expression of proteins CASPASE-3, BCL-2 and XIAP related to apoptosis in the cerebellum after induction of temporary focal cerebral ischemia followed by reperfusion, with or without a model of chronic alcoholism. Fifty Wistar rats were used and divided into: control group (C), sham group (S), ischemic group (I), alcoholic group (A), and ischemic and alcoholic group (IA). The cerebellum samples collected were stained for histopathological and morphometric analysis and immunohistochemistry study. Histopathological changes were observed a greater degree in animals in groups A and IA. The morphometric study showed no difference in the amount of cells in the granular layer of the cerebellum between the groups. The expression of CASPASE-3 was higher than BCL-2 and XIAP in the groups A and IA. We observed correlation between histopathological changes and the occurrence of apoptosis in cerebellar cortex.

  7. Correlation of nitric oxide levels in the cerebellum and spinal cord of experimental autoimmune encephalomyelitis rats with clinical symptoms.

    PubMed

    Ljubisavljevic, Srdjan; Stojanovic, Ivana; Pavlovic, Dusica; Milojkovic, Maja; Vojinovic, Slobodan; Sokolovic, Dusan; Stevanovic, Ivana

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a well-established cell-mediated autoimmune inflammatory disease of the CNS, which has been used as a model of the human demyelinating disease. EAE is characterized by infiltration of the CNS by lymphocytes and mononuclear cells, microglial and astrocytic hypertrophy, and demyelination which cumulatively contribute to clinical expression of the disease. EAE was induced in female Sprague-Dawley rats, 3 months old (300 g ± 20 g), by immunization with myelin basic protein (MBP) in combination with Complete Freund's adjuvant (CFA). The animals were divided into 7 groups: control, EAE, CFA, EAE + aminoguanidine (AG), AG, EAE + N-acetyl-L-cysteine (NAC) and NAC. The animals were sacrificed 15 days after EAE induction, and the level of nitric oxide (NO(·)) production was determined by measuring nitrite and nitrate concentrations in 10% homogenate of cerebellum and spinal cord. Obtained results showed that the level of NO(·) was significantly increased in all examined tissues of the EAE rats compared to the control and CFA groups. Also, AG and NAC treatment decreased the level of NO(·) in all tissues compared to the EAE group. The level of NO(·) is increased significantly in the spinal cord compared to the cerebellum. The clinical course of the EAE was significantly decreased in the EAE groups treated with AG and NAC during the development of the disease compared to EAE group and its correlates with the NO(·) level in cerebellum and spinal cord. The findings of our work suggest that NO(·) and its derivatives play an important role in multiple sclerosis (MS). It may be the best target for new therapies in human demyelinating disease and recommend the new therapeutic approaches based on a decreased level of NO(·) during the course of MS.

  8. Motor and linguistic linking of space and time in the cerebellum.

    PubMed

    Oliveri, Massimiliano; Bonnì, Sonia; Turriziani, Patrizia; Koch, Giacomo; Lo Gerfo, Emanuele; Torriero, Sara; Vicario, Carmelo Mario; Petrosini, Laura; Caltagirone, Carlo

    2009-11-20

    Recent literature documented the presence of spatial-temporal interactions in the human brain. The aim of the present study was to verify whether representation of past and future is also mapped onto spatial representations and whether the cerebellum may be a neural substrate for linking space and time in the linguistic domain. We asked whether processing of the tense of a verb is influenced by the space where response takes place and by the semantics of the verb. Responses to past tense were facilitated in the left space while responses to future tense were facilitated in the right space. Repetitive transcranial magnetic stimulation (rTMS) of the right cerebellum selectively slowed down responses to future tense of action verbs; rTMS of both cerebellar hemispheres decreased accuracy of responses to past tense in the left space and to future tense in the right space for non-verbs, and to future tense in the right space for state verbs. The results suggest that representation of past and future is mapped onto spatial formats and that motor action could represent the link between spatial and temporal dimensions. Right cerebellar, left motor brain networks could be part of the prospective brain, whose primary function is to use past experiences to anticipate future events. Both cerebellar hemispheres could play a role in establishing the grammatical rules for verb conjugation.

  9. Pre- and post-natal exposure to antibiotics and the development of eczema, recurrent wheezing and atopic sensitization in children up to the age of 4 years.

    PubMed

    Dom, S; Droste, J H J; Sariachvili, M A; Hagendorens, M M; Oostveen, E; Bridts, C H; Stevens, W J; Wieringa, M H; Weyler, J J

    2010-09-01

    Little data are available on the relationship between indirect antibiotic exposure of the child in utero or during lactation and allergic diseases. On the other hand, several studies have been conducted on the association with direct post-natal antibiotic exposure, but the results are conflicting. The aim of this study was to investigate pre- and post-natal antibiotic exposure and the subsequent development of eczema, recurrent wheeze and atopic sensitization in children up to the age of 4 years. We conducted an aetiologic study in 773 children based on a prospective birth cohort project in which environmental and health information were collected using questionnaires. Antibiotic exposure was assessed as maternal antibiotic intake during pregnancy and during lactation and as medication intake of the child. The chronology of exposures and outcomes was taken into account during the data processing. At the age of 1 and 4 years, a blood sample was taken for the quantification of specific IgE. Prenatal antibiotic exposure was significantly positively associated with eczema, whereas no association was found with recurrent wheeze and atopic sensitization. We found a positive, although statistically not significant, association between antibiotic exposure through breastfeeding and recurrent wheeze. Neither eczema nor atopic sensitization was significantly associated with antibiotic exposure through breastfeeding. Finally, we observed a negative association between the use of antibiotics in the first year of life and eczema and atopic sensitization, and also between antibiotic use after the first year of life and recurrent wheeze, eczema and atopic sensitization. Indirect exposure to antibiotics (in utero and during lactation) increases the risk for allergic symptoms in children, while direct exposure to antibiotics appears to be protective. The biological mechanisms underlying these findings still need to be elucidated.

  10. The Impact of Entrepreneurial Competencies on Household Food Security Among Smallholder Farmers in KwaZulu Natal, South Africa.

    PubMed

    Sinyolo, Sikhulumile; Mudhara, Maxwell

    2018-01-01

    This paper investigates the impact of entrepreneurial competencies on food security among rural farming households in KwaZulu-Natal, South Africa (SA). A total of 513 rural households were randomly selected, and the descriptive results indicated that 51% of these households were food insecure, and they were somewhat negative about their entrepreneurial competencies. The estimated results indicated that entrepreneurship had a positive impact on food security. The study findings suggest that stimulating entrepreneurship through developing entrepreneurial competencies among the farming households is important for improved food security among rural households in SA.

  11. The expression of epidermal growth factor (EGF) and its receptor (EGFR) during post-natal testes development in the yak.

    PubMed

    Pan, Y; Cui, Y; Yu, S; Zhang, Q; Fan, J; Abdul Rasheed, B; Yang, K

    2014-12-01

    Growth factors play critical role in cell proliferation, regulate tissue differentiation and modulate organogenesis. Several growth factors have been identified in the testes of various mammalian species in last few years. In present investigation, the objective was to determine the expression of epidermal growth factor (EGF) and the epidermal growth factor receptor (EGFR) in yak testicular tissue by relative quantitative real time polymerase chain reaction (RT-PCR), Western blot (WB) and immunohistochemistry (IHC) from mRNA and protein levels. The testicular tissues were collected from male yak at 6 and 24 months old. Results of RT-PCR and WB showed that the expression quantity of EGF and EGFR at 24 months of age was higher than at 6 months, and the increase rate of EGFR on mRNA and protein levels was higher than the increase rate EGF during post-natal testes development. Positive staining for EGF and EGFR was very low and mainly localized to Leydig cells testes at 6 months of age with immunohistochemistry, and seminiferous tubules were not observed. At 24 month of age, both the EGF and EGFR could be detected in Leydig cells, peritubular myoid cells, sertoli cells and germ cells of the yak testes. However, EGF and EGFR were localized to preferential adluminal compartment and basal compartment in the seminiferous tubules, respectively. In conclusion, the findings in present studies suggest that EGF and EGFR as important paracrine and/or autocrine regulators in yak testes development and spermatogenesis. © 2014 Blackwell Verlag GmbH.

  12. Juvenile Survival in Common Loons Gavia Immer: Effects of Natal Lake Size and pH

    EPA Science Inventory

    Survival is a vexing parameter to measure in many young birds because of dispersal and delayed impacts of natal rearing conditions on fitness. Drawing upon marking and resighting records from an 18-year study of territorial behavior, we used Cormack-Jolly-Seber analysis with Prog...

  13. Evaluation of Teaching Signals for Motor Control in the Cerebellum during Real-World Robot Application.

    PubMed

    Pinzon Morales, Ruben Dario; Hirata, Yutaka

    2016-12-20

    Motor learning in the cerebellum is believed to entail plastic changes at synapses between parallel fibers and Purkinje cells, induced by the teaching signal conveyed in the climbing fiber (CF) input. Despite the abundant research on the cerebellum, the nature of this signal is still a matter of debate. Two types of movement error information have been proposed to be plausible teaching signals: sensory error (SE) and motor command error (ME); however, their plausibility has not been tested in the real world. Here, we conducted a comparison of different types of CF teaching signals in real-world engineering applications by using a realistic neuronal network model of the cerebellum. We employed a direct current motor (simple task) and a two-wheeled balancing robot (difficult task). We demonstrate that SE, ME or a linear combination of the two is sufficient to yield comparable performance in a simple task. When the task is more difficult, although SE slightly outperformed ME, these types of error information are all able to adequately control the robot. We categorize granular cells according to their inputs and the error signal revealing that different granule cells are preferably engaged for SE, ME or their combination. Thus, unlike previous theoretical and simulation studies that support either SE or ME, it is demonstrated for the first time in a real-world engineering application that both SE and ME are adequate as the CF teaching signal in a realistic computational cerebellar model, even when the control task is as difficult as stabilizing a two-wheeled balancing robot.

  14. Evaluation of Teaching Signals for Motor Control in the Cerebellum during Real-World Robot Application

    PubMed Central

    Pinzon Morales, Ruben Dario; Hirata, Yutaka

    2016-01-01

    Motor learning in the cerebellum is believed to entail plastic changes at synapses between parallel fibers and Purkinje cells, induced by the teaching signal conveyed in the climbing fiber (CF) input. Despite the abundant research on the cerebellum, the nature of this signal is still a matter of debate. Two types of movement error information have been proposed to be plausible teaching signals: sensory error (SE) and motor command error (ME); however, their plausibility has not been tested in the real world. Here, we conducted a comparison of different types of CF teaching signals in real-world engineering applications by using a realistic neuronal network model of the cerebellum. We employed a direct current motor (simple task) and a two-wheeled balancing robot (difficult task). We demonstrate that SE, ME or a linear combination of the two is sufficient to yield comparable performance in a simple task. When the task is more difficult, although SE slightly outperformed ME, these types of error information are all able to adequately control the robot. We categorize granular cells according to their inputs and the error signal revealing that different granule cells are preferably engaged for SE, ME or their combination. Thus, unlike previous theoretical and simulation studies that support either SE or ME, it is demonstrated for the first time in a real-world engineering application that both SE and ME are adequate as the CF teaching signal in a realistic computational cerebellar model, even when the control task is as difficult as stabilizing a two-wheeled balancing robot. PMID:27999381

  15. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    PubMed

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  16. Neurog1 Genetic Inducible Fate Mapping (GIFM) Reveals the Existence of Complex Spatiotemporal Cyto-Architectures in the Developing Cerebellum.

    PubMed

    Obana, Edwin A; Lundell, Travis G; Yi, Kevin J; Radomski, Kryslaine L; Zhou, Qiong; Doughty, Martin L

    2015-06-01

    Neurog1 is a pro-neural basic helix-loop-helix (bHLH) transcription factor expressed in progenitor cells located in the ventricular zone and subsequently the presumptive white matter tracts of the developing mouse cerebellum. We used genetic inducible fate mapping (GIFM) with a transgenic Neurog1-CreER allele to characterize the contributions of Neurog1 lineages to cerebellar circuit formation in mice. GIFM reveals Neurog1-expressing progenitors are fate-mapped to become Purkinje cells and all GABAergic interneuron cell types of the cerebellar cortex but not glia. The spatiotemporal sequence of GIFM is unique to each neuronal cell type. GIFM on embryonic days (E) 10.5 to E12.5 labels Purkinje cells with different medial-lateral settling patterns depending on the day of tamoxifen delivery. GIFM on E11.5 to P7 labels interneurons and the timing of tamoxifen administration correlates with the final inside-to-outside resting position of GABAergic interneurons in the cerebellar cortex. Proliferative status and long-term BrdU retention of GIFM lineages reveals Purkinje cells express Neurog1 around the time they become post-mitotic. In contrast, GIFM labels mitotic and post-mitotic interneurons. Neurog1-CreER GIFM reveals a correlation between the timing of Neurog1 expression and the spatial organization of GABAergic neurons in the cerebellar cortex with possible implications for cerebellar circuit assembly.

  17. Effects of perinatal hypo- and hyperthyroidism on the levels of nerve growth factor and its low-affinity receptor in cerebellum.

    PubMed

    Figueiredo, B C; Otten, U; Strauss, S; Volk, B; Maysinger, D

    1993-04-16

    Deficits or excesses of thyroid hormones during critical periods of mammalian cerebellar development can lead to profound biochemical and morphological abnormalities in this system. The goal of this study was to investigate the effects of perinatal hypo- and hyperthyroidism on the ontogeny of nerve growth factor (NGF) and its low-affinity receptor (p75NGFR) in the rat cerebellum. The concentration of NGF and of p75NGFR immunoreactivity (IR) were measured, several days after birth, in cerebella of rats which had received propylthiouracil (PTU) or thyroxine. NGF concentration was markedly enhanced only on postnatal day 2 (P2) in hyperthyroid rats, whereas in hypothyroid (PTU-treated) rats NGF values were similar to age-matched controls. These observations suggest that thyroid hormone affects NGF synthesis during early periods of cerebellar development. In Purkinje cells of control animals, p75NGFR IR peaked at P10. In hypothyroid rats, the expression of p75NGFR was retarded, peaking at P15, whereas in hyperthyroid rats it was advanced, peaking at P8. The increased p75NGFR IR found in Purkinje cell bodies and the delayed disappearance of p75NGFR IR from the external granular layer of hypothyroid rats suggest different roles for thyroid hormone in the developing cerebellum. We conclude that p75NGFR and NGF are independently regulated by thyroid hormone during critical periods of cerebellar development. The effect of thyroid hormone deficiency on p75NGFR content in Purkinje cells may involve complex mechanisms such as impaired efficiency of axonal transport.

  18. Humor, laughter, and the cerebellum: insights from patients with acute cerebellar stroke.

    PubMed

    Frank, B; Andrzejewski, K; Göricke, S; Wondzinski, E; Siebler, M; Wild, B; Timmann, D

    2013-12-01

    Extent of cerebellar involvement in cognition and emotion is still a topic of ongoing research. In particular, the cerebellar role in humor processing and control of laughter is not well known. A hypermetric dysregulation of affective behavior has been assumed in cerebellar damage. Thus, we aimed at investigating humor comprehension and appreciation as well as the expression of laughter in 21 patients in the acute or subacute state after stroke restricted to the cerebellum, and in the same number of matched healthy control subjects. Patients with acute and subacute cerebellar damage showed preserved comprehension and appreciation of humor using a validated humor test evaluating comprehension, funniness and aversiveness of cartoons ("3WD Humor Test"). Additionally, there was no difference when compared to healthy controls in the number and intensity of facial reactions and laughter while observing jokes, humorous cartoons, or video sketches measured by the Facial Action Coding System. However, as depression scores were significantly increased in patients with cerebellar stroke, a concealing effect of accompanying depression cannot be excluded. Current findings add to descriptions in the literature that cognitive or affective disorders in patients with lesions restricted to the cerebellum, even in the acute state after damage, are frequently mild and might only be present in more sensitive or specific tests.

  19. Stress exposure in early post-natal life reduces telomere length: an experimental demonstration in a long-lived seabird

    PubMed Central

    Herborn, Katherine A.; Heidinger, Britt J.; Boner, Winnie; Noguera, Jose C.; Adam, Aileen; Daunt, Francis; Monaghan, Pat

    2014-01-01

    Exposure to stressors early in life is associated with faster ageing and reduced longevity. One important mechanism that could underlie these late life effects is increased telomere loss. Telomere length in early post-natal life is an important predictor of subsequent lifespan, but the factors underpinning its variability are poorly understood. Recent human studies have linked stress exposure to increased telomere loss. These studies have of necessity been non-experimental and are consequently subjected to several confounding factors; also, being based on leucocyte populations, where cell composition is variable and some telomere restoration can occur, the extent to which these effects extend beyond the immune system has been questioned. In this study, we experimentally manipulated stress exposure early in post-natal life in nestling European shags (Phalacrocorax aristotelis) in the wild and examined the effect on telomere length in erythrocytes. Our results show that greater stress exposure during early post-natal life increases telomere loss at this life-history stage, and that such an effect is not confined to immune cells. The delayed effects of increased telomere attrition in early life could therefore give rise to a ‘time bomb’ that reduces longevity in the absence of any obvious phenotypic consequences early in life. PMID:24648221

  20. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex

    PubMed Central

    Baarbé, Julianne K.; Yielder, Paul; Haavik, Heidi; Holmes, Michael W. R.

