Sample records for natalia lapidus leonid

  1. Effects of the lapidus arthrodesis and chevron bunionectomy on plantar forefoot pressures.

    PubMed

    King, Christy M; Hamilton, Graham A; Ford, Lawrence A

    2014-01-01

    Hallux valgus with or without first ray insufficiency has been strongly implicated as a contributing factor in lesser metatarsal overload. The principle goals of a bunionectomy are to relieve the pain, correct the deformity, and restore first metatarsophalangeal joint congruity. Until now, little evidence has been available to assess the effects of bunionectomy procedures on forefoot pressure. The primary aim of the present prospective study was to evaluate the preoperative and postoperative plantar pressures after 2 specific bunionectomies: the chevron bunionectomy and Lapidus arthrodesis. A total of 68 subjects, 34 in each group, were included for radiographic and pedographic evaluation. Both procedures demonstrated radiographic improvements in the mean intermetatarsal and hallux abductus angles. The mean hallux plantar pressure decreased significantly in both procedure groups (p < .001). However, Lapidus group exhibited an increase in the mean fifth metatarsal head plantar pressure (p = .008) and pressure under the fifth metatarsal as a percentage of the total forefoot pressure (p = .01). Furthermore, the pressure under the second metatarsal as a percentage of the total forefoot pressure decreased significantly (p = .01). This study suggests that the Lapidus arthrodesis and chevron bunionectomy both provide correction for hallux valgus deformity, but when comparing forefoot load sharing pressures, the Lapidus arthrodesis appeared to have greater influence on the load sharing distribution of forefoot pressure than did the bunionectomy employing the chevron osteotomy. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Hallux Valgus Deformity and Treatment: A Three-Dimensional Approach: Modified Technique for Lapidus Procedure.

    PubMed

    Santrock, Robert D; Smith, Bret

    2018-06-01

    In a hallux valgus deformity, the problem is deviation of the hallux at the metatarsophalangeal joint and of the first metatarsal at the tarsometatarsal joint. Although anterior-posterior radiograph findings have been prioritized, deviation in the other planes can substantially change visible cues. The modified technique for Lapidus procedure procedure, uses all 3 planes to evaluate and correct the deformity, making radiographic measurements less useful. Using a triplane framework and focusing on the apex of the deformity, all bunions become the same modified technique for Lapidus procedure can be performed regardless of the degree of deformity, always includes triplane correction, and deformity size becomes irrelevant. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Leonid Storm Flux Analysis From One Leonid MAC Video AL50R

    NASA Technical Reports Server (NTRS)

    Gural, Peter S.; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A detailed meteor flux analysis is presented of a seventeen-minute portion of one videotape, collected on November 18, 1999, during the Leonid Multi-instrument Aircraft Campaign. The data was recorded around the peak of the Leonid meteor storm using an intensified CCD camera pointed towards the low southern horizon. Positions of meteors on the sky were measured. These measured meteor distributions were compared to a Monte Carlo simulation, which is a new approach to parameter estimation for mass ratio and flux. Comparison of simulated flux versus observed flux levels, seen between 1:50:00 and 2:06:41 UT, indicate a magnitude population index of r = 1.8 +/- 0.1 and mass ratio of s = 1.64 +/- 0.06. The average spatial density of the material contributing to the Leonid storm peak is measured at 0.82 +/- 0.19 particles per square kilometer per hour for particles of at least absolute visual magnitude +6.5. Clustering analysis of the arrival times of Leonids impacting the earth's atmosphere over the total observing interval shows no enhancement or clumping down to time scales of the video frame rate. This indicates a uniformly random temporal distribution of particles in the stream encountered during the 1999 epoch. Based on the observed distribution of meteors on the sky and the model distribution, recommendations am made for the optimal pointing directions for video camera meteor counts during future ground and airborne missions.

  4. 1997 Leonid Shower From Space

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Nugent, David; Murthy, Jayant; Tedesco, Ed; DeVincenzi, Donal L. (Technical Monitor)

    2000-01-01

    In November 1997, the Midcourse Space Experiment satellite (MSX) was deployed to observe the Leonid shower from space. The shower lived up to expectations, with abundant bright fireballs. Twenty-nine meteors were detected by a wide-angle, visible wavelength, camera near the limb of the Earth in a 48-minute interval, and three meteors by the narrow field camera. This amounts to a meteoroid influx of 5.5 +/- 0.6 10(exp -5)/sq km hr for masses greater than 0.3 gram. The limiting magnitude for limb observations of Leonid meteors was measured at M(sub v) = -1.5 magn The Leonid shower magnitude population index was 1.6 +/- 0.2 down to M(sub v) = -7 magn., with no sign of an upper mass cut-off.

  5. The Leonids: The Lion King of Meteor Showers

    NASA Astrophysics Data System (ADS)

    Rao, J.

    1995-08-01

    The night of November 12-13, 1833, sparked awareness of the Leonids meteor shower as well as the birth of meteor astronomy: from much of North America that night, a rain of shooting stars, a shower of flashing light, spread over the entire sky. More than one superstitious person on that spectacular night was certain that the end of the world had come. People kept repeating that the meteors were falling "like snowflakes". In the aftermath of the display, it was realized that meteors could be produced by an extraterrestrial source: streams or swarms of particle that travel around the Sun in more or less well-defined orbits, grazing, at least at one point, the orbit of our Earth. In 1866, G. Schiaparelli established the orbit of the stream of particles that produce the Leonids, and soon others independently noted a striking resemblance of the Leonids with the orbit of periodic comet Tempel-Tuttle. The comet and meteor stream were subsequently found to be following nearly identical orbits with periods of roughly 33 years. A few years earlier (in 1863) it was discovered similarly spectacular Leonid meteor displays had occured prior to 1833, with accounts of the Leonids traceable as far back as A.D. 902. Based solely on the 33-year cycle, a prediction for a meteor storm in the year 1866 verified. In 1899 a re-enactment of the 1833 storm was confidently expected, despite calculations that demonstrated that the orbit of P/Tempel-Tuttle (and probably the associated Leonid particles) were likely perturbed by the planets Jupiter and Saturn. The failure of a storm to materialize seriously damaged the credibility of astronomers in the eyes of the general public. Since 1899, the Leonids have been following a rather erratic and unpredictable schedule: meteor storms unexpectedly occurred in 1900 and 1901; no storm was noted in 1931 and 1932, leading many to believe that Leonid activity had significantly declined. But during the 1960s, they again revived, capped by a short

  6. Are the Leonid Meteor Storms Coming?

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.; Yau, K.; Weissman, P. R.

    1995-01-01

    On Nov. 17, 1996 an extraordinary Leonid meteor storm (144,000 per hour) was witnessed by observers in central and western United States. With an orbital period of 33 years, the next return to perihelion will be Feb. 28, 1998. Because the distribution of the particles flying in formation with the parent comet is poorly known, no secure predictions can be made for Leonid meteor storms in the coming years.

  7. Leonids 2017 from Norway – A bright surprise!

    NASA Astrophysics Data System (ADS)

    Gaarder, K.

    2018-01-01

    I am very pleased to have been able to observe near maximum activity of the Leonids, and clearly witnessed the unequal mass distribution during these hours. A lot of bright Leonids were seen, followed by a short period of high activity of fainter meteors, before a sharp drop in activity. The Leonids is undoubtedly a shower to watch closely, with its many variations in activity level and magnitude distribution. I already look forward to observing the next years’ display, hopefully under a dark and clear sky, filled with bright meteors!

  8. Observations of Leonids 2009 by the Tajikistan Fireball Network

    NASA Technical Reports Server (NTRS)

    Borovicka, J.; Borovicka, J.

    2011-01-01

    The fireball network in Tajikistan has operated since 2009. Five stations of the network covering the territory of near eleven thousands square kilometers are equipped with all-sky cameras with the Zeiss Distagon "fish-eye" objectives and by digital SLR cameras Nikon with the Nikkor "fish-eye" objectives. Observations of the Leonid activity in 2009 were carried out during November 13-21. In this period, 16 Leonid fireballs have been photographed. As a result of astrometric and photometric reductions, the precise data including atmospheric trajectories, velocities, orbits, light curves, photometric masses and densities were determined for 10 fireballs. The radiant positions during the maximum night suggest that the majority of the fireball activity was caused by the annual stream component with only minor contribution from the 1466 trail. According to the PE criterion, the majority of Leonid fireballs belonged to the most fragile and weak fireball group IIIB. However, one detected Leonid belonged to the fireball group I. This is the first detection of an anomalously strong Leonid individual.

  9. Prospects for nasa s astrobiology mission Leonid Mac and ground-based observations during the upcoming 2002 Leonid storms

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Schmidt, G.

    Meteors represent a unique pathway from organic matter in space to prebiotic molecules on Earth. In the process, the organic material is changed in ways that are not easily simulated in the laboratory. An essential step to knowing what molecules may have been delivered from space at the time of the origin of life is understanding the physical conditions in the meteor phenomenon and to trace the fate of organic compounds in real-live meteors. This was the objective of the NASA and USAF sponsored Leonid Multi-Instrument Aircraft Campaign, wth successful missionsi during the strong Leonid showers of November 1998, 1999 and 2001. The research aircraft offer an international team of observers the opportunity to be above clouds and scattered Moon light and to be at the right place, at the right time. One further campaign is being prepared for a mission on November 19, 2002, when the Leonid meteor shower is expected to peak twice in succession, at rates of around ZHR = 4000/hr and 5000/hr, which will be best seen over western Europe and the America's, respectively. This presentation serves to encourage ground-based observations for observers at those locations. To that purpose, a summary will be given of the results to date, with emphasis on the progress made during the spectacular storms of 2001. We will briefly outline the new meteor model that has evolved and our new understanding of persistent emissions and the fate of meteoric matter after deposition. The new data have answered some questions, but also raised numerous issues that need to be addressed further. Finally, past Leonid storms have proven ideal to involve the public in astrobiology and provided a trilling experience, examples of which will be given. The 2002 Leonid storms are expected to be the last until 2099.

  10. Search for Organic Matter in Leonid Meteoroids

    NASA Technical Reports Server (NTRS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.

  11. Leonids: Did They Make it to Earth?

    NASA Technical Reports Server (NTRS)

    Weigel, A.; Lepland, A.; De, Sasadhar; Marti, K.; Arrhenius, G.

    2000-01-01

    On the morning of November 18. 1998, following the spectacular Leonid meteor shower, one of us (S. De) found particles spread over the roof terrace in a residence in Baruipur. a suburb of Calcutta, India. Considering the time and location, these particles possibly derived from the meteor shower, although the fall was not observed. Other particles collected in connection with the Leonid showers in different parts of India proved to be of terrestrial origin.

  12. Observations of Leonid Meteors Using a Mid-Wave Infrared Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Russell, R. W.; Lynch, D. K.; Tessensohn, T. K.; Warren, D.; Jenniskens, P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We report broadband 3-5.5 micrometer detections of two Leonid meteors observed during the 1998 Leonid Multi-Instrument Aircraft Campaign. Each meteor was detected at only one position along their trajectory just prior to the point of maximum light emission. We describe the particular aspects of the Aerospace Corp. Mid-wave Infra-Red Imaging Spectrograph (MIRIS) developed for the observation of short duration transient events that impact its ability to detect Leonid meteors. This instrument had its first deployment during the 1998 Leonid MAC. We infer from our observations that the mid-infrared light curves of two Leonid meteors differed from the visible light curve. At the points of detection, the infrared emission in the MIRIS passband was 25 +/- 4 times that at optical wavelengths for both meteors. In addition, we find an upper limit of 800 K for the solid body temperature of the brighter meteor we observed, at the point in the trajectory where we made our mid-wave infrared detection.

  13. Comparison of 1998 and 1999 Leonid Light Curve Morphology and Meteoroid Structure

    NASA Technical Reports Server (NTRS)

    Murray, Ian S.; Beech, Martin; Taylor, Michael J.; Jenniskens, Peter; Hawkes, Robert L.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Photometric low-light level video observations of 1999 Leonid storm meteors have been obtained from airborne platforms during the Leonid multi-instrument aircraft campaign (Leonid MAC). The 1999 Leonid light curves tend to be skewed towards the end point of the trajectory, while the 1998 Leonid light curves were not. The variation in the light curves from 1998 and 1999 can be explained as an overall reduction in the mass distribution index, alpha from approximately 1.95 in 1998 to approximately 1.75 in 1999. We have interpreted this behavior as being either indicative of a gradual loss of the "glue" that keeps the grains together, or the fact that the meteoroids sampled in 1998 had a different morphological structure to those sampled in 1999. The early fragmentation of a dustball meteoroid results in a light curve that peaks sooner than that predicted by classical single body ablation theory.

  14. C-H Hot Bands in the Near-IR Emission Spectra of Leonids

    NASA Technical Reports Server (NTRS)

    Freund, F. T.; Scoville, J.; Holm, R.; Seelemann, R.; Freund, M. M.

    2002-01-01

    The reported infrared (IR) emission spectra from 1999 Leonid fireballs show a 3.4 micron C-H emission band and unidentified bands at longer wavelengths. Upon atmospheric entry, the Leonid meteorites were flash-heated to temperatures around 2400K, which would destroy any organics on the surface of the meteorite grains. We propose that the nu(sub )CH emission band in the Leonid emission spectra arises from matrix-embedded C(sub n)-H-O entities that are protected from instant pyrolysis. Our model is based on IR absorption nu(sub )CH bands, which we observed in laboratory-grown MgO and natural olivine single crystals, where they arise from C(sub n)-H-O units imbedded in the mineral matrix, indicative of aliphatic -CH2- and -CH3 organics. Instead of being pyrolyzed, the C(sub n)-H-O entities in the Leonid trails become vibrationally excited to higher levels n = 1, 2, 3 etc. During de-excitation they emit at 3.4 microns, due to the (0 => 1) transition, and at longer wavelengths, due to hot bands. As a first step toward verifying this hypothesis we measured the C-H vibrational manifold of hexane (C6H14). The calculated positions of the (2 => l ) , (3 => 2), and possibly (4 => 3) hot bands agree with the Leonid emission bands at 3.5, 3.8 and 4.l microns.

  15. 76 FR 21743 - Indigo Logistics, LLC, Liliya Ivanenko, and Leonid Ivanenko-Possible Violations of Section 19 of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... FEDERAL MARITIME COMMISSION [Docket No. 11-06] Indigo Logistics, LLC, Liliya Ivanenko, and Leonid... Order of Investigation and Hearing entitled Indigo Logistics, LLC; Liliya Ivanenko; and Leonid Ivanenko... instituted to determine: (1) Whether Indigo Logistics, LLC, Liliya Ivanenko, and Leonid Ivanenko violated...

  16. Evolution of two periodic meteoroid streams: The Perseids and Leonids

    NASA Astrophysics Data System (ADS)

    Brown, Peter Gordon

    Observations and modelling of the Perseid and Leonid meteoroid streams are presented and discussed. The Perseid stream is found to consist of three components: a weak background component, a core component and an outburst component. The particle distribution is identical for the outburst and core populations. Original visual accounts of the Leonid stream from 1832-1997 are analyzed to determine the time and magnitude of the peak for 32 Leonid returns in this interval. Leonid storms are shown to follow a gaussian flux profile, to occur after the perihelion passage of 55P/Tempel-Tuttle and to have a width/particle density relationship consistent with IRAS cometary trail results. Variations in the width of the 1966 Leonid storm as a function of meteoroid mass are as expected based on the Whipple ejection velocity formalism. Four major models of cometary meteoroid ejection are developed and used to simulate plausible starting conditions for the formation of the Perseid and Leonid streams. Initial ejection velocities strongly influence Perseid stream development for the first five revolutions after ejection, at which point planetary perturbations and radiation effects become important for further development. The minimum distance between the osculating orbit of 109P/Swift-Tuttle and the Earth was found to be the principle determinant of any subsequent delivery of meteoroids to Earth. Systematic shifts in the location of the outburst component of the Perseids were shown to be due to the changing age of the primary meteoroid population making up the outbursts. The outburst component is due to distant, direct planetary perturbations from Jupiter and Saturn shifting nodal points inward relative to the comet. The age of the core population of the stream is found to be (25 +/- 10) × 10 3 years while the total age of the stream is in excess of 10 5 years. The primary sinks for the stream are hyperbolic ejection and attainment of sungrazing states due to perturbations from

  17. A New Peak of Leonids observed by Radio Technics

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Maegawa, K.; Minagawa, Y.

    Radio meteor observations with amateur ham radio wave have been carried out in Japan since August, 1996, by using forward-scattered meteor echoes of VHF radio waves (53.75MHz, 50W, CW) transmitted in Sabae, Fukui prefecture. A strong activity of Leonids was observed between 22h and 01h on November 16/17 (UT), 1996. The hourly rate of long duration echoes reached over 50 times larger than in non-shower period and 1.2 to 1.5 times larger than that at the normal maximum of Leonids, respectively. This enhanced activity occurred at a solar longitude (SL) of 234.95 plus or minus 0.05 degrees (2000.0 eq.), and is probably different from normal peak of Leonids at 235.45 plus or minus 0.05 degrees(2000.0 eq.) observed in 1990's. A corresponding peak in 1995 was also reported by visual meteor observation by many observers in Japan. The ascending node of Comet Tempel-Tuttle in 1966 was at 235.11 degrees in SL, and is closer to the new peak than the normal one (at 235.45 degrees in SL).

  18. The 2002 Leonids Using 28 MHz Ham-band Radio Observations (HRO) over = Japan

    NASA Astrophysics Data System (ADS)

    Usui, T.; Ogawa, H.; Hashimoto, T.; Ohnishi, K.; Yaguchi, N.; = Maegawa, K.

    2002-12-01

    The 2002 Leonids were expected to present a spectacular appearance = over Europe and America. No spectacular appearance was expected in Japan. On = the evening of November 17 (UT), however, the 1965 dust trail was predicted = to approach the Earth closely. Therefore, Japanese observers tried to = detect this trail using 28 MHz radio. This is because 28 MHz observations can = detect fainter meteor echoes than 53 MHz observations which are prevalent in Japan. = This study shows the observing method and results of 28 MHz observations of the = 2002 Leonids. We found that the Leonids were detectable for longer at 28 MHz than at = 53.75 MHz. This indicates that the distribution of fainter (smaller) meteors is = wider than that of larger ones.

  19. The 1999 Leonid Multi-Instrument Aircraft Campaign - An Early Review

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Butow, Steven J.; Fonda, Mark

    Two B707-type research aircraft of the 452^nd Flight Test Squadron at Edwards Air Force Base were deployed to study the Leonid meteor storm of 1999 over the Mediterranean Sea on Nov. 18. The mission was sponsored by various science programs of NASA, and offered an international team of 35 researchers observing conditions free of clouds and low altitude extinction at a prime location for viewing the storm. This 1999 Leonid Multi-Instrument Aircraft Campaign followed a similar effort in 1998, improving upon mission strategy and scope. As before, spectroscopic and imaging experiments targeted meteors and persistent trains, but also airglow, aurora, elves and sprites. The research aimed to address outstanding questions in astrobiology, planetary science, astronomy, and upper atmospheric research. In addition, USAF co-sponsored the mission to provide near real-time flux measurements for space weather awareness. First results are presented in these issues of Earth, Moon, and Planets in preparation for future missions that will target the exceptional Leonid returns of 2001 and 2002. An early review of the scientific achievements in the context of campaign objectives is given.

  20. Leonid Pavlovich Shil'nikov (obituary)

    NASA Astrophysics Data System (ADS)

    Anosov, Dmitry V.; Afraimovich, Valentin S.; Bunimovich, Leonid A.; Gonchenko, Sergei V.; Grines, Vyacheslav Z.; Ilyashenko, Yulij S.; Katok, Anatolii B.; Kashchenko, Sergey A.; Kozlov, Valerii V.; Lerman, Lev M.; Morozov, Albert D.; Neishtadt, Anatolii I.; Pesin, Yakov B.; Samoilenko, Anatoly M.; Sinai, Yakov G.; Treschev, Dmitrii V.; Turaev, Dmitry V.; Sharkovskii, Aleksandr N.; Shil'nikov, Andrei L.

    2012-06-01

    A remarkable mathematician, one of the most prominent specialists in the theory of dynamical systems and bifurcation theory, a laureate of the Lyapunov Prize of the Russian Academy of Sciences and of the Lavren'ev Prize of the National Academy of Sciences of Ukraine, a Humboldt Professor, Head of the Department of Differential Equations of the Research Institute of Applied Mathematics and Cybernetics of Nizhnii Novgorod University, Professor Leonid Pavlovich Shil'nikov passed away on 26 December 2011.

  1. Activity of the 1998 Leonid Shower From the Video Records

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter

    1999-01-01

    Video observations of the Leonid shower aboard two aircraft in the 1998 Leonid multi-instrument aircraft campaign and from ground locations in China are presented. Observing at altitude proved particularly effective, with four times higher rates due to low extinction and low angular velocity at the horizon. The rates, derived from a total of 2500 Leonid meteors, trace at least two distinct dust components. One dominated the night of 1998 November 16/17. This two-day wide component was rich in bright meteors with r = N (m + 1)/N (m) approximately equal 1.5 (s = 1.4) and peaked at an influx of 3.1 +/- 0.4 x 10(exp -12) /sq m.s (for particles of mass < 7 x 10(exp -5) g) at solar longitude lambda(sub 0) approximately equal 234.52 (Eq. J2000). The other more narrow component peaked on 1998 November 17/18 at lambda(sub 0) = 235.31 +/- 0.01. Rates were elevated above the broad component between lambda(sub 0) = 235.15 and 235.40, symmetric around the current node of the parent comet 55P/Tempel-Tuttle, peaking at 5.1 +/- 0.2 x 10(exp -12) /sq m.s. The population index was higher, r = 1.8 +/- 0.1 (s = 1.7), but not as high as in past Leonid storms (r = 3.0). The flux profile of this component has an unusual asymmetric shape, which implies a blend of contributions from at least two different but relatively recent epochs of ejection. The variation of r across the profile might be due to mass-dependent ejection velocities of the narrowest component. High rates of faint meteors occurred only in an isolated five-minute interval at lambda(sub 0) = 235.198, which is likely the result of a single meteoroid breakup in space.

  2. A Walk through Graduate Education: Selected Papers and Speeches of Jules B. LaPidus, President of the Council of Graduate Schools, 1984-2000.

    ERIC Educational Resources Information Center

    Hamblin, Jane A., Ed.

    This book was created to honor Jules B. LaPidus, retiring president of the Council of Graduate Education, and to preserve his writings and speeches. The papers and speeches of Part 1 show how the author addressed the topical issues of graduate education, moving from observation to direction on research, funding, and preparation of faculty. Part 2…

  3. Characteristics of Fe Ablation Trials Observed During the 1998 Leonid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Chu, Xin-Zhao; Pan, Wei-Lin; Papen, George; Swenson, Gary; Gardner, Chester S.; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Eighteen Fe ablation trails were observed during the 17/18 Nov 1998 Leonid meteor shower with an airborne Fe lidar aboard the National Simulation Facility/National Center for Atmospheric Research (NSF/NCAR) Electra aircraft over Okinawa. The average altitude of the 18 trails from the high velocity (72 km/s) Leonid meteors, 95.67 +/- 0.93 km, is approximately 6.7 km higher than previously observed for slower (approx. 30 km/s) sporadic meteors. This height difference is consistent with the assumption that meteors ablate when the kinetic energy imparted to the atmosphere reaches a critical threshold. The average age of the Fe trails, determined by a diffusion model, is 10.1 min. The youngest ages were observed below 92 km and above 98 km where chemistry and diffusion dominate, respectively. The average abundance of the trails is ten percent of the abundance of the background Fe layer. Observations suggest that the 1998 Leonid shower did not have a significant impact on the abundance of the background Fe layer.

  4. Leonid predictions for the period 2001-2100

    NASA Astrophysics Data System (ADS)

    Maslov, Mikhail

    2007-02-01

    This article provides a set of summaries of what to expect from the Leonid meteor shower for each year of the period 2001-2100. Each summary contains the moments of maximum/maxima, their expected intensity and some comments about average meteor brightness during them. Special attention was paid to background (traditional) maxima, which are characterized with their expected times and intensities.

  5. An ET Origin for Stratospheric Particles Collected during the 1998 Leonids Meteor Shower

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Phillips, James A.; Horack, John M.; Jerman, Gregory; Myszka, Ed

    1999-01-01

    On 17 November 1998, a helium-filled weather balloon was launched into tfle strato- sphere, equipped with a xerogel microparticle collector. The three-hour flight was designed to sample the dust environment in the stratosphere during the Leonid meteor shower, and possibly to capture Leonid meteoroids. Environmental Scanning Election Microscope analyses of the returned collectors revealed the capture of a -30-pm particle. with a smooth, multigranular shape, and partially melted, translucent rims; similar to known Antarctic micrometeorites. Energy-dispersive X-ray Mass Spectroscopy shows en- riched concentrations of the non-volatile elements, Mg, Al, and Fe. The particle possesses a high magnesium to iron ratio of 2.96, similar to that observed in 1998 Leonids meteors (Borovicka, et al. 1999) and sharply higher than the ratio expected for typical material from the earth's crust. A statistical nearest-neighbor analysis of the abundance ratios Mg/Si, Al/Si, and Fe/Si demonstrates that the particle is most similar in composition to cosmic spherules captured during airplane flights throucrh the stratosphere. The mineralogical class is consistent with a stony (S) type of silicates. olivine [(Mg, Fe)2SiO4] and pyroxene [(Mg,Fe)SiO3]-or oxides, herecynite [(Fe,Mg) Al2O4]. Attribution to the debris stream of the Leonids' parent body, comet Tempel-Tuttle, would make it the first such material from beyond the orbit of Uranus positively identified on Earth.

  6. Successful Hybrid Approach to Visual and Video Observations of the 1999 Leonid Storm

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Crawford, Chris; Butow, Steve; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A new hybrid technique of visual and video meteor observations is described. The method proved particularly effective for airborne observations of meteor shower activity. Results from the 1999 Leonid Multi-Instrument Aircraft Campaign are presented, and the profile shape of the 1999 Leonid storm is discussed in relation to meteor shower models. We find that the storm is best described with a Lorentz profile. Application to past meteor outbursts shows that the cui,rent multi-trailet model of a dust trail is slightly shifted and we crossed deeper into the 1899 epoch trallet than expected.