    2018-01-01

    The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs) produced by motor cortex stimulation alone, called cerebellar inhibition (CBI). Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation) would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18–27 years) or sham control (13 participants, 19–24 years). Twelve healthy controls (20–27 years) also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP) vs. healthy controls who disinhibited (98 ± 49% of test MEP, P<0.001), while the spinal manipulation group facilitated (146 ± 95% of test MEP, P<0.001). Greater inhibition in neck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain. PMID:29489878

  1. The ammonite genus Prionocycloceras (Spath, 1926), from the Coniacian of KwaZulu-Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Klinger, Herbert C.; Kennedy, William J.

    2016-12-01

    Subprionocyclus latiumbilicatus (Van Hoepen, 1968), and Subprionocyclus obesus (Van Hoepen, 1968), are revised, and referred to Prionocycloceras (Spath, 1926), a genus not previously recognised from the South African Cretaceous. The material comes from the Middle and Upper Coniacian St Lucia Formation of northern KwaZulu-Natal.

  2. Parental mood during pregnancy and post-natally is associated with offspring risk of Tourette syndrome or chronic tics: prospective data from the Avon Longitudinal Study of Parents and Children (ALSPAC).

    PubMed

    Ben-Shlomo, Y; Scharf, J M; Miller, L L; Mathews, C A

    2016-04-01

    Little is known about risk factors for Tourette syndrome (TS) and chronic tic disorders (CT) but maternal psychological morbidity in pregnancy may be associated with TS/CT. We examined whether pre- and post-natal parental anxiety and/or depression are associated with risk of TS/CT in the Avon Longitudinal Study of Parents and Children. We compared self-reported anxiety and depression measures collected prospectively at four time points (18 and 32 weeks prenatally, and 8 weeks and 8 months post-natally) among parents of children who subsequently met criteria for TS/CT at 13 years of age as compared to other children from the cohort. We adjusted for various socioeconomic measures and tested both for time period-specific exposure and chronic exposure using multivariable logistic regression models. 122 children had TS/CT (50 TS, 72 CT) and 5968 children had no tics. In crude analyses, both pre- and post-natal maternal anxiety and depression, but only post-natal paternal depression at 8 months, showed associations with TS/CT. In the final, adjusted multivariable models, chronic maternal anxiety (odds ratio 2.17, 95% CI 1.23, 3.84, p = 0.007) and pre-natal maternal depression (odds ratio 1.86, 95% CI 1.02, 3.39, p = 0.04) showed associations with TS/CT though the latter was consistent with chance (p = 0.07) after adjustment for past maternal depression. We find associations between maternal psychological morbidity pre- and post-natally and risk of future TS/CT in offspring. These associations may reflect either shared genetic susceptibility or a pre-natal exposure. Further work is required to see if these findings can be replicated in larger datasets.

  3. Apoptosis in the cerebellum of dogs with distemper.

    PubMed

    Moro, L; Martins, A S; Alves, C M; Santos, F G A; Del Puerto, H L; Vasconcelos, A C

    2003-06-01

    Canine distemper virus (CDV) may induce multifocal demyelination in the central nervous system of infected dogs. The pathogenesis of this process is not clear. The present work identifies the presence of apoptotic cells in white and grey matter of dogs'cerebellum, naturally infected with CDV. Fifteen dogs with clinical signs of canine distemper that tested positive for CDV nucleoprotein were used. Brain specimens were processed and embedded in paraffin. Sections 5 microm thick were stained with hematoxylin-eosin and Shorr. Other sections were submitted to TUNEL reaction and to immunohistochemistry for CDV nucleoprotein detection. Acute and chronic demyelinated plaques were observed in the white matter, while apoptosis occurred particularly in the granular layer of grey matter. Apoptosis seems to play an important role in the pathogenesis of canine distemper demyelination.

  4. Improvement in motor performance of Weaver mutant mice following lesions of the cerebellum.

    PubMed

    Grüsser, C; Grüsser-Cornehls, U

    1998-12-01

    In Weaver mutants (B6CBA wv/wv) cerebellar granule cells degenerate almost completely postnatally. A partial loss of Purkinje cells (PC) and a degeneration of dopaminergic cells in the substantia nigra have also been found. Weaver mice suffer from striking motor symptoms, including difficulty in walking without toppling over. In an attempt to influence the poor motor performance, the cerebellum in young animals was removed, thus eliminating the faulty output of surviving PCs, demonstrated electrophysiologically. Unoperated Weaver, lesioned wildtypes and one sham mouse were used as controls. Before and after operation, a battery of behavioural tests was performed. In Weaver mice, tumbling to the side (t) and the relation of t to the motor activity (k) while traversing an open-field matrix, (t/k), improved considerably, as did manoeuvring on a slanted wire mesh, but keeping balance on a wooden bench did not to the same degree. Locomotor activity alone improved in some animals. In wildtypes no significant changes occurred after operation, with the exception of a strong reduction in locomotor activity. The experiments demonstrate that the motor performance in Weaver mutant mice benefits from removal of their cerebellum.

  5. CDKL5 knockout leads to altered inhibitory transmission in the cerebellum of adult mice.

    PubMed

    Sivilia, S; Mangano, C; Beggiato, S; Giuliani, A; Torricella, R; Baldassarro, V A; Fernandez, M; Lorenzini, L; Giardino, L; Borelli, A C; Ferraro, L; Calzà, L

    2016-06-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 gene (CDKL5) are associated to severe neurodevelopmental alterations including motor symptoms. In order to elucidate the neurobiological substrate of motor symptoms in CDKL5 syndrome, we investigated the motor function, GABA and glutamate pathways in the cerebellum of CDKL5 knockout female mice. Behavioural data indicate that CDKL5-KO mice displayed impaired motor coordination on the Rotarod test, and altered steps, as measured by the gait analysis using the CatWalk test. A higher reduction in spontaneous GABA efflux, than that in glutamate, was observed in CDKL5-KO mouse cerebellar synaptosomes, leading to a significant increase of spontaneous glutamate/GABA efflux ratio in these animals. On the contrary, there were no differences between groups in K(+) -evoked GABA and glutamate efflux. The anatomical analysis of cerebellar excitatory and inhibitory pathways showed a selective defect of the GABA-related marker GAD67 in the molecular layer in CDKL5-KO mice, while the glutamatergic marker VGLUT1 was unchanged in the same area. Fine cerebellar structural abnormalities such as a reduction of the inhibitory basket 'net' estimated volume and an increase of the pinceau estimated volume were also observed in CDKL5-KO mice. Finally, the BDNF mRNA expression level in the cerebellum, but not in the hippocampus, was reduced compared with WT animals. These data suggest that CDKL5 deletion during development more markedly impairs the establishment of a correct GABAergic cerebellar network than that of glutamatergic one, leading to the behavioural symptoms associated with CDKL5 mutation. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  6. Your actions in my cerebellum: subclinical deficits in action observation in patients with unilateral chronic cerebellar stroke.

    PubMed

    Cattaneo, Luigi; Fasanelli, Monica; Andreatta, Olaf; Bonifati, Domenico Marco; Barchiesi, Guido; Caruana, Fausto

    2012-03-01

    Empirical evidence indicates that cognitive consequences of cerebellar lesions tend to be mild and less important than the symptoms due to lesions to cerebral areas. By contrast, imaging studies consistently report strong cerebellar activity during tasks of action observation and action understanding. This has been interpreted as part of the automatic motor simulation process that takes place in the context of action observation. The function of the cerebellum as a sequencer during executed movements makes it a good candidate, within the framework of embodied cognition, for a pivotal role in understanding the timing of action sequences. Here, we investigated a cohort of eight patients with chronic, first-ever, isolated, ischemic lesions of the cerebellum. The experimental task consisted in identifying a plausible sequence of pictures from a randomly ordered group of still frames extracted from (a) a complex action performed by a human actor ("biological action" test) or (b) a complex physical event occurring to an inanimate object ("folk physics" test). A group of 16 healthy participants was used as control. The main result showed that cerebellar patients performed significantly worse than controls in both sequencing tasks, but performed much worse in the "biological action" test than in the "folk physics" test. The dissociation described here suggests that observed sequences of simple motor acts seem to be represented differentially from other sequences in the cerebellum.

  7. Sex-comparative study of mouse cerebellum physiology under adult-onset hypothyroidism: The significance of GC-MS metabolomic data normalization in meta-analysis.

    PubMed

    Maga-Nteve, Christoniki; Vasilopoulou, Catherine G; Constantinou, Caterina; Margarity, Marigoula; Klapa, Maria I

    2017-01-15

    A systematic data quality validation and normalization strategy is an important component of the omic profile meta-analysis, ensuring comparability of the profiles and exclusion of experimental biases from the derived biological conclusions. In this study, we present the normalization methodology applied on the sets of cerebellum gas chromatography-mass spectrometry metabolic profiles of 124days old male and female animals in an adult-onset-hypothyroidism (AOH) mouse model before combining them into a sex-comparative analysis. The employed AOH model concerns the monitoring of the brain physiology of Balb/cJ mice after eight-week administration of 1%w/v KClO 4 in the drinking water, initiated on the 60th day of their life. While originating from the same animal study, the tissues of the two sexes were processed and their profiles acquired and analyzed at different time periods. Hence, the previously published profile set of male mice was first re-annotated based on the presently available resources. Then, after being validated as acquired under the same analytical conditions, both profiles sets were corrected for derivatization biases and filtered for low-confidence measurements based on the same criteria. The final normalized 73-metabolite profiles contribute to the currently few available omic datasets of the AOH effect on brain molecular physiology, especially with respect to sex differentiation. Multivariate statistical analysis indicated one (unknown) and three (succinate, benzoate, myristate) metabolites with significantly higher and lower, respectively, cerebellum concentration in the hypothyroid compared to the euthyroid female mice. The respective numbers for the males were two and 24. Comparison of the euthyroid cerebellum metabolic profiles between the two sexes indicated 36 metabolites, including glucose, myo- and scyllo-inositol, with significantly lower concentration in the females versus the males. This implies that the female mouse cerebellum has

  8. Immunohistochemical detection of autophagy-related microtubule-associated protein 1 light chain 3 (LC3) in the cerebellums of dogs naturally infected with canine distemper virus.

    PubMed

    Kabak, Y B; Sozmen, M; Yarim, M; Guvenc, T; Karayigit, M O; Gulbahar, M Y

    2015-01-01

    We investigated the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in the cerebellums of dogs infected with canine distemper virus (CDV) using immunohistochemistry to detect autophagy. The cerebellums of 20 dogs infected with CDV were used. Specimens showing demyelination of white matter were considered to have an acute infection, whereas specimens showing signs of severe perivascular cuffing and demyelination of white matter were classified as having chronic CDV. Cerebellar sections were immunostained with CDV and LC3 antibodies. The cytoplasm of Purkinje cells, granular layer cells, motor neurons in large cerebellar ganglia and some neurons in white matter were positive for the LC3 antibody in both the control and CDV-infected dogs. In the infected cerebellums, however, white matter was immunostained more intensely, particularly the neurons and gemistocytic astrocytes in the demyelinated areas, compared to controls. Autophagy also was demonstrated in CDV-positive cells using double immunofluorescence staining. Our findings indicate that increased autophagy in the cerebellum of dogs naturally infected with CDV may play a role in transferring the virus from cell to cell.

  9. Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert

    2012-11-01

    Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.

  10. Gray Matter Atrophy in the Cerebellum-Evidence of Increased Vulnerability of the Crus and Vermis with Advancing Age.

    PubMed

    Yu, Teresa; Korgaonkar, Mayuresh S; Grieve, Stuart M

    2017-04-01

    This study examined patterns of cerebellar volumetric gray matter (GM) loss across the adult lifespan in a large cross-sectional sample. Four hundred and seventy-nine healthy participants (age range: 7-86 years) were drawn from the Brain Resource International Database who provided T1-weighted MRI scans. The spatially unbiased infratentorial template (SUIT) toolbox in SPM8 was used for normalisation of the cerebellum structures. Global volumetric and voxel-based morphometry analyses were performed to evaluate age-associated trends and gender-specific age-patterns. Global cerebellar GM shows a cross-sectional reduction with advancing age of 2.5 % per decade-approximately half the rate seen in the whole brain. The male cerebellum is larger with a lower percentage of GM, however, after controlling for total brain volume, no gender difference was detected. Analysis of age-related changes in GM volume revealed large bilateral clusters involving the vermis and cerebellar crus where regional loss occurred at nearly twice the average cerebellar rate. No gender-specific patterns were detected. These data confirm that regionally specific GM loss occurs in the cerebellum with age, and form a solid base for further investigation to find functional correlates for this global and focal loss.

  11. Involving the cerebellum in cocaine-induced memory: pattern of cFos expression in mice trained to acquire conditioned preference for cocaine.

    PubMed

    Carbo-Gas, María; Vazquez-Sanroman, Dolores; Aguirre-Manzo, Luisa; Coria-Avila, Genaro A; Manzo, Jorge; Sanchis-Segura, Carla; Miquel, Marta

    2014-01-01

    Because of its primary role in drug-seeking, consumption and addictive behaviour, there is a growing interest in identifying the neural circuits and molecular mechanisms underlying the formation, maintenance and retrieval of drug-related memories. Human studies, which focused on neuronal systems that store and control drug-conditioned memories, have found cerebellar activations during the retrieval of drug-associated cue memory. However, at the pre-clinical level, almost no attention has been paid to a possible role of the cerebellum in drug-related memories. In the present study, we ought to fill this gap by aiming to investigate the pattern of neuronal activation (as revealed by cFos expression) in different regions of the prefrontal cortex and cerebellum of mice trained to develop conditioned preference for an olfactory stimulus (CS+) paired with cocaine. Our results indicate that CS+ preference was directly associated with cFos expression in cells at the apical region of the granule cell layer of the cerebellar vermis; this relationship being more prominent in some specific lobules. Conversely, cFos+ immunostaining in other cerebellar regions seems to be unrelated to CS+ preference but to other aspects of the conditioning procedure. At the prefrontal cortex, cFos expression seemed to be related to cocaine administration rather than to its ability to establish conditioned preference. The present results suggest that as it has been observed in some clinical studies, the cerebellum might be an important and largely overlooked part of the neural circuits involved in generating, maintaining and/or retrieving drug memories. © 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.

  12. X-ray examinations during pregnancy: National Natality Surveys, 1963 and 1980.

    PubMed Central

    Kaczmarek, R G; Moore, R M; Keppel, K G; Placek, P J

    1989-01-01

    Based on 1963 and 1980 National Natality Surveys, the rate of medical x-ray examinations during pregnancy per 100 mothers fell 34.2 percent. A decrease in chest x-ray examinations accounted for almost all of the decline in total x-ray examinations. The reductions were greater for older mothers and those who were not White. While the number of births fell from 4,071,000 in 1963 to 3,612,000 in 1980, the number of pelvimetry examinations actually increased by 45,000. PMID:2909188

  13. Potential role of oxidative stress in mediating the effect of altered gravity on the developing rat cerebellum

    NASA Astrophysics Data System (ADS)

    Sajdel-Sulkowska, Elizabeth M.; Nguon, Kosal; Sulkowski, Zachary L.; Lipinski, Boguslaw

    We have previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that exposure to hypergravity results in oxidative stress that may contribute to the decrease in Purkinje cell number and the impairment of motor coordination in hypergravity-exposed rat neonates. To test this hypothesis we compared cerebellar oxidative stress markers 3-nitrotyrosine (3-NT; an index of oxidative protein modification) and 8-hydroxy-2'-deoxyguanosine (8-OH-dG; an index of oxidative DNA damage) between stationary control (SC) and rat neonates exposed to 1.65 G (HG) on a 24-ft centrifuge from gestational day (G) 8 to postnatal day (P) 21. The levels of 3-NT and 8-OH-dG were determined by specific ELISAs. We also compared the Purkinje cell number (stereorologically) and rotarod performance between the two groups. The levels of 3-NT were increased only in HG females on P6 and on P12 in the cerebellum, and only in HG females on P12 in the extracellabellar tissue. Limited cerebellar data suggests an increase in the levels of 8-OH-dG on P12 only in HG females. In extracerebellar tissue the increase in 8-OH-dG levels was observed in both HG males and HG females except on P6 when it was only observed in HG males. While preliminary, these data suggest that the effect of hypergravity on the developing brain is sex-dependent and may involve oxidative stress. Oxidative stress may, in turn, contribute to the decrease Purkinje cell number and impaired motor behavior observed in hypergravity-exposed rats.

  14. Multiagent data warehousing and multiagent data mining for cerebrum/cerebellum modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ran

    2002-03-01

    An algorithm named Neighbor-Miner is outlined for multiagent data warehousing and multiagent data mining. The algorithm is defined in an evolving dynamic environment with autonomous or semiautonomous agents. Instead of mining frequent itemsets from customer transactions, the new algorithm discovers new agents and mining agent associations in first-order logic from agent attributes and actions. While the Apriori algorithm uses frequency as a priory threshold, the new algorithm uses agent similarity as priory knowledge. The concept of agent similarity leads to the notions of agent cuboid, orthogonal multiagent data warehousing (MADWH), and multiagent data mining (MADM). Based on agent similarities and action similarities, Neighbor-Miner is proposed and illustrated in a MADWH/MADM approach to cerebrum/cerebellum modeling. It is shown that (1) semiautonomous neurofuzzy agents can be identified for uniped locomotion and gymnastic training based on attribute relevance analysis; (2) new agents can be discovered and agent cuboids can be dynamically constructed in an orthogonal MADWH, which resembles an evolving cerebrum/cerebellum system; and (3) dynamic motion laws can be discovered as association rules in first order logic. Although examples in legged robot gymnastics are used to illustrate the basic ideas, the new approach is generally suitable for a broad category of data mining tasks where knowledge can be discovered collectively by a set of agents from a geographically or geometrically distributed but relevant environment, especially in scientific and engineering data environments.