  7. Atmospheric behavior and extreme beginning heights of the 13 brightest photographic Leonids from the ground-based expedition to China

    NASA Astrophysics Data System (ADS)

    Spurný, Pavel; Betlem, Hans; van't Leven, Jaap; Jenniskens, Peter

    2000-03-01

    Precise atmospheric trajectories including dynamic and photometric data on the 13 of the brightest Leonid fireballs have been determined from the double station photographic observations of Leonids during the ground-based expedition to China in November 1998. The expedition was organized as a collaboration between the Dutch and Chinese Academy of Sciences and was supported by the Leonid MAC program (Jenniskens and Butow, 1999). All data presented here were taken at Xinglong Observatory and at a remote station Lin Ting Kou near Beijing on the night of November 16/17. At Xinglong station photographic cameras were accompanied with an all-sky TV camera equipped with an image intensifier and 15 mm fish-eye objective in order to obtain precise timings for all observed meteors up to magnitude +2. While beginning heights of photographed meteors are all lower than 130 km, those observed by the all-sky TV system are at about 160 km and for three brightest events even above 180 km. Such high beginnings for meteors have never before been observed. We obtained also a precise dynamic single-body solution for the Leonid meteor 98003 including the ablation coefficient, which is an important material and structural quantity (0.16 s2km-2). From this, and from known photometry, we derived a density of this meteoroid of 0.7 g/cm3. Also all PE coefficients indicate that these Leonids belonged to the fireball group IIIB which is typical for the most fragile and weak interplanetary bodies. From a photometric study of the meteor lightcurves we found two typical shapes of light curves for these Leonids.

  8. Matters arising from ``The Leonid meteor shower and the history of the Semites''Letter - Matters arising from ``The Leonid meteor shower and the history of the Semites''

    NASA Astrophysics Data System (ADS)

    McBeath, A.

    2009-10-01

    Aspects of a paper by Suleyman (2009) in this journal, relating to theoretically-strong Leonid activity in 569 AD and 1226 BC possibly having been recorded in the Quran and Bible respectively, are discussed. Little reason is found to suppose either textual source referred to such astronomical events.

  9. Leonid Breznev and Richard Nixon examine plaques presented by Skylab crew

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Leonid I. Breznev, General Secretary of the Communist Party, Union of Soviet Socialist Republics, and President Richard M. Nixon, during ceremonies at the Western White House in San Clemente, California, examine plaques presented by Skylab astronauts Charles Conrad Jr., center; Joseph P. Kerwin, second from right; and Paul J. Weitz, left.

  10. Jet-Like Structures and Wake in Mg I (518 nm) Images of 1999 Leonid Storm Meteors

    NASA Technical Reports Server (NTRS)

    Taylor, M. J.; Murray, I. S.; Jenniskens, P.

    2000-01-01

    Small meteoric fragments are ejected at significant transverse velocities from some (up to approx. 8%) fast Leonid meteors. We reach this conclusion using low light intensified image measurements obtained during the 1999 Leonid Multi-Instrument Aircraft Campaign. High spatial resolution, narrow band image measurements of the Mg I emission at 518 nm have been used to clearly identify jet-like features in the meteor head that are the same as first observed in white light. We postulate that these unusual structures are caused by tiny meteoroid fragments (containing metallic grains) being rapidly ejected away from the core meteoroid as the constituent glue evaporates. Marked curvature observed in the jet-like filaments suggest that the parent meteoroids are spinning and as the whirling fragments are knocked away by the impinging air molecules, or by grain-grain collisions in the fragment ensemble, they ablate quickly generating an extended area of structured luminosity up to about 1-2 km from the meteoroid center. Fragments with smaller transverse velocity components are thought to be responsible for the associated beading evident in the wake of these unusual Leonid meteors.

  11. Lorentz-Shaped Comet Dust Trail Cross Section from New Hybrid Visual and Video Meteor Counting Technique - Implications for Future Leonid Storm Encounters

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Crawford, Chris; Butow, Steven J.; Nugent, David; Koop, Mike; Holman, David; Houston, Jane; Jobse, Klaas; Kronk, Gary

    2000-01-01

    A new hybrid technique of visual and video meteor observations was developed to provide high precision near real-time flux measurements for satellite operators from airborne platforms. A total of 33,000 Leonids. recorded on video during the 1999 Leonid storm, were watched by a team of visual observers using a video head display and an automatic counting tool. The counts reveal that the activity profile of the Leonid storm is a Lorentz profile. By assuming a radial profile for the dust trail that is also a Lorentzian, we make predictions for future encounters. If that assumption is correct, we passed 0.0003 AU deeper into the 1899 trailet than expected during the storm of 1999 and future encounters with the 1866 trailet will be less intense than. predicted elsewhere.

  12. Forecast for the Remainder of the Leonid Storm Season

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The dust trails of comet 55P/Tempel-Tuttle lead to Leonid storms on Earth, threatening satellites in orbit. We present a new model that accounts in detail for the observed properties of dust tails evolved by the comet at previous oppositions. The prediction model shows the 1767-dust trail closer to Earth's orbit in 2001 than originally thought; increasing expected peak rates for North America observers. Predictions for the 2002 storms are less affected. We demonstrate that the observed shower profiles can be understood as a projection of the comet lightcurve.

  13. Video Observations Encompassing the 2002 Leonid Storm: First Results and a Revised Photometric Procedure for Video Meteor Analysis

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert; Swift, Wesley; Gural, Peter S.; Brown, Peter; Ellis, Jim (Technical Monitor)

    2002-01-01

    During the 2001 Leonid storm, Marshall Space Flight Center, with the cooperation of the University of Western Ontario and the United States Air Force, deployed 6 teams of observers equipped with intensified video systems to sites located in North America, the Pacific, and Mongolia. The campaign was extremely successful, with the entire period of enhanced Leonid activity (over 16 hours) captured on video tape in a consistent manner. We present the first results from the analysis of this unique, 2 terabyte data set and discuss the problems involved in reducing large amounts of video meteor data. In particular, the question of how to determine meteor masses though photometric analysis will be re-examined, and new techniques will be proposed that eliminate some of the deficiencies suffered by the techniques currently employed in video meteor analysis.

  14. Mid-Infrared Spectroscopy of Persistent Leonid Trains

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.; Rossano, George S.; Chatelain, Mark A.; Lynch, David K.; Tessensohn, Ted K.; Abendroth, Eric; Kim, Daryl; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The first infrared spectroscopy in the 3-13 micron region has been obtained of several persistent Leonid meteor trains with two different instrument types, one at a desert ground-based site and the other on-board a high-flying aircraft. The spectra exhibit common structures assigned to enhanced emissions of warm CH4, CO2, CO and H2O which may originate from heated trace air compounds or materials created in the wake of the meteor. This is the first time that any of these molecules has been observed in the spectra of persistent trains. Hence, the mid-IR observations offer a new perspective on the physical processes that occur in the path of the meteor at some time after the meteor itself has passed by. Continuum emission is observed also, but its origin has not yet been established. No 10 micron dust emission feature has been observed.

  15. FeO "Orange Arc" Emission Detected in Optical Spectrum of Leonid Persistent Trains

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Lacey, Matt; Allan, Beverly J.; Self, Daniel E.; Plane, John M. C.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We report the detection of a broad continuum emission dominating the visual spectrum of a Leonid persistent train. A comparison with laboratory spectra of FeO 1 "orange arc" emission at I mbar shows a general agreement of the band position and shape. The detection of FeO confirms the classical mechanism of metal atom catalyzed recombination of ozone and oxygen atoms as the driving force behind optical emission from persistent trains. Sodium and iron atoms are now confirmed catalysts.

  16. STS-87 Payload Specialist Leonid K. Kadenyuk suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine gives a thumbs up in his launch and entry suit in the Operations and Checkout Building. He and the five other crew members of STS-87will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Kadenyuk will be flying his first mission on STS-87. During the mission, Kadenyuk will pollinate Brassica rapa plants as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbias middeck and features an educational component that involves evaluating the effects of microgravity on Brassica rapa seedlings.

  17. Implementing the Zone of Proximal Development: From the Pedagogical Experiment to the Developmental Education System of Leonid Zankov

    ERIC Educational Resources Information Center

    Guseva, Liudmila G.; Solomonovich, Mark

    2017-01-01

    This article overviews the theoretical and applied works of the psychologist and pedagogue Leonid Zankov. Zankov's model of teaching is based on Vygotsky's theory that appropriate teaching methods stimulate cognitive development, whose core notion is the Zone of Proximal Development. This educational psychology research was verified by large scale…

  18. Leonid Vital'evich Kantorovich (on the 100th anniversary of his birth)

    NASA Astrophysics Data System (ADS)

    Vershik, Anatolii M.; Kutateladze, Semen S.; Novikov, Sergei P.

    2012-06-01

    The 19th of January 2012 was the 100th anniversary of the birth of Leonid Vital'evich Kantorovich, an outstanding mathematician and economist of international fame. A child prodigy, who graduated from the university at 18 and became a professor at 20, an academician in the mathematical sciences and a laureate of the Nobel Prize in economics, - these are extraordinary circumstances of his life. They are remarkable in themselves, but also the results he achieved were exceptional and immensely impressive, and the younger generations of researchers, first and foremost mathematicians and economists, must know about them.

  19. The 1999 Leonid Multi-Instrument Aircraft Campaign - An Early Review

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Butow, Steven J.; Fonda, Mark; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Leonid meteor storm of 1999 was observed from two B707-type research aircraft by a team of 35 scientists of seven nationalities over the Mediterranean Sea on Nov. 18, 1999. The mission was sponsored by various science programs of NASA, and offered the best possible observing conditions, free of clouds and at a prime location for viewing the storm. The 1999 mission followed a similar effort in 1998, improving upon mission strategy and scope. As before, spectroscopic and imaging experiments targeted meteors and persistent trains, but also airglow, aurora, elves and sprites. The research aimed to address outstanding questions in Planetary Science, Astronomy, Astrobiology and upper atmospheric research, including Aeronornie. In addition, near real-time flux measurements contributed to a USAF sponsored program for space weather awareness. An overview of the first results is given, which are discussed in preparation for future missions.

  20. Leonid's Particle Analyses from Stratospheric Balloon Collection on Xerogel Surfaces

    NASA Technical Reports Server (NTRS)

    Noever, David; Phillips, Tony; Horack, John; Porter, Linda; Myszka, Ed

    1999-01-01

    Recovered from a stratospheric balloon above 20 km on 17-18 November 1998, at least eight candidate microparticles were collected and analyzed from low-density silica xerogel collection plates. Capture time at Leonids' storm peak was validated locally along the balloon trajectory by direct video imaging of meteor fluence up to 24/hr above 98% of the Earth's atmosphere. At least one 30 micron particle agrees morphologically to a smooth, unmelted spherule and compares most closely in non-volatile elemental ratios (Mg/Si, Al/Si, and Fe/Si) to compositional data in surface/ocean meteorite collections. A Euclidean tree diagram based on composition makes a most probable identification as a non-porous stratospherically collected particle and a least probable identification as terrestrial matter or an ordinary chondrite. If of extraterrestrial origin, the mineralogical class would be consistent with a stony (S) type of silicate, olivine [(Mg,Fe)2SiO4] and pyroxene [(Mg, Fe)Si!O3)--or oxides, herecynite [(Fe,Mg) Al2O4].

  1. STS-87 P.S. Leonid Kadenyuk of NSAU and Daniel Goldin after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU), at left, greets NASA Administrator Daniel Goldin, at right, as back-up Payload Specialist Yaroslav Pustovyi, also of NSAU, looks on. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34-minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; and Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D. of the National Space Development Agency of Japan. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  2. List of Organizing Committees and Conference Programme

    NASA Astrophysics Data System (ADS)

    2012-03-01

    Organizers Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Romanian Neutron Scattering Society Sponsors Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Comenius University in Bratislava, Slovakia Institute of Macromolecular Chemistry AS CR, Czech Republic Programme Committee Valentin Gordely (chairman)Joint Institute for Nuclear Research, Russia Heinrich StuhrmannGermany Jose TeixeiraLaboratoire Leon Brillouin, France Pavel ApelJoint Institute for Nuclear Research, Russia Pavol BalgavyComenius University in Bratislava, Slovakia Alexander BelushkinJoint Institute for Nuclear Research, Russia Georg BueldtInstitute of Structural Biology and Biophysics (ISB), Germany Leonid BulavinTaras Shevchenko National University of Kyiv, Ukraine Emil BurzoBabes-Bolyai University, Romania Vadim CherezovThe Scripps Research Institute, Department of Molecular Biology, USA Ion IonitaRomanian Society of Neutron Scattering, Romania Alexei KhokhlovMoscow State University, Russia Aziz MuzafarovInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Alexander OzerinInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Gerard PepyResearch Institute for Solid State Physics and Optics, Hungary Josef PlestilInstitute of Macromolecular Chemistry CAS, Czech Republic Aurel RadulescuJuelich Centre for Neutron Science JCNS, Germany Maria BalasoiuJoint Institute for Nuclear Research, Russia Alexander KuklinJoint Institute for Nuclear Research, Russia Local Organizing Committee Alexander Kuklin - Chairman Maria Balasoiu - Co-chairman Tatiana Murugova - Secretary Natalia Malysheva Natalia Dokalenko Julia Gorshkova Andrey Rogachev Oleksandr Ivankov Dmitry Soloviev Lilia Anghel Erhan Raul The PDF also contains the Conference Programme.

  3. MSFC Stream Model Preliminary Results: Modeling Recent Leonid and Perseid Encounters

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Moser, Danielle E.

    2004-01-01

    The cometary meteoroid ejection model of Jones and Brown (1996b) was used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the last 9 apparitions of 109P/Swift-Tuttle. Using cometary ephemerides generated by the Jet Propulsion Laboratory s (JPL) HORIZONS Solar System Data and Ephemeris Computation Service, two independent ejection schemes were simulated. In the first case, ejection was simulated in 1 hour time steps along the comet s orbit while it was within 2.5 AU of the Sun. In the second case, ejection was simulated to occur at the hour the comet reached perihelion. A 4th order variable step-size Runge-Kutta integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting-Robertson drag, and the gravitational forces of the planets, which were computed using JPL s DE406 planetary ephemerides. An impact parameter was computed for each particle approaching the Earth to create a flux profile, and the results compared to observations of the 1998 and 1999 Leonid showers, and the 1993 and 2004 Perseids.

  4. Buoyancy of the ''Y2K'' Persistent Train and the Trajectory of the 04:00:29 UT Leonid Fireball

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Rairden, Rick L.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The atmospheric trajectory is calculated of a particularly well studied fireball and train during the 1999 Leonid Multi-Instrument Aircraft Campaign. Less than a minute after the meteor's first appearance, the train curves into a '2'-shape, which persisted until at least 13 minutes after the fireball. We conclude that the shape results because of horizontal winds from gravity waves with a scale height of 8.3 km at 79-91 km altitude, as well as a westerly wind gradient with altitude. In addition, there is downward drift that affects the formation of loops in the train early on.

  5. Buoyancy of the "Y2K" Persistent Train and the Trajectory of the 04:00:29 UT Leonid Fireball

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Rairden, Rick L.

    The atmospheric trajectory is calculated of a particularly well studied fireball and train during the 1999 Leonid Multi-Instrument Aircraft Campaign. Less than a minute after the meteor's first appearance, the train curves into a "2"-shape, which persisted until at least 13 minutes after the fireball. We conclude that the shape results because of horizontal winds from gravity waves with a scale height of 8.3 km at 79-91 km altitude, as well as a westerly wind gradient with altitude. In addition, there is downward drift that affects the formation of loops in the train early on.

  6. MSFC Stream Model Preliminary Results: Modeling Recent Leonid and Perseid Encounters

    NASA Astrophysics Data System (ADS)

    Moser, Danielle E.; Cooke, William J.

    2004-12-01

    The cometary meteoroid ejection model of Jones and Brown [ Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series 104 (1996b) 137] was used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the last 9 apparitions of 109P/Swift-Tuttle. Using cometary ephemerides generated by the Jet Propulsion Laboratory’s (JPL) HORIZONS Solar System Data and Ephemeris Computation Service, two independent ejection schemes were simulated. In the first case, ejection was simulated in 1 h time steps along the comet’s orbit while it was within 2.5 AU of the Sun. In the second case, ejection was simulated to occur at the hour the comet reached perihelion. A 4th order variable step-size Runge Kutta integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting Robertson drag, and the gravitational forces of the planets, which were computed using JPL’s DE406 planetary ephemerides. An impact parameter (IP) was computed for each particle approaching the Earth to create a flux profile, and the results compared to observations of the 1998 and 1999 Leonid showers, and the 1993 and 2004 Perseids.

  7. Leonid Shower Probe of Aerothermochemistry in Meteoric Plasmas and Implication for the Origin of Life

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter S. I.; Packan, D.; Laux, C.; Wilson, Mike; Boyd, I. D.; Kruger, C. H.; Popova, O.; Fonda, M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The rarefied and high Mach number (up to 270) of the flow field of a typical meteoroid as it enters the Earth's atmosphere implies conditions of ablation and atmospheric chemistry that have proven to be as difficult to grasp as the proverbial shooting star. An airborne campaign was organized to study these processes during an intense Leonid shower. A probe of molecular band emission now demonstrates that the flash of light from a common meteor originates in the wake of the object rather than in the meteor head. A new theoretical approach using the direct simulation Monte Carlo technique demonstrates that the ablation process is critical in heating the air in that wake. Air molecules impinge on a dense cloud of ablated material in front of the meteoroid head into an extended wake that has the observed excitation temperatures. These processes determine what extraterrestrial materials may have been delivered to Earth at the time of the origin of life.

  8. The Dynamical Evolution of a Tubular Leonid Persistent Train

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Nugent, David; Plane, John M. C.

    The dynamical evolution of the persistent train of a bright Leonid meteor was examined for evidence of the source of the luminosity and the physical conditions in the meteor path. The train consisted of two parallel somewhat diffuse luminous tracks, interpreted as the walls of a tube. A general lack of wind shear along the trail allowed these structures to remain intact for nearly 200 s, from which it was possible to determine that the tubular structure expanded at a near constant 10.5 ms^-1, independent of altitude between 86 and 97 km. An initial fast decrease of train intensity below 90 km was followed by an increase in intensity and then a gradual decrease at longer times, whereas at high altitudes the integrated intensity was nearly constant with time. These results are compared to a model that describes the dynamical evolution of the train by diffusion, following an initial rapid expansion of the hot gaseous trail behind the meteoroid. The train luminosity is produced by O (^1S) emission at 557 nm, driven by elevated atomic O levels produced by the meteor impact, as well as chemiluminescent reactions of the ablated metals Na and Fe with O_3. Ozone is rapidly removed within the train, both by thermal decomposition and catalytic destruction by the metallic species. Hence, the brightest emission occurs at the edge of the train between outwardly diffusing metallic species and inwardly diffusing O_3. Although the model is able to account plausibly for a number of characteristic features of the train evolution, significant discrepancies remain that cannot casily be resolved.

  9. The Dynamical Evolution of A Tubular Leonid Persistent Train

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Nugent, David; Plane, John M. C.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The dynamical evolution of the persistent train of a bright Leonid meteor was examined for evidence of the source of the luminosity and the physical conditions in the meteor path. The train consisted of two parallel somewhat diffuse luminous tracks, interpreted as the walls of a tube. A general lack of wind shear along the trail allowed these structures to remain intact for nearly 200 s, from which it was possible to determine that the tubular structure expanded at a near constant 10.5 m/s, independent of altitude between 86 and 97 km. An initial fast decrease of train intensity below 90 km was followed by an increase in intensity and then a gradual decrease at longer times, whereas at high attitudes the integrated intensity was nearly constant with time. These results are compared to a model that describes the dynamical evolution of the train by diffusion, following an initial rapid expansion of the hot gaseous trail behind the meteoroid. The train luminosity is produced by O ((sup 1)S) emission at 557 nm, driven by elevated atomic O levels produced by the meteor impact, as well as chemiluminescent reactions of the ablated metals Na and Fe with O3. Ozone is rapidly removed within the train, both by thermal decomposition and catalytic destruction by the metallic species. Hence, the brightest emission occurs at the edge of the train between outwardly diffusing metallic species and inwardly diffusing O3. Although the model is able to account plausibly for a number of characteristic features of the train evolution, significant discrepancies remain that cannot easily be resolved.

  10. STS-87 Payload Specialist Leonid Kadenyuk chats with NASA Administrator Daniel Goldin shortly after

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU), at left, chats with NASA Administrator Daniel Goldin shortly after the landing of Columbia at Kennedy Space Center. Looking on is back-up Payload Specialist Yaroslav Pustovyi, also of NSAU. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; and Mission Specialists Winston Scott, Kalpana Chawla, Ph.D., and Takao Doi, Ph.D., of the National Space Development Agency of Japan. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  11. Search for Extraterrestrial Origin of Atmospheric Trace Molecules Radio Sub-MM Observations During The Leonids

    NASA Technical Reports Server (NTRS)

    Depois, D.; Ricaud, P.; Lautie, N.; Schneider, N.; Jacq, T.; Biver, N.; Lis, D.; Chamberlain, R.; Phillips, T.; Miller, M.; hide

    2000-01-01

    HCN is a minor constituent of the Earth atmosphere, with a typical volume mixing ratio around 10(exp -10) HCN per air molecule. At present, the main source of HCN in the lower atmosphere is expected to be biomass burning. The atmospheric HCN has been observed since 1981, first in the infrared, then at microwave radio frequencies. Globally, above 30 km, HCN measurements are in excess of model predictions based on standard photochemistry and biomass burning as the only HCN source. This excess has been explained by: 1) ion-catalyzed reactions in the entire stratosphere, involving CH.3CN as a precursor and/or 2) a high altitude source as a result of chemical production from the methyl radical CH3, or from injection or production by meteors. HCN is a minor constituent of cometary ices. HCN polymers or copolymers have been suggested as constituents of cometary refractory organic matter, and would thus be present in the incoming meteoroids, if these polymers survived their stay in interplanetary space after ejection. HCN may also be created from the CN radical decomposition product of organic carbon, after reaction with hydrogen-bearing molecules. To test the hypothesis of HCN input by meteoroids or the formation in the upper atmosphere from meteoric ablation products, we decided to monitor the HCN submillimeter lines around a major shower: the Leonids.

  12. MSFC Stream Model Preliminary Results: Modeling the 1998-2002 Leonid Encounters and the 1993,1994, and 2004 Perseid Encounters

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Cooke, W. J.

    2004-01-01

    The cometary meteoroid ejection models of Jones (1996) and Crifo (1997) were used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the 1862, 1737, and 161 0 apparitions of 1 OSP/Swift-Tuttle. Using cometary ephemerides generated by the JPL HORIZONS Solar System Data and Ephemeris Computation Service, ejection was simulated in 1 hour time steps while the comet was within 2.5 AU of the Sun. Also simulated was ejection occurring at the hour of perihelion passage. An RK4 variable step integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting-Robertson drag, and the gravitational forces of the planets, which were computed using JPL's DE406 planetary ephemerides. An impact parameter is computed for each particle approaching the Earth, and the results are compared to observations of the 1998-2002 Leonid showers, and the 1993-1 994 Perseids. A prediction for Earth's encounter with the Perseid stream in 2004 is also presented.

  13. Thermal Transport in Novel Semiconductors and Nanomaterials from First Principles

    DTIC Science & Technology

    2016-03-29

    Jesus Carrete. Natalia Mingo. D. A. Broido. and T. L. Reinecke. Physical Review B 89 155426 (2014). 3. Anomalous pressure dependence o[thermal...conductivities o[large mass ratio compounds, L. Lindsay, D. A. Broido, Jesus Carrete, Natalia Mingo, and T. L. Reinecke, Physical Review B 91, 121202...2015). 4. Phvsicallv founded phonon dispersions o{few-laver materials, and the case o{borophene, Jesus Carrete, Wu Li, Lucas Lindsay. David A. Broido

  14. Applications of Taylor-Galerkin finite element method to compressible internal flow problems

    NASA Technical Reports Server (NTRS)

    Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.

    1989-01-01

    A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.

  15. Constraining the Physical Properties of Meteor Stream Particles by Light Curve Shapes Using the Virtual Meteor Observatory

    NASA Technical Reports Server (NTRS)

    Koschny, D.; Gritsevich, M.; Barentsen, G.

    2011-01-01

    Different authors have produced models for the physical properties of meteoroids based on the shape of a meteor's light curve, typically from short observing campaigns. We here analyze the height profiles and light curves of approx.200 double-station meteors from the Leonids and Perseids using data from the Virtual Meteor Observatory, to demonstrate that with this web-based meteor database it is possible to analyze very large datasets from different authors in a consistent way. We compute the average heights for begin point, maximum luminosity, and end heights for Perseids and Leonids. We also compute the skew of the light curve, usually called the F-parameter. The results compare well with other author's data. We display the average light curve in a novel way to assess the light curve shape in addition to using the F-parameter. While the Perseids show a peaked light curve, the average Leonid light curve has a more flat peak. This indicates that the particle distribution of Leonid meteors can be described by a Gaussian distribution; the Perseids can be described with a power law. The skew for Leonids is smaller than for Perseids, indicating that the Leonids are more fragile than the Perseids.

  16. New Technology Drafts: Production and Improvements

    ScienceCinema

    Lapidus, Alla

    2018-01-22

    Alla Lapidus, head of the DOE Joint Genome Institute's Finishing group, gives a talk on how the DOE JGI's microbial genome sequencing pipeline has been adapted to accommodate next generation sequencing platforms at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  17. STS-87 Day 05 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this fifth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk continue experimental work aboard Columbia. Leonid Kadenyuk focuses on studies of plant growth in weightlessness.

  18. STS-87 Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this tenth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk receive a call from Ukrainian President Leonid Kuchma and answer questions from media in Kiev. The conversations focus on Kadenyuk's first flight into space and the work ongoing to support the mission objectives.

  19. ESA's experts are ready for a storm of comet dust

    NASA Astrophysics Data System (ADS)

    1998-11-01

    Minute grains of dust create the glowing heads and tails that make comets famous. A trail of dust traces the orbit of each comet, and when the Earth encounters a comet trail the result is a meteor shower. Comet Tempel-Tuttle has just refreshed its dust trail on a visit to the Sun's vicinity, which it makes every 33 years. The Leonids approach the Earth from the direction of the constellation Leo. As a precaution, the Hubble Space Telescope will turn its back on Leo for ten hours around the predicted peak of the Leonid event, which is at about 20:30 CET on 17 November. Astronomers will take the opportunity to look for undiscovered galaxies in the opposite direction in the sky. Any disturbances caused to the 11.6-tonne Hubble spacecraft by the Leonid dust impacts will be recorded for analysis by dust specialists. One of the teams chosen for this study includes ESA and UK scientists and is headed by John Zarnecki of the University of Kent. Zarnecki comments: "It seems like doing an experiment with the crown jewels. But Hubble is a fantastically accurate star pointer, so we should detect wobbles due to quite small impacts. We hope to check our theories about the numbers of grains of different masses. But I'd hate to see any harm come to Hubble," Zarnecki adds. "Or any other spacecraft for that matter." Taking account of the risk to spacecraft This year Comet Tempel-Tuttle passed within 1.2 million kilometres of the Earth's orbit, which is very near by astronomical standards. Similar close encounters have produced widely differing results in the past. In 1932 the count of visible meteors in the Leonids reached an unremarkable rate of 240 per hour, compared with a normal background of about 10-20 sporadic meteors per hour at quiet times. Yet in 1966 the count-rate for the Leonids was 15,000 per hour, or 4 per second, and some observers reported even higher rates. If the rate is again 15,000 per hour, a spacecraft presenting a target of 10 square metres to the Leonid

  20. Matched Filtering of Visual Evoked Potentials to Detect Acceleration (+Gz) Induced Blackout

    DTIC Science & Technology

    1985-01-03

    FILTERING OF VISUAL EVOKED POTENTIALS rO DETECT ACCELERATION ( + Gz) INDUCED BLACKOUT John Q. Nelson, Leonid Hrebien and Joseph P. Cammarota Aircraft...8217: , r .,.V -. 1-». .v. IE •> _"->.-"*« A^V :j% _"«;_"V X~«. _~»^"V.i.~» iuTtuTii i."»..-^. .-*._> r /; NOTICES REPORT NUMBERING SYSTEM - The...Potentials to Detect Acceleration (+G2) Induced Blackout 12 PERSONAL AUTHOR(S) John G. Nelson, Leonid Hrebien, Joseph P. Cammarota 13* TYPE OF REPORT

  1. Meteoroids and Meteor Storms: A Threat to Spacecraft

    NASA Technical Reports Server (NTRS)

    Anderson, B. Jeffrey

    1999-01-01

    Robust system design is the best protection against meteoroid damage. Impacts by small meteoroids are common on satellite surfaces, but impacts by meteoroids large enough to damage well designed systems are very rare. Estimating the threat from the normal meteoroid environment is difficult. Estimates for the occasional "storm" are even more uncertain. Common sense precautions are in order for the 1999 Leonids, but wide-spread catastrophic damage is highly unlikely. Strong Leonid showers are also expected in 2000 and 2001, but these pose much less threat than 1999.

  2. Awareness campaign.

    PubMed

    2007-01-01

    LifeBridge Health developed and implemented an awareness campaign to generate buzz about the breast cancer services at the Alvin & Lois Lapidus Cancer Institute of LifeBridge Health and the Herman & Walter Samuelson Breast Cancer Care Center at Northwest Hospital Center. With the help of talented local breast cancer survivors, celebrities, fashion designers, and artists, LifeBridge Health created a campaign, including an interactive Web site, public relations outreach, and a unique event in October 2006 that featured a collection of hand-made decorated bras.

  3. Creating cometary models using ancient Chinese data

    NASA Astrophysics Data System (ADS)

    Yeomans, D. K.

    For more than two millennia, Chinese court astronomers maintained a rather comprehensive record of cometary sightings. Owing to the significance of comets as portents for the reigning emperor, early sky watchers from China (as well as their counterparts from Korea and Japan) carefully noted each cometary apparition for the purpose of astrological predictions. The dates and corresponding celestial locations and motions were usually recorded and in some cases, the colors, coma sizes, and tail lengths were also noted. These ancient observations represent the only source of information available for modeling the long-term behavior of periodic comets. For comets Halley and Swift-Tuttle, Chinese records have been identified as far back as 240 B.C. and 69 B.C. respectively and these data have been used to define their long-term motions. As a result, heliocentric and geocentric distances for each Chinese sighting of these two comets can be computed and estimates can be made for each comet's intrinsic brightness at various observed returns. Although the earliest identified apparition of comet Tempel-Tuttle is A.D. 1366, the associated Leonid meteor showers were noted back to at least A.D. 902. The Leonid meteor stream is young in the sense that outstanding meteor displays occur only near the time of the parent comet's perihelion passages. The ancient Chinese records of the Leonid meteor showers and storms have been used to map the particle distribution around the parent comet and this information was used to guide predictions for the 1998-1999 Leonid meteor showers.

  4. Actes des Journees de linguistique (Proceedings of the Linguistics Conference) (15th, Quebec, Canada, March 15-16, 2001).

    ERIC Educational Resources Information Center

    Goulet, Marie-Josee, Ed.

    Papers on language research in this volume include the following: "Temporalite en francais de France. Differences dans la conceptualisation du temps et son expression dans un texte narratif oral" ("Differences in the Conceptualization of Time and Its Expression in Oral Narratives") (Natalia Dankova); "La traduction des…

  5. The First Confirmed Videorecordings of Lunar Meteor Impacts

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.; Cudnik, B.; Palmer, D. M.; Sada, P. V.; Melosh, J.; Beech, M.; Pellerin, L.; Asher, D.; Frankenberger R.; Venable R.

    2000-01-01

    North American observers recorded at least six meteors striking the Moon's surface during the Leonid meteor shower on 1999 Nov. 18. Each meteor produced a flash that was recorded from at least two separate locations, marking the first confirmed lunar meteor impacts.

  6. Metamaterials for Miniaturization of Optical Components

    DTIC Science & Technology

    2014-09-24

    elementary EM fields are exactly the Maxwell equations with proper conserved currents; (iii) a free charge moves uniformly preserving up to the...Disordered Systems -- A Conference in Honor of Leonid Pastur , Hagen, Germany, Some Mathematical Problems in a Neoclassical Theory of Electric Charges

  7. JPL-20171101-WHATSUf-0001-What's Up November 2017

    NASA Image and Video Library

    2017-11-01

    Monthly series for amateur astronomers. November features: Viewing the moon, star clusters (the Pleiades, M35, and the Beehive Cluster), and a close pairing of Venus and Jupiter. Plus three meteor showers: the Leonids, the northern and southern Taurids, and the Orionids.

  8. Stratospheric Sampling and In Situ Atmospheric Chemical Element Analysis During Meteor Showers: A Resource Study

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    2000-01-01

    Resources studies for asteroidal mining evaluation have depended historically on remote sensing analysis for chemical elements. During the November 1998 Leonids meteor shower, a stratospheric balloon and various low-density capture media were used to sample fragments from Comet Tempel-Tuttle debris during a peak Earth crossing. The analysis not only demonstrates how potential sampling strategies may improve the projections for metals or rare elements in astromining, but also benchmarks materials during low temperature (-60 F), high dessication environments as seen during atmospheric exposure. The results indicate high aluminum, magnesium and iron content for various sampled particles recovered, but generalization to the sporadic meteors expected from asteroidal sources will require future improvements in larger sampling volumes before a broad-use strategy for chemical analysis can be described. A repeat of the experimental procedure is planned for the November 1999 Leonids' shower, and various improvements for atmospheric sampling will be discussed.

  9. Meteor radar wind over Chung-Li (24.9°N, 121°E), Taiwan, for the period 10-25 November 2012 which includes Leonid meteor shower: Comparison with empirical model and satellite measurements

    NASA Astrophysics Data System (ADS)

    Su, C. L.; Chen, H. C.; Chu, Y. H.; Chung, M. Z.; Kuong, R. M.; Lin, T. H.; Tzeng, K. J.; Wang, C. Y.; Wu, K. H.; Yang, K. F.

    2014-08-01

    The neutral winds in the mesosphere and lower thermosphere (MLT) region are measured by a newly installed meteor trail detection system (or meteor radar) at Chung-Li, Taiwan, for the period 10-25 November 2012, which includes the Leonid meteor shower period. In this study, we use the 3 m field-aligned plasma irregularities in the sporadic E (Es) region in combination with the International Geomagnetic Reference Field model to calibrate the system phase biases such that the true positions of the meteor trails can be correctly determined with interferometry technique. The horizontal wind velocities estimated from the radial velocities of the meteor trails and their locations by using a least squares method show that the diurnal tide dominates the variation of the MLT neutral wind with time over Chung-Li, which is in good agreement with the horizontal wind model (HWM07) prediction. However, harmonic analysis reveals that the amplitudes of the mean wind, diurnal, and semidiurnal tides of the radar-measured winds in height range 82-100 km are systematically larger than those of the model-predicted winds by up to a factor of 3. A comparison shows that the overall pattern of the height-local time distribution of the composite radar-measured meteor wind is, in general, consistent with that of the TIMED Doppler Interferometer-observed wind, which is dominated by a diurnal oscillation with downward phase progression at a rate of about 1.3 km/h. The occurrences of the Es layers retrieved from fluctuations of the amplitude and excess phase of the GPS signal received by the FORMOSAT-3/COSMIC satellites during the GPS radio occultation (RO) process are compared with the shear zones of the radar-measured meteor wind and HWM07 wind. The result shows that almost all of the RO-retrieved Es layers occur within the wind shear zones that favor the Es layer formation based on the wind shear theory, suggesting that the primary physical process responsible for the Es layer events

  10. STS-87 Day 03 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this third day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk deploy the Spartan satellite with the shuttle's robot arm.

  11. Three-Dimensional Geometry of the Narwhal (Monodon monoceros) Flukes in Relation to Hydrodynamics

    DTIC Science & Technology

    2011-10-01

    MARINE MAMMAL SCIENCE, 27(4): 889–898 (October 2011) C© 2010 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2010.00439.x Three...Chester University, West Chester, Pennsylvania 19383, U.S.A. E-mail: ffish@wcupa.edu NATALIA RYBCZYNSKI Canadian Museum of Nature, Ottawa, Ontario K1P...distributed in the ice-packed stretches of waters bordering Greenland and the Canadian High Arctic (Laidre et al. 2003). The flukes of mature male

  12. Calibration-free quantitative elemental analysis of meteor plasma using reference laser-induced breakdown spectroscopy of meteorite samples

    NASA Astrophysics Data System (ADS)

    Ferus, Martin; Koukal, Jakub; Lenža, Libor; Srba, Jiří; Kubelík, Petr; Laitl, Vojtěch; Zanozina, Ekaterina M.; Váňa, Pavel; Kaiserová, Tereza; Knížek, Antonín; Rimmer, Paul; Chatzitheodoridis, Elias; Civiš, Svatopluk

    2018-03-01

    Aims: We aim to analyse real-time Perseid and Leonid meteor spectra using a novel calibration-free (CF) method, which is usually applied in the laboratory for laser-induced breakdown spectroscopic (LIBS) chemical analysis. Methods: Reference laser ablation spectra of specimens of chondritic meteorites were measured in situ simultaneously with a high-resolution laboratory echelle spectrograph and a spectral camera for meteor observation. Laboratory data were subsequently evaluated via the CF method and compared with real meteor emission spectra. Additionally, spectral features related to airglow plasma were compared with the spectra of laser-induced breakdown and electric discharge in the air. Results: We show that this method can be applied in the evaluation of meteor spectral data observed in real time. Specifically, CF analysis can be used to determine the chemical composition of meteor plasma, which, in the case of the Perseid and Leonid meteors analysed in this study, corresponds to that of the C-group of chondrites.

  13. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia (STS-87) mid-deck, Leonid Kadenyuk, Ukrainian payload specialist, works with the Brassica rapa plants being grown for the Collaborative Ukrainian Experiment (CUE). Kadenyuk joined five astronauts for 16-days in Earth-orbit in support of the United States Microgravity Payload 4 (USMP-4) mission.

  14. Rudolph Hess, A Strategic Move or Ethical Dilemma?

    DTIC Science & Technology

    1990-03-09

    seek help from uncrthodox healers. His mystic beliefs were manifested in his strange behavior. Some examples are: Per Felix Kersten , Himmler’s...the Rus- sians refused to consider Hess’s release. They were adamant that he remain incarcerated to the point that their former leader Leonid Brezhnev

  15. The Politics of Drug Trafficking in Mexican and Mexico-Related Narconovelas

    ERIC Educational Resources Information Center

    Palaversich, Diana

    2006-01-01

    This essay traces the emergence of the Mexican and Mexico-related narconovela. It examines perspectives on drug trafficking and traffickers expressed in novels by Elmer Mendoza, Leonides Alfaro, Gerardo Cornejo, Homero Aridjis, Arturo Perez-Reverte, and Paul Flores. The variety of positions taken refutes the tendency of the Mexican mainstream…

  16. Perspectivas Pedagogicas. Documentos-Ponencias Y Ensayos Proyecto Teacher Corps, Ciclo XII (Pedagogical Perspectives. Documents, Papers and Essays, Teacher Corps Project, Cycle XII).

    ERIC Educational Resources Information Center

    Albino, Isidra, Ed.; Davila, Sonia, Ed.

    The purpose of this book is to stimulate ideas leading to a sharing of approaches, strategies, and methodologies applicable to the education of Puerto Ricans. Following introductory material, 18 papers are presented, the first 10 of which are in Spanish. Titles and authors are: (1) "El maestro que Puerto Rico necesita," Leonides Santos…

  17. Search for the OH (X(2)Pi) Meinel band emission in meteors as a tracer of mineral water in comets: detection of N(2)(+) (A-X)

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.

    2004-01-01

    We report the discovery of the N(2)(+) A-X Meinel band in the 780-840 nm meteor emission from two Leonid meteoroids that were ejected less than 1000 years ago by comet 55P/Tempel-Tuttle. Our analysis indicates that the N(2)(+) molecule is at least an order of magnitude less abundant than expected, possibly as a result of charge transfer reactions with meteoric metal atoms. This new band was found while searching for rovibrational transitions in the X(2)Pi electronic ground state of OH (the OH Meinel band), a potential tracer of water bound to minerals in cometary matter. The electronic A-X transition of OH has been identified in other Leonid meteors. We did not detect this OH Meinel band, which implies that the excited A state is not populated by thermal excitation but by a mechanism that directly produces OH in low vibrational levels of the excited A(2)Sigma state. Ultraviolet dissociation of atmospheric or meteoric water vapor is such a mechanism, as is the possible combustion of meteoric organics.

  18. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  19. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  20. Ukraine President Leonis Kuchma with P.S. Kadenyuk

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Kennedy Space Center, Fla. The president of the Ukraine, Leonid Kuchma, is flanked by Payload Specialist Leonid Kadenyuk, at left, and backup Payload Specialist Yaroslav Pustovyi, at right, both of the National Space Agency of Ukraine, during pre-launch activities leading up to the scheduled Nov. 19 launch of STS-87. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite. During the mission, Kadenyuk will pollinate Brassica rapa plants as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia during its 16-day mission. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbias middeck and features an educational component that involves evaluating the effects of microgravity on Brassica rapa seedlings. Students in Ukrainian and American schools will participate in the same experiment on the ground and have several live opportunities to discuss the experiment with Kadenyuk in Space. Kadenyuk will be flying his first Shuttle mission on STS- 87.

  1. Kadenyuk sleeps strapped to the middeck wall

    NASA Image and Video Library

    1997-11-28

    STS087-323-030 (19 November – 5 December 1997) --- Ukrainian payload specialist Leonid K. Kadenyuk blocks out the world and much more as he sleeps on the mid-deck of the Earth-orbiting Space Shuttle Columbia. Kadenyuk joined five NASA astronauts for 16 days aboard Columbia in support of the United States Microgravity Payload (USMP) mission.

  2. SKYLAB (SL)-2 POSTFLIGHT - COMMEMORATIVE PLAQUES PRESENTATION - CA

    NASA Image and Video Library

    1973-07-19

    S73-30889 (June 1973) --- Leonid I. Breznev, General Secretary of the Communist Party, Union of Soviet Socialist Republics, and President Richard M. Nixon, during ceremonies at the Western White House in San Clemente, California, examine plaques presented by Skylab astronauts Charles Conrad Jr., center; Joseph P. Kerwin, second from right; and Paul J. Weitz, left. Photo credit: NASA

  3. STS-87 Day 15 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this fifteenth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk spend a good part of their day checking out the important space craft systems that are needed to support reentry.

  4. RF Control and Measurement of Superconducting Qubits

    DTIC Science & Technology

    2015-02-14

    Schoelkopf, Leonid I. Glazman, Michel H. Devoret. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles ...Frunzio, L.?I. Glazman, M.?H. Devoret. Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations, Physical Review Letters...Devoret, G. Catelani, L. I. Glazman, R. J. Schoelkopf. Measurement and control of quasiparticle dynamics in a superconducting qubit, Nature

  5. CUE - Kadenyuk checks the status of the PGCs in the middeck PGF locker

    NASA Image and Video Library

    1998-01-15

    STS087-385-005 (19 November - 5 December 1997) --- Leonid Kadenyuk, Ukrainian payload specialist, retrieves a plant specimen from the plant growth facility on the mid-deck of the Earth-orbiting Space Shuttle Columbia. Kadenyuk and five United States astronauts went on to spend 16-days in Earth-orbit in support of the United States Microgravity Payload (USMP-4) mission.

  6. Ancient Chinese Observations and Modern Cometary Models

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.

    1995-01-01

    Ancient astronomical observations, primarily by Chinese, represent the only data source for discerning the long-term behavior of comets. These sky watchers produced astrological forecasts for their emperors. The comets Halley, Swift-Tuttle, and Tempel-Tuttle have been observed for 2000 years. Records of the Leonid meteor showers, starting from A.D.902, are used to guide predictions for the 1998-1999 reoccurrence.

  7. Satisficing Decision-Making in Supervisory Control. Part 2.

    DTIC Science & Technology

    1986-07-31

    purpose of the United States Government. C-P Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139...of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 Satisficing Decision-Making in Supervisory Control Leonid Charny...example, that there are two attributes, speed and accuracy, and one is selecting a robot manipulator based -4n these two parameters. A set of alternatives

  8. STS-87 Day 02 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this second day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk are seen conducting experiments involving the effect of weightlessness on materials and fluids. They also work with an experiment to study Earth's protective ozone layers.

  9. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image s plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length "streak" meteor photome&y and two-station track determination. Meteor44 has been used to analyze data from the 2001.2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  10. Meteors with anomalous apparent heights from TV observations in Kyiv

    NASA Astrophysics Data System (ADS)

    Kozak, P.

    2017-12-01

    Basing on additional studying and précised processing of video-records of double-station meteor TV observations in Astronomical Observatory of Taras Shevchenko National University of Kyiv the selection of meteors with anomalous photometrical and kinematical characteristics has been carried out. A special attention was paid to the registration of meteors on extreme heights exceeding 130km. In opposite to practically proved at the moment facts about appearance of fast bright bolides created by massive bodies belonging to Leonids, Perseids and Orionids streams on heights over 130-135km, and up to even 160-195km we obtained the confirmation of appearance on the anomalous heights of low-light meteors of masses 10-3g. In 1993 during observations of Perseid meteor shower we registered for the first time the shower meteor with apparent height of 136.84 - 0.12km. In 2001 and 2003 during September observations of sporadic meteors we registered only one meteor from 98 on the height over 135km. During observations of Leonids meteor storm in 2002 we registered five relatively low-light meteors belonging to the shower with apparent heights exceeding 135-140km with masses 10^-3 g.

  11. Correction to: Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry.

    PubMed

    Davidenko, Natalia; Schuster, Carlos F; Bax, Daniel V; Farndale, Richard W; Hamaia, Samir; Best, Serena M; Cameron, Ruth E

    2018-03-21

    The article "Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry", written by Natalia Davidenko, Carlos F. Schuster, Daniel V. Bax, Richard W. Farndale, Samir Hamaia, Serena M. Best and Ruth E. Cameron, was originally published Online First without open access. After publication in volume 27, issue 10, page 148 it was noticed that the copyright was wrong in the PDF version of the article. The copyright of the article should read as "© The Author(s) 2016". The Open Access license terms were also missing.

  12. Translations on Eastern Europe, Political, Sociological, and Military Affairs. Number 1465

    DTIC Science & Technology

    1977-10-26

    Soviet Army Division (NARODNA ARMIYA, 12 Oct 77) 8 Zhivkov Greets Argentine CP Chief on Receiving Dimitrov Award (Sofia Domestic Service, 13 Oct 77...Bulgarian people, Georgi Dimitrov . Under the care of the BCP and the CPSU, of Comrades Todor Zhivkov and Leonid Brezhnev, this friendship is now...for the Bulgarian military delegation at which Soviet Marshal Dmitriy Ustinov, Army Gen Dobri Dzhurov, Col Gen Kiril Kosev and Col I. Lobachov

  13. Issues In Modeling Military Space

    DTIC Science & Technology

    2002-03-26

    storm was so intense that the Aurora Borealis could be seen as far south as El Paso, Texas. In addition, the recent Leonid meteor shower in mid...control segment consists of five Monitor Stations located in Hawaii, Kwajalein, Ascension Island, Diego Garcia and Colorado Springs (NAVSTAR, 2...There are three ground antennas also located at Ascension Island, Diego Garcia, and Kwajalien (NAVSTAR, 3). The Master Control Station (MCS) is

  14. STS-87 Day 12 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this twelfth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk continue to look at how plant growth and composite materials are affected by microgravity. The astronauts use the globebox facility to process samples for the Particle Engulfment and Pushing by a Solid/Liquid Interface experiment.

  15. STS-87 Day 04 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this fourth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk check out the spacesuits for the EVA planned for later during the mission. Mission Control developed plans that may allow Scott and Doi to recapture the Spartan satellite by hand during that EVA.

  16. The Efficacy of Musical Emotions Provoked by Mozart’s Music for the Reconciliation of Cognitive Dissonance

    DTIC Science & Technology

    2012-09-25

    The efficacy of musical emotions provoked by Mozart’s music for the reconciliation of cognitive dissonance Nobuo Masataka1 & Leonid Perlovsky2...scientists argue thatmusic itself plays no adaptive role in human evolution, others suggest that music clearly has an evolutionary role, and point to music’s...universality. A recent hypothesis suggested that a fundamental function of music has been to help mitigating cognitive dissonance, which is a

  17. Homeostatic and Circadian Modulation of Cognition: Integrating Mathematical and Computational Modeling Approaches

    DTIC Science & Technology

    2012-08-20

    Leonid V. Kalachev, Ph.D. (University of Montana, not supported on grant) Daniel J. Mollicone, Ph.D. ( Pulsar Informatics, Inc., not supported on grant...project to Pulsar Informatics, Inc., who are providing an implementation suitable for integration with crew rostering to the U.S. Navy (key...individuals involved: Daniel Mollicone, Ph.D. and Mike Stubna, Ph.D. of Pulsar Informatics, Inc.).  We transitioned a numerical library for the mathematical

  18. The Composition of the Y2K Meteor

    NASA Astrophysics Data System (ADS)

    Coulson, S. G.

    During the Leonid meteor shower of November 1999 a very bright meteor train, subsequently called the Y2K meteor, was observed. Analysis of the trajectory of the meteor suggests that it was composed of two distinct materials. The bulk of the meteor was composed of a comet-like material, while a much smaller fraction was of a denser carbonaceous material. A simple model is used to analytically determine the mass of the meteor fragments.

  19. Meteor Beliefs Project: Seven years and counting

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Drobnock, G. J.; Gheorghe, A. D.

    2010-04-01

    The Meteor Beliefs Project's seventh anniversary is celebrated with an eclectic mixture of meteor beliefs from the 1799 Leonids in Britain, the folkloric link between meteors and wishing in some Anglo-American sources, how a meteoric omen came to feature in Nathaniel Hawthorne's 1850 novel The Scarlet Letter, and a humorous item from the satirical magazine Punch in 1861, all helping to show how meteor beliefs can be transformed by different parts of society.

  20. STS-87 Day 09 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this ninth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk continue work with the microgravity science investigations in a special glovebox facility on the middeck. The autonomous operations with the mission's prime payload continue in the payload bay of Columbia with no interaction by the crew required.

  1. Diode Laser Pumped Alkali Vapor Lasers with Exciplex-Assisted Absorption

    DTIC Science & Technology

    2013-05-14

    transfer agent that established the population inversion. The excitation source used in these initial studies was a pulsed optical parametric oscillator ...parametric oscillator . The lasers operated at 703.2 (Ne*), 912.5 (Ar*), 893.1 (Kr*) and 980.2 run (Xe*). Peak powers as high as 27kW/cm2 were observed...Larissa Glebova and Leonid B. Glebov. Ultra-low absorption and laser-induced heating of volume Bragg combiners recorded in photo-thermo- refractive

  2. USSR Report, Space

    DTIC Science & Technology

    1986-09-12

    8217Mir* (SOTSIALISTICHESKAYA INDUSTRIYA, 9 Apr 86) 31 Cosmonauts Perform Medical Exam With ’Gamma’ Apparatus (IZVESTIYA, 12 Apr 86) 32 b...8217Progress-26’ With ’Mir’ Station (VECHERNYAYA MOSKVA, 28 Apr 86) 37 TASS Reports Crew Unloading ’Progress-26’, Performing Visual Observations...Salyut-7) some 3,100 km away. The flight was performed by cosmonauts Leonid Kizim and Vladimir Solovyov. "The experiment is interesting from a

  3. Integrating Language and Cognition in Grounded Adaptive Agents

    DTIC Science & Technology

    2008-11-21

    a gents w ill b e able t o communicate amo ng th emselves a nd w ith humans w ith the fl exibility and complexity of h uman language. Leonid...Cangelosi A., Hourdakis E . & Tikhanoff V. (2006). Language acquisition and symbol grounding transfer with neural networks and cognitive robots...Hence it is natural to define the following partial similarity measure between object i and concept k ieO ( ) ( )[∏ = − −−= d e keiekeke OSkil 1

  4. STS-87 Day 08 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this eighth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk take time out from their duties to be interviewed by CNN. As they reach the one week mark in their 16-day flight, the STS-87 crew shift the focus of their efforts towards the variety of science experiments flying on this mission.

  5. STS-87 Day 06 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this sixth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk begin the final preparations for the EVA by Scott and Doi. They are to manually capture the SPARTAN Satellite. After this is accomplished they are to test tools and techniques that will be required for the assembly of the International Space Station.

  6. Archive of radar observations of meteors in Tomsk in 1965-1966. (Russian Title: Архив радиолокационных наблюдений метеоров в Томске в 1965-1966 гг.)

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2010-12-01

    The archive of data of radar observations of Geminid, Quadrantid, Daytime Arietid, Perseid, Ursid, Lyrid, Orionid and Leonid meteor showers in Tomsk in 1965-1966 is described. In certain cases registrations of the sporadic background before and after a shower exist. Primary data of echo registrations contain time of a registration, distance, duration and amplitude of an echo, allowing to obtain corresponding distributions essential for calculation of the incident flux density of meteors. Work on the archive digitization has been started.

  7. STS-87 Day 13 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this thirteenth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk continue work in the mini laboratory called the microgravity glovebox facility. This facility allows crew members to interactively work with two different experiments today studying the formation of composite materials in an attempt to accurately map the roles of gravity-induced convection and sedimentation on the samples.