  15. Quantification of healthy and atretic germ cells and follicles in the developing and post-natal ovary of the South American plains vizcacha, Lagostomus maximus: evidence of continuous rise of the germinal reserve.

    PubMed

    Inserra, P I F; Leopardo, N P; Willis, M A; Freysselinard, A L; Vitullo, A D

    2014-02-01

    The female germ line in mammals is subjected to massive cell death that eliminates 60-85% of the germinal reserve by birth and continues from birth to adulthood until the exhaustion of the germinal pool. Germ cell demise occurs mainly through apoptosis by means of a biased expression in favour of pro-apoptotic members of the BCL2 gene family. By contrast, the South American plains vizcacha, Lagostomus maximus, exhibits sustained expression of the anti-apoptotic BCL2 gene throughout gestation and a low incidence of germ cell apoptosis. This led to the proposal that, in the absence of death mechanisms other than apoptosis, the female germ line should increase continuously from foetal life until after birth. In this study, we quantified all healthy germ cells and follicles in the ovaries of L. maximus from early foetal life to day 60 after birth using unbiased stereological methods and detected apoptosis by labelling with TUNEL assay. The healthy germ cell population increased continuously from early-developing ovary reaching a 50 times higher population number by the end of gestation. TUNEL-positive germ cells were <0.5% of the germ cell number, except at mid-gestation (3.62%). Mitotic proliferation, entrance into prophase I stage and primordial follicle formation occurred as overlapping processes from early pregnancy to birth. Germ cell number remained constant in early post-natal life, but a remnant population of non-follicular VASA- and PCNA-positive germ cells still persisted at post-natal day 60. L. maximus is the first mammal so far described in which female germ line develops in the absence of constitutive massive germ cell elimination.

  16. The effects of pre-natal-, early-life- and indirectly-initiated exposures to maximum adversities on the course of schizophrenia.

    PubMed

    Levine, Stephen Z; Levav, Itzhak; Yoffe, Rinat; Pugachova, Inna

    2014-09-01

    The effects of pre-natal-, early-life- and indirectly-initiated exposures to protracted maximum adversity on the course of schizophrenia are unknown. To compare the aforementioned Holocaust directly exposed subgroups with an indirectly exposed subgroup on the course of schizophrenia. The study population were: Israeli Jews in-uterus or born in Nazi-occupied or dominated European nations by the end of the persecution of the Jews, who were alive in 1950, and who had a last discharge diagnosis of schizophrenia in the Israel National Psychiatric Case Registry by 2013 (N=4933). The population was disaggregated into subgroups who (1) migrated after WWII and who had (1a) pre-natal (n=584, 11.8%) and (1b) early-life (n=3709, 75.2%) initiated exposures to the maximum adversities of the Holocaust, and (2) indirectly exposed individuals to the Holocaust who migrated before the Nazi-era persecution begun (n=640, 13%). Recurrent event survival analyses were computed to examine the psychiatric re-hospitalization risk of the study subgroups, unadjusted and adjusted for age of onset of the disorder and sex. The pre-natal initiated exposure subgroup had a significantly (p<0.05) greater risk of psychiatric re-hospitalizations for schizophrenia than the other subgroups (unadjusted: HR=3.39, 95% CI 2.95, 3.90; adjusted: HR=2.28, 2.00, 2.60). This result replicated in sensitivity analyses for: Poland-born individuals, the years 1922 and 1935; and followed at least 10 years and to the year 2000. Pre-natal initiated exposure to the maximal adversity of the holocaust constitutes a consistent risk factor for a worse course of schizophrenia, a possible byproduct of neurodevelopment disruptions induced by maternal stress and/or famine and/or infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Abnormalities of Eye-Hand Coordination in Patients with Writer's Cramp: Possible Role of the Cerebellum.

    PubMed

    Jhunjhunwala, Ketan; Kotikalapudi, Raviteja; Lenka, Abhishek; Thennarassu, Kandavel; Yadav, Ravi; Saini, Jitender; Pal, Pramod Kumar

    2017-01-01

    Writer's cramp (WC) is one of the commonly observed focal dystonias. The pathophysiology of WC has not been fully understood. The role of the cerebellum has been increasingly recognized in the pathogenesis of dystonia. As the cerebellum is crucial for maintaining accurate eye-hand coordination (EHC), its role in the pathogenesis of WC can be investigated by studying the EHC in patients with WC. Fifteen patients with WC (women:men, 3:12) and 15 age- and gender-matched controls performed oculomotor and EHC tasks. A visually guided stimulus (VGS) task was first performed with eye-only condition (EOC) and then with EHC. A significant interaction between the groups (controls and patients) and tasks (EOC and EHC) with age as a covariate confirmed that the two groups reacted differently to the tasks in saccadic latency (F(1,27) = 4.8; p = 0.039) and average saccade acceleration (F(1,27) = 10.6; p = 0.003). The curvature index of acceleration of the hand was significantly more in patients compared to controls (patients vs. controls, 2.4±0.4 vs. 1.8±0.2, p = 0.01). While performing the EHC task, there was a significant correlation of the Writer's Cramp Rating Score with the average saccadic speed (-0.61, p = 0.016), peak saccadic deceleration (0.59, p = 0.019) and average saccadic acceleration (-0.63, p = 0.012). Saccadic acceleration and latency are abnormal while performing EHC tasks in patients with WC. Our study gives further insights into the possible role of the cerebellum in the pathogenesis of WC.

  18. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories

    PubMed Central

    Herzfeld, David J.; Pastor, Damien; Haith, Adrian M.; Rossetti, Yves; Shadmehr, Reza; O’Shea, Jacinta

    2014-01-01

    We investigated the contributions of the cerebellum and the motor cortex (M1) to acquisition and retention of human motor memories in a force field reaching task. We found that anodal transcranial direct current stimulation (tDCS) of the cerebellum, a technique that is thought to increase neuronal excitability, increased the ability to learn from error and form an internal model of the field, while cathodal cerebellar stimulation reduced this error-dependent learning. In addition, cathodal cerebellar stimulation disrupted the ability to respond to error within a reaching movement, reducing the gain of the sensory-motor feedback loop. By contrast, anodal M1 stimulation had no significant effects on these variables. During sham stimulation, early in training the acquired motor memory exhibited rapid decay in error-clamp trials. With further training the rate of decay decreased, suggesting that with training the motor memory was transformed from a labile to a more stable state. Surprisingly, neither cerebellar nor M1 stimulation altered these decay patterns. Participants returned 24 hours later and were re-tested in error-clamp trials without stimulation. The cerebellar group that had learned the task with cathodal stimulation exhibited significantly impaired retention, and retention was not improved by M1 anodal stimulation. In summary, non-invasive cerebellar stimulation resulted in polarity-dependent up- or down-regulation of error-dependent motor learning. In addition, cathodal cerebellar stimulation during acquisition impaired the ability to retain the motor memory overnight. Thus, in the force field task we found a critical role for the cerebellum in both formation of motor memory and its retention. PMID:24816533

  19. Site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii)

    USGS Publications Warehouse

    Sedgwick, James A.

    2004-01-01

    I investigated the causes and consequences of adult breeding-site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii) in southeastern Oregon over a 10-year period, testing the general hypothesis that fidelity and dispersal distances are influenced by previous breeding performance. Willow Flycatchers adhered to the generally observed tendencies of passerine birds for low natal philopatry and high breedingsite fidelity. Site fidelity (return to the study area) of adult males (52.0%) and females (51.3%), and median dispersal distances between seasons (16 m vs. 19 m) were similar. Previous breeding performance and residency (age-experience), but not study-site quality, explained site fidelity in females. Site fidelity of females rearing 4–5 young (64.4%) exceeded that of unsuccessful females (40.0%), breeding dispersal was less (successful: 15 m; unsuccessful: 33 m), and novice residents were more site-faithful than former residents. Probability of site fidelity was higher for previously successful females (odds ratio = 4.76), those with greater seasonal fecundity (odds ratio = 1.58), novice residents (odds ratio = 1.41), and unparasitized females (odds ratio = 2.76). Male site fidelity was not related to residency, site quality, or previous breeding performance. Territory fidelity (return to the previous territory) in females was best explained by previous breeding performance, but not by site quality or residency. Previously successful females were more likely to return to their territory of the previous season than either unsuccessful (odds ratio = 14.35) or parasitized birds (odds ratio = 6.38). Male territory fidelity was not related to residency, site quality, or previous breeding performance. Natal philopatry was low (7.8%) and similar for males and females. Site quality appeared to influence philopatry, given that no birds reared at a low-quality study site returned there to breed, and birds reared there dispersed

  20. Lighting up Learning: Mathematics Becoming Less of a "Killer Subject" in Kwazulu-Natal, South Africa

    ERIC Educational Resources Information Center

    Maher, Marguerite

    2015-01-01

    This paper reports the findings of an evaluative study of an initiative, in its sixth year of implementation, enhancing the learning and teaching of mathematics in 20 disadvantaged secondary schools in KwaZulu-Natal (KZN), South Africa, twenty years after democracy. Findings highlight the importance of initial and ongoing professional development…

  1. An Investigation on Students' Risky Sexual Behavior at KwaZulu-Natal University, Durban, South Africa

    ERIC Educational Resources Information Center

    Mutinta, Given; Govender, Kaymarlin; Gow, Jeff; George, Gavin

    2013-01-01

    University environments are fertile grounds for risky sexual behaviors. This study investigated students' risky sexual practices at the University of KwaZulu-Natal in Durban, South Africa. Data were collected using quantitative and qualitative methods. A total of 1,405 questionnaires were administered, and 80 in-depth interviews and four focus…

  2. Civilisation and Colonial Education: Natal and Western Australia in the 1860s in Comparative Perspective

    ERIC Educational Resources Information Center

    Swartz, Rebecca

    2018-01-01

    This paper examines how two Britons, working in Western Australia and Natal, respectively, engaged with ideas about the civilisation and education of Indigenous people. It is argued that concepts of civilisation were debated by missionaries, researchers and members of the public. Using the correspondence, publications and private journals of two…

  3. Gene expression profiles in the cerebellum and hippocampus following exposure to a neurotoxicant, Aroclor 1254: Developmental effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royland, Joyce E.; Wu, Jinfang; Zawia, Nasser H.

    2008-09-01

    The developmental consequences of exposure to the polychlorinated biphenyls (PCBs) have been widely studied, making PCBs a unique model to understand issues related to environmental mixture of persistent chemicals. PCB exposure in humans adversely affects neurocognitive development, causes psychomotor difficulties, and contributes to attention deficits in children, all of which seem to be associated with altered patterns of neuronal connectivity. In the present study, we examined gene expression profiles in the rat nervous system following PCB developmental exposure. Pregnant rats (Long-Evans) were dosed perinatally with 0 or 6 mg/kg/day of Aroclor 1254 from gestation day 6 through postnatal day (PND)more » 21. Gene expression in cerebellum and hippocampus from PND7 and PND14 animals was analyzed with an emphasis on developmental aspects. Changes in gene expression ({>=} 1.5 fold) in control animals identified normal developmental changes. These basal levels of expression were compared to data from Aroclor 1254-treated animals to determine the impact of gestational PCB exposure on developmental parameters. The results indicate that the expression of a number of developmental genes related to cell cycle, synaptic function, cell maintenance, and neurogenesis is significantly altered from PND7 to PND14. Aroclor 1254 treatment appears to dampen the overall growth-related gene expression levels in both regions with the effect being more pronounced in the cerebellum. Functional analysis suggests that Aroclor 1254 delays maturation of the developing nervous system, with the consequences dependent on the ontological state of the brain area and the functional role of the individual gene. Such changes may underlie learning and memory deficits observed in PCB exposed animals and humans.« less

  4. Cytochrome P450 27A1 Deficiency and Regional Differences in Brain Sterol Metabolism Cause Preferential Cholestanol Accumulation in the Cerebellum*

    PubMed Central

    Mast, Natalia; Anderson, Kyle W.; Lin, Joseph B.; Li, Yong; Turko, Illarion V.; Tatsuoka, Curtis; Bjorkhem, Ingemar; Pikuleva, Irina A.

    2017-01-01

    Cytochrome P450 27A1 (CYP27A1 or sterol 27-hydroxylase) is a ubiquitous, multifunctional enzyme catalyzing regio- and stereospecific hydroxylation of different sterols. In humans, complete CYP27A1 deficiency leads to cerebrotendinous xanthomatosis or nodule formation in tendons and brain (preferentially in the cerebellum) rich in cholesterol and cholestanol, the 5α-saturated analog of cholesterol. In Cyp27a1−/− mice, xanthomas are not formed, despite a significant cholestanol increase in the brain and cerebellum. The mechanism behind cholestanol production has been clarified, yet little is known about its metabolism, except that CYP27A1 might metabolize cholestanol. It also is unclear why CYP27A1 deficiency results in preferential cholestanol accumulation in the cerebellum. We hypothesized that cholestanol might be metabolized by CYP46A1, the principal cholesterol 24-hydroxylase in the brain. We quantified sterols along with CYP27A1 and CYP46A1 in mouse models (Cyp27a1−/−, Cyp46a1−/−, Cyp27a1−/−Cyp46a1−/−, and two wild type strains) and human brain specimens. In vitro experiments with purified P450s were conducted as well. We demonstrate that CYP46A1 is involved in cholestanol removal from the brain and that several factors contribute to the preferential increase in cholestanol in the cerebellum arising from CYP27A1 deficiency. These factors include (i) low cerebellar abundance of CYP46A1 and high cerebellar abundance of CYP27A1, the lack of which probably selectively increases the cerebellar cholestanol production; (ii) spatial separation in the cerebellum of cholesterol/cholestanol-metabolizing P450s from a pool of metabolically available cholestanol; and (iii) weak cerebellar regulation of cholesterol biosynthesis. We identified a new physiological role of CYP46A1, an important brain enzyme and cytochrome P450 that could be activated pharmacologically. PMID:28190002

  5. Cytochrome P450 27A1 Deficiency and Regional Differences in Brain Sterol Metabolism Cause Preferential Cholestanol Accumulation in the Cerebellum.

    PubMed

    Mast, Natalia; Anderson, Kyle W; Lin, Joseph B; Li, Yong; Turko, Illarion V; Tatsuoka, Curtis; Bjorkhem, Ingemar; Pikuleva, Irina A

    2017-03-24

    Cytochrome P450 27A1 (CYP27A1 or sterol 27-hydroxylase) is a ubiquitous, multifunctional enzyme catalyzing regio- and stereospecific hydroxylation of different sterols. In humans, complete CYP27A1 deficiency leads to cerebrotendinous xanthomatosis or nodule formation in tendons and brain (preferentially in the cerebellum) rich in cholesterol and cholestanol, the 5α-saturated analog of cholesterol. In Cyp27a1 -/- mice, xanthomas are not formed, despite a significant cholestanol increase in the brain and cerebellum. The mechanism behind cholestanol production has been clarified, yet little is known about its metabolism, except that CYP27A1 might metabolize cholestanol. It also is unclear why CYP27A1 deficiency results in preferential cholestanol accumulation in the cerebellum. We hypothesized that cholestanol might be metabolized by CYP46A1, the principal cholesterol 24-hydroxylase in the brain. We quantified sterols along with CYP27A1 and CYP46A1 in mouse models ( Cyp27a1 -/- , Cyp46a1 -/- , Cyp27a1 -/- Cyp46a1 -/- , and two wild type strains) and human brain specimens. In vitro experiments with purified P450s were conducted as well. We demonstrate that CYP46A1 is involved in cholestanol removal from the brain and that several factors contribute to the preferential increase in cholestanol in the cerebellum arising from CYP27A1 deficiency. These factors include (i) low cerebellar abundance of CYP46A1 and high cerebellar abundance of CYP27A1, the lack of which probably selectively increases the cerebellar cholestanol production; (ii) spatial separation in the cerebellum of cholesterol/cholestanol-metabolizing P450s from a pool of metabolically available cholestanol; and (iii) weak cerebellar regulation of cholesterol biosynthesis. We identified a new physiological role of CYP46A1, an important brain enzyme and cytochrome P450 that could be activated pharmacologically. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model.