  8. Translations on USSR Science and Technology Biomedical and Behavioral Sciences No. 47.

    DTIC Science & Technology

    1978-10-27

    problem is allowed to be simplified,, then the basic contents of the ergonomic section may be castrated ; if it is complicated, then the document will be...demands of agriculture. The rise of livestock farming does not mean only an increase in cattle stock, but also an increase in the productivity of... cattle and poultry. Leonid Il’yich Brezhnev stressed atthe July Plenum: "All that we want to have rom the animal husbandry is more meat, milk, and other

  9. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  10. Possible Ursid Outburst on December 22, 2000

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Lyytinen, Esko; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Ursid shower has broad Filament-type outbursts around the perihelion passage of parent 8P/Tuttle, but also isolated narrow outbursts at aphelion. We calculated Tuttle's dust trail encounters in the same way as for the Leonid showers. We discovered that it takes 6 centuries to change the orbit enough to bring the meteoroids to Earth's orbit. During that time, the meteoroids and comet separate in mean anomaly by 6 years, thus explaining the unusual aphelion occurrences. We predict enhanced activity on December 22, 2000, at around 7:29 LT.

  11. From H.G. Wells to Unmanned Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Boyd, John W.

    2005-01-01

    The possibility of planetary exploration has been a dream of the human race since Galileo discovered the moons of Jupiter in 1610. Visual sightings of bodies entering Earth s atmosphere have been made by Earth s inhabitants over the centuries. Over time, the many meteor showers (Leonid, Perseid) have provided dramatic evidence of the intense heat generated by a body entering Earth s atmosphere at hypervelocity speeds. More recently (in 1908), few viewed the Tunguska meteor that impacted in Siberia, but the destructive power on the countryside was awesome.

  12. STS-87 Day 07 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this seventh day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk turn their attention to a variety of experiments inside the Shuttle's cabin. These experiments include the processing of several samples of materials in the glovebox facility in Columbia's middeck; the experiment called PEP, which involves heating samples and then recording the mixture as it resolidifies; and the study of plant growth in space.

  13. STS-87 onboard crew portraits

    NASA Image and Video Library

    1997-12-16

    STS087-307-006 (19 November – 5 December 1997) --- One of the crew members' traditional in-flight crew portraits has them posed in other-than traditional attire on the Space Shuttle Columbia's mid-deck. On the front row, from the left, are astronauts Steven W. Lindsey, pilot; Takao Doi, an international mission specialist representing Japan's National Space Development Agency (NASDA); and Winston E. Scott, mission specialist. In the back are astronauts Kevin R. Kregel, mission commander; and Kalpana Chawla, mission specialist, along with Ukrainian payload specialist Leonid K. Kadenyuk.

  14. An explosion in Tunguska

    NASA Astrophysics Data System (ADS)

    Nistor, Ioan

    A detailed History of exploration of the place at Podkamennaya Tunguska, where a well known explosion has occured on 30 June 1908 is given with emphasys on the role by Leonid Kulik (1928-29). A short biography of Leonid Kulik is given. A review of subsequent expeditions is given. A review of existing theories concerning the explosion at Podkamennaya Tunguska on 30 June 1908 is given, including that of a meteor impact, asteroid impact, atomic explosion (F. Zigel and other), comet impact (V.G. Fesenkov and other). The theory sustained by author is that of a methan gas explosion initialazed by a meteor in a volume of about 0.25-2.5 billions m3 of methan. The shape of the place could be explained by few gaseous pouches, which could explode in a chain reaction. A review of similar explosions on the level of ground is given in the USSR as well as elsewhere. The soil fluidization is reviewed during earthquakes and similar phenomena. The original hypothesis by author was published in the "Lumea" N 41 magazin (Romania) on October 12 1989. The author disagree with atomic hypotesis enounced by F. Zigel, while the main factor of the explosion is the formation of one or few methan pouches above the soil. The programe of one of the most important international workshops (Tunguska 96 in Bologna on July 14-17) is attached. The site by Ioan Nistor gives a collection of informations about the event from elsewhere as well as the "gaseous pouches" hypothesis by the author.

  15. STS-87 Day 14 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this fourteenth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk focus on completion of hands-on sample processing in the microgravity glovebox facility. They also prepare the spacesuits and tools that will be used for the EVA by Scott and Doi. The crew take time out from their schedule to discuss the mission with reporters from the U.S., Japan and the Ukraine during the traditional in-flight news conference.

  16. STS-87 Mission Specialist Doi and his wife pose at LC 39B

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan poses with his wife, Hitomi Doi, in front of Kennedy Space Center's Launch Pad 39B during final prelaunch activities leading up to the scheduled Nov. 19 liftoff. The other STS-87 crew members are Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., and Winston Scott; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan- 201 deployable satellite.

  17. STS-87 Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this eleventh day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk continue to look at how plant growth and composite materials are affected by microgravity. The astronauts will use the Middeck Globebox Facility to process samples for the Particle Engulfment and Pushing by a Solid/Liquid Interface experiment. PEP is studying the formation of composite materials, attempting to accurately map the roles of gravity-induced convection and sedimentation in the process by removing the gravity from the equation.

  18. STS-87 Mission Specialist Doi addresses the media at the SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As STS-87 Commander Kevin Kregel looks on, Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan addresses members of the press and media at Kennedy Space Center's Shuttle Landing Facility after arriving for the final prelaunch activities leading up to the scheduled Nov. 19 liftoff. Other STS-87 crew members not pictured are Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., and Winston Scott; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. STS-87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite.

  19. Conjoined twins: scientific cinema and Pavlovian physiology.

    PubMed

    Krementsov, Nikolai

    2015-01-01

    Through the lens of a 1957 documentary film, "Neural and humoral factors in the regulation of bodily functions (research on conjoined twins)," produced by the USSR Academy of Medical Sciences, this essay traces the entwined histories of Soviet physiology, studies of conjoined twins and scientific cinema. It examines the role of Ivan Pavlov and his students, including Leonid Voskresenkii, Dmitrii Fursikov and Petr Anokhin, in the development of "scientific film" as a particular cinematographic genre in Soviet Russia and explores numerous puzzles hidden behind the film's striking visuals. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group, from left are Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology, and Robert Lockwood, TESS Spacecraft Program Manager, Orbital ATK. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  1. Meteors do not break exogenous organic molecules into high yields of diatomics

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Schaller, Emily L.; Laux, Christophe O.; Wilson, Michael A.; Schmidt, Greg; Rairden, Rick L.

    2004-01-01

    Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.

  2. Ancient Chinese Observations and Modern Cometary Models

    NASA Astrophysics Data System (ADS)

    Yeomans, D. K.

    1995-12-01

    Ancient astronomical observations by Chinese, Japanese, and Korean observers represent the only data source for discerning the long-term behavior of comets. The primary source material is derived from Chinese astrologers who kept a vigilant celestial watch in an effort to issue up-to-date astrological forecasts for the reigning emperors. Surprisingly accurate records were kept on cometary apparitions with careful notes being made of an object's position, motion, size, color, and tail length. For comets Halley, Swift-Tuttle, and Tempel-Tuttle, Chinese observations have been used to model their motions over two millennia and to infer their photometric histories. One general result is that active comets must achieve an apparent magnitude of 3.5 or brighter before they become obvious naked-eye objects. For both comets Halley and Swift-Tuttle, their absolute magnitudes and hence their outgassing rates, have remained relatively constant for two millennia. Comet Halley's rocket-like outgassing has consistently delayed the comet's return to perihelion by 4 days so that the comet's spin axis must have remained stable for at least two millennia. Although its outgassing is at nearly the same rate as Halley's, comet Swift-Tuttle's motion has been unaffected by outgassing forces; this comet is likely to be ten times more massive than Halley and hence far more difficult for rocket-like forces to push it around. Although the earliest definite observations of comet Tempel-Tuttle were in 1366, the associated Leonid meteor showers have been identified as early as A.D. 902. The circumstance for each historical meteor shower and storm have been used to guide predictions for the upcoming 1998-1999 Leonid meteor displays.

  3. STS-87 Day 01 Highlights

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this first day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk can be seen preforming pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is seen being readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  4. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group from center are Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology, and Robert Lockwood, TESS Spacecraft Program Manager, Orbital ATK. At far left is Jason Townsend, NASA Communications. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  5. Near-Earth Object (NEO) Hazard Background

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.

    2005-01-01

    The fundamental problem regarding NEO hazards is that the Earth and other planets, as well as their moons, share the solar system with a vast number of small planetary bodies and orbiting debris. Objects of substantial size are typically classified as either comets or asteroids. Although the solar system is quite expansive, the planets and moons (as well as the Sun) are occasionally impacted by these objects. We live in a cosmic shooting gallery where collisions with Earth occur on a regular basis. Because the number of smaller comets and asteroids is believed to be much greater than larger objects, the frequency of impacts is significantly higher. Fortunately, the smaller objects, which are much more numerous, are usually neutralized by the Earth's protective atmosphere. It is estimated that between 1000 and 10,000 tons of debris fall to Earth each year, most of it in the form of dust particles and extremely small meteorites. With no atmosphere, the Moon's surface is continuously impacted with dust and small debris. On November 17 and 18, 1999, during the annual Leonid meteor shower, several lunar surface impacts were observed by amateur astronomers in North America. The Leonids result from the Earth's passage each year through the debris ejected from Comet Tempel-Tuttle. These annual showers provide a periodic reminder of the possibility of a much more consequential cosmic collision, and the heavily cratered lunar surface acts a constant testimony to the impact threat. The impact problem and those planetary bodies that are a threat have been discussed in great depth in a wide range of publications and books, such as The Spaceguard Survey , Hazards Due to Comets and Asteroids, and Cosmic Catastrophes. This paper gives a brief overview on the background of this problem and address some limitations of ground-based surveys for detection of small and/or faint near-Earth objects.

  6. Nontrivial paths and periodic orbits of the T-fractal billiard table

    NASA Astrophysics Data System (ADS)

    Lapidus, Michel L.; Miller, Robyn L.; Niemeyer, Robert G.

    2016-07-01

    We introduce and prove numerous new results about the orbits of the T-fractal billiard. Specifically, in section 3, we give a variety of sufficient conditions for the existence of a sequence of compatible periodic orbits. In section 4, we examine the limiting behavior of particular sequences of compatible periodic orbits. Additionally, sufficient conditions for the existence of particular nontrivial paths are given in section 4. The proofs of two results of Lapidus and Niemeyer (2013 The current state of fractal billiards Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics (Contemporary Mathematics vol 601) ed D Carfi et al (Providence, RI: American Mathematical Society) pp 251-88 (e-print: arXiv:math.DS.1210.0282v2, 2013) appear here for the first time, as well. In section 5, an orbit with an irrational initial direction reaches an elusive point in a way that yields a nontrivial path of finite length, yet, by our convention, constitutes a singular orbit of the fractal billiard table. The existence of such an orbit seems to indicate that the classification of orbits may not be so straightforward. A discussion of our results and directions for future research is then given in section 6.

  7. KSC-97PC1704

    NASA Image and Video Library

    1997-11-19

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine is assisted with final preparations before launch in the white room at Launch Pad 39B by Danny Wyatt, NASA quality assurance specialist, at left; George Schram, USA mechanical technician, facing Kadenyuk; and Travis Thompson, USA orbiter vehicle closeout chief, at right. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. The 16-day mission will include the Collaborative Ukrainian Experiment (CUE), a collection of 10 plant space biology experiments that will fly in Columbia’s middeck and will feature an educational component that involves evaluating the effects of microgravity on Brassica rapa seedlings

  8. The breast: from Ancient Greek myths to Hippocrates and Galen.

    PubMed

    Iavazzo, C R; Trompoukis, C; Siempos, I I; Falagas, M E

    2009-01-01

    This is a historical article about Ancient Greek literature from mythological times until the first centuries AD with regard to the female breast. We endeavoured to collect several elegant narratives on the topic as well as to explore the knowledge of Ancient Greek doctors on the role, physiology and pathology of breast and the treatment of its diseases. We identified such descriptions in myths regarding Amazons, Hercules, Zeus, Hera and Amaltheia. Furthermore, descriptions on the topic were also found in the work of Hippocrates, Aristoteles, Soranos, Alexander of Aphrodisias, Celsus, Archigenis, Leonides, Galen and Oribasius. We may conclude that some of today's medical knowledge or practice regarding the breast was also known in the historical period.

  9. Russian Scientists Visitors

    NASA Image and Video Library

    1959-11-29

    Russian Scientists from the Commission of Interplanetary Travel of the Soviet Academy of Science November 21,1959 Left to right: Front row: Yury S. Galkin, Anatoly A. Blagonravov, and Prof. Leonid I. Sedov (Chair of the Commission for Interplanetary Travel)-Soviet Academy of Science, Leninski Gory, Moscow, Russia Dr. H.J. E. Reid and Floyd L. Thompson Langley Research Center. Second row: Boris Kit Translator, Library of Congress, Washington, D.C. Eugene C. Draley and Laurence K. Loftin, Jr. -Langley Research Center Arnold W. Frutkin and Harold R. Lawrence NASA Headquarters. Back row: T.Melvin Butler-Langley Research Center John W. Townsend Goddard Space Flight Center, NASA, Washington D.C., and George M. Low NASA Headquarters.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1997-09-01

    Five astronauts and a payload specialist take a break from training at the Johnson Space Center (JSC) to pose for the STS-87 crew portrait. Wearing the orange partial pressure launch and entry suits, from the left, are Kalpana Chawla, mission specialist; Steven W. Lindsey, pilot; Kevin R. Kregel, mission commander; and Leonid K. Kadenyuk, Ukrainian payload specialist. Wearing the white Extravehicular Mobility Unit (EMU) space suits are mission specialists Winston E. Scott (left) and Takao Doi (right). Doi represents Japan’s National Space Development Agency (NASDA). The STS-87 mission launched aboard the Space Shuttle Columbia on November 19, 1997. The primary payload for the mission was the U.S. Microgravity Payload-4 (USMP-4).

  11. STS-87 Payload Specialist Kadenyuk in white room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine is assisted with final preparations before launch in the white room at Launch Pad 39B by Danny Wyatt, NASA quality assurance specialist, at left; Dave Law, USA mechanical technician, facing Kadenyuk; and Travis Thompson, USA orbiter vehicle closeout chief, at right. STS-87 is the fourth flight of the United States Microgravity Payload and Spartan-201. The 16- day mission will include the Collaborative Ukrainian Experiment (CUE), a collection of 10 plant space biology experiments that will fly in Columbias middeck and will feature an educational component that involves evaluating the effects of microgravity on Brassica rapa seedlings.

  12. Obituary: Kenneth L. Franklin, 1923-2007

    NASA Astrophysics Data System (ADS)

    Rao, Joe; Degrasse Tyson, Neil

    2007-12-01

    Renowned astronomer and astronomy popularizer Kenneth L. Franklin died early Monday morning, June 18, 2007, in Boulder, Colorado, two weeks after undergoing heart surgery. He was 84 years old. Kenneth Linn Franklin, the only child of Myles and Ruth (Houston) Franklin, was born March 25, 1923 in Alemeda, California. Ken obtained his Ph.D. in astronomy in 1953 at the University of California, Berkeley. From 1954 to 1956 he was a research fellow in radio astronomy at the Department of Terrestrial Magnetism, Carnegie Institution of Washington, DC. While there, he and Bernard F. Burke discovered radio emissions from the planet Jupiter. They announced their find on April 6, 1955, at a meeting of the American Astronomical Society (AAS). In 1956 Ken joined the staff of the American Museum-Hayden Planetarium, where he later served as chairman and chief scientist. Over the course of thirty years he wrote and/or presented innumerable sky shows for the planetarium sky theater, taught popular and technical courses in astronomy, and answered questions from the public. Ken was frequently consulted by local industries engaged in the space program, as well as by the news media and publishers. He was often interviewed on local and national radio and television, especially when a celestial event of special interest was due to occur. On the first page of the November 1966 issue of Sky & Telescope, in comments about the upcoming Leonid meteor shower, Franklin stuck his neck out. Based on some calculations that he'd made, he said he felt we were going to be in for a "interesting display." His was one of the few forecasts that suggested the '66 Leonids might be memorable. As it turned out, he was right — that year observers experienced the now-legendary Leonid meteor storm. From 1973 to 1979, Ken was the AAS's public-affairs officer. For two decades he also served in the society's Harlow Shapley Visiting Lecturer Program, speaking at one or two colleges each year. Ken was an active

  13. STS-87 Crew walkout of O&C building

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of Mission STS-87 depart from the Operations and Checkout Building en route to Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on the fourth flight of the United States Microgravity Payload and the Spartan-201deployable satellite. Leading the way are, from left to right, front to back: Mission Specialist Kalpana Chawla, Ph.D.; Commander Kevin Kregel; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Mission Specialist Winston Scott; Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; and Pilot Steven Lindsey. The Space Shuttle Columbia and its crew of six members are scheduled to lift off during a two-and-a-half hour launch window, which opens at 2:46 p.m.

  14. XVI Workshop on High Energy Spin Physics (D-SPIN2015)

    NASA Astrophysics Data System (ADS)

    Lednicky, Richard

    2016-02-01

    Dear Colleagues, Ladies and Gentlemen, on behalf of the Directorate of Joint Institute for Nuclear Research (JINR) it is a pleasure for me to welcome you here to Dubna for the 16th International Workshop on High Energy Spin Physics. It provides an opportunity to present and discuss the news accumulated during last year. Another important feature of this series of workshops has always been the participation of a large number of physicists from the former Soviet Union and Eastern European countries, for which long trips have previously been limited by financial (and earlier also by bureaucratic) reasons. It thus represents an important addition to the series of large International Symposia on spin physics held in even-numbered years in different countries, including the Symposium held in Dubna in 2012. JINR has a long-lasting tradition of experimental and theoretical studies of spin phenomena. The workshops on high energy spin physics started in Dubna in 1981 due to the initiative of L. Lapidus, an outstanding theoretical physicist. Since then, these meetings have been held in Dubna in every odd year and have become regular thanks to Anatoly Vasilievich Efremov, the chairman for many years. Recent years have brought a lot of new experimental results, and above all the discovery and determination of quantum characteristics of the Higgs boson at the Large Hadron Collider.

  15. Studies of Transient Meteor Activity

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter M. M.

    2002-01-01

    Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the

  16. STS-87 crew participates in Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 astronaut crew members participate in the Crew Equipment Integration Test (CEIT) with the Spartan-201 payload in Kennedy Space Centers (KSC's) Vertical Processing Facility. From left are Pilot Steven Lindsey; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Mission Specialist Kalpana Chawla, Ph.D.; Commander Kevin Kregel; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. The CEIT gives astronauts an opportunity to get a hands- on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, Dr. Doi will be the first Japanese astronaut to perform a spacewalk. STS-87 is scheduled for a Nov. 19 liftoff from KSC.

  17. KSC-97PC1613

    NASA Image and Video Library

    1997-11-05

    STS-87 Payload Specialist Leonid Kadenyuk, at right, of the National Space Agency of Ukraine (NSAU) is assisted into his orange launch and entry spacesuit ensemble by NASA Suit Technician Al Rochford, at left, before participating in Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay

  18. KSC-97PC1695

    NASA Image and Video Library

    1997-11-19

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers

  19. KSC-97PC1701

    NASA Image and Video Library

    1997-11-19

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers

  20. KSC-97PC1700

    NASA Image and Video Library

    1997-11-19

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers

  1. KSC-97PC1696

    NASA Image and Video Library

    1997-11-19

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers

  2. KSC-97PC1697

    NASA Image and Video Library

    1997-11-19

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers

  3. KSC-97PC1692

    NASA Image and Video Library

    1997-11-19

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers

  4. KSC-97PC1694

    NASA Image and Video Library

    1997-11-19

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers

  5. KSC-97PC1691

    NASA Image and Video Library

    1997-11-19

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers

  6. KSC-97PC1481

    NASA Image and Video Library

    1997-10-02

    STS-87 astronaut crew members participate in the Crew Equipment Integration Test (CEIT) with the Spartan-201 payload in Kennedy Space Center’s (KSC's) Vertical Processing Facility. From left are Pilot Steven Lindsey; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Mission Specialist Kalpana Chawla, Ph.D.; Commander Kevin Kregel; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, Dr. Doi will be the first Japanese astronaut to perform a spacewalk. STS-87 is scheduled for a Nov. 19 liftoff from KSC

  7. KSC-97PC1699

    NASA Image and Video Library

    1997-11-19

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers

  8. KSC-97PC1698

    NASA Image and Video Library

    1997-11-19

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers

  9. STS-87 Crew walkout of O&C building

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of Mission STS-87 depart from the Operations and Checkout Building en route to Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on the fourth flight of the United States Microgravity Payload and the Spartan-201deployable satellite. They are, from left to right, front to back: Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Mission Specialist Winston Scott (near van); Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; and Pilot Steven Lindsey (near van). Missing from this photo are Commander Kevin Kregel and Mission Specialist Kalpana Chawla, Ph.D. The Space Shuttle Columbia and its crew of six members are scheduled to lift off during a two-and-a-half hour launch window, which opens at 2:46 p.m.

  10. STS-87 Columbia Launch

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Like a rising sun lighting up the afternoon sky, the Space Shuttle Columbia soars from Launch Pad 39B at 2:46:00 p.m. EST, November 19, on the fourth flight of the United States Microgravity Payload and Spartan-201 satellite. The crew members include Mission Commander Kevin Kregel.; Pilot Steven Lindsey; Mission Specialists Kalpana Chawla, Ph.D., Winston Scott, and Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 16-day STS-87 mission, the crew will oversee experiments in microgravity; deploy and retrieve a solar satellite; and test a new experimental camera, the AERCam Sprint. Dr. Doi and Scott also will perform a spacewalk to practice International Space Station maneuvers.

  11. KSC-97PC1676

    NASA Image and Video Library

    1997-11-19

    STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine gives a ‘thumbs up’ in his launch and entry suit in the Operations and Checkout Building. He and the five other crew members of STS-87 will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Kadenyuk will be flying his first mission on STS-87. During the mission, Kadenyuk will pollinate Brassica rapa plants as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbia’s middeck and features an educational component that involves evaluating the effects of microgravity on Brassica rapa seedlings

  12. KSC-97PC1488

    NASA Image and Video Library

    1997-10-02

    STS-87 astronaut crew members prepare to fly back to Johnson Space Center in Houston after participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center (KSC) in early October. From left are Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Mission Specialist Winston Scott; Commander Kevin Kregel; Pilot Steven Lindsey; and Mission Specialist Kalpana Chawla, Ph.D. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-87 will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the STS-87 mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks

  13. Ground-based multi-station spectroscopic imaging with ALIS. - Scientific highlights, project status and future prospects

    NASA Astrophysics Data System (ADS)

    Brändström; Gustavsson, Björn; Pellinen-Wannberg, Asta; Sandahl, Ingrid; Sergienko, Tima; Steen, Ake

    2005-08-01

    The Auroral Large Imaging System (ALIS) was first proposed at the ESA-PAC meeting in Lahnstein 1989. The first spectroscopic imaging station was operational in 1994, and since then up to six stations have been in simultaneous operation. Each station has a scientific-grade CCD-detector and a filter-wheel for narrow-band interference-filters with six positions. The field-of-view is around 70°. Each imager is mounted in a positioning system, enabling imaging of a common volume from several sites. This enables triangulation and tomography. Raw data from ALIS is freely available at ("http://alis.irf.se") and ALIS is open for scientific colaboration. ALIS made the first unambiguous observations of Radio-induced optical emissions at high latitudes, and the detection of water in a Leonid meteor-trail. Both rockets and satellite coordination are considered for future observations with ALIS.

  14. STS 87: Meal - Suit Up - Depart O&C - Launch Columbia On Orbit - Landing - Crew Egress

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-87 Space Shuttle Columbia mission begins with the introduction of the seven crew members. The seven crew members include: Commander Kevin R. Kregel, pilot Steven W. Lindsey, mission specialists: Winston E. Scott, Kalpana Chawla and Takao Doi and payload specialist Leonid K. Kadenyuk. The United States Microgravity Payload (USMP-4), Orbital Acceleration Research Experiment (OARE), the EVA Demonstration Flight Test 5 (EDFT-05), Shuttle Ozone Limb Sending Experiment (SOLSE), Loop Heat Pump (LHP), and Sodium Sulfur Battery Experiment (NaSBE) were all shown during this video presentation. The launch of the STS-87 from different Kennedy Space Flight Center (KSFC) areas and Pre-flight training at the Johnson Space Center is presented. The retrieve and recovery spot satellite are also shown. Also, the landing of the Space Shuttle Columbia is presented from different areas at Kennedy Space Flight Center.

  15. The 1996 Leonid shower as studied with a potassium lidar: Observations and inferred meteoroid sizes

    NASA Astrophysics Data System (ADS)

    Höffner, Josef; von Zahn, Ulf; McNeil, William J.; Murad, Edmond

    1999-02-01

    We report on the observation and analysis of meteor trails that are detected by ground-based lidar tuned to the D1 fine structure line of K. The lidar is located at Kühlungsborn, Germany. The echo profiles are analyzed with a temporal resolution of about 1 s and altitude resolution of 200 m. Identification of meteor trails in the large archive of raw data is performed with help of an automated computer search code. During the peak of the Lenoid meteor shower on the morning of November 17, 1996, we observed seven meteor trails between 0245 and 0445 UT. Their mean altitude was 89.0 km. The duration of observation of individual trails ranges from 3 s to ~30 min. We model the probability of observing a meteor trail by ground-based lidar as a function of both altitude distribution and duration of the trails. These distributions depend on the mass distribution, entry velocity, and entry angle of the meteoroids, on the altitude-dependent chemical and dynamical lifetimes of the released K atom, and on the absolute detection sensitivity of our lidar experiment. From the modeling, we derive the statistical likelihood of detection of trails from meteoroids of a particular size. These bracket quite well the observed trails. The model also gives estimates of the probable size of the meteoroids based on characteristics of individual trails.

  16. The 2011 Draconid Shower Risk to Earth-Orbiting Satellites

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Moser, Danielle E.

    2010-01-01

    Current meteor shower forecast models project a strong Draconid outburst, possibly a storm, on October 8, 2011, with a duration of approximately 7 hours and peaking between 19 and 21 hours UT. Predicted rates span an order of magnitude, with maximum Zenithal Hourly Rates (ZHRs) ranging from a few tens to several hundred. Calibration of the NASA MSFC Meteoroid Stream Model 1 to radar and optical observations of past apparitions, particularly the 2005 Draconid outburst 2, suggest that the maximum rate will be several hundreds per hour. Given the high spatial density of the Draconid stream, this implies a maximum meteoroid flux of 5-10 Draconids km(exp -2)/hr (to a limiting diameter of 1 mm), some 25-50 times greater than the normal sporadic flux of 0.2 km(exp -2)/ hr for particles of this size. Total outburst fluence, assuming a maximum ZHR of 750, is 15.5 Draconids km(exp -2), resulting in an overall 10x risk increase to spacecraft surfaces vulnerable to hypervelocity impacts by 1 mm particles. It is now established that a significant fraction of spacecraft anomalies produced by shower meteoroids (e.g. OLYMPUS and LandSat 5) are caused by electrostatic discharges produced by meteoroid impacts. In these cases, the charge generated is roughly proportional to v(exp 3.5(4)), giving a Draconid moving at 20 km/s approximately 1/80th the electrical damage potential of a Leonid of the same mass. In other words, a Draconid outburst with a maximum ZHR of 800 presents the same electrical risk as a normal Leonid shower with a ZHR of 15, assuming the mass indices and shower durations are the same. This is supported by the fact that no spacecraft electrical anomalies were reported during the strong Draconid outbursts of 1985 and 1998. However, the lack of past anomalies should not be taken as carte blanche for satellite operators to ignore the 2011 Draconids, as the upcoming outburst will constitute a period of enhanced risk for vehicles in near-Earth space. Each spacecrft is

  17. A fireball analysis from Spanish meteor observations

    NASA Astrophysics Data System (ADS)

    Benítez Sánchez, O.; Ocaña González, F.

    2004-03-01

    Naked eye meteor records from Spain are used for an analysis of 3240 fireballs reported by members of the Sociedad de Observadores de Meteoros Y Cometas de España (SOMYCE) and by casual eye-witnesses from 1982 to 2000. This analysis concerns various areas, such as statistical studies of the colours and the frequency of fireballs in annual meteor showers. Annual and diurnal variations are also discussed. We describe the population index r for magnitudes brighter than m=-2 for ORI, VIR, AQU, TAU, CAP, QUA, GEM, LYR, LEO, KCG, PER and sporadic fireballs. The typical population index is always in the range ≃ 1.2 to 1.9, except for Perseids and Geminids. An investigation of visual fireballs radiants was attempted with the Radiant software. The sample of fireballs (282 fireballs with the path reported) only shows evidence for the Perseids and Leonids.

  18. KSC-97PC1517

    NASA Image and Video Library

    1997-10-02

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center is STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU). Here, Cosmonaut Kadenyuk is inspecting flowers for pollination and fertilization, which will occur as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia during its 16-day mission, scheduled to take off from KSC’s Launch Pad 39-B on Nov. 19. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbia’s middeck and feature an educational component that involves evaluating the effects of microgravity on the pollinating Brassica rapa seedlings. Students in Ukrainian and American schools will participate in the same experiment on the ground and have several live opportunities to discuss the experiment with Kadenyuk in Space. Kadenyuk of the Ukraine will be flying his first Shuttle mission on STS-87

  19. KSC-97PC1516

    NASA Image and Video Library

    1997-10-02

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center is STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU). Here, Cosmonaut Kadenyuk is inspecting flowers for pollination and fertilization, which will occur as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia during its 16-day mission, scheduled to take off from KSC’s Launch Pad 39-B on Nov. 19. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbia’s middeck and feature an educational component that involves evaluating the effects of microgravity on the pollinating Brassica rapa seedlings. Students in Ukrainian and American schools will participate in the same experiment on the ground and have several live opportunities to discuss the experiment with Kadenyuk in Space. Kadenyuk of the Ukraine will be flying his first Shuttle mission on STS-87

  20. ARACHNE: A neural-neuroglial network builder with remotely controlled parallel computing

    PubMed Central

    Rusakov, Dmitri A.; Savtchenko, Leonid P.

    2017-01-01

    Creating and running realistic models of neural networks has hitherto been a task for computing professionals rather than experimental neuroscientists. This is mainly because such networks usually engage substantial computational resources, the handling of which requires specific programing skills. Here we put forward a newly developed simulation environment ARACHNE: it enables an investigator to build and explore cellular networks of arbitrary biophysical and architectural complexity using the logic of NEURON and a simple interface on a local computer or a mobile device. The interface can control, through the internet, an optimized computational kernel installed on a remote computer cluster. ARACHNE can combine neuronal (wired) and astroglial (extracellular volume-transmission driven) network types and adopt realistic cell models from the NEURON library. The program and documentation (current version) are available at GitHub repository https://github.com/LeonidSavtchenko/Arachne under the MIT License (MIT). PMID:28362877

  1. The relationship between fireballs and HRO Long Echos

    NASA Astrophysics Data System (ADS)

    Yanagida, E.; Amikura, S.

    Ham-band Radio Observation (HRO) is one of the major methods used to observe meteor activity in Japan. We receive certain types of meteor echoes. One of the types is the long-lasting echo called a ``Long Echo''. We have the impression that Long Echoes correspond to fireballs. The present research found this relation and tried to identify fireball data from visual observations with Long Echo data of the 2002 Leonids, Geminids, and Quadrantids. From these data, we found that the identification percentage tended to be higher for fainter magnitudes, but that the percentage is small, the percentages of each meteor stream being less than 30 %. From these results, this research found that we could not simply say that brighter meteors were received as Long Echoes. It depends on the geocentric velocity of the meteor stream, with a possibility that Long Echoes correspond to darker as well as brighter fireballs.

  2. STS-87 Columbia Landing at KSC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With Commander Kevin Kregel and Pilot Steven Lindsey at the controls, the orbiter Columbia touches its main gear down on Runway 33 at KSCs Shuttle Landing Facility at 7:20:04 a.m. EST Dec. 5 to complete the 15-day, 16-hour and 34-minute-long STS-87 mission of 6.5 million miles. Also onboard the orbiter are Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D., of the National Space Development Agency of Japan; along with Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  3. STS-87 Columbia landing at KSC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With Commander Kevin Kregel and Pilot Steven Lindsey at the controls, the orbiter Columbia makes a smooth touchdown on Runway 33 at KSCs Shuttle Landing Facility at 7:20:04 a.m. EST Dec. 5, completing the 15-day, 16-hour and 34-minute-long STS-87 mission of 6.5 million miles. Also onboard the orbiter are Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D., of the National Space Development Agency of Japan; along with Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  4. STS-87 Columbia landing at KSC (Drag Chute Deployed)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With Commander Kevin Kregel and Pilot Steven Lindsey at the controls, the orbiter Columbia touches its main gear down on Runway 33 at KSCs Shuttle Landing Facility at 7:20:04 a.m. EST Dec. 5 to complete the 15-day, 16-hour and 34-minute-long STS-87 mission of 6.5 million miles. Also onboard the orbiter are Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D., of the National Space Development Agency of Japan; along with Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  5. STS-87 concludes with landing of orbiter Columbia at KSC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With Commander Kevin Kregel and Pilot Steven Lindsey at the controls, the orbiter Columbia makes a smooth touchdown on Runway 33 at KSC's Shuttle Landing Facility at 7:20:04 a.m. EST Dec. 5, completing the 15-day, 16-hour and 34-minute-long STS-87 mission of 6.5 million miles. Also onboard the orbiter are Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D., of the National Space Development Agency of Japan; along with Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  6. STS-87 Payload Specialist Kadenyuk participates in the CEIT for his mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center is STS-87 Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU). Here, Cosmonaut Kadenyuk is inspecting flowers for pollination and fertilization, which will occur as part of the Collaborative Ukrainian Experiment, or CUE, aboard Columbia during its 16-day mission, scheduled to take off from KSC's Launch Pad 39-B on Nov. 19. The CUE experiment is a collection of 10 plant space biology experiments that will fly in Columbia's middeck and feature an educational component that involves evaluating the effects of microgravity on the pollinating Brassica rapa seedlings. Students in Ukrainian and American schools will participate in the same experiment on the ground and have several live opportunities to discuss the experiment with Kadenyuk in Space. Kadenyuk of the Ukraine will be flying his first Shuttle mission on STS-87.

  7. Massive Remnant of Evolved Cometary Dust Trail Detected in the Orbit of Halley-Type Comet 55P/Tempel-Tuttle

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Betlem, H.

    2000-01-01

    There is a subpopulation of Leonid meteoroid stream particles that appear to form a region of enhanced numbers density along the path of the stream. This structure has been detected in the vicinity of the parent comet, and its variation from one apparition to the next has been traced. A significant amount of known comet 55P/Tempel-Tuttle debris is in this component, called a "filament," which has dimensions exceeding by an order of magnitude that expected for a cometary dust trail. As filament particles are of a size comparable to those found in trails, the emission ages of the particles comprising the filament must be intermediate between the age of the current trail particles (which have not been observed) and the age of the background particles comprising the annual showers. The most likely explanation for this structure is planetary perturbations acting differently on the comet and large particles while at different mean anomalies relative to each other.

  8. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.

    2011-01-01

    Since early 2006, NASA s Marshall Space Flight Center has been routinely monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000a, b) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated from the observed flash intensity.

  9. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.

    2010-01-01

    Since early 2006 the Meteoroid Environment Office (MEO) at NASA s Marshall Space Flight Center has been consistently monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated.

  10. STS-87 crew in LC-39B white room during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participates in the Terminal Countdown Demonstration Test (TCDT) at KSC. Standing, from left, Mission Specialist Winston Scott; Backup Payload Specialist Yaroslav Pustovyi, Ph.D., of the National Space Agency of Ukraine (NSAU); Payload Specialist Leonid Kadenyuk of NSAU; Pilot Steven Lindsey; Commander Kevin Kregel; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Mission Specialist Kalpana Chawla, Ph.D. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  11. Major safety provisions in nuclear-powered ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khlopkin, N.S.; Belyaev, V.M.; Dubrovin, A.M.

    1984-12-01

    Considerable experience has been accumulated in the Soviet Union on the design, construction and operation of nuclear-powered civilian ships: the icebreakers Lenin, Leonid Brezhnev and Sibir. The nuclear steam plants (NSP) used on these as the main energy source have been found to be highly reliable and safe, and it is desirable to use them in the future not only in icebreakers but also in transport ships for use in ice fields. The Soviet program for building and developing nuclear-powered ships has involved careful attention to safety in ships containing NSP. The experience with the design and operation of nuclearmore » icebreakers in recent years has led to the revision of safety standards for the nuclear ships and correspondingly ship NSP and international guidelines have been developed. If one meets the requirements as set forth in these documents, one has a safe basis for future Soviet nuclear-powered ships. The primary safety provisions for NSP are presented in this paper.« less

  12. NASDA President Isao Uchida shakes hands with STS-87 Mission Specialist Takao Doi, Ph.D., after land

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, at left, shakes hands with STS-87 Mission Specialist Takao Doi, Ph.D., of NASDA, shortly after the landing of Columbia at Kennedy Space Center. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34-minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Winston Scott and Kalpana Chawla, Ph.D.; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  13. NASDA President Isao Uchida greets STS-87 Mission Specialist Takao Doi, Ph.D., after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, at left, chats with STS-87 Mission Specialist Takao Doi, Ph.D., of NASDA, shortly after the landing of Columbia at Kennedy Space Center. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Winston Scott and Kalpana Chawla, Ph.D.; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  14. STS-87 M.S. Takao Doi, Ph.D., of NASDA after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency (NASDA) of Japan greets a NASDA official shortly after the orbiter Columbia returned to KSC, touching down on Runway 33 at KSC's Shuttle Landing Facility. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, drawing the 15-day, 16-hour and 34-minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Commander Kevin Kregel; Pilot Steven Lindsey; Mission Specialists Winston Scott and Kalpana Chawla, Ph.D.; and Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  15. STS-87 crew pose in front of the orbiter Columbia after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-87 crew pose in front of the orbiter Columbia shortly after landing on Runway 33 at KSC's Shuttle Landing Facility. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, drawing the 15-day, 16-hour and 34- minute-long mission of 6.5 million miles to a close. From left to right are Mission Specialists Winston Scott and Takao Doi, Ph.D., of the National Space Development Agency of Japan; Commander Kevin Kregel; Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; Mission Specialist Kalpana Chawla, Ph.D.; and Pilot Steven Lindsey. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  16. STS-87 M.S. Doi and Chawla and P.S. Kadenyuk in slidewire basket

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participates in the Terminal Countdown Demonstration Test (TCDT) at KSC. Testing a slide wire basket that is part of the pads emergency egress system are, from left, Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine (NSAU); and Mission Specialist Kalpana Chawla, Ph.D. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  17. Some problems of the theory of gravitation

    NASA Astrophysics Data System (ADS)

    Verozub, Leonid

    Leonid Verozub, lverozub@gmail.com Kharkov National University, Kharkov, Ukraine The contemporary observations pose serious challenges to the fundamental physics and astro-physics. We proceed from the equations of gravitation, based on an examination of foundations of the theory. (Ann. Phys. (Leipzig) 17, No. 1, 28 -51 (2008)). Namely, these equations are based on going back to Poincare's ideas about the relativity of geometry of space and time to the properties of measuring instruments, and on the consideration of the geodesic invariance as gauge invariance in the theory of gravitation. These equations do not contradict the observa-tional data, however, lead to two unexpected consequences, which allow you to test the theory: 1. They predict the existence of super-massive compact objects without event horizons, which are an alternative to black holes in the centers of galaxies. 2. They provide a simple and natural explanation for the accelerating expansion of the universe.

  18. Meteors: A Delivery Mechanism of Organic Matter to The Early Earth

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Wilson, Mike A.; Packan, Dennis; Laux, Christophe O.; Krueger, Charles H.; Boyd, Iain, D.; Popova, Olga P.; Fonda, Mark; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    All potential exogenous pre-biotic matter arrived to Earth by ways of our atmosphere, where much material was ablated during a luminous phase called 1. meteors" in rarefied flows of high (up to 270) Mach number. The recent Leonid showers offered a first glimpse into the elusive physical conditions of the ablation process and atmospheric chemistry associated with high-speed meteors. Molecular emissions were detected that trace a meteor's brilliant light to a 4,300 K warm wake rather than to the meteor's head. A new theoretical approach using the direct simulation by Monte Carlo technique identified the source-region and demonstrated that the ablation process is critical in the heating of the meteor's wake. In the head of the meteor, organic carbon appears to survive flash heating and rapid cooling. The temperatures in the wake of the meteor are just right for dissociation of CO and the formation of more complex organic compounds. The resulting materials could account for the bulk of pre-biotic organic carbon on the early Earth at the time of the origin of life.

  19. STS-87 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk present an overview of their mission. In the first part they can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is seen being readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. In the second part of the video the crew turn their attention to a variety of experiments inside the Shuttle's cabin. These experiments include the processing of several samples of materials in the glovebox facility in Columbia's middeck; the experiment called PEP, which involves heating samples and then recording the mixture as it resolidifies; and the study of plant growth in space.

  20. STS-87 crew in front of LC-39B during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from Pad 39B at Kennedy Space Center (KSC), poses at the pad during a break in the Terminal Countdown Demonstration Test (TCDT) at KSC. Standing in front of the Shuttle Columbia are, from left, Commander Kevin Kregel; Mission Specialist Kalpana Chawla, Ph.D.; Pilot Steven Lindsey; Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan; Backup Payload Specialist Yaroslav Pustovyi, Ph.D., of the National Space Agency of Ukraine (NSAU); Payload Specialist Leonid Kadenyuk of NSAU; and Mission Specialist Winston Scott. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  1. STS-87 crew walkout for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participated in the Terminal Countdown Demonstration Test (TCDT) at KSC. Simulating the walk-out from the Operations and Checkout Building before entering a van to take them to the launch pad are (left to right) Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; Mission Specialist Kalpana Chawla, Ph.D.; Pilot Steve Lindsey; Mission Specialist Winston Scott; Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Commander Kevin Kregel. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  2. The Lunar Atmosphere as a Cosmic-Ray Detector

    NASA Technical Reports Server (NTRS)

    Wilson, T. L.

    2007-01-01

    The recent discovery of a tenuous sodium (Na) atmosphere on the Moon and Mercury has renewed interest in studying the lunar atmosphere since the physics involved for the two bodies is thought to be of similar nature. Na came as a surprise because it had been missed by in situ UV measurements made during the Apollo program. The new lunar observations involve the visible D1 (5896 ) and D2 (5890 ) wavelengths which are highly efficient at scattering sunlight. Although its lunar source and morphology is still not completely understood, Na is present as a collisionless exosphere - apparently in the form of a cometary-type coma with a tail that can extend hundreds of lunar radii during Leonid showers. The global shape of the atmosphere, in particular for the shaded antisolar side, has been modelled by Smyth. Since planetary atmospheres can be used as cosmic-ray (CR) spectrometers by means of their fluorescence excited by CR-induced air shower particles, the subject of the Moon s atmosphere as a CR detector will be discussed here.

  3. An Ongoing Program for Monitoring the Moon for Meteoroid Impacts (Abstract)

    NASA Astrophysics Data System (ADS)

    Cudnik, B.; Saganti, S.; Ali, F.; Ali, S.; Beharie, T.; Anugwom, B.

    2017-12-01

    (Abstract only) Lunar meteor impacts are surprisingly frequent phenomena, with well over one hundred observable events occurring each year. Of these a little over half arise from members of annual meteor showers (e.g. Perseids, Leonids, etc.), with the rest being sporadic in origin. Five years ago, I (BC) introduced to the SAS Symposium the idea of observing lunar meteoroid impact phenomena and applying these observations to a space mission (LADEE-Lunar Atmosphere and Dust Environment Explorer) that launched the following year. Now, five years later I revisit and reintroduce the activities of the Association of Lunar and Planetary Observers-Lunar Meteoritic Impact Search (ALPO-LMIS) section and share some of the latest observations that have been received. For over 17 years now, ALPO has hosted the LMIS section, for which I have served as coordinator since its inception. In this paper, I will revisit the main ideas of the earlier paper, share some recent observations of lunar meteors, and provide new initiatives and projects interested persons can participate in.

  4. Dynamical systems theory and applications

    NASA Astrophysics Data System (ADS)

    Awrejcewicz, Jan

    2006-08-01

    The 7th International Conference devoted to "Dynamical Systems-Theory and Applications" hold in 8-11 December, 2003 in Łódź, Poland, and it was organized by the staff of Department of Automatics and Biomechanics of the Technical University of Łódź. It was financially supported by the Rector of the Technical University of Łódź and the Department of Education and Physical Culture of the Łódź City Hall. The members of the International Scientific Committee included: Igor V. Andrianov (Dniepropetrovsk), Jan Awrejcewicz (Łódź), Iliya Blekhman (Sankt Petersburg), Roman Bogacz (Warszawa), Dick van Campen (Eindhoven), Zbigniew Engel (Kraków), Lothar Gaul (Stuttgart), Józef Giergiel (Kraków), Michał Kleiber (Warszawa), Vadim A. Krysko (Saratov), Włodzimierz Kurnik (Warszawa), Claude-Henri Lamarque (Lyon), Leonid I. Manevitch (Moscow), Jan Osiecki (Warszawa), Wiesaw Ostachowicz (Gdańsk), Ladislav Pust (Prague), Giuseppe Rega (Rome), Tsuneo Someya (Tokyo), Zbigniew Starczewski (Warszawa), Eugeniusz Świtoński (Gliwice), Andrzej Tylikowski (Warszawa), Tadeusz Uhl (Kraków), Aleksander F. Vakakis (Illinois), Józef Wojnarowski (Gliwice).

  5. aGEM: an integrative system for analyzing spatial-temporal gene-expression information

    PubMed Central

    Jiménez-Lozano, Natalia; Segura, Joan; Macías, José Ramón; Vega, Juanjo; Carazo, José María

    2009-01-01

    Motivation: The work presented here describes the ‘anatomical Gene-Expression Mapping (aGEM)’ Platform, a development conceived to integrate phenotypic information with the spatial and temporal distributions of genes expressed in the mouse. The aGEM Platform has been built by extending the Distributed Annotation System (DAS) protocol, which was originally designed to share genome annotations over the WWW. DAS is a client-server system in which a single client integrates information from multiple distributed servers. Results: The aGEM Platform provides information to answer three main questions. (i) Which genes are expressed in a given mouse anatomical component? (ii) In which mouse anatomical structures are a given gene or set of genes expressed? And (iii) is there any correlation among these findings? Currently, this Platform includes several well-known mouse resources (EMAGE, GXD and GENSAT), hosting gene-expression data mostly obtained from in situ techniques together with a broad set of image-derived annotations. Availability: The Platform is optimized for Firefox 3.0 and it is accessed through a friendly and intuitive display: http://agem.cnb.csic.es Contact: natalia@cnb.csic.es Supplementary information: Supplementary data are available at http://bioweb.cnb.csic.es/VisualOmics/aGEM/home.html and http://bioweb.cnb.csic.es/VisualOmics/index_VO.html and Bioinformatics online. PMID:19592395

  6. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  7. SPA Meteor Section Results: 2006

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair

    2010-12-01

    A summary of the main analyzed results and other information provided to the SPA Meteor Section from 2006 is presented and discussed. Events covered include: the radio Quadrantid maximum on January 3/4; an impressive fireball seen from parts of England, Belgium and the Netherlands at 22h53m51s UT on July 18, which was imaged from three EFN stations as well; the Southern delta-Aquarid and alpha-Capricornid activity from late July and early August; the radio Perseid maxima on August 12/13; confirmation that the October 5/6 video-meteor outburst was not observed by radio; visual and radio findings from the strong, bright-meteor, Orionid return in October; another impressive UK-observed fireball on November 1/2, with an oil painting of the event as seen from London; the Leonids, which produced a strong visual maximum around 04h-05h UT on November 18/19 that was recorded much less clearly by radio; radio and visual reports from the Geminids, with a note regarding NASA-observed Geminid lunar impact flashes; and the Ursid outburst recorded by various techniques on December 22.

  8. STS-87 crew and VIPs inspect the orbiter Columbia after landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 crew members regard the tiles underneath the orbiter Columbia shortly after its return to Runway 33 at Kennedy Space Center's Shuttle Landing Facility. Pointing to the tiles is the president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, who is standing next to NASA Administrator Daniel Goldin. STS-87 Commander Kevin Kregel, at right, looks on as Pilot Steve Lindsey follows behind him to continue inspecting the orbiter. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, drawing the 15-day, 16-hour and 34-minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Mission Specialists Winston Scott; Kalpana Chawla, Ph.D.; and Takao Doi, Ph.D., of NASDA; along with Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  9. The 2018 Meteor Shower Activity Forecast for Earth Orbit

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea; Cooke, Bill; Moser, Danielle

    2017-01-01

    A number of meteor showers - the Ursids, Perseids, Leonids, eta Aquariids, Orionids, Draconids, and Andromedids - are predicted to exhibit increased rates in 2018. However, no major storms are predicted, and none of these enhanced showers outranks the typical activity of the Arietids, Southern delta Aquariids, and Geminids at small particle sizes. The MSFC stream model1 predicts higher than usual activity for the Ursid meteor shower in December 2018. While we expect an increase in activity, rates will fall short of the shower's historical outbursts in 1945 and 1986 when the zenithal hourly rate (ZHR) exceeded 100. Instead, the expected rate for 2018 is around 70. The Perseids, Leonids, eta Aquariids, and Orionids are expected to show mild enhancements over their baseline activity level in 2018. In the case of the Perseids, we may see an additional peak in activity a few hours before the traditional peak, but we do not expect activity levels as high as those seen in 2016 and 2017. The eta Aquariids and Orionids, which belong to a single meteoroid stream generated by comet 1P/Halley, are thought to have a 12-year activity cycle and are currently increasing in activity from year to year. Finally, we may see minor outbursts of the Draconids and Andromedids in 2018. Both showers have been difficult to model and have produced unexpected outbursts in recent years (the Draconids in 2012 and the Andromedids in 2011 and 2013). The Andromedids may produce two peaks, both of which are listed in Table 2. This document is designed to supplement spacecraft risk assessments that incorporate an annual averaged meteor shower flux (as is the case with all NASA meteoroid models). Results are presented relative to this baseline and are weighted to a constant kinetic energy. Two showers - the Daytime Arietids (ARI) and the Geminids (GEM) - attain flux levels approaching that of the baseline meteoroid environment for 0.1-cm-equivalent meteoroids. This size is the threshold for structural

  10. Photometric Calibration of Consumer Video Cameras

    NASA Technical Reports Server (NTRS)

    Suggs, Robert; Swift, Wesley, Jr.

    2007-01-01

    Equipment and techniques have been developed to implement a method of photometric calibration of consumer video cameras for imaging of objects that are sufficiently narrow or sufficiently distant to be optically equivalent to point or line sources. Heretofore, it has been difficult to calibrate consumer video cameras, especially in cases of image saturation, because they exhibit nonlinear responses with dynamic ranges much smaller than those of scientific-grade video cameras. The present method not only takes this difficulty in stride but also makes it possible to extend effective dynamic ranges to several powers of ten beyond saturation levels. The method will likely be primarily useful in astronomical photometry. There are also potential commercial applications in medical and industrial imaging of point or line sources in the presence of saturation.This development was prompted by the need to measure brightnesses of debris in amateur video images of the breakup of the Space Shuttle Columbia. The purpose of these measurements is to use the brightness values to estimate relative masses of debris objects. In most of the images, the brightness of the main body of Columbia was found to exceed the dynamic ranges of the cameras. A similar problem arose a few years ago in the analysis of video images of Leonid meteors. The present method is a refined version of the calibration method developed to solve the Leonid calibration problem. In this method, one performs an endto- end calibration of the entire imaging system, including not only the imaging optics and imaging photodetector array but also analog tape recording and playback equipment (if used) and any frame grabber or other analog-to-digital converter (if used). To automatically incorporate the effects of nonlinearity and any other distortions into the calibration, the calibration images are processed in precisely the same manner as are the images of meteors, space-shuttle debris, or other objects that one seeks to

  11. Orbits and emission spectra from the 2014 Camelopardalids

    NASA Astrophysics Data System (ADS)

    Madiedo, José M.; Trigo-Rodríguez, Josep M.; Zamorano, Jaime; Izquierdo, Jaime; de Miguel, Alejandro Sánchez; Ocaña, Francisco; Ortiz, José L.; Espartero, Francisco; Morillas, Lorenzo G.; Cardeñosa, David; Moreno-Ibáñez, Manuel; Urzáiz, Marta

    2014-12-01

    We have analysed the meteor activity associated with meteoroids of fresh dust trails of Comet 209P/LINEAR, which produced an outburst of the Camelopardalid meteor shower (IAU code #451, CAM) in 2014 May. With this aim, we have employed an array of high-sensitivity CCD video devices and spectrographs deployed at 10 meteor observing stations in Spain in the framework of the Spanish Meteor Network. Additional meteoroid flux data were obtained by means of two forward-scatter radio systems. The observed peak zenithal hourly rate was much lower than expected, of around 20 meteors h-1. Despite of the small meteor flux in the optical range, we have obtained precise atmospheric trajectory, radiant and orbital information for 11 meteor and fireball events associated with this stream. The ablation behaviour and low tensile strength calculated for these particles reveal that Camelopardalid meteoroids are very fragile, mostly pristine aggregates with strength similar to that of the Orionids and the Leonids. The mineral grains seem to be glued together by a volatile phase. We also present and discuss two unique emission spectra produced by two Camelopardalid bright meteors. These suggest a non-chondritic nature for these particles, which exhibit Fe depletion in their composition.