    PubMed

    Guidi, Sandra; Stagni, Fiorenza; Bianchi, Patrizia; Ciani, Elisabetta; Giacomini, Andrea; De Franceschi, Marianna; Moldrich, Randal; Kurniawan, Nyoman; Mardon, Karine; Giuliani, Alessandro; Calzà, Laura; Bartesaghi, Renata

    2014-02-01

    Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored

  7. What does low-intensity rTMS do to the cerebellum?

    PubMed

    Morellini, N; Grehl, S; Tang, A; Rodger, J; Mariani, J; Lohof, A M; Sherrard, R M

    2015-02-01

    Non-invasive stimulation of the human cerebellum, such as by transcranial magnetic stimulation (TMS), is increasingly used to investigate cerebellar function and identify potential treatment for cerebellar dysfunction. However, the effects of TMS on cerebellar neurons remain poorly defined. We applied low-intensity repetitive TMS (LI-rTMS) to the mouse cerebellum in vivo and in vitro and examined the cellular and molecular sequelae. In normal C57/Bl6 mice, 4 weeks of LI-rTMS using a complex biomimetic high-frequency stimulation (BHFS) alters Purkinje cell (PC) dendritic and spine morphology; the effects persist 4 weeks after the end of stimulation. We then evaluated whether LI-rTMS could induce climbing fibre (CF) reinnervation to denervated PCs. After unilateral pedunculotomy in adult mice and 2 weeks sham or BHFS stimulation, VGLUT2 immunohistochemistry was used to quantify CF reinnervation. In contrast to sham, LI-rTMS induced CF reinnervation to the denervated hemicerebellum. To examine potential mechanisms underlying the LI-rTMS effect, we verified that BHFS could induce CF reinnervation using our in vitro olivocerebellar explants in which denervated cerebellar tissue is co-cultured adjacent to intact cerebella and treated with brain-derived neurotrophic factor (BDNF) (as a positive control), sham or LI-rTMS for 2 weeks. Compared with sham, BDNF and BHFS LI-rTMS significantly increased CF reinnervation, without additive effect. To identify potential underlying mechanisms, we examined intracellular calcium flux during the 10-min stimulation. Complex high-frequency stimulation increased intracellular calcium by release from intracellular stores. Thus, even at low intensity, rTMS modifies PC structure and induces CF reinnervation.

  8. Cerebellum, temporal predictability and the updating of a mental model

    PubMed Central

    Kotz, Sonja A.; Stockert, Anika; Schwartze, Michael

    2014-01-01

    We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form (‘what’) and stimulus occurrence (‘when’). Consequently, behaviour is optimal when we can anticipate both the ‘what’ and ‘when’ dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention. PMID:25385781

  9. Changes in CB1 and CB2 receptors in the post-mortem cerebellum of humans affected by spinocerebellar ataxias

    PubMed Central

    Rodríguez-Cueto, Carmen; Benito, Cristina; Fernández-Ruiz, Javier; Romero, Julián; Hernández-Gálvez, Mariluz; Gómez-Ruiz, María

    2014-01-01

    Background and PurposeSpinocerebellar ataxias (SCAs) are a family of chronic progressive neurodegenerative diseases, clinically and genetically heterogeneous, characterized by loss of balance and motor coordination due to degeneration of the cerebellum and its afferent and efferent connections. Unlike other motor disorders, the possible role of changes in the endocannabinoid system in the pathogenesis of SCAs has not been investigated. Experimental ApproachThe status of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2) receptors in the post-mortem cerebellum of SCA patients and controls was investigated using immunohistochemical procedures. Key ResultsImmunoreactivity for the CB1 receptor, and also for the CB2 receptor, was found in the granular layer, Purkinje cells, neurons of the dentate nucleus and areas of white matter in the cerebellum of SCA patients at levels notably higher than controls. Double-labelling procedures demonstrated co-localization of CB1 and, in particular, CB2 receptors with calbindin, supporting the presence of these receptors in Purkinje neurons. Both receptors also co-localized with Iba-1 and glial fibrillary acidic protein in the granular layer and white matter areas, indicating that they are present in microglia and astrocytes respectively. Conclusions and ImplicationsOur results demonstrate that CB1 and CB2 receptor levels are significantly altered in the cerebellum of SCA patients. Their identification in Purkinje neurons, which are the main cells affected in SCAs, as well as the changes they experienced, suggest that alterations in endocannabinoid receptors may be related to the pathogenesis of SCAs. Therefore, the endocannabinoid system could provide potential therapeutic targets for the treatment of SCAs and its progression. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:23808969

  10. The 5-HT1A Receptor PET Radioligand 11C-CUMI-101 Has Significant Binding to α1-Adrenoceptors in Human Cerebellum, Limiting Its Use as a Reference Region.

    PubMed

    Shrestha, Stal S; Liow, Jeih-San; Jenko, Kimberly; Ikawa, Masamichi; Zoghbi, Sami S; Innis, Robert B

    2016-12-01

    Prazosin, a potent and selective α 1 -adrenoceptor antagonist, displaces 25% of 11 C-CUMI-101 ([O-methyl- 11 C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione) binding in monkey cerebellum. We sought to estimate the percentage contamination of 11 C-CUMI-101 binding to α 1 -adrenoceptors in human cerebellum under in vivo conditions. In vitro receptor-binding techniques were used to measure α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors in human, monkey, and rat cerebellum. Binding potential (maximum number of binding sites × affinity [(1/dissociation constant]) was determined using in vitro homogenate binding assays in human, monkey, and rat cerebellum. 3 H-prazosin was used to determine the maximum number of binding sites, as well as the dissociation constant of 3 H-prazosin and the inhibition constant of CUMI-101. α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors were similar across species. Cerebellar binding potentials were 3.7 for humans, 2.3 for monkeys, and 3.4 for rats. Reasoning by analogy, 25% of 11 C-CUMI-101 uptake in human cerebellum reflects binding to α 1 -adrenoceptors, suggesting that the cerebellum is of limited usefulness as a reference tissue for quantification in human studies. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. Equatorial ozone characteristics as measured at Natal (5.9 deg S, 35.2 deg W)

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Hilsenrath, E.; Motta, A. G.; Sahai, Y.; Medrano-B, R. A.

    1982-01-01

    Ozone density profiles obtained through electrochemical concentration cell (ECC) sonde measurements at Natal were analyzed. Time variations, as expected, are small. Outstanding features of the data are tropospheric densities substantially higher than those measured at other stations, and also a total ozone content that is higher than the averages given by satellite measurements.

  12. Behavioral deficit and decreased GABA receptor functional regulation in the cerebellum of epileptic rats: effect of Bacopa monnieri and bacoside A.

    PubMed

    Mathew, Jobin; Peeyush Kumar, T; Khan, Reas S; Paulose, C S

    2010-04-01

    In the present study, the effects of Bacopa monnieri and its active component, bacoside A, on motor deficit and alterations of GABA receptor functional regulation in the cerebellum of epileptic rats were investigated. Scatchard analysis of [(3)H]GABA and [(3)H]bicuculline in the cerebellum of epileptic rats revealed a significant decrease in B(max) compared with control. Real-time polymerase chain reaction amplification of GABA(A) receptor subunits-GABA(Aalpha1), GABA(Aalpha5,) and GABA(Adelta)-was downregulated (P<0.001) in the cerebellum of epileptic rats compared with control rats. Epileptic rats exhibit deficits in radial arm and Y-maze performance. Treatment with B. monnieri and bacoside A reversed these changes to near-control levels. Our results suggest that changes in GABAergic activity, motor learning, and memory deficit are induced by the occurrence of repetitive seizures. Treatment with B. monnieri and bacoside A prevents the occurrence of seizures thereby reducing the impairment of GABAergic activity, motor learning, and memory deficit. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Glioblastoma multiforme of the cerebellum: description of three cases.

    PubMed

    Luccarelli, G

    1980-01-01

    Only 43 cases of glioblastoma multiforme of the cerebellum have been reported in the literature. This report is based on the findings of 3 cerebellar glioblastomas in a review of 1,206 consecutive confirmed cases of glioblastoma operated on between 1947 and 1977 at the Istituto Neurologico of Milan, giving an incidence of 0.24%. Clinical features are similar to those of any other fast-growing subtentorial tumour. Neuroradiological studies, including CAT, are of little help in predicting the exact nature of these tumours before surgery. A correct diagnosis can be reached only by microscopic examination. Histological patterns appear in no way to differ from those of cerebral glioblastoma. The biological behaviour of these tumours is in all respects identical to that of glioblastoma of cerebral hemispheres.

  14. Wavelet analysis of MR functional data from the cerebellum

    NASA Astrophysics Data System (ADS)

    Romero Sánchez, Karen; Vásquez Reyes, Marcos A.; González Gómez, Dulce I.; Hidalgo Tobón, Silvia; Hernández López, Javier M.; Dies Suarez, Pilar; Barragán Pérez, Eduardo; De Celis Alonso, Benito

    2014-11-01

    The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD.

  15. What Do We Know About the Influence of the Cerebellum on Walking Ability? Promising Findings from Transcranial Alternating Current Stimulation.

    PubMed

    Naro, Antonino; Milardi, Demetrio; Cacciola, Alberto; Russo, Margherita; Sciarrone, Francesca; La Rosa, Gianluca; Bramanti, Alessia; Bramanti, Placido; Calabrò, Rocco Salvatore

    2017-08-01

    Several cerebellar functions related to upper limb motor control have been studied using non-invasive brain stimulation paradigms. We have recently shown that transcranial alternating current stimulation (tACS) may be a promising approach in shaping the plasticity of cerebellum-brain pathways in a safe and effective manner. This study aimed to assess whether cerebellar tACS at different frequencies may tune M1-leg excitability and modify gait control in healthy human subjects. To this end, we tested the effects of different cerebellar tACS frequencies over the right cerebellar hemisphere (at 10, 50, and 300 Hz, besides a sham-tACS) on M1-leg excitability, cerebellum-brain inhibition (CBI), and gait parameters in a sample of 25 healthy volunteers. Fifty and 300 Hz tACS differently modified M1-leg excitability and CBI from both lower limbs, without significant gait perturbations. We hypothesize that tACS aftereffect may depend on a selective entrainment of distinct cerebellar networks related to lower limb motor functions. Therefore, cerebellar tACS might represent a useful tool to modulate walking training in people with cerebellum-related gait impairment, given that tACS may potentially reset abnormal cerebellar circuitries.

  16. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring.

    PubMed

    Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba

    2016-12-01

    Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na + K + -ATPase, Mg 2+ -ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

  17. Hippocampus and cerebellum function following imipenem treatment in male and female rats: evaluation of sex differences during developmental stage.

    PubMed

    Golchin, Leila; Golchin, Lale; Vahidi, Ali Asghar; Shabani, Mohammad

    2013-02-15

    The B-Lactam antibiotics have been suggested to have some degree of neurotoxicity in experimental animals as well as in clinical situations. This study has been elucidated the alteration in hippocampal and cerebellum function following adolescent imipenem exposure in male and female rats. Hippocampus and cerebellum related behavioral dysfunction in imipenem -treated [intraperitoneally, 40 and 80 mg/kg/day for one week from 23-day-old] rats were analyzed using explorative, motor function, learning and memory tasks [grasping, rotarod, open field shuttle box and Morris water maze tests]. Exposure to imipenem especially in high dosage impaired the motor coordination in male and female rats. There weren't any differences in grasping time in male and female rats. When the rearing and grooming frequency of their recorded in open field test, both males and females were dramatically affected by exposure to imipenem. Compared to the saline, male and female rats trained one week after imipenem injection showed significant memory deficits in the shuttle box and Morris water maze tests. Results in this study suggested that animals treated with imipenem suffer from motor activity and cognitive impairment. However, hippocampal and cerebellum functions of male and female rats were profoundly affected by exposure to imipenem while no sex-differences in the most variable were evident.

  18. Visuokinesthetic Perception of Hand Movement is Mediated by Cerebro–Cerebellar Interaction between the Left Cerebellum and Right Parietal Cortex

    PubMed Central

    Hagura, Nobuhiro; Oouchida, Yutaka; Aramaki, Yu; Okada, Tomohisa; Matsumura, Michikazu; Sadato, Norihiro

    2009-01-01

    Combination of visual and kinesthetic information is essential to perceive bodily movements. We conducted behavioral and functional magnetic resonance imaging experiments to investigate the neuronal correlates of visuokinesthetic combination in perception of hand movement. Participants experienced illusory flexion movement of their hand elicited by tendon vibration while they viewed video-recorded flexion (congruent: CONG) or extension (incongruent: INCONG) motions of their hand. The amount of illusory experience was graded by the visual velocities only when visual information regarding hand motion was concordant with kinesthetic information (CONG). The left posterolateral cerebellum was specifically recruited under the CONG, and this left cerebellar activation was consistent for both left and right hands. The left cerebellar activity reflected the participants' intensity of illusory hand movement under the CONG, and we further showed that coupling of activity between the left cerebellum and the “right” parietal cortex emerges during this visuokinesthetic combination/perception. The “left” cerebellum, working with the anatomically connected high-order bodily region of the “right” parietal cortex, participates in online combination of exteroceptive (vision) and interoceptive (kinesthesia) information to perceive hand movement. The cerebro–cerebellar interaction may underlie updating of one's “body image,” when perceiving bodily movement from visual and kinesthetic information. PMID:18453537

  19. A comparative study of the effect of diet and soda carbonated drinks on the histology of the cerebellum of adult female albino Wistar rats.

    PubMed

    Eluwa, M A; Inyangmme, I I; Akpantah, A O; Ekanem, T B; Ekong, M B; Asuquo, O R; Nwakanma, A A

    2013-09-01

    Carbonated drinks are widely consumed because of their taste and their ability to refresh and quench thirst. These carbonated drinks also exist in the form of diet drinks, for example Diet Coke®, Pepsi®, extra. A comparative effect of the diet and regular soda carbonated drinks on the histology of the cerebellum of female albino Wistar rats was investigated. Fifteen adult female Wistar rats weighing between 180-200 g were divided into 3 groups; designated as groups A, B and C, and each group consisted of five rats. Group A was the Control group and received distilled water, while groups B and C were the experimental groups. Group B was administered 50 ml of regular soda (RS), and group C was administered 50 ml of diet soda (DS) each per day for 21 days, and the rats were sacrificed on Day 22, and their cerebellums excised and preserved. Histological result of the sections of the cerebellum showed shrunken and degenerated Purkinje cells with hypertrophied dendrites, especially in the DS group, which was less in the RS group compared to the control group. These results suggest that diet soda has adverse effect on the cerebellum of adult female albino Wistar rats.

  20. Contribution of the supplementary motor area and the cerebellum to the anticipatory postural adjustments and execution phases of human gait initiation.

    PubMed

    Richard, Aliénor; Van Hamme, Angèle; Drevelle, Xavier; Golmard, Jean-Louis; Meunier, Sabine; Welter, Marie-Laure

    2017-09-01

    Several brain structures including the brainstem, the cerebellum and the frontal cortico-basal ganglia network, with the primary and premotor areas have been shown to participate in the functional organization of gait initiation and postural control in humans, but their respective roles remain poorly understood. The aim of this study was to better understand the role of the supplementary motor area (SMA) and posterior cerebellum in the gait initiation process. Gait initiation parameters were recorded in 22 controls both before and after continuous theta burst transcranial stimulation (cTBS) of the SMA and cerebellum, and were compared to sham stimulation, using a randomized double-blind design study. The two phases of gait initiation process were analyzed: anticipatory postural adjustments (APAs) and execution, with recordings of soleus and tibialis anterior muscles. Functional inhibition of the SMA led to a shortened APA phase duration with advanced and increased muscle activity; during execution, it also advanced muscle co-activation and decreased the duration of stance soleus activity. Cerebellar functional inhibition did not influence the APA phase duration and amplitude but increased muscle co-activation, it decreased execution duration and showed a trend to increase velocity, with increased swing soleus muscle duration and activity. The results suggest that the SMA contributes to both the timing and amplitude of the APAs with no influence on step execution and the posterior cerebellum in the coupling between the APAs and execution phases and leg muscle activity pattern during gait initiation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Involvement of Cerebellum in Leigh Syndrome: Case Report and Review of the Literature.

    PubMed

    Chourasia, Nitish; Adejumo, Rahmat B; Patel, Rajan P; Koenig, Mary Kay

    2017-09-01

    Leigh syndrome is an early-onset progressive neurodegenerative disorder typically involving lesions of the bilateral basal ganglia, thalami, and brainstem. Isolated involvement of the cerebellum is uncommon. We present a six-year-old boy with Leigh syndrome who presented with recurrent episodes of ataxia and dysarthria. He was diagnosed with Leigh syndrome at two years of age with bilateral basal ganglia lesions on brain magnetic resonance imaging (MRI). Genetic testing confirmed a diagnosis of Leigh syndrome secondary to a homoplasmic mitochondrial DNA mutation (m.9176T>C). He experienced regressive episodes (ages five and six years). Each regressive episode had a similar presentation with worsening of baseline ataxia and dysarthria. The first episode mimicked infectious cerebellitis, with elevated cerebral spinal fluid (CSF) protein and white blood cell count. No organisms were isolated from the CSF/blood during any of the regressive episodes. Brain MRI consistently showed cerebellar lesions, however cerebellar spectroscopy during the second episode found an elevated lactate peak, a decrease of the N-acetylaspartate peak, and elevation of the choline peak; consistent with an acute exacerbation of Leigh syndrome. Leigh syndrome can present primarily with involvement of the cerebellum, and it should be considered in the differential diagnosis for acute cerebellitis. Published by Elsevier Inc.

  2. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control

    PubMed Central

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms. PMID:25389391

  3. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.

    PubMed

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms.