  12. Fireball Observations in Visible and Sodium Bands

    NASA Astrophysics Data System (ADS)

    Fletcher, Sandra

    On November 17th at 1:32am MST, a large Leonid fireball was simultaneously imaged by two experiments, a visible band CCD camera and a 590nm filtered band equi-angle fisheye and telecentric lens assembly. The visible band camera, ROTSE (Robotic Optical Transient Search Experiment) is a two by two f/1.9 telephoto lens array with 2k x2k Thompson CCD and is located at 35.87 N, 106.25 W at an altitude of 2115m. One-minute exposures along the radiant were taken of the event for 30 minutes after the initial explosion. The sodium band experiment was located at 35.29 N,106.46 W at an altitude of 1860m. It took ninety second exposures and captured several events throughout the night. Triangulation from two New Mexico sites resulted in an altitude of 83km over Wagon Mound, NM. Two observers present at the ROTSE site saw a green flash and a persistent glow up to seven minutes after the explosion. Cataloging of all sodium trails for comparison with lidar and infrasonic measurements is in progress. The raw data from both experiments and the atmospheric chemistry interpretation of them will be presented.

  13. STS-87 crew greet VIPs after successful landing at KSC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Commander Kevin Kregel, center, shakes hands with the deputy director general of the National Space Agency of Ukraine (NSAU), Eduard Kuznetsov, at far right. Next to Kuznetsov is the Honorable Yuri Shcherbak, Ukraine's ambassador to the United States, standing with the president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, and NASA Administrator Daniel Goldin (center). Approaching the VIPs from the left of the photo are Mission Specialists Kalpana Chawla, Ph.D., and Takao Doi, Ph.D., of NASDA. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16- hour and 34-minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Pilot Steven Lindsey; Mission Specialist Winston Scott; and Payload Specialist Leonid Kadenyuk of NSAU. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program.

  14. STS-87 Mission Highlights Resources Tape

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-87 mission the flight crew, Commander Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk present an overview of there mission. STS-87 will fly the United States Microgravity Payload (USMP-4), the Spartan-201, the Orbital Acceleration Research Experiment (OARE), the EVA Demonstration Flight Test 5 (EDFT-05). The objective of the observations are to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. While flying separately in the cargo bay, the Orbital Acceleration Research Experiment (OARE) is an integral part of USMP-04. It is a highly sensitive instrument designed to acquire and record data of low-level aerodynamic acceleration along the orbiter's principal axes in the free-molecular flow regime at orbital altitudes and in the transition regime during re-entry. OARE data will support advances in space materials processing by providing measurements of the low-level, low frequency disturbance environment affecting various microgravity experiments. OARE data will also support advances in orbital drag prediction technology by increasing the understanding of the fundamental flow phenomena in the upper atmosphere.

  15. KSC-97PC1744

    NASA Image and Video Library

    1997-12-05

    STS-87 Commander Kevin Kregel, center, shakes hands with the deputy director general of the National Space Agency of Ukraine (NSAU), Eduard Kuznetsov, at far right. Next to Kuznetsov is the Honorable Yuri Shcherbak, Ukraine's ambassador to the United States, standing with the president of the National Space Development Agency (NASDA) of Japan, Isao Uchida, and NASA Administrator Daniel Goldin (center). Approaching the VIPs from the left of the photo are Mission Specialists Kalpana Chawla, Ph.D., and Takao Doi, Ph.D., of NASDA. STS-87 concluded its mission with a main gear touchdown at 7:20:04 a.m. EST Dec. 5, at KSC's Shuttle Landing Facility Runway 33, drawing the 15-day, 16-hour and 34-minute-long mission of 6.5 million miles to a close. Also onboard the orbiter were Pilot Steven Lindsey; Mission Specialist Winston Scott; and Payload Specialist Leonid Kadenyuk of NSAU. During the 88th Space Shuttle mission, the crew performed experiments on the United States Microgravity Payload-4 and pollinated plants as part of the Collaborative Ukrainian Experiment. This was the 12th landing for Columbia at KSC and the 41st KSC landing in the history of the Space Shuttle program

  16. The activity of autumn meteor showers in 2006-2008

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna

    2015-03-01

    The purpose of meteor observations in INASAN is the study of meteor showers, as the elements of the migrant substance of the Solar System, and estimation of risk of hazardous collisions of spacecrafts with the particles of streams. Therefore we need to analyze the meteor events with brightness of up to 8 m, which stay in meteoroid streams for a long time and can be a hazardous for the spacecraft. The results of our single station TV observations of autumn meteor showers for the period from 2006 to 2008 are presented. The high-sensitive hybrid camera (the system with coupled of the Image Intensifier) FAVOR with limiting magnitude for meteors about 9m. . .10m in the field of view 20 × 18 was used for observations. In 2006-2008 from October to November more than 3 thousand of meteors were detected, 65% from them have the brightness from 6m to 9m. The identification with autumn meteor showers (Orionids, Taurids, Draconids, Leonids) was carried out. In order to estimate the density of the influx of meteor matter to the Earth for these meteor showers the Index of meteor activity (IMA) was calculated. The IMA distribution for the period 2006 - 2008 is given. The distributions of autumn meteor showers (the meteors with brightness of up to 8 m) by stellar magnitude from 2006 to 2008 are also presented.

  17. Hazards by meteoroid Impacts onto operational spacecraft

    NASA Astrophysics Data System (ADS)

    Landgraf, M.; Jehn, R.; Flury, W.

    Operational spacecraft in Earth orbit or on interplanetary trajectories are exposed to high-velocity particles that can cause damage to sensitive on-board instrumentation. In general there are two types of hazard: direct destruction of functional elements by impacts, and indirect disturbance of instruments by the generated impact plasma. The latter poses a threat especially for high-voltage instrumentation and electronics. While most meteoroids have sizes in the order of a few micrometre, and typical masses of 10-15 kg, the most dangerous population with sizes in the millimetre and masses in the milligramme range exhibits still substantial impact fluxes in the order of 2 × 10-11 m-2 s-1 . This level of activity can by significantly elevated during passages of the spacecraft through cometary trails, which on Earth cause events like the well-known Leonid and Perseid meteor streams. The total mass flux of micrometeoroids onto Earth is about 107 kg yr-1 , which is about one order of magnitude less than the estimated mass flux of large objects like comets and asteroids with individual masses above 105 kg. In order to protect spacecraft from the advert effects of meteoroid impacts, ESA performs safety operations on its spacecraft during meteor streams, supported by real-time measurements of the meteor activity. A summary of past and future activities is given.

  18. Comparison of the Mechanical Characteristics of a Universal Small Biplane Plating Technique Without Compression Screw and Single Anatomic Plate With Compression Screw.

    PubMed

    Dayton, Paul; Ferguson, Joe; Hatch, Daniel; Santrock, Robert; Scanlan, Sean; Smith, Bret

    2016-01-01

    To better understand the mechanical characteristics of biplane locked plating in small bone fixation, the present study compared the stability under cyclic cantilever loading of a 2-plate locked biplane (BPP) construct without interfragmentary compression with that of a single-plate locked construct with an additional interfragmentary screw (SPS) using surrogate bone models simulating Lapidus arthrodesis. In static ultimate plantar bending, the BPP construct failed at significantly greater load than did the SPS construct (556.2 ± 37.1 N versus 241.6 ± 6.3 N, p = .007). For cyclic failure testing in plantar bending at a 180-N starting load, the BPP construct failed at a significantly greater number of cycles (158,322 ± 50,609 versus 13,718 ± 10,471 cycles) and failure load (242.5 ± 25.0 N versus 180.0 ± 0.0 N) than the SPS construct (p = .002). For cyclic failure testing in plantar bending at a 120-N starting load, the results were not significantly different between the BPP and SPS constructs for the number of cycles (207,646 ± 45,253 versus 159,334 ± 69,430) or failure load (205.0 ± 22.4 N versus 185.0 ± 33.5 N; p = .300). For cyclic testing with 90° offset loading (i.e., medial to lateral bending) at a 120-N starting load, all 5 BPP constructs (tension side) and 2 of the 5 SPS constructs reached 250,000 cycles without failure. Overall, the present study found the BPP construct to have superior or equivalent stability in multiplanar orientations of force application in both static and fatigue testing. Thus, the concept of biplane locked plating, using 2 low profile plates and unicortical screw insertion, shows promise in small bone fixation, because it provides consistent stability in multiplanar orientations, making it universally adaptable to many clinical situations. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Climate change effects on human health in a gender perspective: some trends in Arctic research.

    PubMed

    Natalia, Kukarenko

    2011-01-01

    Natalia.

  20. Practical Meteor Stream Forecasting

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert M.

    2003-01-01

    Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.

  1. Harmful and favourable ultraviolet conditions for human health over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Chubarova, Nataly; Zhdanova, Ekaterina

    2014-05-01

    classes of UV resources is demonstrated. Reference: Natalia Chubarova, Yekaterina Zhdanova. Ultraviolet resources over Northern Eurasia, Photochemistry and Photobiology, Elsevier, 127, 2013, p. 38-51

  2. Attrition from Web-Based Cognitive Testing: A Repeated Measures Comparison of Gamification Techniques.

    PubMed

    Lumsden, Jim; Skinner, Andy; Coyle, David; Lawrence, Natalia; Munafo, Marcus

    2017-11-22

    . ©Jim Lumsden, Andy Skinner, David Coyle, Natalia Lawrence, Marcus Munafo. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.11.2017.

  3. Atomic Precision Plasma Processing - Modeling Investigations

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2016-09-01

    Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.

  4. Effects of the leaf decoction of Momordica charantia (bitter melon) on Mitochondrial Membrane Permeability Transition Pore (MMPTP) and fertility in normal male albino rats.

    PubMed

    Odewusi, A F; Oyeyemi, M O; Olayemi, F O; Emikpe, B; Ehigie, L O; Adisa, R A; Olorunsogo, O O

    2010-12-01

    Momordica charantia (M. charantia), a medicinal plant of the family, Cucurbitaceae, is used in treating an array of ailments including diabetes, heamorrhoids, fevers and various cancers. Programmed cell death may be modulated by an intrinsic pathway involving the release of cytochrome C when the mitochondrial membrane permeability transition (MMPTP) pore is opened. Opening of MMPT pore was assayed using the method of Lapidus and Sokolove. The results obtained revealed that there was a dose-dependent and significant increase in the opening of the MMPT pore in rats orally administered the decoction with maximum induction (11-fold increase) at 55mg/100g body weight (bw), although the extent of opening of the pore was reduced at 65mg/100g bw (9-fold increase). An assessment of the blood parameters of animals orally exposed to the decoction showed significant decrease (p<0.05) in lymphocytes and a significant increase (p<0.05) in neutrophils at 55mg/ 100g bw. Moreover, significant increases (p<0.05) in RBC levels at 45 and 65mg/100g bw, were observed. Similarly, PCV and Heamoglobin values were also elevated at 65mg/100g bw while there was a significant reduction (p<0.05) in MCV and MCH values at 45, 55 and 65mg/100g bw. MCHC values were reduced only in animals that received 65mg/ 100g when compared to control animals. Analysis of the spermiogram of the experimental rats showed significant reductions (p<0.05) in sperm motility and sperm cell concentrations for all animals that were orally exposed to the decoction. There was a significant reduction (p<0.05) in percentage viability in animals that received 45mg/100g bw and above. Morphological abnormalities of sperm cells above the proposed percentage range (10%) were also observed in animals that received 45mg/100g bw and above. However, decoction did not show any significant effect on ALT and AST levels but there were significant increases (p<0.05) in a somewhat dose-dependent pattern in ALP and ãGT levels for all

  5. Hydrogen emission in meteors as a potential marker for the exogenous delivery of organics and water

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Mandell, Avram M.

    2004-01-01

    We detected hydrogen Balmer-alpha (H(alpha)) emission in the spectra of bright meteors and investigated its potential use as a tracer for exogenous delivery of organic matter. We found that it is critical to observe the meteors with high enough spatial resolution to distinguish the 656.46 nm H(alpha) emission from the 657.46 nm intercombination line of neutral calcium, which was bright in the meteor afterglow. The H(alpha) line peak stayed in constant ratio to the atmospheric emissions of nitrogen during descent of the meteoroid. If all of the hydrogen originates in the Earth's atmosphere, the hydrogen atoms are expected to have been excited at T = 4400 K. In that case, we measured an H(2)O abundance in excess of 150 +/- 20 ppm at 80-90 km altitude (assuming local thermodynamic equilibrium in the air plasma). This compares with an expected <20 ppm from H(2)O in the gas phase. Alternatively, meteoric refractory organic matter (and water bound in meteoroid minerals) could have caused the observed H(alpha) emission, but only if the line is excited in a hot T approximately 10000 K plasma component that is unique to meteoric ablation vapor emissions such as Si(+). Assuming that the Si(+) lines of the Leonid spectrum would need the same hot excitation conditions, and a typical [H]/[C] = 1 in cometary refractory organics, we calculated an abundance ratio [C]/[Si] = 3.9 +/- 1.4 for the dust of comet 55P/Tempel-Tuttle. This range agreed with the value of [C]/[Si] = 4.4 measured for comet 1P/Halley dust. Unless there is 10 times more water vapor in the upper atmosphere than expected, we conclude that a significant fraction of the hydrogen atoms in the observed meteor plasma originated in the meteoroid.

  6. Lunar and Planetary Science XXXVI, Part 6

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: A Model for Multiple Populations of Presolar Diamonds. Characterization of Martian North Polar Geologic Units Using Mars Odyssey THEMIS Data. Effect of Flow on the Internal Structure of the Martian North Polar Layered Deposits. Elemental Abundance Distributions in Basalt Clays and Meteorites: Is It a Biosignature? Early Results on the Saturn System from the Composite Infrared Spectrometer. NanoSIMS D/H Imaging of Isotopically Primitive Interplanetary Dust Particles. Presolar (Circumstellar and Interstellar) Phases in Renazzo: The Effects of Parent Body Processing. Catastrophic Disruption of Hydrated Targets: Implications for the Hydrated Asteroids and for the Production of Interplanetary Dust Particles. Chemical and Mineralogical Analyses of Particles from the Stratospheric Collections Coinciding with the 2002 Leonid Storm and the 2003 Comet Grigg-Skjellerup Trail Passage. An Analysis of the Solvus in the CaS-MnS System. ESA s SMART-1 Mission at the Moon: First Results, Status and Next Steps. Europa Analog Ice-splitting Measurements and Experiments with Ice-Hunveyor on the Frozen Balaton-Lake, Hungary. Chromium on Eros: Further Evidence of Ordinary Chondrite Composition. Dust Devil Tracks on Mars: Observation and Analysis from Orbit and the Surface. Spatial Variation of Methane and Other Trace Gases Detected on Mars: Interpretation with a General Circulation Model. Mars Water Ice and Carbon Dioxide Seasonal Polar Caps: GCM Modeling and Comparison with Mars Express Omega Observations. Component Separation of OMEGA Spectra with ICA. Clathrate Formation in the Near-Surface Environment of Titan. Space Weathering: A Proposed Laboratory Approach to Explaining the Sulfur Depletion on Eros. Sample Collection from Small Airless Bodies: Examination of Temperature Constraints for the TGIP. Sample Collector for the Hera Near-Earth Asteroid Sample Return Mission. A Rugged Miniature Mass-Spectrometer for Measuring Aqueous Geochemistry on Mars

  7. Acoustic analysis of shock production by very high-altitude meteors—I: infrasonic observations, dynamics and luminosity

    NASA Astrophysics Data System (ADS)

    Brown, P. G.; Edwards, W. N.; Revelle, D. O.; Spurny, P.

    2007-04-01

    Four very high-velocity and high-altitude meteors (a Leonid, two Perseids and a high-speed sporadic fireball) have been unambiguously detected at the ground both optically using precision all-sky cameras and acoustically via infrasound and seismic signals. Infrasound arriving from altitudes of over 100 km is not very common, but has been previously observed for re-entering spacecraft. This, however, is the first reported detection of such high-altitude infrasound unambiguously from meteors to our knowledge. These fragile meteoroids were found to generate acoustic waves at source heights ranging from 80 to 110 km, with most acoustic energy being generated near the lowest heights. Time residuals between observed acoustic onset and model predictions based on ray-tracing points along the photographically determined trajectories indicate that the upper winds given by the UK meteorological office (UKMO) model systematically produce lower residuals for first arrivals than those from the Naval Research Laboratory Horizontal Wind Model (HWM). Average source energies for three of the four events from acoustic data alone are found to be in the range of 2×108-9 J. One event, EN010803, had unusually favorable geometry for acoustic detection at the ground and therefore has the smallest photometric source energy (10-5 kt; 6×107 J) of any meteor detected infrasonically. When compared to the total optical radiation recorded by film, the results for the three events produce equivalent integral panchromatic luminous efficiencies of 3 7%, within a factor of two of the values proposed by Ceplecha and McCrosky [1976. Fireball end heights—a diagnostic for the structure of meteoric material. Journal of Geophysical Research 81, 6257 6275] for the velocity range (55 70 km s-1) appropriate to our events. Application of these findings to meteor showers in general suggest that the Geminid shower should be the most prolific producer of infrasound detectable meteors at the ground of all the

  8. Shooting Stars over China

    NASA Astrophysics Data System (ADS)

    Hodges, John

    International cultural exchange and education in the sciences and arts is one of the chief aims of the British Council (BC). The 1998 Leonids Meteor Shower was recognised by the BC in China as an event that would offer an opportunity, both to promote the public understanding of space science at an international level, and to encourage on-going cultural links between the United Kingdom and China. Predictions suggested that the 1998 shower, which was likely to be the most intense for more than three decades, would be best viewed in north-east Asia. The BC contracted the Orbital Mechanics Educational Network, an independent organisation that promotes space education amongst young people, to organise several activities aimed particularly at teenagers. The culmination of the project was a visit to Beijing by a party of British teenagers, to take part in meteor observation at China's Mi Yun Observatory. The paper focusses on the practicalities of organising and running such a project and reports on the achievements and shortcomings of the overall venture. It also reports on the observations and findings that were made by the UK group and their Chinese student partners, all of whom were observing a meteor shower for the first time. It reports on the techniques of observing that were tried, the observations themselves and the findings that were made by the group. It also offers advice to those who might wish to set up similar bi-lateral ventures, particularly with China and the UK, and outlines plans to continue and improve the relationships that have been established. (Please note: I realise this is topic not directly covered by the Conference, but how the subject of the meteor phenomenon in particular and, for that matter, science in general is conveyed to the " man in the street" should be important to all scientists, not least because they depend on external funding and public goodwill! Perhaps a suitable slot can be made for this presentation on Tuesday, which is the

  9. The unexpected 2012 Draconid meteor storm

    NASA Astrophysics Data System (ADS)

    Ye, Quanzhi; Wiegert, Paul A.; Brown, Peter G.; Campbell-Brown, Margaret D.; Weryk, Robert J.

    2014-02-01

    An unexpected intense outburst of the Draconid meteor shower was detected by the Canadian Meteor Orbit Radar on 2012 October 8. The peak flux occurred at ˜16:40 UT on October 8 with a maximum of 2.4 ± 0.3 h-1 km-2 (appropriate to meteoroid mass larger than 10-7 kg), equivalent to a ZHRmax ≈ 9000 ± 1000 using 5-min intervals, using a mass distribution index of s = 1.88 ± 0.01 as determined from the amplitude distribution of underdense Draconid echoes. This makes the outburst among the strongest Draconid returns since 1946 and the highest flux shower since the 1966 Leonid meteor storm, assuming that a constant power-law distribution holds from radar to visual meteoroid sizes. The weighted mean geocentric radiant in the time interval of 15-19 h UT, 2012 October 8, was αg = 262.4° 4 ± 0.1°, δg = 55.7° ± 0.1° (epoch J2000.0). Visual observers also reported increased activity around the peak time, but with a much lower rate (ZHR ˜ 200), suggesting that the magnitude-cumulative number relationship is not a simple power law. Ablation modelling of the observed meteors as a population does not yield a unique solution for the grain size and distribution of Draconid meteoroids, but is consistent with a typical Draconid meteoroid of mtotal between 10-6 and 10-4 kg being composed of 10-100 grains. Dynamical simulations indicate that the outburst was caused by dust particles released during the 1966 perihelion passage of the parent comet, 21P/Giacobini-Zinner, although there are discrepancies between the modelled and observed timing of the encounter, presumably caused by approaches of the comet to Jupiter during 1966-1972. Based on the results of our dynamical simulation, we predict possible increased activity of the Draconid meteor shower in 2018, 2019, 2021 and 2025.

  10. The Coags Uncomplicated App: Fulfilling Educational Gaps Around Diagnosis and Laboratory Testing of Coagulation Disorders.

    PubMed

    Kessler, Craig; Peerschke, Ellinor I; Chitlur, Meera B; Kulkarni, Roshni; Holot, Natalia; Cooper, David L

    2017-04-18

    .43) and Lab Test Algorithm (mean 4.46) tools highly on a 5-point "how helpful" scale and were likely to recommend the app to colleagues. App use among physicians and other HCPs is consistent with value as a POC educational tool, which may facilitate differential diagnoses and appropriate early consultation with hematologists. ©Craig Kessler, Ellinor I Peerschke, Meera B Chitlur, Roshni Kulkarni, Natalia Holot, David L Cooper. Originally published in JMIR Medical Education (http://mededu.jmir.org), 18.04.2017.

  11. ESPAS: the European e-science platform to access near-Earth space data (Invited)

    NASA Astrophysics Data System (ADS)

    Belehaki, A.; Hapgood, M. A.; Ritschel, B.; Manola, N.

    2013-12-01

    The aim of ESPAS platform is to integrate heterogeneous data from the earth's thermosphere, ionosphere, plasmasphere and magnetosphere. ESPAS supports the systematic exploration of multipoint measurements from the near-Earth space through homogenised access to multi-instrument data. It provides access to more than 40 datasets: Cluster, EISCAT, GIRO, DIAS, SWACI, CHAMP, SuperDARN, FPI, magnetometers INGV, SGO, DTU, IMAGE, TGO, IMAGE/RPI, ACE, SOHO, PROBA2, NOAA/POES, etc. The concept of extensibility to new data sets is an important element in the ESPAS architecture. Within the first year of the project, the main components of the system have been developed, namely, the data model, the XML schemas for metadata exchange format, the ontology, the wrapper installed at the data nodes so that the main platform harvest the metadata, the main platform built on the D-NET framework and the GUI with its designed workflows. The first working prototype supports the search for datasets among a selected number of databases (i.e., EDAM, DIAS, Cluster, SWACI data). The next immediate step would be the implementation of search for characteristics within the datasets. For the second release we are planning to deploy tools for conjunctions between ground-space and space-space and for coincidences. For the final phase of the project the ESPAS infrastructure will be extensively tested through the application of several use cases, designed to serve the needs of the wide interdisciplinary users and producers communities, such as the ionospheric, thermospheric, magnetospheric, space weather and space climate communities, the geophysics community, the space communications engineering, HF users, satellite operators, navigation and surveillance systems, and space agencies. The final ESPAS platform is expected to be delivered in 2015. The abstract is submitted on behalf of the ESPAS-FP7EU team (http://www.espas-fp7.eu): Mike Hapgood, Anna Belehaki, Spiros Ventouras, Natalia Manola, Antonis

  12. Larval habitats of the Anopheles farauti and Anopheles lungae complexes in the Solomon Islands.

    PubMed

    Russell, Tanya L; Burkot, Thomas R; Bugoro, Hugo; Apairamo, Allan; Beebe, Nigel W; Chow, Weng K; Cooper, Robert D; Collins, Frank H; Lobo, Neil F

    2016-03-15

    There is an urgent need for vector control tools to supplement long-lasting insecticidal nets (LLINs) and indoor residual spraying; particularly in the Solomon Islands where the primary vector, Anopheles farauti, is highly anthropophagic and feeds mainly outdoors and early in the evening. Currently, the only supplementary tool recommended by the World Health Organization is larval source management (LSM). The feasibility and potential effectiveness of LSM requires information on the distribution of anophelines, the productivity of larval habitats and the potential impacts of larval control on adult fitness. The distribution of anophelines in Central and Western Provinces in the Solomon Islands was mapped from cross-sectional larval habitat surveys. The composition and micro-distribution of larval instars within a large permanent river-mouth lagoon was examined with a longitudinal survey. Density-dependent regulation of An. farauti larvae was investigated by longitudinally following the development and survival of different densities of first instars in floating cages in a river-mouth lagoon. Five anopheline species were molecularly identified from a range of fresh and brackish water habitats: An. farauti s.s., An. hinesorum, An. lungae, An. nataliae and An. solomonis. The most common habitats used by the primary malaria vector, An. farauti, were coastal lagoons and swamps. In the detailed study of lagoon micro-productivity, An. farauti was non-uniformly distributed with highest densities found at collections sites most proximal and distal to the mouth of the lagoon. The survival of An. farauti larvae was more than twofold lower when larvae were held at the highest experimental density (1 larva per 3.8 cm(2)) when compared with the lowest density (1 larva per 38 cm(2)). The only documented major malaria vector collected in larval surveys in both Central and Western Provinces was An. farauti. Lagoons and swamps, the most common, largest and (potentially) most

  13. Observations of meteor-head echoes using the Jicamarca 50MHz radar in interferometer mode

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Woodman, R. F.

    2004-03-01

    We present results of recent observations of meteor-head echoes obtained with the high-power large-aperture Jicamarca 50MHz radar (11.95°S, 76.87°W) in an interferometric mode. The large power-aperture of the system allows us to record more than 3000 meteors per hour in the small volume subtended by the 1° antenna beam, albeit when the cluttering equatorial electrojet (EEJ) echoes are not present or are very weak. The interferometry arrangement allows the determination of the radiant (trajectory) and speed of each meteor. It is found that the radiant distribution of all detected meteors is concentrated in relative small angles centered around the Earth's Apex as it transits over the Jicamarca sky, i.e. around the corresponding Earth heading for the particular observational day and time, for all seasons observed so far. The dispersion around the Apex is ~18° in a direction transverse to the Ecliptic plane and only 8.5° in heliocentric longitude in the Ecliptic plane both in the Earth inertial frame of reference. No appreciable interannual variability has been observed. Moreover, no population related to the optical (larger meteors) Leonid showers of 1998-2002 is found, in agreement with other large power-aperture radar observations.