  4. The Association of Molecular Gas and Natal Super Star Clusters in Henize 2–10

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey E.; Brogan, Crystal L.; Indebetouw, Remy; Testi, Leonardo; Wilner, David J.; Reines, Amy E.; Chen, C.-H. Rosie; Vanzi, Leonardo

    2018-02-01

    We present ALMA observations of the dwarf starburst galaxy He 2–10 in combination with previous SMA CO observations to probe the molecular environments of natal super star clusters (SSCs). These observations include the HCO+(1-0), HCN(1-0), HNC(1-0), and CCH(1-0) molecular lines, as well as 88 GHz continuum with a spatial resolution of 1\\buildrel{\\prime\\prime}\\over{.} 7× 1\\buildrel{\\prime\\prime}\\over{.} 6. After correcting for the contribution from free–free emission to the 88 GHz continuum flux density (∼60% of the 88 GHz emission), we derive a total gas mass for He 2–10 of {M}{gas}=4{--}6× {10}8 M ⊙, roughly 5%–20% of the dynamical mass. Based on a principle component analysis, HCO+ is found to be the best “general” tracer of molecular emission. The line widths and luminosities of the CO emission suggests that the molecular clouds could either be as small as ∼8 pc, or alternately have enhanced line widths. The CO emission and 88 GHz continuum are anti-correlated, suggesting that either the dust and molecular gas are not cospatial, which could reflect that the 88 GHz continuum is dominated by free–free emission. The CO and CCH emission are also relatively anti-correlated, which is consistent with the CCH being photo-enhanced, and/or the CO being dissociated in the regions near the natal SSCs. The molecular line ratios of regions containing the natal star clusters are different from the line ratios observed for regions elsewhere in the galaxy. In particular, the regions with thermal radio emission all have {CO}(2{--}1)/{{HCO}}+(1-0)< 16, and the HCO+/CO ratio appears to be correlated with the evolutionary stage of the clusters.

  5. BRAF Fusion Analysis in Pilocytic Astrocytomas: KIAA1549-BRAF 15-9 Fusions Are More Frequent in the Midline Than Within the Cerebellum

    PubMed Central

    Faulkner, Claire; Ellis, Hayley Patricia; Shaw, Abigail; Penman, Catherine; Palmer, Abigail; Wragg, Christopher; Greenslade, Mark; Haynes, Harry Russell; Williams, Hannah; Lowis, Stephen; White, Paul; Williams, Maggie; Capper, David; Kurian, Kathreena Mary

    2015-01-01

    Abstract Pilocytic astrocytomas (PAs) are increasingly tested for KIAA1549-BRAF fusions. We used reverse transcription polymerase chain reaction for the 3 most common KIAA1549-BRAF fusions, together with BRAF V600E and histone H3.3 K27M analyses to identify relationships of these molecular characteristics with clinical features in a cohort of 32 PA patients. In this group, the overall BRAF fusion detection rate was 24 (75%). Ten (42%) of the 24 had the 16-9 fusion, 8 (33%) had only the 15-9 fusion, and 1 (4%) of the patients had only the 16-11 fusion. In the PAs with only the 15-9 fusion, 1 PA was in the cerebellum and 7 were centered in the midline outside of the cerebellum, that is, in the hypothalamus (n = 4), optic pathways (n = 2), and brainstem (n = 1). Tumors within the cerebellum were negatively associated with fusion 15-9. Seven (22%) of the 32 patients had tumor-related deaths and 25 of the patients (78%) were alive between 2 and 14 years after initial biopsy. Age, sex, tumor location, 16-9 fusion, and 15-9 fusion were not associated with overall survival. Thus, in this small cohort, 15-9 KIAA1549-BRAF fusion was associated with midline PAs located outside of the cerebellum; these tumors, which are generally difficult to resect, are prone to recurrence. PMID:26222501

  6. Neuroanatomical and Neuropsychological Correlates of the Cerebellum in Children with Attention-Deficit/Hyperactivity Disorder-Combined Type

    ERIC Educational Resources Information Center

    Bledsoe, Jesse C.; Semrud-Clikeman, Margaret; Pliszka, Steven R.

    2011-01-01

    Objective: Studies of healthy individuals and those with cerebellar damage have implicated the cerebellum in a variety of cognitive and behavioral processes. Decreased cerebellar volume has been found in children with attention-deficit/hyperactivity disorder (ADHD) and differentially related to behavioral outcomes. The present study investigated…

  7. Neuropathologic features in the hippocampus and cerebellum of three older men with fragile X syndrome

    PubMed Central

    2011-01-01

    Background Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, and is the most common single-gene disorder known to be associated with autism. Despite recent advances in functional neuroimaging and our understanding of the molecular pathogenesis, only limited neuropathologic information on FXS is available. Methods Neuropathologic examinations were performed on post-mortem brain tissue from three older men (aged 57, 64 and 78 years) who had received a clinical or genetic diagnosis of FXS. In each case, physical and cognitive features were typical of FXS, and one man was also diagnosed with autism. Guided by reports of clinical and neuroimaging abnormalities of the limbic system and cerebellum of individuals with FXS, the current analysis focused on neuropathologic features present in the hippocampus and the cerebellar vermis. Results Histologic and immunologic staining revealed abnormalities in both the hippocampus and cerebellar vermis. Focal thickening of hippocampal CA1 and irregularities in the appearance of the dentate gyrus were identified. All lobules of the cerebellar vermis and the lateral cortex of the posterior lobe of the cerebellum had decreased numbers of Purkinje cells, which were occasionally misplaced, and often lacked proper orientation. There were mild, albeit excessive, undulations of the internal granular cell layer, with patchy foliar white matter axonal and astrocytic abnormalities. Quantitative analysis documented panfoliar atrophy of both the anterior and posterior lobes of the vermis, with preferential atrophy of the posterior lobule (VI to VII) compared with age-matched normal controls. Conclusions Significant morphologic changes in the hippocampus and cerebellum in three adult men with FXS were identified. This pattern of pathologic features supports the idea that primary defects in neuronal migration, neurogenesis and aging may underlie the neuropathology reported in FXS. PMID:21303513

  8. Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats.

    PubMed

    Sumathi, Thangarajan; Shobana, Chandrasekar; Christinal, Johnson; Anusha, Chandran

    2012-08-01

    Methyl mercury (MeHg) is a ubiquitous environmental pollutant leading to neurological and developmental deficits in animals and human beings. Bacopa monniera (BM) is a perennial herb and is used as a nerve tonic in Ayurveda, a traditional medicine system in India. The objective of the present study was to investigate whether Bacopa monniera extract (BME) could potentially inhibit MeHg-induced toxicity in the cerebellum of rat brain. Male Wistar rats were administered with MeHg orally at a dose of 5 mg/kg b.w. for 21 days. Experimental rats were given MeHg and also administered with BME (40 mg/kg, orally) for 21 days. After the treatment period, we observed that MeHg exposure significantly inhibited the activities of superoxide dismutase, catalase, glutathione peroxidase, and increased the glutathione reductase activity in cerebellum. It was also found that the level of thiobarbituric acid-reactive substances was increased with the concomitant decrease in the glutathione level in MeHg-induced rats. These alterations were prevented by the administration of BME. Behavioral interference in the MeHg-exposed animals was evident through a marked deficit in the motor performance in the rotarod task, which was completely recovered to control the levels by BME administration. The total mercury content in the cerebellum of MeHg-induced rats was also increased which was measured by atomic absorption spectrometry. The levels of NO(2) (-) and NO(3) (-) in the serum were found to be significantly increased in the MeHg-induced rats, whereas treatment with BME significantly decreased their levels in serum to near normal when compared to MeHg-induced rats. These findings strongly implicate that BM has potential to protect brain from oxidative damage resulting from MeHg-induced neurotoxicity in rat.

  9. Protective effect of α-lipoic acid against α-cypermethrin-induced changes in rat cerebellum.

    PubMed

    Elsawy, H; Al-Omair, M A; Sedky, A; Al-Otaibi, L

    2017-12-01

    Alfa cypermethrin is a pyrethroids extensively used as ectoparasiticide in domestic animals, insecticidal spray on cotton, vegetables and other crops and to kill cockroaches, fleas and termites in house and other buildings. Previous studies have shown the adverse effect of α -cypermethrin on brain. This study was planned to evaluate the possible role of α-lipoic acid in α -cypermethrin induced toxicity in brain of male albino rats. Rats were divided into four groups. The control, α-cypermethrin, α-lipoic acid and α -cypermethrin plus α-lipoic acid treated groups. The duration of the experiment was four weeks. Our results showed that the administration of α-cypermethrin caused a significant decreased in γ- aminobutyric acid level, acetylcholinesterase, catalase, superoxide dismutase activities and increase in lipid peroxidation in cerebellum. Furthermore, the co-administration of α-lipoic acid mitigates the toxicity of α-cypermethrin by partially normalizing the biochemical parameters. The biochemical observations were supported by histopathological examinations. The findings of this investigation suggest that α-lipoic acid may play a protective role against α-cypermethrin induced toxicity in cerebellum of treated rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. “Staying for the children”: The role of natal relatives in supporting women experiencing intimate partner violence during pregnancy in northern Tanzania – A qualitative study

    PubMed Central

    Mushi, Declare; Gammeltoft, Tine

    2018-01-01

    Introduction Intimate partner violence (IPV) is a global health and human rights problem. In Tanzania, national studies have shown that half of all women experience partner violence in their lifetime, 38% reported being abused during a period of 12 months and 30% during pregnancy. Despite the benefits of social support to women victims of violence during pregnancy, a majority of women hesitate to seek help and, if they do, they mainly turn to their natal relatives for support. However, this process of help-seeking and the type of support received is not well documented and needs to be explored with a view to future interventions. This article investigates women’s own perspectives on the support they receive from natal relatives when experiencing IPV during pregnancy. Materials and methods Eighteen participants who experienced physical IPV during pregnancy were purposively selected from a cohort of 1,116 pregnant women enrolled in a project that aimed at assessing the impact of intimate partner violence on reproductive health. In-depth interviews were used to explore the social support received from the natal family among women who experienced partner violence during pregnancy. All interviews were audio recorded, transcribed, coded and analyzed. Results Women who experienced severe IPV during pregnancy were more likely to seek help from natal relatives. Severe violence was defined by the women as acts that occurred frequently and/or resulted in injury. The women’s natal relatives were willing to provide the support; however, they strongly encouraged women to maintain their marriage so that they could continue caring for their children jointly with their partners. Emotional support was the commonest form of support and included showing love and empathy and praying. Information provided to victims aimed mainly at advising them to maintain their marriage. Practical support included direct financial support and building their economic base to reduce dependency on

  11. MR Imaging Features of the Cerebellum in Adult-Onset Neuronal Intranuclear Inclusion Disease: 8 Cases.

    PubMed

    Sugiyama, A; Sato, N; Kimura, Y; Maekawa, T; Enokizono, M; Saito, Y; Takahashi, Y; Matsuda, H; Kuwabara, S

    2017-11-01

    Neuronal intranuclear inclusion disease is a neurodegenerative disorder pathologically characterized by eosinophilic hyaline intranuclear inclusions. A high-intensity signal along the corticomedullary junction on DWI has been described as a specific MR imaging finding of the cerebrum in neuronal intranuclear inclusion disease. However, MR imaging findings of the cerebellum in neuronal intranuclear inclusion disease have not been fully evaluated. Here, we review MR imaging findings of the cerebellum in a series of 8 patients with pathologically confirmed neuronal intranuclear inclusion disease. The MR imaging results showed cerebellar atrophy (8/8 patients) and high-intensity signal on FLAIR images in the medial part of the cerebellar hemisphere right beside the vermis (the "paravermal area") (6/8) and in the middle cerebellar peduncle (4/8). The paravermal abnormal signals had a characteristic distribution, and they could be an indicator of the diagnosis of neuronal intranuclear inclusion disease even when using the results of past MR imaging examinations in which DWI findings were not examined. © 2017 by American Journal of Neuroradiology.

  12. Chapter 7: Breeding and Natal Dispersal, Nest Habitat Loss and Implications for Marbled Murrelet Populations

    Treesearch

    George J. Divoky; Michael Horton

    1995-01-01

    Evidence of breeding and natal dispersal in alcids is typically provided by the resightings of banded birds, the establishment of new colonies, and/or evidence of immigration to established colonies. The difficulties in banding, observing, and censusing Marbled Murrelets at nesting areas preclude using any of these methods for this species. Based on the limited number...

  13. Dietary adequacies among South African adults in rural KwaZulu-Natal.

    PubMed

    Kolahdooz, Fariba; Spearing, Kerry; Sharma, Sangita

    2013-01-01

    Food quality, determined by micronutrient content, is a stronger determinant of nutritional status than food quantity. Health concerns resulting from the co-existence of over-nutrition and under-nutrition in low income populations in South Africa have been fully recognized in the last two decades. This study aimed to further investigate dietary adequacy amongst adults in rural KwaZulu-Natal, by determining daily energy and nutrient intakes, and identifying the degree of satisfaction of dietary requirements. Cross-sectional study assessing dietary adequacy from 24-hour dietary recalls of randomly selected 136 adults in Empangeni, KwaZulu-Natal, South Africa. Results are presented for men (n = 52) and women (n = 84) 19-50 and >50 years old. Mean energy intake was greatest in women >50 years (2852 kcal/day) and exceeded Dietary Reference Intake's for both men and women, regardless of age. Mean daily energy intake from carbohydrates was 69% for men and 67% for women, above the Dietary Reference Intake range of 45-65%. Sodium was also consumed in excess, and the Dietary Reference Intakes of vitamins A, B12, C, D, and E, calcium, zinc and pantothenic acid were not met by the majority of the population. Despite mandatory fortification of staple South African foods, micronutrient inadequacies are evident among adults in rural South African communities. Given the excess caloric intake and the rising prevalence of obesity and other non-communicable diseases in South Africa, a focus on diet quality may be a more effective approach to influence micronutrient status than a focus on diet quantity.

  14. Weanling piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology

    NASA Astrophysics Data System (ADS)

    Laissue, Jean A.; Blattmann, Hans; Di Michiel, Marco; Slatkin, Daniel N.; Lyubimova, Nadia; Guzman, Raphael; Zimmermann, Werner; Birrer, Stephan; Bley, Tim; Kircher, Patrick; Stettler, Regina; Fatzer, Rosmarie; Jaggy, Andre; Smilowitz, Henry; Brauer, Elke; Bravin, Alberto; Le Duc, Geraldine; Nemoz, Christian; Renier, Michel; Thomlinson, William C.; Stepanek, Jiri; Wagner, Hans-Peter

    2001-12-01

    The cerebellum of the weanling piglet (Yorkshire) was used as a surrogate for the radiosensitive human infant cerebellum in a Swiss-led program of experimental microbeam radiation therapy (MRT) at the ESRF. Five weanlings in a 47 day old litter of seven, and eight weanlings in a 40 day old litter of eleven were irradiated in November, 1999 and June, 2000, respectively. A 1.5 cm-wide x 1.5 xm-high array of equally space approximately equals 20-30 micrometers wide, upright microbeams spaced at 210 micrometers intervals was propagated horizontally, left to right, through the cerebella of the prone, anesthetized piglets. Skin-entrance intra-microbeam peak adsorbed doses were uniform, either 150, 300, 425, or 600 gray (Gy). Peak and inter-microbeam (valley) absorbed doses in the cerebellum were computed with the PSI version of the Monte Carlo code GEANT and benchmarked using Gafchromic and radiochromic film microdosimetry. For approximately equals 66 weeks [first litter; until euthanasia], or approximately equals 57 weeks [second litter; until July 30, 2001] after irradiation, the littermates were developmentally, behaviorally, neurologically and radiologically normal as observed and tested by experienced farmers and veterinary scientists unaware of which piglets were irradiated or sham-irradiated. Morever, MRT implemented at the ESRF with a similar array of microbeams and a uniform skin-entrance peak dose of 625 Gy, followed by immunoprophylaxis, was shown to be palliative or curative in young adult rats bearing intracerebral gliosarcomas. These observations give further credence to MRT's potential as an adjunct therapy for brain tumors in infancy, when seamless therapeutic irradiation of the brain is hazardous.

  15. Essential tremor, the cerebellum, and motor timing: towards integrating them into one complex entity.

    PubMed

    Bareš, Martin; Husárová, Ivica; Lungu, Ovidiu V

    2012-01-01

    Essential tremor (ET) is the most common movement disorder in humans. It is characterized by a postural and kinetic tremor most commonly affecting the forearms and hands. Isolated head tremor has been found in 1-10% of patients, suggesting that ET may be a composite of several phenotypes. The exact pathophysiology of ET is still unknown. ET has been repeatedly shown as a disorder of mild cerebellar degeneration, particularly in postmortem studies. Clinical observations, electrophysiological, volumetric and functional imaging studies all reinforce the fact that the cerebellum is involved in the generation of ET. However, crucial debate exists as to whether ET is a neurodegenerative disease. Data suggesting that it is neurodegenerative include postmortem findings of pathological abnormalities in the brainstem and cerebellum, white matter changes on diffusion tensor imaging, and clinical studies demonstrating an association with cognitive and gait changes. There is also conflicting evidence against ET as a neurodegenerative disease: the improvement of gait abnormalities with ethanol administration, lack of gray matter volume loss on voxel-based morphometry, failure to confirm the prominent presence of Lewy bodies in the locus ceruleus, and other pathological findings. To clarify this issue, future research is needed to describe the mechanism of cellular changes in the ET brain and to understand the order in which they occur. The cerebellum has been shown to be involved in the timing of movement and sensation, acting as an internal timing system that provides the temporal representation of salient events spanning hundreds of milliseconds. It has been reported that cerebellar timing function is altered in patients with ET, showing an increased variability of rhythmic hand movements as well as diminished performance during predictive motor timing task. Based on current knowledge and observations, we argue that ET is essentially linked with cerebellar degeneration, or at

  16. Cerebellum, temporal predictability and the updating of a mental model.

    PubMed

    Kotz, Sonja A; Stockert, Anika; Schwartze, Michael

    2014-12-19

    We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form ('what') and stimulus occurrence ('when'). Consequently, behaviour is optimal when we can anticipate both the 'what' and 'when' dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. IP3R1 deficiency in the cerebellum/brainstem causes basal ganglia-independent dystonia by triggering tonic Purkinje cell firings in mice

    PubMed Central

    Hisatsune, Chihiro; Miyamoto, Hiroyuki; Hirono, Moritoshi; Yamaguchi, Naohide; Sugawara, Takeyuki; Ogawa, Naoko; Ebisui, Etsuko; Ohshima, Toshio; Yamada, Masahisa; Hensch, Takao K.; Hattori, Mitsuharu; Mikoshiba, Katsuhiko

    2013-01-01

    The type 1 inositol 1,4,5- trisphosphate receptor (IP3R1) is a Ca2+ channel on the endoplasmic reticulum and is a predominant isoform in the brain among the three types of IP3Rs. Mice lacking IP3R1 show seizure-like behavior; however the cellular and neural circuit mechanism by which IP3R1 deletion causes the abnormal movements is unknown. Here, we found that the conditional knockout mice lacking IP3R1 specifically in the cerebellum and brainstem experience dystonia and show that cerebellar Purkinje cell (PC) firing patterns were coupled to specific dystonic movements. Recordings in freely behaving mice revealed epochs of low and high frequency PC complex spikes linked to body extension and rigidity, respectively. Remarkably, dystonic symptoms were independent of the basal ganglia, and could be rescued by inactivation of the cerebellum, inferior olive or in the absence of PCs. These findings implicate IP3R1-dependent PC firing patterns in cerebellum in motor coordination and the expression of dystonia through the olivo-cerebellar pathway. PMID:24109434

  18. Vestibular cerebellum of thick-toed geckos (Chondrodactylus turnery GRAY, 1864) and C57/BL6N mice after the long-term space flight on the biosatellite BION-M1.