    A novel cross-correlation detection technique (adaptive match-filtering) is used in combination with a 13 baud Barker phase-code. The technique allows us to get good range resolution (0.75km) without any sensitivity deterioration for the same average power, compared to the non-coded long pulse scheme used at other radars. The matching Doppler shift provides an estimation of the velocity within a pulse with the same accuracy as if a non-coded pulse of the same length had been used. The velocity distribution of the meteors is relatively narrow and centered around 60kms-1. Therefore most of the meteors have an almost circular retrograde orbit around the Sun. Less than 8% of the velocities correspond to

  14. PREFACE: Preface

    NASA Astrophysics Data System (ADS)

    Moffatt, Keith; Kephart, Thomas

    2014-10-01

    This online volume contains a selection of papers arising from two workshops organised within the six-month programme Topological Dynamics in the Physical and Biological Sciences held at the Isaac Newton Institute for Mathematical Sciences, Cambridge, from July to December 2012. The first of these was a 'satellite workshop' held at the International Centre for Mathematical Sciences (ICMS), Edinburgh, 15-19 October 2012, under the title Tangled Magnetic Fields in Astro- and Plasma Physics, and with Scientific Organising Committee: Konrad Bajer (Warsaw), Mitchell Berger (Exeter), Steve Cowley (Culham Centre for Fusion Energy), Andrew Gilbert (Exeter), Gunnar Hornig (Dundee), and Clare Parnell (St Andrews). The second was the workshop Quantised Flux in Tightly Knotted and Linked Systems held at the Newton Institute, 3- 7 December 2012, with Scientific Organising Committee: Natalia Berloff (DAMTP, Cambridge), Anne-Christine Davis (DAMTP, Cambridge), Jason Cantarella (University of Georgia), Thomas Kephart (Vanderbilt University), Paul Sutcliffe (Durham University), and Tanmay Vachaspati (Arizona State University). Videos of the lectures given at this second workshop can be viewed at http://www.newton.ac.uk/webseminars. The papers published here follow a natural progression through the following topics: helicity and related invariants of magnetic fields in ideal MHD; relaxation under topological constraints; lower bounds on magnetic energy; current and vortex filaments; applications in the solar corona, tokamak plasmas, and cyclone dynamics; higher-order invariants; topology of curves and surfaces, and energy measures; tight knots; applications to Bose-Einstein condensates, QCD, and cosmic superstring theory. Some of the papers span more than one of these areas. We owe a great debt of gratitude to Konrad Bajer, who was one of the guiding spirits behind the whole Newton Institute program, and who took particular responsibility for the Satellite Workshop at ICMS

  15. TECHNICAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DR. ROBERT SINGER

    2007-10-11

    technology for visualizing mRNA from birth to death. (6) In vivo dynamics of RNA polymerase II transcription, Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM, Phair RD, Singer RH, Nat Struct Mol Biol 14:796-806, 2007. This paper describes methods for visualizing gene transcription in real time and provides a systems modeling approach to understanding polymerase dynamics. (See News & Views 14:788) (7) Nuclear microenvironment in cancer diagnosis and treatment, Pezo RC, Singer RH, J Cell Biochem in press (2007). This work describes the environmental factors acting on the genes directly. (8) The spatial order of transcription in mammalian cells, Levsky JM, Shenoy SM, Chubb JR, Hall CB, Capodieci P, Singer RH, J Cell Biochem in press (2007). This work describes how active genes are spatially distributed throughout the nucleus. (9) ZBP1 Enhances Cell Polarity and Reduces Metastasis, Lapidus K, Wyckoff J, Mouneimne G, Lorenz M, Soon L, Condeelis J and Singer RH, JCS in press (2007). This work describes the role of the RNA binding protein in cell polarity and metastasis.« less

  16. EDITORIAL The 17th Central European Workshop on Quantum Optics

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2011-02-01

    . The uncertainty relations for photon quadratures were also checked for the thermal photon state using experimental values of optical tomograms and avoiding the reconstruction procedure of the Wigner function and its associated precision constrains. In the tomographic-probability representation of quantum mechanics and quantum optics, tomograms are used for the description of quantum states as an alternative to the wave function and density matrix. The purity, fidelity, entropy and photon temperature associated with quantum states are expressed in terms of tomograms. This provides the possibility of measuring these characteristics directly by taking optical tomograms and checking basic inequalities like entropic uncertainty relations, temperature-dependent quadrature uncertainty relations, etc. The better understanding that quantum states can be identified with measurable probability distributions like optical tomograms opens new prospects in quantum optics, for example, to check experimentally the uncertainty relations for higher quadrature momenta and to control the precision with which the fundamental inequalities of quantum mechanics are experimentally confirmed. This Topical Issue is a collection of papers presented at the 17th Central European Workshops on Quantum Optics (CEWQO10) held at the University of St Andrews, Scotland, UK, 6-11 June 2010. The other collaborators from different scientific centers who could not, due to different reasons, come to St Andrews but participated in the previous CEWQOs and plan to participate in future CEWQOs also contributed to this issue. The paper by Ulf Leonhardt and Natalia Korolkova, the CEWQO10 Organizers, opens this issue. The order of the following papers corresponds to the alphabetical order of the first author of the paper. The history of CEWQOs can be found in the Preface to the Proceedings of the 15th CEWQO (2009 Phys. Scr. T135 011005). The Proceedings of the 16th Central European Workshop on Quantum Optics (CEWQO09

  17. Dust Trails of SP/Tuttle and the Unusual Outbursts of the Ursid Shower

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Lyytinen, E.; deLignie, M. C.; Johannink, C.; Jobse, K.; Schievink, R.; Langbroek, M.; Koop, M.; Gural, P.; Wilson, M.; hide

    2001-01-01

    Halley-type comets tend to have a series of dust trails that remain spatially correlated for extended periods of time, each dating from a specific return of the comet. Encounters with 1 - 9 revolution old individual dust trails of 55P/Tempel-Tuttle have led to well recognized Leonid shower maxim, the peak time of which was well predicted by recent models. Now. we used the same model to calculate the position of dust trails of comet Shuttle, a Halley-type comet in an (approximately) 13.6 year orbit passing just outside of Earth's orbit. We discovered that the meteoroids tend to be trapped in the 14:12 mean motion resonance with Jupiter, while the comet librates in a slightly shorter period orbit around the 13:15 resonance. It takes six centuries to change the orbit enough to intersect Earth's orbit. During that time, the meteoroids and comet separate in mean anomaly by six years. thus explaining the unusual aphelion occurrences of Ursid outbursts. The resonances also prevent dispersion, so that the dust trail encounters (specifically, from dust trails of AD 1378 - 1405) occur only in one year in each orbit. We predicted enhanced activity on December 22, 2000, at around 7:29 and 8:35 UT (universal time) from dust trails dating to the 1405 and 1392 return, respectively. This event was observed from California using video and photographic techniques. At the same time, five Global-MS-Net stations in Finland, Japan and Belgium counted meteors using forward meteor scatter. The outburst peaked at 8:06:07 UT, December 22, at Zenith Hourly Rate (approx.) 90 per hour. The Ursid rates were above half peak intensity during 4.2 hours. This is only the second Halley type comet for which a meteor outburst can be dated to a specific return of the parent comet, and traces their presence back form 9 to at least 45 revolutions of the comet. New orbital elements of Ursid meteoroids are presented. We find that most orbits do scatter around the anticipated positions, confirming the link

  18. EDITORIAL: Special section on signal transduction Special section on signal transduction

    NASA Astrophysics Data System (ADS)

    Shvartsman, Stanislav

    2012-08-01

    This special section of Physical Biology focuses on multiple aspects of signal transduction, broadly defined as the study of the mechanisms by which cells communicate with their environment. Mechanisms of cell communication involve detection of incoming signals, which can be chemical, mechanical or electromagnetic, relaying these signals to intracellular processes, such as cytoskeletal networks or gene expression systems, and, ultimately, converting these signals to responses such as cell differentiation or death. Given the multiscale nature of signal transduction systems, they must be studied at multiple levels, from the identities and structures of molecules comprising signal detection and interpretation networks, to the systems-level properties of these networks. The 11 papers in this special section illustrate some of the most exciting aspects of signal transduction research. The first two papers, by Marie-Anne Félix [1] and by Efrat Oron and Natalia Ivanova [2], focus on cell-cell interactions in developing tissues, using vulval patterning in worm and cell fate specification in mammalian embryos as prime examples of emergent cell behaviors. Next come two papers from the groups of Julio Saez-Rodriguez [3] and Kevin Janes [4]. These papers discuss how the causal relationships between multiple components of signaling systems can be inferred using multivariable statistical analysis of empirical data. An authoritative review by Zarnitsyna and Zhu [5] presents a detailed discussion of the sequence of signaling events involved in T-cell triggering. Once the structure and components of the signaling systems are determined, they can be modeled using approaches that have been successful in other physical sciences. As two examples of such approaches, reviews by Rubinstein [6] and Kholodenko [7], present reaction-diffusion models of cell polarization and thermodynamics-based models of gene regulation. An important class of models takes the form of enzymatic networks

  19. Observations of elevated Atlantic water heat fluxes at the boundary of the Arctic Basin.

    NASA Astrophysics Data System (ADS)

    Lincoln, Benjamin; Rippeth, Tom; Lenn, Yueng; Bacon, Sheldon

    2014-05-01

    diffusive fluxes. Dissipation rates were enhanced by up to 3 orders of magnitude at the boundaries of the Arctic basin with the highest rates North of Svalbard and decreasing ɛ anticlockwise around the basin with low ɛ in the Canada basin. Enhanced heat fluxes at the boundaries ranged from 10-100 Wm-2 north of Svalbard decreasing to 2-5 Wm-2 along the Laptev shelf slope and less than 0.5 Wm-2 along the East Siberian slope and Lomonosov ridge. In the Canada basin heat fluxes at the boundary were less than 0.2 Wm-2. --- Arctic Ocean Warming Contributes to Reduced Polar Ice Cap Igor V. Polyakov, Leonid A. Timokhov, Vladimir A. Alexeev, Sheldon Bacon, Igor A. Dmitrenko, Louis Fortier, et al. in Journal of Physical Oceanography (2010)

  20. Atmospheric parameters in the mesosphere and lower thermosphere estimated using the Platteville, CO (40°N, 105°W) interferometric meteor radars

    NASA Astrophysics Data System (ADS)

    de La Pena, Santiago

    Two interferometric meteor radars operating at different frequencies have been collecting data for several years at the Platteville Atmospheric Observatory. Meteor decay rates measured by the two systems have been analyzed with the purpose of comparing estimates of the ambipolar diffusion in meteors made with the radars. Ambipolar diffusion is the main dispersion process for meteors. Due to its dependence on atmospheric conditions, it has been used in recent studies to estimate meteor height, and atmospheric temperature and pressure. The results of the comparison made shed light on the conditions under which meteor decay rates can be used to estimate ambipolar diffusion. The response of the two systems to sporadic and shower meteor activity was analyzed and discussed. The radars show similar temporal distributions of the echoes detected from meteor trails, but present some differences in the spatial distribution. The Statistics of the data collected by the radars present differences in the meteor echo spatial distribution between sporadic meteor activity and meteor shower events. Observations of a strong 2001 Leonid meteor storm were presented. A difference in the maximum altitude at which the radars detect meteors was seen. This limit in height is caused by a geophysical effect commonly known as meteor echo ceiling. Six years of horizontal wind estimates near the mesopause obtained from the meteor radars have been analyzed with the objective of studying the spatial and seasonal variability of the main tidal components identified in the wind structure. Interferometric capabilities allowed the estimation of the location of the detected meteor echoes, effectively providing vertical profiles of horizontal wind estimates. Spectral and harmonic analyses were made on the horizontal wind averages, and the main tidal components were identified. Diurnal and semidiurnal oscillations were found persistently, and six, 8, and 48 hour oscillations were more intermittent, but

  1. Limits on efficient computation in the physical world

    NASA Astrophysics Data System (ADS)

    Aaronson, Scott Joel

    More than a speculative technology, quantum computing seems to challenge our most basic intuitions about how the physical world should behave. In this thesis I show that, while some intuitions from classical computer science must be jettisoned in the light of modern physics, many others emerge nearly unscathed; and I use powerful tools from computational complexity theory to help determine which are which. In the first part of the thesis, I attack the common belief that quantum computing resembles classical exponential parallelism, by showing that quantum computers would face serious limitations on a wider range of problems than was previously known. In particular, any quantum algorithm that solves the collision problem---that of deciding whether a sequence of n integers is one-to-one or two-to-one---must query the sequence O (n1/5) times. This resolves a question that was open for years; previously no lower bound better than constant was known. A corollary is that there is no "black-box" quantum algorithm to break cryptographic hash functions or solve the Graph Isomorphism problem in polynomial time. I also show that relative to an oracle, quantum computers could not solve NP-complete problems in polynomial time, even with the help of nonuniform "quantum advice states"; and that any quantum algorithm needs O (2n/4/n) queries to find a local minimum of a black-box function on the n-dimensional hypercube. Surprisingly, the latter result also leads to new classical lower bounds for the local search problem. Finally, I give new lower bounds on quantum one-way communication complexity, and on the quantum query complexity of total Boolean functions and recursive Fourier sampling. The second part of the thesis studies the relationship of the quantum computing model to physical reality. I first examine the arguments of Leonid Levin, Stephen Wolfram, and others who believe quantum computing to be fundamentally impossible. I find their arguments unconvincing without a "Sure

  2. PREFACE: Annual Conference on Functional Materials and Nanotechnologies - FM&NT 2011

    NASA Astrophysics Data System (ADS)

    Sternberg, Andris; Muzikante, Inta; Zicans, Janis

    2011-06-01

    Conference photograph ERAF logo International Organizing Committee Andris Sternberg (chairperson), Institute of Solid State Physics, University of Latvia, Latvia, MATERA Juras Banys, Vilnius University, Lithuania Gunnar Borstel, University of Osnabrück, Germany Niels E Christensen, University of Aarhus, Denmark Robert A Evarestov, St. Petersburg State University, Russia Claes-Goran Granqvist, Uppsala University, Sweden Dag Høvik, The Research Council of Norway, Norway, MATERA Marco Kirm, Institute of Physics, University of Tartu, Estonia Vladislav Lemanov, Ioffe Physical Technical Institute, Russia Witold Lojkowski, Institute of High Pressure Physics, Poland Ergo Nommiste, University of Tartu, Estonia Helmut Schober, Institut Laue-Langevin, France Sisko Sipilä, Finnish Funding Agency for Technology and Innovation, Finland, MATERA Ingólfur Torbjörnsson, Icelandic Centre for Research, Iceland, MATERA Marcel H Van de Voorde, University of Technology Delft, The Netherlands International Program Committee Inta Muzikante (chairperson), Institute of Solid State Physics, University of Latvia, Latvia, MATERA Liga Berzina-Cimdina, Institute of Biomaterials and Biomechanics, Riga Technical University, Latvia Janis Grabis, Institute of Inorganic Chemistry, Riga Technical University, Latvia Leonid V Maksimov, Vavilov State Optical Institute, Russia Linards Skuja, Institute of Solid State Physics, University of Latvia, Latvia Maris Springis, Institute of Solid State Physics, University of Latvia, Latvia Ilmars Zalite, Institute of Inorganic Chemistry, Riga Technical University, Latvia Janis Zicans, Institute of Polymers, Riga Technical University Local Committee: Liga Grinberga, Anatolijs Sarakovskis, Jurgis Grube, Raitis Siatkovskis, Maris Kundzins, Anna Muratova, Maris Springis, Aivars Vembris, Krisjanis Smits, Andris Fedotovs, Dmitrijs Bocarovs, Anastasija Jozepa, Andris Krumins.

  3. Iridescent Glory of Nearby Helix Nebula

    NASA Image and Video Library

    2014-04-04

    This composite picture is a seamless blend of ultra-sharp NASA Hubble Space Telescope (HST) images combined with the wide view of the Mosaic Camera on the National Science Foundation's 0.9-meter telescope at Kitt Peak National Observatory, part of the National Optical Astronomy Observatory, near Tucson, Ariz. Astronomers at the Space Telescope Science Institute assembled these images into a mosaic. The mosaic was then blended with a wider photograph taken by the Mosaic Camera. The image shows a fine web of filamentary "bicycle-spoke" features embedded in the colorful red and blue gas ring, which is one of the nearest planetary nebulae to Earth. Because the nebula is nearby, it appears as nearly one-half the diameter of the full Moon. This required HST astronomers to take several exposures with the Advanced Camera for Surveys to capture most of the Helix. HST views were then blended with a wider photo taken by the Mosaic Camera. The portrait offers a dizzying look down what is actually a trillion-mile-long tunnel of glowing gases. The fluorescing tube is pointed nearly directly at Earth, so it looks more like a bubble than a cylinder. A forest of thousands of comet-like filaments, embedded along the inner rim of the nebula, points back toward the central star, which is a small, super-hot white dwarf. The tentacles formed when a hot "stellar wind" of gas plowed into colder shells of dust and gas ejected previously by the doomed star. Ground-based telescopes have seen these comet-like filaments for decades, but never before in such detail. The filaments may actually lie in a disk encircling the hot star, like a collar. The radiant tie-die colors correspond to glowing oxygen (blue) and hydrogen and nitrogen (red). Valuable Hubble observing time became available during the November 2002 Leonid meteor storm. To protect the spacecraft, including HST's precise mirror, controllers turned the aft end into the direction of the meteor stream for about half a day. Fortunately

  4. PREFACE: 17th International Conference on the Physics of Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    2015-01-01

    sources and Roberto Garibotti, for his help with the edition of the book of abstracts. We thank Lynn van Brook for her work as conference secretary, and Silvana Peralta and Natalia Mastrángelo, for the web development and graphic design. Finally, we express our acknowledgements to the scientists that participated during the refereeing process of the present Proceedings. Raúl Barrachina Flavio Colavecchia Roberto Rivarola Local Chairs, HCI 2014 December 2014

  5. Preface

    NASA Astrophysics Data System (ADS)

    Gurvits, L. I.; Frey, S.; Rawlings, S.

    than 30 contributed papers from that symposium have been published recently in Baltic Astronomy (2005, Vol. 14, No. 3). This book contains a set of invited review presentations given at the symposium. They cover a range of scientific topics in extragalactic and galactic radio astronomy studies as well as recent developments in radio astronomy techniques aimed at the next generation radio astronomy facilities. On behalf of the organisers and participants of the symposium, we express our gratitude to the sponsors of the event and this publication: the European Astronomical Society, Hungarian Academy of Sciences, Eötvös Loránd University, Konkoly Observatory, Eötvös Loránd Physical Society, Netherlands Foundation for Research in Astronomy (ASTRON), Joint Institute for VLBI in Europe, Hungarian Scientific Research Fund, EC FP5 Infrastructure Cooperation Network RadioNET and EC FP6 Integrated Infrastructure Initiative RadioNet. We are grateful to the members of the Scientific Organising Committee of the Symposium. Ken Kellermann made very useful remarks on several papers. Ellen Bouton and Pat Smiley helped to include in this book several photos from the AUI-NRAO archive. Mark Bentum designed the cover picture of the book, visual components for which were kindly supplied by W.A. Baan, M.F. Bietenholz, R. Boomsma, R. Braun, N. Bartel, M.A. Garrett, J.M. van der Hulst, H.R. Klockner, NASA/WMAP Science Team, T.A. Oosterloo, M.P. Rupen, R. Sancisi, B. Stappers, R.G. Strom, D.A. Thilker, and R.A.M. Walterbos. Most of all, we are grateful to all the authors of this book for their efforts in the increasingly old-fashioned art of writing papers for a real “paper” publication as opposed to putting powerpoint files on a web site. We do hope that their nice work will be appreciated by the readers. Leonid Gurvits, Dwingeloo, The Netherlands Sándor Frey, Budapest, Hungary Steve Rawlings, Oxford, UK

  6. The Biological Big Bang model for the major transitions in evolution

    PubMed Central

    Koonin, Eugene V

    2007-01-01

    was reviewed by William Martin, Sergei Maslov, and Leonid Mirny. PMID:17708768

  7. PREFACE: Continuum Models and Discrete Systems Symposia (CMDS-12)

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bikas K.

    2011-09-01

    The 12th International Symposium on Continuum Models and Discrete Systems (CMDS-12) (http://www.saha.ac.in/cmp/cmds.12/) took place at the Saha Institute of Nuclear Physics in Kolkata from 21-25 February 2011. Previous CMDS symposia were held in Kielce (Poland, 1975), Mont Gabriel (Canada, 1977), Freudenstadt (Federal Republic of Germany, 1979), Stockholm (Sweden, 1981), Nottingham (United Kingdom, 1985), Dijon (France, 1989), Paderborn (Germany, 1992), Varna (Bulgaria, 1995), Istanbul (Turkey, 1998), Shoresh (Israel, 2003) and Paris (France, 2007). The broad interdisciplinary character, limited number of participants (not exceeding 100) and informal and friendly atmosphere of these meetings has made them a well-acknowledged place to make highly fruitful contacts and exchange ideas, methods and results. The purpose of CMDS is to bring together scientists with different backgrounds who work on continuum theories of discrete mechanical and thermodynamical systems in the fields of mathematics, theoretical and applied mechanics, physics, material science, and engineering. The spirit of the CMDS meetings is to stimulate extensive and active interdisciplinary research. The International Scientific Committee members of this conference were: David J Bergman (Chairman CMDS 10), Tel Aviv University, Israel; Bikas K Chakrabarti (Chairman CMDS 12), Saha Institute of Nuclear Physics, India; Alex Hansen, Norwegian University of Science and Technology, Norway; Hans Jürgen Herrmann, Institute for Building Materials, ETH, Switzerland; Esin Inan (Chairman CMDS 9), Istanbul Technical University, Turkey; Dominique Jeulin (Chairman CMDS 11), Ecole des Mines de Paris, France; Frank Juelicher, Max-Planck-Institute for the Physics of Complex Systems, Germany; Hikaru Kawamura, University of Osaka, Japan; Graeme Milton, University of Utah, USA; Natalia Movchan, University of Liverpool, UK; and Ping Sheng, The Hong Kong University of Science and Technology, Hong Kong. At CMDS-12 the topics

  8. Verochka Zingan or recollections from the Physics Department of the Moscow University

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    The author recollects his studentship during 70-th years at the Physics Department of the Moscow University. He was graduated from the theoretical Physics Department in 1977. The Rectors of the University that times were I.G. Petrovskii, R.V. Khokhlov and A.A. Logunov. The dean of the Physics Department was V.S. Fursov. As a particular event a meet with the former prime-minister of the USSR A.N. Kosygin is reported. Between professors mentioned throughout the recollections are A.I.Kitaigorodskii, Ya. B. Zel'dovich, D.D. Ivanenko, A.A. Sokolov, A.A. Vlasov, V.B. Braginsky, I.M. Ternov, L.A. Artsimovich, E.P. Velikhov and other, including that which became University professors later. A great number of colleagues from the Physics, Chemistry, Phylological and Historical Departments of the Moscow University are mentioned. Particularly, the students which entered the group 113 in 1971 and finished the group 601 in 1977 are listed. The recollections include 5 parts. Persons cited throughout the paper: A.N. Kosygin, A.S. Golovin, V. Kostyukevich, I.M. Ternov, E.G. Pozdnyak, A. N. Matveev, V.P. Elyutin, V.V. Kerzhentsev, 113 academic group (1971), V. Topala, E.A. Marinchuk, P.Paduraru, A.I. Kitaygorodski, A. Leahu, S. Berzan, B. Ursu, I. Coanda (Koade), M. Stefanovici, O. Bulgaru, A. Iurie-Apostol, A.S. Davydov, M.I. Kaganov, I.M. Lifshitz, Ya. B. Zel'dovich, A.Zhukov, A.I. Buzdin, N.S. Perov, V. Dolgov, P. Vabishchevich, A.A. Samarskii, V. Makarov, Irina Kamenskih, A.A. Arsen'ev, L.A. Artsimovich, A.A. Tyapkin, B.M. Pontecorvo, D.I. Blokhintsev, I.G. Petrovskii, R.V. Khokhlov, V.N. Rudenko, A.A. Sokolov, D.D. Ivanenko (Iwanenko), A.A. Vlasov, V.N. Ponomarev, N.N. Bogolyubov, N.N. Bogolyubov (Jr), V.Ch. Zhukovskii, Tamara Tarasova, Zarina Radzhabova (Malovekova), V.Malovekov, Tatiana Shmeleva, Alexandra C.Nicolescu, Tatiana Nicolescu, Rano Mahkamova, Miriam Yandieva, Natalia Germaniuk (Grigor'eva), E. Grigor'ev, A. Putro, Elena Nikiforova, B. Kostrykin, Galia Laufer, K

  9. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on

  10. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  11. PREFACE: Semiconducting oxides Semiconducting oxides

    NASA Astrophysics Data System (ADS)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    their help in producing this special section. We hope that it conveys some of the excitement and significance of the field. Semiconducting oxides contents Chemical bonding in copper-based transparent conducting oxides: CuMO2 (M = In, Ga, Sc) K G Godinho, B J Morgan, J P Allen, D O Scanlon and G W Watson Electrical properties of (Ba, Sr)TiO3 thin films with Pt and ITO electrodes: dielectric and rectifying behaviourShunyi Li, Cosmina Ghinea, Thorsten J M Bayer, Markus Motzko, Robert Schafranek and Andreas Klein Orientation dependent ionization potential of In2O3: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronicsMareike V Hohmann, Péter Ágoston, André Wachau, Thorsten J M Bayer, Joachim Brötz, Karsten Albe and Andreas Klein Cathodoluminescence studies of electron irradiation effects in n-type ZnOCasey Schwarz, Yuqing Lin, Max Shathkin, Elena Flitsiyan and Leonid Chernyak Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputteringM F Cerqueira, M I Vasilevskiy, F Oliveira, A G Rolo, T Viseu, J Ayres de Campos, E Alves and R Correia Structure and electrical properties of nanoparticulate tungsten oxide prepared by microwave plasma synthesisM Sagmeister, M Postl, U Brossmann, E J W List, A Klug, I Letofsky-Papst, D V Szabó and R Würschum Charge compensation in trivalent cation doped bulk rutile TiO2Anna Iwaszuk and Michael Nolan Deep level transient spectroscopy studies of n-type ZnO single crystals grown by different techniquesL Scheffler, Vl Kolkovsky, E V Lavrov and J Weber Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour depositionC David, T Girardeau, F Paumier, D Eyidi, B Lacroix, N Papathanasiou, B P Tinkham, P Guérin and M Marteau Multi-component transparent conducting oxides: progress in materials modellingAron Walsh, Juarez L F Da Silva and Su-Huai Wei Thickness dependence of the strain, band gap and transport properties of

  12. NRAO Scientists on Team Receiving International Astronautics Award

    NASA Astrophysics Data System (ADS)

    2005-10-01

    , a radio telescope bigger than the Earth." In addition to Fomalont and Romney, they are: Hisashi Hirabayashi, of the Institute of Space and Astronautical Science and Japan Aerospace Exploration Agency (ISAS/JAXA), Haruto Hirosawa (ISAS/JAXA), Peter Dewdney of Canada's Dominion Radio Astrophysical Observatory, Leonid Gurvits of the Joint Institute for VLBI in Europe (JIVE, The Netherlands), Makoto Inoue of the National Astronomical Observatory of Japan (NAOJ), David Jauncey of the Australia Telescope National Facility, Noriyuki Kawaguchi (NAOJ), Hideyuki Kobayashi (NAOJ), Kazuo Miyoshi (Mitsubishi Electric Corporation, Japan), Yasuhiro Murata (ISAS/JAXA), Takeshi Orii (NEC, Japan) Robert Preston of NASA's Jet Propulsion Laboratory (JPL), and Joel Smith (JPL). The International Academy of Astronautics was founded in August 1960 in Stockholm, Sweden, during the 11th International Astronautical Congress. The Academy aims to foster the development of astronautics for peaceful purposes; recognize individuals who have distinguished themselves in a related branch of science or technology; provide a program through which members may contribute to international endeavours; cooperation in the advancement of aerospace science. Previous recipients of the Laurels for Team Achievement Award are the Russian Mir Space Station Team (2001), the U.S. Space Shuttle Team (2002), the Solar and Heliospheric Observatory (SOHO) Team (2003), and the Hubble Space Telescope Team (2004). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  13. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents <;A article="1367-2630/5/1/117">Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau

  14. Heterogeneous strain and composite P-T paths: the key for unravelling complex tectonic histories in polymetamorphic high-grade terrains

    NASA Astrophysics Data System (ADS)

    van Reenen, Dirk D.; Smit, C. Andre

    2010-05-01

    Leonid Perchuk calculated the first P-T paths for eclogites almost 40 years ago [1] and since then he has shown that P-T paths if correctly constructed, represent an accurate record of the thermal and dynamic evolution of high-grade metamorphic complexes [2]. This implies that P-T paths might serve as the basis for geodynamic models for the formation and exhumation of such complexes from the lower crustal levels [2]. His continued research in the Limpopo Complex of southern Africa also played an important role in the next direction in the study of complex high-grade polymetamorphic complexes. This new direction involves the link between composite (kinked) P-T paths [5; 6; 8] and the critical role of heterogeneous strain in the development and preservation of distinct granulite facies events at the regional, outcrop, hand specimen, and thin section scales [7; 9; 10]. Heterogeneous deformation that operated on the thin section scale allowed the construction of kinked P-T paths from single thin sections [5; 6; 9] and the integration of the P-T data with structural and isotopic geochronology [7; 9; 10]. D-P-T-t paths thus constructed not only allow the nature of polymetamorphism in the Limpopo Complex of southern Africa to be established, but also assisted in the construction of tectonic models for the evolution of this complex high-grade polymetamorphic complex. This complex evolution is demonstrated by the configuration of a kinked P-T path (5; 9) that reflects the following distinct stages of the multi-cycle D-P-T-t evolution of the Central Zone: (i) the earliest DC1 path reflects the emplacement before ~2.63Ga of the Limpopo Complex at the crustal level of ~20km. The DC1 stage of the D1/M1 exhumation event was accompanied by the formation of early D2A isoclinal folds; (ii) The DC2 stage of the D1/M1 exhumation event reflects the emplacement before ~2.61Ga of the rocks at the crustal level of ~15km. The DC2 stage was accompanied by the formation of major D2B sheath

  15. Meteorites, Bolides and Comets: A Tale of Inconsistency

    NASA Astrophysics Data System (ADS)

    Jakes, P.; Padevet, V.