    PubMed

    Alexandra, Proshchina; Anastasia, Kharlamova; Valeriy, Barabanov; Victoria, Gulimova; Sergey, Saveliev

    2017-01-01

    The aim of this study was to estimate the effects of long-term space flights on neuronal and glial cells of the vestibular cerebellum of C57/BL6N mice and thick-toed geckos (Chondrodactylus turnery GRAY, 1864). The cerebella from 26 mice and 13 geckos were used in this study. Ten mice and five geckos were flown aboard the BION-M1 biosatellite. The other animals were used as controls. We used immunohistochemical techniques and classical histological method to reveal cell types in the vestibular cerebellum. Nonspecific pathomorphological changes in the Purkinje cells (such as chromatolysis, vacuolization and hyperchromatosis) were observed in the flight groups. However, these changes are reversible and were also found in some neurons in the control groups. In addition, as the vestibular cerebellum is an evolutionarily stable structure, thick-toed geckos may be a useful model for space flight studies on the vertebrate cerebellum. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Brain-derived neurotrophic factor (BDNF) and TrkB in the piglet brainstem after post-natal nicotine and intermittent hypercapnic hypoxia.

    PubMed

    Tang, Samantha; Machaalani, Rita; Waters, Karen A

    2008-09-26

    Brain-derived neurotrophic factor (BDNF) and its receptor TrkB play a significant role in the regulation of cell growth, survival and death during central nervous system development. The expression of BDNF and TrkB is affected by noxious insults. Two insults during the early post-natal period that are of interest to our laboratory are exposure to nicotine and to intermittent hypercapnic hypoxia (IHH). Piglet models were used to mimic the conditions associated with the risk factors for the sudden infant death syndrome (SIDS) including post-natal cigarette smoke exposure (nicotine model) and prone sleeping where the infant is subjected to re-breathing of expired gases (IHH model). We aimed to determine the effects of nicotine and IHH, alone or in combination, on pro- and rhBDNF and TrkB expression in the developing piglet brainstem. Four piglet groups were studied, with equal gender ratios in each: control (n=14), nicotine (n=14), IHH (n=10) and nic+IHH (n=14). Applying immunohistochemistry, and studying six nuclei of the caudal medulla, we found that compared to controls, TrkB was the only protein significantly decreased after nicotine and nic+IHH exposure regardless of gender. For pro-BDNF and rhBDNF however, observed changes were more evident in males than females exposed to nicotine and nic+IHH. The implications of these findings are that a prior nicotine exposure makes the developing brainstem susceptible to greater changes in the neurotrophic effects of BDNF and its receptor TrkB in the face of a hypoxic insult, and that the effects are greater in males than females.

  20. Hypoglycemia induced behavioural deficit and decreased GABA receptor, CREB expression in the cerebellum of streptozoticin induced diabetic rats.

    PubMed

    Sherin, A; Peeyush, K T; Naijil, G; Chinthu, R; Paulose, C S

    2010-11-20

    Intensive glycemic control during diabetes is associated with an increased incidence of hypoglycemia, which is the major barrier in blood glucose homeostasis during diabetes therapy. The CNS neurotransmitters play an important role in the regulation of glucose homeostasis. In the present study, we showed the effects of hypoglycemia in diabetic and non- diabetic rats on motor functions and alterations of GABA receptor and CREB expression in the cerebellum. Cerebellar dysfunction is associated with seizure generation, motor deficits and memory impairment. Scatchard analysis of [(3)H]GABA binding in the cerebellum of diabetic hypoglycemic and control hypoglycemic rats showed significant (P<0.01) decrease in B(max) and K(d) compared to diabetic and control rats. Real-time PCR amplification of GABA receptor subunit GABA(Aα1) and GAD showed significant (P<0.001) down-regulation in the cerebellum of hypoglycemic rats compared to diabetic and control rats. Confocal imaging study confirmed the decreased GABA receptors in hypoglycemic rats. CREB mRNA expression was down-regulated during recurrent hypoglycemia. Both diabetic and non-diabetic hypoglycemic rats showed impaired performance in grid walk test compared to diabetic and control. Impaired GABA receptor and CREB expression along with motor function deficit were more prominent in hypoglycemic rats than hyperglycemic which showed that hypoglycemia is causing more neuronal damage at molecular level. These molecular changes observed during hypo/hyperglycemia contribute to motor and learning deficits which has clinical significance in diabetes treatment. 2010 Elsevier Inc. All rights reserved.

  1. Empowering Adults through Literacy Education in South Africa: Activities at the University of Natal at Pietermaritzburg.

    ERIC Educational Resources Information Center

    Van Heerden, Gwyneth; And Others

    1991-01-01

    Five brief articles from a journal published by the Public Affairs Department of the University of Natal, South Africa, discuss issues related to empowering adults through literacy education in that country. "Meeting Needs" (Gwyneth van Heerden) describes the extent and nature of adult illiteracy in South Africa and the activities of the…

  2. In vivo effects of phosphodiesterase inhibition on basal cyclic guanosine monophosphate levels in the prefrontal cortex, hippocampus and cerebellum of freely moving rats.

    PubMed

    Marte, Antonella; Pepicelli, Olimpia; Cavallero, Anna; Raiteri, Maurizio; Fedele, Ernesto

    2008-11-15

    We have characterized the various phosphodiesterases (PDE) that degrade cyclic GMP in the prefrontal cortex, hippocampus, and cerebellum using the microdialysis technique to measure in vivo extracellular cyclic GMP in awake rats. The following PDE blockers were used (100 and 1,000 microM): 8-methoxymethyl-IBMX (8-MM-IBMX), erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), milrinone, rolipram, and zaprinast. For solubility reasons, sildenafil was tested only at 100 microM. All drugs were administered locally in the brain regions through the dialysis probe. At 100 microM, 8-MM-IBMX enhanced the cyclic nucleotide extracellular levels in the prefrontal cortex and hippocampus but not in the cerebellum; EHNA and milrinone were active only in the hippocampus; rolipram was devoid of any effect; zaprinast and sildenafil were effective in all three brain areas. At 1 mM, 8-MM-IBMX, milrinone, and zaprinast increased extracellular cyclic GMP in all the brain regions examined, EHNA became active also in the prefrontal cortex and rolipram showed a significant effect only in the cerebellum. This is the first in vivo functional study showing that, in cortex, PDE1, -2, and -5/9 degrade cGMP, with PDE9 probably playing a major role; in hippocampus, PDE5/9 and PDE1 are mainly involved and seem almost equally active, but PDE2 and -3 also contribute; in cerebellum, PDE5/9 are the main cGMP hydrolyzing enzymes, but also PDE1 and -4 significantly operate.

  3. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    PubMed

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  4. Abnormalities of Eye–Hand Coordination in Patients with Writer’s Cramp: Possible Role of the Cerebellum

    PubMed Central

    Jhunjhunwala, Ketan; Kotikalapudi, Raviteja; Lenka, Abhishek; Thennarassu, Kandavel; Yadav, Ravi; Saini, Jitender; Pal, Pramod Kumar

    2017-01-01

    Background Writer’s cramp (WC) is one of the commonly observed focal dystonias. The pathophysiology of WC has not been fully understood. The role of the cerebellum has been increasingly recognized in the pathogenesis of dystonia. As the cerebellum is crucial for maintaining accurate eye–hand coordination (EHC), its role in the pathogenesis of WC can be investigated by studying the EHC in patients with WC. Methods Fifteen patients with WC (women:men, 3:12) and 15 age- and gender-matched controls performed oculomotor and EHC tasks. A visually guided stimulus (VGS) task was first performed with eye-only condition (EOC) and then with EHC. Results A significant interaction between the groups (controls and patients) and tasks (EOC and EHC) with age as a covariate confirmed that the two groups reacted differently to the tasks in saccadic latency (F(1,27) = 4.8; p = 0.039) and average saccade acceleration (F(1,27) = 10.6; p = 0.003). The curvature index of acceleration of the hand was significantly more in patients compared to controls (patients vs. controls, 2.4±0.4 vs. 1.8±0.2, p = 0.01). While performing the EHC task, there was a significant correlation of the Writer’s Cramp Rating Score with the average saccadic speed (–0.61, p = 0.016), peak saccadic deceleration (0.59, p = 0.019) and average saccadic acceleration (–0.63, p = 0.012). Discussion Saccadic acceleration and latency are abnormal while performing EHC tasks in patients with WC. Our study gives further insights into the possible role of the cerebellum in the pathogenesis of WC. PMID:29109905

  5. The Volatile Fraction of Comets as Quantified at Infrared Wavelengths - An Emerging Taxonomy and Implications for Natal Heritage

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Magee-Sauer, K.; Gibb, E. L.; Paganini, L.; Radeva, Y. L.; Charnley, S. B.

    2012-01-01

    It is relatively easy to identify the reservoir from which a given comet was ejected. But dynamical models demonstrate that the main cometary reservoirs (Kuiper Belt, Oort Cloud) each contain icy bodies that formed in a range of environments in the protoplanetary disk, and the Oort Cloud may even contain bodies that formed in disks of sibling stars in the Sun s birth cluster. The cometary nucleus contains clues to the formative region(s) of its individual components. The composition of ices and rocky grains reflect a range of processes experienced by material while on the journey from the natal interstellar cloud core to the cometary nucleus. For that reason, emphasis is placed on classifying comets according to their native ices and dust (rather than orbital dynamics). Mumma & Charnley [1] reviewed the current status of taxonomies for comets and relation to their natal heritage.

  6. Dietary Adequacies among South African Adults in Rural KwaZulu-Natal

    PubMed Central

    Kolahdooz, Fariba; Spearing, Kerry; Sharma, Sangita

    2013-01-01

    Background Food quality, determined by micronutrient content, is a stronger determinant of nutritional status than food quantity. Health concerns resulting from the co-existence of over-nutrition and under-nutrition in low income populations in South Africa have been fully recognized in the last two decades. This study aimed to further investigate dietary adequacy amongst adults in rural KwaZulu-Natal, by determining daily energy and nutrient intakes, and identifying the degree of satisfaction of dietary requirements. Methods Cross-sectional study assessing dietary adequacy from 24-hour dietary recalls of randomly selected 136 adults in Empangeni, KwaZulu-Natal, South Africa. Results Results are presented for men (n = 52) and women (n = 84) 19–50 and >50 years old. Mean energy intake was greatest in women >50 years (2852 kcal/day) and exceeded Dietary Reference Intake’s for both men and women, regardless of age. Mean daily energy intake from carbohydrates was 69% for men and 67% for women, above the Dietary Reference Intake range of 45–65%. Sodium was also consumed in excess, and the Dietary Reference Intakes of vitamins A, B12, C, D, and E, calcium, zinc and pantothenic acid were not met by the majority of the population. Conclusion Despite mandatory fortification of staple South African foods, micronutrient inadequacies are evident among adults in rural South African communities. Given the excess caloric intake and the rising prevalence of obesity and other non-communicable diseases in South Africa, a focus on diet quality may be a more effective approach to influence micronutrient status than a focus on diet quantity. PMID:23825639

  7. Tandem internal models execute motor learning in the cerebellum.

    PubMed

    Honda, Takeru; Nagao, Soichi; Hashimoto, Yuji; Ishikawa, Kinya; Yokota, Takanori; Mizusawa, Hidehiro; Ito, Masao

    2018-06-25

    In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition. Copyright © 2018 the Author(s). Published by PNAS.

  8. Pathophysiological changes of the cerebellum and brain stem in a rabbit model after superior petrosal vein sacrifice.

    PubMed

    Cheng, Lei; Guo, Pin; Liao, Yi-Wei; Zhang, Hong-Liang; Li, Huan-Ting; Yuan, Xianrui

    2017-11-13

    In certain surgical procedures sacrifice of the superior petrosal vein (SPV) is required. Previous studies have reported transient cerebellar edema, venous infarction or hemorrhage might occur after sectioning of the SPV. This study investigated the pathophysiological changes of cerebellum and brain stem after SPV sacrifice. Rabbits were divided into the operation group where the SPV was sacrificed and the control group where the SPV remained intact. Each group was further subdivided into 4, 8, 12, 24, 48 and 72 hours groups which represented the time period from sacrifice of the SPV to sacrifice of the rabbits. The water content (WC), Na + content, K + content and pathophysiological changes of cerebellum and brain stem tissue were measured. In comparison to the control, the WC and Na + content of cerebellar tissue were increased in the 4h, 8h, 12h and 24h operation subgroups (p<0.05), but only increased in the 4h subgroup of the brain stem tissue (p<0.05). The K + content of the cerebellar tissue decreased in the 4h, 8h, 12h and 24h operation subgroups (p<0.05) but only decreased in the 4h subgroup of brain stem tissue (p<0.05). Nissl staining and transmission electron microscopy demonstrated that cerebellar edema occurred in the 4h, 8h, 12h and 24h operation subgroups but not in the 48h and 72h subgroups. Brain stem edema occurred in the 4h operation subgroup. In summary, cerebellum and brain stem edema can be observed at different time points after sacrifice of the SPV in the rabbit model. ©2017 The Author(s).

  9. HIV/AIDS, growth and poverty in KwaZulu-Natal and South Africa: an integrated survey, demographic and economy-wide analysis

    PubMed Central

    2009-01-01

    Background This paper estimates the economic impact of HIV/AIDS on the KwaZulu-Natal province and the rest of South Africa. Methods We extended previous studies by employing: an integrated analytical framework that combined firm surveys of workers' HIV prevalence by sector and occupation; a demographic model that produced both population and workforce projections; and a regionalized economy-wide model linked to a survey-based micro-simulation module. This framework permits a full macro-microeconomic assessment. Results Results indicate that HIV/AIDS greatly reduces annual economic growth, mainly by lowering the long-run rate of technical change. However, impacts on income poverty are small, and inequality is reduced by HIV/AIDS. This is because high unemployment among low-income households minimises the economic costs of increased mortality. By contrast, slower economic growth hurts higher income households despite lower HIV prevalence. Conclusion We conclude that the increase in economic growth that results from addressing HIV/AIDS is sufficient to offset the population pressure placed on income poverty. Moreover, incentives to mitigate HIV/AIDS lie not only with poorer infected households, but also with uninfected higher income households. Our findings reveal the substantial burden that HIV/AIDS places on future economic development in KwaZulu-Natal and South Africa, and confirms the need for policies to curb the economic costs of the pandemic. PMID:19758444

  10. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space.

    PubMed

    Howell, Owain W; Schulz-Trieglaff, Elena Katharina; Carassiti, Daniele; Gentleman, Steven M; Nicholas, Richard; Roncaroli, Federico; Reynolds, Richard

    2015-10-01

    Multiple sclerosis (MS) is a progressive inflammatory neurological disease affecting myelin, neurons and glia. Demyelination and neurodegeneration of cortical grey matter contribute to a more severe disease, and inflammation of the forebrain meninges associates with pathology of the underlying neocortical grey matter, particularly in deep sulci. We assessed the extent of meningeal inflammation of the cerebellum, another structure with a deeply folded anatomy, to better understand the association between subarachnoid inflammation and grey matter pathology in progressive MS. We examined demyelinating and neuronal pathology in the context of meningeal inflammation in cerebellar tissue blocks from a cohort of 27 progressive MS cases previously characterized on the basis of the absence/presence of lymphoid-like aggregates in the forebrain meninges, in comparison with 11 non-neurological controls. Demyelination and meningeal inflammation of the cerebellum was greatest in those cases previously characterized as harbouring lymphoid-like structures in the forebrain regions. Meningeal inflammation was mild to moderate in cerebellar tissue blocks, and no lymphoid-like structures were seen. Quantification of meningeal macrophages, CD4+, CD8+ T lymphocytes, B cells and plasma cells revealed that the density of meningeal macrophages associated with microglial activation in the grey matter, and the extent of grey matter demyelination correlated with the density of macrophages and plasma cells in the overlying meninges, and activated microglia of the parenchyma. These data suggest that chronic inflammation is widespread throughout the subarachnoid space and contributes to a more severe subpial demyelinating pathology in the cerebellum. © 2014 British Neuropathological Society.

  11. Active Inference and Learning in the Cerebellum.

    PubMed

    Friston, Karl; Herreros, Ivan

    2016-09-01

    This letter offers a computational account of Pavlovian conditioning in the cerebellum based on active inference and predictive coding. Using eyeblink conditioning as a canonical paradigm, we formulate a minimal generative model that can account for spontaneous blinking, startle responses, and (delay or trace) conditioning. We then establish the face validity of the model using simulated responses to unconditioned and conditioned stimuli to reproduce the sorts of behavior that are observed empirically. The scheme's anatomical validity is then addressed by associating variables in the predictive coding scheme with nuclei and neuronal populations to match the (extrinsic and intrinsic) connectivity of the cerebellar (eyeblink conditioning) system. Finally, we try to establish predictive validity by reproducing selective failures of delay conditioning, trace conditioning, and extinction using (simulated and reversible) focal lesions. Although rather metaphorical, the ensuing scheme can account for a remarkable range of anatomical and neurophysiological aspects of cerebellar circuitry-and the specificity of lesion-deficit mappings that have been established experimentally. From a computational perspective, this work shows how conditioning or learning can be formulated in terms of minimizing variational free energy (or maximizing Bayesian model evidence) using exactly the same principles that underlie predictive coding in perception.

  12. Early and Late Shift of Brain Laterality in STG, HG, and Cerebellum with Normal Aging during a Short-Term Memory Task

    PubMed Central

    Abdul Manan, Hanani; Yusoff, Ahmad Nazlim; Franz, Elizabeth A.; Sarah Mukari, Siti Zamratol-Mai

    2013-01-01

    Evidence suggests that cognitive performance deteriorates in noisy backgrounds and the problems are more pronounced in older people due to brain deficits and changes. The present study used functional MRI (fMRI) to investigate the neural correlates of this phenomenon during short-term memory using a forward repeat task performed in quiet (STMQ) and in noise: 5-dB SNR (STMN) on four groups of participants of different ages. The performance of short-term memory tasks was measured behaviourally. No significant difference was found across age groups in STMQ. However, older adults (50–65 year olds) performed relatively poorly on the STMN. fMRI results on the laterality index indicate changes in hemispheric laterality in the superior temporal gyrus (STG), Heschl's gyrus (HG), and cerebellum, and a leftward asymmetry in younger participants which changes to a more rightward asymmetry in older participants. The results also indicate that the onset of the laterality shift varies from one brain region to another. STG and HG show a late shift while the cerebellum shows an earlier shift. The results also reveal that noise influences this shifting. Finally, the results support the hypothesis that functional networks that underlie STG, HG, and cerebellum undergo reorganization to compensate for the neural deficit/cognitive decline. PMID:23533806

  13. Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study.

    PubMed

    Yavari, Fatemeh; Mahdavi, Shirin; Towhidkhah, Farzad; Ahmadi-Pajouh, Mohammad-Ali; Ekhtiari, Hamed; Darainy, Mohammad

    2016-04-01

    Despite several pieces of evidence, which suggest that the human brain employs internal models for motor control and learning, the location of these models in the brain is not yet clear. In this study, we used transcranial direct current stimulation (tDCS) to manipulate right cerebellar function, while subjects adapt to a visuomotor task. We investigated the effect of this manipulation on the internal forward and inverse models by measuring two kinds of behavior: generalization of training in one direction to neighboring directions (as a proxy for inverse models) and localization of the hand position after movement without visual feedback (as a proxy for forward model). The experimental results showed no effect of cerebellar tDCS on generalization, but significant effect on localization. These observations support the idea that the cerebellum is a possible brain region for internal forward, but not inverse model formation. We also used a realistic human head model to calculate current density distribution in the brain. The result of this model confirmed the passage of current through the cerebellum. Moreover, to further explain some observed experimental results, we modeled the visuomotor adaptation process with the help of a biologically inspired method known as population coding. The effect of tDCS was also incorporated in the model. The results of this modeling study closely match our experimental data and provide further evidence in line with the idea that tDCS manipulates FM's function in the cerebellum.

  14. Localization of intracellular and plasma membrane Ca2+-ATPases in the cerebellum.

    PubMed

    Sepúlveda, M Rosario; Mata, Ana M

    2005-01-01

    The sarco-endoplasmic reticulum Ca2+-ATPase and the plasma membrane Ca2+-ATPase contribute to the regulation of the intracellular Ca2+ concentration. These proteins transport Ca2+ ions into the endoplasmic reticulum and to the extracellular medium, respectively. A different localization of the two families of Ca2+-ATPases has been shown in concrete subcellular areas of Purkinje cells and in other neuronal elements from cerebellum. In the light of the actual knowledge of Ca2+-ATPases, this strict distribution suggests the existence of different demands on Ca2+ homeostasis in these cerebellar and cellular subregions.

  15. Prevalence and Associated Risk Factors of Asymptomatic Bacteriuria in Ante-Natal Clients in a Large Teaching Hospital in Ghana.

    PubMed

    Labi, A-K; Yawson, A E; Ganyaglo, G Y; Newman, M J

    2015-09-01

    Asymptomatic bacteriuria, the presence of bacteria in urine without symptoms of acute urinary tract infection, predisposes pregnant women to the development of urinary tract infections and pyelonephritis, with an attendant pregnancy related complications. To measure the prevalence of asymptomatic bacteriuria among ante-natal clients at the Korle-Bu Teaching Hospital in Ghana and its' associated risk factors. A cross-sectional study involving 274 antenatal clients was conducted over a period of 4 weeks. A face to face questionnaire was completed and midstream urine collected for culture and antimicrobial susceptibility testing. The prevalence of asymptomatic bacteriuria was 5.5%. It was associated with sexual activity during pregnancy (Fisher's Exact 5.871, p-value 0.0135), but not with sexual frequency. There were no significant associations with educational status, parity, gestational age, marital status and the number of foetuses carried. The commonest organism isolated was Enterococcus spp (26.7%) although the enterobacteriaceae formed the majority of isolated organisms (46.7%). Nitrofurantoin was the antibiotic with the highest sensitivity to all the isolated organisms. The prevalence of asymptomatic bacteriuria among ante-natal clients at this large teaching hospital in Ghana is 5.5%, which is lower than what has been found in other African settings. Enterococcus spp was the commonest causative organism. However, due to the complications associated with asymptomatic bacteriuria, a policy to screen and treat- all pregnant women attending the hospital, is worth considering.

  16. Social support and medication adherence in HIV disease in KwaZulu-Natal, South Africa.

    PubMed

    Ncama, Busisiwe P; McInerney, Patricia A; Bhengu, Busisiwe R; Corless, Inge B; Wantland, Dean J; Nicholas, Patrice K; McGibbon, Chris A; Davis, Sheila M

    2008-12-01

    A supportive social environment is critical for those with HIV/AIDS. In KwaZulu-Natal, in South Africa, antiretroviral therapy is available to some HIV-positive individuals. Antiretroviral adherence is an important issue for limiting HIV infection. Adherence to therapy may be linked to social support, particularly amidst the stigma prevalent in HIV. The purpose of this study was to examine characteristics related to social support and antiretroviral medication adherence. This cross-sectional, descriptive study explored the nature of the relationships among social support and other selected variables, including sociodemographic variables, quality of life, and adherence. After ethical review board approval, the sample of HIV-infected individuals who received care in outpatient clinics were recruited and completed the self-report instruments. The sample included English and/or isiZulu-speaking (n=149) individuals over the age of 18 years receiving treatment for HIV/AIDS. A total of 149 patients with a diagnosis of HIV/AIDS agreed to participate and completed questionnaires after completing informed consent procedures. The study participants were recruited at four outpatient settings in Durban, KwaZulu-Natal province of South Africa. A descriptive, exploratory, cross-sectional design was utilized to explore the research questions: What are the characteristics of social support and the relationship to antiretroviral adherence in KwaZulu-Natal, South Africa? Descriptive statistics and regression analyses were used to answer the research questions. Data analyses indicated that social support scores on the Medical Outcomes Study Social Support Survey were moderate (M=64.4; S.D.=14.7) among the study participants. The number of close friends and family were significantly correlated with a greater sense of social support. Despite this, the lowest scores on the quality-of-life measure using the Medical Outcomes Study Short Form 36 item survey were reported on the Social

  17. MicroRNAs Promote Granule Cell Expansion in the Cerebellum Through Gli2.

    PubMed

    Constantin, Lena; Wainwright, Brandon J

    2015-12-01

    MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.

  18. Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako; Cheng, Jinping

    Methylmercury (MeHg) is a highly neurotoxic environmental chemical that can cause developmental impairments. Human fetuses and neonates are particularly susceptible to MeHg toxicity; however, the mechanisms governing its effects in the developing brain are unclear. In the present study, we investigated the effects of prenatal and lactational MeHg exposure on the developing cerebellum in rats. We demonstrated that exposure to 5 ppm MeHg decreased postnatal expression of pre- and postsynaptic proteins, suggesting an impairment in synaptic development. MeHg exposure also reduced neurite outgrowth, as shown by a decrease in the expression of the neurite marker neurofilament H. These changes weremore » not observed in rats exposed to 1 ppm MeHg. In order to define the underlying mechanism, we investigated the effects of MeHg exposure on the tropomyosin receptor kinase (Trk) A pathway, which plays important roles in neuronal differentiation and synapse formation. We demonstrated suppression of the TrkA pathway on gestation day 20 in rats exposed to 5 ppm MeHg. In addition, down-regulation of eukaryotic elongation factor 1A1 (eEF1A1) was observed on postnatal day 1. eEF1A1 knockdown in differentiating PC12 cells impaired neurite outgrowth and synaptic protein expression, similar to the results of MeHg exposure in the cerebellum. These results suggest that suppression of the TrkA pathway and subsequent decreases in eEF1A1 expression induced by prenatal exposure to MeHg may lead to reduced neurite outgrowth and synaptic protein expression in the developing cerebellum. - Highlights: • Prenatal exposure to MeHg decreased postnatal expression of synaptic proteins. • MeHg exposure also reduced neurite outgrowth postnatally. • Suppression of the TrkA pathway and eEF1A1 expression was induced by MeHg exposure. • eEF1A1 knockdown impaired neurite outgrowth and synaptic protein expression.« less

  19. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice

    PubMed Central

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-01-01

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration. PMID:25950469

  20. Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice.

    PubMed

    Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F

    2015-05-07

    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration.

  1. Sumoylation of FOXP2 regulates motor function and vocal communication through Purkinje cell development

    PubMed Central

    Usui, Noriyoshi; Co, Marissa; Harper, Matthew; Rieger, Michael A.; Dougherty, Joseph D.; Konopka, Genevieve

    2016-01-01

    Background Mutations in the gene encoding the transcription factor forkhead box P2, FOXP2, result in brain developmental abnormalities including reduced gray matter in both human patients and rodent models, and speech and language deficits. However, neither the region-specific function of FOXP2 in the brain, in particular the cerebellum, nor the effects of any post-translational modifications of FOXP2 in the brain and disorders have been explored. Methods We characterized sumoylation of FOXP2 biochemically, and analyzed the region-specific function and sumoylation of FOXP2 in the developing mouse cerebellum. Using in utero electroporation to manipulate the sumoylation-state of Foxp2 as well as Foxp2 expression levels in Purkinje cells (PCs) of the cerebellum in vivo, we reduced Foxp2 expression approximately 40% in the mouse cerebellum. Such a reduction approximates the haploinsufficiency observed in human patients who demonstrate speech and language impairments. Results We identified sumoylation of FOXP2 at K674 (K673 in mouse) in the cerebellum of neonates. In vitro co-immunoprecipitation and in vivo colocalization experiments suggest that PIAS3 acts as the SUMO E3 ligase for FOXP2 sumoylation. This sumoylation modifies transcriptional regulation by FOXP2. We demonstrate that Foxp2 sumoylation is required for regulation of cerebellar motor function and vocal communication, likely through dendritic outgrowth and arborization of PCs in the mouse cerebellum. Conclusions Sumoylation of Foxp2 in neonatal mouse cerebellum regulates PC development as well as motor functions and vocal communication, demonstrating evidence for sumoylation in regulating mammalian behaviors. PMID:27009683

  2. The contributions of the cerebellum in sensorimotor control: what are the prevailing opinions which will guide forthcoming studies?

    PubMed

    Manto, Mario; Oulad Ben Taib, Nordeyn

    2013-06-01

    Although considerable progress has been made in developing models of cerebellar function in sensorimotor control, the exact nature of the basic operations performed by the cerebellum remain elusive. Several major theories have emerged these last decades. According to the hypothesis of Marr and Albus, the climbing fiber input carries an error signal weakening the strength of a subset of parallel fibers/Purkinje neurons synapses in the cerebellar cortex. Cerebellar circuits would gain the control of movement through trial and error. The hypothesis of internal models emulating movements is currently highly cited. There is a general agreement that (1) the central nervous system has to cope with an intrinsic time delay of sensory feedback related to motor activities and (2) estimations of future motor states are essential to perform fast and accurate movements. According to this second theory, cerebellar dysmetria, one of the cardinal cerebellar deficits, would result from a distorted predictive control. A third popular theory relates to the inverse models that would be stored in the cerebellum. Acquisition of a motor act would require forward models, and the acquisition process itself would generate an inverse model to allow an unconscious coordinated movement. Recently, an international panel of experts from various disciplines discussed the prevailing opinions in a consensus statement and tried to extract their clinical relevance in terms of pathogenesis of the clinical symptoms. Although a consensus is still not reached, the prevailing opinions provide a sound framework to conduct novel studies and try to discover the secrets of cerebellar circuits.

  3. Cognitive and behavior deficits in sickle cell mice are associated with profound neuropathologic changes in hippocampus and cerebellum

    PubMed Central

    Wang, Li; Almeida, Luis E.F.; de Souza Batista, Celia M.; Khaibullina, Alfia; Xu, Nuo; Albani, Sarah; Guth, Kira A.; Seo, Ji Sung; Quezado, Martha; Quezado, Zenaide M.N.

    2015-01-01

    Strokes are perhaps the most serious complications of sickle cell disease (SCD) and by the fifth decade occur in approximately 25% of patients. While most patients do not develop strokes, mounting evidence indicates that even without brain abnormalities on imaging studies, SCD patients can present profound neurocognitive dysfunction. We sought to evaluate the neurocognitive behavior profile of humanized SCD mice (Townes, BERK) and to identify hematologic and neuropathologic abnormalities associated with the behavioral alterations observed in these mice. Heterozygous and homozygous Townes mice displayed severe cognitive deficits shown by significant delays in spatial learning compared to controls. Homozygous Townes also had increased depression- and anxiety-like behaviors as well as reduced performance on voluntary wheel running compared to controls. Behavior deficits observed in Townes were also seen in BERKs. Interestingly, most deficits in homozygotes were observed in older mice and were associated with worsening anemia. Further, neuropathologic abnormalities including the presence of large bands of dark/pyknotic (shrunken) neurons in CA1 and CA3 fields of hippocampus and evidence of neuronal dropout in cerebellum were present in homozygotes but not control Townes. These observations suggest that cognitive and behavioral deficits in SCD mice mirror those described in SCD patients and that aging, anemia, and profound neuropathologic changes in hippocampus and cerebellum are possible biologic correlates of those deficits. These findings support using SCD mice for studies of cognitive deficits in SCD and point to vulnerable brain areas with susceptibility to neuronal injury in SCD and to mechanisms that potentially underlie those deficits. PMID:26462816

  4. Cerebellar Development and Disease

    PubMed Central

    Gleeson, Joseph G.