    1992-07-01

    Inhomogeneity of cometary nuclei has been established through the observed disruptions of comets [1] and through the determination of dust particle composition during the encounter of the Vega and Giotto satellites with comet Halley [2,3,4]. The raisin bread model of cometary nuclei [5,6] assumes the presence of solid (rock) and dust particle material set in the volatile rich, ice- cemented material. Rock material may contribute to the formation of dust particles. Gombosi and Houpis [5] argued that only the composition of dust particles derived from the icy, volatile component of the comet were analyzed and implied thus that the third cometary component present (raisins/rocks) has not been examined. The compositions of the cometary (Halley) dust and the interplanetary dust particles (IDPs) are "chondritic" (Blanford et al., 1988). It is difficult, therefore to estimate the proportion of cometary to asteroid-derived dust in near Earth space, e.g., among the IDPs [7] unless other criteria are available. Bolide multistation photographic tracking allows the determination of the orbital preencounter parameters of solid bodies (0.01-100,000 kg in mass) with the Earth, and allows us to classify them according to their ablation coefficient (tau), penetration depth into the atmosphere (PE), theoretical densities (sigma), and terminal velocities (V(sub)E). Four groups are recognized (Table 1). Three of the type I bolides were recovered as ordinary chondrites (Pribram, Lost City, and Innisfree). Ceplecha [8] has shown that 38% of bolides (fireballs) come from cometary orbits (11% from highly eccentric orbits typical of new comets), but most of the bolides (62%) originate at asteroidal orbits. Seven of the 14 known meteoric showers could be attributed to known comets: N,S Taurids to 1970 P/Encke, Lyrids to 1861 I Thatcher-Beaker, Perseids to 1862 III Swift-Tuttle- Simons, Orionids to 1835 III P/Halley, Draconids to 1946 V P/Giacobini-Zinner, Leonids to 1966 I Tempel

  16. Editorial: Focus on Atom Optics and its Applications

    NASA Astrophysics Data System (ADS)

    Schmidt-Kaler, F.; Pfau, T.; Schmelcher, P.; Schleich, W.

    2010-06-01

    Couvert, B Georgeot and D Guéry-Odelin Analysis of the entanglement between two individual atoms using global Raman rotations A Gaëtan, C Evellin, J Wolters, P Grangier, T Wilk and A Browaeys Spin polarization transfer in ground and metastable helium atom collisions D Vrinceanu and H R Sadeghpour A fiber Fabry-Perot cavity with high finesse D Hunger, T Steinmetz, Y Colombe, C Deutsch, T W Hänsch and J Reichel Atomic wave packets in amplitude-modulated vertical optical lattices A Alberti, G Ferrari, V V Ivanov, M L Chiofalo and G M Tino Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions Julian Grond, Ulrich Hohenester, Igor Mazets and Jörg Schmiedmayer Storage of protonated water clusters in a biplanar multipole rf trap C Greve, M Kröner, S Trippel, P Woias, R Wester and M Weidemüller Single-atom detection on a chip: from realization to application A Stibor, H Bender, S Kühnhold, J Fortágh, C Zimmermann and A Günther Ultracold atoms as a target: absolute scattering cross-section measurements P Würtz, T Gericke, A Vogler and H Ott Entanglement-assisted atomic clock beyond the projection noise limit Anne Louchet-Chauvet, Jürgen Appel, Jelmer J Renema, Daniel Oblak, Niels Kjaergaard and Eugene S Polzik Towards the realization of atom trap trace analysis for 39Ar J Welte, F Ritterbusch, I Steinke, M Henrich, W Aeschbach-Hertig and M K Oberthaler Resonant superfluidity in an optical lattice I Titvinidze, M Snoek and W Hofstetter Interference of interacting matter waves Mattias Gustavsson, Elmar Haller, Manfred J Mark, Johann G Danzl, Russell Hart, Andrew J Daley and Hanns-Christoph Nägerl Magnetic trapping of NH molecules with 20 s lifetimes E Tsikata, W C Campbell, M T Hummon, H-I Lu and J M Doyle Imprinting patterns of neutral atoms in an optical lattice using magnetic resonance techniques Michal Karski, Leonid Förster, Jai-Min Choi, Andreas Steffen, Noomen Belmechri, Wolfgang Alt, Dieter Meschede and Artur Widera

  17. PREFACE New developments in nanopore research—from fundamentals to applications New developments in nanopore research—from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Edel, Joshua B.; Winterhalter, Mathias

    2010-11-01

    refereeing process, and Ms Natalia Goehring for the beautiful cover artwork. Finally, to the readers, we hope you find this special issue a valuable source of information and insight into the field of nanopores. New developments in nanopore research—from fundamentals to applications contents Mathematical modeling and simulation of nanopore blocking by precipitation M-T Wolfram, M Burger and Z S Siwy Protein conducting nanopores Anke Harsman, Vivien Krüger, Philipp Bartsch, Alf Honigmann, Oliver Schmidt, Sanjana Rao, Christof Meisinger and Richard Wagner Electrically sensing protease activity with nanopores Mikiembo Kukwikila and Stefan Howorka Electrical characterization of DNA-functionalized solid state nanopores for bio-sensing V Mussi, P Fanzio, L Repetto, G Firpo, P Scaruffi, S Stigliani, M Menotta, M Magnani, G P Tonini and U Valbusa Automatable lipid bilayer formation and ion channel measurement using sessile droplets J L Poulos, S A Portonovo, H Bang and J J Schmidt Critical assessment of OmpF channel selectivity: merging information from different experimental protocols M L López, E García-Giménez, V M Aguilella and A Alcaraz Chemically modified solid state nanopores for high throughput nanoparticle separation Anmiv S Prabhu, Talukder Zaki N Jubery, Kevin J Freedman, Rafael Mulero, Prashanta Dutta and Min Jun Kim Changes in ion channel geometry resolved to sub-ångström precision via single molecule mass spectrometry Joseph W F Robertson, John J Kasianowicz and Joseph E Reiner Entropic transport of finite size particles W Riefler, G Schmid, P S Burada and P Hänggi Osmotic stress regulates the strength and kinetics of sugar binding to the maltoporin channel Philip A Gurnev, Daniel Harries, V Adrian Parsegian and Sergey M Bezrukov Detection of urea-induced internal denaturation of dsDNA using solid-state nanoporesn Alon Singer, Heiko Kuhn, Maxim Frank-Kamenetskii and Amit Meller Translocation events in a single-walled carbon nanotube Jin He, Hao Liu, Pei Pang

  18. 8th Argentinean Bioengineering Society Conference (SABI 2011) and 7th Clinical Engineering Meeting

    NASA Astrophysics Data System (ADS)

    Meschino, Gustavo Javier; Ballarin, Virginia L.

    2011-12-01

    Juan ¬- CONICET Bioing Luciano Gentile Universidad Favaloro Mg María Eugenia Gómez Universidad Nacional de San Juan Dr Claudio González Universidad Nacional de Mar del Plata Mg Esteban González Universidad Nacional de Mar del Plata Dra Mariela A Gonzalez Universidad Nacional de Mar del Plata - CONICET Dr Juan Pablo Graffigna Universidad Nacional de San Juan Dra Myriam Herrera Universidad Nacional de Tucumán - CONICET Dr Roberto Hidalgo Universidad Nacional de Mar del Plata Dr Roberto Isoardi Fundación Escuela de Medicina Nuclear de Mendoza - CNEA Dra Susana Jerez Universidad Nacional de Tucumán Dr Eric Laciar Universidad Nacional de San Juan - CONICET Bioing Roberto Leonarduzzi Universidad Nacional de Entre Ríos Mg Norberto Lerendegui Instituto Tecnológico de Buenos Aires Dra Natalia López Universidad Nacional de San Juan - CONICET Dra Rossana Madrid Universidad Nacional de Tucuman - CONICET Ing Florencia Montini Ballarin Universidad Nacional de Mar del Plata - CONICET Dra Emilce Moler Universidad Nacional de Mar del Plata Dr Jorge Castiñieira Moreira Universidad Nacional de Mar del Plata Dr Silvia Murialdo Universidad Nacional de Mar del Plata - CIC Dr Juan Manuel Olivera Universidad Nacional de Tucumán Dra Lucia Isabel Passoni Universidad Nacional de Mar del Plata Dr Juan Ignacio Pastore Universidad Nacional de Mar del Plata - CONICET Dra María Elisa Pérez Universidad Nacional de San Juan Mg Franco M Pessana Universidad Favaloro Dr Julio Politti Universidad Nacional de Tucumán Dr Marcelo Risk Universidad Nacional de Buenos Aires - CONICET Ing Raúl Rivera Universidad Nacional de Mar del Plata Mg Luis Rocha Universidad Nacional de Tucumán - SIPROSA Dra Silvia Rodrigo Universidad Nacional de San Juan Dra Viviana Rotger Universidad Nacional de Tucumán Dr Leonardo Rufiner Universidad Nacional de Entre Rios - CONICET Dra Estela Ruiz Universidad Nacional de Tucumán Dr Martín Santiago Universidad Nacional del Centro de la Provincia de Buenos Aires Dra

  19. Obituary: Thomas C. Van Flandern (1940-2009)

    NASA Astrophysics Data System (ADS)

    Dunham, David; Slabinski, Victor

    2011-12-01

    planetary formation. The Bulletin claimed mainstream scientists preferred making ad hoc corrections to the theories rather than acknowledge fundamental difficulties that might jeopardize their funding. Tom Van Flandern's advocacy of an artificial origin for the "face on Mars," especially after higher-resolution images were taken in 2001, antagonized many. His questioning of the speed of gravity, first published in a 1998 paper in Physics Letters A, provoked additional attacks from relativists. He showed the same persistence with these controversies that had enabled him to solve complex programming and celestial mechanics problems. Tom Van Flandern did not reject General Relativity as some have asserted, but rather rejected its geometrical interpretation. He said: "General relativity has a geometric and a field interpretation. If angular momentum conservation is invoked in the geometric interpretation to explain experiments, the causality principle is violated. The field interpretation avoids this problem by allowing faster-than-light propagation in forward time." For more, see http://www.metaresearch.org/cosmology/gravity/speed_limit.asp. Tom Van Flandern strongly attacked some alternative theories, such as Velikovsky's ideas of recent planetary close approaches, turning one of Velikovsky's supporters, C. L. Ellenberger, into a strong critic. If not for these antagonisms, the "mainstream" part of Tom Van Flandern's work in later years might be better acknowledged, including his "Eclipse Edge" company that organized expeditions to several solar eclipses, and his work with E. Lyytinen on the passage of Earth through cometary debris trails. Their prediction was closest to the observed time of the Leonid storm maximum of November 2001. Tom Van Flandern held memberships in the International Astronomical Union, the American Astronomical Society (and in its Divisions on Dynamical Astronomy and Planetary Sciences), and several other scientific organizations. He received second

  20. Radio Telescopes Will Add to Cassini-Huygens Discoveries

    NASA Astrophysics Data System (ADS)

    2004-12-01

    accuracy. They expect to measure the probe's position within two-thirds of a mile (1 kilometer) at a distance of nearly 750 million miles. "That's like being able to sit in your back yard and watch the ball in a ping-pong game being played on the Moon," said Leonid Gurvits of JIVE. Both the JPL and JIVE teams will record the data collected by the radio telescopes and process it later. In the case of the Doppler measurements, some real-time information may be available, depending on the strength of the signal, but the scientists on this team also plan to do their detailed analysis on recorded data. The JPL team is utilizing special instrumentation from the Deep Space Network called Radio Science Receivers. One will be loaned to the GBT and another to the Parkes radio observatory. "This is the same instrument that allowed us to support the challenging communications during the landing of the Spirit and Opportunity Mars rovers as well as the Cassini Saturn Orbit Insertion when the received radio signal was very weak," said Sami Asmar, the JPL scientist responsible for the data recording. When the Galileo spacecraft's probe entered Jupiter's atmosphere in 1995, a JPL team used the NSF's Very Large Array (VLA) radio telescope in New Mexico to directly track the probe's signal. Adding the data from the VLA to that experiment dramatically improved the accuracy of the wind-speed measurements. "The Galileo probe gave us a surprise. Contrary to some predictions, we learned that Jupiter's winds got stronger as we went deeper into its atmosphere. That tells us that those deeper winds are not driven entirely by sunlight, but also by heat coming up from the planet's core. If we get lucky at Titan, we'll get surprises there, too," said Robert Preston, another JPL scientist. The Huygens probe is a spacecraft built by the European Space Agency (ESA). In addition to the NRAO telescopes, the JPL Doppler Wind Experiment will use the Australia Telescope National Facility and other radio

  1. EDITORIAL: From reciprocal space to real space in surface science From reciprocal space to real space in surface science

    NASA Astrophysics Data System (ADS)

    Bartels, Ludwig; Ernst, Karl-Heinz

    2012-09-01

    Triest.let's finish—aus basta Some move atoms around to hear how they sound.Karl-Heinz Rieder, Erice, 6 April 1998 From reciprocal space to real space in surface science contents From reciprocal space to real space in surface scienceLudwig Bartels and Karl-Heinz Ernst Karl-Heinz Reider: the quiet pioneerGiorgio Benedek Scattering of CO and N2 molecules by a graphite surfaceJunepyo Oh, Takahiro Kondo, Keitaro Arakawa, Yoshihiko Saito, Junji Nakamura, W W Hayes and J R Manson Helium, neon and argon diffraction from Ru(0001)M Minniti, C Díaz, J L Fernández Cuñado, A Politano, D Maccariello, F Martín, D Farías and R Miranda Enhanced charge transfer in a monolayer of the organic charge transfer complex TTF-TNAP on Au(111)T R Umbach, I Fernandez-Torrente, J N Ladenthin, J I Pascual and K J Franke Extended pattern recognition scheme for self-learning kinetic Monte Carlo simulationsSyed Islamuddin Shah, Giridhar Nandipati, Abdelkader Kara and Talat S Rahman Acetylene on Cu(111): imaging a molecular surface arrangement with a constantly rearranging tipYeming Zhu, Jonathan Wyrick, Kamelia D Cohen, Katie Marie Magnone, Connor Holzke, Daniel Salib, Quan Ma, Dezheng Sun and Ludwig Bartels Coulomb attraction during the carpet growth mode of NaClFriederike Matthaei, Sarah Heidorn, Konrad Boom, Cord Bertram, Ali Safiei, Jörg Henzl and Karina Morgenstern Molecular self-assembly on an insulating surface: interplay between substrate templating and intermolecular interactionsMarkus Kittelmann, Philipp Rahe and Angelika Kühnle Vertical manipulation of native adatoms on the InAs(111)A surfaceJ Yang, C Nacci, J Martínez-Blanco, K Kanisawa and S Fölsch Charge transfer between isomer domains on n+-doped Si(111)-2 × 1: energetic stabilizationR M Feenstra, G Bussetti, B Bonanni, A Violante, C Goletti, P Chiaradia, M G Betti and C Mariani Probing the properties of metal-oxide interfaces: silica films on Mo and Ru supportsLeonid Lichtenstein, Markus Heyde, Stefan Ulrich, Niklas Nilius

  2. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.

    2009-04-01

    .L. Phanerozoic granite-metamorphic domes at Russian North-East. Paper 2. Magmatism, metamorphism and migmatization in Late Mesozoic domes // Pacific geology. 1996. V. 15. № 1. P. 84-93. (in Russian) 13. Bering Strait Geologic Field Party, Koolen metamorphic complex, NE Russia: implications for the tectonic evolution of the Bering Strait region // Tectonics, vol. 16, no. 5, p. 713-729 14. Bondarenko G.E., Luchitskaya M.V. Mesozoic tectonic evolution of Alarmaut rise // Byul. MOIP. Otd. Geol. V. 78. Is. 3. P. 25-38. (in Russian) 15. Katkov S.M., Strikland A., Miller E.L. Age of granite batholiths in the Anyui-Chukotka Foldbelt // Doklady. Earth Sciences. 2007. Vol. 414. № 4. P. 515-518. 16. Amato J.M., Wright J.E. Potassic mafic magtism in the Kigluaik gneiss dome, northern Alaska: a geochemical study of arc magmatism in an extensional tectonic setting // J. Geophys. Res. 1997. Vol.102. N B4. P.8065-8084 17. Tikhomirov P.L., Luchitskaya M.V., Kravchenko-Berezhnoy I.R. Comparison of Cretaceous granitoids of the Chaun tectonic zone to those of the Taigonos Peninsula, NE Asia: rock chemistry, composition of rock forming minerals, and conditions of formation // Stephan Mueller series. Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov (in press) 28. Velikoslavinsky S.D. Geochemical typification of acid magmatic rocks of leading geodynamic settings // Petrology. 2003. V. 11. № 4. P.363-380. (in Russian) 19. Pearce J.A. Sources and settings of granitic rocks // Episodes. 1996. V. 19. N. 4. P. 120-125

  3. PREFACE: 13th International Conference on Liquid and Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Popel, Pjotr; Gelchinskii, Boris; Sidorov, Valeriy; Son, Leonid; Sabirzjanov, Alexandre

    2007-06-01

    helped us to manage it in the best way, namely to J Dupuy, M Silbert, F Sommer, W C Pilgrim, W Freyland, K Lu, J Brmejo and F Hensel.

  4. We dedicate the LAM13 conference to the 80-year jubilee of Professor Nikolay Vatolin who is the leader of Russian investigations in the field of liquid and amorphous metals and who managed twelve(!) similar conferences in our country. One of us (PP) commemorates his father, Professor Stanislav Popel, who was a known specialist in high temperature capillarity and left us half a year before the event. Pjotr Popel, Boris Gelchinskii, Valeriy Sidorov, Leonid Son, Alexandre Sabirzjanov Ekaterinburg, January 14 2008

  5. Catching a Falling Star

    NASA Astrophysics Data System (ADS)

    2004-07-01

    . Comets are another important source of meteoroids and perhaps the most spectacular. After many visits near the Sun, a comet "dirty-snowball" nucleus of ice and dust decays and fragments, leaving a trail of meteoroids along its orbit. Some "meteoroid streams" cross the earth's orbit and when our planet passes through them, some of these particles will enter the atmosphere. The outcome is a meteor shower - the most famous being the "Perseids" in the month of August [2] and the "Leonids" in November. Thus, although meteors are referred to as "shooting" or "falling stars" in many languages, they are of a very different nature. More information The research presented in this paper is published in the journal Meteoritics and Planetary Science, Vol. 39, Nr. 4, p. 1, 2004 ("Spectroscopic anatomy of a meteor trail cross section with the ESO Very Large Telescope", by P. Jenniskens et al.). Notes [1] The team is composed of Peter Jenniskens (SETI Institute, USA), Emmanuël Jehin (ESO), Remi Cabanac (Pontificia Universidad Catolica de Chile), Christophe Laux (Ecole Centrale de Paris, France), and Iain Boyd (University of Michigan, USA). [2] The maximum of the Perseids is expected on August 12 after sunset and should be easily seen.

  6. PREFACE: CEWQO Topical Issue CEWQO Topical Issue

    NASA Astrophysics Data System (ADS)

    Bozic, Mirjana; Man'ko, Margarita

    2009-09-01

    Kalle-Antti Suominen (http://www.congress.utu.fi/cewqo2009). The conference site is the new ICT building at chaired by Professor Kalle-Antti Suominen (http://www.congress.utu.fi/cewqo2009, www.congress.utu.fi/cewqo2009). The conference site was the new ICT building at the University of Turku campus area and the Viking Line ferry boat. Turku is the central city of historical Finland established on the mouth of the river Aura in the 13th century. It is the birthplace of Finnish academic life, since the Academy of Turku was established there in 1640. In 2011, Turku will be one of the cultural capitals of Europe. The city has a strong maritime tradition and is shielded from the Baltic sea by a large and beautiful archipelago. The 17th Central European Workshop on Quantum Optics will be held in 2010 in St Andrews, UK. It will be chaired by Professors Ulf Leonhardt and Natalia Korolkova from the School of Physics and Astronomy, University of St Andrews. St Andrews is home to the first university of Scotland, the third-oldest in the English-speaking world, and is the home of golf. It remains a charming, eccentric seaside town that is sufficiently secluded - the ideal place for a stimulating and thought-provoking conference.

  7. HWHAP_Ep5_Astronaut-Training

    NASA Image and Video Library

    2017-08-04

    BREZHNEV. [ LAUGHTER ] AND THAT WAS IT. AND I-- YOU KNOW, HERE I AM QUITE A FEW DECADES LATER, AND HAVEN’T DONE ANYTHING STUPID TO GET A NEW ONE. [ LAUGHTER ] >> BREZHNEV AFTER THE SOVIET LEADER? >> LEONID BREZHNEV, YEAH. >> OKAY, AND I GUESS EVERYONE CALLED EACH OTHER KOMRADE AS LIKE A-- >> THAT’S-- DURING SOVIET TIMES THAT WAS HOW EVERYBODY ADDRESSED THEMSELVES. >> HOW-- OKAY, I GET THE REFERENCE NOW. SO JUST AS A LITTLE BIT OF BACKGROUND, BUT-- YOU’RE NAVY AND MARINES, IS THAT CORRECT? >> I AM A-- THE OVERALL ARCHING IS NAVAL AVIATOR, WHICH INCLUDES THE NAVY AND THE MARINE CORPS AVIATORS. WE WEAR THE SAME WINGS ON OUR FL-- WE EARN THE SAME WINGS IN FLIGHT SCHOOL AND WEAR THE SAME WINGS ON OUR FLIGHT SUITS. >> OKAY, SO WHEN YOU TALK ABOUT LAUNCHING OFF OF CARRIERS AND THE MARINES-- >> RIGHT, THAT’S PART OF OUR OVERALL NAVAL AVIATOR TRAINING. SO I WAS TRAINED TO LAUNCH OFF AN AIRCRAFT CARRIER-- LAUNCHED A T-2, A-4, AND AN F-18. BUT THEN AS A MARINE WE DEPLOY EXPEDITIONARITY-- IS THAT EVEN A WORD? [ LAUGHTER ] >> WE’LL MAKE IT A WORD. >> WE’RE EXPEDITION BASED, BUT WE’LL LAUNCH AND ESTABLISH FORWARD BASES AND FLY OUT OF THERE, SO JUST FLYING OFF THE AIRCRAFT CARRIER. >> OKAY, OKAY. NOW, YOU’RE GOING TO BE LAUNCHING SOON-- OR, DEPENDING ON WHEN THIS PODCAST IS RELEASED, YOU’RE IN SPACE RIGHT NOW-- BUT THIS IS NOT YOUR FIRST RODEO, RIGHT? YOU’VE BEEN IN SPACE BEFORE. YOU LAUNCHED IN 2009 ON STS-129 ABOARD ATLANTIS. HOW WAS THAT? >> STS-129 WAS REALLY NEAT. I HAD, FORTUNATELY, A REALLY GREAT CREW. WE HAD TWO MARINE TEST PILOTS, WE HAD TWO NAVY TEST PILOTS, AND WE HAD TWO SMART GUYS. [ LAUGHTER ] OUR SMART GUYS-- YOU KNOW, LELAND MELVIN, HERE HE IS, HE HAD BEEN DRAFTED INTO THE NFL, PLAYING FOOTBALL, BUT HAD A CAREER-ENDING INJURY, BUT HE FINISHED HIS EDUCATION, WENT BACK AND GOT HIS MASTER’S, BECAME A NASA ENGINEER, AND THEN BECAME AN ASTRONAUT. >> AWESOME. >> YEAH, AND THEN BECAUSE WE HAD THE TWO MARINES, YOU NEED TO, YOU KNOW, RAISE THE AVERAGE IQ ON