    2008-01-01

    Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948

  5. Stereological studies of the effects of sodium benzoate or ascorbic acid on rats` cerebellum.

    PubMed

    Noorafshan, Ali; Erfanizadeh, Mahboobeh; Karbalay-Doust, Saied

    2014-12-01

    To evaluate the cerebellar structure in sodium benzoate (NaB) or ascorbic acid (AA) treated rats. This experimental study was conducted between May and September 2013 in the Laboratory Animal Center of Shiraz University of Medical Sciences, Shiraz, Iran. The rats received distilled either water, NaB (200mg/kg/day), AA (100mg/kg/day), or NaB+AA. The hemispheres were removed after 28 days and underwent quantitative study. The total volume of the cerebellar hemisphere, its cortex, intracerebellar nuclei; the total number of the Purkinje, Bergman, granule, neurons, and glial cells of the molecular layer; and neurons and glial cells of the intracerebellar nuclei reduced by 21-52% in the NaB-treated rats compared with the distilled water group (p=0.004). The total number of the Purkinje, Bergman, Golgi, and granule cells was 29-45% higher in the AA-treated rats compared with the distilled water group (p=0.05). However, these measures reduced by 17-50% in the NaB+AA-treated rats compared with the distilled water group (p=0.004). The NaB+AA group did not induce any significant structural changes in comparison with the NaB group (p>0.05). The NaB exposure with or without AA treatment could alter the cerebellum. Yet, AA could prevent the loss of some cells in the cerebellum

  6. Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage

    PubMed Central

    Prestori, Francesca; Bonardi, Claudia; Mapelli, Lisa; Lombardo, Paola; Goselink, Rianne; De Stefano, Maria Egle; Gandolfi, Daniela; Mapelli, Jonathan; Bertrand, Daniel; Schonewille, Martijn; De Zeeuw, Chris; D’Angelo, Egidio

    2013-01-01

    The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation. PMID:23741401

  7. Nitric Oxide Production in the Striatum and Cerebellum of a Rat Model of Preterm Global Perinatal Asphyxia.

    PubMed

    Barkhuizen, M; Van de Berg, W D J; De Vente, J; Blanco, C E; Gavilanes, A W D; Steinbusch, H W M

    2017-04-01

    Encephalopathy due to perinatal asphyxia (PA) is a major cause of neonatal morbidity and mortality in the period around birth. Preterm infants are especially at risk for cognitive, attention and motor impairments. Therapy for this subgroup is limited to supportive care, and new targets are thus urgently needed. Post-asphyxic excitotoxicity is partially mediated by excessive nitric oxide (NO) release. The aims of this study were to determine the timing and distribution of nitric oxide (NO) production after global PA in brain areas involved in motor regulation and coordination. This study focused on the rat striatum and cerebellum, as these areas also affect cognition or attention, in addition to their central role in motor control. NO/peroxynitrite levels were determined empirically with a fluorescent marker on postnatal days P5, P8 and P12. The distributions of neuronal NO synthase (nNOS), cyclic guanosine monophosphate (cGMP), astroglia and caspase-3 were determined with immunohistochemistry. Apoptosis was additionally assessed by measuring caspase-3-like activity from P2-P15. On P5 and P8, increased intensity of NO-associated fluorescence and cGMP immunoreactivity after PA was apparent in the striatum, but not in the cerebellum. No changes in nNOS immunoreactivity or astrocytes were observed. Modest changes in caspase-3-activity were observed between groups, but the overall time course of apoptosis over the first 11 days of life was similar between PA and controls. Altogether, these data suggest that PA increases NO/peroxynitrite levels during the first week after birth within the striatum, but not within the cerebellum, without marked astrogliosis. Therapeutic benefits of interventions that reduce endogenous NO production would likely be greater during this time frame.

  8. Individual variation affects departure rate from the natal pond in an ephemeral pond-breeding anuran

    USGS Publications Warehouse

    Chelgren, N.D.; Rosenberg, D.K.; Heppell, S.S.; Gitelman, A.I.

    2008-01-01

    Frogs exhibit extreme plasticity and individual variation in growth and behavior during metamorphosis, driven by interactions of intrinsic state factors and extrinsic environmental factors. In northern red-legged frogs (Rana aurora Baird and Girard, 1852), we studied the timing of departure from the natal pond as it relates to date and size of individuals at metamorphosis in the context of environmental uncertainty. To affect body size at metamorphosis, we manipulated food availability during the larval stage for a sample (317) of 1045 uniquely marked individuals and released them at their natal ponds as newly metamorphosed frogs. We recaptured 34% of marked frogs in pitfall traps as they departed and related the timing of their initial terrestrial movements to individual properties using a time-to-event model. Median age at first capture was 4 and 9 days postmetamorphosis at two sites. The rate of departure was positively related to body size and to date of metamorphosis. Departure rate was strongly negatively related to time elapsed since rainfall, and this effect was diminished for smaller and later metamorphosing frogs. Individual variation in metamorphic traits thus affects individuals' responses to environmental variability, supporting a behavioral link with variation in survival associated with these same metamorphic traits. ?? 2008 NRC.

  9. Sex determination using humeral dimensions in a sample from KwaZulu-Natal: an osteometric study

    PubMed Central

    Ogedengbe, Oluwatosin Olalekan; Ajayi, Sunday Adelaja; Komolafe, Omobola Aderibigbe; Zaw, Aung Khaing; Naidu, Edwin Coleridge Stephen

    2017-01-01

    The morphological characteristics of the humeral bone has been investigated in recent times with studies showing varying degrees of sexual dimorphism. Osteologists and forensic scientists have shown that sex determination methods based on skeletal measurements are population specific, and these population-specific variations are present in many body dimensions. The present study aims to establish sex identification using osteometric standards for the humerus in a contemporary KwaZulu-Natal population. A total of 11 parameters were measured in a sample of n=211 humeri (males, 113; females, 98) from the osteological collection in the Discipline of Clinical Anatomy, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa. The difference in means for nearly all variables were found to be significantly higher in males compared to females (P<0.01) with the most effective single parameter for predicting sex being the vertical head diameter having an accuracy of 82.5%. Stepwise discriminant analysis increased the overall accuracy rate to 87.7% when all measurements were jointly applied. We conclude that the humerus is an important bone which can be reliably used for sex determination based on standard metric methods despite minor tribal or ancestral differences amongst an otherwise homogenous population. PMID:29043096

  10. Sex determination using humeral dimensions in a sample from KwaZulu-Natal: an osteometric study.

    PubMed

    Ogedengbe, Oluwatosin Olalekan; Ajayi, Sunday Adelaja; Komolafe, Omobola Aderibigbe; Zaw, Aung Khaing; Naidu, Edwin Coleridge Stephen; Okpara Azu, Onyemaechi

    2017-09-01

    The morphological characteristics of the humeral bone has been investigated in recent times with studies showing varying degrees of sexual dimorphism. Osteologists and forensic scientists have shown that sex determination methods based on skeletal measurements are population specific, and these population-specific variations are present in many body dimensions. The present study aims to establish sex identification using osteometric standards for the humerus in a contemporary KwaZulu-Natal population. A total of 11 parameters were measured in a sample of n=211 humeri (males, 113; females, 98) from the osteological collection in the Discipline of Clinical Anatomy, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa. The difference in means for nearly all variables were found to be significantly higher in males compared to females ( P <0.01) with the most effective single parameter for predicting sex being the vertical head diameter having an accuracy of 82.5%. Stepwise discriminant analysis increased the overall accuracy rate to 87.7% when all measurements were jointly applied. We conclude that the humerus is an important bone which can be reliably used for sex determination based on standard metric methods despite minor tribal or ancestral differences amongst an otherwise homogenous population.

  11. Reflexive Pedagogy for Reading across the Curriculum: The University of KwaZulu-Natal Faculty of Education Experience

    ERIC Educational Resources Information Center

    Mgqwashu, Emmanuel Mfanafuthi

    2011-01-01

    This article is a qualitative evaluation of the role of reflexive pedagogy; a pedagogic approach used in a first year, academic literacy compulsory module for all first year Bachelor of Education (B. Ed) students offered by the School of Language, Literacies, Media and Drama Education at the University of KwaZulu-Natal. The module is called…

  12. Changes in cell proliferation kinetics in the mouse cerebellum after total asphyxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshioka, H.; Mino, M.; Morikawa, Y.

    1985-12-01

    This study was undertaken to investigate the effects of neonatal asphyxia on brain development, with special reference to the kinetics of neuronal proliferation by using autoradiography. For 30 minutes, two-day-old suckling mice, Jcl:ICR strain, were put into a chamber which was constantly flushed with 100% CO/sub 2/ gas. After the exposure to asphyxia, 29% of the mice survived. Cell cycle studies were carried out at two days and at seven days on the external matrix cells, the precursor of the granule cells, at the external granular layer of the cerebellum from CO/sub 2/-exposed and control mice by /sup 3/H-thymidine autoradiography.more » At two days the generation time of the control mice was about 15 hours, whereas that of the asphyxiated mice was about 17 hours. The prolongation of the generation time in the asphyxiated mice was caused mainly by a delay in the G2 phase. This prolongation was apparent for about five days and thereafter growth caught up. These results suggest that neonatal asphyxia has an adverse effect on cerebellar neuronal proliferation that may revert to normal spontaneously in older animals.« less

  13. Student Perceptions of Agricultural Education Programme Processes at Selected High Schools in KwaZulu-Natal Province, South Africa

    ERIC Educational Resources Information Center

    Kidane, T. T.; Worth, S. H.

    2014-01-01

    Purpose: This study investigates student perceptions of different aspects of Agricultural Education and Training (AET) programme processes that have been offered in secondary schools by the formal educational sector in the province of KwaZulu-Natal, South Africa. The study seeks to identify the existing shortcomings in the implementation of the…

  14. Development of the mouse vestibular system in the absence of gravity perception

    NASA Technical Reports Server (NTRS)

    Smith, Michael; Yuan Wang, Xiang; Wolgemuth, Debra J.; Murashov, Alexander K.

    2003-01-01

    The tilted mutant mouse, which lacks otoconia in the inner ear, was used to study development of the mouse vestibular system in the absence of gravity perception. Otoconia are dense particles composed of proteins and calcium carbonate crystals suspended in the gelatinous macular membrane. They enhance, and are largely responsible for, sensitivity to gravity. Morphometric analysis of the vestibular ganglion showed that the mutant developed more slowly than the normal controls, both in rate of development and cell number, particularly during the first week of post-natal development. The mutant ganglia also exhibited a reduction of cells during the first 6 days of post-natal development.

  15. Natal habitat imprinting counteracts the diversifying effects of phenotype-dependent dispersal in a spatially structured population.

    PubMed

    Camacho, Carlos; Canal, David; Potti, Jaime

    2016-08-08

    Habitat selection may have profound evolutionary consequences, but they strongly depend on the underlying preference mechanism, including genetically-determined, natal habitat and phenotype-dependent preferences. It is known that different mechanisms may operate at the same time, yet their relative contribution to population differentiation remains largely unexplored empirically mainly because of the difficulty of finding suitable study systems. Here, we investigate the role of early experience and genetic background in determining the outcome of settlement by pied flycatchers (Ficedula hypoleuca) breeding in two habitat patches between which dispersal and subsequent reproductive performance is influenced by phenotype (body size). For this, we conducted a cross-fostering experiment in a two-patch system: an oakwood and a conifer plantation separated by only 1 km. Experimental birds mostly returned to breed in the forest patch where they were raised, whether it was that of their genetic or their foster parents, indicating that decisions on where to settle are determined by individuals' experience in their natal site, rather than by their genetic background. Nevertheless, nearly a third (27.6 %) moved away from the rearing habitat and, as previously observed in unmanipulated individuals, dispersal between habitats was phenotype-dependent. Pied flycatchers breeding in the oak and the pine forests are differentiated by body size, and analyses of genetic variation at microsatellite loci now provide evidence of subtle genetic differentiation between the two populations. This suggests that phenotype-dependent dispersal may contribute to population structure despite the short distance and widespread exchange of birds between the study plots. Taken together, the current and previous findings that pied flycatchers do not always settle in the habitat to which they are best suited suggest that their strong tendency to return to the natal patch regardless of their body size

  16. Expression and localization in the developing cerebellum of the carbohydrate epitopes revealed by Elec-39, an IgM monoclonal antibody related to HNK-1.

    PubMed

    Kuchler, S; Zanetta, J P; Bon, S; Zaepfel, M; Massoulie, J; Vincendon, G

    1991-01-01

    The immunochemical and immunocytochemical reactivity of an anti-carbohydrate monoclonal antibody (Elec-39), obtained against acetylcholinesterase from Electrophorus electricus electric organ, was followed during the postnatal development of the rat cerebellum. The specificity of this antibody resembles that of a family of anti-carbohydrate antibodies that includes HNK-1, L2, NC-1 and NSP-4, as well as IgMs that occur in some human neuropathies. As revealed by immunoblotting techniques, the reactivity of Elec-39 is maximum around postnatal days 10-12. At this age, the antibody reveals eight major proteins of mol. wt ranging between 14 and 150 kDa. Some of them (with mol. wts of 14, 18, 28 and 31 kDa) are transiently expressed. They correspond to previously identified glycoproteins binding to the plant lectin concanavalin A and binding also to the endogenous mannose-binding lectin CSL and endogenous membrane-bound mannose-binding lectin. In young animals, an important staining with the Elec-39 antibody can be observed on postmitotic precursors of granule cells, on astrocyte processes in the external granular layer, on newly formed parallel fibres and on unmyelinated axons of the white matter. In adult animals, the labelling is localized essentially in myelin and also in the cytoplasm of astrocytes. These results are discussed in relation to ontogenetic phenomena occurring during cerebellar development and the potential role of the carbohydrate epitope revealed with Elec-39 as a determinant in cell adhesion processes.

  17. Academic Support at the University of Kwazulu-Natal: A Systematic Review of Peer-Reviewed Journal Articles, 2010-2015

    ERIC Educational Resources Information Center

    Paideya, Vino; Bengesai, Annah

    2017-01-01

    The aim of this systematic review was to examine research studies which focus on effective student support practices and show evidence of credible assessment. To identify effective student support practices, and also to provide a contemporary picture of effective support practices at the University of KwaZulu-Natal, 24 studies which met the…

  18. Sumoylation of FOXP2 Regulates Motor Function and Vocal Communication Through Purkinje Cell Development.

    PubMed

    Usui, Noriyoshi; Co, Marissa; Harper, Matthew; Rieger, Michael A; Dougherty, Joseph D; Konopka, Genevieve

    2017-02-01

    Mutations in the gene encoding the transcription factor forkhead box P2 (FOXP2) result in brain developmental abnormalities, including reduced gray matter in both human patients and rodent models and speech and language deficits. However, neither the region-specific function of FOXP2 in the brain, in particular the cerebellum, nor the effects of any posttranslational modifications of FOXP2 in the brain and disorders have been explored. We characterized sumoylation of FOXP2 biochemically and analyzed the region-specific function and sumoylation of FOXP2 in the developing mouse cerebellum. Using in utero electroporation to manipulate the sumoylation state of FOXP2 as well as Foxp2 expression levels in Purkinje cells of the cerebellum in vivo, we reduced Foxp2 expression approximately 40% in the mouse cerebellum. Such a reduction approximates the haploinsufficiency observed in human patients who demonstrate speech and language impairments. We identified sumoylation of FOXP2 at K674 (K673 in mice) in the cerebellum of neonates. In vitro co-immunoprecipitation and in vivo colocalization experiments suggest that PIAS3 acts as the small ubiquitin-like modifier E3 ligase for FOXP2 sumoylation. This sumoylation modifies transcriptional regulation by FOXP2. We demonstrated that FOXP2 sumoylation is required for regulation of cerebellar motor function and vocal communication, likely through dendritic outgrowth and arborization of Purkinje cells in the mouse cerebellum. Sumoylation of FOXP2 in neonatal mouse cerebellum regulates Purkinje cell development and motor functions and vocal communication, demonstrating evidence for sumoylation in regulating mammalian behaviors. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Lrp5/6 are required for cerebellar development and for suppressing TH expression in Purkinje cells via β-catenin.

    PubMed

    Huang, Ying; Zhang, Qiong; Song, Ning-Ning; Zhang, Lei; Sun, Yu-Ling; Hu, Ling; Chen, Jia-Ying; Zhu, Weidong; Li, Jue; Ding, Yu-Qiang

    2016-01-15

    The cerebellum is responsible for coordinating motor functions and has a unique laminated architecture. Purkinje cells are inhibitory neurons and represent the only output from the cerebellar cortex. Tyrosine hydroxylase (TH) is the key enzyme for the synthesis of catecholamines, including dopamine and noradrenaline, and it is normally not expressed in cerebellar neurons. We report here that the low-density lipoprotein receptors (Lrp) 5 and 6, Wnt co-receptors, are required for the development of the cerebellum and for suppressing ectopic TH expression in Purkinje cells. Simultaneous inactivation of Lrp 5 and 6 by Nestin-Cre results in defective lamination and foliation of the cerebellum during postnatal development. Surprisingly, TH is ectopically expressed by Purkinje cells, although they still keep its other neurochemical characteristics. These phenotypes are also observed in the cerebellum of GFAP-Cre;β-catenin(flox/flox) mice, and AAV2-Cre-mediated gene deletion leads to ectopic TH expression in Purkinje cells of β-catenin(flox/flox) mice as well. Our results revealed a new role of the canonical Lrp5/6-β-catenin pathway in regulating the morphogenesis of the cerebellum during postnatal development.

  20. MR diffusion histology and micro-tractography reveal mesoscale features of the human cerebellum.

    PubMed

    Dell'Acqua, Flavio; Bodi, Istvan; Slater, David; Catani, Marco; Modo, Michel

    2013-12-01

    After 140 years from the discovery of Golgi's black reaction, the study of connectivity of the cerebellum remains a fascinating yet challenging task. Current histological techniques provide powerful methods for unravelling local axonal architecture, but the relatively low volume of data that can be acquired in a reasonable amount of time limits their application to small samples. State-of-the-art in vivo magnetic resonance imaging (MRI) methods, such as diffusion tractography techniques, can reveal trajectories of the major white matter pathways, but their correspondence with underlying anatomy is yet to be established. Hence, a significant gap exists between these two approaches as neither of them can adequately describe the three-dimensional complexity of fibre architecture at the level of the mesoscale (from a few millimetres to micrometres). In this study, we report the application of MR diffusion histology and micro-tractography methods to reveal the combined cytoarchitectural organisation and connectivity of the human cerebellum at a resolution of 100-μm (2 nl/voxel volume). Results show that the diffusion characteristics for each layer of the cerebellar cortex correctly reflect the known cellular composition and its architectural pattern. Micro-tractography also reveals details of the axonal connectivity of individual cerebellar folia and the intra-cortical organisation of the different cerebellar layers. The direct correspondence between MR diffusion histology and micro-tractography with immunohistochemistry indicates that these approaches have the potential to complement traditional histology techniques by providing a non-destructive, quantitative and three-dimensional description of the microstructural organisation of the healthy and pathological tissue.